UCLA
UCLA Previously Published Works

Title
Optimal algorithms for haplotype assembly from whole-genome sequence data

Permalink
https://escholarship.org/uc/item/77t900hh

Journal
Bioinformatics, 26(12)

ISSN
1367-4803

Authors

He, Dan
Choi, Arthur
Pipatsrisawat, Knot

Publication Date
2010-06-15

DOI
10.1093/bioinformatics/btg215

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/77t900hh
https://escholarship.org/uc/item/77t900hh#author
https://escholarship.org
http://www.cdlib.org/

Vol. 26 ISMB 2010, pages i183-i190
doi:10.10983/bioinformatics/btq215

Optimal algorithms for haplotype assembly from whole-genome

sequence data

Dan He*, Arthur Choi, Knot Pipatsrisawat, Adnan Darwiche, Eleazar Eskin
Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA

ABSTRACT

Motivation: Haplotype inference is an important step for many
types of analyses of genetic variation in the human genome.
Traditional approaches for obtaining haplotypes involve collecting
genotype information from a population of individuals and then
applying a haplotype inference algorithm. The development of
high-throughput sequencing technologies allows for an alternative
strategy to obtain haplotypes by combining sequence fragments.
The problem of ‘haplotype assembly’ is the problem of assembling
the two haplotypes for a chromosome given the collection of such
fragments, or reads, and their locations in the haplotypes, which are
pre-determined by mapping the reads to a reference genome. Errors
in reads significantly increase the difficulty of the problem and it has
been shown that the problem is NP-hard even for reads of length 2.
Existing greedy and stochastic algorithms are not guaranteed to find
the optimal solutions for the haplotype assembly problem.

Results: In this article, we proposed a dynamic programming
algorithm that is able to assemble the haplotypes optimally with time
complexity O(m x 2¥ xn), where m is the number of reads, k is the
length of the longest read and » is the total number of SNPs in the
haplotypes. We also reduce the haplotype assembly problem into the
maximum satisfiability problem that can often be solved optimally
even when k is large. Taking advantage of the efficiency of our
algorithm, we perform simulation experiments demonstrating that the
assembly of haplotypes using reads of length typical of the current
sequencing technologies is not practical. However, we demonstrate
that the combination of this approach and the traditional haplotype
phasing approaches allow us to practically construct haplotypes
containing both common and rare variants.

Contact: danhe@cs.ucla.edu

1 INTRODUCTION

Obtaining haplotypes, or the sequence of alleles on each
chromosome, is an important step for many types of analyses of
genetic variation in the human genomes. In particular, haplotype
inference is required for the application of many imputation
algorithms (Marchini et al., 2007), which are now widely applied in
the analysis of genome-wide association studies.

The standard approach for obtaining haplotype information
involves collecting genotype data from a population of individuals.
Genotype data contains information on the set of alleles at each
locus, but lacks information on which chromosome a particular
allele occurs on. Computational methods are then applied to these
genotype data to infer the haplotypes (Browning and Browning,
2008; Halperin and Eskin, 2004; Stephens et al., 2001). These
methods take advantage of the fact that alleles at neighboring loci in

*To whom correspondence should be addressed.

the genomes are correlated or are ‘in linkage disequilibrium’ (LD),
as well as the fact that in any given region only a few common
haplotypes account for the majority of the genetic variations in
the population. Due to their reliance on LD, these methods have
difficulty inferring haplotypes with rare variants and have no ability
to infer haplotypes for alleles that are unique to an individual.

Recently, the development of high-throughput sequencing (HTS)
technology has enabled an alternative strategy to obtain haplotypes.
Since each sequence read is from a single chromosome, if a read
covers two variant sites, all of the alleles present in the read must
be from the same haplotype. Using this insight, it is possible to
assemble the two haplotypes for a chromosome from the collection
of such reads by joining reads that share alleles at common variants.
The problem is referred to as ‘haplotype assembly’ (Lancia et al.,
2001), which is challenging in the following two aspects:

¢ Reads are sampled from either of the two haplotypes and
no information is given about which one they come from.
The reads need to be separated for the two haplotypes in the
assembly process.

* Errors in reads significantly increase the difficulty of the
problem and it has been shown that the problem is NP-hard
even for reads of length 2 (Cilibrasi et al., 2005; Lancia et al.,
2001).

A simple greedy heuristic method (Levy et al., 2007) (which we
call the Greedy algorithm), concatenates the reads with minimum
conflicts and is fast but not very accurate when reads contain
errors. Other stochastic algorithms, such as HASH (Bansal er al.,
2008), which is a Markov chain Monte Carlo (MCMC) algorithm,
and HapCut (Bansal and Bafna, 2008), which is a combinatorial
approach, have been shown to be much more accurate than the
Greedy algorithm on the HuRef diploid genome sequence (Levy
et al., 2007).

However, both HASH and HapCut algorithms use stochastic
strategies and therefore are not guaranteed to find optimal solutions
for the haplotype assembly problem. In this article, we propose
a dynamic programming algorithm that is able to assemble the
haplotypes optimally with time complexity O(mx 2% x n), where
m is the number of reads, k is the length of the longest read
and n is the total number of heterozygous sites in the haplotypes.
Since this time complexity is exponential in k, we reduce the
problem to the maximum satisfiability (MaxSAT) problem for cases
where k is large. MaxSAT conversion is a well-known strategy for
many computational biology problem such as SNP Tagging (Choi
et al., 2008). The converted MaxSAT problem can often be solved
optimally in a reasonable amount of time with an MaxSAT solver.
Our experiments show that the MaxSAT approach can solve 99.98%
instances of the converted haplotype assembly problem optimally.
We also show for the first time that the current best-known solution

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/

D.He et al.

is only 1.1% from the optimal solution and our solution is the best
result that has yet been achieved.

Taking advantage of the efficiency and optimality of our method,
we are able to perform simulation experiments to evalute the
feasibility of assembling haplotypes using sequence reads with the
length typical of the current high-throughput technologies. The
current sequencing technologies are able to collect paired-end reads,
where sequences of two segments are obtained separated by an
approximate distance (insert length). Our experiments show that the
insert length and in particular the variability in the insert length
play a crucial role in our ability to assemble haplotypes. Using
data from HapMap (International HapMap Consortium, 2007) we
demonstrate that using current HTS technologies, the assembly
of reads into haplotypes is impractical. However, we show that
combining haplotype assembly from sequencing with traditional
approaches for inferring haplotypes using genotypes can effectively
recover haplotypes for both common and rare alleles.

2 RELATED WORK

The haplotype assembly problem was first introduced by Lancia
et al. (2001). They show that the problem is computationally
challenging when reads contain errors, since the reads can not
be partitioned perfectly into two disjoint sets. Therefore, various
combinatorial objective functions have been proposed (Lancia et al.,
2001; Lippert et al., 2002) to define the best reconstruction of
haplotypes such as minimum fragment removal (MFR), minimum
error correction (MEC), minimum SNP removal (MSR), minimum
implicit SNP removal (MISR), minimum implicit fragment removal
(MIFR). Out of these objective functions, MEC, which is the
number of conflicts between the sequence reads and the constructed
haplotypes, is the most difficult one to optimize. The haplotype
assembly problem with MEC as the object function is NP-hard even
for gapless reads of length 2, while polynomial algorithms exist for
solving the problem with MFR and MSR as the objective function
(Cilibrasi et al., 2005; Lippert et al., 2002). Several heuristic and
stochastic methods (Bansal and Bafna, 2008; Bansal et al., 2008;
Levy et al., 2007; Panconesi and Sozio, 2004; Wang et al., 2005)
have been proposed to optimize MEC for gapped reads. In this
article we also focus on minimizing MEC. Therefore, the ‘haplotype
assembly’ problem can be defined as following: given a set of
reads that may contain errors, reconstruct the pair of haplotypes
by partitioning the reads to either haplotype such that the MEC is
minimized.

The Greedy heuristic algorithm (Levy et al, 2007), which
concatenates the reads with minimum conflicts, is able to construct
optimal haplotypes very quickly if the reads are error-free. When
there are errors in the reads, the Greedy algorithm usually outputs
much worse results than the optimal solution. HASH (Bansal ef al.,
2008) and HapCut (Bansal and Bafna, 2008) algorithms are both
based on the idea of building a graph from the read matrix, where
each row corresponds to a read and each column corresponds to a
position of the haplotype. In the graph, each column is a node and
an edge between two nodes is created if there is a read spanning
the corresponding two columns. The weights of the edges are
determined by the number of reads that are consistent with the
haplotypes minus the number of reads that are in conflict with
the haplotypes in the two columns. The HASH algorithm uses
graph cut computations to construct the Markov chain used for

sampling the haplotype space. HapCut uses Max-Cut computations
in an associated graph to greedily move towards the optimal MEC
solution. Both HASH and HapCut algorithms obtain much more
accurate haplotypes than the Greedy algorithm. Since convergence
of Markov chain is slow, HapCut is much faster than HASH with
almost the same accuracy.

Although HASH and HapCut achieve reasonably good results,
they are stochastic and therefore can not guarantee optimal solutions.
In this article we propose a dynamic programming algorithm that is
able to find the optimal solution with time complexity O(m x 2K xn)
for gapless reads, where m is the number of reads, k is the length of
the longest read and n is the total number of SNPs in the haplotypes.
The time complexity implies that this algorithm is most effective
when k is relatively small. Since only heterozygous sites in the reads
are considered for assembly, and the number of heterozygous sites,
or variants, is small, and these sites are often far from one another,
most of the reads only cover a small number of heterozygous sites.
The dynamic programming algorithm is computationally practical
for up to reads of length 15, where length is defined as the number
of heterozygous sites covered by the read. We later show that in the
HuRef data, >90% of the reads are of length less than 15, which
indicates the dynamic programming algorithm is practical for the
majority of the data. In our experiments, the run time of the dynamic
programming algorithm we propose here is comparable to that of the
HapCut algorithm. Furthermore, to handle reads of length greater
than 15, we propose to take advantage of recent advances in the
field of logical reasoning, by modeling the haplotype problem as
an MaxSAT problem. We show that modern MaxSAT solvers are
powerful enough to solve such haplotype problems optimally in
practice.

3 METHODS

3.1 The Haplotype assembly problem

We will follow the notation by Bansal and Bafna (2008) for the haplotype
assembly problem. Given a reference genome sequence and the set of reads
containing sequence from both chromosome, after aligning all the reads to
the reference genome (Li et al., 2008), the homozygous sites (columns in the
alignment with identical values) are discarded since they are not informative.
The heterozygous sites (columns in the alignment with different values)
correspond to alleles that differ between chromosomes and they are labeled
as 0 or 1 arbitrarily. A matrix X of size m x n can be built from the alignment,
where m is the number of reads and 7 is the number of heterozygous sites. The
i-th read is described as a ternary string X; € {0, 1, —}", where ‘—’ indicates
a gap, namely that the allele is not covered by the fragment [again following
the notation of Bansal and Bafna (2008) for clarity]. The start position and
end position of a read are the first and last positions in the corresponding
row that are not ‘—’, respectively. Therefore, the ‘—’s in the head and tail of
each row will not be considered as part of the corresponding read. However,
there can be ‘—’s inside each read, which correspond to either missing data
for single reads or gaps connecting a pair of single reads (called paired-end
reads). Reads without ‘— are called gapless reads; otherwise they are called
gapped reads. Assuming a read’s end position is j, start position is i, the
length of the read is defined as j—i+1. We also assume all the reads have
already been correctly aligned to the reference genome by some mapper,
which may not be true since the mapper may introduce mapping errors and
the reads may come from repeat-rich regions. However, the mapping process
is out of the scope of this article and we thus do not evaluate the effects of
mapping errors on the quality of our haplotype assembly solution.

The haplotypes can be represented as an unordered pair of binary strings
H=(hy,hy), each of length n. Since all the sites are heterozygous, h; is

i184

Optimal haplotype assembly

Table 1. An example of read matrix that consists of 10 reads spanning
13 positions

Reads o 1 2 3 4 5 6 7 8 9 10 11 12

Readl o 0 -
Read2 - - 1
Read3 0O 0 O
- 1

0

OO = 1
—_

'

'

'

'

'

'

'

'

Read4

Read5 - -
Read6 - - -
Read7 - - -
Read8 - - - -
Read9 - - - -
Readl0 - - - - - - -

(=)
o o
[
o= o
o
—_ '
—_ '

[—_

[—_
['

'
'
(=]

the bit-wise complement of /;. An example of the read matrix is shown in
Table 1. As we can see in this example, each read corresponds to one row
where ‘—’ indicates missing information. Reads often contain errors. For
example, if we only consider reads 1,2,3, we can partition them perfectly
into two sets ({readl, read3}, {read2}) and reconstruct the haplotypes as
H =(h; ={0000}, hp = {1111}) by assigning reads 1 and 3 to #; and assigning
read2 to hy. However, read4 is in conflict with this partition and there is no
perfect partition for reads 1,2,3 and 4.

Therefore, in the presence of errors, we need to reconstruct the haplotypes
such that some objective function is minimized. The objective function we
use is MEC, which is the minimum number of changes, or corrections, that
need to be made in the read matrix such that the resulting matrix admits
a perfect bi-partition, where each corrected read maps to either haplotype
perfectly. Alternatively speaking, for any pair of complementary haplotypes,
the set of reads can be partitioned into two subsets that satisfy the following
property: if both subsets of the reads are mapped to the two haplotypes at
their corresponding intervals indicated by their starting positions and lengths,
where one subset is mapped to only one of the haplotypes, the number of
errors or mismatches for the mapping is minimized. This minimum number
of errors is the MEC score of the reads for the pair of haplotypes. In our
example, if we only consider reads 1,2,3 and 4, we can change read4 from
(101) to (001) such that now we can obtain a perfect bi-partition ({readl,
read3, read4}, {read2}) with reconstructed haplotypes H'=(h; = {00001},
hp ={11110}). The number of changes we made is obviously 1. Therefore
the ‘haplotype assembly’ problem is identical to finding a pair of haplotypes
H such that the MEC score of the reads in the read matrix is minimized. For
example, the MEC score for reads 1,2,3 and 4 is 1 and the corresponding
optimal pair of haplotypes is H'. This example is very simple, however, in
reality, the number of reads can be very large and it has been shown that the
‘haplotype assembly’ problem is NP-hard even for gapless reads of length 2.

Notice that the optimal haplotypes that minimize the MEC score may
not be exactly the same as the real haplotypes. However, our objective
function for the haplotype assembly problem makes the maximal parsimony
assumption common in many computational biology problems (Fitch, 1977;
Gusfield, 2003). Therefore, the optimal solution is the most biologically
meaningful solution for our problem. Another factor that may affect the
quality of the reconstructed haplotypes is sequencing error. If the errors are
consistent across reads, the reconstructed haplotypes may maintain these
errors and may be incorrect. However, the MEC criteria attempts to discover
haplotypes that minimizes the number of errors in the reconstruction. This
is because if the errors are contained in only the minority of the reads, by
minimizing the possible errors, the reconstructed haplotypes can still capture
the reads that were sequenced correctly and thus avoid the sequencing errors.

3.2 Dynamic programming algorithm

To obtain the optimal solution for the haplotype assembly problem, a naive
approach is to enumerate all binary strings, each of which represents a

possible haplotype, and then assign the reads to each pair of possible
haplotypes to minimize the conflicts with the reads. Given the length of
haplotypes as n, the number of reads as m, this naive approach requires
O(m x2") complexity and is therefore infeasible for large n. However, the
problem can be solved optimally using a dynamic programming algorithm
as we show here. The basic idea of the dynamic programming algorithm
is to store the optimal MEC for partial haplotypes (the prefixes for full-
length haplotypes) ending with every possible length k binary strings. Then
the algorithm extends the partial haplotypes by one bit repeatedly until
full-length haplotypes are obtained.

We define r as a length, k binary string and s(i,r) as the MEC score
for partial haplotypes starting at position 0 and ending at position i+k —1
with suffix r, where the partial haplotypes are the prefixes of full-length
haplotypes. s(i,r) is obtained by considering only the reads whose starting
positions are no greater than i and it solves a subproblem of the full-length
haplotype assembly where all reads are considered. We build a dynamic
programming matrix and at each position i we store s(i, r) for all . The best
MEC is the minimum s(n—k,r) over all r, where n is the full length of the
haplotypes. Given the definition of MEC (minimum number of changeseq
flips needed), we can initialize s(0,r) by considering the reads that start at
position 0, and for each read compute the number of mismatches between
the read and r and the read and the complement of r. The partial haplotypes
at position i can be obtained by extending the partial haplotypes at position
i—1 with either a 0 or 1. s(i,r;) can be computed from s(i—1,r,) and the
newly introduced errors between r; and all reads starting at position i, where
the length kK —1 suffix of r; is the same as the length k— 1 prefix of r;. The
recursion is illustrated in the following formula:

s(i,r) :bril(iJn] (s(i—1,(b,r[0,k=21))+h(i,r)) (1)

where b is a binary bit of either 0 or 1, r[0,k—2] is the length k— 1 prefix
of r, (b,r[0,k—2]) is a length-k binary string generated by concatenating b
with [0,k —2], h(i, r) is the minimum of the total number of disagreements
between r or the complement of r and all reads starting at position i. Notice
that, for h(i, r), we consider both r and the complement of » because each read
can be assigned to either the current haplotype or its complement (depending
on which assignment produces smaller disagreements). The assignments
producing the minimum disagreements are then selected. Each ‘—’ matches
both 0 and 1, so a mismatch only happens between non- ‘—’ symbols.

Starting from the solution that leads to a minimal value of s(n—k,r) over
all r, we can trace back the dynamic programming matrix to reconstruct
the haplotypes that minimize the MEC score. The time complexity of the
dynamic programming algorithm is O(m x 2% x), where m is the number of
reads, k is the length of the longest read and » is the total number of SNPs
in the haplotypes. Here, for illustrative purpose, we assume all reads are of
length k. In reality, the reads are of different length and the time complexity
of the dynamic programming algorithm becomes O(m x 2kmax x i), where
kmax 1 the maximal number of alleles contained among all reads.

‘We also observe that we can split up the reads into sets where there is no
read that spans any two sets. We call such a set a block. The set of reads can
thus be partitioned into many blocks. Since no read spans any two blocks,
which means those blocks are independent, we can reconstruct haplotypes for
each block in parallel using the dynamic programming algorithm developed
above and then concatenate the solutions for each block to construct the
complete haplotypes.

Next, we show a simple example for the dynamic programming algorithm.
We take read 1-read 4 from Figure 1 as an example. We need to order them
according to their start positions.

(1) At position i=0: we have read 1 and read 3, k =length(read 3)=4.
Therefore, we compute s(i,r) for all length k=4 binary strings r,
using only read 1 and read 3:

5(0, 0000) = A(0, 0000) = 0,
(0, 0001) = h(0, 0001) = 1,
5(0, 0010) = A(0, 0010) =1,

i185

D.He et al.

(a)
9 o
I O all reads
© n B short reads
) 1 -.
T v
o O
O +
)
i
g B
ES
2%
N
o
=] LUDKLL [l
g 1 3 5 7 9 11 13 15 17 19 21

chromosome

C;

100000 150000
]

length of haplotypes
50000

I

19 21

o

1 3 5 7 9 11 13 15 17
chromosome

Fig. 1. (a) The number of short reads, all reads and (b) the length of haplotypes for each chromosome. The threshold for short reads is 15. The length of

haplotypes is the number of heterozygous sites in each chromosome.

oo

s(0, 1111) = h(0, 1111) = 0.
(2) At position i=1: there is no read starting at position 1.

(3) At position i=2: we have read 2 and read 4 and

k =length (read 4)=3. Again, we compute s(i,r) for all length k=3
binary strings r, using only read 2 and read 4. Since we do not have
read starting at position 1, to simplify the computation, in Formula
1, s(i—1,(b,r[0,k—2])) becomes s(i—2,(b1,b2,r[0,k—2]) where
b1 €{0,1} and b, € {0,1} are single binary bits. Therefore, we have:
$(2, 000)=min(s(0, 0000)+h(2,000), s(0, 0100)+h(2,000), s(0, 1100)+
h(2,000), s(0, 1000) + ~(2,000)) =1,

$(2, 001)=min(s(0, 0000)+h(2,001), s(0, 0100)+h(2,001), 50, 1100)+
h(2,001), s(0, 1000) +~(2,001))=1,

s(2, 111)=min(s(0, 0011)+h(2,111), sO, O0111)+h(2,111), s(0,
h(2,111), 50, 1011) +h(2,111)) = 1.

111+

Therefore, the optimal MEC is min(s(2,r)) for all length k =3 binary strings
r and the optimal MEC is 1.

Notice that when we trace back to obtain the optimal haplotypes, it is
not necessarily the case that there is only one pair of optimal haplotypes. In
the above example, s(2, 000)=1 and it is from s(0, 0000). By tracing back
from s(2, 000), we get the optimal haplotype pair ({00000}, {11111}). We
also have s(2, 001)=1 and it is from s(0, 0000). By tracking back from s(2,
001) we get the optimal haplotype pair ({00001, 11110}). Both the pairs
have optimal MEC of 1. When there are multiple optimal solutions, data on
multiple individuals may be used to infer the most likely haplotypes for each
ambiguous individual.

3.3 MaxSAT conversion for haplotype assembly

So far, we only discussed a dynamic programming algorithm for single
reads. Consider reads 5, 6 and 10 in Figure 1. In each of these reads,
there are two continuous strings connected by ‘—’, which indicates missing
information. These reads are called paired-end reads and are generated
by modern sequencing technologies. The problem becomes much more
complicated when paired end reads are considered since paired-end reads
usually span a long fragment, which can be as long as a few hundred
positions. Although paired-end read can be considered as a special case
of a single read, the dynamic programming algorithm introduced above
becomes impractical, since we need to enumerate all positions the paired-
end read covers. As concluded above, the time complexity of the dynamic
programming algorithm is O(m x 2%max x n), where kmay is the maximum
number of alleles contained among all reads. When paired-end reads are
considered, kmax could be as large as a few hundred, making the dynamic
programming approach impractical. Even single reads can be too long to

enumerate some of the positions. We set a threshold for kpyax such that the
enumeration of all length kmax binary strings is computationally feasible.
We call the single reads and the paired-end reads of length greater than the
threshold as long reads and the other reads as short reads.

We solve the haplotype assembly problem when long reads are also
considered by conversion to MaxSAT. The MaxSAT problem is an
optimization version of the well-known Boolean satisfiability problem
(SAT) (Biere et al., 2009). Given a set of clauses (a clause is a disjunction of
Boolean literals), the MaxSAT problem asks for a complete assignment of
all variables that maximizes the number of clauses the assignment satisfies.
For example, consider the following set of four clauses:

(x1), (1 Vo), (—x1 Vaz), (mxp V —x3)

The assignment x| =false, x, =false, x3 =false satisfies three clauses and
is optimal. In this work, we consider a variant of MaxSAT known as partial
MaxSAT. Partial MaxSAT allows some clauses to be labeled as hard—i.e.
their satisfiability is mandatory in any solution. The objective of the problem
is to find an assignment that satisfies all hard clauses and satisfies the most
number of non-hard (i.e. soft) clauses. For more discussion on MaxSAT and
its variations, please see (Li and Many4d, 2009).

In our conversion of the haplotype assembly problem to partial MaxSAT,
we define the following boolean variables:

¢ h;,0<i<n, represents the binary symbol at position i in the haplotype
to be constructed.

* 1;,0<j<m, represents the assignment of read j to a haplotype. The
value r; =0 indicates that read j is assigned to the considered haplotype,
while the value r; =1 indicates that the read is assigned the complement
haplotype.

* ¢;;,0<i<n,0<j<m, represents whether a correction is needed for
position i of read j with respect to the considered haplotype. The value
e;j=1 indicates that a correction is needed, while the value e; =0
indicates that no correction is needed at that position.

Given these variables, we can define the set of clauses that describes the
relationship between A;, r; and e;;. These clauses essentially specify that
there is an error whenever the value at position i of read j does not match
with the value at position i of the haplotype that the read is assigned to. Let
read[i][j] represent the value at position i of read j (i.e. the value of cell[i][}]
of the read matrix). We can formally define a set of clauses for each non-‘—’
entry in the read matrix as follows:

(hi & —rj & e), if read[i][j] is O,

(hi & 17 <€), if read[i][j] is 1.

Note that < is the logical equivalence operator and that (x<y<>z) is a
shorthand notation for the clauses (x VyVz),(—xV=yVz),(—xVyVv—z),(xV

i186

Optimal haplotype assembly

—yV—z). The above clause definition can be understood as follows. If
read[7][;] is O, then the error ¢;; is defined to be h; < —r;. That is, there should
be an error if (and only if) (i) A; is 1 and the read is assigned to the considered
haplotype or (ii) /; is 0 and the read is assigned to the complement haplotype.
The case when read[i][;] is 1 can be understood in a similar way. As these
clauses describe how the errors are calculated, they should be hard clauses
in our MaxSAT problem (they should not be violated by any solution).

Since we would like to find an assignment that minimizes error, we add to
our MaxSAT problem the unit clause (—e;;) for each non-‘—’ position in the
read matrix. Every unit clause that an assignment falsifies (i.e. every error
introduced) will incur a penalty of 1 to that assignment. These unit clauses
are soft clauses that might be falsified by the optimal solution. The optimal
solution to this MaxSAT problem is simply any assignment that respects the
error calculation rules and introduces the least amount of error.

This concludes our conversion of the haplotype assembly problem to
partial MaxSAT problem. We may use any partial MaxSAT solver to
solve the resulting problem. In this work, we used the solvers called
Clone (Pipatsrisawat et al., 2008) and WBO (Manquinho et al., 2009) to solve
the resulting MaxSAT problems. We will report the experimental results in
the next section.

4 RESULTS

4.1 HuRef experiments

We first examine the performance of the dynamic programming
algorithm on the filtered HuRef data from (Levy et al., 2007) overall
22 chromosomes and directly compare our method to previous
approaches (Bansal and Bafna, 2008). The data consists of 32 million
DNA fragments generated by Sanger sequencing and contains a
total of 1.85 million heterozygous variants for the 22 chromosomes.
We show the number of short reads, all reads and number of
heterozygous sites for each chromosome, where the threshold for
short reads is 15 as shown in Figure 1. As we can see, the number of
reads for each chromosome is very large. More than 90% of the reads
are short reads. Haplotypes for each chromosome are also very long,
making the haplotype assembly problem computationally intensive.
The average number of reads that span each heterozygous site is
between six and seven.

The whole-genome sequence data consists of many disconnected
blocks where no read spans the boundary of two blocks. Therefore,
we can split the sequence data independently into many blocks
and then solve the haplotype assembly problem for each block.
The global MEC score is the sum of the scores from each block
and the optimal haplotypes are the concatenation of the haplotypes
from each block. We show the read matrix for the first block of
chromosome 22 in Figure 2 as an example, where we have around
2300 reads spanning a block of length around 400.

4.1.1 HuRef experiments on only short reads We first compare
the results of the dynamic programming algorithm with the results
of Greedy and HapCut, on short reads, namely single reads and
the paired-end reads of length less than 15 only. As we showed
in Figure 1, most of the reads are very short. However, there
are still tens of thousands of reads of length more than 15. For
example, in the block shown in Figure 2, there are around 400
long reads and the maximal length of the reads is around 200.
We run all three algorithms on short reads only and the results are
shown in Table 2. As we can see, on average, HapCut improves the
MEC score of Greedy by 30%, while our dynamic programming
algorithm shows for the first time that the solution from HapCut

500

1000

rows

1500

2000

250

0 50 100 150 200 250 300 350 400

columns

Fig. 2. Graphical representation of the read matrix for the first block of
Chromosome 22, where the reads are sorted by their starting positions. The
rows are the reads and the columns are the haplotype positions. The black
dots are the non-‘—’ cells for the short reads and the red dots are the non-‘—’
cells for the long reads. The red lines are the gap cells of the paired-end
reads.

is only 1.1% from the optimal solution. The run time of the
dynamic programming algorithm is reasonably fast and comparable
to the HapCut algorithm. For example, for the first block of
Chromosome 22 in Figure 2, HapCut runs for 20 s while the dynamic
programming algorithm runs for 24 s. The run times are even closer
for small size blocks and ~90% blocks are such small size blocks.
Both algorithms run for more than 10 h and finish in roughly the
same time on a computational cluster for all the 22 chromosomes.

4.1.2 HuRef experiments on all reads As mentioned in the
previous section, in order to solve the haplotype assembly problem
containing reads of all lengths, we convert the problem into a partial
MaxSAT problem and use partial MaxSAT solvers to solve it. In
this work, we consider two MaxSAT solvers: Clone (Pipatsrisawat
et al., 2008) and WBO (Manquinho ef al., 2009).

Out of 47758 blocks, Clone was able to solve all but eight
blocks optimally. WBO, on the other hand, solved all but 34 blocks
optimally. These two solvers report the same optimal solutions for
the blocks they both solved. Interestingly, even for the eight blocks
that Clone could not solve optimally, it still reported solutions with
lower MEC scores than those obtained from the HapCut algorithm. !
We compared our results with the results of Greedy and HapCut. The
results are shown in Table 2. As we can see, on average, HapCut
improves the MEC score of Greedy by 34%, while our MaxSAT
conversion method again shows that the solution of HapCut is very
close to the optimal solution. Although there are eight blocks that
we could not solve optimally, the remaining 99.98% of the blocks
were optimally solved. Therefore, it is reasonable to believe that the
overall solution we obtained is very close to optimal. The run time
of the MaxSAT solver on our cluster machine is ~15h, which is
comparable to that of HapCut.

4.2 Designing haplotype assembly protocols

While previously developed haplotype assembly approaches have
been successfully applied to the HuRef data, it is not clear how
applicable these approaches would be using current high-throughput
genotyping technologies that have much shorter read lengths, yet

!Clone is an any time algorithm that reports the current best solution as soon
as it is discovered.

i187

D.He et al.

Table 2. The MEC scores computed by Greedy, HapCut and dynamic programming (DP), MaxSAT conversion, on short reads only and on all reads,

respectively, for each chromosome

On short reads

On all reads

Greedy HapCut DP Greedy HapCut MaxSAT
Chromosome 1 21355 15312 15292 29518 19687 19584
Chromosome 2 16067 11251 11107 22706 14615 14576
Chromosome 3 11909 8223 8181 16696 10702 10647
Chromosome 4 12518 8820 8775 17509 11525 11304
Chromosome 5 11621 8017 7944 16432 10536 10528
Chromosome 6 10624 7487 7369 15295 9842 9826
Chromosome 7 11668 8531 8423 17188 11244 11187
Chromosome 8 10501 7343 7311 14535 9741 9025
Chromosome9 10199 7350 7312 13512 9222 9201
Chromosome 10 10263 7313 7236 15076 9846 9778
Chromosome 11 8825 6224 6196 12667 8200 8183
Chromosome 12 8641 6337 6155 12453 8218 8176
Chromosome 13 6412 4396 4341 8848 5822 5761
Chromosome 14 6634 4567 4532 9070 5879 5845
Chromosome 15 9289 6653 6623 13291 9311 9285
Chromosome 16 8574 6160 6093 12365 8259 8207
Chromosome 17 7088 5034 4955 10195 6525 6459
Chromosome 18 4973 3526 3398 8324 4991 4943
Chromosome 19 5549 3996 3907 7939 5319 5288
Chromosome 20 4136 2909 2891 5563 3739 3723
Chromosome 21 3877 2903 2796 5607 3888 3881
Chromosome 22 4424 3267 3250 6685 4495 4479
Sum 205147 145619 144087 291474 191606 189886

higher coverage than the HuRef data. We take advantage of the
efficiency of our algorithm to perform simulations in order to design
sequencing protocols for current high-throughput technology in
order to effectively obtain haplotypes. Unlike the reads for HuRef
data, which are sequenced with the Sanger-based whole-genome
shotgun sequencing and therefore are very long (each segment
is thousands of base pairs long including both homozygous and
heterozygous sites), here we consider the reads generated by the
HTS technology (Wheeler et al., 2008). The reads generated by HTS
are usually very short (each segment is around 30-100 bp including
both homozygous and heterozygous sites).

The basic parameters of sequencing technology that we explore
are the sequence coverage ratio (the number of times that each
base pair in the sequence is covered), the insert length of the
paired-end reads (the distance between the two segments of the
paired-end reads), the variance of this insert length and the read
length. We explore how these parameters affect the haplotype
assembly. We perform our experiments over individual genotype
data from HapMap (International HapMap Consortium, 2007). For
a single individual, we concatenate the heterozygous SNPs to
construct a true haplotype. For the individual we downloaded, there
are 505065 heterozygous SNPs. We then mimic the sequencing
process by randomly generating paired-end reads with varying
parameters including coverage ratio, insert length of the reads and
standard deviation of the insert length. The insert length follows a
Gaussian distribution with a mean of 1000. Assume the genome
length is n, the sequence read length is [/, the coverage ratio is

¢, the number of reads to be generated then is ”—7‘ The starting

positions of the reads are randomly selected within the range of the
whole genome, therefore they may cover both heterozygous and
homozygous SNPs. The segment length of the sequence paired-
end read is 36 (including both heterozygous and homozygous
sites), which is a reasonable value given current technology. To
evaluate the effects of these parameters on the assembly process,
we first divide the haplotypes into blocks with distances >1 SD
above the sum of the mean of the insert length (we use 1000).
The reads are then very unlikely to span two blocks due to the
distance between them. The length of a read in the read matrix
is the number of heterozygous SNPs the read covers. Since we
generate only paired-end reads in our simulation, which consist of
two segments, if only one segment of a read covers heterozygous
SNPs, the resulting read in the read matrix will be considered as
a single read, otherwise it is considered as a paired-end read. The
insertion of a paired-end read corresponds to the gap of the read in
the read matrix. Although the mean of the insert length is 1000, the
corresponding gap length in the read matrix is very small because
only heterozygous SNPs are considered for assembly. Therefore,
almost all the reads are very short. To illustrate this, we vary
the coverage ratio as 10, 20, 30, 40 times, the standard deviation
of insert length as 5, 50, 500. For all combinations of parameter
settings, the ratios of short reads, namely reads of length less than
15, out of all reads, are all greater than 99.99%, indicating that our
dynamic programming algorithm is indeed very practical and can
be considered as optimal.

i188

Optimal haplotype assembly

Table 3. Average number of connected components contained in each block and average size of the connected components whose size is greater than 1 for

different (coverage ratio, SD) settings

(10,5) (10,50) (10,500) (20,5) (20,50) (20,500) (30,5) (30,50) (30,500) (40,5) (40,50) (40,500) (100, 500)

Num 8 7 10 8 6 6 8
Size 2 2 4 2 3 8 2

Table 4. The probability (%) of an SNP attached to other SNPs more than once, twice, three times, four times, for different (coverage ratio, SD) settings

(10,5 (10,50) (10,500) (20,5) (20,50) (20, 500)

(30,5) (30,50) (30,500) (40,5) (40,50) (40, 500)

>1 41 56 65 45 66 82
>2 35 38 39 41 54 62
>3 29 26 23 38 44 44
>4 23 19 16 35 35 32

46 70 89 47 73 92
43 62 75 44 66 83
41 54 61 43 60 71
39 46 48 41 54 60

To evaluate how well the haplotype assembly can be done w.r.t.
the sequencing protocols, we next construct a graph from the read
matrix. Each heterozygous SNP is a vertex in the graph and we
draw an edge between two vertices if their corresponding SNPs
are covered by the same read. We construct such a graph using all
the generated reads and consider the connected components in this
graph since we have no information on how to phase heterozygous
sites in different connected components relative to each other. The
number of optimal solutions will be exponential in the number
of connected components. Therefore, the smaller the number of
connected components is, the better we can assemble the haplotypes.
We count the average number of connected components each block
contains. We also compute the average size of the connected
components. We show the experimental results in Table 3. As we can
see, the number of connected components in each block decreases
as coverage ratio increases and as SD increases. Meanwhile, the
average size of connected components also increases. However, to
reduce the number of connected components each block contains to
one such that we can fully reconstruct each block, we need to use
a very high-coverage ratio such as 100. Thus for any reasonable
coverage ratio that would be collected in a sequencing study,
haplotype assembly will not be able to assemble haplotypes because
there will not be enough reads to connect all of the variants into
complete haplotypes.

However, the strategy of haplotype assembly can be combined
with traditional haplotype inference techniques (Halperin and
Eskin, 2004; Stephens ef al., 2001) to infer haplotypes. The basic
idea is that genotypes are obtained from the sequence data by
performing SNP calling (Li et al., 2008) in the sequence reads.
The majority of the common variants will be present in the
reference datasets such as the HapMap (International HapMap
Consortium, 2007) or the 1000 Genomes Project (1000 Genomes
Project, 2010) and for these variants, haplotypes can be inferred
using traditional techniques by leveraging the haplotypes from the
reference dataset. We note that by using a reference dataset, we
can predict haplotypes (or phase) at the common sites even for a
single individual given the genotypes at the common sites for the
individual.

Then the remaining variants (mostly rare variants) can be attached
to the haplotypes by considering reads that span both the rare

variant and a common allele for which the haplotypes have been
inferred. The inference of the haplotypes can be performed using a
modified dynamic programming algorithm that forces the haplotypes
at the common variants to match the haplotype inferred from the
genotypes.

We take the phased haplotype and treat them as a pair of very long
reads with a gap at each site, which is not present in the reference
sample. We have two ways to place these ‘reads’, namely assign
one of the phased haplotype to one of the final haplotypes, say,
ho, the other phased haplotype to /1, or the other way around. For
each placement, we then apply the dynamic programming algorithm
on the set of paired-end reads to infer the rare variants missed
by the phased haplotypes. We need to use a modified dynamic
programming algorithm where the phased haplotypes also need to be
taken into consideration for the MEC since we initially have placed
them. The placement with the minimum MEC will be the optimal
placement and the corresponding reconstructed haplotypes are the
optimal haplotypes. Weights can also be applied to the dynamic
programming algorithm when the MEC is computed. The weights
can be determined according to our belief of the relative accuracies
of the traditional techniques and the HTS technology respectively.
Then when the MEC is summed over the paired-end reads and the
phased haplotypes, different weights are assigned to the number
of errors from the paired-end reads and the phased haplotypes
accordingly.

We can estimate how effective this approach would be by
considering how often any given variant is covered by a read, which
also covers an additional variant. We show such probabilities in
Table 4 as well as the probabilities that the variants are covered
by more than one read. As we can see, the probability increases as
the coverage ratio or the standard deviation increases. With 40 times
coverage and 500 bp SD, the probability of an SNP being attached to
other SNPs at least once is as high as 92%, and at least twice is also
high as 83%. Therefore, with even a moderate amount of coverage,
most variants are covered by at least one read to another variant
when the SD of the insert length is big enough. Thus, the combined
strategy of using a traditional approach to infer haplotypes using the
genotypes at the common variants combined with assembly of the
rare variants using the sequence reads is a practical approach for
inferring haplotypes.

i189

D.He et al.

5 DISCUSSION

In this article, we proposed a dynamic programming algorithm for
the ‘haplotype assembly’ problem, which is able to assemble the
haplotypes optimally with time complexity O(m x 2% x n), where
m is the number of reads, & is the length of the longest read and » is
the total number of SNPs in the haplotypes. Our experiments show
for the first time that the current best-known solutions are very close
to the optimal solution.

The most difficult part of the haplotype assembly problem is to
handle the long reads. Long reads can span up to a few hundred
positions. To handle these cases, we convert the problem to an
MaxSAT problem, which can be solved optimally by an MaxSAT
solver. We show that our MaxSAT solver is able to solve 99.98%
of the problem instances optimally. For the remaining 0.02%,
the MaxSAT solver also reports better results than HapCut does.
Therefore, the overall solution we obtained is very close to the
optimal.

Although the empirical results of our methods did not show a
major advance over existing methods, we believe it is technically
important and also interesting to have optimal algorithms for the
haplotype assembly problem.

Our analysis on individual genotype data from HapMap shows
that it is impractical to fully assemble the haplotypes as the
coverage ratio needed is too high. However, combined with a
traditional haplotype inference approach, our algorithm is able to
infer haplotypes containing both rare and common SNPs, including
SNPs that are unique to individuals.

Funding: D.H. and E.E. are supported by National Science
Foundation (grants 0513612, 0731455, 0729049 and 0916676);
NIH (grants K25-HL080079 and U01-DA024417). University of
California, Los Angeles subcontract of contract NO1-ES-45530
from the National Toxicology Program and National Institute of
Environmental Health Sciences to Perlegen Sciences (in part).

REFERENCES

1000 Genomes Project (2010) A deep catalog of human genetic variation. Available at
http://www.1000genomes.org/ (last accessed date April 23, 2010).

Bansal,V. and Bafna,V. (2008) HapCUT: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics, 24, 153.

Bansal,V. et al. (2008) An MCMC algorithm for haplotype assembly from whole-
genome sequence data. Genome Res., 18, 1336.

Biere,A. et al. (eds) (2009) Handbook of Satisfiability, Vol. 185 of Frontiers in Artificial
Intelligence and Applications. 10S Press, Nieume Hemweg, Amsterdam.

Browning,B. and Browning,S. (2008) Haplotypic analysis of Wellcome Trust Case
Control Consortium data. Hum. genet., 123, 273-280.

Choi,A. et al. (2008) Efficient genome wide tagging by reduction to SAT. In Proceedings
of the 8th International Workshop on Algorithms in Bioinformatics, Vol. 5251 of
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 135-147.

Cilibrasi,R. ef al. (2005) On the complexity of several haplotyping problems. In
Proceedings of the 5th International Workshop on Algorithms in Bioinformatics,
Vol. of 3692 Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp.
128-139.

Fitch,W. (1977) On the problem of discovering the most parsimonious tree. Am. Nat.,
111, 223-257.

Gusfield,D. (2003) Haplotype inference by pure parsimony. In Proceedings of
the Combinatorial Pattern Matching Conference, Vol. 2161 of Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, pp. 144—-155.

Halperin,E. and Eskin,E. (2004) Haplotype reconstruction from genotype data using
imperfect phylogeny. Bioinformatics, 20, 1842—1849.

International HapMap Consortium (2007) A second generation human haplotype map
of over 3.1 million SNPS. Nature, 449, 851-861.

Lancia,G. et al. (2001) SNPs problems, complexity, and algorithms. In Proceedings
of the 9th Annual European Symposium on Algorithms. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, pp. 182-193.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol.,
5, e254.

Li,C. and Many4,F. (2009) MaxSAT, hard and soft constraints.
Satisfiability, 185, 613-631.

Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res., 18, 1851.

Lippert,R. et al. (2002) Algorithmic strategies for the single nucleotide polymorphism
haplotype assembly problem. Brief. Bioinform., 3, 23.

Manquinho,V. et al. (2009) Algorithms for weighted Boolean optimization. In
Proceedings of the 12th International Conference on Theory and Applications
of Satisfiability Testing, Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, pp. 495-508.

Marchini,J. et al. (2007) A new multipoint method for genome-wide association studies
by imputation of genotypes. Nat. Genet., 39, 906-13.

Panconesi,A. and Sozio,M. (2004) Fast hare: a fast heuristic for single individual
SNP haplotype reconstruction. Vol. 3240 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 266-277.

Pipatsrisawat,K. et al. (2008) Solving weighted Max-SAT problems in a reduced search
space: a performance analysis. Journal on Satisfiability, Boolean Modeling and
Computation, 4, 191-217.

Stephens,M. et al. (2001) A new statistical method for haplotype reconstruction from
population data. Am. J. Hum. Gene., 68, 978-989.

Wang, R. et al. (2005) Haplotype reconstruction from SNP fragments by minimum
error correction. Bioinformatics, 21, 2456.

Wheeler,D. et al. (2008) The complete genome of an individual by massively parallel
DNA sequencing. Nature, 452, 872-876.

Handbook of

i190

http://www.1000genomes.org/

