
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Privacy Implications of Smart TVs

Permalink
https://escholarship.org/uc/item/77t0v94k

Author
Varmarken, Janus

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77t0v94k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Privacy Implications of Smart TVs

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Janus Varmarken

Dissertation Committee:
Professor Athina Markopoulou, Chair
Distinguished Professor Gene Tsudik

Associate Professor Zubair Shafiq

2023

© 2023 Janus Varmarken

DEDICATION

In memory of my father, Jens-Erik Varmarken.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGMENTS xi

VITA xiii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Contributions . 4

1.3.1 Measurement of Advertising and Tracking on Smart TVs 5
1.3.2 FingerprinTV: Fingerprinting Smart TV Apps 5
1.3.3 Seqnature: Packet Sequences as Network Fingerprints 6

1.4 Outline . 7

2 Related Work 8
2.1 Ads and Tracking on Smart TVs . 8
2.2 Other Work on Privacy Implications of Smart TVs 9
2.3 Network Fingerprints . 10

3 Measurement of Advertising and Tracking on Smart TVs 13
3.1 Overview . 13
3.2 Labeling Methodology . 16
3.3 Smart TV Traffic in the Wild . 17
3.4 Systematic Testing of Roku and Fire TV . 22

3.4.1 Roku Data Collection . 23
3.4.2 Fire TV Data Collection . 25
3.4.3 Comparing Roku and Fire TV . 26

3.5 Blocklists for Smart TVs . 34
3.5.1 Evaluating Popular DNS Blocklists 34
3.5.2 False Negatives . 38

iii

3.6 PII Exposures in Smart TVs . 41
3.7 Summary, Limitations, and Directions . 44

4 FingerprinTV: Fingerprinting Smart TV Apps 46
4.1 Overview . 46
4.2 Data Collection . 50

4.2.1 App Selection . 50
4.2.2 Automation . 51
4.2.3 Dataset Summary . 53

4.3 Fingerprinting Techniques . 54
4.3.1 Domain-Based Fingerprints (DBF) 54
4.3.2 Packet-Pair-Based Fingerprints (PBF) 55
4.3.3 TLS-Based Fingerprints (TBF) . 57

4.4 Fingerprint Performance Assessment Methodology 58
4.5 Fingerprint Prevalence, Distinctiveness, and Size 61

4.5.1 Domain-Based Fingerprints (DBF) 63
4.5.2 Packet-Pair-Based Fingerprints (PBF) 65
4.5.3 TLS-Based Fingerprints (TBF) . 68
4.5.4 Distinctiveness and Dataset Size . 68
4.5.5 Takeaways . 70

4.6 Identical Fingerprints . 70
4.6.1 Domain-Based Fingerprints . 70
4.6.2 Packet-Pair-Based Fingerprints . 73
4.6.3 Takeaways . 73

4.7 Fingerprints Across Platforms . 73
4.7.1 Multi-Platform Apps . 74
4.7.2 Distinctiveness of Fingerprints Across Platforms 75
4.7.3 Takeaways . 77

4.8 Combining Fingerprints . 77
4.8.1 DBF or PBF . 77
4.8.2 DBF and PBF . 78
4.8.3 Takeaways . 79

4.9 Discussion . 79
4.10 Summary . 81

5 Seqnature: Packet Sequences as Network Fingerprints 83
5.1 Overview . 83
5.2 Fingerprinting Framework . 86

5.2.1 Preprocessing . 87
5.2.2 Fingerprint Refinement . 89
5.2.3 Representations of the Resulting Fingerprint 94
5.2.4 Fingerprint Matching . 95

5.3 Fingerprinting Techniques . 96
5.3.1 Endpoint-Specific Packet-Sequence-Based Fingerprints 96
5.3.2 Endpoint-Based Fingerprints . 98

iv

5.4 Datasets . 99
5.4.1 FingerprinTV: Smart TV Apps . 99
5.4.2 PingPong: Events on IoT Devices . 99

5.5 Fingerprinting Results . 100
5.5.1 Prevalence . 101
5.5.2 Distinctiveness . 103

5.6 Future Directions . 106
5.6.1 Further Analysis of EPBFs and EBFs 107
5.6.2 Additional Fingerprinting Techniques 108

5.7 Summary . 109

6 Conclusion 110
6.1 Summary . 110
6.2 Perspective . 112

Bibliography 114

Appendix A Appendix for Chapter 3 128

Appendix B Appendix for Chapter 4 145

v

LIST OF FIGURES

Page

3.1 Top-30 fully qualified domain names in terms of number of flows per device for
a subset of the smart TVs in the “in the wild” dataset. See Appendix A.5.1
for the other brands. Domains identified as ATS are highlighted with red,
dashed bars. 20

3.2 Mapping of platforms measured in the wild to the parent organizations of the
endpoints they contact (for the top-30 FQDNs of each platform). The width
of an edge indicates the number of distinct FQDNs within that organization
that was accessed by the platform. 21

3.3 Analysis of domain usage per app and the top domains across all apps in the
Roku and Fire TV testbed datasets. 28

3.4 Mapping of platforms measured in our testbed environment to the parent
organizations of the top-20 third-party ATS domains their apps contact. The
width of an edge indicates the number of apps that contact each organization. 31

3.5 Top-60 common apps (apps present in both testbed datasets) ordered by the
number of domains that each app contacts. Considering all 128 common apps,
there are 597 domains which are exclusive to Roku apps, 496 domains which
are exclusive to Fire TV apps, and 155 domains which are contacted by both
the Roku and the Fire TV versions of the same app. 33

3.6 Block rates as a function of the number apps that contact an FQDN. For the
horizontal axis, “2+” represents the set of FQDNs that are contacted by 2
or more apps. For Roku, the more apps that contact an FQDN, the more
likely it is that the FQDN is an ATS, according to the blocklists. The same
is not true for Fire TV because platform services start to dominate the set of
FQDNs that are accessed by many apps, and platform services are often not
blocked. 40

vi

4.1 Overview of FingerprinTV, a system for assessing the feasibility of finger-
printing smart TV apps. The Controller is a computer with both a wired
and a wireless network interface, which is configured as a wireless access point
with NAT. The smart TV is associated with this wireless network. Finger-
prinTV first crawls the app store of the smart TV platform to determine a
list of apps to test (see Section 4.2.1). Next, FingerprinTV collects multiple
samples of the “on-launch” traffic of each app in this list (see Section 4.2.2).
FingerprinTV then processes the collected traffic samples to identify con-
sistently occurring traffic, referred to as fingerprints (see Section 4.3). Finally,
FingerprinTV assesses the resulting fingerprints’ discriminative power us-
ing a methodology we devise that is based on agglomerative (hierarchical)
clustering (see Sections 4.4 and 4.5). 48

4.2 Example: DBFs of 10 popular Fire TV apps. Rows correspond to domains,
columns correspond to apps, and the dendrogram on top corresponds to the
clustering of apps based on the similarity of their DBF. A blue cell indicates
that the domain is contacted U = 10 times and, thus, part of the respective
app’s DBF; a white cell indicates otherwise. The DBF of an app is the binary
vector of the corresponding column. For example, the “Facebook” app has a
DBF of size 3 and it is part of a cluster with size 1. The “HISTORY”, “A&E”,
and “Lifetime” apps contact the same nine domains. This means that they
have the exact same DBF of size 9, they have distance 0 from each other, and
are together in a cluster of size 3. 60

4.3 Distribution of clusters by cluster size for DBFs. The cluster size is the number
of apps in a cluster (i.e., apps with the exact same DBF; see Section 4.4). For
instance, the bar at x = 2 in Figure 4.3a indicates that there are 28 clusters
that each contains 2 apps, for a total of 56 apps. 64

4.4 Distribution of DBF sizes per cluster size. The DBF size is the number of
domains in a DBF. The cluster size is the number of apps in a cluster. App
counts are shown for each point. For instance, the point at (2, 2) in Figure 4.4a
indicates that there are 10 apps that each has a DBF that contains 2 domains,
and these 10 apps reside in clusters that each contains 2 apps. 65

4.5 Distribution of clusters by cluster size for PBFs. The cluster size is the number
of apps in a cluster (i.e., apps with the exact same PBF; see Section 4.4). For
instance, the bar at x = 2 in Figure 4.5a indicates that there are 13 clusters
that each contains 2 apps, for a total of 26 apps. 66

4.6 Distribution of PBF sizes per cluster size. The PBF size is the number of
packet pairs in a PBF. The cluster size is the number of apps in a cluster. App
counts are shown for each point. For instance, the point at (2,2) in Figure 4.6a
indicates that there are 12 apps that each has a PBF that contains 2 packet
pairs and that reside in clusters that each contains 2 apps. 67

4.7 Distinctiveness of DBFs and PBFs as a function of the number of apps in
the dataset. Apps are added to the dataset based on the number of reviews
submitted for each app. That is, x = 50 is a dataset comprised of the 50 most
reviewed apps, x = 100 is a dataset comprised of the 100 most reviewed apps,
and so forth. 69

vii

4.8 Distribution of the number of developers responsible for apps in clusters of
size x > 1 for DBFs. For instance, the bar at x = 2 in Figure 4.8a indicates
that 12 of the 28 clusters of size x = 2 (see Figure 4.3a) only contain apps
from the same developer, while the remaining 16 contain apps from 2 developers. 71

4.9 DBF sizes for the 60 multi-platform apps that exhibit the largest DBFs in
descending order. The size of the DBF for each version (Apple TV, Fire TV,
and Roku) of an app is indicated using color-coded bars. The textured part of
each bar indicates domains in the DBF that are unique to the corresponding
platform. 74

4.10 PBF sizes for the 60 multi-platform apps that exhibit the largest PBFs in
descending order. The size of the PBF for each version (Apple TV, Fire
TV, and Roku) of an app is indicated using color-coded bars. The textured
part of each bar indicates packet pairs in the PBF that are unique to the
corresponding platform. 75

5.1 Overview of Seqnature. To fingerprint event e, Seqnature is provided
with T samples of the network traffic that occurred immediately after e was
triggered. Seqnature has two phases: a preprocessing phase (Section 5.2.1)
that extracts TCP stream information from the raw traffic samples, and an
iterative fingerprint refinement phase (Section 5.2.2) that identifies packet
sequences that co-occur with e. 85

5.2 Example of how packet sequences of length n = 4 are formed from the first
P = 20 packets of a TCP stream. 90

5.3 Example clustering of packet sequences of length n = 4 extracted from T = 3
different traffic samples. The color of packets in a packet sequence denotes
what traffic sample the packet sequence stems from. For example, all packet
sequences with orange packets stem from the same traffic sample. The number
of packet sequences in a cluster may vary across clusters (and can be greater
than T), but all packet sequences across all clusters will always be of the same
length n, as n only changes between each fingerprint refinement iteration. . . 91

5.4 Example clusterings for two successive fingerprint refinement iterations (n = 4
and n = 3). When n decreases, at least one cluster containing shorter versions
of packet sequences that have already been included in the seqnature will be
formed: in this example, clusters c2 and c3 both (exclusively) consist of shorter
versions of the packet sequences in cluster c1. 93

5.5 Example of a seqnature that comprises two clusters, represented in complete
form and in summary form. 94

viii

LIST OF TABLES

Page

3.1 Traffic statistics of 57 smart TV devices observed across 41 homes (“in the wild”
dataset). 18

3.2 Summary of the Roku and Fire TV testbed datasets. The rightmost column
summarizes the intersection between the two testbed datasets. For example,
there are 128 apps that are present both in the Roku dataset and in the Fire
TV dataset. 27

3.3 Block rates of the four blocklists when applied to the domains in our datasets. 36
3.4 Missed ads and functionality breakage for different blocklists when employed

during manual interaction with 10 Roku apps and 10 Fire TV apps. For “No
Ads”, a checkmark () indicates that no ads were shown during the experi-
ment, a cross (✕) indicates that some ad(s) appeared during the experiment,
and a dash (—) indicates that breakage prevented interaction with the app
altogether. For “No Breakage”, a checkmark () indicates that the app func-
tioned correctly, a cross (✕) indicates minor breakage, and a bold cross (✖)
indicates major breakage. 38

3.5 Examples of potential false negatives for the four DNS-based blocklists found
using app penetration analysis and keywords search (“ad”, “ads”, “analy”,
“track”, “hb” (for heartbeat), “score”, “event”, “metrics”, “measure”). . . . 39

3.6 Applications / eSLDs / % Distinct FQDNs Blocked. Number of
apps that expose PII, number of distinct eSLDs that receive PII from these
apps, and percentage of distinct subdomains of the eSLDs that are blocked by
the blocklists. We further separate by party as defined in Section 3.2. Roku
platform column omitted since we do not observe PII exposures to platform
domains. 42

4.1 Summary of the three fingerprinting techniques’ performance on the top-1000
apps of the three smart TV platforms. Prevalence is the percentage of apps
among the top-1000 that exhibit a fingerprint. Distinctiveness is the percent-
age of apps that exhibit a fingerprint that is distinct from all other apps’
fingerprints of the same type, among the total number of apps that exhibit a
fingerprint of that type (i.e., each distinctiveness column is computed using
the raw numbers behind the prevalence percentage values immediately to its
left as the baseline). 62

ix

5.1 Snippet of a tabulated traffic sample for the Roku app with ID=28 (“Pan-
dora”) in the FingerprinTV dataset that was collected as part of the work
presented in Chapter 4. Each row represents a single packet. 89

5.2 Prevalence of EPBFs and EBFs in the FingerprinTV and PingPong datasets.
The prevalence is the percentage of events in the dataset that exhibit a fin-
gerprint. 101

5.3 Number of false positives per EPBF (minimum / maximum / mode / median
/ mean / standard deviation). Total: total number of false positives across
all traffic samples in the dataset. Spread: number of different events in the
dataset that give rise to one or more false positives. 105

5.4 Number of false positives per EBF (minimum / maximum / mode / median
/ mean / standard deviation). Total: total number of false positives across
all traffic samples in the dataset. Spread: number of different events in the
dataset that give rise to one or more false positives. 106

x

ACKNOWLEDGMENTS

Throughout my journey as a Ph.D. student, many extraordinary people and organizations
have supported me professionally and/or personally. I would like to express my deepest
gratitude for this support. Without it, this dissertation would not have been possible.

First and foremost, I would like to thank my advisor, Professor Athina Markopoulou, for
taking me under her wing. Ever since writing my undergraduate thesis under her supervi-
sion, Professor Markopoulou has been an exceptional mentor who has been instrumental in
shaping my academic thinking. Her help in identifying important research problems and her
constructive feedback on my work and writing have been priceless. The doors she has opened
for me have been countless and have helped fast-track my career: not only did she welcome
me into her research group as a visiting scholar and later a Ph.D. student, she also introduced
me to multiple industry professionals, which resulted in intellectually rewarding internships
and collaborations. It has been a privilege to work under Professor Markopoulou’s guidance.

Thank you to Professor Gene Tsudik and Professor Zubair Shafiq for serving on my doctoral
committee and for the advice they have provided throughout my graduate studies. A special
thank you is due to Professor Shafiq for identifying the lack of research on advertising and
tracking on smart TVs and for initiating a successful collaboration on this topic.

I am deeply grateful to my collaborators: Dr. Rahmadi Trimananda, Professor Brian Dem-
sky, Hieu Le, Dr. Anastasia Shuba, Professor Zubair Shafiq, Jad Al Aaraj, Andrew Searles,
Maganth Seetharaman, and Amogh Pradeep. A special thank you to Hieu Le for taking on
a major workload when we studied advertising and tracking on smart TVs.

Thank you to past and current members of the UCI Networking Group for their help, insights,
and friendship: Dr. Anastasia Shuba, Dr. Balint Tillman, Dr. Emmanouil Alimpertis, Dr.
Evita Bakopoulou, Dr. Milad Asgari Mehrabadi, Hieu Le, Stelios Stavroulakis, Hao Cui,
Jad Al Aaraj, Dr. Rahmadi Trimananda, Olivia Figueira, Mengwei Yang, Ismat Jarin, Yu
Duan, and Marilyne Tamayo. I am especially thankful for the mentorship of Dr. Anastasia
Shuba and Dr. Rahmadi Trimananda.

I am very grateful for the funding support I have received from (i) the University of California,
Irvine, via a number of mechanisms, including, but not limited to, the Networked Systems
Fellowship and Seed Funding by UCI VCR; and (ii) the National Science Foundation (awards
1649372, 1815666, 1900654 and 1956393).

I have been blessed with the love and support of my family: Inge-Merete Varmarken, Tine
Kjøller Varmarken, Alicja Jagie l lo, and Yentl Jagie l lo-Varmarken. Thank you for always
being there for me, and for keeping me motivated during times of struggle. Also thank you
to all my friends for their support and for the joy they bring to my life.

Given how many magnificent individuals I have interacted with during my time as a Ph.D.
student, I may have failed to name some. For that I apologize, and I hope these individuals
know that I am grateful for their support nevertheless.

xi

Reprint Notice

Portions of this dissertation are reprints of the material in [159], used with permission from
Sciendo. The co-authors listed in this publication are Hieu Le, Anastasia Shuba, Athina
Markopoulou, and Zubair Shafiq. The authors retain copyright for [159].

Other portions of this dissertation are reprints of the material in [156], used with permission
from the Proceedings on Privacy Enhancing Technologies (PoPETs). The co-authors listed
in this publication are Jad Al Aaraj, Rahmadi Trimananda, and Athina Markopoulou. The
authors retain copyright for [156].

The work presented in Chapter 5 is intended for publication in the proceedings of a confer-
ence, or in a journal. However, it has not been formally committed for publication at the
time of writing.

xii

VITA

Janus Varmarken

EDUCATION

Doctor of Philosophy in Networked Systems 2023
University of California, Irvine Irvine, CA, USA

Master of Science in Networked Systems 2023
University of California, Irvine Irvine, CA, USA

Master of Science in Information Technology 2017
IT University of Copenhagen Copenhagen, Denmark

Bachelor of Science in Software Development 2013
IT University of Copenhagen Copenhagen, Denmark

RESEARCH EXPERIENCE

Graduate Research Assistant September 2017 – June 2023
University of California, Irvine Irvine, CA, USA

Graduate Research Assistant December 2015 – January 2016
IT University of Copenhagen Copenhagen, Denmark

Visiting Research Assistant September 2014 – January 2015
University of California, Irvine Irvine, CA, USA

TEACHING EXPERIENCE

Teaching Assistant Spring 2019, Spring 2020
University of California, Irvine Irvine, CA, USA

PROFESSIONAL EXPERIENCE

Software Engineering Intern Summer 2021, Summer 2022
Juniper Networks, Inc. Cupertino, CA, USA

Software Engineering Intern Summer 2019
Symantec Corporation Culver City, CA, USA

Software Engineer (part-time role) October 2013 – July 2014
Danish Maritime Authority Valby, Denmark

Software Engineer (part-time role) March 2012 – September 2013
Hammerstad A/S Herlev, Denmark

xiii

PUBLICATIONS

Seqnature: Packet Sequences as Network Fingerprints 2023
In preparation

FingerprinTV: Fingerprinting Smart TV Apps 2022
Privacy Enhancing Technologies Symposium

The TV is Smart and Full of Trackers: Measuring Smart TV Advertising
and Tracking

2020

Privacy Enhancing Technologies Symposium

Packet-Level Signatures for Smart Home Devices 2020
Network and Distributed System Security Symposium

AntMonitor: Network Traffic Monitoring and Real-Time Prevention of
Privacy Leaks in Mobile Devices

2015

ACM S3 Workshop on Mobile Computing and Networking

AntMonitor: A System for Monitoring from Mobile Devices 2015
ACM SIGCOMM Workshop on Crowdsourcing and Crowdsharing of Big Internet Data

xiv

ABSTRACT OF THE DISSERTATION

Privacy Implications of Smart TVs

By

Janus Varmarken

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2023

Professor Athina Markopoulou, Chair

A smart TV is an Internet-connected TV with computational capabilities. These enhance-

ments to the traditional TV set enable the smart TV to stream content from the Internet

and run interactive applications (apps). While appealing from a functionality standpoint,

smart TVs unfortunately also introduce new privacy risks. For example, unlike traditional

TVs which can only receive TV channel broadcasts, the smart TV may use its Internet-

connectivity to exfiltrate information about the user, including, but not limited to, viewing

history. Despite massive user adoption of smart TVs, there is surprisingly little work on the

privacy implications of smart TVs. Using a network measurement approach, this dissertation

seeks to close this gap in the literature.

The first part of this dissertation presents a large-scale measurement study of the smart TV

advertising and tracking ecosystem. Network traffic collected from smart TVs, when used

by real users and when instrumented in the lab, reveal that smart TVs connect to well-

known and platform-specific advertising and tracking services (ATSes). Automated tests

of the top-1000 apps on two popular smart TV platforms unveil that (i) a subset of apps

communicate with a large number of ATSes, and some ATS organizations only appear on

certain platforms, showing a possible segmentation of the smart TV ATS ecosystem across

platforms; and (ii) hundreds of apps exfiltrate personally identifiable information to third

xv

parties and platform domains. Furthermore, an evaluation of DNS-based blocklists shows

that even smart TV-specific blocklists miss ads and incur functionality breakage.

Next, the dissertation investigates if an in-network adversary can identify what smart TV

app is launched. Automated tests are used to collect multiple samples of the network traffic

generated by each of the top-1000 apps on the three most popular smart TV platforms.

Network fingerprints are extracted from this dataset using three established fingerprinting

techniques. The results show that smart TV app network fingerprinting is feasible and

effective: even the least prevalent type of fingerprint manifests itself in at least 68% of apps

of each smart TV platform, and up to 89% of fingerprints uniquely identify a specific app

when two fingerprinting techniques are used together. It is also shown that apps that exhibit

identical fingerprints often stem from the same developer or “no code” toolkit, and that apps

that are present on all three smart TV platforms exhibit platform-specific fingerprints.

Finally, inspired by the observation that joint use of multiple fingerprinting techniques im-

proves fingerprint distinctiveness, the dissertation proposes a general fingerprinting frame-

work that can identify fingerprints that are based on any combination of several features,

such as server identities and the sizes, directions, and/or order of packets. Through cus-

tomizable parameters, the framework provides support for both joint and separate use of

prior fingerprinting techniques, as well as any fingerprinting technique that can be formu-

lated as a problem of identifying similar packet exchanges. To demonstrate its versatility, the

framework is used to implement and evaluate two different fingerprinting techniques. Fin-

gerprints for smart TV apps and for events on simple Internet of Things (IoT) devices, such

as smart plugs and smart light bulbs, are extracted using the two fingerprinting techniques.

The relative performance of the two fingerprinting techniques is established by comparing

the number of fingerprints each fingerprinting technique identifies, as well as how distinct

the extracted fingerprints are from other traffic.

xvi

Chapter 1

Introduction

1.1 Background

A smart TV (or connected TV) is an Internet-connected TV with computational capabilities.

These enhancements to the traditional TV set enable the smart TV to stream content from

the Internet and run interactive applications (apps).

Originally, most smart TV products could be categorized as either a built-in smart TV or

an over-the-top (OTT) streaming device. A built-in smart TV is a traditional TV set where

the TV manufacturer has integrated the hardware and software necessary to make the TV

“smart.” For example, Samsung offers built-in smart TVs powered by the Tizen operating

system (which is developed in-house at Samsung). An OTT device is an external dongle or

box that, when inserted into a port of a TV, transforms the TV into a smart TV. However, the

distinction between built-in smart TVs and OTT devices is becoming increasingly blurred as

some TV manufacturers now integrate OTT vendors’ software/hardware platforms directly

into their TV sets. For example, TCL and Sharp offer smart TVs that integrate the Roku

smart TV platform (by Roku), while Insignia and Toshiba offer smart TVs that integrate

1

the Fire TV smart TV platform (by Amazon). This dissertation therefore uses “smart TV”

as an umbrella term for both built-in smart TVs and OTT devices.

There is a diverse set of smart TV platforms, each with its own set of apps that users

can install. Many smart TV platforms are based on existing mobile operating systems, in

particular Android by Google. Google’s own full-fledged smart TV platform was originally

called Android TV, but was re-branded as Google TV in 2020 when Google introduced a

new user interface and enhanced content recommendation [31]. Smart TVs that run stock

Android TV/Google TV (e.g., smart TVs manufactured by Sony and Philips) have access

to apps from the Google Play Store. Smart TV platforms that are derivatives of Android

sometimes also have their own separate app store. For example, apps for Amazon’s Fire TV

are made available through the Amazon Appstore. Despite differences in app distribution

channels, both Android TV/Google TV and Fire TV apps are built using technologies and

tools that are similar to those used for building regular Android apps for smartphones.

Likewise, Apple TV apps are built using technologies and tools that were originally designed

for iOS apps, and Apple TV apps can be downloaded from Apple’s App Store.

The technologies used for app development and distribution are different for smart TV

platforms that are not derived from the two major mobile operating systems, Android and

iOS. For example, apps for the Roku platform are built using BrightScript, which is a

custom scripting language, and are distributed via the Roku Channel Store. Many other

smart TV platforms follow a web-based ecosystem where applications are developed using

HTML, CSS, and JavaScript. Examples include Samsung’s Tizen, LG’s webOS, and Hybrid

broadcast broadband TV (HbbTV). Finally, some smart TV platforms, such as Chromecast,

do not have app stores of their own, but are only meant to “cast” (i.e., mirror/project)

content from other devices such as smartphones.

As with mobile apps, smart TV apps can integrate third-party libraries and services, often

for advertising and tracking purposes. Serving advertisements (ads) is one of the main

2

ways for smart TV platforms and app developers to generate revenue [6], and the market

is huge: according to Statista, smart TV ad spending exceeded $21 billion in 2022 in the

U.S. alone, and is projected to double in 2026 [142]. Smart TV platform operators pocket

a sizeable portion of this ad spending by requiring apps to hand over ad inventory (ad

display slots) or ad revenue. For example, both Roku and Amazon (Fire TV) lay claim

to 30% of an app’s ad inventory [125, 140]. The smart TV advertising ecosystem mirrors

many aspects of the web advertising ecosystem. Most importantly, smart TV advertising

uses programmatic mechanisms that allow apps to sell their ad inventory in an automated

fashion using behavioral targeting [129, 17].

1.2 Motivation

Smart TVs provide convenient access to streaming services such as Netflix and Hulu, a rich

selection of games, and are also increasingly used as a central hub for entertainment in

general, such as music streaming and social media [65]. At the same time, smart TVs are

available at relatively affordable prices, with many of the external smart TV boxes/sticks

priced less than $50, while built-in smart TVs now cost only a few hundreds dollars [8].

Consumers have responded positively to this value proposition: between 2011 and 2021, the

percentage of U.S. TV households with at least one smart TV has increased from 30% to

82% [79], and smart TV sets now outnumber traditional TV sets in American homes [64].

While appealing from an entertainment standpoint, smart TVs unfortunately also introduce

new privacy risks. The rapidly growing smart TV advertising business (see Section 1.1)

incentivizes smart TV apps and platform operators to track and profile users in order to

optimize ad targeting and thereby maximize profit. One way this can be achieved is via

Automatic Content Recognition (ACR), which many smart TVs use to track what their

users watch as this information can be used to serve targeted ads [86]. In one high-profile

3

case, Vizio paid $2.2 million to settle charges by the Federal Trade Commission (FTC) that

Vizio used ACR to track users’ viewing data without their knowledge or consent [43]. While

smart TV platforms now allow users to opt out of such tracking, it is not straightforward for

users to turn it off [54]. Furthermore, Consumer Reports found that even with ACR turned

off, some smart TVs still require users to agree to a basic (but hard to understand) privacy

policy that asks for the right to collect the user’s location, choice of apps, etc. [33].

Despite their massive user base and the aforementioned examples of poor privacy practices,

there exists remarkably little (academic) work on the privacy implications of smart TVs. For

example, while the ecosystems of advertising and tracking services (ATSes) that facilitate

delivery of targeted ads on the desktop [90, 51, 40] and mobile [113, 117, 136] platforms

have been studied extensively, the ATS ecosystems of smart TV platforms have not been

examined at scale until recently. Similarly, the literature on network fingerprints of websites

and mobile apps is rich [59, 144, 27, 81, 58, 83, 105, 36, 163, 104, 57, 138, 103, 26, 139,

102, 141, 85, 60, 145, 146, 155], but no prior work has investigated if smart TV apps can be

identified from their (encrypted) network traffic. Since viewing history may reveal sensitive

information about the viewer (e.g., sexual orientation), and since the smart TV app in use

can be synonymous with (the theme of) the content being watched, insight into whether

smart TV apps can be fingerprinted is key to understanding the privacy implications of

smart TVs. This dissertation seeks to close these gaps in the literature.

1.3 Contributions

This dissertation makes the following contributions.

4

1.3.1 Measurement of Advertising and Tracking on Smart TVs

In Chapter 3, we present a large-scale measurement study of the smart TV advertising

and tracking ecosystem. First, we illuminate the network behavior of smart TVs as used

in the wild by analyzing network traffic collected from residential gateways. We find that

smart TVs connect to well-known and platform-specific advertising and tracking services

(ATSes). Second, we design and implement software tools that systematically explore and

collect traffic from the top-1000 apps on two popular smart TV platforms, Roku and Amazon

Fire TV. We discover that a subset of apps communicate with a large number of ATSes,

and that some ATS organizations only appear on certain platforms, showing a possible

segmentation of the smart TV ATS ecosystem across platforms. Third, we evaluate the

(in)effectiveness of DNS-based blocklists in preventing smart TVs from accessing ATSes.

We highlight that even smart TV-specific blocklists suffer from missed ads and incur func-

tionality breakage. Finally, we examine our Roku and Fire TV datasets for exposure of

personally identifiable information (PII) and find that hundreds of apps exfiltrate PII to

third parties and platform domains. We also find evidence that some apps send the adver-

tising ID alongside static PII values, effectively eliminating the user’s ability to opt out of

ad personalization.

1.3.2 FingerprinTV: Fingerprinting Smart TV Apps

In Chapter 4, we propose FingerprinTV, a fully automated methodology for extracting

fingerprints from the network traffic of smart TV apps and assessing their performance.

FingerprinTV (1) installs, repeatedly launches, and collects network traffic from smart

TV apps; (2) extracts three different types of network fingerprints for each app, i.e., domain-

based fingerprints (DBFs), packet-pair-based fingerprints (PBFs), and TLS-based finger-

prints (TBFs); and (3) analyzes the extracted fingerprints in terms of their prevalence,

5

distinctiveness, and sizes. From applying FingerprinTV to the top-1000 apps of the three

most popular smart TV platforms, we find that smart TV app network fingerprinting is

feasible and effective: even the least prevalent type of fingerprint manifests itself in at least

68% of apps of each platform, and up to 89% of fingerprints uniquely identify a specific

app when two fingerprinting techniques are used together. By analyzing apps that exhibit

identical fingerprints, we find that these apps often stem from the same developer or “no

code” app generation toolkit. Furthermore, we show that many apps that are present on all

three platforms exhibit platform-specific fingerprints.

1.3.3 Seqnature: Packet Sequences as Network Fingerprints

Finally, motivated by the observation made in Chapter 4 that joint use of multiple finger-

printing techniques improves fingerprint distinctiveness, specifically in the context of smart

TV apps, Chapter 5 proposes a general fingerprinting framework, Seqnature, that can

identify network fingerprints that are based on any combination of several features of (en-

crypted) network traffic, such as server identities and the sizes, directions, and/or order of

packets. Seqnature is platform-agnostic, i.e., Seqnature can be used to identify fin-

gerprints of any arbitrary event e on any software/hardware platform, including, but not

limited to, smart TVs. Through customizable parameters, Seqnature provides support for

both joint and separate use of the fingerprinting techniques considered in Chapter 4, as well

as any fingerprinting technique that can be formulated as a problem of identifying packet

exchanges that consistently appear when the fingerprinted event e is triggered.

Seqnature leaves the user in full control of what traffic features are used in a fingerprint,

and what packet exchanges are considered identical. This makes it extremely simple to

use Seqnature to implement, and compare the performance of, different fingerprinting

techniques. We demonstrate this by using Seqnature to implement two fingerprinting

6

techniques, and then extract fingerprints for smart TV apps and for events on simple IoT

devices. Both fingerprinting techniques identify fingerprints for almost all smart TV apps

and for most events on IoT devices. Using Seqnature’s ability to search traffic for manifes-

tations of a fingerprint, we find that one fingerprinting technique produces fingerprints that

have more discriminative power, as these fingerprints give rise to slightly fewer false positives

than fingerprints extracted using the other fingerprinting technique. However, the difference

is minor, and since the other fingerprinting technique is less compute-intensive, it may be

preferable in scenarios where computing resources are limited and a few false positives can

be tolerated.

1.4 Outline

The remainder of this dissertation is structured as follows. Chapter 2 discusses related work.

Chapter 3 examines advertising and tracking on smart TVs using network measurements.

Chapter 4 investigates if an in-network adversary can identify what smart TV app a user

launches. Chapter 5 proposes a general network fingerprinting framework that can be used

to experiment with new and existing fingerprinting techniques on any software/hardware

platform, including, but not limited to, smart TVs. Chapter 6 concludes the dissertation.

7

Chapter 2

Related Work

2.1 Ads and Tracking on Smart TVs

While the desktop [90, 51, 40] and mobile [113, 117, 136] ATS ecosystems have been studied

extensively, the smart TV ATS ecosystem has not been examined at scale until recently.

Three papers [115, 63, 98] studied the network behavior of smart TVs concurrently with

our work on the smart TV ATS ecosystem (see Chapter 3). Ren et al. [115] studied a large

set of IoT devices spanning multiple device categories, including smart TVs. Their results

showed that smart TVs were the category of devices that contacted the largest number of

third parties, which further motivates our in-depth study of the smart TV ATS ecosystem.

Huang et al. [63] used crowdsourcing to collect network traffic for IoT devices in the wild and

showed that smart TVs contact many trackers by matching the contacted domains against

the Disconnect blocklist. Finally, Moghaddam et al. [98] also instrumented the Roku and

Fire TV smart TV platforms to map the ATS endpoints and the exposure of PII.

Our work independently confirms the findings of these works w.r.t. the smart TV ATS

ecosystem, both by analyzing seven different smart TV platforms in the wild and by per-

8

forming systematic tests of two platforms (Roku and Fire TV) in the lab. In addition, we

further contribute along two fronts. First, we show that even the same app across different

smart TV platforms contact different ATSes, which shows the fragmentation of the smart

TV ATS ecosystem. Second, we evaluate the effectiveness of different sets of blocklists, in-

cluding smart TV specific blocklists, in terms of their ability to prevent ads and their adverse

effects on app functionality. We also suggest ways to aid blocklist curation through analysis

of domain usage across apps and PII exposures.

Earlier work in this space includes a series of papers by Ghiglieri et al. [48, 47, 50] who

(i) showed how broadcasting stations and the user’s neighbors could track the user’s viewing

behavior on the HbbTV platform; and (ii) presented a Pi-hole-like solution to prevent this.

Related to our work, they found that HbbTV apps load third-party tracking scripts from

Google Analytics. In contrast to the rich app-based platforms we study in this dissertation,

the HbbTV platform simply overlays (interactive) HTML5 content on top of TV channels.

Moreover, the number of apps studied in this dissertation is one order of magnitude larger

than the combined number of channels across all these past studies (see Table 1 in [50]).

2.2 Other Work on Privacy Implications of Smart TVs

Other work that addresses the privacy implications of smart TVs includes a qualitative

assessment of the privacy practices of five popular smart TVs and 10 popular streaming

apps [72], and two surveys of consumers’ understanding of the privacy risks and practices of

smart TVs [49, 87].

In their evaluation of the privacy practices of smart TVs and streaming apps [72], Common

Sense Media found that (i) among the top-5 smart TVs in the market (Apple TV, Google

TV, Fire TV, Roku, and Nvidia Shield TV), all but Apple TV have privacy practices that

9

put consumers’ privacy at consinderable risk; and similarly (ii) except for Apple TV+, all of

the top-10 streaming apps have privacy practices that put consumers’ privacy at considerable

risk. Common Sense Media highlight that these practices include selling data, sending third-

party marketing communications, displaying targeted ads, tracking users across other sites

and services, and creating advertising profiles for data brokers.

When surveying hundreds of users, both Ghiglieri et al. [49] and Malkin et al. [87] found

widespread unawareness and confusion about the privacy implications of smart TVs, such as

what data the smart TV collects and how that data is used. Malkin et al. [87] note that users

find some smart TV features quite useful. These users therefore face a trade-off between the

functional benefits of a smart TV and their privacy. When faced with this dilemma, some

users (incorrectly) assume existing laws and regulations are in place to protect their data,

while others grudgingly believe they never had a choice in the first place, an effect Malkin

et al. refer to as “the resignation factor.”

2.3 Network Fingerprints

A network fingerprint (or signature) is network traffic that is characteristic for certain soft-

ware (or hardware) and that may thus be used to identify the presence of such software

(hardware) on the network. Fingerprinting has been studied by academics and professionals

for decades because it enables valuable services such as Network Intrusion Detection Systems

and traffic prioritization schemes, yet at the same time also introduces privacy risks as it

allows network operators to “spy” on individual users’ computer usage.

The work of Moghaddam et al. [98] and our own work described in Chapter 4 were the first

to study smart TV apps at scale, but focused on advertising and tracking on smart TVs. In

Chapter 4, we continue the effort of understanding the privacy implications of smart TVs by

10

studying network fingerprints of smart TV apps. While we draw inspiration from [98] and

Chapter 3 w.r.t. how we instrument the Fire TV and Roku smart TV platforms, large-scale

assessment of network fingerprinting techniques’ applicability to smart TV apps was not

possible with prior work, and no dataset with multiple samples of apps’ on-launch traffic

previously existed. Additionally, whereas the instrumentation tools [157, 158] published

alongside Chapter 3 only cover Fire TV and Roku and still require some manual intervention,

FingerprinTV, a tool we develop for our study in Chapter 4, fully automates app testing,

and adds support for Apple TV.

Well-known Ports and Payload Analysis. Early fingerprinting techniques relied on

applications’ use of well-known ports, but this approach had limited accuracy and granularity,

which paved the way for proposals that relied on inspection of packet payload [99, 84].

Techniques based on payload inspection also initially proved applicable to recent emerging

technologies, such as smartphones [96] and IoT [44], but their relevance is declining as the

use of encryption is becoming more widespread in these technologies [112, 15, 63].

Fingerprinting Encrypted Traffic. With the introduction of SSL, the predecessor to

TLS, researchers began exploring what information could (still) be inferred from network

traffic, despite the payload being encrypted. For example, Bernaille and Teixeira [24] demon-

strated that the application layer protocol used on top of SSL could be identified by analyzing

the sizes and directions of the first few packets of an SSL session. Researchers have also re-

constructed even more granular information from encrypted network traffic by fingerprinting

HTTP User-Agent strings [66], websites [59, 144] (even in the presence of additional privacy

enhancing technologies, such as encryption of domain names, tunneling, onion routing, and

traffic morphing [27, 81, 58, 83, 105, 36, 163, 104, 57, 138, 103, 26, 139, 102, 141, 85, 60]),

individual webpages on social media websites [162], desktop [19] and mobile [145, 146, 155]

applications, and even individual user actions in mobile applications [34, 131] as well as

voice commands on smart speakers [73, 161, 32, 67] and individual functionality on IoT

11

devices [35, 101, 115, 151, 13].

Some work has even shown that it is possible to fingerprint video content [114, 133]. Content

fingerprinting provides more granular information than smart TV app fingerprinting, but

is not as lightweight as the fingerprinting techniques we consider for smart TV apps in

Chapter 4. For example, Schuster et al. [133] employ Convolutional Neural Networks, and

also note that data collection is a bottleneck as content must be played back in real-time,

multiple times, and the technique proposed in [114] needs access to at least 30 Application

Data Units, which equates to two minutes of video playback, before any inference attempts

can be made.

Network Fingerprints in the Context of Smart TVs. While the literature on finger-

printing is evidently rich, to the best of our knowledge, no prior work has studied smart TV

app fingerprinting at scale. A few papers have investigated fingerprinting in the context of

smart TVs (alongside other IoT devices) [44, 56, 115, 151, 130]. However, these papers are

concerned with fingerprinting the smart TV “as a whole”, i.e., identifying its presence on

the network [44, 56, 130], or with fingerprinting basic events on smart TVs, e.g., returning

to the menu screen [115, 151], but do not attempt to fingerprint individual smart TV apps.

Furthermore, since the network traffic profiles of smart TV apps differ from those of simpler

smart home devices, existing fingerprinting techniques, such as PingPong [151], may require

modifications. We discuss this in further detail in Section 4.3.2.

12

Chapter 3

Measurement of Advertising and

Tracking on Smart TVs

3.1 Overview

Despite massive consumer adoption of smart TVs, the ecosystem of advertising and tracking

services (ATSes) that facilitate delivery of (targeted) ads on smart TVs is currently not well

understood by users, researchers, and regulators. To that end, this chapter presents one of

the first large-scale measurement studies of the emerging smart TV advertising and tracking

ecosystem.

In the Wild Measurements (Section 3.3). First, we analyze the network traffic of smart

TV devices in the wild. We instrument residential gateways of 41 homes and collect flow-

level summary logs of the network traffic generated by 57 smart TVs from seven different

platforms. The comparative analysis of network traffic from different smart TV platforms

uncovers similarities and differences in their characteristics. As expected, we find that a

substantial fraction of the traffic is related to popular video streaming services such as Netflix

13

and Hulu. More importantly, we find generic as well as platform-specific ATSes. Although

realistic, the in the wild dataset does not provide app-level visibility, i.e., we cannot determine

which apps generate traffic to ATSes. To address this limitation, we undertake the following

major effort.

Controlled Testbed Measurements (Section 3.4). We design and implement two soft-

ware tools, Rokustic for Roku and Firetastic for Amazon Fire TV, which systematically

explore apps and collect their network traffic. We use Rokustic and Firetastic to exercise the

top-1000 apps of their respective platforms, and refer to the collected network traffic as our

testbed datasets. We analyze the testbed datasets w.r.t. the top Internet destinations the

apps contact, at the granularity of fully qualified domain names (FQDNs), effective second-

level domains (eSLDs), and organizations. We use “domain”, “endpoint”, and “destination”

interchangeably in place of FQDN and eSLD when the distinction is clear from the context.

We further separate destinations as first, third, and platform-specific party, w.r.t. to the

app that contacts them.

First, we find that the majority of apps contact few ATSes, while about 10% of the apps

contact a large number of ATSes. Interestingly, many of these more concerning apps come

from a small set of developers. Second, we find what appears to be a segmentation of the

smart TV ATS ecosystem across Roku and Fire TV as (1) the two datasets have little

overlap in terms of ATS domains; (2) some third party ATSes are among the key players

on one platform, but completely absent on the other; and (3) apps that are present on both

platforms have little overlap in terms of the domains they contact. Third, we compare the

top third party ATS domains of the testbed datasets to those of Android.

Evaluation of DNS-Based Blocklists (Section 3.5). Users typically rely on DNS-based

blocking solutions such as Pi-hole [12] to prevent in-home devices such as smart TVs from

accessing ATSes. Thus, we evaluate the effectiveness of DNS-based blocklists, selecting

those that are most relevant to smart TVs. Specifically, we examine and test four popular

14

blocklists: (1) Pi-hole Default blocklist (PD) [12], (2) Firebog’s recommended advertising and

tracking lists (TF) [160], (3) Mother of all Ad-Blocking (MoaAB) [11], and (4) StopAd’s smart

TV specific blocklist (SATV) [76]. Our comparative analysis shows that block rates vary,

with Firebog having the highest coverage across different platforms and StopAd blocking

the least. We further investigate potential false negatives (FN) and false positives (FP). We

discover that blocklists miss different ATSes (FN), some of which are missed by all blocklists,

while more aggressive blocklists can suffer from false positives that result in breaking app

functionality. We discuss two ways to discover false negatives, through observing domains

contacted by multiple apps (“app prevalence”) and keyword search (based on ATS related

words like “ads” and “measure”).

PII Exposures (Section 3.6). We further examine the network traces of our testbed

datasets and find that hundreds of apps exfiltrate personally identifiable information (PII) to

third parties and platform-specific parties, mostly for non-functional advertising and tracking

purposes. Alarmingly, we find that many apps send the advertising ID alongside static PII

values such as the device’s serial number. This eliminates the user’s ability to opt out of

personalized advertisements by resetting the advertising ID, since the ATS can simply link

an old advertising ID to its new value by joining on the serial number. We evaluate the

blocklists’ ability to prevent exposures of PII and find that they generally perform well for

Roku, but struggle to prevent exfiltration of the device’s serial number and the device ID to

third parties and the platform-specific party for Fire TV.

Contributions. In this chapter, we analyze the network behavior of smart TVs, both

in the wild and in the lab. Our contributions include the following: (1) providing an in-depth

comparative analysis of the ATS ecosystems of Roku, Fire TV, and Android; (2) illuminating

the key players within the Roku and Fire TV ATS ecosystems by mapping domains to eSLDs

and parent organizations; (3) evaluating the effectiveness and adverse effects of an extensive

set of blocklists, including smart TV specific blocklists; (4) instrumenting long experiments

15

per app to uncover approximately twice as many domains as [98]; and (5) making our tools,

Rokustic and Firetastic, and our testbed datasets available [158, 157, 153].

3.2 Labeling Methodology

Throughout this chapter, we provide insight into the smart TV ATS ecosystems by labeling

a domain according to (1) its purpose (ATS or non-ATS); (2) its parent organization, i.e., the

domain owner; and (3) its relation to the app that uses it (first, third, or platform-specific

party). We detail this methodology below.

ATS Domains. We identify ATS domains as follows. For figures that denote top domains,

we check if the FQDN is labeled as ads or tracking by VirusTotal, McAfee, or OpenDNS

[4, 91, 3], or if it is blocked by any of the blocklists considered in Section 3.5. For figures and

tables that involve entire datasets, we only consider the blocklists due to the impracticality

of manually labeling thousands of data points.

Parent Organizations. To understand the presence of different organizations on smart TV

platforms, we map each FQDN to its effective second-level domain (eSLD) using Mozilla’s

Public Suffix List [100, 70], and use Crunchbase’s [1] acquisition and sub-organization infor-

mation to find the parent company of the eSLD. For example, hulu.com belongs to the Walt

Disney Company and youtube.com belongs to Alphabet.

App-Level Party Categorization. The app-level visibility in our testbed experiments

(Section 3.4) enables categorization of an Internet destination as a first party or a third

party w.r.t. the app generating the traffic. We provide an overview of the technique here

and defer details to Appendix A.1.

We adopt a technique similar to prior work [113], and we augment it to also include a

16

hulu.com
youtube.com

platform-specific party for traffic to platform-related destinations. We match tokenized eS-

LDs with tokenized package/app names and developer names. If the tokens match, we label

the domain as first party. Otherwise, if the traffic originated from platform activity rather

than app activity, we label it as platform-specific party : for Fire TV, AntMonitor [135] labels

connections with the responsible process; for Roku, we check if the eSLD contains “roku.”

Otherwise, if the domain is contacted by at least two different apps from different developers,

we label it as third party. Lastly, we resort to labeling it as other to capture domains that

are only contacted by a single app.

3.3 Smart TV Traffic in the Wild

In this section, we study the network behavior of smart TV devices when used by real users

by analyzing a dataset collected at residential gateways of tens of homes. This dataset is

referred to as the in the wild dataset. We compare the number of flows and traffic volumes

generated by smart TVs from seven different platforms. We also analyze the most frequently

used domains of each platform by identifying ATS domains and mapping each domain to its

parent organization.

Data Collection. To study smart TV traffic characteristics in the wild, we monitor network

traffic of 41 homes in a major metropolitan area in the United States. We sniff network

traffic of smart TV devices at the residential gateways using off-the-shelf OpenWRT-capable

commodity routers. We collect flow-level summary information for network traffic. For

each flow, we collect its start time, the FQDN of the external endpoint (using DNS), and

the internal device identifier. We identify smart TVs using heuristics that rely on DNS,

DHCP, and SSDP traffic and also manually verify the identified smart TVs by contacting

the owner. Our data collection covers a total of 57 smart TVs across 41 homes over the

duration of approximately 3 weeks in 2018. Note that we obtained written consent from

17

Smart TV
Platform

Device
Count

Avg. Flow Count
Per Device (x 1000)

Avg. Flow Volume
Per Device (GB)

Avg. eSLD
Count Per Device

Apple 16 49.3 46.6 536
Samsung 11 62.6 33.2 369
Chromecast 10 201.9 26.3 354
Roku 9 48.1 83.0 543
Vizio 6 43.4 63.4 278
LG 4 10.9 0.9 1893
Sony 1 33.1 0.1 186

Table 3.1: Traffic statistics of 57 smart TV devices observed across 41 homes (“in the wild”
dataset).

users, informing them of our data collection and research objectives, in accordance with our

institution’s IRB guidelines.

Dataset Statistics. Table 3.1 lists basic statistics of smart TV devices observed in our

dataset. Overall, we note 57 smart TVs from 7 different vendors/platforms using a variety

of technologies.

Devices can be built-in smart TVs such as Samsung and Sony, others like Chromecast and

Apple TV can be external stick/box solutions, while devices like Roku can have both forms.

For example, 7 out 9 Roku devices in our dataset were built-in Roku smart TVs, while the

remaining two were external Roku sticks. Note that a smart TV platform such as Roku

supports the same set of apps and a similar interface for both built-in and external smart

TV devices. Thus, we do not differentiate between built-in vs. external Roku smart TV

devices.

We expect smart TV devices to generate significant traffic because they are typically used

for OTT video streaming [41]. Chromecast devices generate the highest number of flows

(exceeding 200 thousand flows) on average, while Samsung, Apple, and Roku devices generate

nearly 50 thousand flows on average. Roku devices generate the highest volume of flows

(exceeding 80 GB) on average, with one Roku generating as much as 283 GB. Except for

18

LG and Sony devices, all smart TV devices generate at least tens of GBs worth of traffic on

average. Finally, we note that smart TV devices typically connect to hundreds of different

endpoints on average.

Endpoint Analysis. Figure 3.1 plots the top-30 FQDNs in terms of flow counts for the

Roku, Apple, Sony, and Samsung smart TV platforms. The plots for the remaining smart

TV platforms are in Appendix A.5.1.

We note several similarities in the domains accessed by different smart TV devices. First,

video streaming services such as Netflix and Hulu are popular across the board, as evident

from domains such as api-global.netflix.com and vortex.hulu.com. Second, cloud/CDN ser-

vices such as Akamai and AWS (Amazon) also appear for different smart TV platforms.

Smart TVs likely connect to cloud/CDN services because popular video streaming ser-

vices typically rely on third party CDNs [28, 14]. Third, we note the prevalence of well-

known advertising and tracking services (ATSes). For example, *.scorecardresearch.com and

*.newrelic.com are third party tracking services, and pubads.g.doubleclick.net is a third party

advertising service.

We notice several platform-specific differences in the domains accessed by different smart TV

platforms. Examples of domains that are unique to different smart TV platforms include:

giga.logs.roku.com (Roku), time-ios.apple.com (Apple), hh.prod.sonyentertainmentnetwork.

com (Sony), and log-ingestion.samsungacr.com (Samsung). In addition, we notice platform-

specific ATSes. For example, the following advertising-related domains are not in the top-30

(and therefore not pictured in Figure 3.1), but are unique to different smart TV platforms:

p.ads.roku.com (Roku), ads.samsungads.com (Samsung), and us.info.lgsmartad.com (LG).

Organizational Analysis. Figure 3.2 illustrates the mix of different parent organizations

contacted by the seven smart TV platforms in our dataset. It shows the prevalence of

Alphabet in smart TV platforms like Chromecast, Sony, and LG, while revealing competing

19

0 10k 20k 30k

Number of Flows
insights-collector.newrelic.com

api-global.netflix.com
vortex.hulu.com
home.hulu.com

aeg-personalization.quickplay.com
uwp-aeg-hbs.quickplay.com

http-v-darwin.hulustream.com
occ-1-1736-999.1.nflxso.net

d2lkq7nlcrdi7q.cloudfront.net
cws-us-east.conviva.com

cws-110*57.[2].amazonaws.com
init-p01st.push.apple.com

giga.logs.roku.com
liberty.logs.roku.com

occ-0-1736-999.1.nflxso.net
ichnaea.netflix.com

dtvn-live-sponsored.akamaized.net
midland.logs.roku.com

cws-eu-west-1.conviva.com
cdn-0.nflximg.com

http-e-darwin.hulustream.com
occ-2-1736-999.1.nflxso.net

atv-ext.amazon.com
oca-api.geo.netflix.com

b.scorecardresearch.com
cws.conviva.com

stream.nbcsports.com
tp.akam.nflximg.com
scribe.logs.roku.com

pubads.g.doubleclick.net

(a) Roku

0 10k 20k 30k

Number of Flows
vortex.hulu.com

api-global.netflix.com
cws-us-east.conviva.com
api-global.[1].netflix.com

time-ios.apple.com
e673.e9.akamaiedge.net

play.hulu.com
home.hulu.com

http-v-darwin.hulustream.com
occ-1-1736-999.1.nflxso.net

time-ios.g.aaplimg.com
1-courier.push.apple.com

http-e-darwin.hulustream.com
e1042.b.akamaiedge.net

occ-0-1736-999.1.nflxso.net
itunes.apple.com.edgekey.net

occ-2-1736-999.1.nflxso.net
pt.hulu.com

cws-110*57.[2].amazonaws.com
cws-189*47.[2].amazonaws.com

d2hzeyj6b557bu.cloudfront.net
http-v-[3].footprint.net

t2.hulu.com
init-p01st.push.apple.com

xp.itunes-apple.com.akadns.net
auth.hulu.com

e1042.e12.akamaiedge.net
mt-ingestion-[4].akadns.net

nrdp.nccp.netflix.com
a1910.b.akamai.net

(b) Apple

0 2k 4k

Number of Flows
api-global.netflix.com

mobile-collector.newrelic.com
feed.theplatform.com
hh.prod.sony[6].com

android.clients.google.com
www.fox.com

flingo.tv
ichnaea.netflix.com

pubads.g.doubleclick.net
clients3.google.com

www.lookingglass.rocks
i.ytimg.com

clients4.google.com
play.googleapis.com

artist.api.lv3.cdn.hbo.com
js-agent.newrelic.com
www.googleapis.com

mtalk.google.com
comet.api.hbo.com

profile.localytics.com
occ-0-586-590.1.nflxso.net

connectivitycheck.gstatic.com
occ-1-586-590.1.nflxso.net

assets.fox.com
sp.auth.adobe.com

occ-2-586-590.1.nflxso.net
api.meta.ndmdhs.com

api.fox.com
youtubei.googleapis.com

cdn.meta.ndmdhs.com

(c) Sony

0 50k 100k

Number of Flows
log-ingestion.samsungacr.com

www.youtube.com
api-global.netflix.com

lcprd1.samsungcloudsolution.net
android.clients.google.com

log-2.samsungacr.com
i.ytimg.com

vortex.hulu.com
occ-1-1736-999.1.nflxso.net

youtube-ui.l.google.com
api.twitter.com

clients1.google.com
ypu.samsungelectronics.com

i9.ytimg.com
occ-0-1736-999.1.nflxso.net

nrdp.nccp.netflix.com
ytimg.l.google.com

s.youtube.com
clients4.google.com

video-stats.l.google.com
occ-2-1736-999.1.nflxso.net

osb.samsungqbe.com
t2.hulu.com

ichnaea.netflix.com
http-v-darwin.hulustream.com
upu.samsungelectronics.com

tv.deezer.com
dpu.samsungelectronics.com

ocfconnect-[7].samsungiotcloud.com
googleads.g.doubleclick.net

(d) Samsung

Figure 3.1: Top-30 fully qualified domain names in terms of number of flows per device for
a subset of the smart TVs in the “in the wild” dataset. See Appendix A.5.1 for the other
brands. Domains identified as ATS are highlighted with red, dashed bars.

20

Apple TV

Chromecast

LG

Roku

Samsung

Sony Bravia

Vizio

Adobe Systems

AEG

Alphabet

Amazon

Apple

AT&T

Comcast

comScore

Conviva

Deezer

Flingo

Fox

Kodi
LG

Localytics

NBCUniversal Media

Netflix

New Relic

NFL

Roku

Samsung

Sony

Time Warner

Twitter

Unknown/CDN

Verizon
Vizio

Walt Disney Company

Figure 3.2: Mapping of platforms measured in the wild to the parent organizations of the
endpoints they contact (for the top-30 FQDNs of each platform). The width of an edge
indicates the number of distinct FQDNs within that organization that was accessed by the
platform.

organizations such as Apple on the other end of the spectrum. Furthermore, it reveals

the presence of organizations like Conviva, comScore, and Localytics, whose main business

is in the advertising and tracking space. We note that Samsung, Deezer, Roku, LG, and

Flingo have the majority of their domains labeled as ATSes, while Netflix and Walt Disney

21

Company have less than half of their domains labeled as ATSes.

Takeaways and Limitations. Traffic analysis of different smart TV platforms in the wild

highlights interesting similarities and differences. As expected, all smart TVs generate traffic

related to popular video streaming services. In addition, they also access ATSes, both well-

known and platform-specific. While our vantage point at the residential gateway provides

a real-world view of the behavior of smart TVs, it lacks granular information beyond flows

(e.g., packet-level information) and does not tie traffic to the app that generates it. Another

limitation of this analysis is that the findings may be biased by the viewing habits of the

users in these 41 households. It is unclear how to normalize to provide a fair comparison of

endpoints accessed by the different smart TV platforms. We address these limitations next

by systematically analyzing two popular smart TV platforms in a controlled testbed.

3.4 Systematic Testing of Roku and Fire TV

In this section, we perform an in-depth, systematic study of two smart TV platforms, Roku

and Amazon Fire TV, which we choose because they are popular [38], affordable ($25), and

among the leading smart TV platforms in terms of number of ad requests [71]. Sections 3.4.1

and 3.4.2 present our measurement approach for systematically testing the top-1000 apps of

each platform while collecting their network traffic. Since app exploration is automated, no

real users are involved, thus no IRB is needed. Our measurement approach provides visibility

into the behaviors of individual apps, which was not possible from the vantage point used for

the in the wild dataset. In Section 3.4.3, we analyze the two testbed datasets, and compare

them to each other and to the Android ATS ecosystem.

22

3.4.1 Roku Data Collection

In this section, we describe the Roku platform and our app selection methodology, and

present an overview of Rokustic, our software tool that automatically explores Roku apps.

We use Rokustic to explore and collect traffic from 1044 Roku apps. The resulting network

traces are analyzed in Section 3.4.3.

Roku Platform. We start by describing the Roku platform, which has its own app store,

the Roku Channel Store [124] (RCS), that offers more than 8500 apps, called “channels.”

For security purposes, the Roku operating system sandboxes each app (apps are not al-

lowed to interact or access the data of other apps) and provides limited access to system

resources [128]. Furthermore, Roku apps cannot run in the background. Specifically, app

scripts are only executed when the user selects a particular app, and when the user exits the

app, the script is halted, and the system resumes control [126].

To display ads, apps typically rely on the Roku Advertising Framework, which is integrated

into the Roku SDK [127]. The framework allows developers to use ad servers of their pref-

erence and updates automatically without requiring the developer to rebuild the app. Even

though such a framework eliminates the need for third party ATS libraries, the development

and usage of such libraries is still possible. For example, the Ooyala IQ SDK [5] provides

various analytics services that can be integrated into a Roku app. Thus, such libraries can

help ATSes learn the viewing habits of users by collecting data from multiple apps. In terms

of permissions, Roku only protects microphone access with a permission and does not re-

quire any permission to access the advertising ID. Users can choose to reset this ID and opt

out of targeted advertising at any time [127]. However, apps and libraries can easily create

other IDs or use fingerprinting techniques to continue tracking users even after opt-out. We

further elaborate on this in Section 3.6.

App Selection. The RCS provides a web (and on-device) interface for browsing the avail-

23

able Roku apps. To the best of our knowledge, Roku does not provide public documentation

on how to programmatically query the RCS. We therefore reverse-engineer the REST API

backing the RCS web interface by inspecting the HTTP(S) requests sent while browsing the

RCS, and use this insight to write a script that crawls the RCS for the metadata of all (8515

as of April 2019) apps.

To test the most relevant apps, we select the top-50 apps in 30 out of the 32 categories. We

exclude “Themes” and “Screensavers” since these apps do not show up among the regular

apps on the Roku and therefore cannot be operated using our automation software. We base

our selection on the “star rating count,” which we interpret as the review count. Roku apps

can be labeled with multiple categories, thus some apps contribute to the top-50 of multiple

categories. This places the final count of apps in our dataset at 1044.

Automation (Rokustic). To scale testing of apps, we implement a software tool, Rokustic,

that automatically installs and exercises Roku apps. We provide a brief overview of Rokustic

here, but defer a more detailed description to Appendix A.2.1.

We run Rokustic on a Raspberry Pi that acts as a router and hosts a local wireless network

that the Roku is connected to. Rokustic utilizes ECP [123], a REST-like API exposed by

the Roku device, to control the Roku. Given a set of apps to exercise, Rokustic installs each

app by invoking the ECP endpoint that opens up the on-device version of the RCS page for

the app, and then sends a virtual key press to click the “Add Channel” button. To exercise

apps, Rokustic first invokes the ECP endpoint that returns the set of installed apps. For

each app, Rokustic then (1) starts tcpdump on the Raspberry Pi’s wireless interface; (2)

uses ECP to launch the app and invoke a series of virtual key presses in an attempt to incur

content playback; (3) pauses for five minutes to let the content play; (4) exits the app and

repeats from step 2 an additional two times; (5) terminates tcpdump.

Since Roku apps cannot execute in the background (see “Roku Platform”), all captured

24

traffic will belong to the exercised app and the Roku system. The total interaction time

with each app is approximately 16 minutes. We do not attempt to decrypt TLS traffic as

we cannot install our own self-signed certificates on the Roku.

3.4.2 Fire TV Data Collection

In this section, we describe the Fire TV platform, our app selection methodology, and present

an overview of Firetastic, our software tool that automatically explores Fire TV apps. By

using Firetastic to control six Fire TV devices in parallel, we explore and collect traffic from

1010 Fire TV apps in one week. The resulting network traces are analyzed in Section 3.4.3.

Fire TV Platform. Although Fire TV is made by Amazon, its underlying operating sys-

tem, Fire OS, is a modified version of Android. This allows apps for Fire TV to be developed

in a similar fashion to Android apps. Therefore, all third-party libraries that are available for

Android apps can also be integrated into Fire TV apps. Similarly, application sandboxing

and permissions in Fire TV are analogous to those of Android, and any permission requested

by the app is inherited by all libraries that the app includes. This allows third party libraries

to track users across apps using a variety of identifiers, such as the Advertising ID, the Serial

Number, the Device ID, etc. We further discuss tracking through PII exposure in Section 3.6.

App Selection. To test the most relevant apps, we pick the top-1000 apps from Amazon’s

curated list of “Top Featured” apps. We ignore some apps that use a local VPN (as they

would conflict with AntMonitor), that could not be installed manually, and utility apps that

can change the device settings (which would affect the test environment). As a result, we

ignore around 200 apps while including 1010 testable applications. Amazon’s app store offers

around 4,000 free apps at the time of writing, thus our dataset covers approximately 25%.

Automation (Firetastic). We design and implement a software tool, Firetastic, that

25

integrates the capabilities of two open source tools for Android: an SDK for network traffic

collection and a tool for input automation. We provide a brief overview of Firetastic here,

and defer additional details to Appendix A.2.2.

We rely on AntMonitor [135, 7], an open-source VPN-based library, to intercept all outgoing

network traffic from the Fire TV, and to label each packet with the package name of the

application (or system process) that generated it. We enable AntMonitor’s TLS decryption

for added visibility into PII exposures. We analyze the success of TLS decryption in Ap-

pendix A.4. In summary, TLS decryption was generally successful with 10% or fewer failures

for 55% of all apps, and 20% or fewer failures for 80% of all apps.

For app exploration, we utilize DroidBot [80], a Python tool that dynamically maps the UI

and simulates user inputs such as button presses using the Android Debug Bridge (ADB).

To increase the probability of content playback, we configure DroidBot to utilize its breadth

first search algorithm to explore each app. The intuition is that the main content is often

made available from top-level UI elements.

In summary, for each app, Firetastic: (1) starts AntMonitor; (2) explores the app for 15

minutes; (3) stops AntMonitor; and (4) extracts the .pcapng files that were generated

during testing. We use Firetastic to explore apps on six Fire TV devices in parallel. Our

test setup is resource-efficient and scalable, using only one computer to send commands to

multiple Fire TVs.

3.4.3 Comparing Roku and Fire TV

In this section, we analyze the (ATS) domains accessed by the apps in the Roku and Fire

TV testbed datasets. We first provide an overview of the datasets, and analyze how many

(ATS) domains apps contact. We then look closer at the eSLDs and third party ATS domains

26

Number of Roku Fire TV Both
Apps exercised 1044 1010 128
Fully qualified domain names (FQDN) 2191 1734 578
FQDNs accessed by multiple apps 669 603 199
URL paths 13899 240713 74

Table 3.2: Summary of the Roku and Fire TV testbed datasets. The rightmost column
summarizes the intersection between the two testbed datasets. For example, there are 128
apps that are present both in the Roku dataset and in the Fire TV dataset.

that are contacted by the most apps, including which parent organizations they belong to.

Furthermore, we compare the top third party ATS domains to those of Android. Finally, we

compare the domains accessed by apps that are present on both testbed platforms.

Overview. The datasets collected using Rokustic and Firetastic are summarized in Ta-

ble 3.2. For Roku, we discover 2191 distinct FQDNs, 669 of which are contacted by multiple

apps. For Fire TV, we discover 1734 distinct FQDNs, 603 of which are contacted by multiple

apps. We also find 578 FQDNs that appear in both datasets, 199 of which are contacted

by multiple apps. Our automation uncovers approximately twice as many FQDNs as [98],

possibly due to longer experiments and different app exploration goals. We further detail

this in Appendix A.3.

Leveraging the blocklists from Section 3.5, we identify 314 ATS domains that are unique to

the Roku dataset, 285 that are unique to the Fire TV dataset, and an overlap of 227 between

the two datasets. When considering eSLDs of the ATS domains, we find 68 eSLDs that are

unique to the Roku dataset, 100 that are unique to the Fire TV dataset, and an overlap

of 138 eSLDs. These numbers suggest that the ATS ecosystems of the two platforms have

substantial differences, which we analyze in further detail later in this section.

Number of (ATS) Domains Contacted. Figure 3.3a presents the empirical CDF of the

number of distinct domains each app in the two testbed datasets contacts. Fire TV apps

appear more “chatty”: most Fire TV apps contact about twice as many domains as the

Roku apps. However, when we consider the number of ATS domains contacted per app in

27

0 20 40 60 80 100
Number of Distinct Domains

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

 o
f T

es
te

d
A

pp
s

Roku

Fire TV

(a) Roku & Fire TV: Distinct do-
mains per app.

0 20 40 60 80
Number of Distinct ATS Domains

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f T
es

te
d

A
pp

s

Roku

Fire TV

(b) Roku & Fire TV: Distinct ATS
domains per app. A domain is consid-
ered an ATS if it is labeled as so by
any of the blocklists considered in Sec-
tion 3.5.

0
25

0
50

0
75

0
10

00

N
um

be
r

of
 A

pp
s

ew
sc

lo
ud

.c
om

st
ic

ky
ad

st
v.

co
m

sp
rin

gs
er

ve
.c

om
cl

ou
df

ro
nt

.n
et

ag
kn

.c
om

m
on

ar
ch

ad
s.

co
m

ak
am

ai
hd

.n
et

ad
sr

vr
.o

rg
gv

t1
.c

om
de

m
de

x.
ne

t
in

si
gh

te
xp

re
ss

ai
.c

om
in

no
vi

d.
co

m
ak

am
ai

ze
d.

ne
t

ad
rt

a.
co

m
im

rw
or

ld
w

id
e.

co
m

vi
m

eo
cd

n.
co

m
ra

vm
.tv

1r
x.

io
2m

dn
.n

et
vi

m
eo

.c
om

irc
ha

n.
co

m
tr

em
or

hu
b.

co
m

ifo
od

.tv
sp

ot
xc

ha
ng

e.
co

m
am

az
on

aw
s.

co
m

sc
or

ec
ar

dr
es

ea
rc

h.
co

m
go

og
le

-a
na

ly
tic

s.
co

m
go

og
le

sy
nd

ic
at

io
n.

co
m

do
ub

le
cl

ic
k.

ne
t

ro
ku

.c
om

P
la

tfo
rm

 P
ar

ty

T
hi

rd
 P

ar
ty

F
irs

t P
ar

ty

(c) Roku: Top-30 eSLDs.

0
50

0
10

00

N
um

be
r

of
 A

pp
s

tit
an

tv
.c

om
ad

ob
e.

co
m

m
oa

ta
ds

.c
om

go
og

le
vi

de
o.

co
m

ak
am

ai
hd

.n
et

un
ity

3d
.c

om
se

rv
in

g-
sy

s.
co

m
yt

im
g.

co
m

up
ly

nk
.c

om
yo

ut
ub

e.
co

m
gs

ta
tic

.c
om

ifo
od

.tv
sc

or
ec

ar
dr

es
ea

rc
h.

co
m

flu
rr

y.
co

m
go

og
le

.c
om

fa
ce

bo
ok

.c
om

ss
l-i

m
ag

es
-a

m
az

on
.c

om
go

og
le

sy
nd

ic
at

io
n.

co
m

go
og

le
-a

na
ly

tic
s.

co
m

am
az

on
al

ex
a.

co
m

go
og

le
ap

is
.c

om
cr

as
hl

yt
ic

s.
co

m
cl

ou
df

ro
nt

.n
et

am
az

on
-d

ss
.c

om
do

ub
le

cl
ic

k.
ne

t
m

ed
ia

-a
m

az
on

.c
om

am
az

on
vi

de
o.

co
m

am
az

on
-a

ds
ys

te
m

.c
om

am
az

on
aw

s.
co

m
am

az
on

.c
om

P
la

tfo
rm

 P
ar

ty

T
hi

rd
 P

ar
ty

F
irs

t P
ar

ty

(d) Fire TV: Top-30 eSLDs.

0
25

0
50

0

N
um

be
r

of
 A

pp
s

pu
ba

ds
.g

.d
ou

bl
ec

lic
k.

ne
t

tp
c.

go
og

le
sy

nd
ic

at
io

n.
co

m
w

w
w

.g
oo

gl
e-

an
al

yt
ic

s.
co

m
se

ar
ch

.s
po

tx
ch

an
ge

.c
om

se
cu

re
pu

ba
ds

.g
.d

ou
bl

ec
lic

k.
ne

t
ad

.d
ou

bl
ec

lic
k.

ne
t

ev
en

t.s
po

tx
ch

an
ge

.c
om

b.
sc

or
ec

ar
dr

es
ea

rc
h.

co
m

sb
.s

co
re

ca
rd

re
se

ar
ch

.c
om

go
og

le
ad

s4
.g

.d
ou

bl
ec

lic
k.

ne
t

ad
e.

go
og

le
sy

nd
ic

at
io

n.
co

m
gc

dn
.2

m
dn

.n
et

ad
rt

a.
co

m
P

D
[0

].a
ds

.tr
em

or
hu

b.
co

m
se

cu
re

.in
si

gh
te

xp
re

ss
ai

.c
om

ev
en

ts
.tr

em
or

hu
b.

co
m

dp
m

.d
em

de
x.

ne
t

cm
.g

.d
ou

bl
ec

lic
k.

ne
t

in
si

gh
t.a

ds
rv

r.
or

g
ct

v.
m

on
ar

ch
ad

s.
co

m

(e) Roku: Top-20 third party ATS do-
mains.

0
50

10
0

N
um

be
r

of
 A

pp
s

e.
cr

as
hl

yt
ic

s.
co

m
pu

ba
ds

.g
.d

ou
bl

ec
lic

k.
ne

t
ss

l.g
oo

gl
e-

an
al

yt
ic

s.
co

m
pa

ge
ad

2.
go

og
le

sy
nd

ic
at

io
n.

co
m

go
og

le
ad

s.
g.

do
ub

le
cl

ic
k.

ne
t

im
as

dk
.g

oo
gl

ea
pi

s.
co

m
se

tti
ng

s.
cr

as
hl

yt
ic

s.
co

m
da

ta
.fl

ur
ry

.c
om

gr
ap

h.
fa

ce
bo

ok
.c

om
b.

sc
or

ec
ar

dr
es

ea
rc

h.
co

m
re

po
rt

s.
cr

as
hl

yt
ic

s.
co

m
cs

i.g
st

at
ic

.c
om

w
w

w
.g

oo
gl

e-
an

al
yt

ic
s.

co
m

co
nf

ig
.u

ca
.c

lo
ud

.u
ni

ty
3d

.c
om

ap
pl

ab
-s

dk
.a

m
az

on
.c

om
ad

.d
ou

bl
ec

lic
k.

ne
t

z.
m

oa
ta

ds
.c

om
ad

e.
go

og
le

sy
nd

ic
at

io
n.

co
m

cd
p.

cl
ou

d.
un

ity
3d

.c
om

dp
m

.d
em

de
x.

ne
t

(f) Fire TV: Top-20 third party ATS
domains.

Figure 3.3: Analysis of domain usage per app and the top domains across all apps in the
Roku and Fire TV testbed datasets.

28

Figure 3.3b, the vast majority (80%) of apps from the two platforms behave similarly.

On the positive side, for both platforms, around 60% of the apps contact only a small handful

ATS domains. Yet, about 10% of the Roku and Fire TV apps contact 20+ and 10+ ATS do-

mains, respectively. These concerning apps come from a small set of developers. For instance,

for Roku, “Future Today Inc.” [46], “8ctave ITV”, and “StuffWeLike” [143] are responsible

for 51%, 13%, and 11%, respectively, of these apps. On the Fire TV side, “HTVMA So-

lutions, Inc.” [89] is responsible for 15% of the apps, and “Gray Television, Inc.” [55] is

responsible for 12% of the apps.

Key Players. Figures 3.3c (Roku) and 3.3d (Fire TV) present the top-30 eSLDs in terms

of the number of apps that contact a subdomain of the eSLD. We define an eSLD’s app

penetration as the percentage of apps in the dataset that contact the eSLD.

Platform. The top eSLD of each platform has 100% app penetration and belongs to the

platform operator. While these eSLDs also cover subdomains that provide functionality,

we note that both platform operators are engaged in advertising and tracking, as shown in

Figure A.3 in Appendix A.5.2, which separates traffic to the eSLDs in Figures 3.3c and 3.3d

by ATS and non-ATS FQDNs.

Third Parties. As evident from Figures 3.3c and 3.3d, Alphabet has a strong presence in the

ATS space of both platforms, with *.doubleclick.net, an ad delivery endpoint, achieving 58%

and 35% app penetration for Roku and Fire TV, respectively. Its analytic services also rank

high, with google-analytics.com in the top-20 for both platforms and crashlytics.com in the

top-10 for Fire TV. To better understand additional key third party ATSes, we strip away

the platform-specific endpoints and report the top-20 third party ATS FQDNs for Roku and

Fire TV in Figures 3.3e and 3.3f, respectively. We note that both platforms use distinct

third party ATSes. For example, SpotX (*.spotxchange.com), which serves video ads, is a

significant player in the Roku ATS space with 17% app penetration, but only maintains 1%

29

app penetration for Fire TV. Even when considering the smaller players, we see little overlap

between the two platforms, suggesting these players focus their efforts on a single platform.

For example, Kantar Group’s insightexpressai.com analytics service has 7% app penetration

on the Roku platform, but only 0.01% on the Fire TV platform.

Parent Organization Analysis. We further analyze the parent organizations of Roku

and Fire TV third party ATS endpoints in Figure 3.4, using the method described earlier

in Section 3.2. Interestingly, the set of top third party organizations is rather diverse, with

only a slight overlap in the shape of Adobe Systems and comScore, possibly suggesting that

the remaining organizations focus their efforts on a single platform. Fire TV shows gaming

and social media ATSes from Unity Tech and Facebook, whereas Roku exhibits more traffic

to ATSes from companies that focus on video ads such as The Trade Desk, Telaria, and RTL

Group. Similar to the in the wild organization analysis in Figure 3.2, we again note that

Alphabet dominates the set of third party ATSes on both Roku and Fire TV.

Comparison to Android ATS Ecosystem. Next, we compare the top-20 third party

ATS endpoints in our Roku and Fire TV datasets (Figures 3.3e and 3.3f) with those reported

for Android [113].

Roku vs. Android. The key third party ATSes in Roku (Figure 3.3e) differ from the Android

platform. For example, SpotX (*.spotxchange.com) and comScore (*.scorecardresearch.com)

both have a strong presence on Roku, but are not among the key players for Android.

In contrast, Facebook’s graph.facebook.com is the second most popular ATS domain on

Android, but insignificant on Roku. The set of top third party ATSes in Roku is also

more diverse and includes smaller organizations such as Pixalate (adrta.com) and Telaria

(*.tremorhub.com). While Alphabet has a strong foothold in both ATS ecosystems, it is

less significant for Roku (9 out 20 ATS FQDNs are Alphabet-owned, vs. 16 out of 20 for

Android).

30

Fire TV

Roku

Adobe Systems

Alphabet

Amazon

Bain Capital

Barons Media

comScore

Facebook
Numitas

Oracle

PIxalate

RTL Group

Telaria

The Trade Desk

Unity Tech

Figure 3.4: Mapping of platforms measured in our testbed environment to the parent orga-
nizations of the top-20 third-party ATS domains their apps contact. The width of an edge
indicates the number of apps that contact each organization.

Fire TV vs. Android. In contrast to Roku, Fire TV is more similar to Android: we see

an overlap of 9 FQDNs, 7 of which are owned by Alphabet. This is expected, given that

Fire TV is based off of Android and thus natively supports the ATS services of Android.

Facebook (graph.facebook.com) and Verizon (data.flurry.com) both have a strong presence

on both Fire TV and Android. Some of the third party ATSes observed for Fire TV, which

were not present for Android, include comScore, Adobe (dpm.demdex.net), and Amazon

(applab-sdk.amazon.com).

Common Apps in Roku and Fire TV. Next, we compare the Roku and Fire TV datasets

at the app-level by analyzing the FQDNs accessed by the set of apps that appear on both

31

platforms, referred to as common apps. Recall from Table 3.2 that the datasets collected

using Rokustic and Firetastic contain a total of 128 common apps. We identified common

apps by fuzzy matching app names since they sometimes vary slightly for each platform,

e.g., “TechSmart.tv” on Roku vs. “TechSmart” on Fire TV. We further cross-referenced

with the developer’s name to validate that the apps were indeed the same, e.g., both TechS-

mart apps are created by “Future Today.” The 128 common apps contact a total of 1248

distinct FQDNs. Out of these, 597 FQDNs are exclusively contacted by Roku apps, 496 are

exclusively contacted by Fire TV apps, and only 155 FQDNs are contacted by both Roku

and Fire TV apps.

Figure 3.5 reports the amount of overlapping and non-overlapping FQDNs for the top-60

common apps (in terms of the number of distinct FQDNs that each app contacts). In gen-

eral, the set of FQDNs contacted by both the Roku and the Fire TV versions of the same

app is much smaller than the set of platform-specific FQDNs. From inspecting the common

FQDNs for some of the apps in Figure 3.5, we find that these generally include endpoints

that serve content. For example, for Mediterranean Food, the only two common FQDNs

are subdomains of ifood.tv, which belong to the parent organization behind the app. This

makes intuitive sense as the same app presumably offers the same content on both platforms

and must therefore access the same servers to download said content. On the other hand,

the platform-specific domains contain obvious ATS endpoints such as ads.yahoo.com and

ads.stickyadstv.com for the Roku version of the app, and aax-us-east.amazon-adsystem.com

and mobileanalytics.us-east-1.amazonaws.com for the Fire TV version of the app. In conclu-

sion, our analysis of common apps reveals (to our surprise) little overlap in the ATS endpoints

they access, which further suggests that the smart TV ATS ecosystem is segmented across

platforms.

Takeaways. The ATS ecosystems of the Roku and Fire TV platforms seem to differ sub-

stantially: (1) the full set of ATS domains contacted by apps in the two datasets have

32

Mediterranean Food

CNNgo

Pluto TV

P. Allen Smith

Free Movies Now

Relax My Dog

Italian Recipes

BET

Philo

VH1

CBS Sports Stream

Baking by ifood.tv

Hallmark Channel

Bloomberg

Thai recipes

Comedy Central

Cool School

Paramount Network

HISTORY

MTV

Lifetime
Fun With Roblox by

HappyKids
Chinese Recipes

Watch TBS

CraftSmart

Telemundo Deportes

Watch TNT

The Holy Tales Bible

Wow, I Never Knew That

BBC America

Blippi

Fox Business Network

Pilates

Drinks

WSB-TV Channel 2

Outside TV Features

Red Bull TV

Om Nom Stories

A&E

BestCooks

iFood.tv

AMC

Stand-up Comedy

Haystack TV

TechSmart.tv

MOOVIMEX

NFL Sunday Ticket

PlayStation Vue

UP Faith & Family

ABC News

Smithsonian Channel

Baby By HappyKids.tv

Sling TV

The BILLIARD Channel

Low Carb 360

Now You Know

FilmRise Kids

JTV Live

iHeartRadio

NRA TV

0 20 40 60 80

100

120

Number of Hostnames

C
om

m
on

F
ireT

V

R
oku

F
igu

re
3.5:

T
op

-60
com

m
on

ap
p

s
(ap

p
s

p
resen

t
in

b
oth

testb
ed

d
atasets)

ord
ered

b
y

th
e

n
u

m
b

er
of

d
om

ain
s

th
at

each
ap

p
con

tacts.
C

on
sid

erin
g

all
128

com
m

on
ap

p
s,

th
ere

are
597

d
om

ain
s

w
h

ich
are

ex
clu

sive
to

R
ok

u
ap

p
s,

496
d

om
ain

s
w

h
ich

are
ex

clu
sive

to
F

ire
T

V
ap

p
s,

an
d

155
d

om
ain

s
w

h
ich

are
con

tacted
b
y

b
oth

th
e

R
ok

u
an

d
th

e
F

ire
T

V
version

s
of

th
e

sam
e

ap
p

.

33

little overlap; (2) some organizations are key players on one platform, but almost absent on

the other (e.g., SpotX has a significant presence on Roku, but is almost absent on Fire TV,

whereas Facebook has a reasonable foothold on Fire TV, but almost zero presence on Roku);

and (3) apps present in both datasets have little overlap in terms of the ATS domains they

contact. Finally, we find that the key third party ATS players on Android have little overlap

with Roku, but substantial overlap with Fire TV, which intuitively makes sense as Fire TV

is built on top of Android.

3.5 Blocklists for Smart TVs

In this section, we evaluate four well-known DNS-based blocklists’ ability to prevent smart

TVs from accessing ATSes, and their adverse effects on app functionality. We further demon-

strate how the datasets resulting from automated app exploration may aid in curating new

candidate rules for blocklists.

3.5.1 Evaluating Popular DNS Blocklists

DNS-based blocking solutions such as Pi-hole [12] are used to prevent in-home devices,

including smart TVs, from accessing ATS domains [147]. To block advertising and tracking

traffic, they essentially “blackhole” DNS requests to known ATS domains. Specifically, they

match the domain name in the DNS request against a set of blocklists, which are essentially

curated hosts files that contain rules for well-known ATS domains. If the domain name

is found in one of the blocklists, it is typically mapped to 0.0.0.0 or 127.0.0.1 to prevent

outbound traffic to that domain [109].

Setup. We evaluate the following blocklists:

34

1. Pi-hole Default (PD): We test blocklists included in Pi-hole’s default configura-

tion [10] to imitate the experience of a typical Pi-hole user. This set has seven hosts

files including Disconnect.me ads, Disconnect.me tracking, hpHosts, CAMELEON,

MalwareDomains, StevenBlack, and Zeustracker. PD contains a total of about 133K

entries.

2. The Firebog (TF): We test nine advertising and five tracking blocklists recommended

by “The Big Blocklist Collection” [160], to emulate the experience of an advanced Pi-

hole user. This includes: Disconnect.me ads, hpHosts, a dedicated blocklist targeting

smart TVs, and hosts versions of EasyList and EasyPrivacy. TF contains 162K entries

total.

3. Mother of all Ad-Blocking (MoaAB): We test this curated hosts file [11] that tar-

gets a wide-range of unwanted services including advertising, tracking (cookies, page

counters, web bugs), and malware (phishing, spyware) to again imitate the experience

of an advanced Pi-hole user. MoaAB contains a total of about 255K entries.

4. StopAd (SATV): We test a commercial smart TV focused blocklist by StopAd [76].

This list particularly targets Android based smart TV platforms such as Fire TV. We

extract StopAd’s list by analyzing its APK using Android Studio’s APK Analyzer [53].

SATV contains a total of about 3K entries.

We applied these blocklists to both our in the wild and testbed datasets and we report the

results next.

Block Rates. We start our analysis by comparing how many FQDNs are blocked by the

different blocklists. We define a blocklist’s block rate as the number of distinct FQDNs that

are blocked by the list, over the total number of distinct FQDNs in the dataset. Table 3.3

compares the block rates of the aforementioned blocklists, when the blocklists are applied

to the domains in our in the wild and testbed datasets. Overall, we note that TF, closely

35

Block Rate (%)
Platform # Domains PD TF MoaAB SATV

Dataset obtained “in the wild”

Apple 3179 10% 13% 12% 5%
Samsumg 1765 14% 19% 15% 8%
Chromecast 1576 9% 15% 15% 5%
Roku 2312 15% 19% 18% 7%
Vizio 942 16% 18% 16% 11%
LG 627 45% 54% 50% 27%
Sony 119 16% 24% 16% 7%

Dataset obtained in our testbed

Roku 2191 17% 22% 20% 9%
Fire TV 1734 22% 27% 22% 9%

Table 3.3: Block rates of the four blocklists when applied to the domains in our datasets.

followed by MoaAB and PD, blocks the highest fraction of domains across all of the platforms

in both the in the wild and testbed datasets. SATV is the distant last in terms of block rate.

It is noteworthy that TF blocks more domains than MoaAB despite being about one-third

shorter. We surmise this is because TF includes a smart TV focused hosts file, and thus

catches more relevant smart TV ATSes. This finding shows that the size of a blocklist does

not necessarily translate to its coverage.

Blocklist Mistakes. Motivated by the differences in the block rates of the four blocklists,

we next compare them in terms of false negatives (FN) and false positives (FP). False

negatives occur when a blocklist does not block requests to ATSes and may result in (visually

observable) ads or (visually unobservable) PII exfiltration. False positives occur when a

blocklist blocks requests that enable app functionality and may result in (visually observable)

app breakage.

We first systematically quantify visually observable false negatives and false positives of

blocklists by interacting with a sample of apps from our testbed datasets while coding for

ads and app breakage. We sample 10 Roku apps and 10 Fire TV apps, including the top-4

free apps, three apps that are present on both platforms, and an additional three randomly

selected apps. We test each app five times: once without any blocklist and four times

36

where we individually deploy each of the aforementioned blocklists. During each experiment,

we attempt to trigger ads by playing multiple videos and/or live TV channels and fast-

forwarding through video content. We take note of any functionality breakage (due to

false positives) and visually observable missed ads (due to false negatives). We differentiate

between minor and major functionality breakage as follows: minor breakage is when the

app’s main content remains available, but the app suffers from minor user interface glitches

or occasional freezes; and major breakage is when the app’s content becomes completely

unavailable or the app fails to launch.

Missed Ads vs. Functionality Breakage. Table 3.4 summarizes the results of our

manual analysis for missed ads and functionality breakage. Overall, we find that none of

the blocklists are able to block ads from all of the sampled apps while avoiding breakage. In

particular, none of the blocklists are able to block ads in YouTube and Pluto TV (available

on both Roku and Fire TV). Across different lists, PD seems to achieve the best balance

between blocking ads and preserving functionality.

For Roku, PD and TF perform similarly. While TF is the only list that blocks ads in Sony

Crackle, both lists miss ads in YouTube and Pluto TV. TF majorly breaks three apps, while

PD only majorly breaks one app. MoaAB is unable to block ads in four apps and majorly

breaks only one app. SATV does not cause any breakage, but is unable to block ads in six

apps.

For Fire TV, PD again seems to be the most effective at blocking ads while avoiding breakage,

but is still unable to block ads in one app (Pluto TV) and majorly breaks two apps. TF is

also unable to block ads in Pluto TV, but majorly breaks four apps. MoaAB is unable to

block ads in three apps and majorly breaks three apps (one minor). SATV is unable to block

ads in four apps and majorly breaks one app (two minor).

Takeaways. All blocklists suffer from a non-trivial amount of visually observable FPs and

37

No List PD TF MoaAB SATV

App Name

N
o
A
d
s

N
o
B
re
a
k
a
g
e

N
o
A
d
s

N
o
B
re
a
k
a
g
e

N
o
A
d
s

N
o
B
re
a
k
a
g
e

N
o
A
d
s

N
o
B
re
a
k
a
g
e

N
o
A
d
s

N
o
B
re
a
k
a
g
e

R
o
k
u

C
o
m
m
o
n Pluto TV ✕ ✕ ✕ ✕ ✕

iFood.tv ✕ ✕

Tubi — ✖

T
o
p

YouTube ✕ ✕ ✕ ✕ ✕

CBS News Live ✕ ✖ ✖ ✖

The Roku Channel ✕ ✖ ✕

Sony Crackle ✕ ✕ ✕ ✕

R
a
n
d
o
m WatchFreeComedyFlix ✕ ✕ ✕

Live Past 100 Well
SmartWoman ✕

F
ir
e
T
V

C
o
m
m
o
n Pluto TV ✕ ✕ ✕ ✕ ✕ ✕ ✖

iFood.tv ✕ — ✖ — ✖

Tubi

T
o
p

Downloader
The CW for Fire TV ✕ — ✖ — ✖ — ✖ ✕

FoxNow ✕ — ✖ — ✖ ✕ ✕

Watch TNT

R
a
n
d
o
m KCRA3 Sacramento ✕ — ✖ — ✖ ✕ ✕

Watch the Weather Channel ✕ ✕

Jackpot Pokers by PokerStars ✕

Table 3.4: Missed ads and functionality breakage for different blocklists when employed dur-
ing manual interaction with 10 Roku apps and 10 Fire TV apps. For “No Ads”, a checkmark
() indicates that no ads were shown during the experiment, a cross (✕) indicates that some
ad(s) appeared during the experiment, and a dash (—) indicates that breakage prevented
interaction with the app altogether. For “No Breakage”, a checkmark () indicates that
the app functioned correctly, a cross (✕) indicates minor breakage, and a bold cross (✖)
indicates major breakage.

FNs. Some blocklists (e.g., PD and TF) are clearly more effective than others. Interestingly,

SATV, which is curated specifically for smart TVs, did not perform well.

3.5.2 False Negatives

In this section, we demonstrate how datasets generated using automation tools such as

Rokustic and Firetastic enable blocklist curators to identify potential false negatives in the

blocklist. In particular, we observe that the more apps that contact an FQDN, the more likely

38

Fully Qualified Domain Name PD TF MoaAB SATV

p.ads.roku.com ✕ ✕ ✕ ✕

ads.aimitv.com ✕ ✕ ✕ ✕

adtag.primetime.adobe.com ✕ ✕ ✕ ✕

ads.adrise.tv ✕ ✕ ✕

ads.samba.tv ✕ ✕ ✕

tracking.sctv1.monarchads.com ✕ ✕ ✕

ads.ewscloud.com ✕ ✕ ✕ ✕

trackingrkx.com ✕ ✕ ✕ ✕

us-east-1-ads.superawesome.tv ✕ ✕ ✕ ✕

track.sr.roku.com ✕ ✕ ✕ ✕

router.adstack.tv ✕ ✕ ✕ ✕

metrics.claspws.tv ✕ ✕ ✕ ✕

customerevents.netflix.com ✕ ✕ ✕

event.altitude-arena.com ✕ ✕ ✕

ads.altitude-arena.com ✕ ✕ ✕

myhouseofads.firebaseio.com ✕ ✕ ✕ ✕

mads.amazon.com ✕ ✕ ✕ ✕

ads.aimitv.com.s3.amazonaws.com ✕ ✕ ✕ ✕

analytics.mobitv.com ✕ ✕ ✕ ✕

events.brightline.tv ✕ ✕ ✕ ✕

ctv.monarchads.com ✕ ✕ ✕

ads.superawesome.tv ✕ ✕ ✕

adplatform-static.s3-us-west-1.amazonaws.com ✕ ✕ ✕ ✕

kraken-measurements.s3-external-1.amazonaws.com ✕ ✕ ✕ ✕

kinstruments-measurements.s3-external-1.amazonaws.com ✕ ✕ ✕ ✕

venezia-measurements.s3-external-1.amazonaws.com ✕ ✕ ✕ ✕

ad-playlistserver.aws.syncbak.com ✕ ✕ ✕ ✕

Table 3.5: Examples of potential false negatives for the four DNS-based blocklists found
using app penetration analysis and keywords search (“ad”, “ads”, “analy”, “track”, “hb”
(for heartbeat), “score”, “event”, “metrics”, “measure”).

it is that the FQDN is an ATS. This is intuitive and consistent with a similar observation

previously made in the mobile ecosystem [113].

We first use simple keywords such as “ad”, “ads”, and “track” to shortlist obvious ATS

domains in our datasets. While keyword search is not perfect, this simple approach iden-

tifies several obvious false negatives (we provide the full list in Table 3.5). For example,

p.ads.roku.com and adtag.primetime.adobe.com are advertising/tracking related domains

which are not blocked by any of the lists.

39

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+
Number of Apps

0%

20%

40%

60%

80%

100%

B
lo

ck
 R

at
e

Roku

Fire TV

Figure 3.6: Block rates as a function of the number apps that contact an FQDN. For the
horizontal axis, “2+” represents the set of FQDNs that are contacted by 2 or more apps.
For Roku, the more apps that contact an FQDN, the more likely it is that the FQDN is an
ATS, according to the blocklists. The same is not true for Fire TV because platform services
start to dominate the set of FQDNs that are accessed by many apps, and platform services
are often not blocked.

We observe that many of these false negatives (i.e., missed ATS domains) are contacted by

multiple apps in our testbed datasets. For example, p.ads.roku.com is accessed by more than

100 apps in our Roku testbed dataset. To gain further insight into potential false negatives,

we study whether the likelihood of being blocked is impacted by the number of apps that

access a domain. Figure 3.6 plots the block rates for the union of the four blocklists as a

function of FQDNs’ occurrences across apps in our testbed datasets. We note that the block

rate substantially increases for the domains that appear across multiple apps. For example,

the block rate almost doubles for domains contacted by two or more apps as compared

to domains contacted by a single or more apps. Domains that are contacted by multiple

different apps are therefore more likely to belong to third party ATS libraries included by

smart TV apps.

40

3.6 PII Exposures in Smart TVs

In this section, we examine our testbed datasets from Section 3.4 for exposure of personally

identifiable information (PII) and evaluate the effectiveness of blocklists in preventing it. We

define PII exposure as the transmission of any PII from the smart TV device to any Internet

endpoint. We identify PII values (such as advertising ID and serial number) through the

settings menus and packaging of each device. Since trackers are known to encode or hash

PII [39], we compute the MD5 and SHA1 hashes for each of the PII values. We then search

for these PII values in the HTTP header fields and URI path. Recall from Section 3.4 that

we can analyze HTTP information even for encrypted flows in the Fire TV dataset due to

AntMonitor’s TLS decryption [135, 7], but can only analyze unencrypted flows in Roku. The

number of PII exposures reported for Roku should therefore be considered a lower bound.

Overview. Table 3.6 reports the PII exposures for both testbed platforms. For Roku,

the majority of the PII exposures are to third parties, whereas for Fire TV they are to the

platform-specific party. The blocklists adequately prevent exfiltration of PII to third parties,

blocking 74% or more of third party domains for all the PII values considered for Roku. For

Fire TV, the blocklists mitigate the majority of advertising ID exposures, blocking 71%

or more of the involved domains, but are not as effective in preventing exposures of serial

number and device ID to third parties and platform destinations.

Differentiating PII Exposures. Inspired by [95], we adopt a simple approach for distin-

guishing between “good” and “bad” PII exposures that treats PII exposures to third parties

as a higher threat to privacy than PII exposures to first parties. PII exposures to first par-

ties are generally warranted as they likely have a functional purpose, such as personalization

of content (e.g., to keep track of where the user paused a video). For example, the Roku

app “Acacia Fitness & Yoga Channel” from “RLJ Entertainment”, sends a request to the first

party domain api.rlje.net with a URI path of “/cms/acacia/today/roku/content/browse.json”

41

Roku
Testbed Dataset (Apps & eSLDs)

Fire TV
Testbed Dataset (Apps & eSLDs)

PII 1st Party 3rd Party Other Total 1st Party 3rd Party Platform Party Other Total

Advertising ID
4
4

25%

263
36
88%

6
3
0%

269
42
81%

17
7

25%

53
31
78%

715
4

71%

5
5

40%

725
39
71%

Serial Number
48
17
5%

128
16
74%

2
2
0%

174
34
36%

10
3
0%

51
4

33%

867
4
9%

2
2
0%

881
9

12%

Device ID - - - -
19
8
0%

153
27
36%

819
5

14%

10
11
21%

856
43
31%

Username
4
4
0%

1
1

100%
-

5
5

20%

1
2
0%

2
2

100%

1
1

100%
-

4
5

40%

MAC - - - - -
2
2

100%
- -

2
2

100%

Location -
42
2

100%
-

42
2

100%
-

27
7

90%

2
2

100%
-

28
7

90%

Table 3.6: Applications / eSLDs / % Distinct FQDNs Blocked. Number of apps
that expose PII, number of distinct eSLDs that receive PII from these apps, and percentage
of distinct subdomains of the eSLDs that are blocked by the blocklists. We further separate
by party as defined in Section 3.2. Roku platform column omitted since we do not observe
PII exposures to platform domains.

while including the device’s serial number in an HTTP header field, suggesting that the serial

number is used to personalize today’s featured content.

On the other hand, PII exposures to third parties are generally unwarranted as they typically

do not have a functional purpose. This extends to cases where the app retrieves its content

through a third party CDN as the personalization could be achieved by first sending the PII to

the first party server which could then respond to the app with the CDN URL for the content

to be retrieved. For instance, the Roku app “ArmchairTourist” from “ArmchairTourist

Video Inc.” sends a request to the third party domain ads.adrise.tv with a URI path of

“/track/impression...” that encodes the device’s serial number, suggesting that the PII is

used to track what ads have been shown to the user.

42

Exposures to Platform Party. For Fire TV, the majority of the exposures of serial

number and device ID to platform destinations seem to be for advertising and tracking

purposes. For example, 697 apps send the serial number and device ID (and advertising ID)

to the platform endpoint aviary.amazon.com with a URI path of “/GetAds”, and 53 apps

send the serial number to dna.amazon.com, with a URI path of “/GetSponsoredTileAds.”

Judging from these paths, it would seem like the advertising ID alone would be sufficient

and the more appropriate PII. On the other hand, some exposures seem to serve a functional

purpose. For example, 67 apps send the serial number to atv-ext.amazon.com, with varying

URI paths containing “/cdp/.” We surmise that this domain serves as “Content Delivery

Platform(s)” [20], allowing apps to personalize content without user login. Specifically, we

see paths such as “/cdp/playback/GetDefaultSettings” coupled with an “x-atv-session-id”

HTTP header field.

Joint Exposure of Static and Dynamic PII. We observe that some apps send the

advertising ID alongside other static identifiers. This goes against recommended developer

practices, where apps and ATSes should only rely on dynamic identifiers that can be refreshed

like advertising ID to give users the ability to opt out of being tracked. Aside from the 697

Fire TV apps that expose the advertising ID alongside the serial number and the device ID

discussed earlier, we observe 10 Roku apps (including prominent ones such as Pluto TV and

PBS) that send both the advertising ID and the serial number to third parties (subdomains

of scorecardreasearch.com and youboranqs01.com). Similarly, 12 Fire TV apps send the

advertising ID alongside the device ID to third party destinations such as ads.adrise.tv and

ctv.monarchads.com. Thus, these practices allow ATSes to link an old advertising ID to the

new value by joining on the static identifiers.

Leveraging Missed PII Exposures to Improve Blocklists. The above indicate another

direction for improving blocklist curation for smart TVs. By deploying tools such as Rokustic

and Firetastic and searching the network traces for PII exposures, blocklist curators can

43

generate candidate rules that can then be examined manually. Using this approach, we

identified 38 domains in the Roku dataset and 30 in the Fire TV dataset that receive PII,

but were not blocked by any list. These numbers are conservative as we exclude location

and account name, which are likely to be used for legitimate purposes, such as logging

in or serving location-based content. The identified domains include obvious ATSes such

as ads.aimitv.com and ads.ewscloud.com. Another noteworthy mention is hotlist.samba.tv:

Samba TV uses Automatic Content Recognition to provide content suggestions on smart

TVs, but this comes at the cost of targeted advertising that even propagates onto other

devices in the home network [132].

Takeaways. Hundreds of Roku and Fire TV apps expose PII, mostly to third parties and

the platform-specific party. For Fire TV, we observe that most of the exposures to the

platform-specific party seem to be for advertising and tracking purposes. We observe that

many Roku and Fire TV apps send the advertising ID alongside a static identifier (e.g., serial

number), which enables the ATS to relink a user profile associated with an old advertising

ID to a new advertising ID, thus eliminating the user’s ability to opt out. The blocklists

generally do well at preventing exposure of the advertising ID on both platforms, but are

less successful at preventing exposures of serial number and device ID on Fire TV.

3.7 Summary, Limitations, and Directions

Summary. In this chapter, we performed one of the first comprehensive measurement

studies of the emerging smart TV advertising and tracking service (ATS) ecosystem. To

that end, we analyzed and compared: (i) a realistic but small in the wild dataset (57 smart

TV devices from seven different platforms, with coarse flow-level information); and (ii) two

large testbed datasets (top-1000 apps on Roku and Fire TV, tested systematically, with

granular per app and packet-level information). Our work establishes that the smart TV

44

ATS ecosystem is fragmented across different smart TV platforms and is different from the

mobile ATS ecosystem. We also evaluated popular DNS-based blocklists’ ability to prevent

smart TVs from accessing ATSes, and found that all lists suffer from missed ATSes and

incur app breakage. Finally, we examined our testbed datasets for exposure of personally

identifiable information (PII) and discovered that hundreds of apps send PII to third parties

and the platform-specific party, mostly for advertising and tracking purposes.

Limitations. Our methodology has its limitations. First, the automated app exploration

may not always result in content (video/audio) playback, which may impact the (ATS)

domains discovered. We evaluate the extent of this limitation in Appendix A.3. We find

that Rokustic and Firetastic perform on par with concurrent work [98] in terms of play-

back success, and that they manage to discover a large fraction of the number of domains

discovered during manual interaction. Second, apps may prevent TLS interception through

use of certificate pinning, which may prevent Firetastic from observing PII exposures in

encrypted traffic. We assess the decryption failures in Appendix A.4: we find that for 80%

of the apps in our Fire TV testbed dataset, TLS interception only fails for 20% or fewer of

an app’s TLS connections. Third, our analysis of FPs and FNs in DNS-based blocklists in

Section 3.5.1 does not account for DNS over HTTPS (DoH), nor static advertisements, thus

it may overcount blocklist FNs for these cases.

Future Work. Our findings motivate more research to further understand smart TVs and

to develop privacy-enhancing solutions specifically designed for each smart TV platform. For

example, more research is needed to curate accurate, fine-grained (as opposed to DNS-based),

and platform-specific blocklists. To foster further research along this direction, we make our

tools, Rokustic and Firetastic, and testbed datasets publicly available [158, 157, 153]. We

intend to further improve our tools’ ability to thoroughly explore smart TV apps along the

directions discussed in Appendix A.3.

45

Chapter 4

FingerprinTV: Fingerprinting Smart

TV Apps

4.1 Overview

In this chapter, we further characterize the privacy implications of smart TVs by studying if a

passive, in-network observer can identify what app is in use on a smart TV from the network

traffic it generates, even if the traffic is encrypted. This type of problem is commonly

referred to as network fingerprinting and has been studied extensively in the context of

websites [59, 144, 27, 81, 58, 83, 105, 36, 163, 104, 57, 138, 103, 26, 139, 102, 141, 85, 60],

desktop and mobile applications [19, 145, 146, 155], and Internet of Things (IoT) devices

with narrow functionality, such as smart light bulbs and smart plugs [35, 101, 115, 151, 13].

However, to the best of our knowledge, no work has explored the feasibility of smart TV app

fingerprinting at scale. This constitutes a significant gap in the literature for the following

reasons.

First, in the context of smartphones, app usage has been shown to be indicative of the

46

user’s demographics, personality, interests, preferences, and habits [164]. Assuming this

carries over to smart TVs, and considering that viewing history is regarded a cornerstone of

programmatic TV advertising [88], smart TV app usage data is arguably a valuable asset for

businesses engaged in targeted advertising. Since Internet Service Providers (ISP) are known

to collect and use rich information about their customers for advertising purposes [45], it is

important to quantify to what extent they can track their customers’ smart TV app usage

as well.

Second, recognizing that television viewing history may reveal sensitive information about

the viewer, such as religion and sexual orientation, the U.S. Congress has enacted laws that

obligate (cable) companies to obtain consent from consumers before they collect and/or dis-

close viewing history, e.g., the Cable Privacy Act and the Video Privacy Protection Act [45].

Although the smart TV app in use may not reveal the exact content the user is watching

in that respective app, it may still reveal the content’s theme (e.g., religious, political, adult

etc.) as many smart TV apps limit their offerings to a certain genre. Furthermore, for smart

TV apps that offer access to a single live stream, the smart TV app in use is synonymous with

the content being watched. Smart TV app fingerprinting may thus potentially constitute a

violation of said laws.

Third, privacy concerns aside, smart TV app fingerprinting may have potential security

implications, and can also be used for quality-of-service optimization. For example, an

attacker who is aware of a vulnerability in a certain smart TV app can, by observing the

manifestation of its fingerprint in live traffic, time when to launch their attack. Additionally,

since most smart TV app traffic is bandwidth intensive, as it often involves video streaming,

network operators may be interested in the ability to dynamically prioritize traffic from

smart TVs when certain apps are in use.

Contributions. In order to empirically assess the feasibility of fingerprinting smart TV

apps, we take the following steps.

47

Legend

Post ProcessingNetwork Traffic Collection

Smart TV
(Apple TV / Fire TV / Roku)

App

Controller

Instrumentation

tcpdump / tshark

App Selection

App Store Crawler
Apple App Store

Amazon Appstore
Roku Channel Store

Top-1000 Apps

Packet Captures

Fingerprint Extraction

Fingerprint Member (FM)
Candidate Extraction

(Cisco Mercury, PingPong)

FM Selection
FM Candidates

(Domains / Packet Pairs /
TLS Fingerprints)

App Fingerprints
(Domain- / Packet-Pair- /
TLS-based fingerprints)

Clustering

Performance Assessment
(Prevalence, Distinctiveness, Sizes)

Contribution
(Methodology / code)

Data Output Third-Party Code

Figure 4.1: Overview of FingerprinTV, a system for assessing the feasibility of fingerprint-
ing smart TV apps. The Controller is a computer with both a wired and a wireless network
interface, which is configured as a wireless access point with NAT. The smart TV is asso-
ciated with this wireless network. FingerprinTV first crawls the app store of the smart
TV platform to determine a list of apps to test (see Section 4.2.1). Next, FingerprinTV
collects multiple samples of the “on-launch” traffic of each app in this list (see Section 4.2.2).
FingerprinTV then processes the collected traffic samples to identify consistently occur-
ring traffic, referred to as fingerprints (see Section 4.3). Finally, FingerprinTV assesses
the resulting fingerprints’ discriminative power using a methodology we devise that is based
on agglomerative (hierarchical) clustering (see Sections 4.4 and 4.5).

First, we design and implement FingerprinTV, a fully automated system for assessing

the feasibility and effectiveness of fingerprinting smart TV apps. An overview of Finger-

prinTV is provided in Figure 4.1. FingerprinTV (1) automatically installs, and repeat-

edly launches apps, while collecting their network traffic; (2) extracts a domain-based fin-

gerprint (DBF), a packet-pair-based fingerprint (PBF), and a TLS-based fingerprint (TBF)

from the network traffic of each app; and (3) assesses the extracted fingerprints’ perfor-

mance, in terms of their prevalence, distinctiveness, and sizes. To that end, we propose a

methodology based on agglomerative clustering that (i) provides flexibility to make a trade-

off between a fingerprint’s size and its reliability, and (ii) is general enough to be applicable

across all three types of fingerprints. We consider DBFs, PBFs, and TBFs because they are

lightweight and only rely on a few packets per network flow, yet remain applicable even if

an app’s traffic is encrypted using TLS.

Second, we deploy FingerprinTV to collect network traffic from the top-1000 most re-

viewed smart TV apps of the three most widely used smart TV platforms, namely Apple

TV, Fire TV, and Roku [134]. To the best of our knowledge, this is the first large-scale smart

48

TV traffic dataset that also includes traffic from Apple TV apps. The dataset comprises 30K

packet captures, 10K per platform.

Third, we analyze this dataset and provide the following findings and insights. We find

that smart TV app fingerprinting is highly feasible and effective: even the least prevalent

type of fingerprint manifests itself in at least 68% of apps of each platform. However, a

fingerprint is only effective if it is distinct among other fingerprints. With this in mind, only

DBFs and PBFs have merit, as up to 63% and 88% of the apps that exhibit DBFs and

PBFs, respectively, have DBFs/PBFs that are distinct among those of other apps of the

same platform. We also find that if DBFs and PBFs are used in conjunction, 78%, 89%,

and 76% of Apple TV, Fire TV, and Roku apps, respectively, have distinct fingerprints.

Furthermore, our results show that when multiple apps exhibit an identical fingerprint, a

common explanation is that these apps stem from the same developer, or have been generated

using the same “no code” toolkit. Finally, we find that among 80 apps that are made available

on all three smart TV platforms, 76% exhibit a different fingerprint on each platform, thus

making it possible to not only fingerprint the smart TV app itself, but also to identify which

platform it is being used on.

Network traffic features, such as destinations, packet sizes, and TLS configuration param-

eters, have been used to create fingerprints in other contexts [75, 23, 56, 77, 108, 25, 24,

151, 121, 110], but our work is the first to consider them for smart TV apps. Our main

contributions are the application and adaptation of existing families of techniques to smart

TV apps, and a methodology that allows for automated extraction and evaluation of a range

of fingerprints (i.e., DBFs, PBFs, and TBFs), in a uniform way and at scale. The implemen-

tation of our methodology can be used to repeat such assessments in the future, as smart

TV apps and their fingerprints evolve. To that end, we plan to make the FingerprinTV

code publicly available [152]. The FingerprinTV dataset has already been released and

can be accessed through the link provided in [152].

49

Outline. The remainder of this chapter is structured as follows. Section 4.2 describes how we

selected what apps to include in our study, and how FingerprinTV instruments the three

smart TV platforms. Section 4.3 introduces the three fingerprinting techniques we consider

in this chapter. Section 4.4 explains the methodology we devise for assessing the performance

of the three fingerprinting techniques. Section 4.5 reports how many apps exhibit each type

of fingerprint and how distinct those fingerprints are. Section 4.6 examines why some apps

have identical fingerprints. Section 4.7 compares fingerprints across platforms. Section 4.8

examines the benefits of using different fingerprinting techniques in conjunction. Section 4.9

discusses possible defenses, limitations, and future directions. Section 4.10 concludes the

chapter.

4.2 Data Collection

This section describes the design of FingerprinTV’s data collection functionality (the

App Selection and Network Traffic Collection boxes in Figure 4.1), and how we use Fin-

gerprinTV to collect network traffic from the top-1000 apps of each of the three most

widely used smart TV platforms [134], namely Apple TV, Fire TV, and Roku. Section 4.2.1

explains how we use FingerprinTV to determine what apps to test. Section 4.2.2 explains

how FingerprinTV automates interaction with the smart TVs. We summarize the dataset

we collect using FingerprinTV in Section 4.2.3.

4.2.1 App Selection

To assess the feasibility of fingerprinting smart TV apps, we must test a large number of

popular apps. To this end, we first use FingerprinTV to crawl the web interfaces of the

app stores of the three smart TV platforms to obtain metadata for all available free apps of

50

each platform. Drawing inspiration from [98, 159], we then use the number of user ratings

submitted for an app as a gauge for the number of users of that app, and pick the 1000 free

apps with the most ratings for each platform. We refer to this selection as the respective

platform’s top-1000 apps. Below, we briefly discuss the crawlers and, to add context to the

top-1000s, report how many apps they discovered.

Apple TV. The Apple TV platform was not covered in [98, 159]. We implement our own

crawler that traverses Apple’s “iTunes Preview” website [21], which lists metadata for all

apps (across all Apple platforms) that are made available on Apple’s App Store. The crawl

was performed in January 2021 and returned a total of 3,841 free Apple TV apps.

Fire TV. We also implement our own crawler for Fire TV since [159] does not provide a

crawler, and since the crawler [97] provided alongside [98] does not log all app metadata

necessary for our purposes. Our crawler determines the free apps that are compatible with

our Fire TV model (“Fire TV Cube 2nd Generation”). This crawl was performed in March

2021 and returned a total of 6,870 free Fire TV apps.

Roku. For Roku, we use the scripts [158] provided alongside [159] to crawl the Roku Channel

Store. The crawl was performed in May 2021 and returned a total of 14,246 free Roku apps.

4.2.2 Automation

To enable collection of apps’ on-launch network traffic at scale, FingerprinTV instruments

the Apple TV, Fire TV, and Roku platforms to repeatedly launch each app while collecting

the smart TV’s network traffic. In this section, we first provide a platform-agnostic overview

of the hardware setup and the instrumentation procedure, followed by platform-specific

implementation details.

Hardware Setup. The general setup for the instrumentation is depicted in the Network

51

Traffic Collection box of Figure 4.1. The Controller is a computer with a wired and a

wireless network interface that runs a Unix-based operating system. It is configured as

a wireless access point (with NAT), and the smart TV under test is associated with this

wireless network. The Controller is also responsible for executing the instrumentation code

and logging the network traffic from/to the smart TV.

Instrumentation Procedure. Each app is subjected to the same four-step instrumentation

procedure:

1. The instrumentation first installs the app.

2. Next, it performs three “warm-up” launches of the app, without logging any network

traffic. In each warm-up launch, the instrumentation emulates one of three sequences of

key presses on the smart TV’s physical remote. The purpose of these warm-up launches

is to dismiss any terms of service and/or initial setup screens (e.g., for selecting viewing

preferences) that only appear at first launch or until the user has made their choice(s);

this way, we fingerprint how the app behaves during daily use, and not during first use.

Drawing inspiration from [98], we pick the three most common key press sequences for

dealing with terms of service and initial setup screens among the top-100 apps.

3. The instrumentation then enters its main phase where it collects L samples of the

on-launch traffic for the app. For each sample, the instrumentation (1) kills the app

to ensure it is not already running; (2) starts capturing traffic on the Controller’s

wireless interface; (3) launches the app; (4) waits for approximately 45 seconds; and

(5) terminates the traffic capture. This produces L traffic captures (PCAP files), each

of which contains all the traffic that occurred during a single launch of the app. We

use the term launch sample to refer to such a capture.

4. Finally, the instrumentation uninstalls the app to free up space on the smart TV.

52

Apple TV Implementation Details. We use a MacBook Pro Retina (15 inch, Mid 2012),

running macOS Catalina, as the Controller in Figure 4.1. We use an Apple Thunderbolt-

to-Ethernet adapter to transform one of the MacBook’s Thunderbolt ports into an Ethernet

port, and connect this interface to the WAN. The MacBook’s wireless interface is configured

as a wireless access point, to which the Apple TV is connected. The instrumentation pro-

cedure is implemented using Apple’s testing framework, XCUITest [22], (for controlling the

Apple TV programmatically) and tshark (for capturing all network traffic passing through

the wireless interface of the MacBook). We note that for Apple TV, the Controller must be

a macOS-based system as the XCUITest APIs are only supported on macOS.

Fire TV Implementation Details. We use a Raspberry Pi 4 (8GB RAM) as the Con-

troller in Figure 4.1. During data collection, the Raspberry Pi’s onboard wireless radio

proved unreliable, so we replaced it with a TP-Link Archer T3U Plus Wi-Fi adapter. The

instrumentation is realized through a Python implementation [68] of the Android Debug

Bridge [52] (for controlling the Fire TV programmatically) and tcpdump (for capturing all

network traffic passing through the wireless interface of the Raspberry Pi).

Roku Implementation Details. We use a Raspberry Pi 4 (8GB RAM) with a TP-Link

Archer T3U Plus Wi-Fi adapter, as the Controller in Figure 4.1. The instrumentation is

realized using the Roku External Control Protocol [123] (for controlling the Roku device

programmatically) and tcpdump (for capturing all network traffic at the wireless interface

of the Raspberry Pi).

4.2.3 Dataset Summary

We deploy FingerprinTV and collect L = 10 samples of the network traffic generated at

launch time by each of the 1000 most widely used apps on Apple TV, Fire TV, and Roku.

The resulting dataset comprises 30K packet captures, 10K per platform.

53

4.3 Fingerprinting Techniques

In the context of this chapter, a fingerprinting technique is any algorithm that identifies what

network traffic (if any) consistently occurs whenever a specific smart TV app is launched. In

other words, a fingerprinting technique extracts fingerprints from a training network traffic

dataset, and the extracted fingerprints can then later be used to identify the corresponding

apps in live traffic. This section introduces the three fingerprinting techniques we consider

in this chapter and implement support for in FingerprinTV (each fingerprinting technique

is responsible for carrying out the steps in the Fingerprint Extraction box of Figure 4.1).

We pick these particular techniques because they are lightweight, as they only rely on a

few packets per flow, yet applicable even if an app’s communication is encrypted using

TLS. While the research community has explored these fingerprinting techniques in other

contexts [75, 23, 56, 77, 108, 25, 24, 151, 121, 110], our work is the first to apply them to

smart TV apps at scale.

4.3.1 Domain-Based Fingerprints (DBF)

The first fingerprinting technique we consider identifies an app based on the set of domains

the app consistently contacts when it is launched. The intuition is that apps are likely

to contact the same set of servers at launch time, for example to fetch featured content.

Moreover, past work [98, 159] has shown that smart TV apps contact a large number of

distinct domains, suggesting that domain access patterns may be a useful fingerprint for

smart TV apps. We refer to this type of fingerprint as a domain-based fingerprint (DBF):

Definition 4.1. The domain-based fingerprint (DBF) of app A, FD(A), is the set S of

domains s.t. for every domain d in S, d appears at least once in at least U launch samples

of A. The size of FD(A) is the number of domains in S.

54

Throughout this chapter, we refer to the parameter U (in Definitions 4.1, 4.2, and 4.3) as the

usage threshold. Let F (A) denote the fingerprint of app A (of any type, i.e., DBF, PBF, or

TBF). U controls the trade-off between the size of F (A) and its reliability, i.e., the likelihood

that F (A) will manifest itself in live traffic of A.

For example, the size of FD(A) decreases as U increases, as domains that are only contacted

occasionally when A is launched (e.g., if the app has cached some of its resources) will then

not become part of FD(A). Intuitively, and as shown in Section 4.5, the discriminative power

of FD(A) decreases with the size of FD(A), as a smaller DBF is less likely to be distinct from

other DBFs. On the other hand, a large U implies that FD(A) manifests itself in most live

traffic of A, making it more likely that A can be consistently detected.

Throughout the remainder of this chapter, and for all three fingerprinting techniques, we

choose the most conservative approach: we set U = L = 10, where L is the number of

launch samples, i.e., we report results for fingerprints that are always present.

Domain Extraction. As all launch samples for the same app A are collected back-to-

back (see Section 4.2.2), any on-device DNS caching will significantly reduce the size of S if

domains are only extracted from DNS traffic. FingerprinTV therefore constructs S based

on domains found in (1) the answers section of DNS responses, (2) the Host header field of

HTTP requests (if sent as plaintext), and (3) the TLS SNI extension.

4.3.2 Packet-Pair-Based Fingerprints (PBF)

The second fingerprinting technique we consider identifies an app based on packet sizes and

packet directions in packet exchanges that consistently occur when the app is launched. The

motivation for this technique came from an observation initially made through visual inspec-

tion of the packet captures for Roku apps: the Roku communicates with scribe.logs.roku.com

55

over TLS every time any app is launched, and the size of one client-to-server packet in this

communication appears to be correlated with the number of digits in the launched app’s

ID (e.g., the packet’s size is 881 bytes if the app ID is a two-digit number, 882 bytes if the

app ID is a three-digit number etc.). While the immediate implication of this observation

is that Roku is likely tracking the user’s app usage, this packet exchange also enables an

in-network observer to infer the number of digits in the ID of the app that is launched. If

an app exhibits other such consistently occurring packet exchanges, it may be possible to

identify the app from observing these packet exchanges happening jointly.

A similar observation was made in our prior work [151], where we introduced the concept

of packet-level signatures (PLS) for smart home devices. A smart home device exhibits a

PLS if the invocation of some specific functionality consistently results in packet exchanges

between the device and some endpoint(s), where the packets’ sizes (with slight variations) and

directions stay consistent across all invocations. In [151], we detail a multi-step methodology

for extracting a PLS, where the first step separates packets in TCP connections into packet

pairs, and later steps reassemble adjacent, consistently occurring packet pairs into longer

packet sequences and enforce inter-sequence temporal ordering. Informally, a packet pair is

two sequential packets that go in opposite directions, or a single packet paired with a nil

value, if the subsequent packet goes in the same direction; see [151] for the formal definition.

In the technique considered here, we essentially terminate the PLS methodology early,

namely when it has identified the consistently occurring packet pairs. This set of packet

pairs then constitutes the fingerprint, referred to as a packet-pair-based fingerprint (PBF):

Definition 4.2. The packet-pair-based fingerprint (PBF) of app A, FP (A), is the set S

of packet pairs such that for every packet pair p in S, p appears U times across L launch

samples of A. The size of FP (A) is the number of packet pairs in S.

We use the PingPong tool [151] to extract the consistently occurring packet pairs from

56

our dataset; see Figure 4.1. We treat the L launch samples of each smart TV app A as

corresponding to the smart home events that are triggered L times in [151]. To convert our

dataset to the format expected by PingPong, we concatenate the L launch samples of A into

one. Then, given that trace as input, PingPong produces clusters of packet pairs of similar

sizes and matching directions.

We use the default parameters given in [151], with two modifications. First, we only consider

packet pairs with identical packet sizes as candidates for inclusion in FP (A) (i.e., clusters

without any variability in the packet pair sizes), while PingPong allows for small variations

in packet sizes in the same cluster. We make this conservative choice to align design choices

for PBFs with DBFs: domains used in DBFs have no variation. However, less conservative

choices can also be accommodated by our methodology, as discussed in Appendix B.1. Sec-

ond, we do not attempt to temporally order packet pairs to create longer packet sequences, as

the traffic profiles of smart TV apps are more complex than those of the simpler smart home

devices studied in [151]. In particular, there is often a causal explanation for the temporal

order of packet sequences in PLS: the device first receives a control command, e.g., “turn

off”, in one packet sequence, and then updates the cloud with its new state in another packet

sequence [151]. On the other hand, a smart TV app may parallelize resource downloads,

which makes the temporal order of packet pairs on different connections less predictable.

4.3.3 TLS-Based Fingerprints (TBF)

The third fingerprinting technique we consider attempts to identify an app based on the

set of TLS fingerprints the app consistently exhibits when it is launched. We refer to this

type of fingerprint as a TLS-based fingerprint (TBF). A TBF is conceptually identical to a

DBF (see Definition 4.1), but where individual TLS fingerprints assume the role of domains.

A TLS fingerprint, originally due to Ristić [121, 110], is the concatenation of a subset of

57

the information that is contained in the TLS Client Hello message that the client sends to

the server in order to initiate a TLS session. Since Ristić’s work, various implementations

have surfaced [29, 16, 93]. These mainly differ in terms of what components of the Client

Hello they include in the TLS fingerprint. We opt for Mercury [93] because it considers

the most comprehensive set of Client Hello components (see [19] for the formal definition),

which, presumably, increases the TLS fingerprints’ discriminative power. For consistency,

we formalize TBFs in Definition 4.3.

Definition 4.3. The TLS-based fingerprint (TBF) of app A, FT (A), is the maximal set S

of TLS fingerprints such that for every TLS fingerprint s in S, s appears at least once in at

least U launch samples of A. The size of FT (A) is the number of TLS fingerprints in S.

4.4 Fingerprint Performance Assessment Methodology

In this section, we define a methodology that forms the basis for how FingerprinTV

assesses the performance of a fingerprinting technique F (see the Post Processing box in

Figure 4.1). For F to enable identification of app A, the fingerprint F (A) that F extracts

for A must be unique among all other apps’ fingerprints. Now, recall from Definitions 4.1,

4.2, and 4.3 in Section 4.3 that at their core, the three types of fingerprints we consider

in this chapter are essentially just sets with different types of members, namely domains,

packet pairs, and TLS fingerprints. Thus, performance assessment of F is fundamentally a

set difference problem.

We tackle this problem using agglomerative clustering [122], as it enables us to compute the

(dis)similarity of individual apps’ fingerprints (i.e., fingerprint member sets) in a structured,

yet extensible, way. More precisely, when performed as described below, agglomerative

clustering enables us to (1) identify apps that have distinct fingerprints, i.e., when the set of

fingerprint members that make up F (A) is different from all the sets of fingerprint members

58

of all other apps; and (2) identify apps that share the same fingerprint, i.e., when the set of

fingerprint members that make up F (A) is identical to the set of fingerprint members that

make up the fingerprint, F (B), of some other app B.

Clustering Procedure. The agglomerative clustering is performed as follows. We first form

a fingerprint-member-by-app matrix M such that M [mi, Aj] holds the number of launch sam-

ples of app Aj that fingerprint member mi was observed in. Next, M is pruned by dropping

all rows (fingerprint members) that are not present in at least U (the usage threshold, see

Definitions 4.1, 4.2, and 4.3) launch samples for at least one app, i.e., row i is removed iff

M [mi, Aj] < U for every j. M is then converted to a binary matrix by setting M [mi, Aj] = 0

if M [mi, Aj] < U and M [mi, Aj] = 1 if M [mi, Aj] ≥ U , for all combinations of i and j. In

Sections 4.5, 4.6, 4.7, and 4.8, we use U = L = 10 to conservatively report results for finger-

prints that are always present, i.e., we set U to be equal to the number of launch samples L

we perform (see Section 4.2.3).

Figure 4.2 shows an example of the matrix M for the DBFs of 10 popular Fire TV apps.

A blue cell indicates that the cell’s value is 1, which means that the domain appeared in

all U = 10 launch samples of the respective app and is therefore part of that app’s DBF.

A white cell indicates that the cell’s value is 0, i.e., the domain appeared in less than 10

launches of the respective app and is therefore not part of that app’s DBF. The DBF of an

app is the binary vector of the corresponding column. For example, the “Facebook” app

contacts three domains and we say it has a DBF of size 3; see Definition 4.1. The example

also illustrates that DBFs can vary significantly in size: the DBF of “ES File Explorer File

Manager” contains a single domain, while the DBF of “NBC” contains 24 domains.

We then compute the agglomerative clustering of the columns (i.e., apps) in M using

SciPy [149]. We use cosine distance, defined as 1 − a·b
∥a∥2∥b∥2 , where a · b is the dot prod-

uct of a and b, the fingerprint member vectors for apps A and B respectively, and ∥x∥2 is the

2-norm of x, to compute the distance between two apps [150]. For example, we can see in

59

Figure 4.2: Example: DBFs of 10 popular Fire TV apps. Rows correspond to domains,
columns correspond to apps, and the dendrogram on top corresponds to the clustering of
apps based on the similarity of their DBF. A blue cell indicates that the domain is contacted
U = 10 times and, thus, part of the respective app’s DBF; a white cell indicates otherwise.
The DBF of an app is the binary vector of the corresponding column. For example, the
“Facebook” app has a DBF of size 3 and it is part of a cluster with size 1. The “HISTORY”,
“A&E”, and “Lifetime” apps contact the same nine domains. This means that they have
the exact same DBF of size 9, they have distance 0 from each other, and are together in a
cluster of size 3.

60

Figure 4.2 that the “Lifetime”, “A&E”, and “HISTORY” apps exhibit the same DBF and,

thus, the distance between these apps is 0, and they will be in the same cluster. Since the

values in the fingerprint member vectors for apps A and B are binary, a fingerprint member

mi decreases the cosine distance iff mi is part of both F (A) and F (B). Notice that this

implies that the cosine distance will be > 0 when one fingerprint is a subset of another. We

consider such fingerprints distinct from one another, since fingerprint subsumption can be

accounted for by enforcing timing constraints when examining live traffic.

We use the Nearest Point Algorithm for computing the inter-cluster distances when merging

clusters [149] (but the Farthest Point and UPGMA Algorithms produce similar results).

When extracting clusters from the agglomerative clustering, we use a distance threshold

t = 0 [148] such that F (A) and F (B) have to be identical to end up in the same cluster. The

choice of t = 0 also ensures that if F (A) is distinct among all other fingerprints, it will end

up in a singleton cluster, and the number of distinct fingerprints is thus simply the number

of singleton clusters formed.

We note that we make conservative choices for the parameters in our methodology (e.g., U

and t). Even under these strict choices, fingerprints are highly prevalent and have significant

discriminative power. Furthermore, the methodology is flexible enough to accommodate less

conservative choices, e.g., one can use U < L = 10 when extracting DBFs to make a trade-off

between its size and reliability, as described in Section 4.3.1.

4.5 Fingerprint Prevalence, Distinctiveness, and Size

This section reports the prevalence, distinctiveness, and sizes of the fingerprints extracted

from the dataset described in Section 4.2.3 using the fingerprinting techniques defined in

Section 4.3. We first introduce the three terms and how FingerprinTV computes them,

61

Platform DBF PBF TBF
DBF
or

PBF

DBF
and
PBF

Prevalence
(P)

Distinctiveness
(D)

P D P D P D P D

Apple TV 96% 59% 68% 77% 95% 3% 96% 78% 68% 89%
Fire TV 88% 63% 95% 88% 86% 7% 99% 89% 85% 95%
Roku 100% 46% 100% 72% 100% 1% 100% 76% 100% 76%

Table 4.1: Summary of the three fingerprinting techniques’ performance on the top-1000
apps of the three smart TV platforms. Prevalence is the percentage of apps among the
top-1000 that exhibit a fingerprint. Distinctiveness is the percentage of apps that exhibit
a fingerprint that is distinct from all other apps’ fingerprints of the same type, among the
total number of apps that exhibit a fingerprint of that type (i.e., each distinctiveness column
is computed using the raw numbers behind the prevalence percentage values immediately to
its left as the baseline).

and then proceed to report the numbers for each smart TV platform. The results are

summarized in the left part of Table 4.1.

Prevalence. The prevalence of a fingerprint type is the percentage of smart TV apps (from a

single platform) that exhibit that type of fingerprint. Recall from Section 4.4 that apps with

distinct fingerprints end up in singleton clusters, that apps that have identical fingerprints

end up in the same cluster, and that apps that do not exhibit a fingerprint are discarded

during clustering. The number N of apps that exhibit a fingerprint is thus the sum of the

number of members (i.e., apps) of all clusters in the clustering. The prevalence P is then

P = N
1000

× 100% (as there are 1000 apps per platform).

Distinctiveness. The percentage of apps with distinct fingerprints is arguably the most

important metric for assessing how well a fingerprinting technique works. We use the term

distinctiveness to refer to this metric. As explained in Section 4.4, if the fingerprint, F (A), of

app A is distinct, A will end up in a singleton cluster, and the number M of apps with distinct

fingerprints is thus equal to the number of clusters with size x = 1. The distinctiveness D is

then D = M
N
×100%, i.e., the percentage of apps that exhibit a distinct fingerprint of a given

type, taken among all apps that exhibit a fingerprint of that type. A large D thus means

62

that the fingerprinting technique produces fingerprints that are generally able to uniquely

identify apps without ambiguity, but is only meaningful if the prevalence is also high.

Sizes. Recall from Definitions 4.1, 4.2, and 4.3 that the size of a fingerprint is the number

of fingerprint members it contains, e.g., the number of domains in a DBF. We report the

fingerprint sizes to give insights as to how many fingerprint members the general fingerprint

contains, and to test the intuition that a larger fingerprint is more likely to be distinct (see

Section 4.3.1).

4.5.1 Domain-Based Fingerprints (DBF)

Prevalence. Figures 4.3a, 4.3b, and 4.3c show the number of clusters, grouped by cluster

size, for DBFs for the three smart TV platforms (Figure 4.3d is discussed in Section 4.7.2).

We find that 96% (N = 961) of the top-1000 Apple TV apps exhibit a DBF; 88% (N = 884)

of the top-1000 Fire TV apps exhibit a DBF; and 100% (N = 1000) of the top-1000 Roku

apps exhibit a DBF.

Distinctiveness. The number of apps with distinct DBFs per platform is the number of

clusters with size x = 1 in Figures 4.3a, 4.3b, and 4.3c. On all three platforms, the DBF is

distinct for about half of the apps that exhibit a DBF: the DBF is distinct for 564 (59%) of

the 961 Apple TV apps that exhibit a DBF, 555 (63%) of the 884 Fire TV apps that exhibit

a DBF, and 462 (46%) of the 1000 Roku apps that exhibit a DBF.

Sizes. Figure 4.4 shows the distribution of DBF sizes per cluster size (the label on top of

each point is the app count) for the three smart TV platforms. In summary, we find that

the median DBF size is four on all three platforms. We also observe that DBF sizes are

generally larger for clusters with fewer members, thus the intuition that larger fingerprints

are generally more distinct seems to hold true for DBFs.

63

(a) Apple TV

1 2 3 4 5 6 7 8 9 10 11

100

101

102

103
564

28

11

2 2
3

1

2

1 1

3

18
1

22

1

32

1

35

2

55

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s
(b) Fire TV

1 2 3 4 5 6 7 8 9 10

100

101

102

103
555

27

11 12

6

1

2

1 1 1

12 13

2

1

17

2

22

1

24

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

(c) Roku

1 2 3 4 5 6 7

100

101

102

103

462

20

5
4

5
3

2

9 10 11 12

1 1 1 1

15 16

1 1

19

1

22

1

55

1

11
9

1

12
2

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

(d) All platforms as one large dataset

1 2 3 4 5 6 7 8 9 10 11 12 13
100

101

102

103
1571

75

28
18

13

6 6

3 3 3
4

3

1

15 16 17 18 19

1 1 1 1 1

22 23 24

3

1 1

32

1

35

2

55

2

11
9

1

12
2

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

Figure 4.3: Distribution of clusters by cluster size for DBFs. The cluster size is the number
of apps in a cluster (i.e., apps with the exact same DBF; see Section 4.4). For instance, the
bar at x = 2 in Figure 4.3a indicates that there are 28 clusters that each contains 2 apps,
for a total of 56 apps.

The three most common DBF sizes are are 4, 5, and 3 for Apple TV; 3, 4, and 2 for Fire

TV; and 3, 5, and 4 (tied with 2) for Roku. The median DBF size is 4 across the board.

For all three platforms, there appears to be some correlation between a DBF’s size and its

distinctiveness as the majority of DBFs that are larger than the median DBF are distinct

DBFs: 296 of the 463 (64%) Apple TV DBFs, 248 of the 311 (80%) Fire TV DBFs, and 231

of the 420 (55%) Roku DBFs that are larger than the median DBF are distinct.

64

(a) Apple TV
1 2 3 4 5 6 7 8 9 10 11 ... 18 ... 22 ... 32 ... 35 ... 55

Cluster size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
...
19
20
...
22

DB
F

siz
e

30 6 3 8 55
70 10 9 5 9 10
87 10 6 4 5 12 8
81 10 3 22 35
59 6 3 4 7 11 18 35
73 4 6 6 22
32 4
23 2
15 2 32
15
11
27 3
15 2
7
4
4
2

6
2

1

0

20

40

60

80

100

120

140

Nu
m

be
r o

f a
pp

s

(b) Fire TV

1 2 3 4 5 6 7 8 9 10 ... 12 13 ... 17 ... 22 ... 24

Cluster size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
...
22
23
24

DB
F

siz
e

63 18 12 8 14 12
78 12 3 8 20 10
82 2 3 4 5 9 17 22 24
84 16 3 8 5 6 12 13
62 2 3 4 8
49 8
39 2
19 2
18 3
9 4 17
8 3

10
5
7
4
6
2
2 3
2
3

1 4
1
1

0

20

40

60

80

100

120

140

Nu
m

be
r o

f a
pp

s

(c) Roku

1 2 3 4 5 6 7 ... 9 10 11 12 ... 15 16 ... 19 ... 22 ... 55 ...
11

9 ...
12

2

Cluster size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
...
20
21

DB
F

siz
e

55
87 10 9 5 7 12 16
80 8 3 4 10 6 122
64 4 3 8 6 9 11 19 22
66 4 4 5 15 119
44 4 7
23 2
18 2 5
19 6
12 10
11
12
5
7
4 6
4
2
2

1
1

0

20

40

60

80

100

120

140

Nu
m

be
r o

f a
pp

s

Figure 4.4: Distribution of DBF sizes per cluster size. The DBF size is the number of
domains in a DBF. The cluster size is the number of apps in a cluster. App counts are
shown for each point. For instance, the point at (2, 2) in Figure 4.4a indicates that there are
10 apps that each has a DBF that contains 2 domains, and these 10 apps reside in clusters
that each contains 2 apps.

4.5.2 Packet-Pair-Based Fingerprints (PBF)

Prevalence. Figures 4.5a, 4.5b, and 4.5c show the number of clusters, grouped by cluster

size, for PBFs for the three smart TV platforms (Figure 4.5d is discussed in Section 4.7.2).

We find that 68% (N = 678) of the top-1000 Apple TV apps exhibit a PBF; 95% (N = 952)

65

(a) Apple TV

1 2 3 4 5

100

101

102

103

525

13

6

3
2

7 8

1

2

10

2

12

1

15

1

17

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s
(b) Fire TV

1 2 3 4 5 6

100

101

102

103 833

26

5

2

1

2

12

1

15

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

(c) Roku

1 2 3 4 5 6 7 8

100

101

102

103
717

16

7
4

2 2

1 1

10

2

28

1

39

1

43

1

47

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

(d) All platforms as one large dataset

1 2 3 4 5 6 7 8
100

101

102

103

2075

54

18

9
5 4

2
3

10

4

12

1

14 15

1

2

17

1

28

1

39

1

43

1

47

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

Figure 4.5: Distribution of clusters by cluster size for PBFs. The cluster size is the number
of apps in a cluster (i.e., apps with the exact same PBF; see Section 4.4). For instance, the
bar at x = 2 in Figure 4.5a indicates that there are 13 clusters that each contains 2 apps,
for a total of 26 apps.

of the top-1000 Fire TV apps exhibit a PBF; and 100% (N = 1000) of the top-1000 Roku

apps exhibit a PBF.

Distinctiveness. The number of apps with distinct PBFs per platform is the number of

clusters with size x = 1 in Figures 4.5a, 4.5b, and 4.5c. PBFs have more discriminative

power than DBFs: among the apps that exhibit PBFs, 77% of Apple TV apps, 88% of Fire

TV apps, and 72% of Roku apps exhibit distinct PBFs.

Sizes. Figure 4.6 shows the distribution of PBF sizes per cluster size (the label on top of

66

(a) Apple TV
1 2 3 4 5 ... 7 8 ... 10 ... 12 ... 15 ... 17

Cluster size

1
2
3
4
5
6
7
8
9

10
11
12
13
...
15
...
17
18

PB
F

siz
e

111 12 12 12 10 7 16 10 12 15 17

144 12 6 10

85 2

80

43

21

13

4

9

6

1

3

2

1

1

1

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f a
pp

s

(b) Fire TV

1 2 3 4 5 6 ... 12 ... 15

Cluster size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
...
21
...
24
...
33

PB
F

siz
e

32 12 6 12 15
89 20 9 8 6

155 18 5 6
154 2
112
77
46
42
35
30
13
12
12
5
9
4
1
1
1

1

1

1

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f a
pp

s

(c) Roku

1 2 3 4 5 6 7 8 ... 10 ... 28 ... 39 ... 43 ... 47

Cluster size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
...
20
21
22
...
24

PB
F

siz
e

2 7
15 4 4 10 28 39
72 12 12 4 5 8 43
96 4 3 6 10 47
90 4 3
70 2
60 3 6
44 2 4
37 5
42 4
45
42
40 2
23
18
9
5
3

1
1
3

1

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f a
pp

s

Figure 4.6: Distribution of PBF sizes per cluster size. The PBF size is the number of packet
pairs in a PBF. The cluster size is the number of apps in a cluster. App counts are shown
for each point. For instance, the point at (2,2) in Figure 4.6a indicates that there are 12
apps that each has a PBF that contains 2 packet pairs and that reside in clusters that each
contains 2 apps.

each point is the app count) for the three smart TV platforms. The median PBF sizes are 2,

4, and 5 for Apple TV, Fire TV, and Roku, respectively. Like for DBFs, we also observe a

strong correlation between a PBF’s size and its distinctiveness: 270 of the 272 (99%) Apple

TV PBFs, all of the 403 (100%) Fire TV PBFs, and 444 of the 472 (94%) Roku PBFs that

are larger than the median PBF are distinct.

67

4.5.3 TLS-Based Fingerprints (TBF)

We find that TBFs have very little discriminative power and therefore only briefly summarize

the results and omit the diagrams. In total, our findings for smart TVs align with those of

other work on TLS fingerprinting [19]: (sets of) TLS fingerprints are not sufficiently unique

on their own to fingerprint apps.

Prevalence and Sizes. TBFs are about as widespread as DBFs: 95%, 86%, and 100% of

the top-1000 Apple TV, Fire TV, and Roku apps, respectively, exhibit a PBF. The median

TBF size is 2 across all platforms. While prevalence is large for TBFs, this also bears the

positive message that most smart TV apps encrypt (part of) their communication. The TBF

prevalence observed for Roku is in line with what is reported in the appendix of [98], but

we observe slightly fewer TBFs for Fire TV, possibly because we only consider “on-launch”

traffic, whereas [98] also inject user actions post launch.

Distinctiveness. While TBFs are prevelant on all three platforms, they have little discrim-

inative power: only 3%, 7%, and 1% of the Apple TV, Fire TV, and Roku apps that exhibit

TBFs, exhibit distinct TBFs. Furthermore, a few TBFs are shared by a large number of

apps; e.g., for both Apple TV and Roku, the clustering outputs two clusters with over 300

apps. As TBFs evidently have little discriminative power, we omit them from the discussion

going forward.

4.5.4 Distinctiveness and Dataset Size

In Table 4.1, and throughout this chapter, we report the distinctiveness of DBFs, PBFs,

and TBFs for the top-1000 Apple TV, Fire TV, and Roku apps. To shed further light on

the potential for fingerprint collisions, in Figure 4.7, we split each of the three datasets into

increasingly larger subsets and show how the distinctiveness evolves for DBFs and PBFs as

68

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Apps in dataset

50%

60%

70%

80%

90%

100%

Di
st

in
ct

iv
en

es
s

Apple TV DBF Apple TV PBF Fire TV DBF Fire TV PBF Roku DBF Roku PBF

Figure 4.7: Distinctiveness of DBFs and PBFs as a function of the number of apps in the
dataset. Apps are added to the dataset based on the number of reviews submitted for each
app. That is, x = 50 is a dataset comprised of the 50 most reviewed apps, x = 100 is a
dataset comprised of the 100 most reviewed apps, and so forth.

the number of apps considered increases. Apps are included in the subsets based on the

number of user reviews submitted for each app. That is, in Figure 4.7, x = 50 is a dataset

comprised of the 50 most reviewed apps, x = 100 is a dataset comprised of the 100 most

reviewed apps, etc.

Figure 4.7 shows that the distinctiveness decreases slowly as the number of apps considered

increases beyond 500 apps, especially for PBFs. In particular, the distinctiveness of PBFs of

Apple TV apps appear to plateau. Moreover, the distinctiveness of PBFs generally declines

slower than the distinctiveness of DBFs. The distinctiveness of PBFs is also generally greater

than the distinctiveness of DBFs, which is in line with the observation made for the full

dataset.

69

4.5.5 Takeaways

DBFs, PBFs, and TBFs are all prevalent among Apple TV, Fire TV, and Roku apps.

However, only DBFs and PBFs have enough discriminative power to reliably identify apps,

and we therefore omit TBFs from the discussion going forward. We also observe a correlation

between a fingerprint’s size and its discriminative power. Overall, PBFs seem to have more

discriminative power than DBFs, but they are also more likely to change over time: even

small changes to an app’s communication protocol(s) directly affect packet sizes [151].

4.6 Identical Fingerprints

This section examines to what extent apps with identical fingerprints stem from the same

developer. If a developer releases multiple apps for the same platform, they may opt to use

some of the same backend servers to deliver content, which could make these apps exhibit

identical fingerprints. We investigate this by examining the number of distinct developers

present in clusters with size x > 1, i.e., clusters of apps that share the same fingerprint.

We consider developers to be identical if they are part of the same parent organization. For

example, the Fire TV app developers “Scripps Networks, LLC”, “Discovery Communica-

tions” and “OWN, LLC” are identical, since Discovery, Inc. owns a majority stake in these

companies.

4.6.1 Domain-Based Fingerprints

Summary. Figure 4.8 shows the number of clusters of size x (for DBFs) that contain apps

from Q distinct developers for the three smart TV platforms. In summary, we find that a

sizeable fraction of identical DBFs are indeed attributable to apps from the same developer.

70

(a) Apple TV

2 3 4 5 6 7 8 9 10 11

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

18 22 32 35 55

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

Number of distinct developers
1 2 3 4 5 7 8 10 11 35 48

(b) Fire TV

2 3 4 5 6 7 8 9 10

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

12 13 17 22 24

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

Number of distinct developers
1 2 3 4 5 6 7 8 12

(c) Roku

2 3 4 5 6 7

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

9 10 11 12 15 16 19 22 55 11
9

12
2

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

Number of distinct developers
1 2 3 4 5 6 9 11 15 46 59

Figure 4.8: Distribution of the number of developers responsible for apps in clusters of size
x > 1 for DBFs. For instance, the bar at x = 2 in Figure 4.8a indicates that 12 of the 28
clusters of size x = 2 (see Figure 4.3a) only contain apps from the same developer, while the
remaining 16 contain apps from 2 developers.

We also find many examples of apps that appear to be generated using “no code” toolkits

provided by consulting firms, and apps that are generated using the same toolkit tend to

have identical DBFs.

Apple TV Details. For Apple TV, 142 of the 397 apps (37%) that share their DBF

with other app(s) only share it with other apps from the same developer. We note that

while the apps in the two clusters of size x = 35 in Figure 4.8a are officially published by

completely different developers (Q = 35 for these clusters), they all appear to be due to

the same consulting firm, Subsplash, Inc., (who offers a “no code” toolkit for generating

71

and publishing apps) since their DBFs contain subdomains of subsplash.com and (most of)

their bundle IDs begin with “com.subsplash”. Further, they are all religious apps, which is

Subsplash’s specialty. Similarly, all apps in one of the three clusters of size x = 11, in one

of the two clusters of size x = 4, and in one of the 28 clusters of size x = 2 appear to be

due to MAZ Systems Inc.; all apps in one of the two clusters of size x = 8 and in one of the

28 clusters of size x = 2 appear to be due to UscreenTV, LLC; and RadioKing and Streann

Media Inc each appear to be behind all apps in one of the 28 clusters of size x = 2. If we

treat these cases as the same developer, we instead get that 243 of the 397 apps (61%) that

share their DBF with other app(s) only share it with other apps from the same developer.

Fire TV Details. For Fire TV, 187 of the 329 apps (57%) that share their DBF with other

app(s) only share it with other apps from the same developer. We observe that when a DBF

is shared among many apps, those apps generally stem from the same developer: notice that

Q = 1 for many of the clusters of size x > 8 in Figure 4.8b. We note that we suspect that the

Q = 3 distinct developers responsible for the apps in one of the two clusters of size x = 17

are the same (or closely related) entities as these apps (1) have custom made, yet similar,

privacy policies; (2) use the same pattern for their contact emails; and (3) are all ambience

apps that use the same app naming scheme.

As for Apple TV, we again find many clusters of apps that are officially published by multiple

developers (and shown as such in Figure 4.8b), but where the domains in their DBFs and/or

their package names suggest that they are from the same consulting firms. If we treat these

cases as the same developer, 227 of the 329 apps (69%) that share their DBF with other

app(s) only share it with other apps from the same developer.

Roku Details. For Roku, 107 of the 538 apps (20%) that share their DBF with other app(s)

only share it with other apps from the same developer. We again find many clusters of apps

that are officially published by multiple developers (and shown as such in Figure 4.8c), but

where the domains in the DBFs suggest that they are due to the same consulting firms. If

72

we treat these cases as the same developer, 143 of the 538 apps (27%) that share their DBF

with other app(s) only share it with other apps from the same developer.

4.6.2 Packet-Pair-Based Fingerprints

We do not find evidence that identical PBFs primarily stem from apps from the same devel-

oper. For Apple TV, 10 of the 153 apps (16%) that share their PBF with other app(s) only

share it with other apps from the same developer. This also only applies to 7 of 119 (6%)

Fire TV apps, and 42 of 283 (15%) Roku apps.

4.6.3 Takeaways

When multiple apps exhibit identical fingerprints, an in-network observer can only make

ambiguous inferences about app usage. However, apps with identical DBFs primarily stem

from the same developer. As some developers focus their efforts on building apps with a

certain theme (e.g., religious apps), it may thus still be possible to infer what type of content

the user is consuming. The same does not hold true for PBFs, but identical PBFs are less

widespread (see Section 4.5.2).

4.7 Fingerprints Across Platforms

This section compares how fingerprints of apps that are present on all three platforms differ

across platforms and extends the evaluation in Section 4.5 of the extracted fingerprints’

distinctiveness by considering the datasets of the three platforms as a single, large dataset.

73

4.7.1 Multi-Platform Apps

We first compare the DBFs and PBFs of apps in our dataset that are present on all three

platforms, referred to as multi-platform apps. Drawing inspiration from [159], we identify 80

multi-platform apps through fuzzy matching on the app and developer names, as the same

app can have slightly different names on each platform, e.g., “YouTube” on Fire TV and

Roku, but “YouTube: Watch, Listen, Stream” on Apple TV.

DBFs. Figure 4.9 shows, using one color-coded bar per platform per app, the sizes of

the DBFs of 60 of the 80 multi-platform apps; due to space constraints, we only show the

60 multi-platform apps with the largest DBFs in descending order. The textured part of

each bar indicates domains in the DBF that are unique to the corresponding platform, i.e.,

domains that are not present in the DBFs of the same app on the other two platforms. Most

multi-platform apps have at least one platform-specific domain in their DBFs for all three

versions of the app (Apple TV, Fire TV, and Roku). In fact, only 19 of the 80 multi-platform

apps (24%) have version(s) with no unique domains in their DBFs, and in 18 cases this only

OXYGEN
E! Bravo - Live Stream

 ...
Telem

undo
USA Network
CNBC: Stock M

arket &...
CBS News: Live Break...
CBS Sports App Score...
ESPN: Live Sports & ...
W

atch TBS
Sling: Live TV, Show...
W

atch TNT
Cartoon Network App
FOX NOW

: W
atch TV & ...

NBC Sports
Fox Business: Invest...
Pluto TV - Live TV a...
Fox News: Live Break...
Param

ount Network
Noggin Preschool Lea...
VH1
FXNOW

: M
ovies, Shows...

M
TV

Nat Geo TV: Live & O...
Com

edy Central
Hulu: Stream

 m
ovies ...

Nick Jr.
NHK W

ORLD-JAPAN
Bleacher Report Live
Nick
Lifetim

e: TV Shows &...
Hallm

ark M
ovies Now

Netflix
Disney+
HISTORY: TV Shows on...
A&E - TV Shows & Ful...
DisneyNOW

, Episodes ...
Am

azon Prim
e Video

ABC Action News Tam
p...

Sm
ithsonian Channel

NewsON - Local News ...
Spotify: M

usic and p...
NewsChannel 5 Nashvi...
YouTube: W

atch, List...
Topic: W

atch TV & M
o...

Philo
M

ovies Anywhere
STARZ
Pantaya
Crunchyroll
Science Channel GO
Anim

al Planet GO
SHOW

TIM
E: TV, M

ovies...
Tubi - W

atch M
ovies ...

Gaia TV Conscious M
e...

UP Faith & Fam
ily

DIY Network GO
TLC GO - Full Eps an...
Destination Am

erica ...
Investigation Discov...

App

0

5

10

15

20

Do
m

ai
ns

Unique for Apple TV
Apple TV
Unique for Fire TV
Fire TV
Unique for Roku
Roku

Figure 4.9: DBF sizes for the 60 multi-platform apps that exhibit the largest DBFs in
descending order. The size of the DBF for each version (Apple TV, Fire TV, and Roku) of
an app is indicated using color-coded bars. The textured part of each bar indicates domains
in the DBF that are unique to the corresponding platform.

74

NBC Sports
Telem

undo
Bravo - Live Stream

 ...
E! CNBC: Stock M

arket &...
ESPN: Live Sports & ...
USA Network
OXYGEN
Com

edy Central
Noggin Preschool Lea...
Param

ount Network
Nick Jr.
VH1
CBS Sports App Score...
W

atch TNT
GoNoodle - Kids Vide...
Fawesom

e
Netflix
NewsON - Local News ...
Fox News: Live Break...
Film

Rise
FOX NOW

: W
atch TV & ...

CBS News: Live Break...
Sling: Live TV, Show...
Nick
Pandora: M

usic & Pod...
Disney+
Hulu: Stream

 m
ovies ...

Sm
ithsonian Channel

Gaia TV Conscious M
e...

BritBox by BBC & ITV
Investigation Discov...
HISTORY: TV Shows on...
Lifetim

e: TV Shows &...
A&E - TV Shows & Ful...
Crunchyroll
Cartoon Network App
M

T GO
FXNOW

: M
ovies, Shows...

Philo
DIY Network GO
Nat Geo TV: Live & O...
Am

azon M
usic: Songs ...

TLC GO - Full Eps an...
Science Channel GO
Bleacher Report Live
Hallm

ark M
ovies Now

NHK W
ORLD-JAPAN

Anim
al Planet GO

Destination Am
erica ...

Fox Business: Invest...
Food Network GO: 10k...
TED
DisneyNOW

, Episodes ...
Spotify: M

usic and p...
Am

azon Prim
e Video

Thirteen Explore
M

ovies Anywhere
SHOW

TIM
E: TV, M

ovies...
Topic: W

atch TV & M
o...

App

0

5

10

15

20

Pa
ck

et
 P

ai
rs

Unique for Apple TV
Apple TV
Unique for Fire TV
Fire TV
Unique for Roku
Roku

Figure 4.10: PBF sizes for the 60 multi-platform apps that exhibit the largest PBFs in
descending order. The size of the PBF for each version (Apple TV, Fire TV, and Roku) of
an app is indicated using color-coded bars. The textured part of each bar indicates packet
pairs in the PBF that are unique to the corresponding platform.

applies to a single version of the app. Interestingly, it is primarily the Fire TV version that

lacks platform-specific domains in its DBF. The Roku version always has at least one unique

domain in its DBF, as all Roku apps communicate with scribe.logs.roku.com when they are

launched (see Section 4.3.2).

PBFs. In similar style as Figure 4.9, Figure 4.10 shows the sizes of (i.e., the number of

packet pairs in) the PBFs of 60 of the 80 multi-platform apps. All apps, except the Apple

TV version of two apps, have platform-specific packet pairs in their PBFs for all versions of

the app. In fact, the vast majority—and in many cases all—packet pairs in the PBFs are

platform-specific.

4.7.2 Distinctiveness of Fingerprints Across Platforms

To further assess the distinctiveness of fingerprints across platforms, we perform a similar

analysis as in Section 4.5, but where we consider fingerprints of apps on all three platforms

75

as a single, large dataset. We refer to apps with the same fingerprint as having a “collision”.

DBFs. Figure 4.3d shows the number of clusters, grouped by cluster size, when the DBFs of

apps of all three platforms are considered as a single, large dataset. The impact this merging

of datasets has on the DBFs’ distinctiveness is understood by comparing Figure 4.3d and the

sum of Figures 4.3a, 4.3b, and 4.3c. If the DBFs are less distinct in the merged dataset, the

bar corresponding to the number of clusters with size x = 1 in Figure 4.3d will be smaller

than the sum of the corresponding bars at x = 1 in Figures 4.3a, 4.3b, 4.3c. Similarly,

increases in DBF collisions would be reflected as larger values in Figure 4.3d compared to

the sum of the values at the respective x in Figures 4.3a, 4.3b, and 4.3c, for x > 1.

We observe a very slight decrease in the number of distinct DBFs: there are 564+555+462 =

1581 distinct DBFs when the platforms are considered individually (Figures 4.3a, 4.3b, and

4.3c), and 1571 distinct DBFs when the three platforms are considered together (Figure 4.3d).

DBF collisions also only change slightly: the number of clusters with size x > 1 are mostly

the same across Figure 4.3d and the sum of Figures 4.3a, 4.3b, and 4.3c. We note that

all additional DBF collisions that arise in the merged dataset are among Apple TV and

Fire TV apps. This is because all Roku apps’ DBFs include one Roku domain (see Section

4.3.2). Furthermore, the collisions are attributable to DBFs that are smaller than or equal

to the median DBF size, which further confirms the intuition that larger DBFs have more

discriminative power (see Sections 4.3.1 and 4.5.1).

PBFs. Figure 4.5d shows the number of clusters, grouped by cluster size, when the PBFs

of apps of all three platforms are considered as a single, large dataset. We observe no change

in the number of distinct PBFs when the three individual datasets are considered as one:

the sum of distinct fingerprints across Figures 4.5a, 4.5b, and 4.5c is 2075, which is also

the number of distinct fingerprints in Figure 4.5d. There is also hardly any change to PBF

collisions as the number of clusters with size x > 1 are almost identical across Figure 4.5d

and the sum of Figures 4.5a, 4.5b, and 4.5c. In fact, the only change is that a cluster of two

76

Fire TV apps is merged with a cluster that contains 12 Apple TV apps. The PBFs of these

apps are comprised of a single MTU-sized client-to-server packet, likely because the client is

sending data in bulk. This results in single-packet pairs (see Section 4.3.2 and [151]), which

have little discriminative power.

4.7.3 Takeaways

The DBFs and PBFs of apps that are made available on all three platforms are often

platform-specific. Thus, it is generally possible to not only fingerprint smart TV apps them-

selves, but also (as a side-effect) to identify which smart TV platform they are being used

on. Additionally, the distinctiveness of DBFs and PBFs appears to hold steady when the

three datasets are considered as one large dataset. This provides some indication that the

fingerprints are likely to retain their discriminative power in an open world setting.

4.8 Combining Fingerprints

This section considers the benefits of combining DBFs and PBFs. To establish to what

extent smart TV apps can be fingerprinted in general, using any technique, Section 4.8.1

examines how many apps exhibit a DBF or a PBF (or both). Since larger fingerprints have

more discriminative power (as confirmed in Section 4.5.5), Section 4.8.2 examines how many

apps exhibit both a DBF and a PBF.

4.8.1 DBF or PBF

The “DBF or PBF” column of Table 4.1 lists the prevalence and distinctiveness of fingerprints

that are comprised of a DBF or a PBF (at least one, or both). The reported distinctiveness

77

is based on the distinctiveness of the individual components considered separately. That is,

a fingerprint is not considered distinct if neither the DBF nor the PBF are distinct on their

own, even if the combination of them is exclusive to one app. This is to remain conservative

in our reporting, as confusion could arise if another app that exhibits the same DBF is

launched at the same time as a third app that exhibits the same PBF, e.g., on different

smart TVs in the same household.

The results show that nearly all apps on all three platforms exhibit either a DBF or a

PBF (or both): the prevalence is ≥ 96% across the board. More importantly, most of

these fingerprints are distinct: the fingerprint is distinct for 78% (750) of the Apple TV

apps, 89% (884) of the Fire TV apps, and 76% (760) of the Roku apps that exhibit a DBF

or a PBF (or both). It is worth noting that even for Apple TV, where DBFs contribute

significantly to the prevalence (PBFs on their own only achieve 68% prevalence, whereas

this joint fingerprint achieves 96%), the distinctiveness is in line with that of PBFs on their

own (recall from Section 4.5.5 that PBFs have more discriminative power than DBFs). Thus,

the extra coverage that can be achieved by also considering DBFs appear to primarily stem

from distinct DBFs.

4.8.2 DBF and PBF

The “DBF and PBF” column of Table 4.1 lists the prevalence and distinctiveness of fin-

gerprints that are comprised of both a DBF and a PBF. The reported distinctiveness is

computed in the same way as for “DBF or PBF”, described above.

The results show that DBFs and PBFs generally co-occur: notice that the prevalence for

this joint fingerprint almost equals its upper bound, i.e., the minimum prevalence of DBFs

and PBFs individually. This implies that almost all Apple TV apps that exhibit a PBF

must also exhibit a DBF, and vice versa for Fire TV (all Roku apps exhibit both DBFs and

78

PBFs). The fingerprints also have high discriminative power: the fingerprint is distinct for

89% (599) of the Apple TV apps, 95% (802) of the Fire TV apps, and 76% (760) of the Roku

apps that exhibit both a DBF and a PBF.

4.8.3 Takeaways

Nearly all apps across all three smart TV platforms can be fingerprinted if one uses either

a DBF or a PBF (or both) on a per-app basis. Moreover, these joint fingerprints have high

discriminative power, but fingerprints for Roku apps fall slightly short of those of Apple TV

apps and Fire TV apps in this respect.

4.9 Discussion

This section briefly discusses how to mitigate the inferences that can be made using DBFs

and PBFs, as well as the limitations of our work, and future directions.

Possible Defenses. As DBFs rely on access to domain names in cleartext, DNS-over-

HTTPS (DoH) [61] and DNS-over-TLS (DoT) [62] are perhaps the most obvious potential

defenses. However, as evident from the results reported in Section 4.5.3, most smart TV

apps consistently communicate over TLS at every launch. If the smart TV app uses the

TLS Server Name Indication (SNI) [37] extension for these sessions, the domain can be

recovered from the TLS session alone, which negates the defense provided by DoH/DoT.

To test this, we ran a modified version of FingerprinTV that would disregard all DNS

data, and confirmed that the results were almost identical to those reported in Section 4.5.1.

In essence, to be effective against DBFs, DoH/DoT must be paired with Encrypted SNI

(ESNI), but this requires that the apps’ backend servers add support for ESNI, which likely

lies years ahead.

79

Network-level blockers, such as Pi-hole, that block traffic to select domains can prevent

identification of an app via its DBF, if the DBF includes one or more domains from the

blocklist, as the adversary will only observe a partial DBF match. The adversary can easily

counter such protection by removing domains that are present in popular blocklists from

the DBF they extract for the app during training, and then (also) examine live traffic for

the manifestation of this reduced DBF. Since smaller DBFs have less discriminative power

(see Sections 4.3.1 and 4.5.5), network-level blockers may add uncertainty to the adversary’s

inferences, but may also introduce app breakage.

For complete protection against DBFs, the smart TV’s traffic can be tunneled through a

VPN. Assuming the adversary is somewhere on the path from the smart TV to the VPN

server, this defense nullifies the effectiveness of DBFs entirely, as the tunnel encrypts the

three protocol fields that domains can be extracted from (see Section 4.3.1). The downsides

are that tunneling adds additional network overhead, and that the VPN server may become

a bottleneck (e.g., if it enforces per-user rate limits that the smart TV can saturate).

For defenses against PBFs, we refer to our prior work [151]. There, we argue that packet

padding is effective against fingerprints that rely on packet sizes, at the cost of some overhead,

which also applies to the special case of PBFs considered in this chapter. In summary, a

VPN that pads packets provides an effective defense against inference attacks based on DBFs

(by hiding the destination) and/or PBFs (by obfuscating packet sizes).

Limitations. While our assessment of the feasibility of fingerprinting smart TV apps is made

against the largest smart TV dataset to date, it is not without limitations. In particular,

some smart TV apps require that the user logs in, e.g., subscription-based apps such as

Netflix. As FingerprinTV does not attempt to create accounts and log in, the fingerprints

it extracts for these apps may be different from what can be observed in the wild as the

on-launch traffic may differ depending on the login state. This is a common limitation

of automated measurement studies, e.g., [98, 159, 69, 74], as automating account creation

80

and login is a difficult problem. Some studies approach this limitation by manually logging

in to a subset of the tested apps and/or by relying on third-party authentication such as

Google [117, 118, 69], while others record the key presses involved in the login procedure s.t.

future versions of the same app can be tested automatically [116]. An adversary intent on

extracting (more) precise fingerprints for select smart TV apps can adopt a similar strategy

using FingerprinTV.

Future Directions. In this chapter, we purposely opted for the most conservative design

choices to extract reliable fingerprints. For example, we require that a domain must be

present at least once in all launch samples of some app A for it to be included in A’s DBF,

and, unlike in [151], we do not allow for small variations in packet sizes when considering

packet pairs for inclusion in a PBF. It may be possible to increase fingerprint prevalence and

sizes by relaxing these strict requirements, possibly at the cost of fingerprint reliability and/or

distinctiveness. Future work can study these trade-offs by adjusting existing parameters of

our FingerprinTV framework (both in pre-processing and in the clustering algorithm).

Since network traffic fingerprints may change over time, it would be interesting to perform

a longitudinal analysis to see how the extracted fingerprints evolve, and how often finger-

prints need to be extracted. FingerprinTV facilitates such studies through its automated

data collection, fingerprint extraction, and fingerprint assessment features: the clustering

that is inherently unsupervised in our methodology will identify and extract any updated

fingerprints.

4.10 Summary

We presented FingerprinTV, a methodology and implementation we devised for auto-

matically extracting and evaluating network fingerprints of smart TV apps. By deploying

81

FingerprinTV to the top-1000 Apple TV, Fire TV, and Roku apps, we showed that smart

TV app fingerprinting is highly feasible and effective on all three platforms, as most apps ex-

hibit a fingerprint, and most fingerprints are distinct. The FingerprinTV dataset has been

made publicly available, and we plan to release the FingerprinTV code as well [152].

82

Chapter 5

Seqnature: Packet Sequences as

Network Fingerprints

5.1 Overview

Motivated by the observation made in Section 4.8 that joint use of multiple fingerprinting

techniques improves fingerprint distinctiveness in the context of smart TV apps, this chapter

proposes a general fingerprinting framework, Seqnature, that can identify fingerprints that

are based on any combination of several features extracted from (encrypted) network traffic,

such as server identities and the sizes, directions, and/or order of packets. Seqnature is

platform-agnostic, i.e., Seqnature can be used to identify fingerprints of arbitrary events

on any software/hardware platform, including, but not limited to, smart TVs and IoT.

A fingerprint for event e, as extracted by Seqnature, is the set of packet sequences that

consistently occur when e is triggered. A packet sequence, formally defined in Definition 5.1,

is an n-gram of packets in a TCP stream. Alternatively, a packet sequence can be thought of

as analogous to a substring, but where packets assume the role of characters. Seqnature’s

83

configuration parameters allow the user to define when packet sequences are considered

identical, and to constrain the lengths of packet sequences considered for inclusion in the

fingerprint. This makes it simple to use Seqnature to implement (and combine) exist-

ing fingerprinting techniques (e.g., DBFs and PBFs, see Sections 4.3.1 and 4.3.2), and to

experiment with new fingerprinting techniques.

Definition 5.1. A packet sequence of length n is n consecutive packets within a TCP stream,

after retransmissions and zero-payload packets have been dropped and the packets in the TCP

stream have been ordered by timestamp.

Fingerprinting Framework. An overview of Seqnature is provided in Figure 5.1. To

fingerprint event e on computing device d, Seqnature is provided with T samples of the

network traffic that occurred on d immediately after e was triggered. These raw packet

captures are referred to as traffic samples. The traffic samples are first reduced to only the

TCP packets to/from d that carry payload. The filtered traffic samples are then converted

to tabulated traffic samples by transforming each remaining packet into a vector of features,

where the features are the server the packet was exchanged with, the packet’s size, the

packet’s direction etc.

The core of Seqnature is an iterative procedure, referred to as fingerprint refinement,

which relies on clustering to identify packet sequences that consistently co-occur with e. In

order to identify consistently occurring packet sequences of any possible length n, fingerprint

refinement iteratively considers increasingly shorter packet sequences. Fingerprint refinement

can be customized using a range of parameters. This allows for flexibility in terms of when

two packet sequences observed in different traffic samples are considered the same. For

example, the parameters can be used to specify the allowed variance in packet sizes.

When fingerprint refinement concludes, it outputs a set of clusters of packet sequences which

constitutes the final fingerprint. This fingerprint is also referred to as the seqnature of e,

84

…

Figure 5.1: Overview of Seqnature. To fingerprint event e, Seqnature is provided with T
samples of the network traffic that occurred immediately after e was triggered. Seqnature
has two phases: a preprocessing phase (Section 5.2.1) that extracts TCP stream information
from the raw traffic samples, and an iterative fingerprint refinement phase (Section 5.2.2)
that identifies packet sequences that co-occur with e.

a play on the words “sequence” and “signature”, the latter of which is sometimes used

as a synonym for fingerprint. Throughout the remainder of this chapter, we therefore use

fingerprint and seqnature interchangeably when referring to the fingerprint of some event

e. Each cluster in the resulting seqnature represents a group of packet sequences that are

considered identical, and which appear across a user-defined minimum number of different

traffic samples. The seqnature can be used to identify the occurrence of e in unseen traffic

by checking if, for every cluster in the seqnature, there exists at least one packet sequence

85

in the candidate traffic that would fall in that cluster.

Contributions. The primary contribution of this chapter is Seqnature, a fingerprint-

ing framework that makes it simple to implement, and evaluate the performance of, arbi-

trary fingerprinting techniques that extract fingerprints that are based on packet sequences.

To demonstrate the versatility of Seqnature, we use it to implement two fingerprinting

techniques that extract two different types of fingerprints, namely endpoint-specific packet-

sequence-based fingerprints (EPBFs) and endpoint-based fingerprints (EBFs).

As a secondary contribution, we provide a comparison of the performance of the aforemen-

tioned fingerprinting techniques, not only in the context of smart TV apps, but also in the

context of events on simple IoT devices, such as smart plugs and smart light bulbs. The

results show that almost all smart TV apps, and a large fraction of events on simple IoT

devices, can be fingerprinted using either technique. The extracted fingerprints are also dis-

tinct from other network traffic: the median number of false positives is 0 for EPBFs, and

the general EBF only produces false positives in less than 1% of traffic.

Outline. The remainder of this chapter is structured as follows. Section 5.2 describes

the design and implementation of the Seqnature framework. Section 5.3 defines the two

fingerprinting techniques we consider and explains how they are implemented using Seqna-

ture. Section 5.4 introduces the datasets we use in our evaluation of the two fingerprinting

techniques. Section 5.5 compares the performance of the two fingerprinting techniques. Sec-

tion 5.6 discusses future directions. Section 5.7 concludes the chapter.

5.2 Fingerprinting Framework

In this section, we describe the design and implementation of Seqnature, a framework

for extracting a network fingerprint for any arbitrary event e that triggers network activity

86

on a computing device d. Seqnature has two phases (see Figure 5.1): (i) a preprocessing

phase, described in Section 5.2.1, that extracts all TCP streams from e’s traffic samples and

transforms packets into feature vectors; and (ii) an iterative fingerprint refinement phase,

described in Section 5.2.2, that, by clustering increasingly shorter packet sequences, identifies

packet sequences that consistently appear when e occurs. The final fingerprint of e, also

referred to as the seqnature of e, is the set of these packet sequences, accompanied by

information about how they may vary, as described in Section 5.2.3. Section 5.2.4 describes

a basic algorithm we implement to examine a tabulated traffic sample for the manifestation

of a given seqnature. We use this algorithm to examine our datasets for false positives, i.e.,

when the seqnature of e manifests itself in traffic that does not stem from e.

5.2.1 Preprocessing

The preprocessing phase of Seqnature is summarized in the “Preprocessing” box in Fig-

ure 5.1. This phase consists of two steps: (i) a step that filters packets in the raw traffic

samples; and (ii) a step that vectorizes packets in the raw traffic samples to create a format

suitable for cluster analysis. Below, we detail each step in the context of a single traffic

sample, but all T traffic samples are subjected to the same procedure. It is assumed that

the traffic samples are collected on d’s gateway router and that d is assigned an IP address

from one of the private IP address spaces.

Filtering. The first preprocessing step filters packets in the raw traffic sample so as to only

retain those packets that are relevant for the fingerprinting objective. As we are interested

in identifying fingerprints that are observable upstream from the home router’s WAN port,

the filter only retains IP datagrams to/from d, where either the source or the destination

is a public IP address. However, as most local networks are configured to use a local DNS

resolver by default (the home gateway often assumes this role), DNS messages to/from d are

87

not subject to the public IP address requirement.

For TCP streams, retransmissions and zero-payload packets are dropped prior to cluster

analysis to ensure that the identified seqnature (if any) only comprises packet exchanges

that carry data relevant to the application, but not packet exchanges that are a result of the

intricacies of TCP’s operation under certain network conditions. Ideally, this should make

the resulting seqnature network-agnostic, enabling a seqnature derived from training data

collected in one network to be used for event detection in another network.

The filtering logic may be changed to accommodate different fingerprinting objectives. For

example, to extract fingerprints that are only observable on the LAN, the filter should only

retain IP datagrams to/from d where the other endpoint’s IP address is also in one of the

private address spaces.

Feature Extraction. The second preprocessing step selects all TCP streams from the

filtered traffic sample and transforms each packet into a feature vector. An example of the

output and a description of each feature is provided in Table 5.1. We refer to this format

as a tabulated traffic sample as it lends itself to presentation in table form and is suitable as

input for cluster analysis (Section 5.2.2). The extracted features (i) tie the packet to the TCP

stream it appeared in (the combination of features Event ID, Sample ID, and Stream ID);

(ii) label the packet with the domain name of the server it was exchanged with (Domain);

(iii) order the packet relative to other packets in the same stream (Position in Stream); (iv)

log the packet’s size (Size); and (v) log the packet’s direction relative to d (Direction).

The value for the Domain feature is extracted from the TLS Server Name Indication (SNI),

if the TCP stream wraps a TLS stream that includes a Client Hello message where the SNI

extension is present. Otherwise, the server’s IP address is matched against IP addresses

returned in preceding DNS responses, and Domain is set to the name queried in the most

recent DNS response in which there is an IP address match. If the domain name also cannot

88

Event ID Sample ID Stream ID Domain
Position
in Stream

Size Direction

Identifies the
event e this
packet was
observed for

Identifies the
traffic sample
this packet
appeared in

Identifies the
TCP stream
this packet
pertains to

The domain name
of the server

This packet’s
position within
the TCP stream
it pertains to

This packet’s
size (bytes)

This packet’s
direction
w.r.t. d

28 1 2 scribe.logs.roku.com 1 583 upstream
28 1 2 scribe.logs.roku.com 2 1514 downstream
28 1 2 scribe.logs.roku.com
28 1 2 scribe.logs.roku.com 9 97 downstream
28 1
28 1 6 tuner.pandora.com 1 293 upstream
28 1 6 tuner.pandora.com 2 188 upstream
28 1 6 tuner.pandora.com 3 362 downstream
28 1

Table 5.1: Snippet of a tabulated traffic sample for the Roku app with ID=28 (“Pandora”)
in the FingerprinTV dataset that was collected as part of the work presented in Chapter 4.
Each row represents a single packet.

be determined from DNS, the server’s IP address is used for Domain as a last resort.

The value for the Position in Stream feature is the packet’s position relative to the other

packets in the stream, after retransmissions and packets without TCP payload have been

discarded. The position is derived from the packet’s timestamp, rather than its sequence

number, to form a bidirectional ordering as opposed to two direction-specific orderings.

Timestamp-based ordering should also make it easier to add support for UDP later on.

5.2.2 Fingerprint Refinement

The fingerprint refinement phase of Seqnature is summarized in the “Fingerprint Refine-

ment” box in Figure 5.1. This phase selects packet sequences for inclusion in the seqnature

by identifying identical (or similar) packet sequences that consistently (or often) occur when

e is triggered. The input to fingerprint refinement is the T tabulated traffic samples resulting

from the preprocessing phase described in Section 5.2.1. In summary, fingerprint refinement

(i) forms all possible packet sequences of length n from the TCP streams in the T tabulated

89

traffic samples; (ii) clusters said packet sequences to identify identical (or similar) ones; and

(iii) post-processes the resulting clusters to select clusters for inclusion in the seqnature based

on criteria such as how many of the T traffic samples the packet sequences in a cluster stem

from. Fingerprint refinement is an iterative process that considers increasingly shorter packet

sequences, i.e., the aforementioned steps are repeated for all n ∈ [P , P − 1, ..., nmin], where

P ≥ nmin ≥ 1. The user controls P and nmin using Seqnature’s command-line interface.

P specifies how many packets of each TCP stream should be considered during fingerprint

refinement, and nmin specifies the minimum length of any packet sequence considered for

inclusion in the seqnature. Below, we describe each of the three fingerprint refinement steps

in detail.

Forming Packet Sequences. The first step of each fingerprint refinement iteration forms

all possible packet sequences of length n from the first P packets of each TCP stream in the

T tabulated traffic samples. As a packet sequence is essentially an n-gram of packets in a

TCP stream (see Definition 5.1), Seqnature forms all possible packet sequences of length

n by sliding a window of size n across the first P packets of each TCP stream. An example

of how packet sequences of length n = 4 are formed from the first P = 20 packets of a TCP

stream is provided in Figure 5.2.

pkt1 pkt2 pkt3 pkt4 pkt5 pkt6 pkt21

TC
P

st
re

am

Packet sequence #1
P=20

pkt20… …

…Packet sequence #2

Packet sequence #3

Figure 5.2: Example of how packet sequences of length n = 4 are formed from the first
P = 20 packets of a TCP stream.

90

The parameter P ensures that fingerprint refinement remains computationally tractable for

TCP streams with many packets, e.g., TCP streams carrying large data volumes. Through-

out this chapter, we set P = 20 unless otherwise stated. This choice is grounded in prior

work which has demonstrated that a small prefix of packets of each stream suffices for clas-

sifying IoT traffic, mobile app traffic, and DoT/DoH traffic [120, 119, 137, 82, 18]. Using

a small value for P also makes online fingerprint detection more feasible in comparison to

approaches that need access to all packets in the stream, e.g., those that rely on statistical

measures of packet-level features such as packet size.

Clustering. The second step of each fingerprint refinement iteration clusters the packet

sequences formed in the preceding step to group identical (or similar) packet sequences

together based on a user-defined notion of packet sequence similarity. The resulting clusters

become candidates for inclusion in the fingerprint as they may represent packet exchanges

that co-occur with e. An example clustering of packet sequences of length n = 4 extracted

from T = 3 different traffic samples is provided in Figure 5.3.

Clustering in Seqnature is fully customizable: support for any clustering algorithm avail-

pktw pktw+1 pktw+2 pktw+3

Pk
t S

eq

pktv pktv+1 pktv+2 pktv+3

Pk
t S

eq

pktu pktu+1 pktu+2 pktu+3

Pk
t S

eq

Cluster c1

pktz pktz+1 pktz+2 pktz+3

Pk
t S

eq

pkty pkty+1 pkty+2 pkty+3

Pk
t S

eq

pktx pktx+1 pktx+2 pktx+3

Pk
t S

eq

Cluster c2

…

Figure 5.3: Example clustering of packet sequences of length n = 4 extracted from T = 3
different traffic samples. The color of packets in a packet sequence denotes what traffic
sample the packet sequence stems from. For example, all packet sequences with orange
packets stem from the same traffic sample. The number of packet sequences in a cluster may
vary across clusters (and can be greater than T), but all packet sequences across all clusters
will always be of the same length n, as n only changes between each fingerprint refinement
iteration.

91

able in scikit-learn [106] (or any Python module that adopts its API [30], e.g., hdbscan [94])

can be added with two lines of code; parameters for configuring the algorithm of choice can

be specified using Seqnature’s command-line interface; and any custom distance metric

can be introduced by defining a function in a dedicated module. This configurability leaves

the user in full control of what packet sequences end up in the same cluster, which in turn

allows for the implementation of many different fingerprinting techniques, as demonstrated

in Section 5.3.

Cluster Selection. The third fingerprint refinement step post-processes the clusters formed

in the previous step to determine which, if any, should be included in the seqnature of e.

A cluster of identical (or similar) packet sequences is not necessarily useful as one part of

the seqnature of e as there is no guarantee that all T invocations of e are represented in the

cluster. For example, if the same packet sequence occurs T times in a single traffic sample,

but not in any of the remaining T − 1 traffic samples, a cluster of T packet sequences will be

formed, but such a cluster is obviously not useful for fingerprinting purposes (cluster c2 in

Figure 5.3 illustrates this scenario). For this reason, Seqnature defines a parameter, Tmin,

that is used to specify how many different traffic samples packet sequences in a cluster must

stem from in order for the cluster to be considered valid for inclusion in the seqnature of e.

Throughout this chapter, we set Tmin = T , i.e., the strictest case where a packet sequence

must always co-occur with e for the packet sequence to become part of the seqnature of e.

Finally, each valid cluster is compared against clusters already included in the seqnature

of e to prevent duplicates. Specifically, if a cluster of packet sequences of length nj has

been identified as valid and included in the seqnature, all subsequent fingerprint refinement

iterations operating on packet sequences of length ni, where ni < nj, will give rise to at least

one cluster of packet sequences of length ni that are shorter versions of the packet sequences

of length nj (see Figure 5.4 for an example). Naturally, such clusters should not be included

in the seqnature. Therefore, before including a valid cluster c in the seqnature, Seqnature

92

pktz pktz+1 pktz+2

Pk
t S

eq

pkty pkty+1 pkty+2

Pk
t S

eq

pktx pktx+1 pktx+2

Pk
t S

eq

Cluster c2

pktz pktz+1 pktz+2 pktz+3

Pk
t S

eq
pkty pkty+1 pkty+2 pkty+3

Pk
t S

eq

pktx pktx+1 pktx+2 pktx+3

Pk
t S

eq

Cluster c1

pktz+1 pktz+2 pktz+3

Pk
t S

eq

pkty+1 pkty+2 pkty+3

Pk
t S

eq
pktx+1 pktx+2 pktx+3

Pk
t S

eq

Cluster c3

n = 4

n = 3

Figure 5.4: Example clusterings for two successive fingerprint refinement iterations (n = 4
and n = 3). When n decreases, at least one cluster containing shorter versions of packet
sequences that have already been included in the seqnature will be formed: in this example,
clusters c2 and c3 both (exclusively) consist of shorter versions of the packet sequences in
cluster c1.

first compares all packet sequences in c against the packet sequences in the clusters that

are already in the seqnature. If any packet sequence s in c is already accounted for in the

seqnature, in the sense that a longer version of s exists in one of the clusters in the seqnature,

c is discarded. To make packet sequence lookup more efficient, each cluster in the seqnature

is stored as a generalized suffix tree of the packet sequences it contains [92, 154, 107].

93

5.2.3 Representations of the Resulting Fingerprint

The final seqnature of e is the set of clusters selected for inclusion in the seqnature when

fingerprint refinement concludes, i.e., when n < nmin. The seqnature can be used to identify

the occurrence of e in unseen traffic by checking if, for every cluster in the seqnature, there

exists at least one packet sequence in the candidate traffic that would fall in that cluster.

To simplify the implementation of such an algorithm, and to make visual inspection of

Complete seqnature

Cluster 1 (M packet sequences, each of length m)

Domain: x1,1,1
Size: y1,1,1
Direction: z1,1,1

Domain: x1,1,2
Size: y1,1,2
Direction: z1,1,2

Domain: x1,1,m
Size: y1,1,m
Direction: z1,1,m

…

Domain: x1,2,1
Size: y1,2,1
Direction: z1,2,1

Domain: x1,2,2
Size: y1,2,2
Direction: z1,2,2

Domain: x1,2,m
Size: y1,2,m
Direction: z1,2,m

…

Domain: x1,M,1
Size: y1,M,1
Direction: z1,M,1

Domain: x1,M,2
Size: y1,M,2
Direction: z1,M,2

Domain: x1,M,m
Size: y1,M,m
Direction: z1,M,m

…

…

Cluster 2 (N packet sequences, each of length n)

Domain: x2,1,1
Size: y2,1,1
Direction: z2,1,1

Domain: x2,1,2
Size: y2,1,2
Direction: z2,1,2

Domain: x2,1,n
Size: y2,1,n
Direction: z2,1,n

…

Domain: x2,2,1
Size: y2,2,1
Direction: z2,2,1

Domain: x2,2,2
Size: y2,2,2
Direction: z2,2,2

Domain: x2,2,n
Size: y2,2,n
Direction: z2,2,n

…

Domain: x2,N,1
Size: y2,N,1
Direction: z2,N,1

Domain: x2,N,2
Size: y2,N,2
Direction: z2,N,2

Domain: x2,N,n
Size: y2,N,n
Direction: z2,N,n

…

…
(a) Complete form.

Summary seqnature

Summary packet sequence for cluster 1

Domain: {x1,1,1, x1,2,1, … x1,M,1}
Min size: min(y1,1,1, y1,2,1, … y1,M,1)
Max size: max(y1,1,1, y1,2,1, … y1,M,1)
Direction: {z1,1,1, z1,2,1, … z1,M,1}

…
Domain: {x1,1,2, x1,2,2, … x1,M,2}
Min size: min(y1,1,2, y1,2,2, … y1,M,2)
Max size: max(y1,1,2, y1,2,2, … y1,M,2)
Direction: {z1,1,2, z1,2,2, … z1,M,2}

Domain: {x1,1,m, x1,2,m, … x1,M,m}
Min size: min(y1,1,m, y1,2,m, … y1,M,m)
Max size: max(y1,1,m, y1,2,m, … y1,M,m)
Direction: {z1,1,m, z1,2,m, … z1,M,m}

Summary packet sequence for cluster 2

Domain: {x2,1,1, x2,2,1, … x2,N,1}
Min size: min(y2,1,1, y2,2,1, … y2,N,1)
Max size: max(y2,1,1, y2,2,1, … y2,N,1)
Direction: {z2,1,1, z2,2,1, … z2,N,1}

Domain: {x2,1,2, x2,2,2, … x2,N,2}
Min size: min(y2,1,2, y2,2,2, … y2,N,2)
Max size: max(y2,1,2, y2,2,2, … y2,N,2)
Direction: {z2,1,2, z2,2,2, … z2,N,2}

Domain: {x2,1,n, x2,2,n, … x2,N,n}
Min size: min(y2,1,n, y2,2,n, … y2,N,n)
Max size: max(y2,1,n, y2,2,n, … y2,N,n)
Direction: {z2,1,n, z2,2,n, … z2,N,n}

…

(b) Summary form.

Figure 5.5: Example of a seqnature that comprises two clusters, represented in complete
form and in summary form.

94

seqnatures easier, we condense the resulting seqnature by replacing each cluster of packet

sequences with a single summary packet sequence. We describe this summarization below

and provide an example of the same seqnature before and after summarization in Figure 5.5.

Since n only changes between each fingerprint refinement iteration, each cluster in the final

seqnature will only contain packet sequences of the same length. Therefore, we can summa-

rize each cluster c as a single packet sequence p in which the packet at index i, p[i], encodes,

for each feature f , the range of values f assumes for packet i across all packet sequences in c.

For some features, this can simplify the representation significantly. For example, for packet

size, we only store the minimum and the maximum size observed across all packets at index

i. For other features, such as the domain and the packet’s direction, we must store the set of

values observed across all packets at index i in order to accommodate user-defined distance

metrics that do not require these features to assume identical values, e.g., a distance metric

that only requires the eSLDs, but not the FQDNs, to match.

5.2.4 Fingerprint Matching

The Seqnature framework includes functionality for examining a tabulated traffic sample

for the manifestation of a seqnature, as represented in summary form (see Section 5.2.3).

This functionality is used in Section 5.5.2, where we evaluate the distinctiveness of different

types of seqnatures. The seqnature matching algorithm declares a match of seqnature s in

tabulated traffic sample t if every summary packet sequence in s has at least one match in

t. We briefly describe the algorithm below.

To limit memory usage, the algorithm reads and processes t packet-by-packet, as opposed

to reading all packets in t into memory at once. For each TCP stream in t, the algorithm

maintains a buffer of the nmax most recent packets, where nmax is the length of the longest

summary packet sequence in s. Whenever a new packet is read from t and added to its

95

respective TCP stream’s buffer b, every summary packet sequence p in s, for which no match

has been found in t, is compared to the n most recent packets in b, where n is the number of

packets in p and n ≤ nmax. In order to facilitate detection of any arbitrary, user-defined type

of seqnature, Seqnature allows the user the option to define their own custom logic for

when the n most recent packets in b is considered a match of p. The algorithm terminates

when either (i) a match has been found in t for all packet sequences in s, in which case there

is a match of s in t; or (ii) all packets in t have been processed, in which case there is no

match of s in t.

5.3 Fingerprinting Techniques

In this section, we demonstrate the versatility of Seqnature by using it to implement two

different fingerprinting techniques. This section describes the two fingerprinting techniques

and how Seqnature is configured to implement them. An evaluation of the performance

of each fingerprinting technique is deferred to Section 5.5.

5.3.1 Endpoint-Specific Packet-Sequence-Based Fingerprints

The first fingerprinting technique we implement illustrates how Seqnature can be used to

combine existing fingerprinting techniques. This fingerprinting technique identifies finger-

prints that can be thought as a combination of DBFs and PBFs (see Sections 4.3.1 and 4.3.2),

with a few additional enhancements, namely that Internet endpoints are identified by their

IP addresses when no domain name information is available, and packet exchanges are not

limited to just packet pairs, but can be packet sequences of any length between P and 2.

We refer to a fingerprint identified by this fingerprinting technique as an endpoint-specific

packet-sequence-based fingerprint, or EPBF for short. EPBFs are rooted in the hypothesis

96

that whenever the event e occurs, some subset of data is always exchanged with the same

server(s): an EPBF for the event e, formalized in Definition 5.2, is the set of packet sequences

that are consistently exchanged with the same endpoints whenever e occurs.

Definition 5.2. The endpoint-specific packet-sequence-based fingerprint (EPBF) of event e

is the set S of packet sequences s.t. for every packet sequence p in S, p appears at least once

in at least Tmin of the T traffic samples for e. Two packet sequences p1 and p2 are considered

identical iff (i) |p1| = |p2|, i.e., p1 and p2 are the same length; (ii) p1 and p2 are exchanged

with the same endpoint, where the endpoint is identified by its FQDN, when available, or

otherwise by its IP address; (iii) the directions of packets at corresponding indices in p1 and

p2 are identical; and (iv)
∑n

i=1 ||p1[i]| − |p2[i]|| ≤ h, i.e., the sum of absolute differences in

sizes of packets at corresponding indices in p1 and p2 is below a user-defined threshold h.

To enable extraction of EPBFs using Seqnature, we define a distance metric that considers

the distance between packet sequences p1 and p2 to be maximal if either (i) p1 and p2 are

exchanged with different endpoints (endpoints are considered different if they are identified

by different FQDNs, different IP addresses, or if one endpoint is identified by an FQDN while

the other is identified by an IP address); or (ii) any pair of packets at corresponding indices

in p1 and p2 go in opposite directions. Otherwise, the distance is
∑n

i=1 ||p1[i]| − |p2[i]||, i.e.,

the sum of absolute differences in sizes of packets at corresponding indices in p1 and p2.

In Section 5.5, we extract, and evaluate the performance of, the strictest possible case of

EPBFs, i.e., when Tmin = T and h = 0 (see Definition 5.2). In other words, a cluster

must contain packet sequences from all T traffic samples to be considered for inclusion in

the EPBF, and packet sequences must be identical to end up in the same cluster. This

strict case of EPBFs is achieved by configuring Seqnature to use the DBSCAN clustering

algorithm [42] with parameters ϵ = 0 and MinPts = T = 10.

97

5.3.2 Endpoint-Based Fingerprints

The second fingerprinting technique we implement illustrates how Seqnature can also

be used to implement fingerprinting techniques that are not focused on identifying similar

packet sequences, but instead focus on stream-wide features. A fingerprint extracted using

this fingerprinting technique is the set of endpoints that are consistently contacted whenever

the event e occurs. We refer to such a fingerprint as an endpoint-based fingerprint (EBF)

and formalize it in Definition 5.3. EBFs can be thought of as slightly enhanced DBFs (see

Section 4.3.1), as they may include endpoints where the domain name cannot be determined.

Definition 5.3. The endpoint-based fingerprint (EBF) of event e is the set S of endpoints

s.t. for every endpoint d in S, d is contacted in at least Tmin of the T traffic samples for e.

An endpoint is identified by its FQDN, or, when no domain name information is available,

by its IP address.

To enable extraction of EBFs using Seqnature, we define a distance metric that considers

the distance between packet sequences p1 and p2 to be 0 if p1 and p2 are exchanged with the

same endpoint, i.e., if p1 and p2 are exchanged with the same FQDN or the same IP address.

Otherwise, the distance is maximal. As the endpoint is the same for all packets in a stream,

there is no need to analyze more than one packet per stream during fingerprint refinement.

Therefore, we use P = nmin = 1 when extracting EBFs.

In Section 5.5, we extract, and evaluate the performance of, the strictest possible case of

EBFs, i.e., when Tmin = T . In other words, we extract EBFs that only consist of the

endpoints that are contacted in all traffic samples for the event e. This strict case of EBFs

is achieved by configuring Seqnature to use the DBSCAN clustering algorithm [42] with

parameters ϵ = 0 and MinPts = T = 10.

98

5.4 Datasets

To illustrate how Seqnature facilitates comparisons of different fingerprinting techniques,

we use Seqnature’s implementations of the fingerprinting techniques described in Sec-

tion 5.3 to extract fingerprints from two datasets. Taken together, these datasets span

different software and hardware categories: smart TV apps and events on simple IoT de-

vices, such as smart plugs and smart light bulbs. This section introduces the datasets and

describes how we preprocess them. Section 5.5 provides the results.

5.4.1 FingerprinTV: Smart TV Apps

As our primary objective in this dissertation is to shed light on the privacy implications of

smart TVs, our main dataset is the FingerprinTV dataset [156], which was collected as part

of the work described in Chapter 4. In summary, the dataset consists of 10 samples of the

network traffic that each of the top-1000 apps on Apple TV, Fire TV, and Roku generate at

launch time, for a total of 30K traffic samples (10K per smart TV platform). See Section 4.2

for details on how the apps were selected and how network traffic was collected. Aside from

the preprocessing performed as part of the fingerprinting procedure (see Section 5.2.1), no

preprocessing is necessary as this dataset is already in the format expected by Seqnature.

5.4.2 PingPong: Events on IoT Devices

The second dataset we consider consists of network traffic that simple IoT devices, such as

smart plugs and smart light bulbs, generate when an event is triggered, e.g., when the user

toggles a smart plug ON using the companion app of the smart plug. We refer to this dataset

as the PingPong dataset as it was published alongside [151], which proposed a fingerprinting

technique of the same name.

99

The PingPong dataset is made available as one large packet capture (PCAP file) for each

combination of IoT device, event, and scenario. As Seqnature expects T separate traffic

samples, we split the full PCAP file using the event timestamps provided as part of the Ping-

Pong dataset. For each split, we include 15 seconds of traffic following the event timestamps

in the resulting traffic sample. This duration is chosen to stay consistent with [151].

The PingPong dataset spans 19 IoT devices, and there are between two and six different

events per device. Some devices are tested in different scenarios: local phone, remote phone,

and/or IFTTT. In the local (remote) phone scenario, the event is triggered using the com-

panion app of the IoT device from a smartphone that is (not) part of the same LAN as the

IoT device. In the IFTTT scenario, the event is triggered using IFTTT [2]. When extracting

fingerprints from the PingPong dataset using Seqnature, we attempt to extract a finger-

print for each combination of IoT device, event, and scenario, i.e., each such combination is

analogous to the notion of an event e used throughout Sections 5.2 and 5.3. There are 140

such combinations. While the PingPong dataset contains 50 invocations of each event, we

only consider the first 10 invocations in order to keep the number of traffic samples consis-

tent across datasets. The PingPong dataset, as considered here, therefore encompasses 1400

traffic samples.

5.5 Fingerprinting Results

In this section, we compare the performance of the two fingerprinting techniques we imple-

ment using Seqnature (see Section 5.3). We start by reporting the number of fingerprints

discovered by each fingerprinting technique in Section 5.5.1. Then, in Section 5.5.2, we ex-

amine if the extracted fingerprints are distinct among other traffic by analyzing how many

false positives they give rise to.

100

Subdivision Events Prevalence
EPBFs EBFs

FingerprinTV
Apple TV 1000 96% (958) 96% (959)
Fire TV 1000 99% (993) 100% (997)
Roku 1000 100% (1000) 100% (1000)

PingPong
Full dataset 140 66% (92) 81% (113)

Table 5.2: Prevalence of EPBFs and EBFs in the FingerprinTV and PingPong datasets.
The prevalence is the percentage of events in the dataset that exhibit a fingerprint.

5.5.1 Prevalence

Table 5.2 reports the prevalence of EPBFs and EBFs in the two datasets from Section 5.4.

The prevalence is the percentage of events in the respective dataset that exhibit the respective

type of fingerprint.

Smart TV Apps. The two fingerprinting techniques from Section 5.3 perform similarly in

terms of the number of smart TV apps they are able to fingerprint, as nearly all smart TV

apps exhibit both EPBFs and EBFs. This is somewhat surprising as EPBFs are essentially

stricter special cases of EBFs, where not only the endpoints, but also the packet sizes and

the packet directions, need to stay consistent across traffic samples. Thus, if a smart TV

app consistently contacts one or more endpoints, in most cases, a subset of the app’s com-

munication with at least one of those endpoints will be deterministic, i.e., there will be at

least one sequence of two or more packets where the packet sizes and the packet directions

stay consistent across all traffic samples.

When we compare the prevalence of EBFs to the prevalence of DBFs (see Section 4.5.1), we

observe that EBFs’ use of the endpoint’s IP address as a fallback, when no domain name

information is available, results in a slight increase in the number of Fire TV apps that can

be fingerprinted.

101

The astute reader may question why EPBFs are more prevalent than PBFs (see Section 4.5.2),

as EPBFs require the endpoint, the packet sizes, and the packet directions to stay consistent

across traffic samples, whereas PBFs only require the packet sizes and the packet directions

to stay consistent. The explanation for this is that each of the PBFs considered in Sec-

tion 4.5.2 only consists of the packet-pairs that appear T times in total across the T traffic

samples (see Definition 4.2 and the end of Section 4.3.1). This upper bound on the number

of occurrences of a packet-pair stem from the fact that PBFs were extracted using Ping-

Pong [151], which discards packet-pairs that occur multiple times per event. In contrast, an

EPBF only requires a packet sequence to occur in at least Tmin traffic samples, but does not

constrain how many times the packet sequence is allowed to occur within each traffic sample

or in total across the T traffic samples.

Events on IoT Devices. The prevalence of EPBFs and EBFs in the PingPong dataset

reflects that EPBFs are stricter special cases of EBFs: 81% of events on IoT devices exhibit

EBFs, but only 66% exhibit EPBFs.

The prevalence of EPBFs and EBFs is significantly lower in the PingPong dataset than in

the FingerprinTV dataset. However, some devices in the PingPong dataset do not generate

external TCP traffic for some event and scenario combinations (recall from Section 5.2.1 that

our focus in this work is on fingerprints that are observable upstream from the home router’s

WAN port). Naturally, these events are impossible to fingerprint using any fingerprinting

technique that operates on external TCP traffic. If we only consider events where the target

device exchanges at least one TCP packet with an Internet endpoint in every traffic sample,

then the total number of events in the PingPong dataset decreases from 140 to 116. With

this baseline, the prevalence becomes 97% and 79% for EBFs and EPBFs, respectively.

102

5.5.2 Distinctiveness

In this section, we demonstrate how Seqnature can be used to compare the discriminative

power of different types of fingerprints. The relative discriminative power of different types

of fingerprints can be compared by examining how distinct fingerprints of each type are

among other traffic. Seqnature facilitates such comparisons by (i) making it easy to define

and extract different types of fingerprints; and (ii) providing functionality that searches a

dataset for manifestations of each fingerprint.

We refer to a manifestation of the fingerprint, F (e1), of event e1 in a traffic sample for event

e2, where e1 ̸= e2, as a false positive. We compare the discriminative power of EPBFs

and EBFs by (i) searching all traffic samples of each dataset for manifestations of each and

every EPBF and EBF; and then (ii) summarizing, using statistical measures, how many false

positives the general EPBF and the general EBF give rise to. This false positive analysis is

a more comprehensive evaluation of the fingerprints’ discriminative power than the notion

of distinctiveness used throughout Chapter 4. In Chapter 4, we only compare each app’s

fingerprint to all other apps’ fingerprints, i.e., an app’s fingerprint is only compared to the

subset of traffic that is selected for inclusion in other apps’ fingerprints. Here, we compare

each fingerprint against all traffic in each dataset, including traffic that does not find its way

into any fingerprint.

When analyzing the discriminative power of each type of fingerprint, we report the total

number of false positives the general fingerprint gives rise to, but also the number of different

events these false positives are spread across. Recall from Section 5.4 that each dataset

contains T = 10 traffic samples for each event. Now, assume that we identify 10 false

positives for the fingerprint, F (e), of some event e. These 10 false positives could stem

from manifestations of F (e) in 10 traffic samples from 10 different events, or from F (e)

consistently appearing in all traffic samples for a single event—or somewhere in between

103

these two extremes. Therefore, if we only consider the total number of false positives for each

fingerprint, when we report aggregate results for all fingerprints in each dataset, it becomes

difficult to discern if the false positives are spread across traffic samples for many different

events, or if they repeatedly occur in most/all traffic samples for a single/few event(s). In

our view, the number of different events the false positives are spread across is therefore a

better measure of how distinct a fingerprint is among a wide variety of other traffic.

Comparison of False Positives for EPBFs and EBFs. Tables 5.3 and 5.4 summarize,

using statistical measures, how many false positives a single EPBF and a single EBF, respec-

tively, produce, when (subdivisions of) the datasets introduced in Section 5.4 are searched

for false positives. Each “Total” column reports the number of false positives across all

traffic samples in the respective dataset, and each “Spread” column reports the number of

different events in the respective dataset that give rise to one or more false positives.

As evident from Table 5.3, the mode and the median number of false positives is 0 across the

board, which means that the general EPBF never manifests itself in traffic from other events.

The within-platform median number of false positives is slightly larger for Apple TV, Roku,

and PingPong EBFs (see the top-left to bottom-right diagonal of Table 5.4). Nevertheless,

these medians are still well below 1% of the total number of traffic samples and events in

each dataset (see Section 5.4), and the general EBF is thus distinct from the vast majority

of other events’ traffic.

In total, this comparison of EPBFs and EBFs suggests that the additional complexity of

EPBFs may not be worthwhile if the use case for the fingerprints can tolerate a few false

positives. However, a limitation of this closed-world false positive test is that each fingerprint

is only compared against traffic from a single event at a time. Most gateways in real-world

home networks use Network Address Translation (NAT), which makes traffic from multiple

devices appear as traffic from a single device. This increases the potential for false positives,

as a false positive will arise whenever the union of traffic from all devices in the home

104

Target dataset
Apple TV

(FingerprinTV)

Fire TV
(FingerprinTV)

Roku
(FingerprinTV)

PingPong

Fingerprints Total Spread Total Spread Total Spread Total Spread

Apple TV
(FingerprinTV)

958 EPBFs

0.00
5958.00

0.00
0.00

357.95
1206.09

0.00
694.00
0.00
0.00
47.05

156.66

0.00
30.00
0.00
0.00
0.03
0.97

0.00
3.00
0.00
0.00
0.00
0.10

0.00
10.00
0.00
0.00
0.01
0.32

0.00
1.00
0.00
0.00
0.00
0.03

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

Fire TV
(FingerprinTV)

993 EPBFs

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
931.00
0.00
0.00
14.18
77.87

0.00
118.00
0.00
0.00
1.99

10.21

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

Roku
(FingerprinTV)

1000 EPBFs

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
4956.00

0.00
0.00

184.49
737.40

0.00
496.00
0.00
0.00
21.94
80.73

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

PingPong
92 EPBFs

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
30.00
0.00
0.00
5.38
8.96

0.00
3.00
0.00
0.00
0.59
0.92

Table 5.3: Number of false positives per EPBF (minimum / maximum / mode / median /
mean / standard deviation). Total: total number of false positives across all traffic samples
in the dataset. Spread: number of different events in the dataset that give rise to one or
more false positives.

network contains a manifestation of the fingerprint, even when no single device generates

traffic that matches the fingerprint. As EBFs only require the set of endpoints to match, but

pay no attention to the data exchanged with said endpoints, it is plausible that EBFs may

generate (significantly) more false positives than EPBFs in real-world settings. We leave a

more exhaustive evaluation of false positives to future work as our objective here is not to

definitively rank EPBFs and EBFs w.r.t. their respective costs and benefits, but rather to

105

Target dataset
Apple TV

(FingerprinTV)

Fire TV
(FingerprinTV)

Roku
(FingerprinTV)

PingPong

Fingerprints Total Spread Total Spread Total Spread Total Spread

Apple TV
(FingerprinTV)

959 EBFs

0.00
6238.00

0.00
10.00
590.24

1557.30

0.00
696.00
0.00
2.00
65.39

173.31

0.00
1350.00

0.00
0.00
8.25

65.68

0.00
135.00
0.00
0.00
0.86
6.83

0.00
1696.00

0.00
0.00
4.11

69.29

0.00
173.00
0.00
0.00
0.52
7.73

0.00
10.00
0.00
0.00
0.01
0.33

0.00
2.00
0.00
0.00
0.01
0.09

Fire TV
(FingerprinTV)

997 EBFs

0.00
380.00
0.00
0.00
0.38

12.03

0.00
38.00
0.00
0.00
0.38
1.20

0.00
1799.00

0.00
0.00
48.32

190.37

0.00
184.00
0.00
0.00
5.21

20.23

0.00
6.00
0.00
0.00
0.01
0.19

0.00
2.00
0.00
0.00
0.00
0.06

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

Roku
(FingerprinTV)

1000 EBFs

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
9990.00

0.00
40.00
941.56

2273.63

0.00
999.00
0.00
4.00
96.50

227.50

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

PingPong
113 EBFs

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
128.00
10.00
10.00
27.54
29.93

0.00
13.00
1.00
1.00
2.90
3.07

Table 5.4: Number of false positives per EBF (minimum / maximum / mode / median /
mean / standard deviation). Total: total number of false positives across all traffic samples
in the dataset. Spread: number of different events in the dataset that give rise to one or
more false positives.

demonstrate how Seqnature facilitates comparisons of different fingerprinting techniques.

5.6 Future Directions

The work presented in this chapter is ongoing. Going forward, we plan to (i) analyze the

extracted EPBFs and EBFs in further detail; and (ii) use Seqnature to implement and

106

evaluate additional fingerprinting techniques. We outline these plans below.

5.6.1 Further Analysis of EPBFs and EBFs

EPBFs and EBFs with Many False Positives. While the general EPBF and the general

EBF produce very few false positives, a small subset of EPBFs and EBFs give rise to many

false positives, as evident from the “maximum” entries in cells across the top-left to bottom-

right diagonals of Tables 5.3 and 5.4. We plan to examine these fingerprints in more detail

to understand why they have little discriminative power.

Preliminary observations indicate that if an EPBF of a smart TV app gives rise to many

false positives, it is generally because the EPBF only comprises a few packet sequences that

are exchanged with platform-specific endpoints. These packet exchanges likely stem from

the app’s use of operating system (OS) services that incur network activity. If an EPBF only

consists of these packet exchanges, it will manifest itself in traffic from all other apps that

also utilize these OS services. This also helps explain why most false positives for EPBFs are

within-platform (i.e., fall along the top-left to bottom-right diagonal of Table 5.3): if most

apps consistently utilize these OS services, then the resulting packet exchanges will become

part of most apps’ EPBFs, which will make the EPBFs distinct from traffic of apps on other

platforms, as apps on other platforms will not utilize these OS services and therefore not

produce the corresponding packet exchanges.

False Positives in NAT’ed Traffic from Multiple Devices. Recall from Section 5.5.2

that NAT increases the potential for false positives as NAT makes traffic from multiple

devices appear as traffic from a single device, and a false positive will therefore arise if the

combination of traffic from all devices in the network contains the fingerprint. To enable

an evaluation of the number of false positives in such scenarios, one option is to simulate

NAT’ed traffic by combining traffic samples from a set of events E into a single traffic sample

107

and then examining the resulting traffic sample for false positives of the fingerprint, F (e),

of event e, where e /∈ E.

5.6.2 Additional Fingerprinting Techniques

To enable a comparison of the relative importance of different traffic features, we plan to

use Seqnature to implement and evaluate additional fingerprinting techniques that con-

sider different features. For example, we plan to implement a fingerprinting technique that

identifies fingerprints that consist of packet sequences where the packet sizes and packet

directions stay consistent across traffic samples, irrespective of what endpoints these packet

sequences are exchanged with. By comparing the number of false positives for this finger-

printing technique to the number of false positives for EBFs, we can provide intuition about

whether the endpoint is the most important feature in EPBFs (as the results presented in

Section 5.5.2 suggest), or if the combination of packet size and packet direction result in

similar discriminative power.

We also plan to experiment with the granularity of individual features to investigate if the

fingerprints retain their discriminative power when the granularity of a feature is reduced. For

example, we intend to use Seqnature to both implement fingerprints that comprise the set

of consistently contacted FQDNs (i.e., DBFs, see Section 4.5.1), as well as fingerprints that

comprise the set of consistently contacted eSLDs. If the latter has comparable discriminative

power, it will generally be the preferred type of fingerprint as it will often be more widely

applicable than DBFs: it is not uncommon for subdomains to contain regional identifiers,

and some DBFs can therefore only be used in a specific region.

108

5.7 Summary

In this chapter, we presented Seqnature, a general fingerprinting framework that makes

it simple to implement, and evaluate the performance of, arbitrary fingerprinting techniques

that extract network fingerprints that are based on packet sequences. We demonstrated

the versatility of Seqnature by implementing two different fingerprinting techniques. We

used these two fingerprinting techniques to extract fingerprints for smart TV apps, but also

for events on simple IoT devices. We examined the discriminative power of the extracted

fingerprints by relying on Seqnature’s ability to search network traffic for false positives

and found that most fingerprints, extracted using either of the two fingerprinting techniques,

are distinct from other traffic. By taking similar steps, future work can easily compare the

performance of multiple different fingerprinting techniques. To this end, we plan to make

Seqnature publicly available.

109

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we studied the privacy implications of smart TVs using a network

measurement approach. In Chapter 3, we conducted a large-scale measurement study of

the advertising and tracking ecosystems of different smart TV platforms. Network traf-

fic from smart TVs used in the wild revealed that smart TVs connect to well-known and

platform-specific advertising and tracking services (ATSes). To understand if this behavior

was attributable to select few apps, or a general theme across smart TV apps, we devel-

oped software tools that automatically test Roku and Fire TV apps. Using these tools, we

collected network traffic from the top-1000 Roku and Fire TV apps. Our analysis of this

traffic revealed that most apps contact between one and five different ATSes, while about

10% of Roku and Fire TV apps contact 20+ and 10+ ATSes, respectively. We observed that

some ATS organizations only operate on one platform, suggesting that the ATS ecosystems

of different smart TV platforms have substantial differences. We also evaluated DNS-based

blocklists’ ability to prevent smart TVs from accessing ATSes and found that even smart

110

TV-specific blocklists miss ads and incur functionality breakage. Finally, we found (i) that

hundreds of apps exfiltrate personally identifiable information (PII) to third parties and plat-

form domains; and (ii) alarming evidence of joint exposure of the advertising ID and static

PII values, which effectively eliminates the user’s ability to opt out of ad personalization.

In Chapter 4, we examined if an in-network observer, e.g., an Internet Service Provider

(ISP), could infer what smart TV app is launched. To facilitate this study, we designed

and implemented FingerprinTV, which is a fully automated methodology for extracting

three different kinds of network fingerprints from the network traffic of smart TV apps and

assessing the resulting network fingerprints’ performance. We applied FingerprinTV to

the top-1000 apps of the three most popular smart TV platforms, namely Roku, Fire TV,

and Apple TV. The results revealed that smart TV app network fingerprinting is feasible

and effective: even the least prevalent type of fingerprint manifested itself in at least 68%

of apps of each platform, and up to 89% of fingerprints uniquely identified a specific app

when two fingerprinting techniques were used together. We analyzed apps that exhibited

identical fingerprints in further detail and found that these apps would often stem from the

same developer, or had been built using the same “no code” toolkit. We also found that

many apps that were present on all three platforms exhibited platform-specific fingerprints.

In Chapter 5, we expanded our scope beyond smart TVs and devised a general finger-

printing framework, Seqnature, which can be used to identify network fingerprints of any

arbitrary event e on any software/hardware platform, including, but not limited to, smart

TVs. Through a range of customizable parameters, Seqnature enables both joint and

separate use of the fingerprinting techniques considered in Chapter 4, and makes it simple to

implement any fingerprinting technique that can be formulated as a problem of identifying

packet exchanges that consistently appear when the fingerprinted event e is triggered. We

demonstrated how Seqnature facilitates comparisons of different fingerprinting techniques

by using it to implement two different fingerprinting techniques. We used the two finger-

111

printing techniques to extract fingerprints for smart TV apps and for events on simple IoT

devices. Both fingerprinting techniques were capable of fingerprinting almost all smart TV

apps as well as the majority of events on IoT devices. We found that one fingerprinting

technique produced fingerprints that had more discriminative power, as these fingerprints

gave rise to slightly fewer false positives than the fingerprints extracted using the other fin-

gerprinting technique. However, the other fingerprinting technique is less compute-intensive

and may therefore be preferable in scenarios where computing resources are limited and a

few false positives can be tolerated.

6.2 Perspective

Smart TVs offer convenient access to rich entertainment, but this comes at the cost of

privacy as most smart TV apps are monetized through behavioral advertising, which relies

on tracking to profile users. Our analysis of advertising and tracking on smart TVs has

revealed that tracking is pervasive in smart TV apps when smart TVs are used in their

default configurations. As opting out of tracking is not straightforward [54], and since some

smart TVs require the user to agree to some minimum level of data collection [33], privacy-

conscious use of smart TVs is a luxury reserved for advanced users. There is thus a need for

legislative action to cause a shift from the current consent-based model, to a model in which

settings are required to be privacy-friendly by default.

Due to the closed nature of most smart TV platforms, privacy enhancing tools are generally

limited to DNS-based blocklists. Since ATS ecosystems of different smart TV platforms

appear to have substantial differences, blocklists must be tailored to each smart TV platform.

Unfortunately, this is a daunting task, as most blocklists are manually curated. There is

therefore a need for additional research on how to automate blocklist generation for smart

TVs. Such research may draw inspiration from recent inroads made on automatic blocklist

112

generation for websites [78]. To facilitate research on automatic blocklist generation for Roku

and Fire TV, we have made our software tools that automate interaction with Roku and

Fire TV apps available [158, 157].

As discussed in Section 4.9, users can rely on a VPN that pads packets to prevent in-

network observers, e.g., their ISPs, from inferring their smart TV app usage. However, this

adds additional network overhead, which is not ideal as most smart TV apps are already

bandwidth-intensive as they are used to stream video content. Moreover, the average user

cannot be expected to posses the technical know-how necessary to configure a VPN, especially

if the smart TV platform does not support on-device VPNs, in which case the only option

is to configure the home router to tunnel all WAN traffic through a VPN. Smart TV app

developers and operators can, with relatively little effort, help protect their users from being

profiled using simple fingerprinting techniques, such as DBFs (see Section 4.3.1), by updating

their apps and servers to use DNS-over-HTTPS/DNS-over-TLS (DoH/DoT) in combination

with Encrypted SNI (ESNI). However, this only offers limited protection, as most smart TV

apps connect to third-party servers, which the smart TV app developer/operator does not

control and therefore cannot configure to use ESNI. The smart TV app developer/operator

should therefore consider proxying their app’s requests to third-party servers through their

own infrastructure to eliminate these servers from their app’s DBF.

113

Bibliography

[1] Crunchbase. https://www.crunchbase.com/. [Online; accessed 2019-08-29].

[2] IFTTT. https://ifttt.com.

[3] OpenDNS Domain Tagging. https://community.opendns.com/domaintagging/.
[Online; accessed 2019-08-24].

[4] VirusTotal. https://www.virustotal.com/. [Online; accessed 2019-08-24].

[5] Ooyala IQ SDK for Roku. https://github.com/ooyala/iq-sdk-roku, 2015. [Online;
accessed 2019-04-22].

[6] Connected TV Advertising is Surging. https://www.videonuze.com/article/

connected-tv-advertising-is-surging, 2017. [Online; accessed 2019-05-10].

[7] AntMonitor open-source. https://github.com/UCI-Networking-Group/

AntMonitor, 2018. [Online; accessed 2019-05-10].

[8] Amazon: Smart TVs. https://www.amazon.com/smart-tv-store/b?ie=UTF8&

node=5969290011, 2019. [Online; accessed 2019-05-10].

[9] Android tcpdump. https://www.androidtcpdump.com/, 2019. [Online; accessed
2019-04-11].

[10] Customising Sources for Ad Lists. https://github.com/pi-hole/pi-hole/wiki/

Customising-Sources-for-Ad-Lists, 2019.

[11] MoaAB: Mother of All AD-BLOCKING. https://forum.xda-developers.com/

showthread.php?t=1916098, 2019. [Online; accessed 2019-04-22].

[12] Pi-Hole: A black hole for Internet advertisements. https://pi-hole.net/, 2019.
[Online; accessed 2019-05-11].

[13] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti,
A.-R. Sadeghi, and S. Uluagac. Peek-a-boo: I see your smart home activities, even
encrypted! In Proceedings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’20, page 207–218, New York, NY, USA, 2020.
Association for Computing Machinery.

114

https://www.crunchbase.com/
https://ifttt.com
https://community.opendns.com/domaintagging/
https://www.virustotal.com/
https://github.com/ooyala/iq-sdk-roku
https://www.videonuze.com/article/connected-tv-advertising-is-surging
https://www.videonuze.com/article/connected-tv-advertising-is-surging
https://github.com/UCI-Networking-Group/AntMonitor
https://github.com/UCI-Networking-Group/AntMonitor
https://www.amazon.com/smart-tv-store/b?ie=UTF8&node=5969290011
https://www.amazon.com/smart-tv-store/b?ie=UTF8&node=5969290011
https://www.androidtcpdump.com/
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
https://pi-hole.net/

[14] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, and Z.-L. Zhang. A tale of three CDNs: An
active measurement study of Hulu and its CDNs. In 2012 Proceedings IEEE INFOCOM
Workshops, pages 7–12. IEEE, 2012.

[15] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: Security Evaluation of
Home-Based IoT Deployments. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1362–1380, 2019.

[16] J. Althouse, J. Atkinson, and J. Atkins. JA3. https://github.com/salesforce/ja3.

[17] Amazon.com, Inc. Amazon DSP. https://advertising.amazon.com/products/

amazon-dsp, 2019. [Online; accessed 2019-05-10].

[18] B. Anderson and D. McGrew. Machine Learning for Encrypted Malware Traffic Classi-
fication: Accounting for Noisy Labels and Non-Stationarity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, page 1723–1732, New York, NY, USA, 2017. Association for Computing
Machinery.

[19] B. Anderson and D. McGrew. Accurate TLS Fingerprinting using Destination Context
and Knowledge Bases, 2020.

[20] Antidot. Content Delivery Platform. https://www.antidot.net/

content-delivery-platform/, 2019. [Online; accessed 2019-12-05].

[21] Apple Inc. iTunes Preview. https://apps.apple.com/us/genre/ios/id36.

[22] Apple Inc. User Interface Testing. https://developer.apple.com/library/

archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/

chapters/09-ui_testing.html, 2017.

[23] N. Apthorpe, D. Reisman, and N. Feamster. A Smart Home is No Castle: Privacy
Vulnerabilities of Encrypted IoT Traffic, 2017.

[24] L. Bernaille and R. Teixeira. Early Recognition of Encrypted Applications. In S. Uhlig,
K. Papagiannaki, and O. Bonaventure, editors, Passive and Active Network Measure-
ment, pages 165–175, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[25] L. Bernaille, R. Teixeira, and K. Salamatian. Early Application Identification. In
Proceedings of the 2006 ACM CoNEXT Conference, CoNEXT ’06, New York, NY,
USA, 2006. Association for Computing Machinery.

[26] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A Data-Efficient Website Fin-
gerprinting Attack Based on Deep Learning. Proceedings on Privacy Enhancing Tech-
nologies, 4:292–310, 2019.

[27] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy Vulnerabilities in
Encrypted HTTP Streams. In G. Danezis and D. Martin, editors, Privacy Enhancing
Technologies, pages 1–11, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

115

https://github.com/salesforce/ja3
https://advertising.amazon.com/products/amazon-dsp
https://advertising.amazon.com/products/amazon-dsp
https://www.antidot.net/content-delivery-platform/
https://www.antidot.net/content-delivery-platform/
https://apps.apple.com/us/genre/ios/id36
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html

[28] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig. Open Connect Everywhere:
A Glimpse at the Internet Ecosystem through the Lens of the Netflix CDN. ACM
SIGCOMM Computer Communication Review, 48(1):28–34, 2018.

[29] L. Brotherston. TLS Fingerprinting: Smarter Defending & Stealthier Attacking.
https://blog.squarelemon.com/tls-fingerprinting/, 2015.

[30] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pages 108–122, 2013.

[31] C. Cawley. What’s the difference between Google TV
and Android TV? https://www.androidpolice.com/

whats-the-difference-between-google-tv-and-android-tv/.

[32] B. Charyyev and M. H. Gunes. Voice command fingerprinting with locality sensitive
hashes. In Proceedings of the 2020 Joint Workshop on CPS&IoT Security and Privacy,
CPSIOTSEC’20, page 87–92, New York, NY, USA, 2020. Association for Computing
Machinery.

[33] Consumer Reports, Inc. Samsung and Roku Smart TVs Vulnera-
ble to Hacking. https://www.consumerreports.org/televisions/

samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/,
2018. [Online; accessed 2019-04-22].

[34] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde. Analyzing Android Encrypted
Network Traffic to Identify User Actions. IEEE Transactions on Information Forensics
and Security, 11(1):114–125, 2016.

[35] B. Copos, K. Levitt, M. Bishop, and J. Rowe. Is Anybody Home? Inferring Activity
From Smart Home Network Traffic. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 245–251, 2016.

[36] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo, I Still See You:
Why Efficient Traffic Analysis Countermeasures Fail. In 2012 IEEE Symposium on
Security and Privacy, pages 332–346, 2012.

[37] D. Eastlake. Transport Layer Security (TLS) Extensions: Extension Definitions. RFC
6066, RFC Editor, January 2011. http://www.rfc-editor.org/rfc/rfc6066.txt.

[38] eMarketer. US Connected TV Users, by Brand,
2018 & 2022. https://www.emarketer.com/Chart/

US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767,
2018. [Online; accessed 2019-11-26].

116

https://blog.squarelemon.com/tls-fingerprinting/
https://www.androidpolice.com/whats-the-difference-between-google-tv-and-android-tv/
https://www.androidpolice.com/whats-the-difference-between-google-tv-and-android-tv/
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
http://www.rfc-editor.org/rfc/rfc6066.txt
https://www.emarketer.com/Chart/ US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767
https://www.emarketer.com/Chart/ US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767

[39] S. Englehardt, J. Han, and A. Narayanan. I never signed up for this! Privacy implica-
tions of email tracking. Proceedings on Privacy Enhancing Technologies, 2018(1):109–
126, 2018.

[40] S. Englehardt and A. Narayanan. Online Tracking: A 1-million-site Measurement
and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 1388–1401, New York, NY, USA, 2016.
ACM.

[41] J. Erman, A. Gerber, K. Ramadrishnan, S. Sen, and O. Spatscheck. Over The Top
Video: The Gorilla in Cellular Networks. In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, pages 127–136. ACM, 2011.

[42] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

[43] Federal Trade Commission. VIZIO to Pay $2.2 Million to FTC, State of New Jersey to
Settle Charges It Collected Viewing Histories on 11 Million Smart Televisions without
Users’ Consent. https://www.ftc.gov/news-events/press-releases/2017/02/

vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it, 2017. [On-
line; accessed 2019-04-22].

[44] X. Feng, Q. Li, H. Wang, and L. Sun. Acquisitional Rule-based Engine for Discovering
Internet-of-Things Devices. In 27th USENIX Security Symposium (USENIX Security
18), pages 327–341, Baltimore, MD, Aug. 2018. USENIX Association.

[45] FTC Staff. A Look at What ISPs Know About You: Examining the Privacy Practices
of Six Major Internet Service Providers, Oct. 2021.

[46] Future Today Inc. http://www.stuffwelike.com/, 2019. [Online; accessed 2019-12-
05].

[47] M. Ghiglieri. I Know What You Watched Last Sunday - A New Survey Of Privacy In
HbbTV. In Web 2.0 Security and Privacy Workshop (W2SP) 2014, W2SP ’14, 2014.

[48] M. Ghiglieri and E. Tews. A privacy protection system for HbbTV in Smart TVs.
In 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC),
pages 357–362, 2014.

[49] M. Ghiglieri, M. Volkamer, and K. Renaud. Exploring Consumers’ Attitudes of Smart
TV Related Privacy Risks. In T. Tryfonas, editor, Human Aspects of Information
Security, Privacy and Trust, pages 656–674, Cham, 2017. Springer International Pub-
lishing.

[50] M. Ghiglieri and M. Waidner. HbbTV Security and Privacy: Issues and Challenges.
IEEE Security & Privacy, 14(3):61–67, 2016.

117

https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
http://www.stuffwelike.com/

[51] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy, K. Papagiannaki, and P. Ro-
driguez. Follow the Money: Understanding Economics of Online Aggregation and
Advertising. In Proceedings of the 2013 conference on Internet measurement confer-
ence, pages 141–148. ACM, 2013.

[52] Google LLC. Android Debug Bridge (adb). https://developer.android.com/

studio/command-line/adb.

[53] Google LLC. apkanalyzer. https://developer.android.com/studio/

command-line/apkanalyzer, 2019. [Online; accessed 2019-04-29].

[54] W. Gordon. How to Stop Your Smart TV From Tracking What
You Watch. https://www.nytimes.com/2018/07/23/smarter-living/

how-to-stop-your-smart-tv-from-tracking-what-you-watch.html, 2018.
[Online; accessed 2019-05-10].

[55] Gray Television, Inc. https://gray.tv/, 2019. [Online; accessed 2019-12-06].

[56] H. Guo and J. Heidemann. IP-Based IoT Device Detection. In Proceedings of the 2018
Workshop on IoT Security and Privacy, IoT S&P ’18, page 36–42, New York, NY,
USA, 2018. Association for Computing Machinery.

[57] J. Hayes and G. Danezis. k-fingerprinting: A robust scalable website fingerprinting
technique. In 25th USENIX Security Symposium (USENIX Security 16), pages 1187–
1203, Austin, TX, Aug. 2016. USENIX Association.

[58] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting: Attacking
popular privacy enhancing technologies with the multinomial näıve-bayes classifier. In
Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW ’09,
page 31–42, New York, NY, USA, 2009. Association for Computing Machinery.

[59] A. Hintz. Fingerprinting websites using traffic analysis. In R. Dingledine and P. Syver-
son, editors, Privacy Enhancing Technologies, pages 171–178, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[60] N. P. Hoang, A. A. Niaki, P. Gill, and M. Polychronakis. Domain name encryption
is not enough: privacy leakage via IP-based website fingerprinting. Proceedings on
Privacy Enhancing Technologies, 2021(4):420–440, 2021.

[61] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). RFC 8484, RFC
Editor, October 2018.

[62] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. Specification
for DNS over Transport Layer Security (TLS). RFC 7858, RFC Editor, May 2016.

[63] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster. IoT Inspector: Crowd-
sourcing Labeled Network Traffic from Smart Home Devices at Scale. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 4(2), June 2020.

118

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/apkanalyzer
https://developer.android.com/studio/command-line/apkanalyzer
https://www.nytimes.com/2018/07/23/smarter-living/how-to-stop-your-smart-tv-from-tracking-what-you-watch.html
https://www.nytimes.com/2018/07/23/smarter-living/how-to-stop-your-smart-tv-from-tracking-what-you-watch.html
https://gray.tv/

[64] Hub Research LLC. 2021 Connected Home. https://hubresearchllc.com/reports/
?category=2021&title=2021-connected-home, 2021. [Online; accessed 2021-10-27].

[65] Hub Research LLC. 2021 Evolution of the TV Set. https://hubresearchllc.com/

reports/?category=2021&title=2021-evolution-of-the-tv-set, 2021. [Online;
accessed 2021-10-27].

[66] M. Husák, M. Čermák, T. Jirśık, and P. Čeleda. HTTPS Traffic Analysis and
Client Identification Using Passive SSL/TLS Fingerprinting. EURASIP J. Inf. Se-
cur., 2016(1), Dec. 2016.

[67] J. Hyland, C. Schneggenburger, N. Lim, J. Ruud, N. Mathews, and M. Wright. What
a SHAME: Smart Assistant Voice Command Fingerprinting Utilizing Deep Learning.
In Proceedings of the 20th Workshop on Privacy in the Electronic Society, WPES ’21,
page 237–243, New York, NY, USA, 2021. Association for Computing Machinery.

[68] J. Irion. adb shell. https://github.com/JeffLIrion/adb_shell.

[69] H. Jin, M. Liu, K. Dodhia, Y. Li, G. Srivastava, M. Fredrikson, Y. Agarwal, and J. I.
Hong. Why Are They Collecting My Data? Inferring the Purposes of Network Traffic
in Mobile Apps. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2(4), dec
2018.

[70] John Kurkowsi. tldextract. https://github.com/john-kurkowski/tldextract.
[Online; accessed 2019-08-23].

[71] Jump PR. Beachfront Releases 2018 CTV Ad Data, Roku Still Leads, Amazon
Growing Quickly. https://www.broadcastingcable.com/post-type-the-wire/

2018-ctv-ad-data-realeased-by-beachfront, 2018. [Online; accessed 2019-05-10].

[72] G. Kelly, J. Graham, J. Bronfman, and S. Garton. Privacy of Streaming Apps and
Devices: Watching TV that Watches Us. San Francisco, CA: Common Sense Media,
2021.

[73] S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and W. Sun. I Can Hear Your Alexa:
Voice Command Fingerprinting on Smart Home Speakers. In 2019 IEEE Conference
on Communications and Network Security (CNS), pages 232–240, 2019.

[74] K. Kollnig, A. Shuba, R. Binns, M. V. Kleek, and N. Shadbolt. Are iPhones Really
Better for Privacy? Comparative Study of iOS and Android Apps, 2021.

[75] S. Krishnan and F. Monrose. DNS Prefetching and Its Privacy Implications: When
Good Things Go Bad. In Proceedings of the 3rd USENIX Conference on Large-
Scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, LEET’10,
page 10, USA, 2010. USENIX Association.

[76] Kromtech Alliance Corp. Stopad for tv. https://stopad.io/tv, 2019.

119

https://hubresearchllc.com/reports/?category=2021&title=2021-connected-home
https://hubresearchllc.com/reports/?category=2021&title=2021-connected-home
https://hubresearchllc.com/reports/?category=2021&title=2021-evolution-of-the-tv-set
https://hubresearchllc.com/reports/?category=2021&title=2021-evolution-of-the-tv-set
https://github.com/JeffLIrion/adb_shell
https://github.com/john-kurkowski/tldextract
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://stopad.io/tv

[77] F. Le, J. Ortiz, D. Verma, and D. Kandlur. Policy-Based Identification of IoT Devices’
Vendor and Type by DNS Traffic Analysis, pages 180–201. Springer International
Publishing, Cham, 2019.

[78] H. Le, S. Elmalaki, A. Markopoulou, and Z. Shafiq. AutoFR: Automated Filter Rule
Generation for Adblocking. In Proceedings of the 32nd USENIX Security Symposium
(USENIX Security), Anaheim, CA, Aug. 2023.

[79] Leichtman Research Group, Inc. 39% of Adults Watch Video via a
Connected TV Device Daily. https://www.leichtmanresearch.com/

39-of-adults-watch-video-via-a-connected-tv-device-daily/. [Online;
accessed 2021-10-27].

[80] Y. Li, Z. Yang, Y. Guo, and X. Chen. DroidBot: a Lightweight UI-guided Test Input
Generator for Android. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pages 23–26. IEEE, 2017.

[81] M. Liberatore and B. N. Levine. Inferring the source of encrypted http connections.
In Proceedings of the 13th ACM Conference on Computer and Communications Secu-
rity, CCS ’06, page 255–263, New York, NY, USA, 2006. Association for Computing
Machinery.

[82] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Network Traffic
Classifier With Convolutional and Recurrent Neural Networks for Internet of Things.
IEEE Access, 5:18042–18050, 2017.

[83] L. Lu, E.-C. Chang, and M. C. Chan. Website Fingerprinting and Identification Using
Ordered Feature Sequences. In D. Gritzalis, B. Preneel, and M. Theoharidou, edi-
tors, Computer Security – ESORICS 2010, pages 199–214, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[84] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker. Unexpected Means of
Protocol Inference. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, IMC ’06, page 313–326, New York, NY, USA, 2006. Association for
Computing Machinery.

[85] X. Ma, M. Shi, B. An, J. Li, D. X. Luo, J. Zhang, and X. Guan. Context-aware Website
Fingerprinting over Encrypted Proxies. In IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications, pages 1–10, 2021.

[86] S. Maheshwari. How Smart TVs in Millions of U.S. Homes Track More Than
What’s On Tonight. https://www.nytimes.com/2018/07/05/business/media/

tv-viewer-tracking.html, 2018. [Online; accessed 2019-05-10].

[87] N. Malkin, J. Bernd, M. Johnson, and S. Egelman. “What Can’t Data Be Used For?”
Privacy Expectations about Smart TVs in the US. In Proceedings of the 3rd European
Workshop on Usable Security (EuroUSEC), London, UK, 2018.

120

https://www.leichtmanresearch.com/39-of-adults-watch-video-via-a-connected-tv-device-daily/
https://www.leichtmanresearch.com/39-of-adults-watch-video-via-a-connected-tv-device-daily/
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html

[88] E. C. Malthouse, E. Maslowska, and J. U. Franks. Understanding programmatic TV
advertising. International Journal of Advertising, 37(5):769–784, 2018.

[89] Manta Media Inc. Htvma Solutions, Inc. https://www.manta.com/c/mhqfv38/

htvma-solutions-inc, 2019. [Online; accessed 2019-12-05].

[90] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking: Policy and Technology.
In 2012 IEEE Symposium on Security and Privacy, pages 413–427, May 2012.

[91] McAfee, LLC. Customer URL Ticketing System. https://www.trustedsource.org/.
[Online; accessed 2019-08-24].

[92] E. M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. J. ACM,
23(2):262–272, April 1976.

[93] D. McGrew, B. Enright, B. Anderson, L. Messenger, A. Weller, and S. Acharya. Mer-
cury. https://github.com/cisco/mercury.

[94] L. McInnes, J. Healy, and S. Astels. hdbscan: Hierarchical density based clustering.
The Journal of Open Source Software, 2(11):205, 2017.

[95] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. Weippl. Block me if you can: A large-scale study of tracker-blocking tools. In
2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages 319–333.
IEEE, 2017.

[96] S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi. AppPrint: Automatic Fingerprinting
of Mobile Applications in Network Traffic. In J. Mirkovic and Y. Liu, editors, Passive
and Active Measurement, pages 57–69, Cham, 2015. Springer International Publishing.

[97] H. Mohajeri Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y. Huang, N. Feamster,
E. W. Felten, P. Mittal, and A. Narayanan. ott-tracking. https://github.com/citp/
ott-tracking, 2019.

[98] H. Mohajeri Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y. Huang, N. Feam-
ster, E. W. Felten, P. Mittal, and A. Narayanan. Watching You Watch: The Track-
ing Ecosystem of Over-the-Top TV Streaming Devices. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS ’19, page
131–147, New York, NY, USA, 2019. Association for Computing Machinery.

[99] A. W. Moore and K. Papagiannaki. Toward the accurate identification of network
applications. In C. Dovrolis, editor, Passive and Active Network Measurement, pages
41–54, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[100] Mozilla Foundation. Public Suffix List. https://publicsuffix.org/. [Online; ac-
cessed 2019-08-23].

121

https://www.manta.com/c/mhqfv38/htvma-solutions-inc
https://www.manta.com/c/mhqfv38/htvma-solutions-inc
https://www.trustedsource.org/
https://github.com/cisco/mercury
https://github.com/citp/ott-tracking
https://github.com/citp/ott-tracking
https://publicsuffix.org/

[101] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-R. Sadeghi.
HomeSnitch: Behavior Transparency and Control for Smart Home IoT Devices. In
Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec ’19, page 128–138, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[102] S. E. Oh, N. Mathews, M. S. Rahman, M. Wright, and N. Hopper. GANDaLF:
GAN for Data-Limited Fingerprinting. Proceedings on Privacy Enhancing Technolo-
gies, 2021(2):305–322, 2021.

[103] S. E. Oh, S. Sunkam, and N. Hopper. p1-FP: Extraction, classification, and predic-
tion of website fingerprints with deep learning. Proceedings on Privacy Enhancing
Technologies, 2019(3), 2019.

[104] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze, and K. Wehrle.
Website fingerprinting at internet scale. In Proceedings of the Network and Distributed
System Security (NDSS) Symposium, 2016.

[105] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fingerprinting in onion
routing based anonymization networks. In Proceedings of the 10th Annual ACM Work-
shop on Privacy in the Electronic Society, WPES ’11, page 103–114, New York, NY,
USA, 2011. Association for Computing Machinery.

[106] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[107] M. Perathoner. suffix-tree. https://github.com/cceh/suffix-tree.

[108] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis. IoTFinder: Efficient
Large-Scale Identification of IoT Devices via Passive DNS Traffic Analysis. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P), pages 474–489, 2020.

[109] Pi-hole LLC. Blocking Mode. https://docs.pi-hole.net/ftldns/blockingmode,
2018.

[110] Qualys SSL Labs. HTTP Client Fingerprinting Using SSL Handshake Analysis. https:
//www.ssllabs.com/projects/client-fingerprinting/.

[111] Raspberry Pi Foundation. Setting up a Raspberry Pi as an access point in a standalone
network (NAT). https://www.raspberrypi.org/documentation/configuration/

wireless/access-point.md, 2019. [Online; accessed 2019-03-04].

[112] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, and
P. Gill. Studying TLS Usage in Android Apps. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’17,
page 350–362, New York, NY, USA, 2017. Association for Computing Machinery.

122

https://github.com/cceh/suffix-tree
https://docs.pi-hole.net/ftldns/blockingmode
https://www.ssllabs.com/projects/client-fingerprinting/
https://www.ssllabs.com/projects/client-fingerprinting/
https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md
https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md

[113] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,
C. Kreibich, and P. Gill. Apps, Trackers, Privacy, and Regulators: A Global Study of
the Mobile Tracking Ecosystem. NDSS, 2018.

[114] A. Reed and M. Kranch. Identifying HTTPS-Protected Netflix Videos in Real-Time.
In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, CODASPY ’17, page 361–368, New York, NY, USA, 2017. Association
for Computing Machinery.

[115] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi.
Information Exposure From Consumer IoT Devices: A Multidimensional, Network-
Informed Measurement Approach. In Proceedings of the Internet Measurement Con-
ference, IMC ’19, page 267–279, New York, NY, USA, 2019. Association for Computing
Machinery.

[116] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez.
Bug Fixes, Improvements, ... and Privacy Leaks: A Longitudinal Study of PII Leaks
Across Android App Versions. In Proceedings of the Network and Distributed System
Security (NDSS) Symposium, 2018.

[117] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. ReCon: Revealing and
Controlling PII Leaks in Mobile Network Traffic. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys ’16,
pages 361–374, New York, NY, USA, 2016. Association for Computing Machinery.

[118] I. Reyes, P. Wijesekera, A. Razaghpanah, J. Reardon, N. Vallina-Rodriguez, S. Egel-
man, C. Kreibich, et al. ”Is Our Children’s Apps Learning?” Automatically Detecting
COPPA Violations. In Workshop on Technology and Consumer Protection (ConPro
2017), in conjunction with the 38th IEEE Symposium on Security and Privacy (IEEE
S&P 2017), 2017.

[119] S. Rezaei, B. Kroencke, and X. Liu. Large-Scale Mobile App Identification Using Deep
Learning. IEEE Access, 8:348–362, 2020.

[120] S. Rezaei and X. Liu. Deep Learning for Encrypted Traffic Classification: An Overview.
IEEE Communications Magazine, 57(5):76–81, 2019.

[121] I. Ristić. HTTP client fingerprinting using SSL hand-
shake analysis. https://blog.ivanristic.com/2009/06/

http-client-fingerprinting-using-ssl-handshake-analysis.html.

[122] L. Rokach and O. Maimon. Clustering methods. In Data mining and knowledge
discovery handbook, pages 321–352. Springer, 2005.

[123] Roku, Inc. External Control Protocol (ECP). https://developer.roku.com/docs/

developer-program/debugging/external-control-api.md.

[124] Roku, Inc. Roku Channel Store. https://channelstore.roku.com/.

123

https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://developer.roku.com/docs/developer-program/debugging/external-control-api.md
https://developer.roku.com/docs/developer-program/debugging/external-control-api.md
https://channelstore.roku.com/

[125] Roku, Inc. Roku Distribution Agreement. https://docs.roku.com/published/

developerdistribution/en/us.

[126] Roku, Inc. Roku Developer Documentation: Development Environment Overview.
https://sdkdocs.roku.com/display/sdkdoc/Development+Environment+

Overview, 2019. [Online; accessed 2019-04-22].

[127] Roku, Inc. Roku Developer Documentation: Roku Advertising Framework. https://
sdkdocs.roku.com/display/sdkdoc/Roku+Advertising+Framework, 2019. [Online;
accessed 2019-04-22].

[128] Roku, Inc. Roku Developer Documentation: Security Overview. https://sdkdocs.

roku.com/display/sdkdoc/Security+Overview, 2019. [Online; accessed 2019-04-22].

[129] Roku, Inc. The Roku Advantage. https://advertising.roku.com/

advertising-solutions, 2019. [Online; accessed 2019-05-10].

[130] S. J. Saidi, A. M. Mandalari, R. Kolcun, H. Haddadi, D. J. Dubois, D. Choffnes,
G. Smaragdakis, and A. Feldmann. A Haystack Full of Needles: Scalable Detection of
IoT Devices in the Wild. In Proceedings of the ACM Internet Measurement Confer-
ence, IMC ’20, page 87–100, New York, NY, USA, 2020. Association for Computing
Machinery.

[131] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang, D. Xu, and
J. Qian. Eavesdropping on Fine-Grained User Activities Within Smartphone Apps
Over Encrypted Network Traffic. In 10th USENIX Workshop on Offensive Technologies
(WOOT 16), Austin, TX, Aug. 2016. USENIX Association.

[132] Sapna Maheshwari. How Smart TVs in Millions of U.S. Homes Track More Than
What’s On Tonight. https://www.nytimes.com/2018/07/05/business/media/

tv-viewer-tracking.html, 2018. [Online; accessed 2019-05-11].

[133] R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the Burst: Remote Identifi-
cation of Encrypted Video Streams. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1357–1374, Vancouver, BC, Aug. 2017. USENIX Association.

[134] A. Sherman. How Roku used the Netflix playbook to beat bigger play-
ers and rule streaming video. https://www.cnbc.com/2021/06/18/

how-roku-dominated-streaming-anthony-woods-new-content-obsession.html,
2021.

[135] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Markopoulou. AntMonitor: A
System for On-Device Mobile Network Monitoring and its Applications. arXiv preprint
arXiv:1611.04268, 2016.

[136] A. Shuba, A. Markopoulou, and Z. Shafiq. NoMoAds: Effective and Efficient
Cross-App Mobile Ad-Blocking. Proceedings on Privacy Enhancing Technologies,
2018(4):125–140, 2018.

124

https://docs.roku.com/published/developerdistribution/en/us
https://docs.roku.com/published/developerdistribution/en/us
https://sdkdocs.roku.com/display/sdkdoc/Development+Environment+Overview
https://sdkdocs.roku.com/display/sdkdoc/Development+Environment+Overview
https://sdkdocs.roku.com/display/sdkdoc/Roku+Advertising+Framework
https://sdkdocs.roku.com/display/sdkdoc/Roku+Advertising+Framework
https://sdkdocs.roku.com/display/sdkdoc/Security+Overview
https://sdkdocs.roku.com/display/sdkdoc/Security+Overview
https://advertising.roku.com/advertising-solutions
https://advertising.roku.com/advertising-solutions
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.cnbc.com/2021/06/18/how-roku-dominated-streaming-anthony-woods-new-content-obsession.html
https://www.cnbc.com/2021/06/18/how-roku-dominated-streaming-anthony-woods-new-content-obsession.html

[137] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso. Encrypted DNS
⇒ Privacy? A Traffic Analysis Perspective. In Network & Distributed System Security
Symposium (NDSS). Internet Society, 2020.

[138] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep Fingerprinting: Undermin-
ing Website Fingerprinting Defenses with Deep Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, page
1928–1943, New York, NY, USA, 2018. Association for Computing Machinery.

[139] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright. Triplet Fingerprinting: More
Practical and Portable Website Fingerprinting with N-Shot Learning. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19, page 1131–1148, New York, NY, USA, 2019. Association for Computing
Machinery.

[140] G. Sloane. AMAZON IS NOW TAKING A 30 PERCENT CUT OF
AD SALES FROM FIRE TV. https://adage.com/article/design/

amazon-taking-30-percent-ad-sales-fire-tv/315678, 2018. [Online; accessed
2019-05-10].

[141] J.-P. Smith, P. Mittal, and A. Perrig. Website Fingerprinting in the Age of QUIC.
Proceedings on Privacy Enhancing Technologies, 2021(2):48–69, 2021.

[142] Statista. Connected TV advertising spending in the United States from 2019 to 2026.
https://www.statista.com/statistics/1048897/connected-tv-ad-spend-usa/.

[143] StuffWeLike. http://www.stuffwelike.com/, 2019. [Online; accessed 2019-12-05].

[144] Q. Sun, D. Simon, Y.-M. Wang, W. Russell, V. Padmanabhan, and L. Qiu. Statistical
identification of encrypted Web browsing traffic. In Proceedings 2002 IEEE Symposium
on Security and Privacy, pages 19–30, 2002.

[145] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. AppScanner: Automatic Finger-
printing of Smartphone Apps from Encrypted Network Traffic. In 2016 IEEE European
Symposium on Security and Privacy (EuroS P), pages 439–454, 2016.

[146] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. Robust smartphone app iden-
tification via encrypted network traffic analysis. IEEE Transactions on Information
Forensics and Security, 13(1):63–78, 2018.

[147] telekrmor. Round 3: What Really Happens On Your Network? https://pi-hole.

net/2017/07/06/round-3-what-really-happens-on-your-network/, 2017. [On-
line; accessed 2019-05-11].

[148] The SciPy community. scipy.cluster.hierarchy.fcluster. https://docs.scipy.org/

doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html.

[149] The SciPy community. scipy.cluster.hierarchy.linkage. https://docs.scipy.org/

doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html.

125

https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://www.statista.com/statistics/1048897/connected-tv-ad-spend-usa/
http://www.stuffwelike.com/
https://pi-hole.net/2017/07/06/round-3-what-really-happens-on-your-network/
https://pi-hole.net/2017/07/06/round-3-what-really-happens-on-your-network/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

[150] The SciPy community. scipy.spatial.distance.pdist. https://docs.scipy.org/doc/

scipy/reference/generated/scipy.spatial.distance.pdist.html.

[151] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Packet-Level Signa-
tures for Smart Home Devices. In Proceedings of the Network and Distributed System
Security (NDSS) Symposium, February 2020.

[152] UCI Networking Group. FingerprinTV. https://github.com/

UCI-Networking-Group/fingerprintv.

[153] UCI Networking Group. The TV is Smart and Full of Trackers: Project Page. http:

//athinagroup.eng.uci.edu/projects/smarttv/, 2019.

[154] E. Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14(3):249–260,
September 1995.

[155] T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois, M. Lindorfer,
D. Choffnes, M. van Steen, and A. Peter. FlowPrint: Semi-supervised mobile-app fin-
gerprinting on encrypted network traffic. In Proceedings of the Network and Distributed
System Security (NDSS) Symposium, 2020.

[156] J. Varmarken, J. A. Aaraj, R. Trimananda, and A. Markopoulou. FingerprinTV: Fin-
gerprinting Smart TV Apps. Proceedings on Privacy Enhancing Technologies, 2022(3),
2022.

[157] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. Firetastic. https:

//github.com/UCI-Networking-Group/firetastic, 2020.

[158] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. Rokustic. https:

//github.com/UCI-Networking-Group/rokustic, 2020.

[159] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. The TV is Smart
and Full of Trackers: Measuring Smart TV Advertising and Tracking. Proceedings on
Privacy Enhancing Technologies, 2020(2), 2020.

[160] WaLLy3K. The Big Blocklist Collection. https://firebog.net, 2019. [Online; ac-
cessed 2019-04-29].

[161] C. Wang, S. Kennedy, H. Li, K. Hudson, G. Atluri, X. Wei, W. Sun, and B. Wang.
Fingerprinting Encrypted Voice Traffic on Smart Speakers with Deep Learning. In
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’20, page 254–265, New York, NY, USA, 2020. Association
for Computing Machinery.

[162] K. Wang, J. Zhang, G. Bai, R. Ko, and J. S. Dong. It’s Not Just the Site, It’s the
Contents: Intra-Domain Fingerprinting Social Media Websites Through CDN Bursts.
In Proceedings of the Web Conference 2021, WWW ’21, page 2142–2153, New York,
NY, USA, 2021. Association for Computing Machinery.

126

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://github.com/UCI-Networking-Group/fingerprintv
https://github.com/UCI-Networking-Group/fingerprintv
http://athinagroup.eng.uci.edu/projects/smarttv/
http://athinagroup.eng.uci.edu/projects/smarttv/
https://github.com/UCI-Networking-Group/firetastic
https://github.com/UCI-Networking-Group/firetastic
https://github.com/UCI-Networking-Group/rokustic
https://github.com/UCI-Networking-Group/rokustic
https://firebog.net

[163] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effective Attacks
and Provable Defenses for Website Fingerprinting. In 23rd USENIX Security Sym-
posium (USENIX Security 14), pages 143–157, San Diego, CA, Aug. 2014. USENIX
Association.

[164] S. Zhao, S. Li, J. Ramos, Z. Luo, Z. Jiang, A. K. Dey, and G. Pan. User profiling from
their use of smartphone applications: A survey. Pervasive and Mobile Computing,
59:101052, 2019.

127

Appendix A

Appendix for Chapter 3

This appendix complements Chapter 3. Appendix A.1 provides further details on how do-

mains are categorized as either first party, third party, or platform-specific party, w.r.t. the

app that contacts it. Appendix A.2 offers more details on how Rokustic and Firetastic au-

tomate app exploration. Appendix A.3 discusses the limitations of Rokustic and Firetastic,

including when the automation does not lead to video playback and how the automated ex-

ploration compares to manual testing of apps that require login. Ultimately, this discussion

leads to directions for how to improve Rokustic’s and Firetastic’s automatic app exploration.

Appendix A.4 evaluates the success rate of Firetastic’s TLS interception. Appendix A.5 pro-

vides additional analysis of datasets that was omitted from the main text.

A.1 Labeling Datasets Continued

To complement Section 3.2, this section provides the full details for how we label each

endpoint as either first party, third party, or platform-specific party, w.r.t. the app that

contacts it:

128

1. We first tokenize app identifiers and the eSLD of the contacted FQDN (we obtain the

eSLD using Mozilla’s Public Suffix List [100, 70]). For Fire TV, we tokenize the package

names and developer names. For Roku, we rely on app and developer names since its

apps do not have package names. For app/package tokens, we ignore common and

platform-specific strings like “com”, “firetv”, “roku”, etc., while retaining all tokens

from the developer names. We then match the resulting identifiers with the tokenized

eSLD.

2. If the tokens match, we label the destination as first party. We note that since we keep

all developer tokens, we will map “roku” related eSLDs as first party if the app was

developed officially by Roku.

3. Otherwise, we label a destination as platform-specific party if it originated from plat-

form activity rather than app activity. For Fire TV, we rely on AntMonitor’s [135]

ability to label each connection with the responsible process. For Roku, we simply

check if the eSLD contains “roku”.

4. Otherwise, if the destination is contacted by at least two different apps from different

developers, we label it as third party.

5. Finally, if the destination does not fall into any of the other categories, we resort to

labeling it as other, which thus captures domains that are only contacted by a single

app and are not identified as a first party nor platform-specific party.

We acknowledge that the variations in labeling methodology for platform-specific parties for

Roku and Fire TV may impact comparability. However, we believe that our choice provides

the more accurate platform-specific labeling for each testbed platform.

129

A.2 App Exploration Implementation Details

In this section, we provide details on the implementation of our automatic app exploration

tools, Rokustic for Roku (Appendix A.2.1) and Firetastic for Fire TV (Appendix A.2.2), in

addition to what is described in Sections 3.4.1 and 3.4.2, respectively.

A.2.1 Roku Automation

To scale testing of apps, we implement a software system, Rokustic, that automatically

installs and exercises Roku apps on a Roku Express 3900X (Roku for short).

Setup. We run Rokustic on a Raspberry Pi 3 Model B+ set up to host a standalone network

as per the instructions given in [111]. The Pi’s wireless interface (wlan0) is configured as a

wireless access point with DHCP server and NAT, and the Roku is connected to this local

wireless network. The Pi’s wired interface (eth0) connects the Pi and thus, in turn, the

Roku to the WAN. This setup enables us to collect all traffic going in and out of the Roku

by running tcpdump on the Raspberry Pi’s wireless interface. We do not attempt to decrypt

TLS traffic as we cannot install our own self-signed certificates on the Roku.

Rokustic utilizes the Roku External Control (ECP) API [123] to control the Roku. The ECP

is a REST-like API exposed by the Roku to other devices on the local network. The ECP

includes a set of REST-endpoints that provides the ability to press keys on the Roku remote,

query the Roku for various information such as the set of installed apps, programmatically

browse the Roku Channel Store (RCS), etc.

App Installation. Given a set of apps to exercise, Rokustic installs each app by invoking

the ECP endpoint that opens up the on-device version of the RCS page for the app, and

then sends a virtual key press to click the “Add Channel” button that starts download and

130

installation of the app. Rokustic then waits for five seconds, and then queries the Roku for

the set of installed apps to check if the installation has completed, and if so continues to

install the next app, otherwise the wait-and-check is repeated (until a fixed threshold).

App Exploration. From manual inspection of a few apps (e.g.,YouTube and Pluto TV),

we find that playable content is often presented in a grid, where each cell is a different video

or live TV channel. Generally, the user interface defaults to highlighting one of these cells

(e.g., the first recommended video). Pressing “Select” on the Roku remote immediately after

the app has launched will therefore result in playback of some content. From this insight,

we devised a simple algorithm (see Listing A.1) that attempts to cause playback of three

different videos for each installed Roku app.

for app in roku.installedApps:

startPacketCapture(app.id);

Play default video

launch(app); sleepSeconds(20); press("SELECT"); sleepMinutes(5);

Play some other video by selecting a different cell in the grid

relaunch(app); press("DOWN"); press("DOWN"); press("RIGHT"); press("RIGHT");

press("SELECT"); sleepMinutes(5);

Play a 3rd video

relaunch(app); press("DOWN"); press("DOWN"); press("SELECT"); sleepMinutes(5);

Quit the Roku app

press("HOME");

stopPacketCapture(app.id);

Listing A.1: Algorithm for exercising Roku apps.

For each Roku app, the algorithm first starts a packet capture so as to produce a .pcap

file for each Roku app, thereby essentially labeling traffic with the app that caused it: since

131

Roku apps cannot execute in the background (see Section 3.4.1), all traffic captured during

execution of a single app will belong to that app and the Roku system. The target app is

launched, and the algorithm pauses, waiting for the app to load. Next, a virtual “Select”

key press is sent to attempt to start video playback, and the algorithm subsequently pauses

to let the content play. The app is then relaunched by returning to the Roku’s home screen

and then launching the app again. The purpose of this is to safely return to the app’s

home screen such that different content can be selected for playback. This is repeated two

times, with slight variations in the sequence of navigational key presses, such that each

app will (presumably) end up playing three different videos, making the total exploration

time approximately 16 minutes per app. We note that the relaunch procedure internally

performs short sleeps to let the app quit and launch again, and that we have omitted a one

second sleep after each navigational key press in the pseudo code in Listing A.1.

Although the Roku remote has a “Back” button, which behaves similarly to the back button

in Android, we purposefully avoid using it as a means to return to the app’s home screen:

if the video selected for playback is shorter than the sleep duration, the app will return to

its home screen automatically, and pressing “Back” will therefore quit the app and return

to the Roku’s home screen. This would pollute our data as the subsequent navigational key

presses would cause a different app to be highlighted and then launched by the next “Select”

key press.

A.2.2 Fire TV Automation

Since Fire TV is based on Android, we can use existing Android tools to capture network

traffic. Although there are various methods for capturing traffic on Android on the device

itself (e.g., androidtcpdump [9]), most of them require a rooted device. While it is possible

to root a Fire TV, it may make applications behave differently if they detect root. Thus, to

132

collect measurements that are representative of an average user, we use a VPN-based traffic

interception method that does not require rooting the device [135, 7]. We discard incoming

traffic because video content results in huge pcap files, which due to a technical limitation

of ADB (very slow transfer speeds for large files) slows down the automated experiments

significantly. The outgoing traffic is sufficient for our domain and PII analysis.

To automatically explore each Fire TV application, we utilize Droidbot [80], as it treats

each app as a tree of possible paths to explore instead of randomly generating events, which

results in higher test coverage of the application. Furthermore, we deduce that developers

would minimize the necessary clicks in order to reach the core sections of their applications,

especially for playing video content. Thus, we configure DroidBot to utilize its breadth first

search algorithm to explore each application. The intuition is that this should cover more

distinct UI paths of the app, thus increasing the chance of content playback (in contrast, the

Depth First Search algorithm may cause the automation to deep end into a path that we do

not care about, such as a settings menu). With some trial and error, we selected the input

command interval as three seconds which leaves enough time for applications to handle the

command and load the next view during app exploration.

We summarize Firetastic’s automation algorithm in Listing A.2. For each app, Firetastic

first starts the local VPN to capture (and decrypt) traffic. Next, it invokes DroidBot, which

in turn launches the app and begins exploring it. When the 15-minute exploration completes,

Firetastic stops the local VPN and extracts the .pcapng files that were generated during

testing.

133

device = "10.0.1.xx:5555"; pcapng dir = "/path/to/store/pcapng"; apk dir = "/path/to/apk/batch"

for app in apk dir:

start antmonitor(device) # Start AntMonitor on Fire TV

ensure antmonitor connected(device) # Ensure VPN connection up

Run DroidBot command

params = { duration: 15min, policy: "bfs naive", install timeout: 5min, interval: 3sec }

run droidbot(app, params, device)

stop antmonitor vpn(device) # Stop AntMonitor on Fire TV

extract pcapng files(app, pcapng dir , device) # Extract the pcap files

remove pcapng files(device) # Clean up before testing next app

Listing A.2: Algorithm for exercising Fire TV apps.

A.3 Limitations of App Exploration

Our automated app exploration has, admittedly, limitations. For example, it can miss video

playback for some apps, and cannot fully explore apps that require login. In this section, we

evaluate our automated exploration vs. a more realistic manual exploration by a real user,

for 20 apps. We report the cases where our automatic exploration succeeds and fails, and

we provide insights into the reasons why, and ideas for future improvements.

First, we evaluate our tools’ ability to perform playback, because it affects our ability to

capture traffic related to ads delivered at the start of or during content (video/audio) play-

back. We evaluate Firetastic’s and Rokustic’s content playback rates in Appendix A.3.1 by

performing a case study of 15 apps. We find that the two tools perform similarly to the the

state-of-the-art [98], and we identify how we can further improve the tools to increase the

chance of incurring content playback.

134

In Appendix A.3.2, we evaluate the automated approach’s ability to discover an app’s domain

space by comparing the eSLDs and ATS domains discovered by the tools to the eSLDs and

ATS domains discovered during manual interaction with the same 15 apps. We find that

both tools generally do well at mapping a large fraction of the number of domains discovered

during manual interaction.

Finally, a common limitation of app exploration in general (not just for smart TV apps) is

that it is difficult to explore apps that require user login. In Appendix A.3.3 we compare

the eSLDs and ATS domains discovered by Firetastic and Rokustic for 5 popular streaming

apps (while logged out) to the eSLDs and ATS domains discovered during manual interaction

(while logged in). As expected, we find that the automation misses parts of the domain space

of apps that serve third-party ads as part of content that is only accessible after logging in.

Interestingly, we also observe cases where the automation discovers more (ATS) domains

than the manual experiments.

A.3.1 Video Playback

Setup. To evaluate Firetastic’s and Rokustic’s ability to incur playback of an app’s main

content (video/audio) for the set of apps that do not require login to access (parts of)

their content, we run the full (∼16 minutes) automation for 15 apps on each platform, while

observing for content playback. We pick the 15 apps according to their popularity (as defined

in Section 3.4): (1) the top-10 most popular apps to capture the most influential apps; and

(2) 5 additional randomly sampled apps, spread evenly across the popularity spectrum, to

represent the dataset as a whole.

Results. We present the content playback results in Table A.1. Firetastic manages to play

content for 67% of the 15 apps (60% for the top-10 apps, and 80% for the random apps).

A common characteristic of the 33% unsuccessful apps is that the majority of their content

135

is locked, and that free content is deferred to the least accessible sections of the UI (e.g.,

the bottom row of a grid layout). This decreases the chance that Firetastic will discover a

playable video during the 16 min experiment, especially since attempts to play locked content

often redirects to login/activation screens where additional time is lost. We can improve on

this in future work by mixing BFS and DFS exploration: the automation can explore each

level up to a certain threshold before drilling down into the next nested view.

Rokustic manages to play content for 53% of the 15 apps (50% for the top-10 apps, and 60%

for the random apps). Unsuccessful attempts are primarily due to nested menus, where ad-

ditional “Select” key press(es) are necessary to start playback. Through manual interaction

with a few apps prior to executing our top-1000 apps measurement, we observe that if an

app starts playback on the first “Select” key press, additional key presses may result in paus-

ing and/or exiting the video, or skipping past an ad. Therefore, we opt for a conservative

approach that, when successful, will collect as much ad/video traffic as possible. In future

work, we can further improve content playback by repeatedly sending “Select” key presses

(with short pauses in between) until the network throughput for the Roku stays above a

certain threshold for a short duration (e.g., the bitrate of 720p video for 5 seconds). This

dynamic strategy can handle more nested menus and thus be resilient to future changes to

an app’s UI.

Takeaways. In summary, both tools work well when an app adheres to good UI design

principles, such as reducing the number of user actions required to reach the main content.

The content playback success rates are on par with state-of-the-art concurrent work [98],

with Firetastic slightly ahead, possibly due to its dynamic approach to UI exploration (as

opposed to the static, heuristic-based approach used in [98]), and with Rokustic slightly

behind. While Firetastic leverages existing advanced Android tools (Droidbot), similar tools

do not currently exist for Roku, thus we had to build them from scratch, and it is therefore

natural that Rokustic falls slightly behind its Fire TV counterpart.

136

App Name
Play-
back

Distinct eSLDs
Distinct

ATS Domains

(auto)
Auto
(A)

Manual
(M)

A
M

A M A
M

R
o
k
u

T
o
p
-1
0

YouTube 8 15 53% 5 15 33%
Sling TV ✕ 10 21 48% 6 21 29%
The Roku Channel 16 13 123% 7 5 140%
Crackle 9 34 26% 8 42 19%
JW Broadcasting ✕ 3 4 75% 2 2 100%
PBS KIDS 4 7 57% 4 6 67%
ESPN ✕ 6 16 38% 4 16 25%
Tubi - Free Movies & TV ✕ 3 19 15.79% 5 34 15%
DisneyNOW ✕ 6 9 67% 4 5 80%
Pluto TV - It’s Free TV 24 9 267% 36 7 514%

R
a
n
d
o
m

Roku Newscaster ✕ 4 5 80% 3 2 150%
ChuChu TV 10 10 100% 9 17 53%
Elvis 20 38 53% 14 54 26%
Mondo ✕ 4 5 80% 2 2 100%
tik tok 1 3 33% 2 3 67%

Total
8/15

(53%)
74 113 65% 64 122 52%

F
ir
e
T
V

T
o
p
-1
0

Pluto TV - It’s Free TV 15 30 50% 13 35 37%
ABC 14 13 108% 5 6 83%
Fox Now 22 24 92% 18 18 100%
AMC ✕ 18 28 64% 8 19 42%
Fox Sports GO ✕ 12 19 63.16% 7 17 41%
Kids for Youtube 16 19 84% 7 5 140%
PBS Kids 12 15 80% 7 9 78%
CNN Go 31 34 91% 41 34 121%
Sundance TV ✕ 13 23 57% 5 11 45%
MTV ✕ 56 38 147% 38 54 70%

R
a
n
d
o
m

Vimeo 12 11 109% 5 3 167%
Dog TV Online 10 14 71% 2 5 40%
WCSC Live 5 News ✕ 13 12 108% 5 5 100%
WFXG FOX 54 18 18 100% 8 7 114%
13abc WTVG Toledo, OH 12 11 109% 5 2 250%

Total
10/15
(67%)

125 117 107% 115 138 83%

Table A.1: Content playback success for Rokustic and Firetastic, and a comparison of the
number of domains discovered by Rokustic and Firetastic to the number of domains discov-
ered during manual interaction with the same app, for 15 apps that do not require login.
For each app, we perform approximately 16 minutes of automated and 16 minutes of manual
interaction.

137

A.3.2 Automation vs. Manual Testing

Setup. Next, we evaluate Firetastic’s and Rokustic’s ability to successfully map an app’s

domain space. We manually interact with the 15 apps from Appendix A.3.1, and compare

the network behavior observed during automated testing to the network behavior observed

during manual testing. For a fair comparison, we interact with each app for approximately

the same duration as in the automated experiments (∼16 minutes). For consistency, we

follow a protocol in which we attempt to play 7 different videos for approximately 2 minutes

each, leaving a few minutes to navigate between videos. We compare the network behavior

in terms of the number of eSLDs and ATS domains (as defined by the union of the blocklists

from Section 3.5) contacted by each app. The results are presented in Table A.1.

Results. Firetastic is successful in mapping the domain space for 10 out of 15 apps (67%),

uncovering 0.8 times (or more) the number of eSLDs, and 0.7 times (or more) the number of

ATS domains discovered in the manual experiments. In fact, Firetastic even discovers more

eSLDs and ATS domains than the manual experiment for 6 (40%) and 7 (47%), respectively,

of the 15 apps. Rokustic is less successful, but still manages to uncover 0.67 times (or more)

the number of eSLDs and ATS domains in the manual experiment for 7 (47%) and 8 (53%),

respectively, of the 15 apps. Moreover, Rokustic even discovers 2.67 times as many eSLDs

as the manual experiment for one of the apps (Pluto TV).

Intuition. The two tools have very different approaches to app exploration: Firetastic seeks

to explore as much app functionality as possible, but is likely to exit content playback early,

whereas Rokustic seeks to mimic a real user that sits through 3 videos of 5 minutes. Each

approach has its own merit: Firetastic is good at discovering many ATS domains for apps

that present ads before content playback begins, whereas Rokustic is the more successful tool

when it comes to discovering ATS domains for apps that defer ad delivery to later in the

video/audio stream, as was the case for Pluto TV. Finally, we note that even in the worst

138

case, i.e., when Firetastic and Rokustic do not manage to incur content playback, they still

uncover several ATS domains.

Takeaways. This case study, and the fact that Firetastic and Rokustic uncovered approxi-

mately twice as many domains as the state-of-the-art [98] for the top-1000 apps measurement

described in Section 3.4, show that our tools already provide sufficient means to automati-

cally estimate a lower bound on the ATS domains of the two platforms. This lower bound

should improve if the changes suggested earlier are implemented.

A.3.3 Apps that Require Login

Setup. To understand how well the automation manages to map the domain spaces of

apps that require login, we pick 5 of the top subscription-based streaming apps and run the

automation without logging in, and also manually interact with the same apps while logged

in (following the same protocol as in Appendix A.3.2). We compare the network behavior

using the same metrics as in Appendix A.3.2. The results are presented in Table A.2.

Results. Firetastic actually discovers more eSLDs than the manual experiments for 3 out

of the 5 apps. We also observe that the STARZ app contacts more ATS domains when

automatically tested than in the manual experiment. These findings are interesting as they

indicate that an app’s domain space and ATS-related activity possibly changes after the

user logs in and is not necessarily tied to video playback. An ideal experiment would thus

need to thoroughly exercise the app in both states. The results for Rokustic are more in line

with what is to be expected: Rokustic discovers fewer eSLDs and ATS domains than the

manual experiments (55% and 53%, respectively, on average). Finally, for both platforms,

we observe that the number of ATS domains contacted by Hulu increases significantly for

the manual experiments. This is to be expected as Hulu is the only of the 5 apps that deliver

third-party ads during content playback.

139

App Name Distinct eSLDs
Distinct

ATS Domains
Auto
(A)

Manual
(M)

A
M

A M A
M

R
o
k
u

HBO NOW 3 7 43% 2 5 40%
Hulu 6 18 33% 3 21 14%
Netflix 3 4 75% 3 3 100%
SHOWTIME 4 8 50% 3 6 50%
STARZ 5 7 71% 3 5 60%
Total 14 30 47% 6 26 23%

F
ir
e
T
V

HBO NOW 7 9 78% 2 2 100%
Hulu 9 19 47% 4 17 24%
Netflix 11 9 122% 4 3 133%
SHOWTIME 10 8 125% 4 3 133%
STARZ 18 14 129% 12 7 171%
Total 27 42 64% 15 27 56%

Table A.2: Comparison of the number of domains discovered by Rokustic and Firetastic to
the number of domains discovered during manual interaction with the same five apps that
require login. The automation was performed while logged out, and the manual interaction
was performed while logged in. For each app, we perform approximately 16 minutes of
automated and 16 minutes of manual interaction.

Takeaways. As expected, Rokustic can only map parts of the (ATS) domain spaces of apps

that require login. For Firetastic, we observe that some apps contact more ATS domains

while logged out, and an ideal experiment would thus need to explore the apps in both

states.

A.4 Fire TV TLS Interception

Firetastic attempts to decrypt TLS traffic to facilitate detection of PII exposures in en-

crypted traffic. However, the decryption may fail: (i) for apps that attempt to mitigate TLS

interception, for example through use of certificate pinning, or (ii) if the cipher suites used

in the TLS connection are not supported by the TLS decryption library used in AntMoni-

tor. To approximate the impact that such decryption failures may have on the PII exposure

results, we evaluate the failure rate of Firetastic’s TLS interception across all apps in the

140

Fire TV testbed dataset from Section 3.4.

Methodology. For each app in the Fire TV testbed dataset, we first identify the set of TCP

connections, t, initiated by this app and labeled as TLS by tshark. Next, we identify the

subset h of TCP connections in t that also contained at least one packet labeled by tshark as

HTTP: these are the connections that are successfully decrypted. Finally, we compute the

decryption failure rate of each app as |t|−|h|
|t| . We note that our methodology conservatively

computes an upper bound compared to the actual failure rate, as any non-HTTP over TLS

(e.g., proprietary binary protocols) will be counted as decryption failures.

We note that in t, we only include TLS connections, where the TLS handshake concluded

successfully. We assume that an app will retry the connection if it rejects AntMonitor’s cer-

tificate. AntMonitor stops intercepting an app’s connections if it detects that the app rejects

its certificate, thus the second TLS handshake should complete successfully. This restriction

on t therefore also prevents double counting (i.e., the original failed connection does not

contribute to the total number of TLS connections initiated by the app). Although we only

recorded upstream data for Fire TV, we use the presence of an upstream TLS Application

0.0 0.2 0.4 0.6 0.8
Share of TLS Decryption Failures

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f T
es

te
d

A
pp

s

Figure A.1: Empirical CDF of TLS decryption failures per app. The decryption generally
worked well: decryption fails for 1 out of 10 (or fewer) TLS connections for 55% of all apps;
1 out of 5 (or fewer) TLS connections for 80% of all apps.

141

Data packet as a proxy for inferring that the TLS handshake concluded successfully.

Results. In Figure A.1, we show the empirical CDF for the TLS decryption failure rates

for all apps in the Fire TV testbed dataset. We note that the decryption generally works

well. For example, decryption fails for 1 out of 10 (or fewer) TLS connections for 55% of all

apps, and 1 out of 5 (or fewer) TLS connections for 80% of all apps. Since TLS decryption

was generally successful, this validates the PII exposure results.

A.5 Additional Analysis of Datasets

A.5.1 In the Wild Dataset Continued

Figure A.2 provides data for the platforms that were omitted from Figure 3.1 in Section 3.3

A.5.2 Key Players Continued

Figure A.3 provides further insight into the “Key Players” discussion in Section 3.4.3 by

accumulating flows to subdomains of the top-30 eSLDs of each platform. Each eSLD is in

turn mapped to its parent organization. Finally, all flows to domains under that parent

organization are separated based on whether they are labeled as advertising and tracking or

not. A large amount of the flows to the two platform operators are labeled as advertising

and tracking.

142

0 5k 10k 15k 20k

Number of Flows
nrdp.nccp.netflix.com
api-global.netflix.com

ichnaea.netflix.com
www.youtube.com

android.clients.google.com
occ-0-*.nflxso.net
occ-2-*.nflxso.net
occ-1-*.nflxso.net

i.ytimg.com
ios.nccp.netflix.com

ipv4-c10*.oca.nflxvideo.net
control2.tvinteractive.tv

googleads.g.doubleclick.net
i9.ytimg.com

atv-ext.amazon.com
www.lookingglass.rocks

cdn-0.nflximg.com
api.us-east-1.aiv-delivery.net

youtube-ui.l.google.com
control-*.tvinteractive.tv

securepubads.g.doubleclick.net
ipv4-c09*.oca.nflxvideo.net
ipv4-c04*.oca.nflxvideo.net

www.google.com
ytimg.l.google.com

pagead2.googlesyndication.com
presentationtracking.netflix.com

s.youtube.com
video-stats.l.google.com

(a) Vizio

0 100k 200k 300k

Number of Flows
mtalk.google.com

lh3.googleusercontent.com
mobile-gtalk.l.google.com

android.clients.google.com
lh4.googleusercontent.com
lh5.googleusercontent.com
lh6.googleusercontent.com

clients4.google.com
www.youtube.com

www.lookingglass.rocks
vortex.hulu.com
home.hulu.com

clients3.google.com
i.ytimg.com

http-v-darwin.hulustream.com
youtube-ui.l.google.com

clients1.google.com
www.gstatic.com

play.hulu.com
connectivitycheck.gstatic.com

video-stats.l.google.com
s.youtube.com

http-e-darwin.hulustream.com
google-public-dns-a.google.com

ytimg.l.google.com
i9.ytimg.com

tpc.googlesyndication.com
mtalk4.google.com

yt3.ggpht.com
cws-eu-west-1.conviva.com

(b) Chromecast

0 1k 2k

Number of Flows
api-global.netflix.com

us.lgtvsdp.com
ichnaea.netflix.com

www.lookingglass.rocks
googleads.g.doubleclick.net

www.youtube.com
android.clients.google.com

www.google.com
ngfts.lge.com

snu.lge.com
coordinator-*.amazonaws.com

us.rdx2.lgtvsdp.com
occ-1-*.nflxso.net

us.ibs.lgappstv.com
r4*.googlevideo.com

occ-0-*.nflxso.net
r5*.googlevideo.com

occ-2-*.nflxso.net
ipv4-c02*.oca.nflxvideo.net

pagead2.googlesyndication.com
us.info.lgsmartad.com

api*.prodaa.netflix.com
ipv4-c07*.oca.nflxvideo.net

comet.yahoo.com
r3*.googlevideo.com

www.googleadservices.com
geo.yahoo.com

dcs-edge-*.elb.amazonaws.com
occ-1-*.1.nflxso.net

(c) LG

Figure A.2: Continuation of Figure 3.1 from Section 3.3: Top-30 fully qualified domain
names in terms of number of flows per device for the remaining devices in the in the wild
dataset. Domains identified as ATSes are highlighted with red, dashed bars.

143

Ads & Tracking

Other

1rx.io

2mdn.net

adobe.com

adrta.com

adsrvr.org

agkn.com

akamaihd.net

akamaized.net

amazon-adsystem.com
amazon-dss.com

amazon.com

amazonalexa.com

amazonaws.com

amazonvideo.com

cloudfront.net

crashlytics.com

demdex.net

doubleclick.net

ewscloud.com

facebook.com

flurry.com

google-analytics.com

google.com

googleapis.com

googlesyndication.com

googlevideo.com

gstatic.com

gvt1.com

ifood.tv

imrworldwide.com

innovid.com

insightexpressai.com

irchan.com

media-amazon.com

moatads.com

monarchads.com
ravm.tv

roku.com

scorecardresearch.com

serving-sys.com

spotxchange.com

springserve.com

ssl-images-amazon.com

stickyadstv.com

titantv.com

tremorhub.com

unity3d.com

uplynk.com

vimeo.com
vimeocdn.com

youtube.com

ytimg.com

Unknown

Adobe Inc.
Akamai Technologies, Inc.

Alphabet Inc.

Amazon.com, Inc.

Bain Capital

Barons Media

Broadcast Interactive Media

Cinedigm Corp.

Comcast Corporation

Comscore, Inc.

eBizPa LLC

Facebook

Golden Gate Capital

Innovid, Inc.
Marimedia

Numitas

Oracle

Roku, Inc.

SpotX, Inc.

SpringServe, LLC

Telaria, Inc.

The E.W. Scripps Company

The Nielsen Company (US), LLC

The Trade Desk, Inc.

Unity Tech

Vector Capital

Verizon Media

Vimeo, Inc.

Fire TV

Roku

Figure A.3: Left to right: (1) mapping of flows to subdomains of the top-30 eSLDs (see
Figures 3.3c and 3.3d) of each testbed platform; (2) mapping from eSLD to its parent
organization; (3) separation of the flows to the organization by advertising and tracking
flows and other flows. An edge’s width represents the number of flows.

144

Appendix B

Appendix for Chapter 4

This appendix complements Chapter 4.

B.1 PingPong Characterization

In Section 4.3.2, we discuss how we use PingPong to extract packet pairs, which are then used

as input for our clustering algorithm that analyzes the PBFs of smart TV apps. Most notably,

(1) we treat app launch samples as equivalent to smart home device events: we merge the

per-app launch samples into one trace and analyze it using PingPong; (2) from the output of

PingPong’s pair clustering step that uses DBSCAN, we make the conservative choice to only

consider DBSCAN clusters that consist of identical packet pairs, i.e., we allow no variability

in packet sizes in the pairs of a PBF; and (3) we use PingPong’s default configuration that

sets DBSCAN’s ϵ parameter, which informally specifies how far a packet pair can reside

from an existing DBSCAN cluster of packet pairs to become part of that cluster, to 10 [151].

However, our methodology for clustering apps based on their fingerprints is flexible enough

to accommodate other design choices for the underlying packet pair extraction performed by

145

PingPong. Next, we elaborate on the aforementioned choices (2) and (3).

(2) Packet Size Variations. In [151], PingPong is designed to allow the sizes of packets

in a pair of a PLS to vary slightly. As evident from our results, in a lot of cases, smart TV

apps exhibit deterministic packet pairs that always appear with identical packet sizes, e.g.,

C-882 S-219. However, in some cases, packet sizes can have slight variations, e.g., C-882

S-219, C-892 S-219, etc. In our work described in Chapter 4, we make the most conservative

choice and only consider packet sizes with no variations as candidates for inclusion in a PBF,

discarding the remaining packet pairs that have slight variations. This choice is consistent

with DBFs: fully qualified domain names (FQDN) considered as candidates for inclusion in

a DBF are unique.

By loosening this strict requirement, one can potentially increase the PBFs’ sizes and/or

PBF prevalence, but this may come at the cost of additional PBF collisions. Our approach

may be generalized to accommodate packet size variations by fine-tuning ϵ and modifying

the logic that decides what clusters (as output by PingPong) are considered for inclusion

in a PBF. In fact, one could even consider distance of domains in DBFs by considering not

only exactly matching FQDNs, but also common effective second-level domains (eSLD).

(3) Interaction Between Pair Clustering by PingPong and PBF Clustering by

FingerprinTV. Throughout Chapter 4, we use PingPong with its default DBSCAN param-

eter ϵ = 10 to cluster packet pairs. When we observe the output of PingPong, we sometimes

find clusters that contain two different packet pairs that are within a distance of 10. For

instance, we observe this phenomenon for Roku apps: the omnipresent Roku-specific packet

pair described in Section 4.3.2 is sometimes clustered (by PingPong) together with other

pairs that are within a distance of 10, e.g., C-882 S-219 and C-892 S-219. Since Finger-

prinTV discards clusters that are not exclusively comprised of identical packet pairs, it only

includes the Roku-specific pair in the PBFs of 834 of the 1000 Roku apps when ϵ = 10.

146

1 2 3 4 5 6
100

101

102

103
750

10
7

2 2 2

8

1

10

2

28

1

37

1

42

1

44

1

Cluster size

Nu
m

be
r o

f c
lu

st
er

s

Figure B.1: Distribution of clusters by cluster size for PBFs for Roku when PingPong’s ϵ
parameter is set to 0.

To eliminate this behavior, one may set ϵ = 0 so as to force PingPong to only output clusters

consisting of identical packet pairs. To examine what effect this has on the inclusion of the

omnipresent Roku-specific packet pair in the PBFs of Roku apps, we also run PingPong with

ϵ = 0 and then use FingerprinTV to perform PBF extraction and performance analysis on

this PingPong output. With this configuration change, the Roku-specific packet pair becomes

part of the PBF for 974 Roku apps. For the remaining 26 apps, the Roku-specific packet

pair appears more than L times across the L launch samples of each app and is therefore

discarded (see Definition 4.2 and recall that U = L = 10). Compared to Figure 4.5c that

shows 717 apps with distinct PBFs, namely apps in clusters of size 1, when we run PingPong

with ϵ = 10, Figure B.1 shows that we have 750 apps that have distinct PBFs when we run

PingPong with ϵ = 0.

In summary, changing the value of ϵ in PingPong’s DBSCAN clustering is a design choice.

More generally, a careful co-design of DBSCAN clustering in the underlying PingPong with

PBF clustering by FingerprinTV is required to achieve the desired trade-off between

prevalence and distinctiveness of the extracted PBFs.

147

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Motivation
	Contributions
	Measurement of Advertising and Tracking on Smart TVs
	FingerprinTV: Fingerprinting Smart TV Apps
	Seqnature: Packet Sequences as Network Fingerprints

	Outline

	Related Work
	Ads and Tracking on Smart TVs
	Other Work on Privacy Implications of Smart TVs
	Network Fingerprints

	Measurement of Advertising and Tracking on Smart TVs
	Overview
	Labeling Methodology
	Smart TV Traffic in the Wild
	Systematic Testing of Roku and Fire TV
	Roku Data Collection
	Fire TV Data Collection
	Comparing Roku and Fire TV

	Blocklists for Smart TVs
	Evaluating Popular DNS Blocklists
	False Negatives

	PII Exposures in Smart TVs
	Summary, Limitations, and Directions

	FingerprinTV: Fingerprinting Smart TV Apps
	Overview
	Data Collection
	App Selection
	Automation
	Dataset Summary

	Fingerprinting Techniques
	Domain-Based Fingerprints (DBF)
	Packet-Pair-Based Fingerprints (PBF)
	TLS-Based Fingerprints (TBF)

	Fingerprint Performance Assessment Methodology
	Fingerprint Prevalence, Distinctiveness, and Size
	Domain-Based Fingerprints (DBF)
	Packet-Pair-Based Fingerprints (PBF)
	TLS-Based Fingerprints (TBF)
	Distinctiveness and Dataset Size
	Takeaways

	Identical Fingerprints
	Domain-Based Fingerprints
	Packet-Pair-Based Fingerprints
	Takeaways

	Fingerprints Across Platforms
	Multi-Platform Apps
	Distinctiveness of Fingerprints Across Platforms
	Takeaways

	Combining Fingerprints
	DBF or PBF
	DBF and PBF
	Takeaways

	Discussion
	Summary

	Seqnature: Packet Sequences as Network Fingerprints
	Overview
	Fingerprinting Framework
	Preprocessing
	Fingerprint Refinement
	Representations of the Resulting Fingerprint
	Fingerprint Matching

	Fingerprinting Techniques
	Endpoint-Specific Packet-Sequence-Based Fingerprints
	Endpoint-Based Fingerprints

	Datasets
	FingerprinTV: Smart TV Apps
	PingPong: Events on IoT Devices

	Fingerprinting Results
	Prevalence
	Distinctiveness

	Future Directions
	Further Analysis of EPBFs and EBFs
	Additional Fingerprinting Techniques

	Summary

	Conclusion
	Summary
	Perspective

	Bibliography
	Appendix Appendix for Chapter 3
	Labeling Datasets Continued
	App Exploration Implementation Details
	Roku Automation
	Fire TV Automation

	Limitations of App Exploration
	Video Playback
	Automation vs. Manual Testing
	Apps that Require Login

	Fire TV TLS Interception
	Additional Analysis of Datasets
	In the Wild Dataset Continued
	Key Players Continued

	Appendix Appendix for Chapter 4
	PingPong Characterization

