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Abstract

This paper reports the experimental system identi�cation of the Jet Propulsion Laboratory MEMS
vibratory rate gyroscope� A primary objective is to estimate the orientation of the sti�ness matrix prin�
cipal axes for important sensor dynamic modes with respect to the electrode pick�o�s in the sensor� An
adaptive lattice �lter is initially used to identify a high�order two�input�two�output transfer function
describing the input�output dynamics of the sensor� A three�mode model is then developed from the
identi�ed input�output model to determine the axes� orientation� The identi�ed model� which is ex�
tracted from only two seconds of input�output data� also yields the frequency split between the sensor�s
modes that are exploited in detecting the rotation rate� The principal axes� orientation and frequency
split give direct insight into the source of quadrature measurement error that corrupts detection of the
sensor�s angular rate�

� Introduction

A new generation of microelectromechanical �MEMS� gyroscope is being developed at the Jet Propulsion

Laboratory for spacecraft applications such as attitude stabilization� maneuver control� and tumble recov�

ery� The advantages of this system over conventional inertial navigation instruments include� compact size

and weight savings� low power consumption� and a low cost micro�machining process� Microgyroscopes will

augment other external inertial reference systems such as the Global Positioning System �GPS�� sun sensor�

or star tracker in future planetary �y�by and landing� and interplanetary astrophysics research programs�

will use this technology� Tang et al� ����	a� gives an overview of the role of micro�inertial systems in

spacecraft� The summary by Yazdi et al� ����
� describes other e�orts to develop a MEMS gyroscope�

For the microgyros to realize the performance levels of which they are capable� innovative methods

are required for device calibration and active control of sensor dynamics� The necessity of such methods
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Technology Grant No� PF�����
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arises from the fact that the mechanical properties of MEMS are inherently sensitive to their operating

environment� their dynamic characteristics can vary signicantly with temperature and pressure� Also�

because of the microscopic scale of key mechanical components� fabrication irregularities can produce a

wide range of dynamic responses among any batch of supposedly identical devices� The sensitivity and

variability of sensor dynamics must be compensated for by precise calibration of individual devices based

on the detailed modeling and identication from input�output �I�O� data� and often by active control

loops built into the sensor�

The JPL microgyroscope� like all vibratory rate sensors� relies on the dynamic coupling of elastic modes

within the sensor� In these devices� a degree of freedom is driven to a constant� known amplitude and as

the sensor is rotated the driven motion is coupled into a second degree of freedom via a coriolis term� The

angular rate of rotation of the sensor may be inferred from the response amplitude of this second degree

of freedom �often called the sense mode� and in a high sensitivity device� the amplitude of coriolis�induced

motion may be several orders of magnitude smaller than the response of the driven degree of freedom�

This poses a challenging sensing task since the electronic pick�o�s usually observe all elastic modes of the

sensor�

Each vibratory rate sensor design addresses this issue in a unique way� Zhbanov and Zhuravlev ����
��

for example� show how the hemispherical resonator gyro uses mass balancing of the vibrating structure

to modify its modal properties into producing a more favorable response� Tuning fork rate gyros� and

error sources in these devices� are discussed in Newton ���	�� and Morrow ������� A comprehensive error

analysis of a simplied vibratory gyro model is presented by Lynch ���������
� where he addresses both

force rebalance and open�loop operation�

The JPL microgyro in its most ideal conguration blends measurements of two pick�o�s to make

the driven motion unobservable thereby sensing only the coriolis�induced response� The pick�o� signals

are usually combined in a sum and di�erence manner even though the driven mode and coriolis�induced

de�ections are not isolated by the new measurements� The extent to which the driven mode corrupts the

measurement of the coriolis�induced motion is essentially determined by the orientation of the principal axes

of the sti�ness matrix� associated with two elastic sensor modes� with respect to the electronic pick�o�s�

This paper introduces a procedure to estimate the orientation of the sti�ness matrix principal axes� or

sti�ness axes for brevity� with respect to the sensing and actuation electrodes� The method uses only I�O

data from the drive electrodes to the sense pick�o�s� We show that the principal axes of the prototype

tested for this paper do not align themselves with the natural body�xed axes based on the mechanical

symmetry of the sensor� Furthermore� the process of packaging the microgyro in a hermetically sealed

high�vacuum enclosure can introduce stresses that modify its modal properties� In a packaged device�

however� it is impossible to employ optical instruments that can make direct measurements of the axes�

orientation so our approach is especially useful when optical access is limited� The strongest motivation

for determining the sti�ness axes� orientation� however� comes from the fact that the orientation may be

�tuned�� much like the frequency split between the modes is reduced with electronic tuning� to improve

sensor performance�

Our two�step approach to estimate the axes� orientation rst applies modern system identication �ID�
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algorithms to identify multivariable I�O models of the JPL microgyro� These high�order models capture the

dynamics of the sensor�s mechanical structure as well as those of the sensing and actuation electrodes� The

I�O models of the gyro reveal important sensor properties such as modal frequencies and damping ratios

and are also suitable for control loop design as described in M�Closkey et al� ������� At the second step�

we obtain a reduced�order model of the primary gyro dynamics that is based on the identied high�order

model and demonstrate how� under certain assumptions� the orientation of the sti�ness matrix principal

axes can be determined from this model�

Our approach has the advantage of yielding tractable computational problems at each step� For ex�

ample� the identication of the I�O model is achieved using a numerically stable lattice lter that ts an

ARX model to the I�O data� A high�order model only takes several seconds to compute from ������ points

�two seconds� of multichannel data� The rigid body model is derived from the high�order model after an

appropriate truncation and its salient features are extracted using simple singular value decompositions of

the reduced order state�space data� An alternative method is to compute the rigid body model parameters

in one step by optimizing the t of this model to the I�O data� The di�culty with this approach� however�

is that the model parameters enter into the computations in an essentially nonlinear fashion that requires

global optimization to solve�

The paper is organized as follows� Section ��� describes the physical aspects of the JPL microgyro�

Section ��� discusses the rate measurement error sources� Section ��� brie�y discusses the ARX model

structure used in the identication of a high�order sensor model� and Section ��� proposes a method for

computing the orientation of the sti�ness matrix principal axes� The experimental results are compiled

in Section �� The identication results are presented in Section ���� and an estimate of the orientation of

the sti�ness axes is pursued in Section ���� Our justication of treating the gyro dynamics as if they were

governed by classically damped second order equations is given is Section ���� and supporting elaboration

on the response of the sensor�s modes is made in Section ���� The analysis is Section � is postponed until

after the identication results are reported in Section � because the identied frequencies and damping

ratios are required for the numerical studies discussed in Section �� Section 	 concludes the paper�

� Vibratory Rate Gyro Principles

��� The JPL Microgyroscope

Excitation of the JPL microgyro dynamics is achieved by applying a potential to the two drive electrodes�

denoted D� and D�� in Figure �� The drive electrodes� and sensing pick�o�s labeled as S� and S� in this

gure� are suspended by silicon springs above matching electrodes on the base plate� The large central post

is rigidly attached to the �cloverleaf� formed by D�� D�� S� and S�� The post adds inertia to the system

which boosts the sensitivity to rotational motion� The electrical potential between the drive electrodes

and their respective base�plate electrodes creates an electrostatic force that pulls the electrodes towards

each other and this applied torque causes the cloverleaf assembly to tilt or rock� The displacement of

the cloverleaf structure causes a rate�of�change of capacitance between the sensing electrodes and their
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respective base�plate electrodes� These signals are measured with transimpedance ampliers and provide

estimates of the velocity at two points on the cloverleaf assembly� Further information on the operating

principles of the microgyro� fabrication details� and preliminary performance results may be found in Tang

et al� ����	b������� A description of other non�MEMS vibratory gyro technologies is covered in Lawrence

����
��

The rocking of the cloverleaf assembly is actually the response of two modes of the elastically suspended

structure� An appreciable response amplitude can only be achieved when driving the system near these

modal frequencies� These modes have equal frequencies and no damping in an ideal device and� in this

degenerate situation� any line through the origin of the x�y axes in Figure � represents an axis about which

the post can be made to rock� A natural choice for the driven mode in this case is to make the cloverleaf

rock periodically about the y�axis in Figure �� This drive rocking mode is excited by applying the same

periodic potential to D� and D� as this creates a torque about the y axis� If the device is rotated with

angular rate � about the z�axis� then the periodic y�axis response is coupled into the x�axis degree of

freedom via coriolis acceleration� The response about the x�axis is referred to as the sense rocking mode

and its motion is related to �� The sense rocking mode response is simply measured by taking the di�erence

between the S� and S� pick�o� measurements� Similarly� the drive rocking mode response is measured by

summing S� and S� and is used as a feedback signal when exciting this degree of freedom�

Actual microgyros� however� do not have equal sense and drive rocking mode frequencies nor can they

be made with zero damping� This implies that the x and y�axes may not be modal axes associated with the

cloverleaf rocking modes� Thus� the detection of the coriolis�induced de�ections using the sensing scheme

noted above is now subject to various errors� Similarly� setting D� equal to D� no longer excites just one

rocking mode in this case� The next section presents the linearized model of the JPL microgyroscope and

identies signals which corrupt the angular rate measurement in any practical device�

��� Gyro Analytical Model and Rate Measurement Error Sources

The gyroscopic dynamics of the JPL sensor can be captured by modeling the cloverleaf as a thin� uniform�

rigid plate with a uniform post� or cylinder� mounted perpendicular to the plate at its center� The plate

has moment of inertia I� and the post has moment of inertia Ip about in�plane principal axes through the

center of the plate� The plate and post under go small out�of�plane rotations �x and �y about gyro�xed

x and y axes in Figure �� and the gyro rotates at the rate � about its z�axis� The plate is attached

elastically to the gyro housing� and control torques �x and �y are applied to the plate about the x and y

axes� respectively� The linearized equations of motion for this model are�
I� � Ip �

� I� � Ip

� �
��x
��y

�
� ��

�
� �Ip
Ip �

��
��x
��y

�
�

�
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�
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�
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�
�

���

The sti�ness matrix K is positive denite� and the damping matrix C is at least positive semidenite�

These equations reveal that the vertical post is responsible for the coriolis coupling between the two
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rocking modes�

The linearized equations of motion for all vibratory gyroscopes possess the same canonical structure

�see Lynch ���������
�� for example�� However� the parameterization in ��� in terms of I� and Ip is unique

to the JPL design� and the skew�symmetric matrix reveals the way in which the JPL device achieves the

coriolis coupling between the two vibration modes�

The JPL microgyro� as in most vibratory rate sensors� operates in a force rebalance mode� In this

case� the y�axis is designated as the drive axis and is excited by �y into a harmonic oscillation with stable

amplitude and frequency� The objective of the force rebalance scheme is to drive �x to zero by appropriate

specication of �x� In the ideal rate sensor with identical modal frequencies and no dissipation� �x is

proportional to � �see ��� below�� In the non�ideal sensor the principal axes of K and C are not aligned

with each other nor with the x and y axes� The excitation and control of �y and �x are carried out with

feedback loops as shown in Figure �� The upper loop is designed to produce ��y � A cos���t� ��� and the

lower loop regulates �x to zero� The angular rate � is treated as an external disturbance and the next

paragraphs demonstrate how � can be detected from the sense rebalance torque �x�

The �x and �x coordinates are not very transparent for revealing terms in the sensor dynamics that

govern the sensor�s performance� A more convenient coordinate system is dened in which K is diagonal��
��

��

�
�

�
cos � sin �

� sin � cos �

�
� �z �

O

�
�x

�y

�
�

where �� and �� are small rotations of the cloverleaf plate about the new gyro�xed x� and x� axes that

coincide with the sti�ness matrix principle axes� and O is the real orthonormal matrix that diagonalizes

K� i�e��

OKOT �

�
�k� �

� �k�

�
�

Figure � shows the relation of both coordinate systems as well as other parameters that will be used in

Section ���� The eigenvalues of K� or principal sti�nesses� are denoted �k� and �k�� Rewriting ��� in terms

of the new coordinates yields�
���

���

�
� ��

Ip
I��p

�
� ��
� �

��
���

���

�
�

�
c�� c��

c�� c��

��
���

���

�
�

�
��
� �
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�
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��
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�
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cos �

�
�y �

�

I��p

�
cos �

� sin �

�
�x�

���

where ��
i � �ki��I� � Ip�� i � �� �� I��p � I� � Ip� and�

c�� c��

c�� c��

�
�

�

I��p
OCOT �

In this coordinate system� parameters such as modal frequencies and o��diagonal damping terms are dened

and will be used in the error analysis�
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Our objective in this section is to derive the equations for �y� the drive axis dynamics� and the ideal

sense�axis torque� denoted �rb� that enforces the constraint �x�t� � � for all t �the rebalance force�� Note

that �y � �� sin � � �� cos � by denition and �� cos � � �� sin � from the rebalance requirement� The

following expressions are developed using these relations�

��y �
�
c�� sin

� � � c�� cos
� � � c�� sin ��

�
��y �

�
��
� sin

� � � ��
� cos

� �
�
�y � �y ���

�rb �
�

�

�
��
� � ��

�

�
�sin ����y �

�
�

�
�c�� � c��� sin �� �

�

�
c�� cos �� � �

Ip
I��p

�

�
��y� ���

The largest possible sinusoidal response amplitude of �y is desired since this scales the torque rebalance

signal �see ����� A drive axis control loop to achieve this objective� shown in Figure �� may be designed

using ���� The torque required to keep �x at zero is displayed in ��� and is denoted �rb �the subscript

indicates �rebalance��� This torque may be closely approximated by the control signal generated from a

high�gain feedback loop closed from �x to �x� also shown in Figure �� We will assume for purposes of the

error analysis that ��y�t� � A cos��t� for some xed response amplitude� A� and frequency �� �the phase

may be taken to be zero without loss of generality�� so that the rebalance torque is written as

�rb � A

	
BBB
�

�

��
� � ��

�

w�
sin �� sin��t� �z �

source of quadradure error

�
�

�

�
�c�� � c��� sin �� � c�� cos ��

�
cos��t� �z �

source of in�phase error

� �
Ip
I��p

�cos��t� �z �
desired term


CCCA �

���

The terms in ��� give much insight into error sources that produce measurement biases and corrupt the

estimate of �� The sources may be grouped into in�phase and quadrature terms as labeled in ���� Rotation

of the sensor with angular rate � produces a rebalance torque proportional to � cos��t� Damping in the

sensor� however� also produces a torque that is in�phase with� and hence indistinguishable from� the one

produced by ��

Another signicant error source is the quadrature term in ���� This error is present because of frequency

mismatch between the rocking modes� i�e�� �� �� ��� in addition to misalignment between the sti�ness axes

and the pick�o�s that measure ��y and ��x� i�e� � �� �� Note that �� is usually selected as either �� or

��� so in this case ���
� � ��

����� � ���� � ���� The quadrature error may be signicantly reduced by

using phase sensitive detection in which �rb is demodulated with respect to a measurement of ��y� More

specically� when ��y is measured� a small phase error is incurred and the demodulating signal becomes

A cos���t � �E�� where �E is the measurement�s phase error� Demodulating �rb by multiplication with

A cos���t��E� and then ltering to remove the high frequency harmonics� produces the following estimate

of the sensor rotation rate

A

�

�
��

�

��
� � ��

�

w�
sin �� sin�E �

�

�

�
�c�� � c��� sin �� � c�� cos ��

�
cos�E � �

Ip
I��p

�cos�E

�
� �	�

The in�phase error is minimized by constructing sensors with as little damping as possible� that is� reducing

the magnitude of cij � The quadrature error for many designs becomes the limiting factor in the ability to

	



recover �� As is evident from �	�� the quadrature error is essentially proportional to the product of three

terms� �� the frequency split� �� � ��� �� misalignment of the principal axes of elasticity with the sensing

pick�o�s� �� and �� the demodulation phase error� �E �

A common practice is to close the rebalance and drive control loops in vibratory rate sensors when

� � � and directly determine the quadrature and in�phase bias errors to within the condence specied by

the demodulation phase error� The individual contributions to these biases� however� cannot be resolved

using this method� Thus� direct measurement of � provides more insight into the bias errors and may assist

in tuning the gyro dynamics to improve performance�

� Identi�cation Methods

��� ARX Input�Output Models

The two�mode model ��� is useful for explaining the basis of the JPL microgyro operation but in reality the

sensor has more complex dynamics� There is another signicant degree of freedom that results in plunging

of the post and leaves along the z�axis in Figure �� Furthermore� there is some electrical cross�coupling

between the drive electrodes and pick�o�s� A higher�order I�O model is necessary to capture these features�

The rst step of the system identication ts an input�output model to experimental data� This data

t is done in the time domain� The objective is to accurately model the dynamic response of the gyroscope�

when � � �� as represented by the two�input�two�output transfer function from drives D� and D� to pick�

o�s S� and S�� This transfer function is assumed to have the form of the linear ARX �Auto�Regressive

with eXogenous input� model

A�q����y � B�q����u� ���

where A and B are �� � matrix polynomials in the delay operator q��� and �y and �u represent the �� �

measured output sequences and applied input sequences� respectively�

Accurate identication of the two rocking modes is necessary for estimating � and the frequency split�

The raw data includes linear vibration modes and their harmonics� The harmonics are primarily due

to nonlinear distortion introduced by the capacitive sensing scheme� For system identication� we use a

bandpass lter to remove most of the higher�harmonic content from the output sequences before identifying

a transfer function� However� even after this procedure� there remains signal power from higher frequency

modes and harmonics� and this residual power outside of the bandwidth of interest is su�cient to require

the use of high�order models for accurate identication of the rocking modes� Furthermore� there is a

prominent up�down mode whose frequency is close to the rocking mode frequencies� The bandpass ltering

does not remove the up�down mode from the data and hence this mode is identied along with the rocking

modes�

The adaptive multichannel lattice lter algorithm developed in Jiang and Gibson ������ is used to iden�

tify high order models� This algorithm ts the model in ��� to the input�output data using a least�squares
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criterion� The features that make the lattice lter attractive for microsystem applications are its suitability

for real�time implementation� numerical e�ciency and stability at high orders� and rapid convergence of

parameter estimates� Furthermore� identication of other classes of complex �exible structures has shown

that multiple input and output channels must be used to identify two or more modes with very close

frequencies and earlier versions of the multi�channel lattice lter used here have proved e�ective for such

tasks �see� for example� Jiang et al�� ������

��� Computing Sti�ness Matrix Principal Axes from Input�Output Models

A systematic and reliable method for determining the rocking mode frequency split� ������ and the angle

� between the gyro�xed x and y axes and the sti�ness axes is developed in this section and represents an

improvement over measuring just the aggregate terms� This analysis is complementary to the usual tests

performed on vibratory rate sensors and may be used to screen sensor prototypes� or alternatively� perform

on�line tuning to drive the modal frequencies closer together and � to zero�

We consider the situation in which the damping principal axes are the same as the sti�ness axes� We

will subsequently show in Section ��� that this is a reasonable assumption for the gyro under test� The

part of the identied ARX model that represents the rocking modes in continuous�time state�space form

is given by ���� without rate input �� and with the o��diagonal damping set to zero�

�
���

���

�
�

�
c�� �

� c��

��
���

���

�
�
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� �
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�
sin �

cos �

�
�y �

�

I��p

�
cos �

� sin �

�
�x� �
�

This model is not complete� however� because the controlled variables in the JPL sensor are not torques

about the x and y axes but rather forces applied at the D� and D� electrodes� We dene two scale factors�

KD�
and KD�

� that convert the electrical potentials on D� and D� into forces� The scale factors are allowed

to be di�erent because of possible variations in electrode area� etc� The distributed electrode forces are

replaced with equivalent point forces and� due to the symmetric fabrication of the drive electrodes� the

point forces are assumed to act at the center of its corresponding electrode� Thus� the point forces are

converted into torques with moment arm l about the x and y axes �see Figure ��� This leads to the following

relationship between the applied voltages and torques�
�x

�y

�
� l

�
�� �

� �

�
� �z �
MD

�
KD�

�

� KD�

�
� �z �

KD

�
D�

D�

�
� ���

The matrices MD and KD are dened as shown� Positive torques and angular velocities conform to the

right�handed convention and this denes the signs of the MD elements�

The sensor outputs are voltages proportional to the distributed sense electrode velocities� As in the

drive electrode case� we assume that the electrode voltage is proportional to the velocity at the center of

the electrode� The contributions of the angular velocity about the x and y axes with moment arm l are






combined� through the matrix MS � to yield the total electrode velocity� Displacements in the negative

z�axis direction are considered positive� The conversion factors from velocity to voltage for each electrode

are denoted KS� and KS� and are used to dene the scaling matrix KS as shown in ����� Thus� the

gyroscope output equation is �
S�

S�

�
� l

�
KS� �

� KS�

�
� �z �

KS

�
�� ��
� ��

�
� �z �

MS

�
��x
��y

�

� lKSMS

�
cos � � sin �

sin � cos �

� �
���

���

�
�

����

Combining �
�� ���� and ���� into a multi�input�output transfer function yields

�
S��D� S��D�

S��D� S��D�

�
�

s

s� � c��s� ��
�

l�

I��p
KSMS

�
cos �

sin �

� h
cos � sin �

i
MDKD� �z �

M�� �rst Markov parameter associated with mode �

�

s

s� � c��s� ��
�

l�

I��p
KSMS

�
� sin �

cos �

� h
� sin � cos �

i
MDKD� �z �

M�� �rst Markov parameter associated with mode �

�

����

A calculation with the state space representation of �
� in which the modes are decoupled yields the

expressions for the rst Markov parameters �the product �CB� from the state space matrices� shown

in ����� The form of this transfer function suggests a method for determining ��

�� identify the two rocking modes in the gyroscope dynamics�

�� after a state�space transformation in which the modes are decoupled� compute the rst Markov

parameter for each mode� denoted M� for mode one and M� for mode two�

�� compute the matrices  Mi � �KSMS�
��Mi�MDKD�

��� i � �� ��

��  M� is� ideally� rank one and its left and right singular vectors corresponding to the non�zero singular

value are equal to
h
cos � sin �

iT
�alternatively�  M� is also rank one and its singular vectors are equal

to
h
� sin � cos �

iT
��

�� determine � from the singular vectors�

This method requires the KS and KD gain matrices� Estimates of these gains are made in Section ����
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� Experimental Results

��� Identi�ed Models

Chirp signals �continuously swept sinusoids�� generated at a sampling rate of �� kHz and passed though a

zero�order hold� are used to excite the gyro� The D� input is swept linearly from ��� Hz to ��� Hz over a

three�second period while the D� input is swept linearly from ��� Hz down to ��� Hz over three seconds�

These frequency ranges were chosen after a simple test with a spectrum analyzer indicated the presence

of sensor modes in this frequency range� The inputs are swept in opposite directions to ensure that they

are independent sequences thereby fully exciting the gyro dynamics from each input channel� In fact� the

JPL gyro� with its very closely spaced rocking modes� motivates the application of MIMO identication

methods� In the degenerate case where the modes are equal� the system is not observable from a single

pick�o� measurement nor controllable from a single drive channel� Thus� at least two inputs and two

outputs are required to properly identify the modes� The inputs have a ��volt peak�to�peak amplitude

with a ��volt bias and they are directly applied to the electrodes from the D�A board�

The voltage measurements from the sensing pick�o�s are ltered through identical analog low�pass

lters �
�pole Butterworth�� with ��
 kHz corner frequencies for anti�aliasing� before being sampled at ��

kHz� The lters also provide an additional �� dB boost to ensure that the measurements nearly span the

�	�bit range of the A�D converters� Figure � shows the sampled output sequences for one experiment and

their corresponding power spectral densities �PSD�� The distinct beat frequencies evident in the outputs

indicate the presence of closely spaced modes� The drive inputs are not shown since no details are visible

except on short time scales�

The PSDs of the output sequences have signicant energy between ��� Hz and 	�� Hz �the modes we

wish to model�� ���� Hz to ���� Hz �the second harmonics due to measurement nonlinearities�� and integer

multiples of 	� Hz �AC hum�� The signal content from the higher harmonics is removed prior to system

identication by ltering both the input and output sequences with an 
th�order Chebychev bandpass lter

with IIR transfer function Gbp�q
���� The ltered signals are denoted by �ybp and �ubp� i�e��

�ybp � Gbp�q
����y� �ubp � Gbp�q

����u� ����

The lower corner frequency for the bandpass lter is ��� Hz and the higher corner frequency is ��� Hz

�taken to match swept frequency range�� Multiplying ��� by Gbp�z� yields

A�q����ybp � B�q����ubp� ����

This is the discrete�time two�input�two�output model used for system identication� The Chebychev lter

weights the prediction error according to the window specied by Gbp� thereby forcing the identication

algorithm to concentrate on modeling the sensor dynamics in this frequency range� The bandpass lter

adds no net phase to the identied model because both the input and output sequences are ltered� i�e��

�ybp and �ubp are delayed the same amount�

��



Models with orders ranging from �� to 
� were identied from several data sets� It is not necessary to use

three seconds of data� corresponding to the period of the sweep input� to obtain good identication results�

In fact� the lattice lter processed a two�second data window ������� points per channel� centered on the

portion of the data record that contained the largest signal output� For example� this would correspond to

using the data between ��� seconds and ��� seconds in Figure �� Using longer data sets did not improve

the identied parameter estimates although a model order of �� was usually necessary before the phase in

the bandwidth of interest stopped changing signicantly� The results presented here are for I�O models

of order ��� Finally� because we use an unwindowed lattice lter to t a time�domain model directly to

the I�O data� non�zero initial and nal conditions in the data introduce no bias in the modal parameter

estimates�

Figure � displays the magnitude of the broad�band frequency response of the ��th�order two�input�two�

output identied model� Inspection of the model reveals two modes less than � Hz apart near ��� Hz�

These modes are the rocking modes of the elastic structure and may be clearly seen in Figure 	 �solid line�

where the frequency axis has been scaled to focus on the modes� Extracting the modal frequencies from the

identied model yields rocking modes at ����� Hz and ��	�� Hz� The third mode evident in the frequency

response plots is determined from the model to be ����� Hz� This higher frequency mode is veried to be

the up�down mode by focusing a laser vibrometer on the drive and sense cloverleaves as the gyro is driven

at this frequency� The vibrometer provides a direct means of measuring the mechanical displacement of

the leaves and the fact that the motion of all of the leaves are in�phase when forced at this frequency

indicates that the up�down mode is being excited� The frequency of the up�down mode is independently

determined to be ����� Hz using a precision function synthesizer and vibrometer� Conrmation of the

rocking mode frequencies at ����	 Hz and ��	�� Hz is also made with the vibrometer� Thus� the modal

frequencies determined from the identied model are very close to these independent measurements� The

identied model� however� provides us with a complete picture of the sensor dynamics�

The two rocking modes and up�down mode dominate the frequency response of the gyro so it is useful to

consider the three mode approximation of the ��th�order model� This can be accomplished by performing

a truncation of the balanced state realization of the ��th�order model� Balanced realizations and model

reduction are discussed in Green and Limebeer ������� and Zhou� Doyle� and Glover ����	�� The eight

largest Hankel singular values of the ��th�order model are

h
���� ���� 	��� 	��� ���� ���
 ���	�� ���	��

i
�

Truncating the system to the rst six states of the balanced realization results in very small approximation

error as is evident from these Hankel singular values� The eigenvalues of this six state system are three

sets of complex conjugate pairs forming a three mode system approximating the rocking modes and up�

down mode of the gyro dynamics� A sixth order model is not identied directly because there is enough

signal energy in the frequency range excluding the gyro modal frequencies to bias the parameter estimates

in the ARX model if only six states are used in the model� Thus� even though the gyro dynamics are

well�approximated by a six state system� an accurate t of the I�O data requires a higher model order�

��



The frequency responses of the four channels of the ��th�order model and six state model are compared in

Figure 	� For the subsequent analysis� the discrete�time models have been mapped to the continuous�time

models by inverting the zero�order hold operator because it is more intuitive to discuss modal parameters

like frequency and damping ratio for continuous�time models�

The continuous�time transfer function representation for the six state model is�
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This transfer function relates the drive voltage input to the pick�o� voltage� The polynomials d�� d� and

d� are the two rocking modes and up�down mode dynamics� respectively� where

d��s� � s� � �	���s� ��
� � 	� � ���	�� ����� �� � ����� � �
 rad�s �rst rocking mode�

d��s� � s� � �	���s� ��
� � 	� � ���
	� ����� �� � ��	�� � �
 rad�s �second rocking mode�

d��s� � s� � �	���s� ��
� � 	� � ������ ����� �� � ����� � �
 rad�s �up�down mode�� ����

The sense channels in ���� are written  Si to remind us that the identied model includes the phase�lag

introduced by the anti�aliasing lter� One would expect ���� to contain only s terms in the numerator

because the sensing arrangement measures the electrode velocity relative to the base plate� The anti�

aliasing lter� however� changes the phase of the measurements in the frequency range of the modes �the

amplitude is not modied��

The e�ect of the anti�aliasing lter must be removed since Section ��� requires models based only on

the mechanical structure of the gyro� This can be accomplished with phase correction by approximating

each modal contribution in the transfer function ����� on a channel�by�channel basis� with the product

of a transfer function based on velocity measurements� �s�di�s�� and the anti�aliasing lter� Gaa� The

parameter � is chosen to minimize the error between the frequency response of ���� and Gaa�s�
�s
di�s	

� For

example� the rst rocking mode transfer function excluding the anti�aliasing lter for the S��D� channel

is approximated as ��s�d��s� where �� is determined from

�� �� argmin
�

����	��	�s� ��	�

d��s�
�Gaa�s�

�s

d��s�

����
�

� ��	�

where k � k� is the H� norm� The computation is convex in � so a simple bisection routine is used to

calculate the optimum�

This approximation yields the following transfer function relating the drive inputs to the sense mea�

��



surements without the anti�aliasing lter dynamics�
S��D� S��D�

S��D� S��D�

�
�

s

d��s�
M� �

s

d��s�
M� �

s

d��s�
M� ����

where M�� M�� and M� are the rst Markov parameter matrices from the state�space data of the reduced�

order and phase corrected model�

M� �

�
	���� ���
�
�
��	��� �����

�
� M� �

�
������ ������
����� ������

�
� M� �

�
����� �����

����� �����

�
�

Thus� ���� is the closest approximation to the mechanical structure of the gyro that we are able to make

assuming the primary source of phase lag in the identied model is due to the anti�aliasing lters� Factors

such as electrode area and component variation in the signal conditioning circuits can produce small

relative gain di�erences between the measurement channels� The phase lag introduced by the pick�o�

signal conditioning ampliers� however� is minimal in the frequency range of the three modes�

��� Identi�ed sti�ness axes

Estimating �� the orientation of the principal axes of the sti�ness matrix� using the steps outlined in

Section ��� requires knowledge of scaling matrices KS and KD that convert sense electrode velocity into the

electrode potential� and drive electrode potential into electrode force� The up�down mode has an important

role in determining this data� Measurements with the laser vibrometer have revealed that the up�down

mode is essentially translational in the z axis direction in the JPL gyroscope� Thus� any discrepancy

between the sense electrode measurements when this mode is excited may be attributed to an imbalance

in the pick�o� gains� KS� and KS� � that dene the scaling matrix KS � Similarly� the drive electrode forces

have an identical e�ect on the up�down mode so if the modal response di�ers when applying a given signal

to D� and then to D�� the discrepancy may be attributed to the electrode e�ciency in converting the

applied electrode potential to a force� i�e�� the gains KD�
and KD�

that comprise the scaling matrix KD �

Thus� assuming the up�down mode is purely translational allows us to write it in the transfer function form

s

d��s�

�
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� h
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i �KD�
�
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s
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� h
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KD�

i
�
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�

where d��s� has been dened in ����� Comparing ��
� to the identied model ���� shows that KS� � KS� �

KD�
� and KD�

may be estimated to within a constant from the data matrix M�� The SVD of M� is

M� �

�
��	��� �����
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The rank one approximation of M� is

�����

�
��	���

�����


� h
����		 �����	

i
�

and so the sense electrode and drive electrode gains are computed to be

�
KS�

KS�

�
� �S

�
��	���

�����


� �
KD�

KD�

�
� �D

�
����		

�����	

�
�

The constants �S and �D re�ect the fact that we cannot uniquely determine the gains without knowing the

actual velocity of the up�down mode response� Also� note that M� is almost rank one� as predicted by the

analytical model ��
�� since its condition number is greater than �� ���� The rank condition of the data

matrices also provides a quantitative check of the identied model� The singular vectors from the up�down

mode data indicate a sense electrode gain imbalance of about ���!� and very little di�erence between the

drive electrodes�

It is now possible to estimate � by computing the SVDs of  Mi � �KSMS�
��Mi�MDKD�

��� i � �� ��
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The condition numbers of these matrices are greater than ��� and this justies the rank one approximation

required by the analysis� The singular vectors from  M�� denoted �u� and �v�� are predicted to be equal from

the analytical model ����� Similarly� �u� and �v�� the singular vectors from  M�� should also be equal and their

inner product with �u� and �v� should be zero� These conditions are approximately satised� however� instead

of obtaining one estimate of � by combining all of the information provided by the singular vectors� we use

each vector to independently estimate � according to
h
cos ��u� � sin ��u�

i
� �uT� �

h
cos ��v� � sin ��v�

i
� �vT� �h

� sin ��u� � cos ��u�

i
� �uT� � and

h
� sin ��v� � cos ��v�

i
� �vT� � where ��u� � ��v� � ��u� � and ��v� are four estimates

of �� This yields

h
��u� � ��v� � ��u� � ��v�

i
�
h
�����	� ��	���� ������� ������

i
degrees�

��



The largest discrepancy between the estimates is less than 	 degrees� and the estimates using the second

rocking mode di�er by about � degree� There are many possible factors contributing to the di�erences

between the estimates and rening this analysis is subject of ongoing research� We also employed a laser

vibrometer to verify the approximate orientation of the sti�ness axes by observing the nodes associated

each modal response� Space limitations� however� preclude presentation of the vibrometer results�

It is informative to interpret the frequency response plots in Figure 	 in terms of the orientation of

principal sti�ness axes� For example� in the S��D� channel Bode plot� the magnitude of the lower frequency

rocking mode at �� � ����� Hz is much larger than the magnitude of the higher frequency rocking mode

at �� � ��	�� Hz� Furthermore� our analysis shows that the lower frequency mode responds about the

axis dened by �� This means the D� drive electrode has large authority in exciting this mode and that

the mode is highly observable with the S� sense electrode� Both of these e�ects conspire synergistically to

produce a large peak at ����� Hz in the S��D� channel� A similar argument may be employed to justify

why the higher frequency rocking mode has very little contribution to this channel� the mode at �� rocks

about its axis which is �� degrees to �� this axis almost bisects the D� and S� electrodes and hence the

mode is di�cult to excite and observe with this sensor�actuator pair� It is possible to apply this reasoning

to the other channels that yields interpretations that are consistent with the remaining Bode plots� Thus�

this analysis also provides insight into the asymmetrical aspects of the frequency response in Figure 	 and

indicates that this gyro will have signicant quadrature errors even though the frequency split is less than

���!�

� The E�ects of a Non�Diagonal Damping Matrix

��� Impact of o�	diagonal damping on sti�ness axes estimate

Section ��� proposed an algorithm for estimating the sti�ness axes orientation� �� under the condition that

the damping matrix is also diagonalized by the sti�ness matrix eigenvectors� This assumption is not true

in practice� however� we will demonstrate for the device under test that the details of the damping matrix

may be neglected� First� consider the state�space representation of ��� with � � ��

d

dt
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The state�space matrices are partitioned into �� � sub�matrices such that

A �

�
A�� A��

A�� A��

�
� B �

�
B�

B�

�
� C �

h
C� C�

i
�

where

A�� �

�
� �

���
� �c��

�
� B� �

�
� �

cos � sin �

�
� C� �

�
� cos �

� sin �

�
� etc��

If the o��diagonal damping term� c��� is zero then the transfer function of ���� becomes ���� and �

is determined from the SVD of C�B� or C�B�� either computation giving identical results� Under the

circumstance when c�� �� �� the two modes do not decouple in the coordinates dened by the sti�ness matrix

eigenvectors� It is still possible to block�diagonalize A� however� with a more general state transformation�

For example� suppose T is an invertible �� � matrix such that A is block�diagonalized� i�e��

T��AT �

�
 A�� ����

����  A��

�
�

where  A�� and  A�� are the �� � blocks� The C matrix becomes CT and is partitioned into
h
 C�

 C�

i
�

The B matrix becomes T��B and is partitioned into
h
 BT
�

 BT
�

iT
�

These block�diagonal coordinates are appealing because they are easy to compute from the identi�ed

model� Thus� it is natural to pose the following question� is it possible to estimate � from the SVD of

 C�
 B� or  C�

 B�" We will answer this question in the a�rmative by showing that the error in the � estimate

obtained from  C�
 B� or  C�

 B� is less than one degree� Analytical bounds are di�cult to derive so we obtain

numerical bounds from a parameter search that we now describe� First� �� and �� in ���� are xed at the

identied values of ����� Hz and ��	�� Hz� respectively� Then� the damping matrix parameters are chosen

so that the matrix is positive semidenite with eigenvalues between � and a specied constant  � �� The

eigenvectors of the damping matrix are free to be chosen� The state�space system specied with these

parameters is then block�diagonlized with a state transformation and estimates of � are obtained from

 C�
 B� and  C�

 B��

The numerical search is carried out for a given bound  and the damping matrix parameters are chosen

to maximize the error between the estimates of � determined from  C�
 B� and  C�

 B�� and its true value� The

search results are presented in Table ���� Without loss of generality� the true � may be chosen as zero in the

search� and the particular choice of block�diagonalizing state transformation is of no consequence because

all block�diagonal forms of the A matrix in which the modes are decoupled are related via a block�diagonal

similarity transform that leaves  C�
 B� and  C�

 B� invariant�

For the magnitudes of frequency separation and damping ratios identied here� a simple numerical

study shows that

cii � � 	i �i � i � �� � � ����

�	



 � � � � 
 �	 ��
#� �� ������ ����� ���
� ���� 	��� ���

Table �� Error in estimate of � versus damping

The damping term c�� a�ects the eigenvalues and eigenvectors of the damping matrix but has almost no

e�ect on the frequencies and damping ratios of the rocking modes� When the diagonal elements of the

damping matrix are given by ���� with the identied values in ���� and the damping matrix is constrained

to be positive semidenite� its largest possible eigenvalue is

 � � 	� �� � � 	� �� � ��� � ����

Hence� according to Table ���� the unknown damping term c�� should produce a #� of less than half a

degree�

��� Description of the Rocking Modes

The method presented in this paper for identication of the sti�ness axes assumes that� in each rocking

mode� the cloverleaf and post rotate about a single xed axis� In general� the rocking�mode motion is

not so simple� however� the following discussion shows that� because of the light damping in the class of

gyroscopes of interest here� the motion in each rocking mode closely approximates rotation about a single

xed sti�ness axis�

The rocking modes are the eigen solutions to the system�
���

���
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The eigen solutions can be written in the form�
���i�t�

���i�t�

�
� ����

e��i��it
�
u��i a��i cos

�q
�� 	�i  �it

�
� u��i a��i cos

�q
�� 	�i  �it� �i

��
� i � �� � �

where� for each i� u��i and u��i are real� orthonormal� two�vectors� and a��i and a��i are nonnegative real

amplitudes� For this discussion� u��� is taken to be the real two�dimensional unit vector for which a��� is

maximum� and u��� is taken to be the real two�dimensional unit vector for which a��� is minimum� Also�

u��� is taken to be the real two�dimensional unit vector for which a��� is minimum� and u��� is taken to be

the real two�dimensional unit vector for which a��� is maximum� The angle between u��i and the sti�ness

axis x� is denoted by �i�

��



#� c�� � �� �� a����a��� a����a���

���� Hz
p
c��c�� ������ ���	�� ���� ���


���� Hz c�� ������ ������ ���� ����
���� Hz c�� ������ ���	
� ���� ����

Table �� E�ects of c�� and #� � ����� on rocking modes� For all cases� �� and 	i are given by ����� and
cii � � 	i �i�

Because of the light damping in the gyros of interest here� the frequencies  �i and
p
�� 	�i  �i in ����

are essentially equal to �i� The identied rocking�mode damping ratios and frequencies given in �����

For the identied frequency separation and range of damping� c�� has almost no e�ect on the eigenvalues

of the system in ����� However� c�� can have a signicant e�ect on the amplitudes a��i and a��i� If c�� � ��

then a��� � a��� � �� i�e�� the motion in each rocking is rotation about a single xed axis in the direction

of one of the eigenvectors of the sti�ness matrix� If c�� �� �� then in each rocking mode� the cloverleaf

and post rotate about both sti�ness axes� or equivalently� about axes in the directions of the unit vectors

u��i and u��i in ����� However� for the damping ratios and frequencies identied� each rocking mode is

dominated by rocking about a single sti�ness axis� whatever the value of c��� This conclusion follows from

the an elementary numerical study summarized in Table ��

Since the damping matrix must be positive semidenite� the largest possible value for c�� is
p
c�� c�� �

However� this value of c�� seems unrealistically large because it implies zero damping for rotation about

some axis �since the damping matrix would have a zero eigenvalue�� With decreasing c��� the ratios

a����a��� and a����a��� increase and the angles �i decrease� Even c�� � c�� probably is too large a value

for c�� because� in this case� the damping matrix has eigenvalues of ������ and ������� meaning that the

damping in the direction of greatest damping is almost seven times that in the direction of least damping�

As the frequency split decreases from the ��� Hz identied� the ratios of maximum amplitude to mini�

mum amplitude decrease� until the frequency split becomes an order�of�magnitude smaller than that identi�

ed� and then the motion in each rocking mode begins to approach single�axis rocking about an axis in the

direction of one of the damping�matrix eigenvalues� Because experimental identication of the frequencies

should be quite accurate� as discussed in Section ���� the frequency split for the identied device should be

very close the ��� Hz� Also� the results in Table � and for other damping ratios of similar magnitude show

that� for the ranges of identied frequencies and damping ratios� the unidentied damping coe�cient c��

has little e�ect on the directions of the rocking�mode axes� and does not cause the rocking�mode motion

to deviate signicantly from rocking about a single sti�ness axes�

� Conclusions

This paper addresses system identication and model development for the Jet Propulsion Laboratory

microgyroscope� High�order� multi�input�multi�output linear models are required to capture important

�




characteristics of the gyro dynamics such as closely spaced modal frequencies� Lattice�lter�based algo�

rithms are used to estimate the I�O models in this paper� The high�order models are truncated to a

six�state model since the Hankel singular values of the balanced realization exhibit a decrease of several

orders of magnitude beyond the rst six states� Frequency response plots show that the three key modes

corresponding to the sensor�s two rocking modes and up�down mode are well�modeled with the six state

approximation� The success of the lattice lter in identifying high�delity models of the microsensor in the

current paper indicates the feasibility of real�time identication and calibration of such devices�

The error analysis motivates the importance of estimating the orientation of the principal axes of

elasticity� or sti�ness axes� with respect to the sensing pick�o�s in addition to the frequency split between the

rocking modes because both parameters contribute to quadrature and in�phase bias errors when estimating

�� The frequency split and damping ratios are obtained from analyzing the eigenvalues of the identied

model� The orientation of the sti�ness axes� however� is also determined from further analysis since this

information is not immediately available from the identied multi�input�output model and impossible to

infer from the rocking mode frequency split alone� Our results show that the sti�ness axes in the tested

device are not aligned with the sense�drive electrode coordinate frame�
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Figure �� JPL microgyro with sense and actuator electrodes labeled �picture courtesy of T� Tang�
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