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To Charge or Not to Charge: Enhancing Electric Vehicle 
Charging Management with LSTM-based Prediction of 
Non-Critical Charging Sessions and Renewable Energy 
Integration 

EXECUTIVE SUMMARY 

To maximize the greenhouse gas (GHG) emission reduction potential of Battery Electric Vehicles 
(BEVs), it is critical to develop EV dynamic charging management strategies. These strategies 
leverage the temporal variability in emissions associated with generated electricity to align EV 
charging with periods of low-carbon power generation.  

This study introduces a deep neural network tool to enable BEV drivers to make charging 
sessions align with the availability of cleaner energy resources. This study leverages a Long 
Short-Term Memory (LSTM) network to forecast individual BEV vehicle miles traveled (VMT) up 
to two days ahead, using a year-long dataset of driving and charging patterns from 66 
California-based BEVs. Based on the predicted VMT, the model then estimates the vehicle's 
energy needs and estimates the necessity of a charging session. This allows drivers to charge 
their vehicles strategically, prioritizing low-carbon electricity periods without risking incomplete 
journeys. This framework empowers drivers to actively contribute to cleaner electricity 
consumption with minimal disruption to their daily routines. 

Our tool outperforms benchmark models such as recurrent neural networks and autoregressive 
integrated moving averages, demonstrating its predictive capabilities. To enhance the reliability 
of predictions, confidence intervals are integrated into the model, ensuring that the model does 
not disrupt drivers' daily routine trips when skipping non-critical charging events. We 
demonstrate the potential benefits of our tool by applying it to real-world EV data, finding that 
if drivers follow the tool’s predictive suggestion, they can reduce overall GHG emissions by 41% 
without changing their driving patterns.  

This study also found that even charging in regions with higher carbon-intensity electricity than 
California can achieve Californian emission levels for EV charging in the short term through 
strategic management of non-critical charging events. This finding reveals new possibilities for 
further emissions reduction from EV charging, even before the full transition to a carbon-
neutral grid. 
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Introduction 

Background and Motivation 

The potential of electric vehicles (EV) to reduce emissions depends on the type of electricity 
generation mix used to charge these vehicles (1). Ambrose et al. (2) investigated the carbon 
emissions associated with EV charging across different countries. They found that the amount 
of fossil energy in the electricity mix is positively correlated with emissions from charging EVs. 
Another study found that charging EVs during the night (delayed charring) resulted in higher 
emissions in most US states due to the increase in coal generation during that time (3). 
Charging EVs with renewable energy sources such as solar, wind, hydro, or geothermal power 
can significantly improve EVs ability to reduce emissions. However, the uncertainty nature of 
most renewable energy resources, such as solar and wind power, currently limit their 
dispatchability (4). For instance, solar power, a major component of California’s renewable 
energy mix, is only available during daylight hours and can be affected by factors such as clouds 
(5).  

Developing strategies for managing EV charging is essential until the electric grid is fully 
decarbonized. These strategies should aim to maximize the use of renewable energy resources 
in EV charging so that the carbon reduction potential of EVs can also be maximized (6). Effective 
EV charging management can reduce carbon dioxide emissions by periodizing charging during 
less carbon-intensive hours. By strategically managing the times of EV charging, we can 
minimize carbon emissions and promote a more sustainable transportation system. In this 
study, we have developed a Deep Neural Network (DNN) tool that enables individual EV drivers 
to make environmentally charging decisions by estimating their daily energy requirements. We 
have used a Long Short-Term Memory (LSTM) network to forecast the vehicle miles traveled 
(VMT) for individual EVs two driving days in advance. Based on this information the tool the 
tool estimates the amount of energy required to cover this VMT and suggests the necessity of a 
charging session. This suggestion can help drivers schedule charging sessions during low-
carbon-intensity hours without significantly disrupting their travel routines. For some EVs, a 
particular charging session may be critical as the vehicle would have sufficient electric range to 
meet future driving needs. In contrast, for other EVs, a given charging session may be non-
critical as the vehicle would have enough electric range to complete all driving until the next 
charging session.  

This study defines non-critical charging sessions as those that can be safely skipped without 
affecting the EVs’ ability to maintain a minimum of 20% state of charge (SOC) which correlates 
to between 46 and 67 miles of range, depending on the vehicle in our sample and is somewhat 
analogous to a low fuel state in a conventional vehicle. This buffer is chosen to prevent the risk 
of extreme discharge and preserve the battery’s overall health (7). 

This study developed a DNN tool that can provide suggestions to drivers, enabling them to 
potentially skip non-critical charging sessions and instead charge during off-peak hours, leading 
to a significant reduction in emissions. To demonstrate this, we used empirical driving data 
from 66 EVs driven in California over the course of a year. By shifting non-critical charging 
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sessions to low carbon intensity hours, we can measure the maximum emission reduction 
benefits achieved by shifting these non-critical charging sessions. We also studied how the 
charger power rating affects the emission reduction potential of shifting non-critical charging 
sessions. 

To minimize the environmental impact of EV charging, we proposed to shift non-critical 
charging to lower carbon intensity hours. Therefore, we reduce the GHG per mile by managing 
non-critical charging sessions. This approach does not have a negative impact on charging costs 
since we are not shifting non-critical charging sessions to peak hours, which have higher 
charging costs compared to off-peak hours. Also, for those shifted non-critical charging 
sessions, we simulate the new charging events using a 6.6kW charger and a higher power 
(19kW), the maximum possible at Level 2 in the US. We aim to compare these charging rates 
and determine the most effective approach for managing charging sessions during low-carbon 
intensity periods. This comparative analysis demonstrates the potential benefits and feasibility 
of utilizing higher-power charging rate options to reduce carbon emissions associated with EV 
charging. 

Related Work 

Charging management uncertainty approach 

Efficiently managing EV charging behavior is crucial for promoting sustainable energy usage and 
infrastructure growth. The existing literature in the field is extensive, and a wide breadth of 
diverse methods are attested. This section provides a comprehensive overview of these 
techniques, categorizing them based on their approach to handling uncertainty and their data 
sources. 

The first section of the literature review focuses on using deterministic models in studying EV 
charging management. These models have been applied in various scenarios, such as 
commercial sectors and geographical regions. However, the limitations of these models have 
become more apparent as the complexities of EV charging behavior are revealed. 

Several studies explored EV charging behavior using a deterministic approach. For instance in 
(8, 9), the authors analyzed charging station management using data obtained from the 
commercial sector of a city. However, they did not consider the uncertainty associated with EV 
behavior. Instead, they defined a predetermined behavior for drivers, which does not align with 
the uncertainty of drivers’ behavior. Similarly, the authors in (10–14) also employed a 
deterministic approach and did not take into account the uncertainties linked to EVs while 
analyzing the charging behavior under various assumptions. In (10–14) authors collected data 
from individual buildings, cities, and entire countries at different scales, but they did not specify 
the particular load sector to which their dataset belongs. On the other hand, (15) utilized a 
similar research method, but they specifically examined the behavior of EV charging on a 
residential scale within a city. Notably, they analyzed real-world time-series data, which is more 
reliable than surveys, and generated data from limited datasets, as it provides an authentic 
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representation of actual phenomena and offers valuable insights into complex real-world 
behavior (16). 

Due to the complex and diverse nature of EV charging behavior, deterministic approaches may 
not be suitable to manage this phenomenon effectively. To deal with the uncertainties that 
come with EV charging behavior, it is crucial to explore stochastic methods to manage them 
efficiently (16). Thus, the following sections will explore different techniques to analyze EV 
charging behavior uncertainties. These techniques fall under the category of stochastic 
approaches and can be classified into two types: those that use real data and those that use 
simulated data. Stochastic approaches include Markov chains, scenario-based modeling, Monte 
Carlo simulations, probability density functions, and machine learning-based models. These 
methods are powerful tools that can help us understand the intricate and uncertain landscape 
of EV charging behavior. By utilizing these methods, we can develop more precise and efficient 
charging management strategies by gaining a nuanced understanding of charging patterns.  

Studies (17, 18) employ Markov chains and scenario-based methods to model load demand and 
electricity generation. These studies extend their scope to cities and countries and rely on a 
combination of timeseries and survey data. However, survey data due to its inherent 
limitations, may not offer the same level of precision as timeseries data. To address the 
shortcomings of Markov Chains, which are highly computational and time-consuming, several 
researchers have utilized Monte Carlo simulations to handle uncertainty in their study. Authors 
in (19) used Monte Carlo Simulation to model load demand uncertainty within a particular 
region, considering both commercial and residential sectors. However, they used a small 
sample to generate a large dataset to feed into their model. Similarly, authors in (20) apply 
probability density functions (PDF) to study the uncertainty in commercial sector load demand 
without specifying a geographical scope, with generated data. Although Monte Carlo and PDF 
have some advantages over the Markov chain, like being able to handle the continuous variable 
more accurately, their shortcoming in handling data with complex distribution, their 
dependency on random sampling, and their inability to learn the relevant features from data 
push researchers to use the new methods to solve the aforementioned problem.  

In (21), authors employ linear regression modeling to analyze load demand within residential 
buildings, relying on generated data. The linear regression model is a solution to the time-
consuming and computationally intensive problem of Monte Carlo simulation PDF and Markov 
Chain methods. However, due to the high complexity of the data and the nonlinearity of the 
driving and charging behavior of EVs, additional models are required to handle the nonlinearity 
of EV charging and driving data. The authors in (22–30) employ various machine learning-based 
models to investigate the uncertainty surrounding the charging behavior of EVs, with a focus on 
commercial buildings. Notably, studies (22–27) rely on real-world timeseries data collected 
from these commercial buildings to analyze EV charging behavior, providing valuable insights 
into practical scenarios. In contrast, studies (28–30) utilize simulated data generated from a 
limited dataset, which, while informative, may not fully capture the intricacies of real-world 
charging behavior. 
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Authors in (31–34) employed a range of techniques, including linear regression, Gaussian 
Mixture Models, Random Forest, and Statistical models, to model the uncertainties associated 
with EV charging behavior, with a specific focus on both commercial and residential sectors. In 
contrast, authors in (35–45) adopted a diverse array of stochastic methodologies, including 
agent-based modeling, deep learning, Monte Carlo simulations, and ARIMA, to explore the 
uncertainties surrounding EV charging behavior on a broader geographical scale, cities, regions, 
and entire countries. This set of studies lacks information on the energy sector to which their 
datasets belong. This detail is crucial to understanding and addressing EV charging dynamics 
across different sectors. Meanwhile, authors in (46) use ensemble learning to analyze load 
demand, particularly in residential buildings. Authors emphasized the importance of stochastic 
modeling supported by timeseries data. However, only residential EV loads were analyzed in 
this study, and most of the charging at work and public stations was neglected.  

Authors in studies (47–50) employ travel behavior as a proxy for charging behavior, aiming to 
investigate uncertainties in charging behavior and estimate EV load demand based on trip 
behavior. However, their approach involves scenario-based modeling, including Monte Carlo 
simulations, to generate travel data for electric vehicles. In contrast, studies (51–53) 
comprehensively consider both travel and charging behavior concurrently, recognizing that the 
two are intricately linked, with charging behavior influenced by the travel behaviors of EV users, 
as indicated in (51). Incorporating travel behavior into charging management studies is crucial 
as it allows charging operators to consider all significant factors that may impact charging 
patterns. 

On the other hand, authors in (52) employ trip chain simulations to model EV fleets within a 
city, while the study (53) adopts a deep learning LSTM model for real-time prediction of EV 
charging demand. The findings of the study suggest that machine learning models, particularly 
LSTM models, are well-suited for accurately predicting EV charging behavior, especially when 
handling time series data. Since we are predicting the charging and travel behavior of EVs using 
a timeseries dataset, we plan to use a deep LSTM network architecture to handle uncertainties 
and forecast behavior in order to effectively manage non-critical charging.  

Table 1 provides a summary of EV charging management studies.
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Table 1. Charging management literature review. 
C

at
e

go
ry

 

R
ef

er
en

ce
s EV 

Uncertainty Uncertainty treatment 
 technique 

Parametric uncertainty 
 sources 

Geographical  
scope 

Responsive 
 load sector(s) 

Data sources  
α* β* γ* 

1 (8, 9) ✘ ✘ ✘ NA NA City Commercial 
Not mentioned (8) 
Real Sample(9)  

2 (10–14) ✘ ✘ ✘ NA NA 

Building (10)  
City (11) 
Country (12) 
Not mentioned (13, 14) 

Not mentioned 
Real Sample (Survey) (10)  
Real Sample (11, 12, 14) 
Not mentioned (13) 

3 (17, 18) ✘ ✘ ✔ 
Markov chain (17)  
Scenario Based (18) 

Load Demand (17)  
Electricity Generation (18) 

City (17) 
Country (18) 

Not mentioned 
Real Sample (17) 
Real Sample (Survey) (18) 

4 (19) ✘ ✘ ✔ Monte Carlo Load Demand Region 
Commercial & 
Residential 

Generated 

5 (20) ✘ ✘ ✔ Probability Density Function Load Demand Not mentioned Commercial Generated 

6 (15) ✘ ✘ ✘ NA NA City Residential Real Sample 

7 (21) ✘ ✘ ✔ Linear Regression Load Demand Building Residential Generated 

8 (22–30) ✔ ✘ ✔ 

Deep learning (22, 24, 29) 
Auto Regression model (23) 
Ensemble learning (25) 
XGBoost (26) 
Statistical + random forest (27) 
Random Forest (28) 
Copula GAN (30) 

Load Demand (22–24, 26–
30) 
Charging Duration (25) 

Building (22–25, 28–30) 
Region (26) 
Country (27) 

Commercial 
Real Sample (22–27)  
Generated (28–30) 

9 (31–34) ✔ ✘ ✔ 

Linear Regression (31) 
Gaussian Mixture Model (32) 
Random Forest (33) 
Min and Max interval (34) 

Load Demand(31, 32, 34) 
Charging Duration (33) 

Region (31, 32) 
Building (33) 
Not mentioned (34) 

Commercial & 
Residential 

Real Sample (34) 
Generated (34) 
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en

ce
s EV 

Uncertainty Uncertainty treatment 
 technique 

Parametric uncertainty 
 sources 

Geographical  
scope 

Responsive 
 load sector(s) 

Data sources  
α* β* γ* 

10 (35–45) ✔ ✘ ✔ 

Agent-based modeling (35) 
Decision tree-based model (36, 44)  
Deep learning (37, 38) 
Neural Network (39) 
Monte Carlo(40, 43) 
PDF (41, 42) 
ARIMA(45) 

Load Demand 

City (42) 
Region (43) 
Country(35–39, 41, 44)  
Not mentioned (40, 45) 

Not mentioned 

Not mentioned(35)  
Real Sample (36)  
Real Sample (Survey)(37–39)  
Generated (40–45) 

11 (46) ✘ ✘ ✔ Ensemble learning Load Demand Building Residential Real Sample 

12 (47) ✘ ✔ ✔ Monte Carlo Load Demand Not mentioned 
Commercial & 
Residential 

Generated 

13 (48, 49) ✘ ✔ ✔ 
Latin Hypercube Sampling (48)  
Monte Carlo (49) 

Load Demand Not mentioned Not mentioned Generated 

14 (50) ✔ ✔ ✔ Monte Carlo Load Demand City Residential Generated 

15 (51) ✔ ✔ ✔ Monte Carlo 
Battery and SOC of 
vehicle 

City Not mentioned Generated 

16 (52, 53) ✔ ✔ ✔ 
Trip Chain simulation (52) 
Deep Learning (53) 

Load Demand City 
Commercial & 
Residential 

Generated (52) 
Real Sample (53) 

 This Paper ✔ ✔ ✔ Deep Learning Load Demand Region 
Commercial & 
Residential 

Real Sample 

α*: Charging Behavior 

β*: Travel Behavior 

γ*: Electricity Demand 
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Method 

In the context of addressing the challenges related to Battery Electric Vehicles (BEVs), 
timeseries forecasting plays a crucial role in predicting trip-related variables such as arrival 
time, destination, and charging behavior (54). Over the last decade, various statistical and 
Machine Learning (ML) methods have been proposed to predict charging behavior in BEVs, 
including simple linear regression, Autoregressive Integrated Moving Average (ARIMA), Support 
Vector Machines (SVM), and Artificial Neural Networks (ANN). Predicting charging behavior 
more precisely can optimize infrastructure use, relieve range anxiety, and improve battery 
health for BEVs (55, 56). 

Statistical methods often have limitations due to their predefined structure, which can result in 
shortcomings in the model outcomes. For instance, ARIMA models capture patterns and 
dependencies in the data by combining autoregressive (AR), integrated (I), and moving average 
(MA) components. However, ARIMA struggles to capture sudden spikes or sharp fluctuations in 
the data accurately (57). Researchers explored combining statistical models with other 
methods, such as the transform function, can overcome this limitation (58). This function can 
decompose timeseries data into different frequency subseries and has been integrated with the 
ARIMA model for short-term forecasting. This hybrid approach has improved forecasting 
windspeed datasets characterized by high fluctuations (58). 

Artificial intelligence-based approaches, including ML, which utilize data engineering because of 
their capability to handle complex nonlinear data, have become prevalent in various fields (59). 
Conventional neural networks, such as ANN, which have a small number of hidden layers, are 
widely employed in this field. To enhance their performance, Rafiei et al. introduced the Morlet 
wavelet function as the activation function for the hidden layers (60). SVMs are popular 
machine learning methods that are frequently used for short-term forecasting and utilize 
different kernel functions (e.g., linear, Gaussian) to transform data into a new space (61). 
However, these methods face limitations in effectively handling high-dimensional data, each 
with its own advantages and disadvantages. 

Modern transportation systems often encounter challenges related to managing large volumes 
of data, and DNN approaches have emerged as the most effective solution (62). These 
approaches leverage multiple hidden layers of processing, enabling them to extract key data 
features (63). DNNs are a type of artificial neural network with multiple hidden layers that are 
trained rigorously. These key feature extraction capability makes DNNs popular in various 
research areas and has been successfully used in many forecasting studies, such as electricity 
price forecasting (64), load demand forecasting (65), wind speed forecasting (66), and other 
related areas. 

The Long Short-Term Memory (LSTM) network is a type of Recurrent Neural Network (RNN). It 
is known for its ability to capture complex patterns and intricate temporal dependencies in time 
series data. LSTM has shown impressive performance in different forecasting domains, 
including energy demand, stock prices, and weather data. Several research studies have used 
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LSTM for short-term forecasting tasks such as load demand and air quality prediction, and deep 
LSTM models have demonstrated satisfactory results (67, 68).  

Table 2 provides a comprehensive comparison of the advantages and disadvantages of 
forecasting benchmark methods. 

Table 2. Forecasting benchmark methods comparison. 

Methods Pros Cons 

Statistical 
Methods 
(ARIMA) 

Short processing time (65) Low ability in sharp spikes prediction (57, 
58) 

Good ability for short-term forecasting (57) Low ability to analyze complex nonlinear 
patterns (69) 

Good performance in non-complex datasets 
(70) 

Complex Model-identification (69) 

Training with the low number of samples 
(69) 

Low ability in long-term prediction (71) 

SVM 

Without training difficulties like overfitting, 
and saturation (72) 

Low ability in feature extraction for complex 
datasets (71)  

Well performance in classification tasks (73) High computational time for large 
dimension data set (74) 

Suitable for short-term and long-term 
forecasting (61) 

Lack of strong memory unit (69) 

CNN 

Good ability for handling simple non-linear 
problems (59) 

Without memory unit (75) 

Having feature extraction ability for simple 
profiles (65) 

Gradient vanishing problem (66) 

Implementing in classification task (76) Overfitting problems during training (61, 69) 

RNN 

Using recurrent weights as memory (64) Low feature extraction ability for large 
dimension datasets (75)  

Modeling temporal dependency’s ability 
(64, 71) 

Gradient vanishing problem (77) 

handling simple nonlinear problems (64) Convergence and exploding gradients 
problems (67) Feature extraction ability (16) 

LSTM 

High feature extraction ability (78) Error accumulation problem (79, 80) 

Good ability in complex datasets (68) Complex training procedure (81) 

Solving gradient vanishing problem (79)  

This study introduces a stochastic DL-based model to support BEV drivers in managing their 
charging events effectively. The main objective of the model is to identify non-critical charging 
events, allowing drivers to complete their daily routine trips without disruptions until the next 
critical charging event. Moreover, the model offers recommendations to skip these non-critical 
charging events and shift charging events to less carbon-intensive electricity hours, promoting 
sustainable transportation. By accurately predicting the VMT over two consecutive days, the 
model effectively determines non-critical charging and avoids overcharging, which can be 
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detrimental to battery health. Unlike deterministic approaches with consistent outcomes for 
specific inputs, the stochastic model considers the inherent uncertainty in the data. 

By effectively managing non-critical charging events, drivers can potentially reduce emissions 
associated with driving by managing their charging to utilize more renewable energy resources. 
Implementing this model could significantly enhance the utilization of renewable energy for 
transportation, thus expediting the transition towards more sustainable transportation 
systems. 

The model proposed in this study utilizes an LSTM network that has been trained using trips 
and charging data, including GPS routes, SOC, Day of the week, distance traveled since last 
charging, and time of day. By incorporating the LSTM model within the stochastic framework, 
the model can forecast the VMT for two consecutive driving days for individual BEV drivers 
based on their historical trip and charging data. 

Paper Contributions 

Many previous studies have relied on simulated vehicle data to study BEV charging behaviors 
due to a lack of real-world EV timeseries data. This research utilizes actual BEV trips and 
charging data to train an LSTM model to gain more accurate insights into individual charging 
patterns. By forecasting two consecutive days of VMT, our proposed methodology aims to 
improve BEV charging management by managing non-critical charging events compared to 
prior efforts. The proposed framework helps to bridge the gap between the electricity grid and 
the transportation sector, mitigating the carbon footprint of charging electric vehicles without 
disrupting drivers' routine behavior. 

Furthermore, the stochastic nature of our model allows it to determine and adapt to changes in 
an EV driver's travel and charging routines over time. As new data becomes available, the 
model can identify changes in behavior and update its predictions accordingly. This dynamic 
learning process ensures the model stays accurate and provides the most precise forecasts as 
driving habits and charging behavior evolve. By consistently refining its training procedure 
based on the latest data. The results of this study can be used to create a model that provides 
drivers with timely and accurate forecasts regarding their charging requirements for their BEVs 
in order to advise the driver on skipping non-charging and reducing charging infrastructure 
usage, GHG per mile, and charging cost at the same time. 
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Methods 

Methodology 

This study aims to develop a predictive deep learning-based model that can determine non-
critical charging events by accurately forecasting two consecutive driving days of VMT. This will 
enable drivers to decide whether they can skip their charging sessions based on their historical 
data. By predicting two consecutive driving days of VMT, drivers can manage non-critical 
charging events, which would help charging operators reduce the carbon footprint of EVs. 

LSTM network 

Figure 1 illustrates the architecture of LSTM networks utilized in this study. LSTMs are more 
robust than RNNs at handling the problem of vanishing gradients, which can happen when 
working with long sequences of data like EV trips and charging data (77). LSTMs have different 
gates that distinguish them from RNNs and make them a more powerful memory unit. There 
are three main gates in each LSTM network: the input gate, which controls how much of the 
new input is fed to the memory cell; the forget gate, which controls how much of the previous 
step is forgotten; and the output gate, which controls how much of the current state is sent to 
the next layer in the network (82). Thus, LSTMs are effective in processing timeseries data with 
complex nonlinear relationships and temporal dependencies, particularly second-by-second trip 
logs found in the BEV trip dataset (82). Additionally, LSTMs can extract critical features and be 
used for forecasting tasks, making them an ideal tool for EV charging behavior prediction. This 
study aims to develop a deep LSTM model that can predict two consecutive driving days of 
VMT. Unlike previous studies, this model will be configured using empirical data from 66 BEVs 
over the course of one year in the eVMT project dataset (83). 

The proposed method utilizes DL techniques and consists of several stacked LSTM networks for 
the forecasting module. The input data for each network is taken from previous and current 
timesteps. The input gate stores information from the current and previous timesteps, while 
the forget gate discards unnecessary information from the memory cell, and the output gate 
retrieves useful information. Because of the stacked configuration, the features are propagated 
among the networks during the training process, allowing the deep LSTM networks to 
effectively learn complex and unpredictable phenomena.  

Overall structure of the proposed framework 

This study is divided into three stages, as shown in Figure 1. First, the model's training, 
validation, and testing datasets are generated using the eVMT project's dataset. In the second 
stage, the LSTM model is configured using the training and validation data from the previous 
stage. Finally, a series of experiments are conducted on the defined models using the testing 
dataset from stage one to evaluate the LSTM model.  
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Figure 1. LSTM training framework. 

The optimal model was trained on a daily basis, and the neural network weights were stored 
after each training session. This allowed us to capture and retain the driving behavior and 
features of the driver, enabling us to predict the VMT for the next two consecutive driving days. 
By utilizing the previous day's weights as the initial weights of our model, we were able to 
enhance the accuracy of our predictions and capture both the long-term and short-term 
dependencies in the data. 

To ensure accurate predictions of consecutive driving days of VMT while minimizing disruptions 
to the driver's routine behavior, this study introduces the utilization of confidence intervals. To 
calculate these intervals, the Bootstrap method is employed (84), providing a robust approach 
applicable to various machine learning algorithms. By estimating confidence intervals, each 
prediction consists of a lower and upper bound, representing the range within which we can be 
95% confident that the predicted value lies. To determine “Days with Reliable VMT prediction,” 
we consider instances where the width of the confidence interval (upper bound - lower bound) 
is less than 10% of the car's range.  

By incorporating confidence level estimations, we can discern which days have reliable 
predictions, enabling us to determine non-critical charging events and reschedule them for less 
carbon intensity hours. This is particularly applicable for overnight charging, as the base load 
during nighttime is primarily supplied from non-renewable power plants in California. However, 
the limited availability of chargers at workplaces necessitates careful consideration of the 
charging dilemma. To address this, we developed a model that predicts the VMT for the next 
two days. This ensures that if we choose to skip a non-critical charging session and are unable 
to charge during periods of low carbon intensity the following day, we will still have sufficient 
SOC until the end of the second day. We assumed they would have access to a charging station 
on the second day, and the model considered a buffer for them for the first day. For instance, if 
the model predicts that the driver will have at least a 20% SOC at the end of the following day, 
the model considers that current charging event as non-critical charging (Figure 2). This buffer is 
selected to avoid deep discharge of vehicles' batteries which could impact their battery health. 
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Figure 2. Non-critical charging detection framework. 

Data Description 

BEV dataset 

The model used in this research was configured using a subset of the eVMT project's dataset, 
which is a California-wide study spanning five years (2015-2020). The eVMT project aimed to 
gain insight into the driving and charging behaviors of EVs (83). In this study, a subset of data 
from the 24 Chevrolet Bolts, and the 42 Tesla Model S vehicles was utilized for training and 
testing the LSTM model.  

Electricity grid emission dataset 

In order to improve accuracy and simulate real-world conditions, we collected the emissions 
associated with electricity generation and delivery in California throughout 2020 on an hourly 
basis (85). To show the capability of the developed model to manage the charging event of EVs 
and reduce the emissions associated with EV charging in different conditions, the model will be 
simulated on two other grids with different generation mixes rather than the California grid. 
Figure 3 shows the generation mix for these selected three different regional transmission 
operators (RTO). In contrast with CAISO, which has lots of solar power (Figure 3a), more than 
60% of total generation in PJM and ERCOT is provided by Natural Gas and Coal power plants 
(Figure 3b, c). 
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Figure 3. CAISO, PJM, and ERCOT generation mix. 

Our model can intelligently reschedule non-critical charging events to times when the grid is 
running on cleaner energy. It's important to note that this doesn't always mean rescheduling to 
midday, as is often done in California. Instead, our model considers the unique energy mix of 
each Regional Transmission Organization (RTO) and adjusts accordingly. 

As depicted in Figure 4a, the generation emission data reveals that due to the significant 
contribution of renewable sources, particularly solar power, the period from 8 AM to 5 PM 
exhibits less carbon intensity than other hours of the day in California. However, in PJM, the 
cleanest hours typically begin around 11 p.m., whereas in ERCOT, they begin around 10 p.m. 
(Figure 4). Our model is capable of taking into account the differences in energy generation and 
emissions across various regions.  



 14 

 

Figure 4. Electricity sector emissions. 

Benchmarks 

To conduct a comprehensive benchmark analysis and validate the effectiveness of our 
proposed method, we compare it with other techniques commonly used in short-term 
forecasting tasks. These include the ARIMA model, a well-established statistical method widely 
employed in time series forecasting. Additionally, we consider the RNN a popular benchmark 
method utilized in various short-term forecasting tasks. Furthermore, we examine the LSTM 
model, an upgraded version of the RNN designed to address the limitations of the traditional 
RNN. All the examined methods are trained using the Python 3.10.11 software and TensorFlow 
2.10 (86, 87). 

Evaluating Prediction Accuracy 

This study employs four prominent error metrics, namely the mean absolute error (MAE), mean 
squared error (MSE), mean absolute percentage error (MAPE), and root mean square error 
(RMSE) (88), to assess the performance of the different methods. By utilizing these established 
metrics, we can effectively measure and analyze the performance of each method in this study. 
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Where N is the total number of charging observations, 𝑖 is the index of output layer sample, �̂�𝑖 

desired vector of sample 𝑖, 𝑌𝑖 output vector of sample 𝑖 and �̂�𝑖𝑚𝑒𝑎𝑛
is Mean value of vector of 

observation 𝑖. 

Forecasting Results 

After conducting a grid search analysis, the LSTM networks are configured with 50 hidden units 
to avoid overfitting and improve accuracy. It is important to note that LSTM networks are more 
sensitive than RNN networks when it comes to learning rate values to prevent saturation during 
the training process. Consequently, an initial learning rate of 0.01 is set for the LSTM networks. 
To address the issue of overfitting and enhance the stability of the proposed model, an L2 
regularization layer with a coefficient of 0.001 is used to minimize abrupt weight changes 
during the training process. Furthermore, to prevent overfitting, a dropout layer with a 
probability of 0.5 is incorporated into the model. Additionally, the mini-batch gradient descent 
method is utilized to reduce parameter updating variance and ensure smooth convergence 
during the training process. The training process is limited to a maximum of 50 iterations, with 
validation performed every 10 steps. After conducting a grid search analysis, we chose 50 
epochs to optimize model accuracy and avoid overfitting. To evaluate the robustness of the 
proposed model, a comprehensive comparison is conducted, examining different methods for 
various vehicle models and drivers. 

To train the model efficiently, a subset of 10 vehicles was selected from the total pool of 66 
vehicles within the eVMT dataset. This subset comprises five Tesla vehicles and five Chevrolet 
Bolt vehicles. The initial training phase utilizing this subset will facilitate the development of the 
model. Subsequently, the model's performance will be evaluated by applying it to the 
remaining vehicles in the eVMT dataset, thereby assessing its capacity to generalize across a 
wider range of electric vehicles. 

Table 3 demonstrates that the LSTM method outperforms both the RNN and ARIMA methods. 
The table presents the results of the four error criteria, indicating that the LSTM consistently 
exhibits superior performance across individual BEVs.
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Table 3. Forecasting results. 

Model Chevy 
Bolt 

Chevy 
Bolt 

Chevy 
Bolt 

Chevy 
Bolt 

Chevy 
Bolt 

Tesla  
Model S 

Tesla  
Model S 

Tesla  
Model S 

Tesla  
Model S 

Tesla  
Model S 

Battery Capacity (kWh) 60 60 60 60 60 75 85 95 85 90 

M
A

E(
M

) LSTM 5.91 6.35 7.01 6.87 5.74 8.33 5.00 4.76 6.79 3.69 

RNN 13.63 13.41 13.77 12.43 14.31 12.40 35.10 11.63 18.41 5.00 

Arima 19.46 21.42 22.68 22.38 25.47 45.50 44.09 16.29 33.35 17.50 

R
M

SE
(m

) LSTM 9.72 9.84 10.51 9.82 9.41 11.86 7.97 8.40 10.22 6.59 

RNN 19.62 22.16 23.49 19.26 25.41 22.59 84.62 18.71 30.61 11.58 

Arima 27.43 31.32 33.95 30.56 39.86 67.65 100.46 25.84 45.88 31.22 

M
A

P
E(

%
) LSTM 12.94 17.63 9.88 18.33 6.74 9.97 3.60 6.59 16.84 15.01 

RNN 26.32 28.77 18.26 29.75 17.48 14.93 25.64 14.12 36.56 18.35 

Arima 42.36 49.18 30.81 65.65 33.27 54.60 14.53 22.04 92.00 67.87 

M
SE

(M
2 ) LSTM 94.47 96.84 110.42 96.48 88.50 140.71 63.44 70.49 104.44 43.47 

RNN 384.90 490.87 551.88 370.86 645.79 510.43 7161.05 349.92 936.94 134.21 

Arima 752.61 981.12 1152.86 934.16 1589.17 4576.59 10093.07 667.57 2104.83 974.54 
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Based on the findings presented in Table 3, it is evident that the LSTM network demonstrates 
superior accuracy when it comes to short-term EV behavior forecasting. Given that the primary 
objective of this study is to minimize trip disruption while shifting non-critical charging to hours 
with low carbon intensity electricity hours, the LSTM model exhibits better performance when 
compared to the other benchmark methods. 

To avoid disturbing the daily routines of drivers, it is crucial to have a reliable prediction of their 
driving and charging behavior. Our main goal is to shift non-critical charging events only when 
we have reliable predictions of EV behaviors on those days. Thus, when our predictive model's 
reliability is less certain criteria, we should refrain from suggesting any rescheduling to non-
critical charging events. Figure 5 shows the reliability of our model in EV behavior prediction. 
This graph shows that for Tesla fleet, more than 75% of vehicles have reliable days prediction, 
more than 85% the entire studying period. For 25% of vehicles, 70% to 85% of days, we have 
reliable predictions. Likewise, for Chevrolet Bolts, the results show that for 75% of vehicles, we 
have a reliable prediction for more than 80% of the studying period. For 25% of our Chevrolet 
Bolts, we have a reliable prediction on 70% to 80% of days. 

 

Figure 5. Prediction reliability. 
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Discussion 

In this study, we introduced a DNN tool that determines non-critical charging sessions for 
individual EVs based on their predicted future travel behavior. The model utilized an LSTM 
network to predict the two-day ahead VMT of individual EVs; the energy required for the EVs to 
meet their predicted VMT determines which charging sessions are critical and which are not. 
Drivers can use this tool to shift non-critical charging sessions from high carbon intensity hours 
to low carbon intensity hours without significantly disrupting their travel routines, enabling the 
transportation sector to maximize the emission reduction potential of EVs and reach 
sustainability goals.  

We empirically demonstrated the potential benefits of our tool by determining and shifting 
non-critical charging sessions recorded in a year-long travel dataset from 66 BEVs. As illustrated 
in Figure 6, we find that determining and omitting non-critical charging sessions reduced the 
total number of charging days i.e., the count of days with at least one charging session, for all 
EVs. We also explore the emission benefits of skipping, moving, or merging non-critical charging 
sessions, finding that there was up to 34% overall reduction in GHGs for all BEVs when non-
critical sessions were moved to low carbon intensity hours. We find that this reduction did not 
drastically change when varying the charging rates of the sessions.  

We conducted an analysis using two different charging rates to determine the most effective 
charging rate: a typical Level 2 charger with a power output of 6.6kW and a higher power 
output of 19kW. By employing these charging rates, we aimed to identify the most ideal 
charging rate that aligns with renewable energy availability and minimizes GHG emissions. We 
conducted an analysis to evaluate the potential benefits of our proposed DNN tool in achieving 
sustainable and environmentally friendly charging sessions for BEVs. Figure 6 demonstrates a 
comparison between two different charging rates (6kW and 19kW) and their impact on number 
of charging days for drivers. Although the 19kW Level 2 charger shows a slightly higher 
reduction in the number of charging days, further investigation is needed to determine its 
practical implications and cost-effectiveness since installing a 19kW charger is 5 times more 
expensive than a standard 6.6kW charger. This is mainly due to the requirement for utility grid 
updates, which may incur additional expenses. Therefore, it is crucial to carefully consider the 
feasibility and overall benefits of installing the Level 2 19kW charger.  

By strategically shifting non-critical charging sessions to hours with high penetration of 
renewable resources, we observed a noteworthy decrease in the frequency of charging days, 
regardless of charging rates. After implementing our model and using 6.6kW and 19kW 
chargers, the number of charging days dropped by 34% and 40%, respectively. This outcome 
highlights the efficacy of our proposed DL approach in effectively managing charging sessions 
for BEVs and aligning them with the availability of renewable energy sources. (See Figure 6) 
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Figure 6. Number of charging days after skipping non-critical charging (CAISO). 

By skipping non-critical charging events and charging during low carbon intensity hours, we can 
increase the reliance on renewable sources to power the EVs without disrupting drivers’ 
routine trips. This aligns with the global efforts to transition to cleaner energy solutions and 
minimize environmental impact. In order to estimate the maximum emission benefits from our 
tool, we shifted determined non-critical charging sessions to low carbon intensity hours, which 
in California is typically between 8 AM and 5 PM. These hours also align with lower consumer 
electricity prices as peak hours are 5 PM to 9 PM (89), making this shift in charging realistically 
appealing to drivers. Thus, we have not considered electricity prices as a variable in our non-
critical charging management problem. However, for the purpose of expanding and 
generalizing this study, we acknowledge the importance of incorporating electricity prices as a 
factor in future research, especially when considering alternative charging strategies beyond 
the 8 AM to 5 PM window.  
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Figure 7. BEV charging emissions based on CAISO generation mix. 

As illustrated in Figure 7, the results of our study reveal that employing a Level 2 charger with a 
6kW capacity has the potential to reduce GHG emissions linked to BEV charging by 
approximately 36%. Notably, in our case study, an upgrade to a 19kW Level 2 charger could 
have even more substantial reductions, reaching 41%. However, this shift to non-peak less 
carbon intensity electricity hours can impose additional stress on the utility grid during those 
periods, potentially necessitating grid upgrades to accommodate this new demand.  

Figure 8 provides a comprehensive overview of the total grams of CO2eq emissions observed 
during the study period for each vehicle, drawing a comparison between the emissions 
generated by the actual charging events and those resulting from the utilization of our 
developed tool for managing the charging process. This figure illustrates the substantial 
potential for shifting a significant proportion of charging events to cleaner time slots, all while 
ensuring minimal disruption to the daily routines of drivers. This graph highlights occasional 
emission peaks (as depicted in Figure 8 b, c, e, f) in the managed charging events. However, the 
total emissions recorded in these instances remain significantly lower than those observed in 
the case of charging with non-managed behaviors, as evident from Figure 7. 

Our goal is to shift non-critical charging sessions to less carbon intensity hours, which we define 
as between 8 a.m. and 5 p.m. However, Figure 8b and 8c show that charging sometimes 
extends beyond this window after 5pm to avoid disrupting drivers' routines behavior. This trend 
is especially noticeable in the first scenario, where a 6kW charger is used, which charges more 
slowly than a 19kW charger. 
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a - Existing Behavior (Chevrolet Bolt) d- Existing Behavior (Tesla)  

  

 

b- Managed 6kW (Chevrolet Bolt) e - Managed 6kW (Tesla)  

  

 

c- Managed 19kW (Chevrolet Bolt) f- Managed 19kW (Tesla)  

Figure 8. Annual hourly charging emission. 
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Despite the higher GHG emission reduction and decrease in the number of charging days 
associated with the 19kW Level 2 charger, it is important to consider the practical implications 
and cost-effectiveness of implementing such charging options. Installing 19kW chargers would 
require significant grid updates and infrastructure investments, which may not be feasible for 
all locations and could lead to higher costs. On the other hand, the 6.6kW Level 2 charger offers 
a more suitable and practical solution for many scenarios due to its existing infrastructure 
compatibility and lower installation costs (90). Thus, the 6.6kW Level 2 charger can still have 
considerable GHG emission reductions. 

Beyond California Electricity Grid 

The model we created can be used as a tool to optimize charging demand with minimal 
behavior change under different electricity generation conditions. To demonstrate the 
generalizability of our model, we estimate the maximum impact of managing BEV fleet charging 
in other RTOs. We wanted to see how much emissions we could save in regions with different 
generation mixes than California, which has a lot of solar energy. To answer this question, we 
selected two other RTOs in the US that have cleaner electricity at night than during the day. 
This allowed us to generalize our tool and see how practical it is in other regions. We chose PJM 
and ERCOT RTOs, which have cleaner electricity at night than in the morning. PJM is the RTO 
with the most installed generation capacity in the US, and ERCOT is the first RTO in North 
America. 

Figure 9a and 9b show the number of charging days after implementing our tool and managing 
non-critical charging events, considering two scenarios: one with a 6.6kW charger and one with 
a high-power level-2 19kW charger. These figures show that even though the 19kW charger 
charges more than three times faster than the 6.6kW charger, the drop in the number of 
charging days for both fleets is approximately the same after managing non-critical charging 
events in both regions. 

 

Figure 9. Charging days after skipping non-critical charging (PJM and ERCOT). 
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Figure 10a and 10-b show emissions from EV charging in our dataset for two regions with more 
fossil fuel generation and cleaner electricity at night. Even though these regions' grids are not 
as clean as California’s grid, Figure 10a and 10b show that by managing non-critical charging 
events in these regions, we can reduce emissions to comparable levels to California when non-
critical charging events are not managed. This means managing non-critical charging events 
may enable us to achieve CAISO's emission levels in the PJM and ERCOT regions in the short 
term before the generation mix cleans up. 

 

Figure 10. BEV charging emissions based on PJM and ERCOT generation mix. 

Conclusions 

In this study, we developed a tool using a deep LSTM network to identify non-critical charging 
sessions for individual electric vehicles based on their predicted future travel behavior. This tool 
can help individual EV drivers charge their vehicles with cleaner electricity and reduce the 
amount of GHG per mile. We achieved more accurate VMT predictions than benchmark models 
such as RNN and ARIMA. We successfully identified non-charging events that could be skipped 
to align future charging with renewable energy availability. Our findings demonstrate that the 
advanced dynamic deep LSTM model can effectively manage charging sessions, reduce 
dependence on non-renewable overnight charging in California, reduce the number of charging 
days, and thereby maximize the emission reduction potential of EVs. We simulated our tool to 
real-world EV data and found that if the driver follows the predicted suggestion, they can save 
up to 41% of the GHG emissions without changing their driving patterns. 

Although our analysis showed that utilizing a Level 2 charger with 19kW demonstrated better 
results in terms of GHG emission reduction and charging days, it is essential to consider the 
associated installation cost. The higher power output of the 19kW charger would require grid 
updates and additional infrastructure investments, which can be economically challenging for 
some users. In contrast, the Level 2 charger with 6.6kW offers a more cost-effective solution, 
making it a suitable option for widespread adoption and implementation. Therefore, while both 
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charging rates offer environmental benefits, the 6.6kW charger presents a more practical and 
economically feasible choice for many users seeking to optimize their BEV charging sessions.  

Our findings indicate that regions with less clean electricity than California can achieve similar 
emission levels for electric vehicle charging by managing non-critical charging events. This could 
serve as a temporary solution until the grid is fully cleaned and reaches its carbon neutrality 
target. While this study has contributed valuable insights, it is important to acknowledge the 
limitations of our research. Generalizing our findings to different geographical regions or 
charging infrastructures may require additional investigation. Factors such as charging station 
availability and the impact of charging demand on grid stability should be explored in future 
research to provide a more comprehensive understanding of sustainable charging events. 
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Data Summary 

Products of Research  

Additional data labels were created by performing calculations on data collected from eVMT 
project (CARB Contract 12- 319). As specified in the DMP, the additional data labels are not of 
use without the restricted eVMT data; however, they have been archived on the Dryad data 
repository and are available at https://doi.org/10.5061/dryad.6wwpzgn60. The complete 
labeled data will not be made publicly available as the original eVMT data is not publicly 
available. The eVMT data contains information that if made public could result in loss of 
confidentiality of participants. Christopher Nitta will be responsible for overseeing the 
management of this new data. 

Data Format and Content  

The complete data resides in a database and will be exported to CSV format for ease of 
backup/archiving and migration to another database. 

Data Access and Sharing  

The data has only been provided to team members who have completed IRB training. The 
collected raw data was used to generate labeled trip data. The additional labelling of the data 
did not create any new privacy issues, all potential confidential information already resided in 
the eVMT data that had been collected. The data that resides in the database was already de-
identified to contain only IDs for vehicles. A separate data set is necessary to personally identify 
vehicle owner. 

Reuse and Redistribution  

The Institute of Transportation Studies of the University of California, Davis will continue to 
hold the IP rights to the raw eVMT data. The partial training data will not be transferred as the 
training data will only be useful when combined with the current eVMT data. The eVMT data 
contains information that if made public could result in loss of confidentiality of participants of 
CARB Contract 12-319. We plan to examine if the original training data (or significant portions 
of it) can be reconstructed from the trained models. Researchers have demonstrated that is it 
possible in some instances to reconstruct significant fractions of the training data from a 
trained neural network1. If we can systematically demonstrate that there will not be a loss of 
confidentiality of the eVMT participants, then we will make the trained models publicly 
available. 

 

1 Haim, Niv, et al. “Reconstructing training data from trained neural networks.” Advances in Neural Information 
Processing Systems 35, 2022. 
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