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Abstract A search in an all-jet final state for new massive
resonances decaying to WW, WZ, or ZZ boson pairs using
a novel analysis method is presented. The analysis is per-
formed on data corresponding to an integrated luminosity of
77.3 fb−1 recorded with the CMS experiment at the LHC at
a centre-of-mass energy of 13 TeV. The search is focussed
on potential narrow-width resonances with masses above
1.2 TeV, where the decay products of each W or Z boson
are expected to be collimated into a single, large-radius jet.
The signal is extracted using a three-dimensional maximum
likelihood fit of the two jet masses and the dijet invariant
mass, yielding an improvement in sensitivity of up to 30%
relative to previous search methods. No excess is observed
above the estimated standard model background. In a heavy
vector triplet model, spin-1 Z′ and W′ resonances with masses
below 3.5 and 3.8 TeV, respectively, are excluded at 95% con-
fidence level. In a bulk graviton model, upper limits on cross
sections are set between 27 and 0.2 fb for resonance masses
between 1.2 and 5.2 TeV, respectively. The limits presented
in this paper are the best to date in the dijet final state.

1 Introduction

The standard model (SM) of particle physics has been excep-
tionally successful in accommodating a multitude of experi-
mental measurements and observations, yet it falls short in a
variety of aspects. These shortcomings motivate theoretical
extensions of the SM that typically introduce new particles,
which could be created in proton–proton (pp) collisions at
the CERN LHC. In this analysis, we test theoretical mod-
els that predict new heavy resonances that decay to pairs of
vector bosons (W and Z bosons, collectively referred to as
V bosons). These models usually aim to clarify open ques-
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tions in the SM such as the large difference between the
electroweak and the Planck scales. We consider the bulk
scenario of the Randall–Sundrum (RS) model with warped
extra dimensions [1–5], where the spin-2 bulk graviton has
an enhanced branching fraction to massive particles, and the
heavy vector triplet (HVT) framework [6], which serves as
a template that reproduces a large class of explicit models
predicting spin-1 resonances.

No significant deviations from the SM background expec-
tation have been observed in previous searches by the CMS
Collaboration for such particles in the VV [7–11] and
VH [12–17] channels, where H denotes the Higgs boson.
Similar results were obtained independently by the ATLAS
Collaboration in VV [18–21,23,25] and VH [22,24,26] reso-
nance searches. In addition, statistical combinations of dibo-
son and leptonic decay channels of the 2016 data set [27,28]
have been performed, which extend the exclusion regions
of the individual analyses. Lower limits on the masses of
these resonances have been set at the TeV scale. The search
presented here focusses on resonances with masses above
1.2 TeV, in the decays of which the vector bosons are pro-
duced at high Lorentz boost. Because of the large boost of
the vector bosons, their decay products are merged into sin-
gle, large-radius jets, leading to dijet final states. These jets
are identified through dedicated jet substructure algorithms.
Compared to previous analyses in this final state [7,10,21–
23,29], an improved background estimation and signal
extraction procedure based on a three-dimensional (3D) max-
imum likelihood fit is employed, increasing the sensitivity
of the analysis. The method can be applied to any search
with final states expected to cause resonant behaviour in
three observables, whereas previous methods used solely the
invariant mass of the final decay products as the search vari-
able. The improved sensitivity and scope has motivated a
reanalysis of the pp collision data collected by the CMS
experiment during the 2016 data taking period, as well as
a first analysis of the 2017 data set, corresponding to a total
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integrated luminosity of 77.3 fb−1 at a centre-of-mass energy
of 13 TeV.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic
calorimeter, and a brass and scintillator hadron calorimeter,
each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage pro-
vided by the barrel and endcap detectors. Muons are detected
in gas-ionization chambers embedded in the steel flux-return
yoke outside the solenoid. A more detailed description of
the CMS detector, together with a definition of the coordi-
nate system used and the relevant kinematic variables, can
be found in Ref. [30].

Events of interest are selected using a two-tiered trigger
system [31]. The first level, composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a
time interval of less than 4µs. The second level, known as the
high-level trigger, consists of a farm of processors running
a version of the full event reconstruction software optimized
for fast processing, and reduces the event rate to around 1
kHz before data storage.

3 Simulated events

The resonances associated with the considered phenomenolo-
gies are the bulk gravitons (Gbulk) generated for the bulk
scenario [3–5] of the RS model of warped extra dimen-
sions [1,2], and the heavy new bosons (W′ and Z′) that can be
part of an heavy vector triplet [6] or can be mass degenerate
as a vector singlet [32,33].

The bulk graviton model is characterized by two free
parameters: the mass of the first Kaluza–Klein (KK) exci-
tation of a spin-2 boson (the KK bulk graviton), and the ratio
κ̃ = κ

√
8π/MPl, with κ being the unknown curvature scale

of the extra dimension and MPl the Planck mass. A scenario
with κ̃ = 0.5 is considered in this analysis, as motivated in
Ref. [34].

The HVT framework generically represents a large num-
ber of models predicting additional gauge bosons, such as
the composite Higgs [35–39] and little Higgs [40,41] mod-
els. The benchmark points are formulated in terms of a few
parameters: two coefficients cF and cH, that scale the cou-
plings of the additional gauge bosons to fermions; to the
Higgs boson and longitudinally polarized SM vector bosons,
respectively, and gV, representing the typical strength of the

new vector boson interaction. For the analysis presented here,
samples were simulated in the HVT model B, correspond-
ing to gV = 3, cH = −0.98, and cF = 1.02 [6]. For these
parameters, the new resonances are narrow and have large
branching fractions to vector boson pairs, while the fermionic
couplings are suppressed.

All signals considered in the analysis satisfy the narrow-
width approximation. The quoted results are therefore valid
independent of the exact theoretical signal widths as long as
the resonance widths remain smaller than the detector reso-
lution. This makes our modelling of the detector effects on
the signal shape independent of the actual model used for
generating the events. All simulated samples are produced
with a relative resonance width of 0.1%, in order to be within
the validity of the narrow-width approximation. Monte Carlo
(MC) simulated events of the bulk graviton and HVT signals
are generated at leading-order (LO) in quantum chromody-
namics (QCD) with MadGraph5_amc@nlo versions 2.2.2
and 2.4.3 [42] and hadronization showering is simulated with
pythia versions 8.205 and 8.230 [43], for 2016 and 2017
detector conditions, respectively. The NNPDF 3.0 [44] LO
parton distribution functions (PDFs) are used together with
the CUETP8M1 [45] and CP5 [46] underlying event tunes
in pythia for 2016 and 2017 conditions, respectively.

Simulated samples of the SM background processes are
used to optimize the analysis and create background tem-
plates, as described in Sect. 5. The QCD multijet produc-
tion is simulated with four generator configurations: pythia
only, the LO mode of MadGraph5_amc@nlo [47] matched
and showered with pythia, powheg [48–51] matched and
showered with pythia, and herwig++ 2.7.1 [52] with the
CUETHS1 tune [45]. Top quark pair production is mod-
elled at next-to-LO (NLO) with powheg [53], showered
with pythia. To calculate systematic uncertainties related
to the vector boson tagging efficiency, two additional simu-
lated samples of top quark production at LO are used: one
generated withMadGraph5_amc@nlo and interfaced with
pythia, and the second one generated and showered with
pythia. The production of W+jets and Z+jets (V+jets) is
simulated at LO with MadGraph5_amc@nlo matched and
showered with pythia. The same underlying event tune as
for the signal samples is used for those of the background.
Two corrections dependent on the transverse momentum
(pT) [54,55] are applied to the V+jets backgrounds to correct
the pT-distribution of the vector bosons computed at LO in
QCD to the one predicted at NLO in QCD, and to account for
electroweak effects at high pT. The NNPDF 3.1 [56] next-
to-NLO (NNLO) PDFs are employed for simulated V+jets
events with the 2017 data taking conditions for both the 2016
and 2017 data analyses.

All samples are processed through a Geant4-based [57]
simulation of the CMS detector. To simulate the effect of
additional pp collisions within the same or adjacent bunch
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crossings (pileup), additional inelastic events are gener-
ated using pythia and superimposed on the hard-scattering
events. The MC simulated events are weighted to reproduce
the distribution of the number of reconstructed pileup ver-
tices observed in the 2016 and 2017 data separately.

4 Reconstruction and selection of events

4.1 Jet reconstruction

Event reconstruction is based on the particle flow (PF) algo-
rithm [58], which reconstructs and identifies individual parti-
cles with information from the various elements of the CMS
detector. Jets are reconstructed from these particles, using the
anti-kT jet clustering algorithm [59] with a distance param-
eter of R = 0.8 (AK8 jets) as implemented in the FastJet
package [60]. In order to mitigate the effect of pileup, two
different algorithms are used: for 2016 data and simulation,
charged particles identified as originating from pileup ver-
tices are excluded before jet clustering begins. For 2017,
we take advantage of the pileup per particle identification
(PUPPI) [61] algorithm. This method uses local shape infor-
mation of charged pileup, event pileup properties, and track-
ing information in order to rescale the four-momentum of
each neutral and charged PF candidate with a weight that
describes the likelihood that each particle originates from a
pileup interaction. All jets are further required to pass tight jet
identification requirements [62]. Jets are corrected for nonlin-
earities in pT and η using jet energy corrections as described
in Ref. [63]. Additionally, residual contributions from pileup
are corrected using the approach outlined in Ref. [64].

Two variables are used to tag jets as potentially originating
from vector boson decays to quarks for further event selec-
tion: the “groomed” mass of the jet obtained using a mod-
ified mass drop algorithm [65,66] known as soft drop [67],
and the N -subjettiness ratio τ21 = τ2/τ1 obtained with
the N -subjettiness algorithm [68]. For both 2016 and 2017
data these observables are reconstructed from AK8 jets with
PUPPI pileup mitigation applied, decreasing their depen-
dence on pileup as shown in Ref. [62], while the overall
jet four-momenta are calculated using the pileup mitigation
algorithms as described above.

The groomed jet mass is calculated using the soft drop
algorithm, with angular exponent β = 1, soft cutoff thresh-
old zcut < 0.1, and characteristic radius R0 = 0.8 [67],
which is applied to remove soft, wide-angle radiation from
the jet. This is a generalization of the “modified mass” drop
tagger algorithm [65,66], and the two are identical when the
angular exponent β = 0. This algorithm is based on reclus-
tering the constituents of the AK8 jets using the Cambridge–
Aachen algorithm [69,70]. The soft drop jet mass mjet, cal-
culated as the invariant mass of the four-momenta sum of the

final remaining jet constituents, weighted according to the
PUPPI algorithm, is utilized in the offline analysis and will be
denoted as jet mass in the following. The mass is corrected for
pT- and η-dependent nonuniformities due to detector effects,
following the procedure described in Ref. [62].

This algorithm is used for the offline analysis, while
the jet-trimming algorithm [71] is used at trigger level, see
Sect. 4.2. The jet-trimming algorithm reclusters each AK8 jet
starting from all its original constituents using the kT algo-
rithm [72] to create subjets with a size parameter Rsubjet set

to 0.2, discarding any subjet with psubjet
T /pjet

T < 0.03.
The N -subjettiness variable, τN , is defined as

τN = 1

r0

∑

k

pT,k min(ΔR1,k,ΔR2,k, . . . , ΔRN ,k), (1)

where the index k runs over the PF constituents of the jet,
and the distances ΔRn,k are calculated relative to the axis of
the n-th subjet. The normalization factor r0 is calculated as
r0 = R0

∑
k pT,k , setting R0 to the distance parameter used

in the clustering of the original jet. The variable τN quanti-
fies the compatibility of the jet clustering with the hypothesis
that exactly N subjets are present, with small values of τN
indicating greater compatibility. The ratio between 2- and
1-subjettiness, τ21 = τ2/τ1, is found to be a powerful dis-
criminant between jets originating from V decays into quarks
(V boson jets) and jets developed from prompt quarks and
gluons (quark/gluon jets). Jets from W or Z decays in signal
events are characterized by lower values of τ21 relative to SM
backgrounds. However, the τ21 variable shows a dependence
on the jet pT-scale as well as the jet mass. This particularly
affects the monotonically falling behaviour of the nonres-
onant background distributions. Since this search probes a
large range of jet masses and dijet invariant masses (mjj), we
decorrelate τ21 from the jet pT-scale and jet mass follow-
ing the “designed decorrelated taggers (DDT)” methodol-
ogy presented in Ref. [73]. We thereby reduce the τ21 profile
dependence on ρ′ = ln(m2

jet/(pTμ)), where μ = 1 GeV.

This leads to the following definition of τDDT
21 :

τDDT
21 = τ21 − M ρ′, (2)

where M is the extracted slope from a fit to the τ21 profile
versus ρ′ in QCD multijet events simulated with pythia after
applying the full analysis selections. It is evaluated to be
M = −0.080. The τ21 (upper) and τDDT

21 (lower) profile
dependencies on ρ′ are shown in Fig. 1. We observe a small
residual difference between intervals of pT, but this has a
negligible impact on the analysis.

We observe a significant gain in analysis sensitivity when
using τDDT

21 . Since this variable is a function of both N -
subjettiness and the ratio of jet mass and transverse momen-
tum, it leads to a larger separation between signal and back-
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Fig. 1 The τ21 (upper) and τDDT
21 (lower) profile dependencies on

ρ′ = ln(m2
jet/(pTμ)) examined in QCD multijet events simulated with

pythia. A fit to the linear part of the spectrum for pT > 200 GeV
yields the slope M = −0.080, which is used to define the mass- and
pT-decorrelated variable τDDT

21 = τ21 − M ρ′

ground as shown in the comparison of τDDT
21 and τ21 in Fig. 2

(upper). Furthermore, using the τDDT
21 variable reduces the

dependency of mjet on mjj, leading to smoothly falling dis-
tributions in the jet mass as shown in Fig. 2 (lower).

4.2 Trigger and preliminary offline selection

Events are selected online with a variety of different jet trig-
gers based on the highest jet pT or the pT sum of all jets in
the event (HT). For some of these triggers additional require-
ments on the trimmed mass are applied in order to be able to
lower the pT and HT thresholds. For example, for 2017 data
taking, requiring the trimmed jet mass of the leading-pT jet
to be above 30 GeV allows the lowering of the pT threshold

Fig. 2 Distribution of the N -subjettiness discriminants (τ21 and τDDT
21 )

for W-jets and quark/gluon jets from QCD multijet events (upper). Dis-
tributions in the jet mass of QCD multijet events for four mjj bins in
the range 1126–5500 GeV after a cut on τ21 and τDDT

21 corresponding
to the same mistag rate of about 2% (lower). For both discriminants,
darker colours correspond to higher mjj ranges. The distributions are
arbitrarily scaled for better readability. The analysis selections applied
to derive these distributions are specified in the plots. For this analysis
the working point of τDDT

21 ≤ 0.43 is chosen

from 500 to 360 GeV while maintaining a similar rate. In the
case of the HT-triggers, the threshold can be lowered from
1050 to 750–800 GeV when requiring a trimmed jet mass
greater 50 GeV. The HT-triggers utilize a standard jet collec-
tion of anti-kT jets with a distance parameter R = 0.4, while
the triggers based on the trimmed jet mass operate on AK8
jets. The triggers used for the 2017 data set are conceptually
similar to those used in 2016, and correspond to those used in
Ref. [29]. The 2017 trigger thresholds were slightly greater
than those in 2016 in order to maintain the same trigger rate
despite a higher instantaneous luminosity.
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Fig. 3 The trigger efficiency as a function of the dijet invariant mass
for a combination of all triggers used in this analysis (upper) and the
event efficiency for either of the selected jets to pass triggers requiring
an online trimmed mass of at least 30 GeV as a function of the jet mass
(lower). The solid yellow circles correspond to the trigger efficiencies
for the full 2017 data set and do not reach 100% efficiency because the
jet mass based triggers were unavailable for a period at the beginning
of data taking (corresponding to 4.8 fb−1). The open yellow circles are
the corresponding efficiencies excluding this period. The uncertainties
shown are statistical only

The trigger efficiency as a function of the dijet invariant
mass is measured in an orthogonal single muon data set,
shown in Fig. 3, using a combination of all triggers (upper),
and as a function of the jet mass for the triggers exploiting the
trimmed jet mass (lower). For the trimmed jet mass triggers,
the efficiency plateau as a function of the jet mass does not
reach 100% for the full 2017 data set (full yellow circles),
since these triggers were not used for the first 4.8 fb−1 of
data recorded. The trigger efficiency excluding this period is
shown with open yellow circles. The combination of all trig-

gers is > 99% efficient above dijet invariant masses of 990
and 1126 GeV for the full 2016 and 2017 data sets, respec-
tively. For simplicity, the subsequent analysis requires the
dijet invariant mass to be above 1126 GeV for both data sets.
Given the mjjresolution of about 10%, the lowest resonance
mass that is accepted with high efficiency by the analysis is
1.2 TeV.

All events are required to have at least one primary vertex
reconstructed within a 24 cm window along the beam axis,
with a transverse distance from the average pp interaction
region of less than 2 cm [74]. The reconstructed vertex with
the largest value of summed physics-object p2

T is taken to
be the primary pp interaction vertex. The physics objects are
the jets, clustered using the jet finding algorithm [59,60] with
the tracks assigned to the vertex as inputs, and the associated
missing transverse momentum, taken as the negative vector
sum of the pT of those jets.

4.3 Event selection

Events are selected by requiring at least two jets with pT >

200 GeV and |η| < 2.5. The two jets with the highest pT in
the event are selected as potential vector boson candidates
and are required to have a separation of |Δη| < 1.3 in order
to reduce the QCD multijet background. In addition to the
requirement that the two jets invariant massmjj > 1126 GeV,
based on the trigger selection discussed above, it is further
required that mjj < 5500 GeV. The upper cut on mjj is well
above the highest dijet mass event observed in data. To sim-
plify the modelling of the 3D shapes in the mjj–mjet1–mjet2

space, the two jets are labelled at random so that the mass dis-
tributions of the first and second selected jet, mjet1 and mjet2,
have the same shape. Jets originating from the misreconstruc-
tion of a high momentum lepton are rejected by requiring an
angular separation ΔR > 0.8 to muons (electrons) with pT

greater than 20 (35) GeV and satisfying identification crite-
ria optimized for high-momentum leptons [75,76]. To reduce
the QCD multijet background, we require the jet mass to be
between 55 and 215 GeV. The selected events are further
grouped into two categories according to their likelihood to
originate from a boson decay into quarks, as quantified by
τDDT

21 . The jet mass, τDDT
21 , and dijet invariant mass distribu-

tions for data and simulation are shown in Fig. 4.
In the high-purity (HPHP) category, both jets are required

to have 0 < τDDT
21 ≤ 0.43, while in the low-purity (HPLP)

category only one of the jets needs to fulfill this requirement,
and the other must satisfy 0.43 < τDDT

21 ≤ 0.79. These con-
ditions yield the highest expected signal significance over
the whole mass range, while at the same time selecting at
least 95% of the signal. The addition of the HPLP category
improves the expected cross section upper limit by around
20% at high dijet invariant mass where the background is low.
Finally, a loose requirement of ρ = ln(m2

jet/p
2
T) < −1.8 is
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Fig. 4 Jet mass (upper left) and τDDT
21 (upper right) distributions for

selected jets (one random jet per event), and dijet invariant mass distri-
bution (lower), for events with a jet mass between 55 and 215 GeV. For
the QCD multijet simulation, several alternative predictions are shown,
scaled to the data minus the other background processes, which are

scaled to their SM expectation as described in the text. The different
signal distributions are scaled to be visible. No selection on τDDT

21 is
applied. The ratio plots show the fraction of data over QCD multijet
simulation for pythia8 (black markers), herwig++ (dotted line), and
MadGraph+pythia8 (dashed line)

applied in order to veto events in which the jet mass is high,
but the jet pT is low. In these cases the cone size of ΔR = 0.8
is too small to contain the full jet, affecting both the jet mass
resolution and the τDDT

21 tagging efficiency, which is not well
modelled in simulation. This selection has a negligible effect
on the signal, which typically has jets with masses around
the W or Z boson mass and high pT.

4.4 Substructure variable corrections and validation

Figure 4 shows a notable deviation in the shape of the
τDDT

21 distribution between data and simulation. Such mis-
modelling introduces a bias in the jet tagging efficiency

for the signal, and as a consequence in the measured sig-
nal rate. We therefore compute scale factors to correct the
signal efficiency accordingly. For the background jets, this
mismodelling requires no further correction, because of the
data-driven approach adopted in this analysis, where the
background shape and normalization are fitted to data with
large pre-fit uncertainties as described in the following sec-
tions.

The W boson tagging scale factors and jet mass scale and
resolution uncertainties are estimated from data by isolating
a control sample of merged W bosons in a high-pT tt̄ sam-
ple. This is done by performing a simultaneous fit to the jet
mass distributions for the two ranges of τDDT

21 , as detailed in
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Table 1 The W jet mass peak
position (m) and resolution (σ ),
and the W-tagging efficiencies,
as extracted from top quark
enriched data and from
simulation, together with the
corresponding
data-to-simulation scale factors.
The uncertainties in the scale
factors include systematic
uncertainties estimated as
described in Ref. [62]

m [GeV] σ [GeV] W-tagging efficiency

2016

τDDT
21 < 0.43

Data 82.0 ± 0.5 (stat) 7.1 ± 0.5 (stat) 0.080 ± 0.008 (stat)

Simulation 80.9 ± 0.2 (stat) 6.6 ± 0.2 (stat) 0.085 ± 0.003 (stat)

Data/simulation 1.014 ± 0.007 (stat + syst) 1.09 ± 0.09 (stat + syst) 0.94 ± 0.10 (stat + syst)

0.43 < τDDT
21 < 0.79

Data 0.920 ± 0.008 (stat)

Simulation 0.915 ± 0.003 (stat)

Data/simulation 1.006 ± 0.009 (stat + syst)

2017

τDDT
21 < 0.43

Data 80.8 ± 0.4 (stat) 7.7 ± 0.4 (stat) 0.065 ± 0.006 (stat)

Simulation 82.2 ± 0.3 (stat) 7.1 ± 0.3 (stat) 0.068 ± 0.005 (stat)

Data/simulation 0.983 ± 0.007 (stat + syst) 1.08 ± 0.08 (stat + syst) 0.96 ± 0.12 (stat + syst)

0.43 < τDDT
21 < 0.79

Data 0.935 ± 0.006 (stat)

Simulation 0.932 ± 0.005 (stat)

Data/simulation 1.003 ± 0.008 (stat + syst)

Ref. [62]. To extract the efficiency from a clean sample of
merged W bosons, the tt̄ sample is split into two components,
depending on whether the quarks from the W boson decay
at truth level are within δR = 0.8 or not, i.e. on whether
the hadronic boson decay is merged into a single jet or not.
Only the merged component is considered in the efficiency
calculation and the mass scale and resolution extraction.

The efficiencies and scale factors obtained are listed in
Table 1 for 2016 and 2017 data, with the corresponding
fits shown in Fig. 5. The W boson tagging efficiency in the
selected tt̄ events of around 7% is relatively low compared to
the efficiency in signal events, since these events are domi-
nated by W boson jets with a pT of around 200 GeV, just at
the threshold where the decay products of the W boson merge
into a single jet. The signal jets, however, mostly have a pT

above 600 GeV, and a tagging efficiency around 35%. The
signal efficiency for τDDT

21 increases with the jet pT, whereas
the background efficiency is constant, as shown in Ref. [62].
Two systematic uncertainties in the scale factors are added:
one due to differences in MC generation and modelling of
the parton shower and one due to NNLO corrections. The
former is evaluated by comparing the resulting scale factors
when using tt̄ simulation produced with different generators.
The latter is evaluated by comparing the extracted efficien-
cies with and without reweighting according to the top quark
pT, where the reweighting is derived from data in order to
better describe the observed pT distribution in tt̄ data [77].
The jet mass scale and resolution are estimated in the same
fits and also listed in Table 1. The difference in jet mass scale
between data and simulation is around 2%, and the jet mass

resolution difference is roughly 8%. These are used to scale
and smear the jet mass in simulation, and their uncertainties
are additionally inserted as systematic uncertainties in the
final fit.

5 The multi-dimensional fit

The background estimation technique used in previous ver-
sions of this analysis [7,10,29] relied on a one-dimensional
(1D) fit of the dijet invariant mass after a tight jet mass selec-
tion (65–105 GeV) has been applied. In the analysis presented
here, we take advantage of the fact that the signal peaks in
three observables (the jet masses mjet1 and mjet2, and the
dijet invariant mass mjj), and attempt to extract the signal by
searching for peaks in the multi-dimensionalmjj–mjet1–mjet2

space. This method permits searches for generic resonances,
decaying to two SM or non-SM bosons, anywhere in the jet
mass and dijet invariant mass spectra in the future. Addition-
ally, tight jet mass cuts as used in previous diboson resonance
searches are no longer needed, as we fit the full jet mass line
shape to extract the signal. Since such a cut around the vector
boson mass leads to about 20% inefficiency for the W and Z
boson signals, including all the events that would fall outside
the mass window reduces the statistical uncertainties in the
fitting procedure. Furthermore, the background mjj shape is
better constrained at high dijet invariant masses than it is in
the previous method.

Fitting the jet mass and resonance mass together also
allows us to add nuisance parameters that simultaneously
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Fig. 5 The jet mass distribution for events that pass (left) and fail (right)
the τDDT

21 ≤ 0.43 selection in the tt̄ control sample. The results of the
separate fits to data and to simulation are shown by the dash-dotted
blue and solid red lines, respectively. The background components of

the fits are shown as dashed and dash-dotted lines. The fit to 2016 data
is shown in the upper panels and the fit to 2017 data in the lower panels.
The associated uncertainties are shown in Table 1 and discussed further
in Sect. 4.4

affect the jet masses and the resonance mass, accounting for
their correlation. We build a three dimensional background
model starting from simulation. As the number of simulated
events is small, a forward-folding kernel approach is used to
ensure a full and smooth model, as described in Sect. 5.2.1.
Further, to account for discrepancies in the QCD multijet
background simulation and data, we allow the background
model to adapt to the data using physically motivated shape
variations.

The random jet labelling adapted in the analysis results in
essentially the same jet mass distributions for jet-1 and jet-2
in the modelling and removes any correlations between the
two jet masses. Thus only the distribution for one of the jet
masses are shown in the following figures.

5.1 Signal modelling

For each mass point mX and each purity category, the signal
yield per pb of cross section is calculated as the integral of
the histogram produced from the parameterization. The total
signal yield for events passing all analysis selections divided
by the number of generated events as a function of mX is
shown in Fig. 6.

The signal shape in three dimensions is defined as a
product of the shape of the resonance mass and the jet
masses:

Psig(mjj,mjet1,mjet2|θ s
(mX)) = PVV(mjj|θ s

1(mX))

×Pj1(mjet1|θ s
2(mX)) Pj2(mjet2|θ s

3(mX)).
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Fig. 6 Total signal efficiency as a function ofmX after all selections are
applied, for signal models with a Z′ decaying to WW, Gbulk decaying to
WW, W′ decaying to WZ , and Gbulk decaying to ZZ. The denominator
is the number of generated events. The solid and dashed lines show the
signal efficiencies for the HPHP and HPLP categories, respectively. The
decrease in efficiency between 5.0 and 5.5 TeV is due to the requirement
mjj < 5500 GeV

The shapes for mjj, mjet1, and mjet2 are parameterized inde-
pendently as a function of the hypothesized mass (mX) of a
new particle and a set of general probability density function
(pdf) parameters θ

s = (θ
s
1, θ

s
2, θ

s
3) that depend on mX. The

parameters θ
s

denote for instance the mean and width of the
analytic function chosen to model the signal distributions.
The mjet and mjj distributions can be treated as uncorrelated
since correlations are found to be negligible for the signal.
The signal is parameterized by fitting the simulated reso-
nance mass and jet mass line shapes for each mX, extract-
ing the quantities, and then interpolating these to intermedi-
ate values of the resonance mass. Pj1 and Pj2 are fitted and
parameterized separately from each other using different sets
of θ

s
, although they are effectively identical because of the

random jet labelling. For the parameterization of the res-
onance mass mjj and the mjet masses, double-sided Crystal
Ball (dCB) functions [78] are used for eachmX. Each param-
eter of the dCB is interpolated between different resonance
masses using polynomials of a degree sufficient to ensure
a smooth shape interpolation for all resonance masses. The
resulting signal shapes for all signal models are shown in
Fig. 7 for the dijet invariant mass (upper) and the mass of
jet-1 in the HPHP category (lower). Because of the random
jet labelling the distribution for jet-2 is effectively identical
to that shown for jet-1. The jet mass scale and resolution as
a function of the dijet invariant mass are extracted from the

Fig. 7 The final mjj (upper) and mjet1 (lower) signal shapes extracted
from the parameterization of the dCB function. The samemjj shapes are
used for both purity categories. The jet mass distributions are shown for
a range of resonance masses between 1.2 and 5.2 TeV for one of the two
jets in the events in the HPHP category. Because the jets are labelled
randomly, the jet mass distributions for the second jet are essentially
the same as the one shown. The distributions for a Gbulk decaying to
WW have the same shapes as those for the Z′ signal and are therefore
not visible

mean and width of the dCB function. The mass scale and
resolution are shown in Fig. 8 after the full HPHP (HPLP)
analysis selections have been applied. The jet mass resolution
increases about 3% from the lowest to the highest resonance
mass, while its scale is found to be stable. The mean of the
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Fig. 8 The mass scale (upper) and resolution (lower) of the jet as a
function of mX, obtained from the mean and width of the dCB function
used to fit the jet mass spectrum. The HPHP (solid lines) and HPLP
(dotted lines) categories are shown for different signal models. The
distributions are only shown for one of the two jets in the event, since
the distributions for the second jet are essentially the same

dijet invariant mass distributions is consistent with the mass
of the resonance mX, as seen in Fig. 7 upper.

5.2 Background modelling

5.2.1 Nonresonant background

As mentioned above, previous versions of this analysis esti-
mate the QCD multijet background by a parametric fit to

the data in the mjj signal region. The fit is well-constrained
by highly populated bins with small statistical uncertainties
at low mjj, but is less constrained for high values of mjj.
This method allows the incorporation of additional infor-
mation in the fit by modelling the correlations between the
jet mass and the dijet invariant mass for SM background
processes, which were not explicitly studied in the past. It
is important to note that the correlations between mjet and
mjj have to be modelled for the QCD multijet background,
as opposed to the signals negligible correlations due to its
localization in the three-dimensional space. In this analy-
sis, we build a three dimensional background model starting
from simulation. Since the size of the simulated samples is
limited, we start from particle-level information and use a
“forward-folding” kernel approach that is similar to the tech-
nique presented in Ref. [79] and used in Ref. [11]. Finally,
we incorporate sufficient nuisance parameters into the fit to
account for any discrepancies between data and simulation.
In order to model the QCD multijet background in the 3D
mjj–mjet1–mjet2 hyperplane, we use the following conditional
product:

PQCD(mjj,mjet1,mjet2|θQCD
) = PVV(mjj|θQCD

1 )

×Pcond,1(mjet1|mjj, θ
QCD
2 ) Pcond,2(mjet2|mjj, θ

QCD
3 ).

Since the jet mass is correlated with the jet pT for the QCD
multijet background, its shape is required to be modelled
conditionally as a function of mjj for both jets. Two two-
dimensional (2D) templates (denoted as Pcond,1 and Pcond,2)
are modelled for the two jet masses separately, containing
different jet mass shapes in bins of mjj. The mjj distribution

is computed as a 1D pdf. The parameter sets denoted by θ
QCD

represent the nuisance parameters in each pdf.
To build the 2D conditional templates, Pcond,1 and Pcond,2,

each available particle-level event is smoothed with a 2D
Gaussian kernel, where each 2D kernel links the particle-
level event quantities to the reconstruction level. Thus each
simulated event contributes a smoothed Gaussian shape
to the total conditional pdf. The Gaussian kernel depends
on the dijet invariant mass scale and resolution, as well
as the jet mass scale and resolution. The mjet and mjj

scale and resolution are extracted from a Gaussian fit to
either mjet(reco)/mjet(gen) or mjj(reco)/mjj(gen), in bins
of particle-level jet pT.

The mass scale and resolution are then used to populate the
conditional 2D histogram. Each generated event i is smeared
with a 2D Gaussian kernel,

k(mjet,mjj) = wi

2πrmjj,i rmjet ,i

× exp

⎡

⎣−1

2

(
mjj − smjj,i

rmjj,i

)2

− 1

2

(
mjet − smjet ,i

rmjet ,i

)2
⎤

⎦ ,
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Fig. 9 Nominal QCD multijet simulation using pythia8 (data points)
and three-dimensional pdfs derived using a forward-folding kernel
approach (black solid line), shown together with the five alternate shapes
that are added to the multi-dimensional fit as shape nuisance parameters.
The shapes for the high-purity (left) and low-purity (right) categories
obtained with the 2017 simulation are shown for the projection on mjet1

(upper) and mjj (lower). The projection on mjet2 is omitted since it is
equivalent to the mjet1 projection except for statistical fluctuations. The
pdfs and the simulations shown are normalized to unity. The normal-
ization uncertainty of 50% is not shown. The distributions for 2016
simulations are similar

where si and ri are the scale and the resolution derived in the
previous step, and wi is a product of event weights accounting
for the normalization effects such as the individual sample
production cross sections. In this way, the jet mass in gen-
erated events is scaled and smeared according to the evalu-
ated scale and resolution, and a 2D histogram is filled with
smooth Gaussian shapes. According to this procedure the jet
mass (mjj) resolution is about 7–10% (3–7%) of the mass
of the generated jet, depending on its pT. This procedure is
performed separately for mjet1 and mjet2 however the two
resulting templates Pcond,1 and Pcond,2 are essentially the
same because of the random jet labels. Finally, we interpo-

late the 2D histogram in order to have valid values of the pdf
in all mjj bins. Starting from the histogram, coarsely binned
in mjj, for each mjet bin a spline is fitted over all mjj bins. The
spline is then used to interpolate values of the histogram for
all final mjj bins, resulting in a 2D histogram with the desired
binning.

To build the 1D template for the dijet invariant mass, PVV,
a 1D Gaussian kernel is constructed starting from particle-
level quantities where, for each MC event, a Gaussian proba-
bility distribution, rather than a single point representing the
mean, contributes to the total 1D pdf using the same proce-
dure as for the 2D templates.
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Table 2 Summary of the
systematic uncertainties and
their impact the affected
quantities. Numbers in
parentheses correspond to
uncertainties for the 2016
analysis if these differ from
those for 2017. Dashes indicate
shape variations that cannot be
described by a single parameter,
and are discussed in the text

Source Relevant quantity HPHP unc. (%) HPLP unc. (%)

PDFs Signal yield 3

W boson tagging efficiency Signal + V + jets yield 25 (21) 13 (11)

W boson tagging pT dependence Signal + V + jets yield 8–23 9–25

Integrated luminosity Signal + V + jets yield 2.3 (2.6)

QCD normalization Background yield 50

W+jets normalization Background yield 20

Z+jets normalization Migration 20

PDFs Signal mjj/mjet mean and width < 1

Jet energy scale Signal mjj mean 2

Jet energy resolution Signal mjj width 5

Jet mass scale Signal + V + jets mjet mean 2

Jet mass resolution Signal + V + jets mjet width 8

QCD herwig++ QCD shape –

QCD MadGraph+pythia8 QCD shape –

pT variations QCD shape –

Scale variations QCD shape –

High-mjet turn-on QCD shape –

pT variations V + jets mjj shape –

Because of the low number of events in the HPHP cate-
gory, the 3D kernel derived in the HPLP category, which has
a similar shape, is used to model the HPHP background. This
is done by adapting the templates derived in the HPLP cat-
egory to the HPHP category in the QCD multijet simulation
through a fit, and then by using the corresponding post-fit
distribution as the nominal template for the HPHP category.
The free parameters in the fit are the alternate shapes pro-
portional to mjj, mjet, 1/mjj, and 1/mjet, as listed in Sect. 6.
The projections on the three different axes of the final 3D
pdf, in bins of mjj or mjet, are shown in Fig. 9, compared
to the spectra obtained using bare QCD multijet simulation
events. Good agreement is observed, and any residual dis-
crepancies are covered by the systematic shape uncertain-
ties described in Sect. 6 and also shown in Fig. 9. Repeat-
ing the template building process and performing fits to a
control region in data where both jets fail the high-purity
requirement confirms the validity of this approach. In addi-
tion, the adaptability of the method was further confirmed by
fitting a QCD multijet background generated at NLO with
powheg.

5.2.2 Resonant background

The resonant background is defined as all SM processes con-
taining at least one jet originating from a genuine W or Z
boson decay. It is dominated by V+jets events, with a minor
contribution from tt̄ production and an inconsequential con-
tribution from SM VV production, that is absorbed into the
V+jets modelling. As the labelling of each jet is arbitrary,

each jet mass distribution contains two contributions: a res-
onant part consisting of genuine vector-boson jets, peaking
around the W or Z boson mass; and a nonresonant part, com-
posed of mistagged jets originating from a prompt quark or
a gluon. These two contributions are modelled separately for
each jet mass dimension. A 3D pdf for the resonant back-
grounds, PV+jets, is built as a product of three 1D pdfs as
follows:

PV+jets
(
mjet1,mjet2,mjj|θ

) = 0.5 (PVV(mjj|θ1)

×Pres(mjet1|θ2) Pnonres(mjet2|θ3)) + 0.5 (PVV(mjj|θ1)

×Pres(mjet2|θ2) Pnonres(mjet1|θ3)).

The resonant mass shape Pres is derived by fitting a dCB
function to the simulated jet mass spectrum, performed sep-
arately for mjet1 and mjet2. The resonant events are separated
from the nonresonant ones when building the pdfs by requir-
ing that there is a generated boson in a cone of ΔR = 0.8
around the reconstructed merged jet. The nonresonant com-
ponent of the jet mass shape is fitted separately with a Gaus-
sian function. The contributions of W+jets and tt̄ production
are considered as one combined background shape, because
both have a resonant peak around the W-boson mass, while
the Z+jets background contribution is considered separately.
The top mass peak does not need to be modelled since the
overall contribution of tt̄ events is less than 2%. The nonres-
onant dijet invariant mass shape of the V+jets backgrounds,
PVV, is modelled with a one dimensional kernel, in the same
way as the dijet invariant mass shape of the QCD multijet
background.
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Fig. 10 For the HPHP category: comparison between the sig-
nal+background fit and the data distributions of mjet1 (upper left), mjet2
(upper right), and mjj (lower). The background shape uncertainty is
shown as a gray shaded band, and the statistical uncertainties of the
data are shown as vertical bars. An example of a signal distribution is

overlaid, where the number of expected events is scaled by a factor of
5. Shown below each mass plot is the corresponding pull distribution

(Data-fit)/σ , where σ =
√

σ 2
data − σ 2

fit for each bin to ensure a Gaussian
pull-distribution, as defined in Ref. [83]

6 Systematic uncertainties

6.1 Systematic uncertainties in the background estimation

Uncertainties in the QCD multijet background shape are
included in the fit using alternative pdfs derived with the
template-building method described in Sect. 5.2.1. We define
five nuisance parameters that vary the shape, each of the

parameters corresponding to an upward and a downward
variation of alternative shapes that simultaneously affect all
three dimensions. The first nuisance parameter accounts for
a variation of the underlying pT spectrum, and the two cor-
responding mirrored templates are obtained by applying up
and down variations of the expected yields to each bin along
the two jet masses and mjj by a quantity proportional to mjet

and mjj. The second nuisance parameter is a variation of
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Fig. 11 For the HPLP category: comparison between the sig-
nal+background fit and the data distributions of mjet1 (upper left), mjet2
(upper right), and mjj (lower). The background shape uncertainty is
shown as a gray shaded band, and the statistical uncertainties of the
data are shown as vertical bars. An example of a signal distribution is

overlaid, where the number of expected events is scaled by a factor of
5. Shown below each mass plot is the corresponding pull distribution

(Data-fit)/σ , where σ =
√

σ 2
data − σ 2

fit for each bin to ensure a Gaussian
pull-distribution, as defined in Ref. [83]

the mass scale, and is taken into account through two mir-
rored alternative shapes obtained by applying up and down
variations of each bin content along the two jet masses and
mjj by a quantity proportional to 1/mjet and 1/mjj. Two addi-
tional alternative shapes that simultaneously affect resonance
mass and jet groomed mass are also added in order to take
into account differences in MC generation and modelling of
the parton shower. These alternative templates are derived

using the herwig++ and MadGraph+pythia8 QCD mul-
tijet simulation. This allows us to include all known back-
ground variations into the fit. For events with a large mjet

(> 175 GeV) and lowmjj (< 1200 GeV), there is an expected
turn-on due to the trigger thresholds. Therefore, an additional
shape uncertainty parameterizing any discrepancy between
the 3D template and the QCD multijet simulation is added to
the fit. Note that this shape uncertainty only affects this par-
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ticular region, which is far from where a diboson signal, as
relevant for this analysis, is expected. The nuisance parame-
ters associated with these alternative shapes are constrained
using Gaussian pdfs in the fit, with the pre-fit values chosen
in order to cover any differences between data and simula-
tion observed in the control regions. The alternative shapes
described above are shown in Fig. 9.

A similar procedure is used for the V+jets background,
adding two alternative shapes to the mjj templates derived
by a variation proportional to mjj and 1/mjj. The resonant
jet mass shapes for this background are subject to the same
uncertainties as the signal. The normalizations of the V+jets
and QCD background are obtained directly from simulation
and are allowed to vary within 20 and 50%, respectively.
The same nuisance parameters are used for the fit to 2016
and 2017 data, which reduces the fit complexity while not
impacting the result of the fit.

6.2 Systematic uncertainties in the signal prediction

The dominant uncertainty in the signal selection efficiency
arises from uncertainties in the boson tagging efficiency. The
effect of this uncertainty is evaluated per jet and assumed to
be fully correlated between both jets in the event. The W
boson tagging efficiency scale factor is fully anticorrelated
between the HPHP and HPLP categories (3–10%), and fully
correlated between signal and V+jets backgrounds. The pT-
dependence uncertainty in the scale factor arises from the
extrapolation to higher pT’s of the W boson tagging effi-
ciency scale factors, which are measured in tt̄ events where
the jet has a pT around 200 GeV. This uncertainty is esti-
mated in signal simulation, and is based on the difference in
tagging efficiency between the samples matched and show-
ered either with pythia or with herwig++, as a function of
pT, relative to the difference at 200 GeV. This is considered
as correlated between the τDDT

21 categories, and is given as
6 (7)% ln(pT/300 (GeV)) for the HPHP (HPLP) categories.
The shape uncertainties in the jet masses are considered fully
correlated between signal and V+jets backgrounds, allowing
the data to constrain these parameters. These affect the mean
and the width of the signal and V+jets pdfs. All uncertainties
entering the fit are listed in Table 2.

7 Statistical interpretation

To test for the presence of narrow resonances decaying to
two vector bosons we follow the CLs prescription, evaluated
using asymptotic expressions described in Refs. [80–82]. The
limits are computed using a shape analysis of the three dimen-
sional mjj–mjet1–mjet2 spectrum, where the 3D signal and
background pdfs obtained above are fitted simultaneously to
the data for each signal mass hypothesis and category. The

Table 3 Observed yield and background yields extracted from the
background-only fit together with post-fit uncertainties, in the two purity
categories

Category HPHP HPLP

W+jets 100 ± 11 4600 ± 200

Z+jets 33 ± 4 1580 ± 160

QCD multijets 650 ± 4 51100 ± 300

Predicted total background 783 ± 12 57200 ± 400

Observed yield 780 ± 30 57230 ± 240

signal and background yields are determined simultaneously
in this fit. Systematic uncertainties are treated as nuisance
parameters and profiled in the statistical interpretation using
log-normal constraints, while Gaussian constraints are used
for shape uncertainties.

Figures 10 and 11 show the mjet and mjj spectra in data for
the high- and low-purity categories, respectively. The solid
gray curves represent the results of the maximum likelihood
fit to the data, allowing the signal yields to assume their best
fit value, while the lower panels show the corresponding pull
distributions, quantifying the agreement between the hypoth-
esis of signal plus background and the data. The resonant
background components are shown separately. A signal is
superimposed onto all three projections corresponding to a
signal yield as expected from the theoretical prediction and
the analysis selection efficiency, and scaled by a factor of 5.
The background yields in the signal region extracted from a
background-only fit, together with their post-fit uncertainties,
are summarised in Table 3 and compared with observations,
separately for the two categories. The extracted V+jets cross
sections are found to be compatible with the SM expectations
within one standard deviation of the post-fit uncertainties.

No significant excess over the background estimation is
observed. Upper limits on the production cross section at 95%
confidence level (CL) are set. Limits are set in the context
of the bulk graviton model and the HVT model B scenario,
using the narrow-width approximation. Figure 12 shows the
resulting limits as a function of the resonance mass com-
pared to theoretical predictions. The theoretical cross sec-
tions shown in Figure 12 are calculated to LO in QCD as
detailed in Refs. [6,34]. For the HVT model B, we exclude
at 95% CL W′ and Z′ spin-1 resonances with masses below
3.8 and 3.5 TeV, respectively. In the narrow-width bulk gravi-
ton model, upper limits on the production cross sections for
Gbulk → WW(ZZ) are set in the range from 20 (27) fb for
a resonance mass of 1.2 TeV, down to 0.2 fb for a resonance
mass of 5.2 TeV.

The expected upper limits obtained using the multi-
dimensional fit method introduced here are compared to those
obtained in a previous search [29] using the same data set
in order to estimate the sensitivity gain by using the new
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Fig. 12 Observed and expected 95% CL upper limits on the product
of the production cross section (σ ) and the branching fraction, obtained
after combining categories of all purities with 77.3 fb−1 of 13 TeV data,
for Gbulk → WW (upper left), Gbulk → ZZ (upper right), W′ → WZ

(lower left), and Z′ → WW (lower right) signals. For each signal sce-
nario the theoretical prediction (red line) and its uncertainty associated
with the choice of PDF set (red hashed band) is shown. The theory cross
sections (red line) are calculated at LO in QCD [6,34]

method. Figure 13 shows the expected limits for one signal
model based on an analyses of the data collected in 2016,
using either the fit method presented here, or previous meth-
ods. We obtain a 20–30% improvement in sensitivity when
using the multi-dimensional fit method, and about a 35–40%
improvement when combining the data sets recorded in 2016
and 2017 relative to the individual results. The same conclu-
sion holds for the other signal models investigated in this
paper. The results obtained with the multi-dimensional fit
are the best to date in the VV channel and reach a similar
sensitivity at high masses (mX) as the combination of dibo-
son and leptonic decay channels for the 36 fb−1 recorded in
2016 [27,28].

8 Summary

A search is presented for resonances with masses above
1.2 TeV that decay to WW, ZZ, or WZ boson pairs. Each of
the two bosons decays into one large-radius jet, yielding dijet
final states. The search is conducted using a novel approach
based on a three-dimensional maximum likelihood fit in the
dijet invariant mass as well as the two jet masses, thus taking
advantage of the fact that the expected signal is resonant in
all three mass dimensions. This method yields an improve-
ment in sensitivity of up to 30% relative to previous search
methods. The new method places additional constraints on
systematic uncertainties affecting the signal by measuring

123



Eur. Phys. J. C (2020) 80 :237 Page 17 of 34 237

Fig. 13 Expected 95% CL upper limits on the product of the produc-
tion cross section (σ ) and the branching fraction for a Gbulk → WW
signal using 35.9 fb−1 of data collected in 2016 obtained using the multi-
dimensional fit method presented here (red solid line), compared to the
result obtained with previous methods (black dash-dotted line) [29].
The final limit obtained when combining data collected in 2016 and
2017 is also shown (blue dashed line)

the standard model background from W or Z production with
associated jets, accounting for 5% of the overall improvement
in sensitivity. Decays of W and Z bosons are identified using
jet substructure observables that reduce the background from
quantum chromodynamics multijet production. No evidence
is found for a signal, and upper limits on the resonance pro-
duction cross section are set as a function of the resonance
mass. The limits presented in this paper are the best to date in
the dijet final state, and have a similar sensitivity as the com-
binations of diboson and leptonic decay channels using the
2016 data set. The results are interpreted within bulk gravi-
ton models, and as limits on the production of the W′ and
Z′ bosons within the heavy vector triplet framework. For the
heavy vector triplet model B, we exclude at 95% confidence
level W′ and Z′ spin-1 resonances with masses below 3.8
and 3.5 TeV, respectively. In the narrow-width bulk gravi-
ton model, upper limits on the production cross sections for
Gbulk → WW (ZZ) are set in the range of 20 (27) fb to 0.2 fb
for resonance masses between 1.2 and 5.2 TeV.
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