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Abstract

Purpose of Review This article introduces fundamental concepts in circadian biology and 
the neuroscience of sleep, reviews recent studies characterizing circadian rhythm and sleep 
disruption among critically ill patients and potentially links to functional outcomes, and 
draws upon existing literature to propose therapeutic strategies to mitigate those harms. 
Particular attention is given to patients with critical neurologic conditions and the unique 
environment of the neuro-intensive care unit.
Recent Findings Circadian rhythm disruption is widespread among critically ill patients and 
sleep time is reduced and abnormally fragmented. There is a strong association between 
the degree of arousal suppression observed at the bedside and the extent of circadian 
disruption at the system (e.g., melatonin concentration rhythms) and cellular levels (e.g., 
core clock gene transcription rhythms). There is a paucity of electrographically normal 
sleep, and rest-activity rhythms are severely disturbed. Common care interventions such as 
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neurochecks introduce unique disruptions in neurologic patients. There are no pharmaco-
logic interventions proven to normalize circadian rhythms or restore physiologically normal 
sleep. Instead, interventions are focused on reducing pharmacologic and environmental 
factors that perpetuate disruption.
Summary The intensive care environment introduces numerous potent disruptors to sleep 
and circadian rhythms. Direct neurologic injury and neuro-monitoring practices likely 
compound those factors to further derange circadian and sleep functions. In the absence 
of direct interventions to induce normalized rhythms and sleep, current therapy depends 
upon normalizing external stimuli.

Circadian Rhythms and Sleep − a Brief Introduction
Biological Rhythms and Circadian Physiology

Most organisms exhibit recurring physiologic processes that constitute biolog-
ical rhythms. These rhythms occur in an extensive range of frequencies from 
infradian processes like annual hibernation and menstrual (i.e., monthly) 
ovulation, circadian or diurnal (i.e., daily) rhythms like sleep and wake, to 
ultradian (i.e., cyclical processes happening many times per day). Daily shifts 
between daytime and nighttime create marked changes in the environment. 
Most multicellular organisms have evolved physiologic processes to adapt to 
those predictable fluctuations. Circadian rhythms—those organized around 
the cycle of one day—are among the most complex and prominent. Many 
well-known biological rhythms, from sleep and wake cycles to blood pres-
sure dipping and morning cortisol surges, result from entrainment to the 
circadian rhythm.

The suprachiasmatic nucleus (SCN) is often described as a central pace-
maker for the circadian rhythm, but because all cells contain molecular clocks, 
body tissues are not “pacemaker-dependent” over short time intervals. The 
principal role of the SCN is to integrate relevant internal and external influ-
ences on circadian rhythm timing and to function as a central synchronizer. 
Individual cells maintain an internal clock comprised of a transcriptional 
feedback loop involving at least ten gene products [1]. Each cell therefore 
needs to be maintained in alignment with respect to timing (phase) in order 
to function in concert. This is accomplished by the SCN communicating sig-
nals to the peripheral circadian clocks in brain and other body tissues through 
hormonal rhythms and autonomic signals [2, 3]. The process of influencing 
the timing of the circadian rhythms is called entrainment, and factors that 
entrain rhythms are called zeitgebers (“time-givers”).

It is the rhythmic activity of the transcriptome that directly effectuates 
much of the physiology of the circadian rhythm. Nearly half of our protein-
encoding genes demonstrate circadian transcription rhythms, mostly in an 
organ-specific pattern [4]. Brain arousal, sympathetic tone, cardiovascular 
function, coagulation, immune system activity, glycemic control and metabo-
lism all exhibit circadian variability [5].
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The most prominent natural phenomenon in the environment to direct 
daily rhythms is the cycling from light to dark. Light exposure on the retina 
is the most potent environmental zeitgeber in humans. Other known zeit-
gebers include enteral nutrient intake, physical exertion/exercise and activ-
ity rhythms, all of which reinforce rhythms in groups of social animals like 
human beings. Modern living conditions have overcome much of our need 
to be constrained by the natural environment, but these conditions have also 
introduced environmental and biochemical exposures that now confound the 
natural entrainment of the circadian rhythm. Artificial light at night, irregular 
rest, eating and activity patterns and substances that interfere with circadian 
signaling—from caffeine to medications like beta blockers—all introduce 
destabilizing signals to the body’s clocks.

Sleep and Sleep Impairment

The daily rhythm of sleep and active wakefulness is one of the many phe-
nomena entrained by the circadian rhythm. In turn, brain functions such as 
memory consolidation and attention are secondarily influenced by sleep [6]. 
The initiation of sleep is principally regulated by two processes: the circadian 
rhythm and a sleep homeostat that increases sleep pressure as the duration 
of wake time increases. It is crucial to recognize that sleep is not simply the 
absence of wakefulness, but rather, a set of complex central nervous system 
processes that can be recognized in healthy subjects by physical manifesta-
tions (e.g., rapid eye movements) or electrographic biomarkers (e.g., sleep 
spindles, slow waves). Unconsciousness due to medications or severe sys-
temic derangements is predominantly mediated by neuronal dysfunction or 
gamma-aminobutyric acid (GABA) receptor agonists, which do not stimulate 
the neural mechanisms for sleep induction. Therefore, the normal physiologi-
cal processes that occur during healthy sleep are likely also impaired during 
this abnormal absence of wakefulness.

In otherwise healthy subjects, sleep timing and duration are more straight-
forward to measure than molecular rhythms. Much of the pathology that 
occurs from disrupting normal rhythms has been attributed to sleep disrup-
tion even if the pathophysiologic pathway mediating the abnormalities may 
not directly involve sleep. For example, glymphatic flow that clears metabolic 
waste from the brain has been described as a function linked to sleep; more 
recently, however, carefully structured experiments indicate that glymphatic 
flow is tightly regulated by the circadian rhythm but independent of arousal 
state (sleep/wake status) [7]. Sleep itself exerts little entrainment back on the 
circadian rhythm, but the behaviors that coincide with wakefulness (lights 
on, physical activity, eating) do, so sleep disruption can cause rhythm disrup-
tion. Consequently, it is reasonable to interpret literature identifying associa-
tions between sleep disruption and morbidity as likely mediated by circadian 
rhythm disruption. Optimizing sleep, therefore, should be understood broadly 
to mean optimizing sleep as well as all exposures that influence the circadian 
rhythm in order to maximize healthy function of the brain and body.
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Circadian Rhythm and Sleep Disruption during Critical Illness

The consequences of sleep deprivation and circadian rhythm disruption have 
been extensively studied and are understood to be detrimental to health. 
Circadian and sleep health have been explored extensively in patients with 
chronic sleep disorders (e.g., obstructive sleep apnea) or under conditions 
of persistent rhythm disruptions (e.g., irregular shift work schedules). More 
recent research has evaluated sleep and rhythms in patients with critical ill-
ness and found that the circadian rhythm is rapidly disrupted with onset of 
critical illness [8•].

Polysomnography, which incorporates scalp electroencephalography with 
measurements of breathing and muscle tone, has been a preferred method for 
measuring sleep. Encephalopathy in the context of acute illness alters brain 
function in a way that makes usual sleep patterns unrecognizable, so alter-
native methods are often needed to assess sleep in acutely ill subjects, espe-
cially those with critical illness [9–11]. Activity quantification is the standard 
method for evaluating sleep and wake in animal models of circadian research 
[12]. Measurement of rest and activity by wrist actigraphy, often used as an 
alternative to polysomnography as a biomarker for sleep and wake, can be 
analyzed for rhythmicity characteristics [13]. Moreover, actigraphy can be  
analyzed with methods that are minimally confounded by bedrest, intrave-
nous catheters and other physical constraints of hospitalization and is feasible 
and interpretable in critically ill patients [14••]. Analysis of wrist actigraphy 
in patients with sepsis and intracerebral hemorrhage has found that critically 
ill humans rapidly enter a state of behavioral quiescence with rest-activity 
rhythms that are suppressed or abolished in proportion to the degree of 
encephalopathy that is measurable at the bedside [14]. This phenomenon 
has previously been described in animal models with experimental injury or 
chemical physiologic stress, and there is evidence that the quiescence state 
is mediated by a dedicated neural pathway as part of a protective response 
[15, 16].

Melatonin, an endogenous hormone secreted primarily by the pineal 
gland after conversion from precursor serotonin, is the most commonly used 
and robust marker of circadian phase in humans and an important signal 
of circadian phase to peripheral tissues [17]. Melatonin secretion rapidly 
becomes abnormal in patients with neurologic or multisystem critical ill-
nesses. As the degree of encephalopathy worsens into coma, melatonin secre-
tion dampens [18]. Another major factor influencing melatonin secretion pat-
terns is exposure to catecholamine vasopressors, which are commonly used in 
multiorgan failure cases and can induce severely supraphysiologic melatonin 
levels [18]. Melatonin is released by β-adrenergic stimulation on pineal cell 
membranes, and is thus sensitive to abnormal release from medications such 
as norepinephrine, or suppression from exposure to beta-adrenergic receptor 
antagonists (beta blockers) [19].

Data have emerged indicating that peripheral clocks — the cellular system 
of rhythmic transcriptome regulation — rapidly become disorganized during 
critical illness. Peripheral blood samples have shown that RNA transcripts of 
core clock gene products (most of which exhibit overt rhythmicity in healthy 
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individuals) show diminished rhythmicity in critically ill patients [20••,21, 22].  
Those core clock genes regulate transcription of many other genes, and meth-
ods have been developed to characterize rhythmicity and phase of the broader 
transcriptome [23]. Applying those methods to critically ill patients found 
abnormally diminished organization of the whole transcriptome compared 
to healthy subjects [14].

Finally, there are characteristics of the neurologic critical illness that merit 
particular attention. Projections between the retina, SCN, hypothalamus, pin-
eal gland and autonomic pathways relay afferent information about zeitgeber 
exposures to the central clock and disseminate timing signals to peripheral 
clocks; direct injury to any of those neurological structures can produce sleep 
and circadian dysregulation. The rapid onset of transcriptomic dysrhythmia 
in peripheral clocks suggests that abnormal autonomic signals and inflam-
matory mediators quickly disrupt rhythms [20]. Second, monitoring strate-
gies and specific therapies pose unique risks for disruption. For example, the 
potential role of neurochecks as mediators of harm through forced awaken-
ings has received particular attention. Neurochecks are brief, standardized 
neurologic exams that are used ubiquitously in neurologic ICUs (neuroICUs) 
to monitor the evolution of symptoms and assess response to therapies in 
patients with brain and spinal cord injury [24]. The implementation of neu-
rochecks in ICUs is variable, but prolonged exposure to many days of hourly 
awakening is fairly common [25•].

Effect of Circadian Rhythm and Sleep Disruption on ICU 
Outcomes

Confirming causality in critically ill patients is challenging in the context of 
myriad physiologic perturbations and medication exposures. There are no 
large randomized trials that specifically target a sleep or circadian therapy 
and demonstrate clear improvement in mortality or long-term functional 
outcomes. In the absence of high-level evidence, our understanding about the 
relationship between sleep and circadian pathology and post-intensive care 
outcomes is based on two sources: mechanistic research in other populations, 
and uncontrolled, observational studies identifying associations between 
sleep/circadian disruption and outcomes.

An episode of critical illness markedly worsens the trajectory of older 
adults’ functional status, causing new disability mediated by acquired symp-
toms in mood, sleep, cognition impairment, and physical function [26–29]. 
Post-Intensive Care Syndrome (PICS) describes a set of comorbidities affect-
ing cognition, mental health and physical function that develop in the major-
ity of patients after severe illnesses, often persisting as chronic disability [27]. 
Depending on the method of measurement and diagnostic threshold used, 
physical disability, cognitive impairment, depression, anxiety and sleep dis-
turbance each occur in around 30–70% of ICU survivors, with substantial 
comorbid overlap [27, 30–33••]. These symptoms, in turn, are associated with  
worse health-related quality of life [34, 35]. The symptoms of PICS overlap 
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substantially with the neurocognitive effects of sleep and circadian disorders, 
so interventions to minimize the extent of sleep and circadian disruption that 
develops during acute illness and to maximize the re-establishment of healthy 
sleep and rhythms are plausible strategies to prevent or mitigate PICS [36]. 
Prolonged sleep deprivation is an established source of physical and cogni-
tive impairment—even in healthy study volunteers—which raises concern for 
round-the-clock care interventions that occur in the ICU.

Given the importance of peripheral clocks in homeostasis and normal 
function of other organ systems, rhythm disruptions may influence non-neu-
rologic outcomes as well. For example, many immune functions are regulated 
by circadian rhythms. Circadian disruption may contribute to the develop-
ment of acquired immunodeficiency that is observed to develop after several 
days of critical illness and leaves patients vulnerable to nosocomial infectious 
complications [37]. Drawing upon studies in other populations, circadian 
disruption likely impairs the function of many other systems, including endo-
crine-regulated processes, glycemic control and other metabolic pathways, 
autonomic and cardiac stability, lung function, renal clearance and liver func-
tion, the basis for which has been reviewed in details elsewhere [38]. In the 
remainder of this article, we will discuss the rationale for specific pharmaco-
logic and environmental interventions that may attenuate sleep and circadian 
disruption in the ICU, with special attention to the neurologic population.

Pharmacological Strategies

Many medications used during intensive care management can directly or 
indirectly impact the central nervous system, as well as sleep (see Table 1). 
The first point to make regarding pharmacological strategies for optimizing 
sleep is that sedation (the absence of wakefulness) and sleep are not equiva-
lent and likely involve different areas and networks within the brain [39]. 
Although there are many sedating medications that induce a clinical state 
resembling sleep, the relationship between sedation and sleep is complex and 
not fully understood, and patient sedation likely does not achieve restorative 
sleep.

In the neuroICU, we commonly use infusions for patient sedation, anxi-
olysis and analgesia, particularly in intubated patients. The most common 
of these include opioids, midazolam, propofol, dexmedetomidine, and 
ketamine. There are limited data describing the impact of opioids on sleep 
architecture, but in general, restorative sleep and the total sleep time are 
decreased [40]. Benzodiazepines are also known to reduce restorative sleep 
and REM, as well as decrease total sleep time. Additionally, benzodiazepine 
and opioid use are known risk factors for development of delirium [41, 42]. 
Dexmedetomidine studies are inconsistent in their effect on restorative sleep 
and sleep efficiency, though sleep spindles have been reported [43]. Given its 
alpha-2 activity and endogenous activity in non-REM sleep pathways, dex-
medetomidine has been studied extensively as an agent to promote sleep. 
Early evaluations of dexmedetomidine in critically ill patients demonstrated 
increase sleep efficiency and improvement in sleep architecture [44, 45]. 
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Unfortunately, these effects on sleep quality were not borne out in addi-
tional double-blind, randomized trials, though delirium may be decreased 
in patients receiving protocolized dexmedetomidine when compared with 
placebo [46, 47]. Specifically in comparison with propofol, major clinical 
trials have not shown a difference in measured clinical outcomes such as 
mortality and delirium, though sleep was not assessed in either the SPICE III 
or Mends study [48, 49]. Dexmedetomidine—like propofol—can be limited 
by bradycardia and hypotension [49]. Propofol’s impact on sleep has been 
studied extensively, but there is insufficient evidence to determine whether it 
improves sleep, and many studies show no differences in sleep efficiency or 
sleep fragmentation [40, 43, 50]. Lastly, ketamine may promote restorative 
slow wave sleep via the NMDA inhibitory pathway at higher doses, but also 
produces unconsciousness [51].

In terms of enteral pharmacologic agents, antipsychotic and antiepileptic 
medications both impact sleep. Typical antipsychotics such as haloperidol 
have been reported to decrease both REM latency and sleep fragmentation 
without noticeable suppression of REM or restorative sleep. Atypical antip-
sychotics increase total sleep time and sleep efficiency, and quetiapine may 
improve subjective sleep quality [40]. Epilepsy itself is known to alter sleep 
architecture, and anti-epileptic medications including phenytoin, phenobar-
bital, valproic acid, and levetiracetam all alter sleep architecture with most 
decreasing REM sleep without a reciprocal increase in slow wave restorative 
sleep [52].

We know that many medications used in the ICU negatively impact tra-
ditional sleep measures, but what remains unclear is whether there are phar-
macological agents available to optimize sleep. Additional agents studied for 
their potential improvement in sleep are the melatonin receptor agonists, 
including melatonin and ramelteon. Melatonin reduces sleep latency, but 
when compared with placebo, there is a lack of effect on total sleep time, 
sleep efficiency, and sleep fragmentation [51, 53]. Melatonin is regulated 
in the USA as a dietary supplement rather than a prescription or over-the-
counter drug, whereas other jurisdictions regulate melatonin as a prescription 
medication. As a consequence, melatonin formulation may contain doses that 
differ from the label or include a substantial quantity of serotonin [54]. A 
related MT1 and MT2 receptor agonist, ramelteon, is available at most institu-
tions. Ramelteon also decreases sleep latency and may additionally improve 
sleep efficiency, total sleep time, and subjective sleep quality. When studied 
in critically ill patients without brain injury, ramelteon has been reported to 
decrease ICU duration, delirium incidence, and increase ventilator-free hours 
[55–57], though inconsistently across studies [58]. Importantly, ramelteon 
is a potent CYP1 and 2 inhibitor. Given that melatonin levels may be either 
abnormally suppressed or severely supraphysiologic in critically ill patients 
(depending on illness severity, environmental and medication exposures), a 
simplistic strategy of adding more melatonin at night is unlikely to be effec-
tive for all patients [18]. There may be a clearer role for melatonin to support 
circadian normalization during illness recovery.

Ultimately, there is lack of strong evidence for any pharmacological agent 
to promote sleep in the ICU. Yet, neuroactive medications are newly initiated 
in approximately 10% of critically ill patients admitted for greater than 24 
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h—most commonly melatonin agonists or antipsychotics—and continued for 
nearly three-quarters of nights that patients spend in the ICU [59]. This trend 
is concerning, especially because there is no pharmacological agent recom-
mended by the PADAS guidelines to “promote sleep” [60, 61]. Our priority 
for pharmacological optimization may simply be eliminating polypharmacy 
and minimizing the use of sedative infusions and opioids.

Environmental and Zeitgeber Strategies

Strategies discussed herein leverage known zeitgebers that cue a person’s inter-
nal body clock. These strategies attempt to optimize sleep by normalizing the 
circadian rhythm—for instance, by promoting appropriate stimulation/rest 
environments, improving eating and drinking patterns, clustering care and 
ultimately, minimizing arousals.

Light/Dark and Quiet Time

Day-night light patterns are one of the most important circadian entrain- 
ment signals, and abnormal light exposure in the hospital is a major source  
of circadian disruption [62]. Light strongly suppresses melatonin secretion 
from the pineal gland (which peaks overnight in healthy individuals). Light 
levels in the hospital during the day are often too low to promote normal 
entrainment [63•,64 ]. In the ICU, light levels range from 30 to 165 lux during  
the day (compared with natural light, >4000 lux), but can also be as high as 
1445 lux overnight, further contributing to circadian misalignment [63, 65, 
66]. Prolonged intervals of eyelid closure during the day also reduces expo-
sure to daytime light. Existing data suggest that inadequate daytime light is 
the principal abnormality driving day-night circadian dysregulation, and that 
efforts to minimize nighttime light without boosting daytime light may be 
insufficient to promote entrainment.

In addition to suboptimal day-night light levels, noise is also reported to 
be disruptive to sleep [62, 67]. In the ICU, noises are produced by people 
(e.g., talking), machines (e.g., alarms), and normal movements (e.g., doors 
opening and closing). The Environmental Protection Agency recommends 
hospital noise levels average less than 45 dB during the day and less than 
35 dB at night; recorded levels in the ICU exceed these recommendations 
[68–71]. Unfortunately, there is a large degree of heterogeneity in studies 
of noise in the ICU, and it is currently impossible to quantify the extent to 
which noise contributes to sleep disruption and arousals among ICU patients 
[68]. Perhaps more important than absolute noise levels are changes in noise 
levels from baseline sound levels [68, 72, 73]. In this way, the sudden pump 
alarm may be more disturbing to a patient than the constant talking outside 
the room.
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Feeding

Healthcare professionals should supply adequate nutrition to every patient 
unless prolongation of life is not in the patient’s goals of care [74, 75]. There 
are several methods for supplying enteral nutrition. In critically ill patients, 
however, the most common modalities used are continuous and intermittent/
bolus feedings. Continuous feeding uses a pump to administer feeding nearly 
continuously throughout the 24-h period, whereas bolus and intermittent 
feeding generally supply a small volume of feeds multiple times throughout 
the day, e.g., every 4–6 h.

Continuous feeding may be well tolerated in brain injured patients when 
focusing on residual volumes and glucose variability, but poorly tolerated 
from a circadian standpoint [76]. Continuous feeding violates the body’s 
biological rhythm. When food availability is disconnected from the mas-
ter clock (the SCN), metabolic processes regulated by nutritional inputs are 
also dysregulated and discordant [77, 78]. Therefore, intensivists should con-
sider bolus or intermittent feeding, which more closely resembles “meal-
time” feeds. Even so, bolus feeds are alone not the solution to circadian 
realignment; these feeds should also be given at appropriate times of the  
day (daytime-restricted feeds) while still meeting caloric requirements [79•]. 
In addition to its potential role in re-aligning the circadian rhythm, feeding 
at the physiologically correct time also promotes improved glycemic control 
and reduced inflammation, though there is a potential risk for aspiration 
debated in the literature [78, 80]. There is current controversy about the best 
methods for determining metabolic demands in the neuroICU, and further 
research is required to understand better nutritional initiation, advancement 
and metabolic monitoring in the neuroICU [81].

Clustered Care

Although vigilant monitoring of our critically ill patients in paramount, exces-
sive or frequent patient interruptions can be detrimental. Some of these inter-
ruptions include lab draws, medication administration, vital sign checks, 
nursing care such as bathing and wound care, and radiographs. Critically ill 
patients can experience up to 8 care-related interruptions each hour during 
usual sleep time—with up to 50 throughout the nightshift hours—and one in 
five of these interactions results in an arousal or awakening when assessed by 
polysomnography [82–84]. Changes in ICU workflow to cluster care can be 
difficult to accomplish [85]. Recently, though, clustered care in the ICU has 
become more common-place and necessary since the COVID-19 pandemic 
began, and this bundling of care interventions may improve sleep and reduce 
delirium, with studies actively underway [43, 86–88].
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Neurologic Assessments

Guidelines for care of patients with acute brain injury recommend “frequent” 
neuromonitoring, though stop short of defining a frequency or duration of 
neurochecks [89–91]. This has resulted in variation in neuromonitoring prac-
tices across the country, with a general adoption of hourly (Q1) or every-
other-hour (Q2) neurochecks as “frequent” monitoring [92]. The extent to 
which frequent neuroassessments contribute to circadian derangement and 
sleep impairment is uncertain.

Although the link between disruptions in the abnormal sleep seen in 
brain-injured patients and poor outcomes is much more tenuous than the 
clear link between secondary brain injury and poor outcomes, frequent neu-
rochecks may have negative consequences, particularly when prolonged. In an 
evaluation of approximately 9500 hourly neurocheck orders in nearly 9000 
patients with acute brain injury at a tertiary academic medical center, it was 
noted that a substantial proportion of patients are maintained on continu-
ous hourly neurochecks for >3 days (20%) and >7 days (7%) [25]. A smaller 
but still non-trivial number of patients (3%) were maintained on hourly 
neurochecks continuously for >14 days. Additionally, one-quarter of hourly 
neurochecks were transitioned to no neurochecks at the time of discontinu-
ation, suggesting that they were likely unnecessary for the full duration that 
they were ordered.

Taken together, the implication is that there is room for improvement in 
our serial examinations, and we must be more mindful about the frequency 
we choose and the duration for which they are ordered. Generally, we have 
an appreciation for the disease- and severity-specific risks of neurodeteriora-
tion, and we must focus on how we can monitor the complexity of the brain 
perhaps more intelligently [24, 93, 94]. The ideal monitoring system is likely 
one that balances risk and need in a personalized and individualized manner 
rather than strict adherence to protocols, tapering neurocheck frequency as 
the risk of acute deterioration wanes.

Conclusion

Circadian rhythms organize a vast array of biological processes that must 
remain synchronized to function effectively. Nearly all tissues are regulated 
by a cellular-level molecular clock and demonstrate unique patterns of gene 
transcription rhythms that effect biological rhythms. Wake and sleep describe 
brain states comprising the sets of complex processes of the central nervous 
system’s circadian rhythm expression, and disruption of the sleep versus wake 
pattern both causes and reflects brain dysfunction. Abnormal exposures in 
the ICU environment including medications, feeding strategies, light, noise 
and arousals disrupt the central circadian rhythm and the hormonal and 
autonomic signals that entrain the peripheral clocks into synchrony. Strate-
gies to reduce harm from sleep and circadian disruption begin with reducing 
mistimed stimuli with simple steps, such as: minimizing nighttime light and 
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arousals and increasing daytime light, restricting enteral nutrition to daytime 
and preferably blousing feeds to simulate meals, and minimizing medications 
that interfere with rhythms. Sedating medications do not activate physiologi-
cally normal sleep and are unlikely to be restorative. It is more promising to 
reduce disruptive factors and promote circadian therapies aimed at entraining 
a normal rhythm during illness recovery.
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