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Abstract

Techniques for oplimizing a static voting type algorithm are presented. Our basic optimiza-
tion models are based on minimizing communications cost subjcct to given reliability constraints.
Two models are presented; in the first model the reliability constraint is failure tolerance, while in
the sccond it is availability. Other simplcr models that are special cases of these two basic models
and arise from making simplifying assumptions such as equal vote values or constant inter-site
communications costs are also discussed. We describe a semi-exhaustive algorithm and efficient
heuristics for solving each model. The algorithms utilize a novel signature-based method for
identifying equivalent vote combinations, and an cfficicnt proccdure for computing availability.
Computational results for the various algorithms arc also given. Finally, the optimized static
algorithm was compared against the available copics method, a dynamic algorithm, to understand
the relative performance of the two types of algorithms. We found that if realistic reconfiguration
times are assumed, then no one type of algorithm is uniformly better. The factors that influence
relative performance have been identificd.
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1. Introduction

A réplicated data environment is one in which multiple copies of a file are present. By -
replicating data, system relfability may be increased to satisfy the high up-time requirements in
on-line appﬁcatioﬁs such as banking and airlines. Clearly, if copies of a file reside on scveral
computers with independent failure modes, then the file system would be more reliable. The
disadvantage, however, is that the copics must be kept mutually consistent by synchronizing tran-
sactions at different sites so that a globhl_ serialization order is ensured. For instance, two indepen-
dent transactions must not be allowed to simultaneously update different copies of the same file.
Hence, the concurreﬁcy control algorithm becomes more complex and also more expensive to
implement. The additiénal communications and processing cost arises because several rounds of

messages must be exchanged with other sites during the exccution of the algorithm.

.Several popular methods for replicated data concurrency control are based on the formation
of quorunis, [BERN87, DAVI8S]. We rcfer to such methods as ‘‘voting-type’’ or quorum con-

“sensus (QC) class of algorithms [GIFF79, THOM79].

The common fcature in Voling-typc algorithms is that cach .sitc, i is assigned a vote, v;, and
in order to perform various opcrations quorums must be forfncd by assembling votes. To perform
a read (or write) opera;ion, a transaction must assemble a read (or write) quorum of sites such that
the votes of all the sites in the quorum add up to a predefined threshold, @, (or Q). The basic
principle behind the algorithm is that the sum of these two Lhrcsholds'must‘excced the total sum

of all votes, i.c., ~
Invariant 1: Svi <Qr +0w
¢

Hence a read and a writc operation cannot proceed simultaneously. Morcover, the write

threshold is larger than half the sum of all votcs, i.c.,

Invariant 2: Jvi<2xQ,
. t



Thus, two write opcrations are prevented from proceeding simultaneously. It is important to
note that the above two invariants do not enforce unique valucs upon Q, and Q,,. Furthermore,
the v;’s do not have to assumc unique .valucs. Hence, several altemative sets of solutions for
these variables exist. The rcad-one write-all method is a special case of the quorum consensus
method with each v; and Q, equal to 1, and Q,, equal to n (assuming there are n copies of the
file). This leads to better performance for queries at the expense of poorer ﬁeffonnance for
updateé and works well in an environment where a very large fraction of the transactions are
queries. ‘

The basic QC a'lgorithm» described abovec is a static algorithm because the votes and quorum
sizes are fixed a priori. This restriction docs not apply to dynamic algorithms, and in these the
votes and qudrurh sizes are adjusted suitably as sites fail and recover. Examples of such algo-
rithms are: the Missing Writes method [EAGES1, EAGES3], and the Virtual Partition method
[ELABSS]. In the Missing Writes mcthod, the read-one write-all method is implemented when all
the sites in the network are up; however, if any site goes down, the size of the read quorum is
increased while that 61’ the write quorum is reduced. After fhe failure is repaired it reverts to the
old scheme.. In the virtual partition algorithm, each site maintains a view consisting of all the
sites that it can communicate with, and within this view, it implements the rcad-one write-all

method.

Other quorum bésed methods of the dynamic type are: the vote reassignment method
[BIARB86], the quorum adjustment method [HERLS7], and the dynamic voting algorithm
'[JA1087]. In the vote rcassignment and the quorum adjﬁstmcnt rhcthods, sites that are up can
chénge iheir votes on detecting failurcs of other sifes by following a certain .profocol. In the
dynamic voting mcthod, additional information rcgarding the number of sites at which the most
recent update was performed is stored. This makes it possible to shrink the size of a quorum
dynamically if site failurcs or partitions occur. For instancc, consider :in objcct replicated at S

sites designated as A, B, C, D and E, and furthcr assume that the most recent update to this object
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was performed at sites A, B, and C. If a subscquent link failure isolates site A from B and C, the
latter two sites can still continuc to perform updates because they contain a majority among the
sites at which the most recent update was performed. Therefore, this method allows updates to

take place even with fewer than a majority of the sites available.

Another dynamic algorithm is the available copies mcthod [BERN84]. In this method,
query transactions can rcad from any singlce site while update transactions must write to 'all the
sites that are up. Moreover, in order for the algorithm to work correctly, each transacﬁon must
perform two additional steps called missing writes validation and access validation. In the first, a
transaction must ensure that all copies it tried to, but could not, write are still unavailable. In the |
second step, a transaction must ensure that all copics it read or wrote are still available. The pri-
mbary copy algorithm [STON79] is based on designating one copy as a primary copy, and each
transaction must update it before committing. Later, updates are spooled to the other copies also.

If-the primary copy fails, then a new primary copy is designated.

In [GARC84, GARCSS5], the concept of coterics is introduccd as an alternative to quorums.
A coterie is defined as a collection of intersecting minimal subsets of sites. It is shown that there
exist several coteries which do not have a corresponding vote .assiMent, and therefore, the solu-
tion spaée of vote assignments is a subset of the cbtcn’c solution space. It is also shown that thé
problems of finding an optimal vote assignment and an optimal coterie assignment in order to
maximize availability have exponential complexity.

Our objective in this paper is to develop lcchhiques for optimizing the assignment of votes
in a static algorithm. Two modecls for minimizing commun‘ic.alions cost subject to a given reliabil-
ity constraint are discussed. fn the first modcl, the reliability criterion is failure tolerance, while
in the second one it is Availability. Techniques fé-r solving these modcels arc dcscﬁ'bed, and com-
putational results to evaluate these techniques are prcscnicd. Finally, we also compare the relaﬁve

performance of an optimized static algorithm against a dynamic algorithm and identify the condi-



tions under which cach type of algorithm performs better. Static algorithms have the advantage of
simplicity and ease of implementation, and conscquently, if the performance of the two types of

algorithms is comparable, then static algorithms would be preferred.

The organization of this paper is as foﬂows. In Section 2, we deﬁﬁc failure tolerance and
availability, discuss our optimization moaels and present a general framework fof understanding
vote assignment problems. In Section 3, we define basic concepts which are uscd later in this
paper. Then, in Secﬁon 4 we analyzc the complciity of the vote assignment problem. Sections 5
and 6 deal with the special case of constant unit inter-sitc communications cost. In Section 5, we
examine the behaviof of the total communicatioﬁs cost for diffcrent levels of failure tolerance in
the case of equal vote assi gnmént (i.e., v; = 1, for all sites) and show that lower communications
cost »and higher failure tolerance may be conflicting objectives. We also determine the cheapest
algorithm for different read-write voiume ratios in the absence of reliability considerations. Sec-
tion 6 illustrates that by gssigning uncqual votes, substantial savings in communications cost may
be achieved while maintaininé a desiréd level of failure tolerance. The algorithm for such a vote
assignment and the analysis of its cost bchavior are prescnted; a proof of optimality for our algo-
rithm and a qualitative discussiqn of its pros and cons arc also given. Scctions 7 through 10
address the general case of uncqual votes and also uncqual unit inter-site communications cost. In
Section 7, we devise an efficient algorithm for computing the availability (to be used by subse-
quent vote assignment algorithms) of a given vote assignment. Section 8 turns to a scmi-
exhaustive algorithm for solving the vote assignment problem. This algorithm is computationally
very expensive, but gives a ncar-optimal solﬁﬁon. Then, in Scction 9, we dcvéiop greedy heuris-
tics” and in Section 10, we present results from computational experiments to evaluate their per-
formance against thc scmi-exhaustive algorithm. In Scctioﬁ 11, the optimized static algorithms

are compared against the available copics algorithm, a dynamic technique. Scction 12 concludes

? Strictly specaking, the scmi-cxhaustive algorithm is also a heuristic. We use the term *‘scmi- v
exhaustive’” to indicate the more cxtensive scarch of the solution spacce.



the paper with a summary and some ideas for futurc rescarch.

2. Models and Framework

In this section we shall define and illustrate concepts pertaining to our two measures of reli-
ability, failure tolerance and availability. We shall also discuss two optimization models and

present a general framework which is useful for understanding vote assignment problems.

2.1. Failure Tolerance

Failure tolerance of a vote assignment is defined as the maximum number of site failurcs
that the assignment can tolerate.¥ An assignment can tolerate & site failures if a read and a write
quorum can be formed in spite of any & -site failure. This implies that the most recent updates are

-available at one or more sites even if any set of k sites is down.

For instance, it is obvious thdt the read-one write-all algofithm does not permit write opera-
tions if even one site is down because all sites must participate in a write quorum.fv Hence, the
failure tolerance is 0. On the other hand, if all votes are equal, Q, is 2 and Q,, is n—1, it means
that n—1 sites must participate in a write quorum, and hence both read and write operations can
continue despite onc failure. Similarly, a Q, value of 3 and a Q,, value of n—2 make the s;'stem
resilient to up to 2 failures. It is a simple extension to show that the failure tolerance for the case
of each v;=1 is maximized when both quorums are cqual to (n+1)/2. Hence, resiliency may be
increased by modifying quorum sizcs, although this may mcan a highcr communications cost as

we will show in Scction 5.

# Note that the terms rcsilicncy and failurc tolerance will be uécd intcrchangeably in this papcer.
T The available copics algorithm, described carlicr, is a dynamic algorithm which overcomes this
problem. It shall be cxamined further in Scction 11.



2.2. Availability

Availability is defined in probabilistic terms as follows: Givenﬁ copies of a file such that
each is up with probability p;, the availability, AV, is the probability that both a rcad and a write
- quorum can be formed. Consider an example where 3 copics of a file reside at different sites. If
each p; is 0.9, and the size of a QUorum is 2, then the overall availability of the file is computed

as:

AV =3x(0.92x0.1 + (0.9}3‘:0.97.

This means that by replicating a file at 3 sites instead of 1, the availability can be increased
from 0.9 to 0.97. One can similarly show that if n is 5, and the quorum size is 3, then AV

increases to 0.991.

2.3. Optimization Models

The two main models of interest here are:
Model 1: Find a Votc Assignment to Minimize Communications Cost
such that:

failure tolerance = cut-off

Model 2: Find a Vote Assignment to Minimize Communications Cost
such that:

availability = cut-off

Next we describe a framework in which special cascs of these 2 models are also included.

2.4. A Framework

Table 1 gives a gencral framework for understanding the vote assignment problem, and for
integrating votc assignments with reliability. In the two modcls above, no assumptions arc made

rcgarding the unit inter-site communications costs or the vote values. Making such assumptions



leads to special cases of the basic modcls. The objcctive of drawing up such a framework is to
identify all special cases, and, if possible, look for simpler techniques for solving them rather

than solving the more general problem in all cascs.

The 3 columns of Table 1 correspond to the unconstrained’ and constrained cases, while the
sz of the table correspond to the 4 possible combinations of equal or unequal votes together
with equal or unequal unit inter-sitc communications cost. Thercfore, there are 12 diffcrent.cases
of interest altogether as rcpresented by the 12- boxes in Table 1. We shall refer to the 12.

corresponding problems as assignment problems 1 through 12. The main objective in all cases is

. Model 1:. - . | Model 2:
Minimize Cost Minimize Cost Minimize Cost
(unconstrained) StLFT > FT yin s.t. AV>AV i
EQUAL VOTES - 1. 2. 3.
analytical solution | by enumeration by enumecration
cij=C (Section 5) . find ¢,, qw find q,, g
4, .S, 6. '

: by enumeration by enumcration by enumeration
Cij#C find q,, g find q,, g, find g,, qw
UNEQUAL VOTES | 7. 8. 9.

analytical solution | Algorithm OPT same as 12.
cij=C (Section 5) (Scction 6)
10. _ 11. 12.
same as 11. IP Formulation Algorithms SE-AV, |
Cij #C - | [KUMASS]. PE-AV1, PE-AV2.
| Algorithms SE-FT, | (Scctions 7,8)
PE-FT1, PE-FT2.
(Scctions 7,8)

Table 1: A Framework for vote assignment problems

R

T The unconstraincd problem is a special casc resulting when the constraint on failure tolerance (or
availability) is removed.



cost minimization; howevcr, this objcctive may be cither unconstrained or it may be constrained
by a certain reliability criterion such as availability or failure tolerance. It is evident that the last
row of the table represents three general problem formulations, and all the other rows are special -

cases of these general ones.

VIn assignment problems 1 through 6, all sites are assumed to have equal votes. Problem 1
corresponds to unconstrained minimization of cost given equal votes and uniform inter-site com-
munications cost between all pairs of sites. This is analyzed in Section 5. The assignment prob-
~ lems 2 through 6 can be solved as follows. Since all votes must be equal, wiL_hout 1oss of general-

ity, each vote may be assumed to be 1; the only unknowns, therefore, are ¢, and g, . Morcover,

the sum of the two quorums is n+1, and ¢, must be at least equal to l? . Hence, one may

determine the optimal value of g, and g, by enumerating the communications cost for all values

of g from {l;—l] to n, and selecting g, and ¢, corresponding to the minimum cost alterna-

tive. Since the complexity of enumeration herc is O(n), it is a simple and efficient solution

method.

In assignment problems 7 through 12, the votes assigned to different sites may be non-
equal. The solution method for problem 7 is the same as that for problem 1, described in Section
5. Algorithm OPT, discussed in Section 6, gives an optimal solution for assignment problem 8. In
a previous paper [KUMARS], we have formulated the assignment problem 11 as a mixed Integer
Programming problem. Since the known solution mcthods for such problems are not very
efficient we found Lhzit to solve this formulation for valucs of n greater than 5 consumes very
large amounts of computational resources. Therefore, here we have developed hceuristic solution
methods for this problem. In Sections 7 and 8, we discuss heuristic algorithms to solve assign-

ment problems 11 and 12.



In the next section, we shall dcfine some basic vote assignment concepts and use them later

in the design of our algorithms.

3. Vote Assigninent Definitions and Concepts

In this section, we shall definc some basic concepts in the context of the vote assignment

problem and shall usc them through the remainder of the paper.

3.1. Vote Assignment versus Vote Combination

At thé outset, a distinction must be drawn betwcén a vofe assignment and a vote comBina-
tion. A vote combinétion for n sites is an n-tuple consisting of n elements. It becomes a vote
assignment when each clement in this combination is aésigned t0 a speéiﬁc site. Thérefo'ré, if
each element in a vote combination is unique, thch there are n! specific assignments.for that cdm-
bination and they may be produced'by enumerating all permutations of thé vote coxﬁbination. On
the other hand, if duplicates are present in a vote combination, then the number of corresponding
assignments is less than n!. In the extreme case if all clements in the combination are equal, then
only one vote assignment exists. For example, in a S-site problem, the vote combination
(1,1,1,1,1) is also a vote assignment begausg only one permutation exists for this combination of

votes. On the other hand, the combination (5,4,3,2,1) has 5! (or 120) different assignments.

Without loss of gencralily,v we shall represent a vote combination as a non-increa.sing
sequence of votes, V = (v;, - - v, ) where:
VIRV 2V2 0 2V,
Notationally, we shall rcpresent a vote assignment, V,ina s_ir_nilar way; howcvgr, ip an

assignment V. the i** element of the vector specifically represents the vote given to site i and

therefore, the elements occur in site-number order.



3.2. Quorum Size

The size of a quorum, ¢ is thc minimum numbcr of votes nceded to make a majority among
all votes. For simplicity, in the casc of Model 2, a rcad and a write quorum are required to be
equal since the systcm is considered unavailable if cither quorum cannot be formed. (Note, how-

ever, that we allow non-equal votes).

3.3. Corresponding Assignment for a Vote Combination

A vote combination can also be viewed as an assignment in which the i* elcment is
assigned to site {. Such an assignment will be called the corresponding assignment for a yote
combination. For example, \7:(5,4,2,2,1) is the corresponding assignment for the combination,

V=(5,4,2,2,1). For brevity, the term ‘‘availability of a vote combination’’ will refer to the availa-

bility of the corresponding assignment for the vote combination.

3.4. Equivalent Vote Assignments and Combinations

Two vote assignments, \71 and V, are equivalent if for every group of sites in ‘71 that can
form a quorum, the samc group of sites in ¥72 can also form a quorum and vice versa. For exam-
ple, it is éasy to verify that (1,1,1,1,1) and (2,2,2,2,1) are cquiv;ﬂent vote assignments. In the
former_ case, g is 3, while in the latter it is 5; We define two vote combinations, V énd Vatobe

equivalent if their correéponding_ assignments are cquivalent,
The following result is derived from our definition of equivalence.

Theorem 1: The availability of two equivalent vote assignments, \71 and ‘72- is always ecqual for

all sets of p;’s, where p; is the rcliability of site i,

Proof : Given n sites there are exactly 2* alternative states representing all combinations of up

and down sites. We dcfine X;, i=1, - - - 2%, for any votc assignment as follows;

X = 1, if a quorum.can be formed in state i
£ =10, otherwise
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Morcovecr, the Availability, AV 'is cxpressed as: L :
AV = ‘;X" R;
where
R;: probability that the system is in statc i.

Clearly, R;, for all states i,is indcpcndent of a specific vote assignment and depends only
upon the individual site reliabilitics. Morcover, from the definition of cquivalence, if any two
assignments $71 and 172 arc cquivalent, then: |

X7, = X:)y, for all i
where
Xi)v,(Xi)7,: Xi values for assignments V. and Va, respectively

Since cach X; and R; arc equal for 2 equivalent assignments for all values of i, it follows

that the availability for two equivalent assignments must also be cqual. a

Corollary 1: The availability of two equivalent votc combinations, V; and V5 is always' dqual for

v

all scts of p;”’s where p; is the rcliability of sitc {.

The corollary follows dircctly from Thcorem 1 and Section 3.3. These results are used in

Procedure SE, described in Scction 8;1.

3.5. Dominating Vote Assignments

An assignment, V; dominates another-assignment, V', if for cach sct of sitcs in V; that can
form a quorum, a quorum can always be formed by the samc or a smaller sct of sites in Vy; how-
ever, the converse is not truc. This means that 'V is supcrior to V5 because it would have a

greater availability.

It has been shown in [GARCSES] that an assighmcm in which the total .number of voltcs is

cven is always dominated by a vote assignment in which the total number of votes is made odd

11



by assigning 1 extra vote. For example, if n is 4, an “‘odd’’ assignment represented by (2,1,1,1) is
superior to the ‘‘even’’ assignment (1,1,1,1). We shall, therefore, consider only those assignments

(or combinations) in which the total number of votes assigned is an odd number.

3.6. Active Votes

A vote, v; assigned to sitc j in an assignment, V is said to be an active vote if there exists
at least one quorum of sites which includes site j such that if site j is withdrawn, the remaining -

sites do not form a quorum.

In the assignment (4,2,2,2,1), vs docs not contribute to the formation of any quorum,
because all quorums must include at least two of the 4 other sites. Therefore, vs is an inactive
" vote and this assignment is trcated as an invalid S-site assignment. For an n-site problem, we

shall restrict ourselves to those assignments in which each vote is active.

4. Complexity of the Vote Assignment Problem

In [GARCSS] it has been shown by heuristic arguments based on visualizing a hypercube
that an upper bound on the total number of vote assignments for n sites is 27, Here we give

another derivation which is intuitively simpler.

For n sites, there are 2" p.ossiblc groups corresponding to all possible combinations involv-
ing the inclusion and exclusion of each site. From these 2" groups, we may arbitrarily choose
any n groups that should form a ﬁquorum, and writc n simultancous equations with n variables.
Each system of n equations may then be solved for the v;’s. Of course, some of the systems of

equations may not have any solution. However, this allows us to place an upper bound on the

2’1

number of vote assignments as | 4,

. This cxpression rcpresents the number of ways in which n

elements may be choscn from a universe of 2* elements. The complexity of the above expression

is O(2™).

12



Not only does this number include scveral systems of equations which have no solution, but
it also involves a large number of pcrmutations of a given vote combination. Fpr instance,
5,3,3,1,1), (3,1,1,5,5),>(vl,1,3,3,5), etc., are exaﬁplcs of bcrmutations of the vote combinatioh,
(5,3,}3,.1,1). and each such pef,mlutation is included in the uppér bound above. For these two rea-
sons, it is possible that é tighter upper bound may exist for the total number of> unique combina-
tions, bui has not yef been found. In the next sccﬁon, we develop an algorithm that enu‘merates a
very large number of vote combinations, and also implement this algorithm to show the number

of assignments that exist forn <9.

5. Analysis of QC Algorithms (constant' cifs and vi’s)

In this section, we restrict our atiention tovvoting'-type or QC algorithms with equal vote
assignments (v;'s) and constant inter-site communications costs (c;; 's). We will assume, without
loss of generality, that all files are completely replicated. First, in Section 5.1, we analyze the
minimum cost of QC at diffcrent values of read-write traffic volumes, disregarding resilicncy
considerétions. Next, the resiliency v;rsus_communications cost trade-off is investigated for dif—

ferent values of update-to-query ratio in Section 5.2.

The main parameters of interest are:
| n : number of sites where éopics of the file exist
r;: volume of read (or qﬁery) traffic from site i
w; : volume of write (or update) traffic from siie i
vol; :.total volume of rcad and write traffic from site i (7; +w,~)

V. total rcad and write traffic volume of all sitcs (3 vol;)
, ; :

O, : size of the read quorum
Q.. : sizc of the writc quorum

The write ratio, p,, is defincd as:

13



Pw'= Zl: Wi/(; wi + _7‘_', ri)

If blind writes arc not allowed, and cach write operation is precceded by an independent read
operation, then the maximum value p,, would take is 0.5. We do not consider lock escalation and
rather assume that a writc-lock would be obtained in the first instance when a transaction reads an

object for updating. In our model, therefore, p,, c'an also assume values higher than 0.5.

5.1. Minimum Cost Voting

The communications cost, CCy. for the QC algorithm is the sum of the total traffic resulting
from read and write transactions, and is expressed as:

CCoc = @u=DX T Wi +(Q=1X T 7;

We will denote the minimum cost by CCq. Notice it is assumed that each site will include its
local copy while assembling a quorum and hence it communicates with (Q,~-1) and (Q,,~1) addi-
tional sites to form read and write quorums respectively. There are two important cases of

interest: p,, <0.5, and p,, >0.5. We shall analyze each one separately.
Case1:p,,<0.5

Now, since Q, + @, must always be greater than n+1 (sce invariant 1 above), and

> wi £ r; when py, £ 0.5 (by definition), it follows that CCy is minimized when Q, is 1 and

Q. is n . This is exactly the recad-one write-all algorithm. Hence, we get the following result:

Result 1: The read-one write-all al gorithm incurs the lowest cost when p,, <0.5.
The minimum communications cost in this case is derived from the general expression by substi-

tuting the quorum sizes and is:
CCp  =(-D)xIw
=(n-1) X3 vol; Xp,

14



=(n-1)pnV

For large n, this cost may be approximated as np,, V.
Case 2: p,,20.5

Reasoning along the same lines as above, it might appear that the communications éost is
minimized when @, is n and Q,, is 1. Howevcr, this is incorrcct because invariant 2 is violated.
Clearly, Q,, should assume the smallest possible value without violating invaﬁaxit 2 and this

occurs when:’

Q. =int(ni2)+1
and, therefore,

Qr =n+1- Qw-
Result 2: Hence, when p,, 20.5, CC,. is minimized at the above quorum values.

For relatively large values of n, we may approximate the quorum sizes as:

Qw=0,=n/2

Using this approximation, CCg is expressed as:
CChi =Y (i +w)
=(n/2) Y vol;

=(n/iY)V

Note that in this case the quorums are either cqual or differ by 1. For example, when n=11,
0,=0,,=6. On the other hand, when n = 12, 0,,=7 and Q,=6. The minimum cost is plbtted
against p,, in Figure 1. It should be observed that this cost increases lincarly as p,, goes from 0 to

0.5 but becomes constant for p,, 20.5

f int(x) denotes the intcger part of x.
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Figure 1: Plot of Min. Cost versus total fraction of writes (p,,)

5.2. Failure Tolerance versus Communications Cost

So far in our analysis, minimum communications cost has been determined without regard
to resiliency . Here we will study the implications of increased resiliency on communications

cost. Again, there are two cases: p,, <0.5, and Pw20.5.

In the second casc, as indicated by Result 2 and the subsequent example above, the two
quorum sizes are either cqual or differ by 1. This mcans that the availability is maximum as well.

Hence, we may conclude the following:
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Result 3: When p,, 20.5, the failure tolcrance is maximized at the least-cost quorum sizcs.

Now we turn to the case of p,, <0.5. In the least-cost altemative, @,=1, Q,,=n, and the failure
tolerance is 0. Therefore, in order to assurc a failure tolerance level of k, @,, must be reduced by

k and Q, must be correspondingly incrcascd. The resulting incremental cost (IC) is:’
IC=(Tri - Swi)xk

This increase is translated in terms of the minimum cost, CCg, and the increase percentage (IP)

is computed as: -

IP = IC X100/ CC

*

After substituting for IC and CC, and further simplifying, IP may be expressed as:
IP = (1-20,, )k X100/(p,, (n —1))

In Table 2, IP has been computed for z; range of valucs of p,,, with n altcrnately set at 5 and 10.
Noté that k is the failure tolerance level. It is evident from this table that for smallvvalues of pw,
higher resilieﬁcy is achieved only by incurring a cénsiderably higher commurﬁcations cost. For
instance, when p,, is. 0.05 and k is 1, IP is 450%. This means that in order to make the algorithmb
resilient to 1 site failure, the communications coét is 4.5 times larger than its Value for 0 failure

tolerance. However, as p,, “approaches 0.5, IP also shrinks and tends towards 0.

In summary, the interesting conclusion to be drawn from this section is that the additional
cost of providing failure tolerance is highly dependent on p,,. For small values of p,,, this cost is

very high; however, for p,, 2 0.5, it becomes 0.
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Pw

=0 k=1 k=0 =1 =2 =3

.05 0% | 450% {{ 0% | 200% | 400% | 600%
10 0% 200% || 0% 89% | 178% | 267%
.20 0% 75% 0% 33% 67% | 100%
.30 0% 33% 0% 15% 30% 45%
40 0% | 12.5% || 0% 6% 11% 17%
.50 0% 0% 0% 0% 0% t 0%

Table 2: Percentage Increase in communications cost for higher resilicncy
as comparcd with the minimum cost (for different p,, values)

6. Optimal Vote Assignment (constant c;js)

In the prcvious section it was shown that availability may be improved at the echnsc of
incrcased communications cost by changing the quorum sizes. The consequent effect on com-
munications cost was expressed analytically. Here we discuss an algorithm for optimally assign-
'ing votes to sitcs so as 10 minimiz¢ communicalions cost subjcct to a desired failure tolerance
level. As before, failure tolerance, is defined as the number of site failures that can be tolerated.
I;urthcr. it will be assumed ﬁ]at the inter-site unit communications cost is a constant for all pairs
of sites. We first describe the algorithm, then illustrate it with an example and finally present a
cost comparison between the communications cost resulting from our method and th¢ conven-

tional mcthod in which cqual votes arc assigned to cach site.

6.1. A Vote Assignment Algorithm

This algorithm assumcs that there arc 2 copics of the file and the desired fault tolerance

level is k. The main steps in the algorithm arc listed below and then a brief cxplanation follows.
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Algorithm OPT

1. Numberthesilcs as sy, 82, * -, Sa
2. Denote the volcs to be assigned as vy, vy, =- *, ¥,
3. Assign votes to SilCS Sg+1s Sk+2, * ° s S, Such that:
Vil S Vig2= " =V, =1
k<ni2

4. AssignQ, =0, =n—k

5. Assignvy=vy=--- =y =int ((n—k-1)/k)

) i=k
6. Lctm=n—k—l—2v,~

If m > 0, then assign 1 cxtra votc to the first m sites, S1, S2, *** Sm.

Note that in stcp 1, the sites are numbered arbitrarily in any random order. In step 3, votes
of 1 unit are assigned 10 n—k out of the n sites. These sites are designated as minor sites. The
basic idea of the algorithm is to assign highcr votcs to the remaining & sites, which we term as

major sites. Notice that k& can be at most n/2. This mcans that the maximum failure tolerance

level is equal to half the total number of sitcs. The vote assignment scheme ensurcs that the set of

k major sites along with any other minor site can form both a read and a write quorum. Alterna-
tively, if all & major sites are down, then it should still be possible to fbrm both quoruins by
assembling the votes of all minor sites. This guarantees that no matter which & sites are down, the
quorums can still be formed. Conscquently, in step 4, Q. and Q,, are both sct to n—k, which is
the sum of the votes of all the minor sites. In step 5, an amount n—k—1 is distributcd among the
k major sites, thereby cnsuring that if the votes of the major sites are added together along with
one additional vote, the resulting sum is n—k, andr\hcncc, both quorums can be formed. The fol-

lowing example illustratcs the main steps of Algorithm OPT:



Example

Say,n=8and k =2,
Assignvy=vy4=vs=vg=vy=vg=1
Therefore, O, =0, =n -k =6
andvi=vo=int(5/2)=2

m =1; hence, v, =3.

Hence, the final vote assignment is:

v1=3;_\/2=2

For the above example, the conventional QC method assigns a vote of 1 to each site and sets Q,
and Q,, to 3 and 6 respectively; these quorum values cnsure that the system can tolerate up to 2

site failures.

6.2. Discussion ~

In this section, we prove that Algorithm OPT chooses an optimal vote assignment. Further,
since the algorithm does not distinguish between sites, we discuss heuristic ways of assigning the

higher votes to specific sites.

Algorithm OPT is based on the following lemma;:
Lemma 1: When k-site resilicncy is desired, a transaction must communicate with at least &

other sites in order to perform a read or write operation.

Proof : (by contradiction) Consider an update transaction, T which performs an update operation
in which a certain set of k—1 other sites are involved. Furthermore, consider a subsequent k-site
failure involving the site at which transaction T executed, and the same set of k—1 other sites

which participated in transaction T. Clearly, in this situation the update performed by T will not
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be available at any working sitc, and hence, k-site resilicncy is not assurcd. Thercfore, a transac-
-tion must communicatc with at Icast & other sitcs in order to guarantce k-site resilicncy. This is
necessary in order 10 guarantce that even a k-site failure will Icave at Icast onc working site with

the most recent updates. - P O
This lemma is used in the following theorem:
Theorem 2: Algorithm OPT is optimal.

Proof : From Lemma 1, cach sitc must communicate with at Icast & other sites to achicve k-site
resilicney. Since the inter-site communications cost is constant for all pairs of sites, a2 minimum
cost, k-site resilicnt solution is obviously onc in which cach site communicates with exactly &

other sites. Our algorithm ensurcs that if all sites arec working, any site can form a read or a write

quorum consisting of exactly & other sites. Hence, the communications cost is minimized. | n)

The intuitive rationale bcﬁind our algorithm is as follows. If the dcsircd failure tolerance is
k, then higher votes arc assigned to & of the # sites, and it is guarantecd that a quorum can be
formed if these £ major sites and any onc other site are included -- a total of k+1 sites. Therefore,
our vote assignment schgmc lcads to a lcast-cost solution if the £ major sites are included in all
quorums. However, if any of these & sitcs is down then the transaction must communicate with
many more sites in order Lo assemble a quorum and continue opcration. Consequenﬂy. with our
scheme the total communiéalions cost incrcascs if even one of the major sites is down. In con-
trast, with an “‘equal-vote’” mcthod this cost is not affccted by site failures since all sites have an
‘_cqual vote. Thus, our mcthod achicves a lo;vcr cost under nommal operation at the expense of a
higher cost when any of the majof sites is down. Since the latter situation will occuf infrequently,

our algorithm is superior to the conventional QC mcthods.

According to the algorithm as described so far, the assignment of the n votes to specific
sites may be donc cntircly at random. Here we discuss some factors that could influcnce the

choice of the £ major sites. If a nctwork is fully connected and site reliability is cqual for all sitcs,



then these & sitcs may be chosen at rahdom. However, this is not usually the case. Two impor-
tant factors to be considered arc sitc reliability and connectivity. The & larger votes should be
assigned to those sitcs which have greater reliability and are most well-connected with the other
sites. (A simple measure of the connectivity of a site is the number of other sites it has direct
links with). In a star network, for example, the central site is a good candidate for a higher voté.

In such a network, the connectivity of the central site is n—1 and that of the others is 1.

One disadvantage with our method is .that the communications traffic to the major sites will
be very high as compared to the traffic to the minor sites and our analysis does not consider any
queuing delays and hetwork congestion. | This issue has to be addressed as a part of network
design. One'way to handlc this is to provide high bandwidth lines between all major sites and
also ensure fast access to at least one major site from each minor site. With proper network

design, this handicap can easily be overcome.

In the next section we present a cost comparison between Algorithm OPT and a QC algo-

rithm which assigns equal votes to all sites.

6.3. Cost Comparison

The cost comparison consists of two cases. First we discuss the case of p,, <0.5 which is of
greater interest. The general expression for the communications cost incurred by the conventional
QC method was derived in the previous section. Here we modify it slightly to express this cost as
a function of &, the numbcr of site failures which must be ioleratcd. Therefore, the minimum
communications cost in the conventional QC method when & -site resilicncy is provided is as fol-
lows:

ch:-* = kXZr,- + (n-k—-l)Zw,-

The. equivalent communications cost incurred in Algorithm OPT is given by the following
expression:

CCOP,,, = kXZ (r; +w;)
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’I'herefore; the savings realizcd from our vote assignment is: -
CCpt, =CCop,=(n _2k_1)z;:wi
This savings may be converted into a percentage as follows:
Savings % = (n—2k—1)(§w,~)xlOQ/(ka(rﬁw;_)) |
= (n-2k-1)xp,, x100/k |
Sample calculatidns of the savings % with n alternately set to 5 and 10 are given in Table 3.

- In each case, p,, is varied from 0.05 to 0.5, while & is also varied over a range of values. When

the failure tolerance, k is setto 0, it corrésponds to the unconstrained case. It is evident from this

table that large savings arc achicvable by using our algorithm.
In the case where p,, 20.5, the expression for CCy, is rewritten as:
CCq, =(n /Z)XZ(’i*'Wi)
The expression for CC,,, remains the same as before and hence the savings % in this case is

given by:
Savings % = (n/2-k x100/k

=35 =10
ow n n

k= =1 =0 =1 k=2 k=
.05 0% 10% 0% 35% 125% | 5%
.10 0% | 20% 0% 70% 25% 10%
.20 0% 40% 0% | 140% 50% 20%
.30 0% 60% 0% | 210% 75% 30%
40 0% 80% 0% | 280% | 100% | 40%
.50 0% | 100% || 0% | 350% | 125% | 50%

Table 3: Percentage savings achicved from our vote assignment method
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When »n is 10 and £ is 1 this figure is 400%. Again the potential for savings is large.

7. Computing Availability

In this section, we devisc an efficient algorithm for computing availability when scveral
copies of a file exist, and the vote assigned to and the reliability of each site are known. One sim-
plé method for computing availability is by enumerating all possible combinations of up and
down sites, identifying those combinations in which a quorum can be formed, and computing the
aggregate probability of all such combinations. This is clearly an inefficient scheme. Here we
describe a more efficient algorithm and show that it is considerably less expensive than complete
enumeration. Reducing the computational coniplexity is important because the availability com-
putation is central to all subsequent algorithms. A formal problem dcfinition and the details of our
algorithm are given in the following section. Subsequently, an example will be given to demon-

strate the algorithm.

7.1. Algorithm Description

Problem Definition: Compute the availability for a vote assignment represented by the

vector V = (v1, V2, -, vp), and a quorum of size ¢q. The reliability, or the probability that sites

i are up, is denoted by the vector P = (1, P2 -, Ppa). Without loss of generality, it is assumed
that:

V12V22' --2v,~>-~>v

= =Vn

Our Algorithm AVAIL for computing availability is based on first constructing a tree
which we call the quorum subsect tree. Each branch in this tree corresponds to the inclusion and
exclusion of a certain sitc in a quorum and by following the path from a leaf node to the root one
can generatc alternative subsets. The proccdure for constructing this trce is called BUILD-
TREE. We shall describe this procedurc first, and then use it as a subroutine in Algorithm

AVAIL.
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The root of the trce is labeled as level 1, and lower levels are numbered” successively. An
information triplet is maintained at each node as follows:
(votes included, votes excluded, votes remaining)

where

votes included (VI): total votes of sites included so far
votes excluded (VE): total votes of sites excluded so far
votes remaining (VR): total votes still to be assigned

Based on this (VI, VE, VR) triple, a decision is made as to whether a particular node ié
“‘fathomed’’. If a node is fathomed, then no further branching is done from there. Otherwise, the
branching process is repeated. At an unfathomed level i node, we consider the effect of including
or excluding site i by constructing two branches: one corresponding to including site i and the
other corresponding to excluding site i. The main steps of procedure BUILD_TREE are
described below. Figure 2 shows a trec that has been constructed from this algorithm for V =
(5,3,3,1,1). |
BUILD_TREE
1.  (initialization)

i=1

The root is marked by the triple (0,0,W), where W is Lhé sum of all votes. Next, two

branches are constructed {rom the root: one corresponding:to the inclusion of site 1 (the

““include 1’ branch) and the other corresponding to excluding site 1 (the ‘‘exclude 1”°

branch). The nodes at the end of these two branches represent level 2 of the tree.

2. Ateachlevel i+1 node, the triple at the node is computed from the tk 1evel parent node in
the following manncr. If the branch Ieading to the node is an inclusion branch, then:

VI=(VE), +v;

T Note that in order to simplify the description the numbering is for levels (where each level number
corresponds to a site number) and not nodes. Nodces of the tree are referred to as ‘level i nodes’ generical-

ly.
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VE = (VE),

VR =(VR), —-v;

(The subscript p denotes the parent node values while the unsubscripted VI, VR, and VE
represent the child node valucs).

On the other hand, if the branch is an exclusion branch, then the new values are computed

as:

VI=(VI),

VE = (VE), +V;
VR = (VR), - Vi

(Fathoming Step) This step is repeated for all nodes at level i +1.

We consider 4 cases:

CASE 1: VI 2¢

If VI for a new node is greater than or equal to ¢, then this node is marked as ‘*fathomed -
type 1.

CASE 2: VI < q and VI+VR=q

If VI+VR for the new node is equal to g, then this means that all the remaining sites must
be included in order to create a quorum. In this case, we put a note on the node to indicate
that sites {+1, {+2, - - -, n must be included, and mark the node as ‘‘fathomed - type 1°".
CASE 3: VE>W—-q

This means that enough sites havé been excluded alrcady to preclude the formation of a
‘quorum from the remaining sitcs. Hencé, this node is marked as ‘‘fathomed - type 2°°.
"CASE4:VI <gq z;nd VI+VR >q

This node cannot be fathomed.

If all nodes at level i+1 have becn fathomed, then the tree construction is complete, and the

algorithm stops, clsc
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{
i=i+1.
At each unfathomed level i node, construct

an “‘include i’ and an *‘exclude i’’ branch
£0 to step 2.

Now we list the steps of Algorithm A,VAIL,&nd a detailed description follows.
Algorithm AVAIL
1.  First construct a tree from procedure BUILD_TREE described above.
2. Set Availability? A=0.
3.  Next, foreach “fathoméd - type 1’" node, do {

P=1
Traverse tree upwards from the node and
Do Until root is reached {
If therc is an *‘include / " in the path,
P=Pxp;,
else '
If there is an ‘‘exclude i’ in the path,
P=P(1-p)). S
If current node is not the root, traverse the next higher path.

} | .
}

A=A+P

4.  The Availability of the file system is given by A.

The Availability is computed by following the path from each “falhomed -- type 1 nod‘e
to the root backwards. Each “include i’’ along a path corrcsponds to p; and each “‘exclude i
corresponds to (1-p;). The product of the p;’s and (1-p;)’s is computed along .each such path,
and aggregating the individual products gives the availability. The foHowing cxample will

demonstrate this algorithm.
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7.2. An Example
Here we describe an example to illustrate algorithm AVAIL.

Example: Compute the availability for the following V vector:

V =(533,1,1)

The first step in implementing Algorithm AVAIL is to construct the quorum subset tree.

This is shown in Figure 2. Using this tree, the availability for this example is computed as:

A =pipr+p1(1-p2)p3 +p1(1-p2)1-p3)paps+ (1-ppawppa+ (1-ppap3(1-paps.
8. A Semi-Exhaustive (SE) Algorithm

In Sections S ;md 6, we examined techniques to solve the special cases that arose from
models 1 and 2. These solutions became easier as a result of certain simplifying assumptions that
were made about the relative vote sizes or the inter-site communications costs. In the remaiﬁder
of this paper we shall focus on solving the two general models, also representcd by probl_ems 11

and 12 in the framework of Table 1.

In this section we shall describe a procedure (Procedure SE) to generate non-equivalent vote
combinations, and then use it to develop an algorithm Algorithms SE-AV and SE-FT to solve
models 1 and 2. These algorithms produce altcrnative assignments for each vote combination
generated by Procedure SE. For cach assignment, the algorithm evaluates the cost and availabil-

ity, and selects the minimum cost assignment which mects the reliability criterion.

8.1. Procedure SE

This procedure starts with an initial vote combination, and further new combinations are
generated by incrementing the votes in the current combination. To make the procedure more
efficient, we devise a method to identify and discard a combination which is cquivalent to one

already produced. Thus, only non-cquivalent vote combinations are gencrated.
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Figure 2: Quorum subsct tree for the cxample to illustrate the computation of Availability

The initial combination is:

Foroddn:v;’s=1forall{,
Forevenn:vy=2,v;'s=1fori =2, - - n

Since each v; must be a positive integer strictly greater than 0, this is obviously the combi-

nation with the smallest odd sum of votes.
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Next, we gencrate new combinations by considering all ways in which 2 votcs may be
added to the current combination. (A combiﬁation is new if it is not equivalcnt to a combination
which has already been produccd). This will give us a set of v;’s which add up to n+42 or n+3
depending on whether n is odd or even, respectively. At cach Vsubscqucnt stage, we consider only
the new ’combinatidns produced in the previous stage and use thém to produce further combina-
tions. For example, say n is 3, and the starting combination is (1,1,1,1,1). At the next step, the -
total number of votes must be increased by 2, and the zﬂtemative combin.ations that result are
3,1,1,1,1), and (2,2,1,1,1). Each of these combinations will have to be checked for equivalence
against the combination (1,1,1,1,1). If found to be new, then it is added to the existing list ol;

combinations.

Each successive iteration of the while-loop in the main section of Procedure SE (describéd
below) conesponds to finding new combinations by adding r more votes to each current N vote
combination. Ordinarily N is incremented by ‘2 in each successive iteration and r remains at 2;
however, if at any iteration no new combination is found, then in subsequent iterations r is incre-
mented by 2 and N is kept fixed until a new combination is realized. At this point, N is incre-
mented by the current value of r. There are two stopping rules. The first rule is that the total sum
of votes becomes greater than a pre-specified maximum, while the second rule is that r becomes
larger than 25. The second rule corresponds to a situation in which no ncw combination is found
for a gap of 25 votes, a reasonably large interval. Such a gap wouid arise if no new combination

is found even after 12 successive iterations.

The availability of each prospective ncw combination is computed by applying Algorithm
AVAIL (described carlier in Scction 7) to its corresponding assignment. The value of availability
so computed is called the signature for the combination. Since, as shown in Section 3, two
equivalent combinations will always have the same availability, this gives us a convenicnt way of
eliminating redundant votc combinations. Each new signature is checked against an array of sig-

naturcs, and if not found in it, it is addcd to this array. A collision occurs if the signature alrcady
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exists in the array, and in this casc thé combination is discarded. Since Procedure SE is used only
to generate non-equivalcnt combinations, an arbitrary sct of p;’s can be uscd for this purpose (the
actual p;’s are, however, rcquircd to compute the real availability in Algorithm SE-AV, discussed
in Section 8.3). Although the converse of Thcorcm 1, i.e., if two assignments have the saine avai-
labilit)" then they must be equivalent has not been proven, it has been verified experimentally that
false collisions are prevented by choosing site reliabilitics such that no two p; ’s are equal. There-

fore, this rule should be observed while sclecting p; s for use in Procedure SE.
| “The main steps are as follov;/s:.

Procedure SE |

1.  (Initialization). The stﬁrting combination is V‘= vy, * -, v,.)vsuch that:

Forodd n:v;’s=1foralli; Sum of votes, N=n.
'Forevenn:vy=2,v;’s=1fori =2, - ,n; N=n+l,

Also, initialize:

the final solution set, S = &,

the solution set for a total of N votes, Sy = (V'}
the p; values from input data,

the signature array, SA=0.

2.  (Main section)

r=2. R
while (N+r < N pax and r < 25){
for each combination, V in Sy {
add r more votes to V to create combination, Viemp -
compute availability, AVim, fOr Vigm,.
If (AViemp ¢ SA array){
- add Viemp 10 Sy+r.
add AViemp 10 SA array.
}
}
If(Syer =2
r=2. N=N+2.
clsc
r=r+2.

}
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3.  The final solution sct, S is obtaincd by concatenating all non-empty sets, S;.

8.2. Implementing Procedure SE

We implemented this algorithm and Table 4 shows the number of unique vote combinations
that were found for various values of n. For n cqﬁal to 7, no vote combinaiions were found for
N max between 44 and 69, at which point the program terminated. When n was 8 and 9, the pro-
gram was interrupted at‘N max €qual to 50 and 45 respectively. We repeated this experiment for

two different sets of probability values and found the same result in each case. This was done to

eliminate the possibility of two non-equivalent combinations having the same signature.

It should be reemphasized that the figures in Table 4 represent vote combinations and not
specific vote assignment's. For cach combination, there are potentially n! assignments if each
vote is unique. An exhaustivc algorithm to solve models 1 and 2 must consider all the specific
assignments corresponding to each vote combination, and therefore, multiplying the numbers in

Table 4 by n! gives a better appreciation for the true complexity of the problem.

# of Sites(n) | Maximum Sum of Votes | # of Combinations

- 133
50 >2071
45 >7603

VOO0 A WN —
1
;BA»—-»—&»—A»—‘

Table 4:; Number of unique vote combinations for various n
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8.3. Vote Assignment Algorithms

Here we shall describe Algorithms SE-FT and SE-AV to solve models 1 and 2, respec-
tively. In both algorithms Proccdure SE is uscd to generate a sct of vote combinations, and then

all possible assignments of each combination are evaluated to find the best solution.

The main objective in using Procedure SE is to eliminate non-equivalent combinations.
Although Procedure SE is an availability-based procedure, it is equally applicable in solving both
models because it enables us to eliminate equivalent assignments in either case. Note that two
equivalent vote combinations will have identical failure tolerance and communications cost. This
can be proven élong the lines of Theorem 1; however, for brevity, we shall omit the details here.
Intuitively, the proof again follows from the fact that if X71 and ‘72 are two equivalent assign-
ments, then any group of sites in assignment \71 that form a quorum will also form a quorum in

assignment V4, and vice versa.
Algorithm SE-FT
1. Produce Set S from Procedure SE.
2. (Main section)

min—cost = oo _

For each combination, V in sct S {

if (FAILURE-TOLERANCE(V) 2 cut-off)
for each permutation, V, of V {
if (cost < min-cost){

min—cost = cost.  _
min—assignment =V, .

} .
}
3. The best solution is given by min—assignment .
FAILURE-TOLERANCE(V)
1.  Find smallcst f¢ such that:

i
ﬁ“viZq
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Algorithm SE-AV

1.  Produce Set S from Procedure SE.

2.  Produce sct P, the permutation set of all combinations in S.
3.  (Main section)

min—cost = oo
For each assignment in set P { _
compute cost, and availability of assignment, V.
if (availability = cut-off and cost < min-cost){
min-cost = COSt. ‘
min—assignment =V .

}

4.  The best solution is given by min —assignment .

Both the above algorithms are conceptually straightforward but computationally very inten-
sive. They utilize procedures to compute cost, failure tolerance, and availability. The procedure
for computing failure tolerance, FAILURE_TOLERANCE, is listed above, while the procedure
for computing availability, AVAIL, was described in Section 7 and the procedure for computing

cost, COMPUTE_COST, is discusscd in the next section.

9. Vote Assignment Heuristics

In Section 4 we showed that f{inding all vote assignments is a very complex problem
because an upper bound on the number of vote assignments is O(2%%). In Section 8 we described
algorithms SE-FT and SE-AV to solve modcls 1 and 2 by a semi-exhaustive method. This
method was computationally very intensive even for a small number of sites like 7 or 8. Hence it
is necessary to develop heuristics that cxamine a smaller search space and yet give a good solu-

tion.

In this scction we shall describe such hcuristic solutions to models 1 and 2, that incur a

drastically lower computational cffort as compared to the semi-cxhaustive algorithm. These
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heuristics are bascd on gencrating a small subsct of vote combinations and then allocating thecm

to sites in a ‘‘greedy’’ manncr. A short outline of these algorithms is as follows:

generate a partial sct of vote combinations
assign votes to sites in a greedy manner,
evaluate the cost for cach assignment
choose the Icast cost solution

We shall describe two procedures, PE1 and PE2, for generating a partial subset of vote
combinations and then give the fuil algérithm. In the first procedure, PE1 we apply two simple
rules to generate a small number (O(n)) of vote combinations. These two rules allow us to pro-
duce unique vote assignments in which varying weights are assigned to different sites. The first
rule is named the failure tolerance is k rule and is used to generate a unique vote combination
corresponding to each value of k over the range from 1 to F Tma,$(n ), the maximum value FT can
assume for an n-site solution. The second rule is called the k-sitesvmake a majority rule and
consists' of determining a vote combination in which the first k sites receive eqﬁal votes and make
a quorum of value, say g, while the votes of the remaining sites add up ¢ —1. The detailed steps in

Procedure PE1 are:
Procedurje PE1
1.  Solution set, S = &.

2. (FTis k rule)

Fork=1,---,| 2|1
Vit S Vga2 = 0 =V, =1
vi=va= - =y =int (n—-k-1)/k)
m=n—k—-1-kxv,
i=0.
while (i< m)(
i=i+1."
V[=V,‘.'+ 1.

}
S=S+vy ", )
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3. (k-sites form majority rulc)

Fork=2,---,| 4XL| 1
Vil S Ve2 = 0 =V, =1
vi=va= - =y =int (n—k+1)/k)
if (n—k+1> kxv{
fori=l1,--- .k
vi=v;+1;
m=kxvy—-n+k-1
i=0.
while (i <m){
i=i+1.

Vii = Visi + 1
b
S=S+(V1’ "',Vn)

}

‘4. The set, S contains all the vote combinations produced by PE1.

In procedure PE2, all vote combinations with a sum less than or equal to 2n+1 are pro-

duced from Procedure SE of Section 8.1 and included in set S.

Procedure PE2

1.  Using Procedure SE, generate all vote combinations such that N pay = 2n+1

Now we tum to describe the complete algorithms to solve models 1 and 2. Algorithms PE-

I~;I‘1 and PE-FT2 apply to modcl 1, while algorithms PE-AV1 and PE-AV?2 to model 2. The main

steps of algorithm PE-FT1 are listed first and, then, a detailed description of each step follows.

Algorithm PE-FT1

1. Renumber sites such that:

C1SCo< -

IN
sl
IN

where

Cj = Zc;j(q;+ui)
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2.  Produce Set S from Proccdure PEL.
3. Set Min-Cost = oo
4.  (Main section)
For each vote combination, V within S {
“if (FAILURE-TOLERANCE(V) 2 cut-off) (

COMPUTE_COST(V)

If (cost < Min-cost) {

Min-Cost = Cost  _

Min-Assignment = V (M, FT)

}

}
}

5. The best solution is given by Min-assignment, and the minimum cost is contained
in Min-cost.

FAILURE-TOLERANCE(V)

1. - Find smallest fr such that:

. k4
2v,~2q

2

COMPUTE_COST(V) -

1.  Foreach site i, determine the sct of other sites to be included in i’s quorum, Q; by:

(a) first ordering all other sites j in ascending order of %‘1- and
J

(b) then choosing the first £ sites from this sequence such that: .
v; + ;Vk 2q

2.  The cost of assignment, V is:

Z ke%i (qi + u;i)xci

Algorithm PE-FT2

This algorithm is identical to PE-FT1 cxcept that in step 2, proccdure PE2 is uscd to produce set

S.
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Now we cxplain the steps in Algoﬁmms PE-FT1 and PE-FT2. In step 1, we determine a
““greedy’’ ordering of sites bascd on C;, the total communications cost if there was only one file
copy and this was assigned to site . Therefore, the site with the smallest C; is renumbered as
site 1, etc. Since the votes in any vote combination occur in a non-increasing sequence, this
“greedy;’ reordering of sites ensures that the site with the lowest C; gets the highest vote. In step
2, the initial minimum cost is set to <. In step 3, we produce a set of vote combinations to be
. evaluated using Procedure PE1 or PE2 in algorithms PE-FI‘I‘and PE-FT2 respectively. Then,
Procedure COMPUTE_COST is used to compute the cost of those assignments which satisfy .
the failure tolerance cut-off. Finally, from all the alternatives examined, the minimum cost solu-

tion is chosen as the best solution,

The COMPUTE_COST procedure is required to determine the total communications cost
for assignment, v given the query and update volumes (g; and u; respectively) of each site in
addition to the ¢;;’s. The major step is to determine the set of sites, Q; which site / must com-
municate with in order to form a quorum. This sub-problém can be formulated as a knapsack
problem [BUDN?77] and the technique described in step 1 is the solution method for it. Once the
o], ’s are known, the total cost is computed as in step 2. Now we shall turn to describe algorithms

PE-AV1 and PE-AV2 which minimize communications cost subject to an availability cut-off.
The steps in algorithm PE-AV1 are:
Algorithm PE-AV1

1.  Renumber sites such that:

where

Cj=2cij(qitu;)

2.  Produce Sct S from Procedure PE1.
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3.  Set Min-Cost = oo
4. (Main section) -

For each combination, V' in set S {
if MAX_AVAIL(V) >= cut-off){
While (AVAIL(V) < cut-off)
REASSIGN(V). _
COMPUTE_COST(V).
if (Cost < Min-cost){
Min-Cost = Cost  _
" Min-Assignment =V
}
}
}

5. The best assignment is given by Min-assignment, and the minimum cost is contained in

_Min-cost.

| MAX_AVAIL(V)

1.  Arrange the sites in descending order of p;. : .

2. | Assign votes to sitcs in the same order as they occur in V.

3.  Use algorithm AVAIL to compute availability for this assighmcnt.
kEASSIGN(V ) | |

1. Rearrange v by swapping v; and v; where i and j are two sites (i <j) such that:

1. (v — Vj) X (P; —-Pj) <v0.
2. C; — C; minimum over all such pairs of sites, (i,/).

COMPUTE_COST(V)
1.  Foreachsite i, determing the sct of other sites to be included in i’s quorum, Q; by:

(a) first ordcering all other sites j in ascending order of -%‘L and
J
(b) then choosing the first £ sites from this sequence such that:

v + }};vk 2q



2.  The cost of the assignment is computed as:

Z“, kg%z.- (g +ui)Xcix

Algorithm PE-AV2

This is similar to algorithm PE-AV1 with the exception that in stcp 2, Procedure PE2 is used

instead of Procedure PE1 in order to generate set S.

The major difference between algorithms PE-AV1 and PE-FT1 lies in step 4. While for a
given vote combination, the failure tolerance is independént of a specific assignment, the availa-
bility does depend upon the specific assignment of votes to sites. For instance, by assigning
higher votes to sites with higher probabilities, it is possible to incrcase the availability. Therefore,
for eaéh vote combination, we initially assign votes to sites in a greedy manner,v and then itera-
tively reassign the same sct of votes (again, greedily) to improve availability until the desired.
cut-off is reached; The minimum cost assignment which szitisﬁcs the availability requirement is

chosen as the best solution.

The steps in Procedurc MAX-AVAIL and REASSIGN are listed above. Procedure MAX-
AVAIL determines the maximum availability that can be achieved from a given vote combina-
tion. This is done by first assigning votes to sites in descending order of p;, i.e., the site with the

highest p; is given the largest vote, etc. Then, the availability for this assignment is computed.

Procedure REASSIGN is uscd to rcassign votes so as tor increcase the o'vcrall availability for
a given combination of votes. The rcassignment is done by ﬁrs.t identifying all pairs of sites (i ,/)
such that on swappihg their respective voles, the site with the higher rcliability would get a larger
vote in the pair. Among all such pairs, the pair with the smallest C; — C; is chosen, where C; and
C; are the total communications costs if there were just one copy at sites i and j respectively.
This is a greedy way of minimizing the additional cost that would be incurred as a result of this
reassignment. Other grecdy stratcgics for doing this rcassignment were also considercd but dis-

carded becausc they were not as cffective as the current one.
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10. Computational Results

In order to cvaluate our algorithms, we implemented algorithms SE-AV, PE-AV1, and PE-
AV2 for 7 and 9-sitc networks. For the 7-site network, 3 experiments were conducted with dif-
" ferent sets of inter-site communications costs in each case. These costs were generated from 3
uniform distributions: U(1,1), U(1,5), U(1,10), end the results of the corresponding experiments
are shown in Tables 5, 6, and 7 respcctively. The columns of each table s_how‘the minimum total
communications cost and the corresponding assignment chosen by each algorimm. The figures in
parentheses next to the cost figures indicate the percentage by which Algorithmé PE-AV1 and
PE-AV?2 perform vp'oo.rly as compared to Algorithm SE-AV. Each row of these tables corresponds
to a different availabilify cut-off value, and for each cut-off, the best cost and the vote assignment
compuied by the three algorithms has been shown. .The last row of each table, shows the average
percentage over the range of AV values by which Algorithms PE-AV1 and PE-AV?2 are inferior
to Algorithm SE-AV. The reliability vector and the traffic volumes at each site are also indicated

in each table.

In the 7-site implementation of Algorithm SE-AV, all 133 combinations listed in Table 4
were considered, and all permutations of each combination were cvaluated. It is evident from
Table 5 that when the inter-sitc communications cost, c;; is constant for all pairs of sites, both
heuristics perform extremely v;/cll (within 11% of the ‘‘optimal’’ on an average). On the other
hand, when the ¢;;’s .vary over an order of magnitude range (sce Table 7), then Algorithm PE-
AV2 on'an average comes w1thm 15% of Algorithm SE-AYV, while the corresponding metric for
Algorithm PE-AV1 is 69%. Clearly, the pcrformance of the heuristics do deteriorate with an

increasing range of ¢;; 's and this deterioration is more in the case of Algorithm PE-AV1.

For the 9-sitc nctwork, Table 8 shows the results for the case in which ¢;;’s are drawn from
a uniform distribution: U(1,10). This distﬁbutioh was choscn out of the 3 mentioncd above to

obtain worst case results. In thc implcmentation of Algorithm SE-AV, only 191 combinations out
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of the 7603.:i'1i__'i1$tcd in Table 4 were considered. These correspond to all combinations where the
sum of votcs is less than or cqual to 23. This was donc in order to kc.cp the computational cffort
within a reasonablc bound (few hours on a 3-4 MIPS computcr). Tablc 8 shows that on an aver-
age the cost of Algorithm PE-AV2 camc within 19% of thc ‘‘optimal’’ solution, while the

corresponding metric for Algorithm PE-AV1 was 53%.

11. Static versus Dynamic Algorithms

So far in this paper our focus has been on the optimization of static algorithms. As men-
tioncd earlicr, the sccond type of QC algorithms are the dynamic oncs. Although a detailed com-
parison between static and dynamic algorithms is outside the scope of this work, we shall perform

a comparison hére between an oplimized static algorithm for Model 2 and the available copies

algorithm [BERNS84] which is a dynamic algorithm.

AV Algo. SE-AV Algo. PE-AV2 | Algo. PE-AV1
0.93 39 39 (0%) 39 (0%)
(5,1,1,1,1,1,1) (1,5,1,1,1,1,1) (1,5,1,1,1,1,1)
0.94 39 39 (0%) 39 (0%)
(5,1,1,1,1,1,1) (1,5,1,1,1,1,1) (1,5.1,1,1,1,1)
0.95 44 49 (11%) 61 (39%)
(7,2,1,2,1,2,2) (1,2,1,6,1,2,2) (1,1,1,3,1,1,3)
0.96 44 49 (11%) 61 (39%)
(9,3,1,3,1,3,3) 2,6,12,1,1,2) (1,1,1,3,1,1,3)
0.97 53 57 (8%) 61 (13%)
(7,3.3,3,1,1,1) 2,5,12,1,1,1) (1,1,1,3,1,1,3)
0.98 62 62 (0%) 62 (0%)
(1,3,1,3,1,1,1) (1,3,1,3,1.1,1) (1,3.1,3,1,1,1)
0.99 78 78 (0%) 78 (0%)
2,2,1,1,1,1,1) 2,1,1.2,1,1,1) 2,1,1.2,1,1.1)
ave%. 0% 4% 11%

Table 5: Communications Cost and volc assignment
for various desired valucs of AV (7 sites, ¢;;’s from Uniform(1,1)).
P =(0.91,0.90,0.89,0.87,0.86,0.85,0.84)

Traffic Volumes = (5,7,4,9,1,5,8)
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AV Algo. SE-AV Algo. PE-AV2 | Algo. PE-AV1
0.93 95 95 (0%) 95 (0%)
(1,1,5,1,1,1,1) (1,1,5,1,1,1,1) | (1,1,5,1,1,1,1)
0.94 96 115 (20%) 115 (20%)
(1,2,1,7,2,2.,2) (1,5,1,1,1,1,1) | (1,5,1,1,1,1,1)
0.95 101 119 (18%) 179 (77%)
(1,2,7,2,1,2,2) (12262, | (1,1,3,3,1,1,1)
0.96 111 122 (10%) 179 (61%)
(2,4,1042,14) || (1,12,52,1,1) | (1,1,3,3,1,1,1)
0.97 119 140 (18%) 179 (50%)
(3,3,2,6,1,1,1) (1,1,1,3,1,1,LD | (1,1,3,3,1,1,1)
0.98 128 145 (13%) 179 (40%)
(2,5,7,4,3,1,1) (1224211 | (1,1,3,3,1,1,1)
0.99 167 .. 181 (8%) 214 (28%)
(4,43,12,2,3) (2,322.2,1,1) | (1,22,22,1,1)
ave%h 0% 11% 35%

Table 6: Communications Cost and vote assignment
for various desired values of AV (7 sites, ¢;;’s from Uniform(1,5)).
P =(0.91,0.90,0.89,0.87,0.86,0.85,0.84)

Traffic Volumes = (5,7,4,9,1,5,8)

43




AV Algo. SE-AV Algo. PE-AV2 | Algo. PE-AV1
0.93 101 125 (24%) 160 (58%)
(1227122 | (1226121 | (1,1,51,1,1,1)
0.94 101 125 (24%) 220 (118%)
(1227122 | 12261210 | (1,51,1,1,1,1)
0.95 107 125 (17%) 236 (121%)
(1216122 | 1226121 | (1,1,3,3,1,1,1)
0.96 120 140 (17%) 236 (97%)
(2439214 | 12251,1,1) | (1,1.3.3.1,1,1)
0.97 140 140 (0%) 236 (69%)
(133511, | (1.3.3,5.1,1,1) | (1,1,33.1,1,1)
0.98 146 188 (29%) 236 (62%)
: (2425112 | (1244120 | (1,1,33,1,1,1)
0.99 240 267 (11%) 302 (26%)
(2233212 | 2233122 | (1,222121)
ave% 0% 15% 69%

Table 7: Communications Cost and vote assignment
for various desired valucs of AV (7 sitcs, ¢;; 's from Uniform(1,10)).
P =(0.91,0.90,0.89,0.87,0.86,0.85,0.84)

Traffic Volumes = (5,7,4,9,1,5,8)

AV Algo. SE-AV Algo. PE-AV?2 Algo. PE-AV1
0.93 179 225 (26%) 259 (45%)
(1,2,2,2,1,92,1,)  (1,2,1,2,1,7.,LL,1) | (1,7,1,1,1,1,1,1.1)
0.95 215 241 (12%) 386 (80%)
(2,3,1,1,29,3,1, || (1,1,1,2,1,6,1,1,1) | (1,1,1,414,1,1,1)
0.97 252 310 (23%) 386 (53%)
(34,1,1,28,1,2,1) || (1,3,1,2,1,6,1,1,1) | (1,1,14,14,1,1.D
0.99 366 418 (14%) 484 (32%)
(34,22,1,52,1,1) { (2,3,2,5,1,2,1,2,1) | (1,3,2,3,1,3,1,2,1)
ave% 0% 19% 53%

Tablc 8: Communications cost and votc assignment
for various desired valucs of AV (9 siltes, ¢;; 's from Uniform(1,10)).

P =(0.91,0.90,0.89,0.87,0.86,0.85,0.84,0.88,0.83)
Traffic Volumes = (5,7,4,9,1,5,8,6,3)
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Algorithm SE was uscd to optimiic the vote assignment for the 7-site network discussed in
Section 10, and the same 3 uniform distributions were used as before to generate the unit inter-
site communications cost. Again, the_ availability cut.-off was varied from 0.93 to 0.99 in intervals
of 0.01. At each cut-off value, the corresponding communications cost was computed using
Aigon’thm SE-AV. The results of these computations are presented in Table 9. The total traffic
volumes and the reliability of cach site, p; are qlso indicated. (Note that Table 9 was actually con-
structed by extracﬁng the first column from Tables 5, 6, and 7, and combining the 3 extracted

columns together).

To make a corﬁparison against the available coéics algorithm we need to compute the com-
munications cost and avaiiability again. In the static c:ase, the read and write quorums were
required to be equal as discussed in Section 3.2; therefore, the total communications cost does not
depend on the write ratio, p,,. In the dynamic case, however, this is not true, and the communica-
tions cost would vary for different values of p,,. In Table 10, we have computed the communica-
tions cost for different values of p,,. The 3 columns correspbnd to the 3 different distributions

for the unit inter-site communications cost as in Table 9. The rows of Table 10 correspond to dif-

AV | U | Ud,s) | ud,10)
0.93 39 95 101
0.94 39 96 101
0.95 44 . 101 107
0.96 44 111 . 120
0.97 53 119 140
0.98 62 128 146
0.99 78 167 240

Table 9: Static Algorithm: Minimum Communications Cost for 3 cost distributions (7 sites)
P =(0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Total Traffic Volumes = (5,7,4,9,1,5,8)




ferent values of p,.. The total traffic volumes were the same as in Table 9; however, the read and

write traffic components were varied depending upon p,, .

The availability in the dynamic case is computed differently than in the static case. We
now tum to describe our method for performing this computation. In the available copies algo-
rithm, transactions running at the time a site fails or recovers may have to be aborted, and res-
tarted. This will result in a time delay during which the system will be unavailable. We call this
time interval a reconfiguration intcrval, f..c.n. It is assumed that each site has a mean time to
failure (MTTF) and a mean time to repair IMTTR). For simplicity, all sites are assigned the same
value of MTTF and also of MTTR. To make the analysis tractable, it is reasonable to further
assume that each site will fail and recover once on the average within a MTTF + MTTR cycle,
and at each failure and recovefy point, the system will be unavailable for t,e;;n length of time.
Thus, if availability is defined as the fraction of time for which the system is available during one

cycle, it may be estimated as:

2Xtrgcon XN

- ITTF+MTTR

Ow U(1,1) | U5 | U(1,10)
0.05 12 34 73
0.1 24 75 141
0.15 36 108 199
02 48 139 256
0.3 72 213 422
0.4 9 | 282 502
0.5 120 364 675

Table 10: Dynamic Algorithm: Communications Cost versus p,, for 3 cost distributions (7 sites)
P =(0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Total Traffic Volumes = (5,7,4,9,1,5,8)
AV =0.98
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In order to make the comparison against the optimized static algorithm, MTTF was sct at 6
hours, while MTTR was sct to 44 minutcs for each site. This translates to a reliability of 0.874 in
probabilistic terms which is the average p; for the 7 sites in Table 9. Usihg a tyecon value of 30

seconds, and setting n to 7, the availability is 0.98.

Several interesting conclusions may be drawn from the reshlts in Tables 9 and 10. First, if
cost minimization is the main objcctive, then the. dynamic aigorithm is superior when-p,, is
below a cut-off. However, this cut-off bccomes smaller as the range of variation of ¢;; increases..
For instance, if the distribution chosen is U(1,1), th_en the cut-off is 0.15, while for distributioris
U(1,5) and U(1,10), fhe cut-off reduces to 0.10 and 0.05, respectively. This means that as the
variation in ¢;; increases, the dynarhic algorithm becomes less attractive if cost minimization is

the main objective.

On the other hand, if the cost of the dynamic algorithm is compared against its static coun-
terpart which gives the same availability, then the above p,, cut-offs increase to 0.25, 0.2, and 0.1
respectively. Therefore, the p,, space within which the dynamic algorithm does better becomes

larger. Clearly, p,, is a critical factor in choosing between the static and dynamic algorithms.

Secondly, while different static vote assignments lcad to various values of availability and
communications cost, in the dynamic case there is one avéilability value, 0.98. Table 9 shows
that the static method can give a higher availability of 0.99. Therefore, if availabili@y maximiza-
tion is the main goal then the static technique scems to outperform the dynamic one. Of course,
trecon and n are critical parameters in computing the availability from the formula above, and if

these can be lowerced, then availability would naturally increase.

12. Summary and Future Research

The vole assignment problem is important because the assignment of votes to sites greatly
affects the transaction overhcad and availability. In this paper, a general framework for under-

standing and analyzing this problem was introduccd. The main objective of this framework is
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communications cost minimization either in an unconstrained manner or subject to a certain rclia-
bility constraint. Two basic optimization models were developed. In the first model, the reliabil-
ity constraint was failure tolerance while in the second one it was availability. In the general
models, no restriction is imposcd on the votes or the unit inter-site communications costs. How-
ever, if such conditions arc added then some of the special cases that aris¢ are easier to solve than
the general model. Such spccial cases were also included in our framework and techniques for

solving them described.

It was shown that the general vote assignment problem has exponential complexity. More-
over, no efficient soiution procedure that would run in reasonable time is known. (Complete
enumeration is an obvious solution mecthod, though clearly not a feasible one). A semi-
exhaustive algorithm and two partial enumeration algorithms to solve these problems were dis-
cussed in detail and also implemented. These algorithms employ efficient techniques for comput-
ing the availability of a vote assignment. The signature concept was used to prune the exponential

space of vote combinations and to generate only non-equivalent combinations.

The computational results in Section 10 validate greedy algorithms as an effective tech-
nique for vote assignment. Although these algorithms deteriorate as the range over which c;;’s
are varied increases, they compare favorably with semi-exhaustive algorithms overall, and lead to

several orders of magnitude savings in computational effort.

Lastly, the optimized static algorithm was compared against the available copies method, a
dynamic algorithm. It was found that no one type of algorithm uniformly dominates the other.
Ranges over which each type of algorithm does better were determined. Dynamic algorithms
were better for a small value of the write ratio, p,,, and low variability in the inter-sitc communi-
cations cost. On the other hand, st.aLic'algomhms were better if the goal was to maximize availa-
~ bility. Also, if the goal was to minimize cost, then the range of p, values over which the

dynamic algorithm doecs better is very small. Another factor that should be considered is that
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static algorithms are simplcr and much easier to implement than dynamic algorithms.

This study also shows tﬁat a more detailed comparison of static algorithms against dynamic
algorithms would be a very useful exercise. In this paper, the treatment of dynamic algprithms
has been restricted to just one type, the available copies method. Future work is anticipated to
evaluate other dyhamic algorithms, perhaps using more elaborate models. For instance, the

reconfiguration time should also include the time to reoptimize the vote assignment.

Finally, yet another area for future research is to establish bounds on the sub-optimality of
the_v semi-exhaustive algorithms. Basically, our algorithm is semi-exhaustive, not completely
exhaustive, for two reasons. First, we generatc new vote combinations by adding an incrementél
number of votes to the set of combinations obtained at the most recent stage, not to all the combi-
nations obtained so far. This could lead to some combinations being missed. Secondly, we
choose an arbitrarily high number for a stopping rule, or stop if no ncw combinations are found
for a gap of 25 votes. It would naturally be desirable if it could be proven rigorously that there is
an upper limit for the total number of votes beyond which no new combinations will be found. A
" method for overcoming these two drawbacks ‘could conceivably lead to a smart, completely
_ éxhaustive algorithm. A different approach to establishing sub-optimality bounds on the semi-

exhaustive algorithms would be to use some kind of an upper bound analysis technique.
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