
Lawrence Berkeley National Laboratory
Recent Work

Title
COST AND AVAILABILITY TRADEOFFS IN REPLICATED DATA CONCURRENCY CONTROL

Permalink
https://escholarship.org/uc/item/77w203j6

Authors
Kumar, A.
Segev, A.

Publication Date
1988-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77w203j6
https://escholarship.org
http://www.cdlib.org/

1~~
! '
I, .

.... :~ .,.

LBL-25468 ~
UC-405 c:.-• ..,

ITl1 Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA, BERKELEY

i

Information and Computing
Sciences Division

Cost and Availability Tradeoffs in
Replicated Data Concurrency Control

DEC 2 1988

A. Kumar and A. Segev

June 1988

TWO-WEEK LOAN COpy

This is a Library Circulating C
h' h opy

W IC may be borrowed for two week s.

Prepared for the U.S. Department of Energy under Contract Number DE.AC03.76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL~25468

Cost and
Replicated

Availability Tradeoffs in
Data Concurrency Control

Akhil Kumar
School of Business Administration

University of California
Berkeley, California 94720

Arie . Seg~v
School of Business Administration
University of California, Berkeley

and
Information and Computing Sciences Division

Computer Scienc~ Research Department
University of California

Berkeley, California 94720

June 1988

This research was supported by the Applied Mathematics Research
Program of the Office of Energy Research, U.S. Department of Energy under
Contract DE-AC03-76SF00098 and by an Arthur Andersen & Company
Foundation Doctoral Dissertation Fellowship.

."

. ,.

COST AND AVAILABILITY TRADEOFFS IN
REPLICATED DATA CONCURRENCY CONTROL

Akhil Kumar and Arie Segev

Schopl of Business Administration
University of California, Berkeley

and
Information and, Computing Sciences Division

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

Abstract
Techniques for optimizing a static voting type algorithm are presented. Our basic optimiza­

tion models are based on minimizing communications cost subject to given reliability constraints.
Two models are presented; in the first model the reliability constraint is failure tolerance, while in
the second it is availability. Other simpler models that are special cases of these two basic models
and arise from making simplifying assumplions such as equal vote values or constant inter-site
communications costs are also discussed. We describe a semi-exhaustive algorithm and efficient
heuristics for solving each model. The algorithms utilize a novel signature-based method for
identifying equivalent vote combinations, and an efficient procedure for computing availability.
Computational results for the various algorithms are also given. Finally, the optimized static
algorithm was compared against the available copies method, a dynamic algorithm, to understand
the relative performance of the two types of algorithms. We found that if realistic reconfiguration
times are assumed, then no one type of algorithm is uniformly better. The factors that influence
relative performance have been identified .

This research was supported by the Applied tvlathemmics Sciences Research Program of the Office of
Energy Research U.S. Department of Energy under conlIact DE-AC03-76SF00098 and by an Arthur An­
dersen & Co. Foundation Doctoral Dissertation Fellowship.

LBL-25468

1. Introduction

A replicated data environment is one in which multiple copies of a file are present. By

replicating data. system reliability may be increased to satisfy the high up-time requirements in
,"

on-line applications such as banking and airlines. Clearly. if copies of a file reside on several

computers with independent failure modes. then the file system would be more reliable. The

disadvantage. however. is that the copies must be kept mutually consistent by synchronizing tran-

sactions at different sites so that a global serialization order tS ensured. For instance. two indepen-

dent transactions must not be allowed to simultaneously update different copies of the same file.

Hence. the concurrency control algorithm becomes more complex and also more expensive to

implement. The additional communications and processing cost arises because several rounds of

messages must be exchanged with other sites during the execution of the algorithm.

Several popular methods for replicated data concurrency control are based on the formation

of quorums [BERN87. DAVI85]. We refer to such methods as "voting-type" or quorum con-

sensus (QC) class of algorithms [GIFF79, THOM79].

The common fealure in voting-lype algorithms is that each site. i is assigned a vote, Vi. and

in order to perform various operations quorums must be formed by assembling votes. To perform

a read (or write) operation. a transaction must assemble a read (or write) quorum of sites such that

the votes of all the sites in the quorum add up to a predefined threshold, Qr (or Qw). The basic

principle behind the algorithm is that the sum of these two thresholds must exceed the total sum

of all votes, i.e ..

,'!"

Invariant 1:

Hence a read and a write operation cannot proceed simultaneously. Moreover. the write

threshold is larger than half the sum of all VOles, i.e .•

Invariant 2:

1

Thus, two write operations are prevented from proceeding simultaneously. It is important to

note that the above two invariants do not enforce unique values upon Qr and Qw' Furthennore,

the Vi'S do not have to assume unique values. Hence, sever~l alternative sets of solutions for

these variables exist. The read-one write-all method is. a special case of the quorum consensus

method with each Vi and Qr equal to 1, and Qwequal to n (assuming there are n copies of the

file). This leads to better perfonnance for queries at the expense of poorer perfonnance for

updates and works well in an environment where a very large fraction of the transactions are

queries.

The basic QC algorithm described above is a static algorithm because the votes and quorum

sizes are fixed a priori. This restriction does not apply to dynamic algorithms, and in these the

votes and quorum sizes are adjusted suitably as sites fail and recover. Examples of such algo­

rithms are: the Missing Writes method [EAGE81, EAGE83], and the Virtual Partition method

[ELAB85]. In the Missing Writes method, the read-one write-all method is implemented when all

the sites in the network are up; however, if any site goes down, the size of the read quorum is

increased while that of the write quorum is reduced. After the failure is repaired it reverts to the

old scheme. In the virtual partition algorithm, each site maintains a view consisting of all the

sites that it can communicate with, and within this view, it implements the read-one write-all

method.

Other quorum based methods of the dynamic type arc: the vote reassignment method

[BARB86], the quorum adjustment method [HERL87], and the dynamic voting algorithm

[JAJ087]. In the vote reassignment and the quorum adjusunent methods, sites that are up can

change their votes on detecting failures of other sites by following a certain protocol. In the

dynamic voting method, additional information regarding the number of sites at which the most

recent update was performed is stored. This makes it possible to shrink the size of a quorum

dynamically if site failures or partitions occur. For instance, consider an object replicated at 5

sites designated as A, B, C, D and E, and further assume that the most recent update to this object

2

.. ,

was perfonned at sites A, B, and C. If a subsequent link failure isolates site A from Band C, the

latter two sites can still continue to perfonn updates because they contain a majority among the

sites at which the most recent update was pcrfonned. Therefore, this method allows updates to

take place even with fewer than a majority ofthe sites available.

Another dynamic algorithm is the available copies method [BERN84]. In this method,

query transactions can read from any single site while update transactions must write to all the

sites that are up. Moreover, in order for the algorithm to work correctly, each transaction must

perfonn two additional steps called missing writes validation and access validation. In the first, a

transaction must ensure that all copies it tried to, but could not, write are still unavailable. In the

second step, a transaction must ensure that all copies it read or wrote are still available. The pri-

mary copy algorithm [STON79] is based on designating one copy as a primary copy, and each

transaction must update it before committing. Later, updates are spooled to the other copies also.

If-the primary copy fails, then a new primary copy is designated.

In [GARC84, GARC85], the concept of coteries is introduced as an alternative to quorums.

A coterie is defined asa collection of intersecting minimal subsets of sites. It is shown that there

exist several coteries which do not have a corresponding voteassi!,'11Il1ent, and therefore, the solu-

tion space of vote assignments is a subset of the coterie solution space. It is also shown that the

problems of finding an optimal vote assignment and an optimal coterie assignment in order to

maximize availability have exponential complexity.

Our objective in this paper is t~ develop techniques for optimizing the assignment of votes

in a static algorithm. Two models for minimizing communications cost subject to a given rcliabil-. .

ity constraint are discussed. In the first model, the reliability criterion is failure tolerance, while

in the second one it is availability. Techniques [or solving these models are described, and com-

putational results to evaluate these techniques are presented. Finally, we also compare the relative

perfonnance of an optimized static algoIithm against a dynamic algorithm and identify the condi-

3

tions under which each type of algorithm perfonns better. Static algorithms have the advantage of

simplicity and ease of implementation. and consequently. if the performance of the two types of

algoritluns is comparable, then static algorithms would be preferred.

The organization of this paper is as follows. In Section 2, we defme failure tolerance and

availability, discuss our optimization models and present a general framework for understanding

vote assignment problems. In Section 3, we define basic concepts which are used later in this

paper. Then, in Section 4, we analyze the complexity of the vote assignment problem. Sections 5

and 6 deal with the special case of constant unit inter-site communications cost. In Section 5, we

examine the behavior of the total communications cost for different levels of failure tolerance in

the case of equal vote assignment (Le., Vi = 1, for all sites) and show that lower communications

cost and higher failure tolerance may be conflicting objectives. We also determine the cheapest

algoritlun for different read-write volume ratios in the absence of reliability considerations. Sec-

tion 6 illustrates that by assigning unequal votes, substantial savings in communications cost may

be achieved while maintaining a desired level of failure tolerance. The algoritlun for such a vote

assignment and the analysis of its cost behavior are presented; a proof of optimality for our algo-

ritlun and a qualitative discussion of its pros and cons are also given. Sections 7 through 10

address the general case of unequal votes and also unequal unit inter-site communications cost. In

Section 7, we devise an efficient algorithm for computing the availability (to be used by subse-

quent vote assignment algorithms) of a given vote assignment. Section 8 turns to a scmi-

exhaustive algorithm for solving the vote assignment problem. This algorithm is computationally .

very expensive, but gives a ncar-optimal solution. Then, in Section 9, we develop greedy heuris-

ticst and in Section 10, we present results from computational experiments to evaluate their pcr-

formance against the semi-exhaustive algorithm. In Section 11, the optimized static algorithms

are compared against the available copies algorithm, a dynamic technique. Section 12 concludes

t Strictly speaking. the semi-exhauslive algorilhm is also a heuristic. We use the term "semi­
exhaustive" to indicate the more eXlensive search of the Solulion space.

4

,.

,.r

' ..

the paper with a summary and some ideas for future research.

2. Models and Framework

In this section we shall define and illustrate concepts pertaining to our two measures of reli-

ability, failure tolerance and availability. We shall also discuss two optimization models and

present a general framework which is useful for understanding vote assignment problems.

2.1. Failure Tolerance

Failure tolerance of a vote assignment is defined as the maximum number of site failures

that the assignment can tolerate/ An assignment can tolerate k site failures if a read and a write

quorum can be formed in spite of any k -site failure. This implies that the most recent updates are

available at one or more sites even if any set of k sites is down.

For instance, it is obvious that the read-one write-all algorithm does not permit write opera-

tions if even one site is down because all sites must participate in a write quorum.t Hence, the

failure tolerance is O. On the other hand, if all votes are equal. Qr is 2 and Qw is n-l, it means

that n-l sites must participate in a write quorum, and hence both read and write operations can

continue despite one failure. Similarly. a Qrvalue of 3 and a Qw value of n-2 make the system

resilient to up to 2 failures. It is a simple extension to show that the failure tolerance for the case

of each vi=l is maximized when both quorums are equal to Cn+l)/2. Hence. resiliency may be

increased by modifying quorum sizes. although this may mean a higher communications cost as

we will show in Section 5.

t Note that the terms resiliency and failure tolerance will be used interchangeably in this paper.

t The available copies algorithm. described earlier. is a dynamic algorithm which overcomes this
problem. It shall be examined funher in Section 11. '

5

2.2. Availability

Availability is defined in probabilistic tenns as follows: Given n copies of a me such that

each is up with probability Pi, the availability, AV, is the probability that both a read and a write

quorum can be fanned. Consider an example where 3 copies of a file reside at different sites. If

each Pi is 0.9, and the size of a quorum is 2, then the overall availability of the me is computed

as:

A V = 3x(0.9)2xO.l + (0.9)3=0.97.

This means that by replicating a file at 3 sites instead of 1, the availability can be increased

from 0.9 to 0.97. One can similarly show that if n is 5, and the quorum size is 3, then AV

increases to 0.991.

2.3. Optimization Models

The two main models of interest here are:

Modell: Find a Vote Assignment to Minimize Communications Cost

such that:

failure tolerance ~ cut-off

Model 2: Find a Vote Assignment to Minimize Communications Cost

such that:

availability ~ cut-off

Next we describe a framework in which special cases of these 2 models are also included.

2.4. A Framework

Table 1 gives a general framework for understanding the vote assignment problem, and for

integrating vote assignments with reliability. In the two models above, no assumptions are made

regarding the unit inter-site communications costs or the vote values. Making such assumptions

6

".

,»

leads to special cases of the basic models. The objective of drawing up such a framework is to

identify all special cases, and, if possible, look for simpler techniques for solving them rather

than solving the more general problem in all cases.

The 3 columns of Table 1 correspond to the uneonstrained t and constrained cases, while the

rows of the table correspond to the 4 possible· combinations of equal or unequal votes together

with equal or unequal unit inter-site communications cost. Therefore, there are 12 different cases

of interest altogether as represented by the 12 boxes in Table 1. We shall refer to the 12

corresponding problems as assignment problems 1 through 12. The main objective in all cases is'

Modell: Model 2:
Minimize Cost Minimize Cost Minimize Cost
(unconstrained) s.t. Fr > FT min S.t. AV>AVmin

EQUAL VOTES 1. 2. 3.
analytical solution by enumeration by enumeration

Cij=C (Section 5) find qr, qw find qr, qw

4. 5. 6.
by enilmeration by enumeration by enumeration

Cij :t:c find qr, qw find qr, qw find qr, qw

UNEQUAL VOTES 7. 8. 9.
analytical solution Algorithm OPT same as 12.

Cij=C (Section 5) (Section 6)

10. 11. 12.
same as 11. IP Formulation Algorithms SE-A V,

Cij:t:.C [KUMA88]. PE-AVI. PE-AV2.
Algorithms SE-Ff, (Sections 7,8)
PE-FrI, PE-FT2.
(Sections 7.8)

Table 1: A Framework for vote assignment problems

t The unconstrained problem is a special case resulLing when the constraint on failure tolerance (or
availability) is removed.

7

cost minimization; however, this objective may be either unconstrained or it may be constrained

by a certain reliability criterion such as availability or failure tolerance. It is evident that the last

row of the table represents three general problem formulations, and all the other rows are special

cases of these general ones.

In assignment problems 1 through 6, all sites are assumed to have equal votes. Problem 1

corresponds to unconstrained minimization of cost given equal votes and uniform inter-site com­

munications cost between all pairs of sites. This is analyze~ in Section 5. The assignment prob­

lems 2 through 6 can be solved as follows. Since all votes must be equal, without loss of general­

ity, each vote may be assumed to be 1; the only unknowns, therefore, are qr and qw. Moreover,

the sum of the two quorums is n + 1. and qw must be at least equal to r n i 11. Hence. one may

determine the optimal value of qr and qw by enumerating the communications cost for all values

of qw from r n ~ 11 to n. and selecting q w and q, corresponding to the minimum cost alterna­

tive. Since the complexity of enumeration here is O(n), it is a simple and efficient solution

method.

In assignment problems 7 through 12, the votes assigned to different sites may be non­

equal. The solution method for problem 7 is the same as that for problem I, described in Section

5. Algorithm OPT, discussed in Section 6, gives an optimal solution for assignment problem 8. In

a previous paper [KUMA88]. we have formulated the assignment problem 11 as a mixed Integer

Programming problem. Since the known solution methods for such problems are not very

efficient we found that to solve this formulation for values of n greater than 5 consumes very

large amounts of computational resources. Therefore, here we have developed heuristic solution

methods for this problem. In Sections 7 and 8, we discuss heuristic algorithms to solve assign-

ment problems 11 and 12.

In the next section, we shall define some basic vote assignment concepts and use them later

in the design of our algorithms.

3. Vote Assignment Definitions and Concepts

In this section, we shall define some basic concepts in the context of the vote assignment

problem and shall use them through the remainder of the paper.

3.1. Vote Assignment versus Vote Combination

At the outset, a distinction must be drawn between a vote assignment and a vote combina­

tion. A vote combination for n sites is an n-tuple consisting of n elements. It becomes a vote

assignment when each element in this combination is assigned to a specific site. Therefore, if

each element in a vote combination is unique, then there are n! specific assignments for that com­

bination and they may be produced by enumerating all permutations of the vote combination. On

the other hand, if duplicates are present in a vote combination, then the number of corresponding

assignments is less than nL .In the extreme case if all elements in the combination are equal, then

only one vote assignment exists. For example, in a 5-site problem, the vote combination

(1,1,1,1,1) is also a vote assignment because only one permutation exists for this combination of

votes. On the other hand, the combination (5,4,3,2,1) has 5! (or 120) different assignments.

Witho"ut loss of generality, we shall represent a vote combination as a non-increasing

sequence of votes, V = (Vi, ... , vn) where:

Notationally, we shall represent a vote assignment, V, in a similar way; however, in an

assignment V ,the Uh element of the vector specifically represents the vote given to site i and

therefore, the elements occur in site-number order.

9

3.2. Quorum Size

The size of a quorum, q is the minimum number of votes needed to make a majority among

all votes. For simplicity, in the case of Model 2, a read and a write quorum are required to be

equal since the system is considered unavailable if either quorum cannot be formed. (Note, how-

ever, that we allow non-equal votes).

3.3. Corresponding Assignment for a Vote Combination

A vote combination can also be viewed as an assignment in which the i Ih element is

assigned to site i. Such an assignment will be called the corresponding assignment for a yote

combination. For example, V =(5,4,2,2, 1) is the corresponding assignment for the combination,

V =(5,4,2,2,1). For brevity, the tenn "availability of a vote combination" will refer to the availa-

bility of the corresponding assignment for the vote combination.

3.4. Equivalent Vote Assignments and Combinations

- - -
Two vote assignments, V 1 and V 2 are equivalent if for every group of sites in V 1 that can

form a quorum, the same group of sites in V 2 can also form a quorum and vice versa. For exam-

pIe, it is easy to verify that (1,1,1,1,1) and (2,2,2,2,1) are equivalent vote assignments. In the

former case, q is 3, while in the latter it is 5. We define two vote combinations, V 1 and V 2 to be

equivalent if their corresponding assignments are equivalent.

The following result is derived from our definition of equivalence.

- -
Theorem 1: The availability of two equivalent vote assignments, V 1 and V 2 is always equal for

all sets of Pi'S, where Pi is the reliability of site i.

Proof: Given n sites there are exactly 21t alternalive states representing all combinations of up

and down sites. We define Xi, i =1, ... ,2n, for any VOle assignment as follows:

x. _{ 1, if a quorum. can beformed in state i
I - 0, otherwise

10

,.

Moreover, the Availability, AVis expressed as:

where

Ri: probability that the system is in state i.

Clearly, Ri' for all states i, is independent of a specific vote assignment and depends only

upon the individual site rcliabilities. Moreover, from the definition of equivalence, if any two

assignments V 1 and V 2 are equivalent, then:

CXi)17 = (Xi)v for all i
1 1

where

(Xi)17/Xi)17
1

: Xi values for assignments V 1 and V 2, respectively

Since each Xi and Ri are equal for 2 equivalent assignments for all values of i, it follows

that the availability for two equivalent assignments must also be equal. I 0

Corollary 1: The availability of two equivalent vote combinations, V 1 and V 2 is always equal for

all sets of Pi'S where Pi is the reliability of site i.

The corollary follows directly from Thcorem 1 and Section 3.3. These results are used in

Procedure SE, described in Section 8.1.

3.5. Dominating Vote Assignments

- - .
An assignment, V 1 dominates another assignment, V 2 if for each set of sites in V 2 that can

form a quorum, a quorum can always be fonned by the same or a smaller set of sites in VI; how-

ever, the converse is not true. This means that V 1 is superior to V 2 because it would have a

greater availability.

It has been shown in [GAROiSj that an assignment in which the total.number of votes is

even is always dominated by a vote assignment in which the total number of votes is made odd

11

by assigning 1 extra vote. For example, if n is 4, an "odd" assignment represented by (2,1,1,1) is

superior to the "even" assignment (1,1,1,1). We shall, therefore, consider only those assignments

(or combinations) in which the total number of votes assigned is an odd number.

3.6. Active Votes

A vote, Vj assigned to site J in an assignment, if is said to be an active vote if there exists

at least one quorum of sites which includes site J such that if site J is Withdrawn, the remaining·

sites do not form a quorum.

In the assignment (4,2,2,2,1), Vs does not .contribute to the formation of any quorum,

because all quorums must include at least two of the 4 other sites. Therefore, Vs is an inactive

vote and this assignment is treated as an invalid 5-site assignment. For an n-site problem, we

shall restrict ourselves to those assignments in which each vote is active.

4. Complexity of the Vote Assignment Problem

In [GARC85] it has been shown by heuristic arguments based on visualizing a hypercube

that an upper bound on the total number of vote assignments for n sites is 2,,2. Here we give

another derivation which is intuitively simpler.

For n sites, there are 2" possible groups corresponding to all possible combinations involv­

ing the inclusion and exclusion of each site. From these 2" groups, we may arbitrarily choose

any n groups that should form a quorum, and write n simultaneous equations with n variables.

Each system of n equations may then be solved for the Vi'S. Of course, some of the systems of

equations may .not have any solution. However, this allows us to place an upper bound on the

number of vote assignments as [2;]. This expression represents the ~umber of ways in whieh n

elements may be chosen from a universe of 2" clements. The complexity of the above expression

12

Not only does this number include several systems of equations which have no solution, but

it also involves a large number of pennutations of a given vote combination. For instance,

(5,3,3,1,1), (3,1,1,5,5), (1,1,3,3,5), etc., are examples of pennutations of the vote combination,

(5,3,3,1,1), and each such pennutation is included in the upper bound above. For these two rea-

sons, it is possible that a tighter upper bound may exist for the total number of unique combina-

tions, but has not .yet been found. In the next section, we develop an algorithm that enumerates a

very large number··of vote combinations, and also implement this algorithm to show the number

of assignments that exist for n ~ 9.

5. Analysis of QC Algorithms (constant Ci{S and vi's)

In this section, we restrict our anention to voting-type or QC algorithms with equal vote

assignments (Vi'S) and constant inter-site communications costs (Cij's). We will assume, without

loss of generality, that all files are completely replicated. First, in Section 5.1, we analyze the

minimum cost of QC at different values of read-write traffic volumes, disregarding resiliency

considerations. Next, the resiliency versus communications cost trade-off is investigated for dif-

ferent values of update-to-query ratio in Section 5.2.

The main parameters of interest are:

n : number of sites where copies of the file exist

ri: volume of read (or query) traffic from site i

Wi: volume of write (or update) traffic from site i

vol; : total volume of read and write traffic from site i (r; +Wi)

."
V: total read and write traffic volume of all sites eLvo!;)

I

Qr: size of the read quorum

Qw: size of the write quorum

The write ratio, pw is defined as:

13

pw '= l: wi/(l: Wi + l: fi)
I I I

If blind writes are not allowed, and each write operation is preceded by an independent read

operation, then the maximum value Pw would take is 0.5. We do not consider lock escalation and

rather assume that a write-lock would be obtained in the first instance when a transaction reads an

object for updating. In our model, therefore, Pw can also assume values higher than 0.5.

5.1. Minimum Cost Voting

The communications cost, CC qc for the QC algorithm is the sum of the total traffic resulting

from read and write transactions, and is expressed as:

CCqc = (Qw-1)x l: Wi + (Qr-1)x l: ri
I I

We will denote the minimum cost by CCq~. Notice it is assumed that each site will include its

local copy while assembling a quorum and hence it communicates with (Qr-1) and (Qw-1) addi-

tional sites to form read and write quorums respectively. There are two important cases of

interest: PwSO.5, and pw >0.5. We shall analyze each one separately.

Case 1: PwSO.5

Now, since Qr + Qw must always be greater than n+l (see invariant 1 above), and

L Wi S l: ri when pw S 0.5 (by definition), it follows that CCqc is minimized when Qr is 1 and
I I

Qw is n . This is exactly the read-one write-all algorithm. Hence, we get the following result:

Result 1: The read-one write-all algorithm incurs the lowest cost when PwSO.5.

The minimum communications cost in this case is derived from the general expression by substi-

tuting the quorum sizes and is:

CCq~, = (n-I) x l: Wi
I

= (n-l) x l: Voli X pw
I

14

For large n, this cost may be approximated as n Pw V.

Case 2: Pw ~0.5

Reasoning along the same lines as above,it might appear that the communications cost is

minimized when Qr is n and Qw is 1. However, this is incorrect because invariant 2 is violated.

Clearly, Qw should assume the smallest possible value without violating invariant 2 and this

occurs when: t

Qw = intCnl2) + 1

and, therefore,

Result 2: Hence, when Pw~0.5, CCqc is minimized at the above quorum values.

For relatively large values of n, we may approximate the quorum sizes as:

Qw =Qr =n12

Using this approximation, CCq~ is expressed as:

CCq~ = Cn12) L Cri +Wi) ,

= Cn12) L voli ,

= Cn12) V
..

Note that in this case the quorums are either equal or differ by 1. For example, when n=11,

Qr =Qw =6. On the other hand, when n = 12, Qw=7 and Qr=6. The minimum cost is plotted

against Pw in Figure 1. It should be observed that this cost increases linearly as Pw goes from 0 to

0.5 but becomes constant for pw ~0.5

t int(x) denotes the integer part of x.

15

MIN

COST

nV/2

0.0 0.5

Total Fraction of Writes

Figure 1: Plot of Min. Cost versus total fraction of writes (Pw)

5.2. Failure Tolerance versus Communications Cost

1.0

So far in our analysis, minimum communications cost has been detennined without regard

to resiliency. Here we will study the implications of increased resiliency on communications

cost. Again, there are two cases: PwS;O.5, and Pw~O.5.

In the second case, as indicated by Result 2 and the subsequent example above, the two

quorum sizes are either equal or differ by 1. This means that the availability is maximum as well.

Hence, we may conclude the following:

16

..

Result 3: When p..,~0.5, the failure tolerance is maximized at the least-cost quorum sizes.

Now we tum to the case of p.., ~ 0.5. In the least-cost alternative, Q,=l, Q..,=n, and the failure

tolerance is O. Therefore, in order to assure a failure tolerance level of k, Q.., must be reduced by

k and Q, must be correspondingly increaSed. The resulting incremental cost (IC) is:

IC=(Lrj -LWj)xk
I I

This increase is translated in terms of the minimum cost, CCq~, and the increase percentage (IP)

is computed as: .

IP = IC x 100/ CCq~

After substituting for IC and CCq~, and further simplifying, IP may be expressed as:

IP = (I-2pw)xkxlOO/(p..,(n-l))

In Table 2, IP has been compuled for a range of values of p.." with n alternately set at 5 and 10.

Note that k is the failure tolerance level. It is evident from this table that for small values of Pw,

higher resiliency is achieved only by incurring a considerably higher communications cost. For

instance, when p.., is 0.05 and k is 1, IP is 450%. This means that in order to make the algorithm

resilient to 1 site failure, the communications cost is 4.5 times larger than its value for 0 failure

tolerance. However, as p"; approaches 0.5, IP also shrinks and tends towards O.

In summary, the interesting conclusion to be drawn from this section is that the additional

cost of providing failure tolerance is highly dependent on p..,. For small values of p.." this cost is

very high; however, for p.., ~ 0.5, it becomes O.

17

Pw n =5 n = 10

k=O k=l k=O k=1 k=2 k=3
.05 0% 450% 0% 200% 400% 600%
.10 0% 200% 0% 89% 178% 267%
.20 0% 75% 0% 33% 67% 100%
.30 0% 33% 0% 15% 30% 45%
040 0% 12.5% 0% 6% 11% 17%
.50 0% 0% 0% 0% 0% 0%

Table 2: Perccntage Increase in communications cost for higher resiliency
as compared with the minimum cost (for different pw values)

6. Optimal Vote Assignment (constant Ci{S)

In the previous section it was shown that availability may be improved at the expense of

increased' communications cost by changing the quorum sizes. The consequent effect on com-.
rnunications cost was expressed analytically. Here we discuss an algorithm for optimally assign-

ing votes to sites ~o as to minimize communications cost subject to a desired failure tolerance

level. As before, failure tolerance, is defined as the number of site failures that can be tolerated.

Further, it will be assumed that the inter-site unit communications cost is a constant for all pairs

of sites. We first describe the algorithm, then illustrate it with an example and finally present a

cost comparison between the communications cost resulting from our method and the conven-

tional method in which equal votes are assigned to each site.

6.1. A Vote Assignment Algorithm

This algorithm assumes that there are n copies of the file and the desired fault tolerance

level is k. The main stcps in the algorithm are listed below and then a brief explanation follows.

18

Algorithm OPT

1. Number the sites as Sit S2 • .•.• S"

2. Denote the votes to be assigned as VI. V2 •.•.• v"

3. Assign votes to sites Sk+lt Sk+2 • ...• s" such that:

4.

5.

6.

Vk+1 = Vk+2 = ... = v" = 1

k ~n/2

Assign Qr = Qw = n-k

Assign VI = V2 = ... = Vk = int CCn-k-l)/k)

i=1c
Letm=n -k -1-,~ Vi

If m > O. then assign 1 extra vote to the first m sites. S I. S2 • ...• Sm.

Note that in step 1. the sites are numbered arbitrarily in any random order. In step 3, votes

of 1 unit are assigned to n-k out of the n sites. These sites are designated as minor sites. The

basic idea of the algorithm is to assign higher votes to the remaining k sites. which we term as

major sites. Notice that k can be at most n12. This means that the maximum failure tolerance

level is equal to half the total number of sites. The vote assignment scheme ensures that the set of

k major sites along with any other minor site can form both a read and a write quorum. Altema-

tively, if all k major sites are down. then it should still be possible to form both quorums by

assembling the votes of all minor sites. This guarantees that no matter which k sites are down. the

quorums can still be fomled. Consequently. in step 4. Qr and Qw are both set to n-k. which is

the sum of the votes of all the minor sites. In step 5. an amount n-k-l is distributed among the

k major sites. thereby ensuring that if the votes of the major sites are added together along with

one additional vote. the resulting sum is n-k. and hence, both quorums can be formed. The fol­
'\

lowing example illustrates the main steps of Algorithm OPT:

19

Example

Say, n = 8 and k = 2.

Assign v 3 = V 4 = V 5 = v 6 = v 7 = V S = 1

Therefore, Qr = Qw = n - k = 6

and VI = V2 = int(SI2) = 2

m = 1; hence, VI = 3.

Hence, the final vote assignment is:

VI = 3; v2=2

v3=V4=vS=v6=V7=VS= 1

Qr =Qw =6

For the above example, the conventional QC method assigns a vote of 1 to each site and sets Qr

and Qw to 3 and 6 respectively; these quorum values ensure that the system can tolerate up to 2

site failures.

6.2. Discussion

In this section, we prove that Algorithm OPT chooses an optimal vote assignment. Further,

since the algorithm does not distinguish between sites, we discuss heuristic ways of assigning the

highcr votes to specific sites.

Algorithm OPT is based on the foll?wing lemma:

Lemma 1: When k-site resiliency is desired, a transaction must communicate with at least k

other sites in order to perfonn a read or write operation.

Proof: (by contradiction) Consider an updatc transaction, T which performs an update operation

in which a certain set of k-l other sites are involved. Furthermore, consider a subsequent k-site

failure involving the site at which transaction T executed, and the same set of k-l other sites

which participated in transaction T. Clearly, in this situation the uP9ate performed by T will not

20

. "

be available at any working site. and hence. k-site resiliency is not assured. Therefore. a transac-

tion must communicate with at lcast k other sites in order to guarantee k-site rcsiliency. This is

necessary in order to guarantee that even a k -site failure will leave at least one working site with

the most recent updates. o

This lemma is used in the following theorem:

Theorem 2: Algorithm OPT' is optimal.

Proof: From Lemma 1. each site must communicate with at least k other sites to achieve k-site

resiliency. Since the inter-site communications cost is constant for all pairs of sites. a minimum

cost. k-site resilient solution is obviously one in which each site communicates with exactly k

other sites. Our algorithm ensures that if all sites are working. any site can form a read ora write

quorum consisting of eX<1ctly k other sites. Hence. the communications cost is minimized. \ o

The intuitive rationale behind our algorithm is as follows. If the desired failure tolerance is

k, then higher votes are assigned to k of the n sites. and it is guaranteed that a quorum can be

formed if these k major sites and anyone other site are included -- a total of k+l sites. Therefore,

our vote assignment scheme leads to a least-cost solution if the k major sites are included in all

quorums. However. if any of these k sites is down then the transaction must communicate with

many more sites in order to assemble a quorum and continue operation. Consequently, with our

scheme the total communications cost increases if even one of the major sites is down. In con-

trast. with an "equal-vote" method this cost is not affected by site failures since all sites have an

equal vote. Thus. oUf method achieves a lower cost under normal operation at the expense of a

higher cost when any of the major sites is down. Since the latter situation will occur infrequently,

our algorithm is superior to the conventional QC methods.

According to the algorithm as described so far. the assignment of the n votes to specific

sites may be done entirely at random. Here we discuss some factors that could influence the

choice of the k major sites. If a network is fully connected and site reliability is equal for all sites.

21

then these k sites may be chosen at random. However, this is not usually the case. Two impor-

tant factors to be corisidered are site reliability and connectivity. The k larger votes should be

assigned to those sites which have greater reliability and are most well-connected with the other

sites. (A simple measure of the connectivity of a site is the number of other sites it has direct

links with). In a star network, for example, the central site is a good candidate for a higher vote.

In such a network, the connectivity of the central site is n-l and that of the others is 1.

One disadvantage with our method is that the communications traffic to the major sites will

be very high as compared to the traffic to the minor sites and our analysis does not consider any

queuing delays and network congestion. This issue has to be addressed as a part of network

design. One way to handle this is to provide high bandwidth lines between all major sites and

also ensure fast access to at least one major site from each minor site. With proper network

design, this handicap can easily be overcome.

in the next section we present a cost comparison between Algorithm OPT and a QC algo-

rithm which assigns equal votes to all sites.

6.3. Cost Comparison

The cost comparison consists of two cases. First we discuss the case of Pw:S;O.5 which is of

greater interest. The general expression for the communications cost incurred by the conventional

QC method was derived in the previous section. Here we modify it slightly to express this cost as

a function of k, the number of site failures which must be tolerated. Therefore, the minimum

communicalions cost in the convenlional QC method when k -site resiliency is provided is as fol-

lows:

CCq~t = kXLfi + (n-k-l),Lwi
I I

The. equivalent communications cost incurred in Algorithm OPT is given by the following

expression:

CCOPlt = kx,L (ri + Wi) ,

22

Therefore, the savings realized from our vote assignment is:

CCq~l - CCOP11 = (n-2k-1)1:W i
I

This savings may be converted into a percentage as follows:

Savings % = (n-2k-1)(1:wi)x100/(kx1:(ri+wi))
I I

= (n-2k-l)xpwx100/k

Sample calculations of the savings % with n alternately set to 5 and 10 are given in Table 3.

In each case, Pw is varied from 0.05 to O.S, while k is also varied over a range of values. When

the failure tolerance, k is set to 0, it corresponds to the unconstrained case. It is evident from this

table that large savings are achievable by using our algorithm.

In the case where Pw~O.5, the expression for CCq~l is rewritten as:

CCq~l = (nI2)x1:(n+W i)
I

The expression for CCOP11 remains the same as before and hence the savings % in this case is

given by:

Savings % = (nI2-k)x100Ik

pw n = 5 n = 10

k=O k=l k=O k=l k=2 k=3
.OS 0% 10% 0% 3S% 12.5% 5%
.10 0% ' 20% 0% 70% 25% 10%
.20 0% 40% 0% 140% SO% 20%
.30 0% 60% 0% 210% 7S% 30%
040 0% 80% 0% 280% 100% 40%
.SO 0% 100% 0% 3S0% 12S% 50%

Table 3: Percentage savings achieved from our vote assignment method

23

When n is 10 and k is 1 this figure is 400%. Again the potential for savings is large.

7. Computing Availability

In this section, we devise an efficient algorithm for computing availability when several

copies of a fIle exist, and the vote assigned to and the reliability of each site are known. One sim­

ple method for computing availability is by enumerating all possible combinations of up and

down sites, identifying those combinations in which a quorum can be formed, and computing the

aggregate probability of all such combinations. This is clearly an inefficient scheme. Here we

describe a more efficient algorithm and show that it is considerably less expensive than complete

enumeration. Reducing the computational complexity is important because the availability com­

putation is central to all subsequent algorithms. A formal problem defmition and the details of our

algorithm are given in the following section. Subsequently, an example will be given to demon­

strate the algorithm.

7.1. Algorithm Description

Problem Definition: Compute the availability for a vote assignment represented by the

vector V = (v 1, V2, "', vn), and a quorum of size q. The reliability, or the probability that sites

i are up, is denoted by the vector P = (p 1, P2, "', Pn)' Without loss of generality, it is assumed

that:

Our Algorithm A V AIL for computing availability is based on first constructing a tree

which we call the quorum subset tree. Each branch in this tree corresponds to the inclusion and

exclusion of a certain site in a quorum and by following the path from a leaf node to the root one

can generate alternative subsets. The procedure for constructing this tree is called BUILD­

TREE. We shall describe this procedure first, and then use it as a subroutine in Algorithm

AVAIL.

24

The root of the tree is labeled as level 1, and lower levels are numbered t successively. An

information triplet is maintained at each node as follows:

(votes included, votes excluded, votes remaining)

where

votes included (VI): total votes of sites included so far
votes excluded (VE): total votes of sites excluded so far
votes remaining (VR): tOlal votes still to be assigned

Based on this (VI, VE, VR) triple, a decision is made as to whether a particular node is

"fathomed". If a node is fathomed, then no further branching is done from there. Otherwise, the

branching process is repeated. At an unfathomed level i node, we consider the effect of including

or excluding site i by constructing two branches: one corresponding to including site i and the

other corresponding to excluding site i. The main steps of procedure BUILD_TREE are

described below. Figure 2 shows a tree that has been constructed from this algorithm for V =

(5,3,3,1,1).

BUILD TREE

1. (initialization)

i=l

The root is marked by the triple (O,Q,W), where W is the sum of all votes. Next, two

branches are constructed from the root: one corresponding to the inclusion of site 1 (the

"include 1" branch) and the other corresponding to excluding site 1 (the "exclude 1"

branch). The nodes at the end of these two branches represent level 2 of the tree.

2. At each level i + 1 node, the triple at the node is computed from the Uh level parent node in

the following manner. If the branch leading to the node is an inclusion branch, then:

t Note that in order to simplify the description the numbering is for levels (where each level number
corresponds to a site number) and not nodes. Nodes of the trcc are referred to as 'level i nodes' generical­
ly.

2S

VE = (VE)p

VR = (VR)p -Vi

(The subscript p denotes the parent node values while the unsubscripted VI, VR, llnd VE

represent the child node values).

On the other hand, if the branch is an exclusion branch, then the new values are computed

as:

VI=(VI)p

VE = (VE)p + Vi

VR= (VR)p - Vi

3. (Fathoming Step) This step is repeated for all nodes at level i + l.

We consider 4 cases:

CASE 1: VI? q

If VI for a new node is greater than or equal to q , then this node is marked as "fathomed -

type 1".

CASE 2: VI < q and VI+VR=q

If VI +VR for the new node is equal to q, then this means that all the remaining sites must

be included in order to create a quorum. In this case, we put a note on the node to indicate

that sites i + 1, i+2, "', n must be included, and mark the node as "fathomed - type 1".

CASE 3: VE>W-q

This means that enough sites have been excluded already to preclude the formation of a

quorum from the remaining sites. Hence, this node is marked as "fathomed - type 2" .

. CASE 4: VI < q and VI +VR >q

This node cannot be fathomed.

4. If all nodes at level i + 1 have been fathomed, then the tree construction is complete, and the

algorithm stops, else

26

{
i=i+ 1.
At each unfathomed level i node, construct

an "include i" and an "exclude i" branch
go to step 2.

}

Now we list the steps of Algorithm AVAIL and a detailed description follows.

Algorithm AVAIL

1. First construct a tree from procedure BUILD_TREE described above.

2. Set Availability, A = O.

3. Next, for each "fathomed - type 1" node, do {

P = 1.
Traverse tree upwards from the node and

Do Until root is reached {
If there is an "include i " in the path,

P=PXPi,
else

If there is an "exclude i " in the path,
P=P(I-Pi).

If current node is not the root,traverse the next higher path.
}

A=A+P

4. The Availability of the file system is given by A.

The Availability is computed by following the path from each "fathomed -- type 1" node
,',

to the root backwards. Each "include i" along a path corresponds to Pi and each "exclude i"

corresponds to (I-pi), The product of the Pi'S and (I-Pi)'S is computed along each such path,

and aggregating the individual products gives the availability. The following example will

demonstrate this algorithm.

27

7.2. An Example

Here we describe an example to illustrate algorithm A V AIL.

Example: Compute the availability for the following V vector:

V = (5,3,3,1,1)

The first step in implementing Algorithm AVAIL is to construct the quorum subset tree.

This is shown in Figure 2. Using this tree, the availability for this example is computed as:

A = P IPz + P 1(l-PZ)P3 + P 1(1-pz)(1-P3)P4PS + (1-p 1)P2P3P4 + (l-p 1)P2P3(l-P4)PS.

8. A Semi-Exhaustive (SE) Algorithm

In Sections 5 and 6, we examined techniques to solve the special cases that arose from

models 1 and 2. These solutions became easier as a result of certain simplifying assumptions that

were made about the relative vote sizes or the inter-site communications costs. In the remainder

of this paper we shall focus on solving the two general models, also represented by problems 11

and 12 in the framework of Table 1.

In this section we shall describe a procedure (procedure SE) to generate non-equivalent vote

combinations, and then use it to develop an algorithm Algorithms SE-A V and SE-FT to solve

models 1 and 2. These algorithms produce alternative assignments for each vote combination

generated by Procedure SE. For each assignment, the algorithm evaluates the cost and availabil­

ity, and selects the minimum cost assignment which meets the reliability criterion.

8.1. Procedure SE

This procedure starts with an initial vote combination, and further new combinations are

generated by incrementing the votes in the current combination. To make the procedure more

efficient, we devise a method to identify and discard a combination which is equivalent to one

already produced. Thus, only non-equivalent vote combinations are generated.

28

(0,5,8)

V2in V2in V20ut

(8,0,5) (5,3,5) (3,5,5) (0,8,5)
Xl X2

V3 in

(8,3,2)
(5,6,2) (6,5,2) (3,8,2)
V4 in X2 Xl V5 in
Xl . V4in V4 out

(7,5,1) (6,6,1)

Xl V5in
Xl

Xl -- Fathomed, Type 1

X2 -- Fathomed, Type 2

Figure 2: Quorum subset tree for the example to illustrate the computation of Availability

The initial combination is:

For odd n: Vi'S = 1 for all i,
For even n: VI = 2, Vi'S = 1 for i = 2,' .. ,n

Since each Vi must be a positive integer strictly greater than 0, this is obviously the combi-

nation with the smallest odd sum of votes.

29

Next. we generate new combinations by considering all ways in which 2 votes may be

added to the current combination. (A combination is new if it is not equivalent to a combination

which has already been produced). This will give us a set of Vi'S which add up to n+2 or n+3

depending on whether n is odd or even, respectively. At each subsequent stage, we consider only

the new combinations produced in the previous stage and use them to produce further combina­

tions. For example, say n is 5, and the starting combination is (1,1.1,1,1). At the next step, the

total number of votes must be iricreased by 2, and the alternative combinations that result are

(3,1,1,1,1), and (2,2,1,1,1). Each of these combinations will have to be checked for equivalence

against the combination (1,1,1,1,1). If found to be new, then it is added to the existing list of

combinations.

Each successive iteration of the while-loop in the main section of Procedure SE (described

below) corresponds to finding new combinations by adding r more votes to each current N vote

combination. Ordinarily N is incremented by 2 in each successive iteration and r remains at 2;

however, if at any iteration no new combination is found, then in subsequent iterations r is incre­

mented by 2 and N is kept fixed until a new combination is realized. At this point, N is incre­

mented by the current value of r. There are two stopping rules. The first rule is that the total sum

of votes becomes greater than a pre-specified maximum, while the second rule is that r becomes

larger than 25. The second rule corresponds to a situation in which no new combination is found

for a gap of 25 votes, a reasonably large interval. Such a gap would arise if no new combination

is found even after 12 successive iterations.

The availability of each prospective new combination is computed by applying Algorithm

AVAIL (described earlier in Section 7) to its corresponding assignment. The value of availability

so computed is called the signature for the combination. Since, as shown in Section 3, two

equivalent combinations will always have the same availability, this gives us a convenicnt way of

eliminating redundant vote combinations. Each new signature is chccked against an array of sig­

natures, and if not found in it. it is added to this array. A collision occurs if the signature already

30

exists in the array, and in this case the combination is discarded. Since P~ocedure SE is used only

to generate non-equivalent combinalions, an arbitrary set of Pi'S can be used for this purpose (the

actual Pi's are, however, required to compute the real availability in Algorithm SE-A V, discussed

in Section 8.3). Although the conVerse of Theorem 1, i.e., if two assignments have the same avai­

lability then they must be equivalent has not been proven, it has been verified experimentally that

'. .
false collisionS are prevented by choosing site reliabilities such that no two Pi'S are equal. There-.
fore, this rule should be observed while selecting Pi's for use in Procedure SE.

The main steps are as follows:

Procedure SE

1. (Initialization). The starting combination is V = (v 1, .", vn) such that:

For odd n: Vi's = 1 for all i; Sum of votes, N = n.
For even n : VI = 2, Vi's = 1 for i = 2, ... ,n; N = n+ 1.

Also, initialize:

the final solution set, S = 0,
the solution set for a total ofN votes, SN = {V}
the Pi values from input data,
the signature array, SA=O.

2. (Main section)

r= 2.
while (N +r < N max and r < 25) {

for each combination, V in SN {
add r more votes to V to create combination, Vle!np.
compute availability, AVtemp for Vtemp .

If (AVtemp e SA array) {
. add Vtemp to SN+r.

add AVtemp to SA array.

If (SN+r :I:. 0)
r= 2. N = N + 2.

else
r = r + 2.

}
}

31

3. The final solution set, S is obtained by concatenating all non-empty sets, Si.

8.2. Implementing Procedure SE

We implemented this algorithm and Table 4 shows the number of unique vote combinations

that were found for various values of n. For n equal to 7, no vote combinations were found for

N m= between 44 and 69, at which point the program terminated. When n was 8 and 9, the pro-

gram was interrupted at N max equal to 50 and 45 respectively. We repeated this experiment for

two different sets of probability values and found the same result in each case. This was done to

eliminate the possibility of two non-equivalent combinations having the same signature.

It should be reemphasized that the figures in Table 4 represent vote combinations and not

specific vote assignments. For each combination, there are potentially n! assignments if each

vote is unique. An exhaustive algorithm' to solve models 1 and 2 must consider all the specific

assignments corresponding to eac;h vote combination, and therefore, multiplying the numbers in

Table 4 by n! gives a belter appreciation for the true complexity of the problem.

of Sites(n) Maximum Sum of Votes # of Combinations
1 - 1
2 - 1
3 - 1
4 - 1
5 - 4
6 - 19
7 - 133
8 50 >2071
9 45 >7603

Table 4: Number of unique vote combinations for various n

32

8.3. Vote Assignment Algorithms

Here we shall describe Algorithms SE-Fr and SE-AV to solve models 1 and 2, respec-

tively. In both algorithms Procedure SE is used to generate a set of vote combinations, and then

all possible assignments of each combination are evaluated to find the best solution.

The main objective in using Procedure SE is to eliminate non-equivalent combinations.

Although Procedure SE is an availability-based procedure, it is equally applicable in solving both

models because it enables us to eliminate equivalent assignments in either case. Note that two

equivalent vote combinations will have identical failure tolerance and communications cost. This

can be proven along the lines of Theorem 1; however, for brevity, we shall omit the details here.

Intuitively, the proof again follows from the fact that if VIand V 2 are two equivalent assign-

ments, then any group of .sites in assignment V 1 that form a quorum will also form a quorum in

assignment V 2, and vice versa.

Algorithm SE·FT

1. Produce Set S from Procedure SE.

2. (Main section)

min -cost = 00

For each combination, V in set S_ {
if (FAILURE-TOLERAliCE(VJ ~ cut-off)

for each permutation, Vp of V {
if (cost < min-cost) {

min-cost = cost.
min -assignment = Vp.

}

3. The best solution is given by min-assignment.

FAIL URE· TOLERANCE(V)

1. Find smallcstft such that:

33

Algorithm SE-A V

1. Produce Set S from Procedure SE.

2. Produce set P, the permutation set of all combinations in S.

3. (Main section)

min-cost = 00

For each assignment in set P { _
compute cost, and availability of assignment, V.
if (availability ;::: cut-off and cost < min-cost) (

min -cost = cost. _ .
min -assignment = V.

4. The best solution is given by min -assignment.

Both the above algorithms are conceptually straightfOIward but computationally very inten-

sive. They utilize procedures to compute cost, failure tolerance, and availability. The procedure

for computing failure tolerance, FAILURE_TOLERANCE, is listed above, while the procedure

for computing availability, A VAIL, was described in Section 7 and the procedure for computing

cost, COMPUTE_COST, is discussed in the next section.

9. Vote Assignment Heuristics

In Section 4 we showed that finding all vote assignments is a very complex problem

because an upper bound on the number of vote assignments is O(21t2). In Section 8 we described

algorithms SE-FT and SE-A V to solve models 1 and 2 by a semi-exhaustive method. This

method was computationally very intensive even for a small number of sites like 7 or 8. Hence it

is necessary to develop heuristics that examine a smaller search space and yet give a good solu-

tion.

In this section we shall describe such heuristic solutions to models 1 and 2, that incur a

drastically lower computational effort as compared to the semi-exhaustive algorithm. These

34

heuristics arc based on generating a small subset of vote combinations and then allocating them

to sites in a "greedy" manner. A short outline of these algorithms is as follows:

generate a partial set of vote combinations
assign votes to sites in a greedy manner
evaluate the cost for each assignment
choose the least cost solution

We shall describe two procedures, PEl and PE2, for generating a partial subset of vote

combinations and then give the full algorithm. In the first procedure, PEl we apply two simple

rules to generate a small number (O(n)) of vote combinations. These two rules allow us to pro-

duce unique vote assignments in which varying weights are assigned to different sites. The first

rule is named the failure tolerance is k rule and is used to generate a unique vote combination

corresponding to each value of k over the range from I to FT max(n), the maximum value Ff can

assume for an n -site solution. The second rule is called the k-sites make a majority rule and . .

consists of determining a vote combination in which the first k sites receive equal votes and make

a quorum of value, say q, while the votes of the remaining sites add up q-1. The detailed steps in

Procedure PE 1 are:

Procedure PEl

1. Solution set, S = 0.

2. (FT is k rule)

For k= I,' .. .[Mtl j -II

Vk+1 = Vk+2 = ... = Vn = I
Vl=V2='" =vk=int«n-k-l)/k)
m = n - k - 1 - k Xv 1

i = O.
while (i < m) {

i=i+ 1..
Vi = Vi + 1.

}
S = S + (V I, ...• vn)

3S

3. (k-sites form majority rule)

Fork=2.···.l M;t j-l{
Vk+l = Vk+2 = ... = VII = I
VI = V2 = ... = Vk = int «n-k+I)/k)

if(n-k+I > kXVIH
for i=I,' .. ,k

vi=vi+I;
m = kxv 1 - n + k -1
i = O.
while (i < m){

i=i+l.
'Vk+i= Vk+i + 1.

}

. 4. The set, S contains all the vote combinations produced by PEL

In procedure PE2, all vote combinations with a sum less than or equal to 2n+1 are pro-

duced from Procedure SE of Section 8.1 and included in set S.

Procedure PE2

1. Using Procedure SE, generate all vote combinations such that N max = 2n + I

Now we tum to describe the complete algorilhms to solve models I and 2. Algorithms PE-

Ffl and PE-Ff2 apply to model 1, while algorithms PE-A VI and PE-A V2 to model 2. The main

steps of algorithm PE-Ffl are listcdfirst and, thcn, a detailed description of each step follows.

Algorithm PE-FTI

1. Renumber sites such that:

where

Cj = I.cij(qi+Uj)
I

36

2. Produce Set S from Procedure PEL

3. Set Min-Cost = 00

4. (Main section)

For each vote combination, V within S {
'if (FAILURE-TOLERA.t:rCE(V) ~ cut-oft) {

COMPUTE_COST(V)
If (cost < Min-cost) {
Min-Cost = Cost _
Min-Assignment = V(M, FT)

}

5. The best solution is given by Min-assignment, and the minimum cost is contained
in Min-cost.

F AlLURE-TOLERANCE(V)

L Find smallest/t such that:

COMPUTE_COST(V)

L For each site i, determine the set of other sites to be included in i's quorum, Qi by:

(a) first ordering all other sites j in ascending order of ~, and
V· J

(b) then choosing the first k sites from this sequence such that: .

2. The cost of assignment, V is:

Algorithm PE-FT2

L), (qi + Uj)XCik
I ken;

This algorithm is identical to PE-FTI except that in step 2, procedure PE2 is used to produce set

S.

37

Now we explain the steps in Algorithms PE-FYI and PE-FT2. In step 1, we determine a

"greedy" ordering of sites based on Ci, the total communications cost if there was only one file

copy and this was assigned to site i. Therefore, the site with the smallest Ci is renumbered as

site 1, etc. Since the votes in any vote combination occur in a non-increasing sequence, this

"greedy" reordering of sites ensures that the site with the lowest Ci gets the highest vote. In step

2, the initial minimum cost is set to 00. In step 3, we produce a set of vote combinations to be

evaluated using Procedure PEl or PE2 in algorithms PE-FYI and PE-FT2 respectively. Then,

Procedure COMPUTE_COST is used to compute the cost of those assignments which satisfy

the failure tolerance cut-off. Finally, from all the alternatives examined, the minimum cost solu-

tion is chosen as the best solution.

The COMPUTE _COST procedure is required to determine the total communications cost

for assignment, V given the query and update volumes (qi and Ui respectively) of each site in

addition to the Gij 'so The major step is to determine the set of sites, Qi which site i must com-

municate with in order to form a quorum. This sub-problem can be formulated as a knapsack

problem [BUDN77] and the technique described in step 1 is the solution method for it Once the

Qi 's are known, the total cost is computed as in step 2. Now we shall tum to describe algorithms

PE-AVI and PE-AV2 which minimize communications cost subject to an availability cut-off.

The steps in algorithm PE-AV1 are:

Algorithm PE-A VI

1. Renumber sites such that:

C 1<C 2<···· <C·<··· <C - - -;- - n .

where

2. Produce Set S from Procedure PEL

38

...

3.

4.

Set Min-Cost = 00

(Main section) .

For each combination~ V in set S {
if (MAX_A VAlLey) >= cut-off) {

While (A V AIL(V) < cut-off)
REASSIGN(V). _

COMPUTE_COST(V).
if (Cost < Min-coSt){

Min-Cost = Cost _
Min-Assignment = V

}
}

}

5. The best assignment is given by Min-assignment, and the minimum cost is contained in

Min-cost.

1. Arrange the sites in descending order of Pi.

2. Assign votes to sites in the same order as they occur in V.

3. Use algoriLhm A V AIL to compute availability for this assignment.

REASSIGN(V)

1. Rearrange V by swapping Vi and Vj where i and j are two sites (i <j) such that:

1. (vi -Vj) x (Pi -Pj) < O.
2. Ci - Cj minimum over all such pairs of sites, (i ,j).

COMPUTE _ COST(V)

1. For each site i, determine the set of other sites to be included in i's quorum, Qi by:

(a) first ordering all other sites j in ascending order of EL, and
V· J

(b) then choosing the first k sites from this sequence such that:

39

2. The cost of the assignment is computed as:

Algorithm PE-A V2

This is similar to algorithm PE-AVI with the exception that in step 2, Procedure PE2 is used
'-'

instead of Procedure PEl in order to generate set S.

The major difference between algorithms PE-AVl and PE-FTl lies in step 4. While for a

given vote combination, the failure tolerance is independent of a specific assignment, the availa-

bility does depend upon the specific assignment of votes to sites. For instance, by assigning

higher votes to sites with higher probabilities, it is possible to increase the availability. Therefore,

for each vote combination, we initially assign votes to sites in a greedy manner, and then itera-

tively reassign the same set of votes (again, greedily) to improve availability until the desired

cut-off is reached. The minimum cost assignment whieh satisfies the availability requirement is

chosen as the best solution.

The steps in Procedure MAX-AVAIL and REASSIGN are listed above. Procedure MAX-

A VAIL determines the maximum availability that can be achieved from a given vote combina-

tion. This is done by first assigning votes to sites in descending order of pi, i.e., the site with the

highest Pi is given the largest vote, etc. Then, the availability for this assignment is computed.

Procedure REASSIGN is used to reassign votes so as to increase the overall availability for

a given combination of votes. The. reassignment is done by first identifying all pairs of sites (i ,j)

such that on swapping their respective votes. the site with the higher reliability would get a larger

vote in the pair. Among all such pairs, the pair with the smallest Ci - Cj is chosen, where Ci and
.~,

Cj are the total communications costs if there were just one copy at sites i and j respectively.

This is a greedy way of minimizing the additional cost that would be incurred as a result of this

reassignment. Other greedy strategies for doing this reassignment were also considered but dis-

carded because they were not as effective as the current one.

40

10. Computational Results

In order to eValuate our algorithms, we implemented algorithms SE-AV, PE-AVI, and PE-

AV2 for 7 and 9-site networks. For the 7-site network, 3 experiments were conducted with dif-

ferent sets of inter-site communications costs in each case. These costs were generated from 3

uniform distributions: U(1,I), U(I,5), U(1,lO), and the results of the corresponding experiments

are shown in Tables 5, 6, and 7 respectively. The columns of each table show the minimum total

communications cost and the corresponding assignment chosen by each algorithm. The figures in

parentheses next to the cost figures indicate the percentage by which Algorithms PE-A VI and

PE-A V2 perform poorly as compared to Algorithm SE-A V. Each row of these tables corresponds

to a different availability cut-off value, and for each cut-off, the best cost and the vote assignment

computed by the three algorithms has been shown. The last row of each table, shows the average

percentage over the range of AoV values by which Algorithms PE-AVI and PE-AV2 are inferior

to Algorithm SE-A V. The reliability vector and the traffic volumes at each site are also indicated

in each table.

In the 7-site implementation of Algorithm SE-AV, all l33 combinations listed in Table 4

were considered, and all permutations of each combination were evaluated. It is evident from

Table 5 that when the inter-site communications cost. Cij is constant for all pairs of sites, both

heuristics perform extremely well (within 11% of the "optimal" on an average). On the other

hand, when the Cij'S vary over an order of magnitude range (see Table 7), then Algorithm PE-

.",.~-

AV2 on an average comes within 15% of Algorithm SE-AV, while the corresponding metric for

Algorithm PE-AVI is 69%. Clearly, the performance of the heuristics do deteriorate with an

increasing range of Cij 's and this deterioration is more in the case of Algorithm PE-A VI.

For the 9-site network, Table 8 shows the results for the case in which Cij 's are drawn from

a uniform distribution: U(1 , 10). This distribution was chosen out of the 3 mentioned above to

obtain worst case results. In the implementation of Algorithm SE-A V, only 191 combinations out

41

of the 7603:iisted in Table 4 were considered. These correspond to all combinations where the

sum of votes is less than or equ<ll to 23. This was done in order to keep the computational effort

within a reasonable bound (few hours on a 3-4 MIPS computer). Table 8 shows that on an aver-

age the cost of Algorithm PE-AV2 came within 19% of the "optimal" solution. while the

corresponding metric for Algorithm PE-A VI was 53%.

11. Static versus Dynamic Algorithms

So far in this paper our focus has been on the optimization of static algorithms. As men-

tioned earlier. the second type of QC algorithms are the dynamic ones. Although a detailed com-

parison between static and dynamic algorithms is outside the scope of this work. we shall perform

a comparison here between an optimized static algorithm for Model 2 and the available copies

algorithm (BERN84] which is a dynamic algorithm.

AV Algo. SE-AV Algo. PE-AV2 AI!!o. PE-AV1
0.93 39 39 (0%) 39 (0%)

(5.1.1,1.1.1.1) 0.5.1.1.1.1.1) 0.5.1.1.1.1.1)
0.94 39 39 (0%) 39 (0%)

(5.1.1.1.1.1.1) (l.5 .1.1.1.1.1) (1.5.1.1.1.1.1)
0.95 44 49 (11%) 61 (39%)

(7.2.1.2.1.2.2) (l.2.1.6.1.2.2) (l.1.1.3.1,1.3)
0.96 44 49 (11%) 61 (39%)

(9.3.1.3.1.3,3) (2.6.1.2.1.1.2) (l.1.1.3.1.1.3)
0.97 53 57 (8%) 61 (13%)

(7.3.3.3.1.1.1) (2.5.1.2.1.1.1) 0.1.1.3.1,1 ,3)
0.98 62 62 (0%) 62 (0%)

(l.3.1.3.1.1.1) (1,3.1.3.1.1.1) (l.3.1.3.1.1.1)
0.99 78 78 (0%) 78 (0%)

(2.2.1.1.1.1,1) (2.1.1.2.1.1,1) (2.1, 1.2.1.1.1)
avg% 0% 4% 11%

Table 5: Communications Cost and vote assignment
for various desired values of A V (7 sites. Cij 's from Uniforrn(1.1)).

P = (0.91.0.90.0.89.0.87.0.86.0.85.0.84)
Traffic Volumes = (5.7.4.9.1.5.8)

42

,

AV Algo. SE-AV Algo. PE-A V2 Algo. PE-A VI
0.93 95 95 (0%) 95 (0%)

(1.1,5,1, I,Ll) 0,1.5,1,1,1,1) 0,1.5,1,1.1.1)
0.94 96 115 (20%) 115 (20%)

0,2,1.7,2,2,2) 0,5,1,1.1, 1,1) 0,5,1.1,1.1.1)
0.95 101 11908%) 179 (77%)

0,2,7,2,1,2,2) 0,2,2,6,2,1,1) 0,1.3,3,1,1,1)
0.96 111 122 (10%) 179 (61 %)

(2.4,10.4,2,1.4) 0,1,2,5,2,1, 1) 0,1.3,3,1, 1,1)

0.97 119 140 (18%) 179 (50%)
(3,3,2,6,1, 1, 1) 0,1,1.3,1,1,1) 0,1,3,3,1.1,1)

0.98 128 145 (13%) 179 (40%)
(2,5,7.4,3,1,1) 0,2,2.4,2,1,1) 0,1,3,3,1,1,1)

0.99 167 . 181 (8%) 214 (28%)
(4.4.3,1,2,2,3) (2,3,2,2,2,1,1) 0,2,2,2,2,1,1)

avg% 0% 11% 35%

Table 6: Communications Cost and vote assignment
for various de~rcd values of AV (7 sites, Cij'S from Uniform(1,5».

P = (0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Traffic Volumes = (5,7.4,9,1,5,8)

43

AV Al !lO. SE-A V AI!:!o. PE-AV2 Algo. PE-AVI
0.93 101 125 (24%) 160 (58%)

(1,2,2,7,1,2,2) (1,2,2,6,1,2,1) 0,1,5,1, 1,1,1)
0.94 101 125 (24%) 220 (118%)

(l ,2.2.7,1.2.2) 0.2,2.6.1,2.1) 0.5.1, 1, 1, 1,1)
0.95 107 125 (17%) 236 (121 %)

(1,2.1,6,1,2.2) 0.2.2.6.1.2.1) 0.1,3.3.1,1,1)
0.96 120 140 (17%) 236 (97%)

(2,4,3.9,2,1,4) 0,2,2,5,1,1,1) 0,1,3.3,1,1,1)
0.97 140 140 (0%) 236 (69%)

(1.3,3,5,1,1,1) 0.3.3.5,1,1,1) 0.1.3.3.1,1,1)
0.98 146 188 (29%) 236 (62%)

(2,4.2.5.1.1,2) (1.2,4,4.1,2,1) 0.1,3.3.1,1.1)
0.99 240 267 (11%) 302 (26%)

(2.2,3.3.2,1,2) (2.2.3.3.1.2.2) 0.2.2,2,1.2.1)
avg% 0% 15% 69%

Table 7: Communications Cost and vote assignment
for various desired values of AV (7 sites. Cij 's from Uniform(1, 10»).

AV

0.93

0.95

0.97

0.99

avg%

P = (0.91.0.90,0.89.0.87.0.86.0.85,0.84)
Traffic Volumes = (5,7,4,9.1.5.8)

Algo. SE-AV Algo. PE-AV2 Al!:!o. PE-AV1
179 225 (26%) 259 (45%)

0.2,2,2.1,9.2.1.1) 0.2.1.2.1. 7.1, 1.1) (1.7,1,1.],1.1.1.1)
215 241 (12%) 386 (80%)

(2,3.1,1,2.9.3.1.1) (1.1.1,2.1.6.1.1.]) (1.1.1.4.1.4,1.1,1)
252 310(23%) 386 (53%)

(3,4.1.1.2.8.1,2,1) 0,3.1,2.1.6.1, 1.1) (1.1.1,4,1,4.1,1.1)
366 418(14%) 484 (32%)

(3,4.2,2,1.5.2.1, 1) (2.3.2,5.1.2.1.2,1) 0.3.2.3.1.3,1.2,1)
0% 19% 53%

Table 8: Communications cost and vote assignment
for variou~ desired values of AV (9 sites. Cij 's from Uniform(1,10».

P = (0.91.0.90,0.89,0.87,0.86.0.85,0.84.0.88,0.83)
Traffic Volumes = (5,7,4,9,1,5,8,6,3)

44

Algorithm SE was used to optimize the vote assignment for the 7-site network discussed in

Section 10, and the same 3 uniform distributions were used as before to generate the unit inter-

site communications cost. Again, the availability cut-off was varied from 0.93 to 0.99 in intervals

of 0.01. At each cut-off value, the corresponding communications cost was computed using

Algorithm SE-AV. The results of these computations are presented in Table 9. The total traffic

volumes and the reliability of each site, Pi are also indicated. (Note that Table 9 was actually con-

structed by extracting the first column from Tables 5, 6, and 7, and combining the 3 extracted

columns together).

To make a comparison against the available copies algorithm we need to compute the com-

munications cost and availability again. In the static c,ase, the read and write quorums were

required to be equal as discussed in Section 3.2; therefore, the total communications cost does not

depend on the write ratio, pw' In the dynamic case, however, this is not true, and the communica-

tions cost would vary for different values of pw. In Table 10, we have computed the communica-

tions cost for different values of Pw. The 3 columns correspond to the 3 different distributions

for the unit inter-site communications cost as in Table 9. The rows of Table 10 correspond to dif-

AV U(1,l) U(1,5) U(1,lO)
0.93 39 95 101
0.94 39 96 101
0.95 44 101 107
0.96 44 111 120
0.97 53 119 140
0.98 62 128 146
0.99 78 167 240

Table 9: Static Algorithm:ytinimum Communications Cost for 3 cost distributions (7 sites)
P = (0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Total Traffic Volumes = (5,7,4,9,1,5,8)

45

ferent values of pw. The total traffic volumes were the same as in Table 9; however, the read and

write traffic components were varied depending upon Pw'

The availability in the dynamic case is computed differently than in the static case. We

now tum to describe our method for performing this computation. In the available copies algo-

rithm, transactions running at the time a site fails or recovers may have to be aborted, and res-

tarted. This will result in a time delay during which the system will be unavailable. We call this

time interval a reconfiguration interval, trecoll' It is assumed that each site has a mean time to

failure (MTTF) and a mean time to repair (MTTR). For simplicity, all sites are assigned the same

value of MTTF and also of MTTR. To make the analysis tractable, it is reasonable to further

assume that each site will fail and recover once on the average within a MTTF + MTTR cycle,

and at each failure and recovery point, the system will be unavailable for trecoll length of time.

Thus, if availability is defined as the fraction of time for which the system is available during one

cycle, it may be estimated as:

1 2xtrecon xn
MTTF+MTTR

pw U(1,l) UO,5) UO,lO)
0.05 12 34 . 73

0.1 24 75 141
0.15 36 108 199
0.2 48 139 256
0.3 72 213 422
0.4 96 282 502
0.5 120 364 675

Table 10: Dynamic Algorith.!!l: Communications Cost versus pw for 3 cost distributions (7 sites)
P = (0.91,0.90,0.89,0.87,0.86,0.85,0.84)
Total Traffic Volumes = (5,7.4,9,1,5,8)

AV = 0.98

46

,.,.",

. '

'"

In order to make the comparison against the optimized static algorithm, MTTF was set at 6

hours, while MTIR was set to 44 minutes for each site. This translates to a reliability of 0.874 in

probabilistic terms which is the average Pi for the 7 sites in Table 9. Using a trecoll value of 30

seconds, and setting n to 7, the availability is 0.98 .

Several interesting conclusions may be drawn from the results in Tables 9 and 10. First, if

cost minimization is the main objective, then the dynamic algorithm is superior when- Pw is

below a cut-off. However, this cut-off becomes smaller as the range of variation of Cij increases.

For instance, if the distribution chosen is U(l, i), then the cut-off is 0.15, while for distributions

U(1,5) and U(I,lO), the cut-off reduces to 0.10 and 0.05, respectively. This means that as the

variation in cijincreases, the dynamic algorithm becomes less attractive if cost minimization is

the main objective.

On the other hand, if the cost of the dynamic algorithm is compared against its static coun­

terpart which gives the same availability, then the above Pw cut-offs increase to 0.25, 0.2, and 0.1

respectively. Therefore, the pw space within which the dynamic algorithm does better becomes

larger. Clearly, Pw is a critical factor in choosing between the static and dynamic algorithms.

Secondly, while different static vote assignments lead to various values of availability and

communications cost, in the dynamic case there is one availability value, 0.98. Table 9 shows

that the static method can give a higher availability of 0.99. Therefore, if availability maximiza­

tion is the main goal then the static technique seems to outperform the dynamic one. Of course,

trecoll and n are critical parameters in computing the availability from the formula above, and if

these can be lowered, then availability would naturally increase.

12. Summary and Future Research

The vote assignment problem is important because the assignment of votes to sites greatly

affects the transaction overhead and availability. In this paper, a general framework for under­

standing and analyzing this problem was introduced. The main objective of this framework is

47

communications cost minimization either in an unconstrained manner or subject to a certain relia­

bility constraint. Two basic optimization models were developed. In the first model, the reliabil­

ity constraint was failure tolerance while in the second one it was availability. In the general

models, no restriction is imposed on the votes or the unit inter-site communications costs. How­

ever, if such conditions are added then some of the special cases that arise are easier to solve than

the general model. Such special cases were also included in our framework and techniques for

solving them described.

It was shown that the general vote assignment problem has exponential complexity. More­

over, no efficient solution procedure that would run in reasonable time is known. (Complete

enumeration is an obvious solution method,though clearly not a feasible one). A semi­

exhaustive algorithm and two partial enumeration algorithms to solve these problems were dis­

cussed in detail and also implemented. These algorithms employ efficient techniques for comput­

ing the availability of a vote assignment. The signature concept was used to prune the exponential

space of vote combinations and to generate only non-equivalent combinations.

The computational results in Section 10 validate greedy algorithms as an effective tech­

nique for vote assignment. Although these algorithms deteriorate as the range over which Cij'S

are varied increases, they compare favorably with semi-exhaustive algorithms overall, and lead to

several orders of magnitude savings in computational effort.

. Lastly, the optimized static algorithm was compared against the available copies method, a

dynamic algorithm. It was found that no one type of algorithm uniformly dominates the other.

Ranges over which each type of algorithm does better were determined. Dynamic algorithms

were better for a small value of the write ratio, pw, and low variability in the inter-site communi­

cations cost. On the other hand, static algorithms were better if the goal was to maximize availa­

bility. Also, if the goal was to minimize cost, then the range of pw values over which the

dynamic algorithm does better is very small. Another factor that should be considered is that

48

..

static algorithms are simpler and much easier to implement than dynamic algorithms.

This study also shows that a more detailed comparison of static algorithms against dynamic

algorithms would be a very useful exercise. In this paper, the treatment of dynamic algorithms

has been restricted to just one type, the available copies method. Future work is anticipated to

evaluate other dynamic algorithms, perhaps USing more elaborate models. For instance, the

reconfiguration time should also include the time to reoptimize the vote assignment.

Finally, yet another area for future research is to establish bounds on the sub-optimality of

the semi-exhaustive algorithms. Basically, our algorithm is semi-exhaustive, not completely

exhaustive, for two reasons. First, we generate new vote combinations by adding an incremental

number of votes to the set of combinations obtained at the most recent stage, not to all the combi-

nations obtained so far. This could lead to some combinations being missed. Secondly, we

choose an arbitrarily high number for a stopping rule, or stop if no new combinations are found

for a gap of 25 votes. It would naturally be desirable if it could be proven rigorously that there is

an upper limit for the total number of votes beyond which no new combinations. will be found. A

method for overcoming these two drawbacks could conceivably lead to a smart, completely

exhaustive algorithm. A different approach to establishing sub-optimality bounds on the semi-

exhaustive algorithms would be to use some kind of an upper bound analysis technique.

Acknowledgements.

We thank Prof. Michael Stonebraker for his suggestions on comparing static algorithms against

dynamic ones.

References
[BARB86] Barabara. D .• Garcia-Molina. H .• and Spauster, A.. "Protocols for Dynamic Vote

Reassignment". Technical Report. Deparunent of Computer Science, Princeton
University. May 1986.

[BERN84] Bernstein. P.A., and Goodman, N., "An Algorithm for Concurrency Control and
Recovery in Replicated Distributed Databases", ACM Transactions on Database
Systems 9(4). pp 596-615, December 1984.

49

[BERN87] Bernstein, P., Hadzilacos, V., and Goodman, N., Concurrency Control and
Recovery in Database Systems, Addison Wesley Publishing Co., 1987.

[BUDN77] Budnick, Frank S., Mojena, R., and Vollm ann , T.E., "Principles ·of Operations
Research for Management", Richard D. Irwin, Inc., 1977.

[DAVI85] Davidson, S. B., Garcia-Molina, H., and Skeen, D., "Consistency in Partitioned
Networks", ACM Computing Surveys 17(3), pp 341-370, September 1985.

[EAGE81] Eager, D.L., "Robust Concurrency Control in Distributed Databases", Technical
Report CSRG #135, Computer Systems Research Group, University of Toronto,
October 1981.

[EAGE83] Eager, D.L., and Sevcik, K.C., "Achieving Robusmess in Distributed Database
Systems", ACM Trans. Database Syst. 8(3), pp 354 - 381, September 1983.

[ELAB85] El Abbadi, A., Skeen, D., and Cristian, F., "An Efficient, Fault-Tolerant Protocol
for Replicated Data Management", Proc. 4th ACM SIGACf-SIGMOD Symp, on
Principles of Database Systems, pp 215 - 228, Portland, Oregon, March 1985.

[GARC84] Garcia-Molina, H., and Barbara, D., "Optimizing the Reliability Provided by Vot­
ing Mechanisms", Proc. 4th International Conference on Distributed Computing
Systems, pp 340-346, May 1984.

[GARC85] Garcia-Molina, H., and Barbara, D., "How to Assign Votes in a Distributed Sys­
tem", Journal of ACM, Vol. 32, No.4, pp 841-860, October 1985.

[GIFF79] Gifford, D.K., "Weighted Voting for Replicated Data", Proc. 7th ACM SIGOPS
Symp. on operating Systems Principles, pp 150 - 159, Pacific Grove, CA, December
1979. ~.

[HERL87] Herlihy, M., "Dynamic Quorum Adjustment for Panitional Data", ACM Trans. on
Database Systems, Vol 12, No 2, pp 170-194, June 1987.

[JAJ087] Jajodia, S. and Mutchler, D., "Dynamic Voting", Proc. 1987 ACM SIGMOD, pp
227-238, San Francisco, CA, May 1987.

[KUMA88] Kumar, A., and Segev, A., "Optimizing Voting-Type Algorithms for Replicated
Data", Lecture Notes in Computer Science, Vol 303, J.W. Schmidt, S. Ceri and M.
Missekoff (cds.), pp 428-442, Springer-Verlag, March 1988.

[STON79] Stonebraker, M., "Concurrency Control and Consistency of Multiple Copies of
Data in Distributed Ingres", IEEE Transactions on Software Engineering 3(3), pp
188-194, May 1979.

[THOM79] Thomas, R. H., "A Majority Consensus Approach to Concurrency Control", ACM
Trans. on Database Systems 4(2), pp 180-209, June 1979.

50

'.

~-.... ~ -t

LA WRENCE BERKELEY LABORATORY

TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720'

J~

