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ABSTRACT: Our understanding of NK biology has expanded immensely since the initial discovery of natural killer cells in 
1975. New studies have uncovered various levels of immune regulation both on and by unique subsets of NK cells, which go well 
beyond simple receptor–ligand interactions between NK cells and target cancer cells. Distinct suppressor and effector populations 
of NK cells have been delineated in both viral and tumor models. Interactions between NK cells and dendritic cells, T cells, and 
B cells also dramatically alter the overall immune response to cancer. To exploit the diverse functional abilities of NK cell subsets 
for cancer immunotherapies, it is important to understand NK cell biology and NK regulator mechanisms.
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ABBREVIATIONS: ADCC: antibody-dependent cell-mediated cytotoxicity; CSC: cancer stem cell; DC: dendritic cell; GM-CSF: 
granulocyte macrophage colony-stimulating factor; IFNγ: interferon gamma; IL: interleukin; KIR: killer immunoglobulin-like 
receptor; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NK: natural killer; NKG: natural killer 
cell group; TGFβ: tumor growth factor beta; TNFα: tumor necrosis factor alpha; Treg: T regulatory cell. 

I. INTRODUCTION

A. History

Natural killer (NK) cells are a vital component of 
the innate immune system; their roles in nearly 
all aspects of immunological responses have been 
increasingly revealed. Initial observations of previ-
ously unidentified effector cells (later recognized as 
NK cells) involved their ability to spontaneously 
reject bone marrow allografts, even parental donor 
bone marrow cells, in F1 mice.1,2 This phenomenon 
was termed “hybrid resistance” and appeared to 
oppose the laws of transplantation because antigens 
involved in bone marrow rejection were thought to 
be co-dominantly expressed.3,4 This rejection was 
negated upon depletion of bone marrow-derived cells 
through the utilization of strontium-89, suggesting 
the presence of a bone marrow-derived cell mediating 
this resistance.5 These cells were identified in 1975 
through the independent studies of Drs. Herberman 

and Kiessling, who each uncovered “natural” cytotox-
icity in killing assays that utilized both syngeneic and 
allogeneic tumors, even in the absence of T cells.6–9 
The name “natural killer cells” was given to this cell 
population since they required no prior sensitization 
or immunization and their cytotoxic capabilities were 
non-MHC restricted.

Recently, the field of NK cell biology has 
expanded well beyond simply describing the cytotoxic 
functions of these cells, with new roles attributed to 
the vast array of cytokines NK cells are capable of 
producing and the potential targets NK cells can 
recognize and bind. NK cells are now known to play 
a role in not only viral10 and tumor11 resistance but 
also bacterial12 and fungal13,14 immune responses. NKs 
have also been shown to play a role in both bone 
marrow rejection15 and bone marrow cell engraft-
ment.16 Additional immunoregulatory17 and tissue 
regenerative properties 18 have been discovered in viral 
resistance models. Therefore, to better understand the 
role NK cells play in immune responses, particularly 
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in cancer responses, the multifaceted functions these 
cells exhibit, the pathways of regulation, and the 
interactions with other cell types, including cancer 
cells themselves, need to be considered for potential 
therapeutic utilization and for targeting these cells.

B. Human versus Mouse NK Cells

The study of NK cells and the roles they play in cancer 
immunology have been complicated by the differences 
between human and mouse NK cells, which require 
careful interpretation when extrapolating findings 
from murine models. However, by acknowledging 
these differences and creating models and studies 
that take these differences into consideration, vast 
amounts of knowledge are obtained about NK biology 
through murine studies. Differences in receptor and 
antigen expression exist between human and mouse 
NK cells. Human NK cells express CD56 (which 
mice do not), that differentiate the cells into two 
separate subsets with preferential locations and func-
tions. The CD56dim NK subset population is found 
in circulation and is predominately cytotoxic. The 
CD56bright population is found in the lymph nodes 
and produces high levels of cytokines but exhibits 
weak cytotoxic effects.19,20 Importantly, mouse NK 
cells are not found in the lymph nodes until immu-
nological stimulation,21 in contrast with human NK 
cells, which are normally found in the lymph nodes. 
There are also differences in the receptors that bind 
MHC class I and related molecules. In mice, these 
receptors are the C-type lectin family, Ly49s, while 
in humans they are the functionally identical, but 
structurally different, killer immunoglobulin-like 
receptors (KIRs).22,23 

Freshly isolated human NK cells also exhibit 
strong cytotoxic capabilities due to the constitu-
tively high expression of granzyme B and perforin 
proteins.24 Human NK cells can also be cultured 
for weeks with feeder cells or IL-2 and IL-15 while 
maintaining normal expression of various receptors 
including KIRs.25 Mouse NK cells, on the other 
hand, exhibit weak cytotoxic functionality when 
freshly isolated due to minimal amounts of granzyme 
B and perforin protein present but high levels of 

their respective mRNA transcripts, which require 
additional activation for translation. In vitro culture 
of murine NK cells is also relatively limited due to 
the occurrence of rapid cell death and decreased 
function after 2 weeks in culture.26,27

These differences between mouse and human 
NK cells highlight important aspects of NK cells 
that need to be considered during experimentation. 
The divergences suggest a more recent evolutionary 
development of NK cells when compared to the more 
conserved T and B cells that are analogous between 
humans and mice.28,29 This highlights the novelty of 
NK cells, which possess functional differences that 
are continuing to evolve, but it also underscores the 
nuances that can be encountered when applying 
findings from mouse models to humans.

II. NK REGULATION DURING CANCER 

A. Tumor Microenvironment

Cancer cells are able to evade immune responses by 
NK cells through a number of mechanisms. Cancer 
cells can increase the expression of MHC class I 
molecules to inhibit NK cell cytotoxic functions 
30,31 and decrease the expression of NKG2D ligands 
to impair NK cell recognition. Inhibitory cytokines 
such as IL-10 and TGF-β are also elevated in the 
tumor due to secretion by the tumor itself, T regula-
tory cells, or myeloid derived suppressor cells, which 
makes the tumor environment highly suppressive and 
limits the efficacy of NK anti-tumor functions.32–34 

B. Subsets

Recent studies have discerned unique functional 
and receptor repertoires on subpopulations of NK 
cells, suggesting that NK cells are not a uniform 
population of cells but might be more analogous to 
T cells, with unique subsets. As mentioned earlier, 
human NK cells exhibit differential expression of 
CD56, with cells that have low expression of CD56 
having greater cytotoxic function and cells that have 
high expression of CD56 producing greater levels 
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of cytokines, but exhibiting reduced cytotoxicity. 
CD11b and CD27 expression correlates to CD56 
subset differentiation with the CD11blowCD27high 

being analogous to the CD56bright population and the 
CD11bhighCD27low being analogous to the CD56dim 
population functionally.35

NK cells also show unique patterns of inhibitory 
receptor expression that differentiates the functional 
responses of NK subsets. NK cells that express 
inhibitory receptors that have high binding affin-
ity to self-MHC class I molecules are considered 
“licensed” or “educated” NK cells with high IFNγ 
production and cytotoxicity. Cells that do not express 
inhibitory receptors that can bind to self are con-
sidered unlicensed or uneducated NK cells and are 
considered to be hyporesponsive.36–38 Studies looking 
at the differential functionality of these NK subsets 
in vivo found that after hematopoietic stem cell 
transplantation and lethal irradiation, licensed NK 
cells showed greater protection against MCMV than 
the unlicensed population with significantly greater 
expansion and IFNγ production.39,40 Recent studies in 
our lab have expanded on these findings and showed 
differential immunoregulatory and functional roles of 
the subsets throughout the course of infection. The 
licensed population was shown to function as the 
effector population with an anti-viral role early during 
infection and a suppressive role during late stages of 
infection, owing to their ability to eliminate T cells. 
The unlicensed population was shown to function as 
a helper population early during viral responses by 
producing GM-CSF, which aided in DC expansion 
and in turn T-cell expansion. Late during immune 
responses, the unlicensed population was found to 
traffic to sites of tissue damage and produced IL-22 
to aid in tissue repair. Thus, based on licensing or 
education, NK cells can be classified into subsets 
with distinct functional responses.

Subsets of NK cells with unique functions have 
also been differentiated based on the isoform of 
receptors expressed. Delahaye et al. described unique 
isoforms of the activating receptor NKp30 that had 
contrasting responses to gastrointestinal stromal 
tumors. NK cells that express isoforms NKp30a or 
NKp30b exhibited characteristic cytotoxicity and 
cytokine production to tumor targets. However, NK 

cells that express the NKp30c isoform were actu-
ally suppressive and produced high levels of IL-10 
and correlated with worse outcomes and increased 
morbidity and mortality in patients that had a high 
percentage of NK cells that expressed this isoform.41 

As increasingly more studies are uncovering NK 
cells to be a heterogenous population42 with unique 
functional subsets, the NK response to various tumors 
becomes complicated. Changes in the distribution of 
these populations could dramatically alter the pro-
gression of disease and mortality rates. Additionally, 
therapeutic targeting or adoptive transfer of specific, 
highly efficacious NK cells could result in improved 
immunotherapy approaches.

C. Immunoregulation

1. T Cells

The interaction between NK cells and T cells plays a 
crucial role in shaping the overall immune response. 
One significant aspect of this interaction is the role 
T regulatory (Tregs) cells play in the NK immune 
response. A set of recent publications demonstrated 
that Tregs play a role in NK cell homeostasis and 
sensitivity to target cells by limiting the availability of 
IL-2 to NK cells. Thus, competition for IL-2 between 
T cells and NK cells serves as a significant regula-
tory mechanism for both populations.43,44 A recent 
publication from our lab also demonstrated that Tregs 
significantly limit the functionality and expansion 
of the licensed or educated NK cells that are able 
to recognize self during murine cytomegalovirus 
infection.40 By regulating this active, fast-responding 
effector population, Tregs help reduce potential 
immunopathology and minimize the inflammatory 
conditions promoted by this NK population. How-
ever, this regulation of NK cells by Tregs can also be 
detrimental if Tregs are recruited to tumor sites as a 
mechanism of reducing the immune response against 
the tumor. The highly effective licensed population 
may thus be severely limited in its functionality due 
to this increased presence of Tregs.

Reciprocally, NK cells have recently been found 
to regulate antigen-specific T cells during various viral 
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responses, with the depletion of NK cells resulting 
in significantly greater numbers of antigen-specific 
T cells. Depending on the viral inoculation given to 
mice, this regulation could be beneficial or harm-
ful to the mice. At low doses of virus, the reduced 
T-cell numbers were a detriment to the host due 
to reduced capability of eliminating the virus. At 
higher doses of virus, the T cells mounted too strong 
of a response, resulting in severe immunopathol-
ogy. Therefore, in high viral dose settings, NK cells 
reduce the immunopathology that occurs from the 
over-reactive T cells, which is beneficial to the host. 
These regulatory effects of NK cells on T cells could 
have dramatic effects on the anti-tumor role of T 
cells. Therefore, NK cells may actually hamper the 
immune response to tumors by directly reducing the 
number of T cells.17

2. B Cells

NK cells and B cells also interact through both 
indirect and direct pathways. NK cells lead to B-cell 
activation and induce class switching of immuno-
globulins produced through CD40-CD40 ligand 
interaction and through the production of various 
cytokines, including IFNγ that can lead to class 
switching.45,46 Additionally, the antibodies secreted by 
B cells can lead to antibody-dependent cell-mediated 
cytotoxicity (ADCC) by NK cells through CD16, 
Fc receptor expression on NK cells that serves as a 
strong activator of NK cells. Thus B cells can aid in 
NK responses to various pathogens or cancers by 
antibody release and mediating ADCC.47

3. Dendritic Cells

The bidirectional regulation and interaction between 
dendritic cells (DCs) and NK cells is multifaceted 
and consists of both direct and indirect pathways. 
DCs are capable of directly stimulating NK cells 
through trans-presentation of IL-15, which leads 
to NK activation. DCs also produce a number of 
cytokines that facilitate activation and expansion of 
NK cells, including production of type I interferons, 

IL-18, and IL-12. Direct binding has also been 
demonstrated to lead to bidirectional activation of 
both DCs and NK cells.48,49 CD30L on DCs is 
capable of binding to CD30 on NK, leading to the 
maturation of DCs and release of pro-inflammatory 
cytokines. Additionally, this engagement results in 
NK cell activation and the release of IFNγ and 
TNFα.50

In addition to directly affecting DCs, NK 
cells can also indirectly regulate adaptive immune 
cells through DC regulation. NK cells are capable 
of lysing DCs that have phagocytized pathogens 
or antigens, which reduces the number of antigen 
presenting cells to activate T cells.51 This DC lysis 
also reduces the various cytokines produced by DCs, 
which can hamper the overall immune response 
as well. NK cells can also promote DCs through 
IFNγ production,52 CD40-CD40L interaction,53 or 
GM-CSF production. Thus, a number of pathways 
and mechanisms exist for NK–DC interactions and 
reciprocal regulation of both populations during 
immune challenge. 

D. Exhaustion

An important phenomenon that is often overlooked 
in NK responses to various tumors is NK cell exhaus-
tion. Similar to what occurs with T cells, continuous 
exposure to certain target antigens results in the 
exhaustion of NK cells. Studies have suggested that 
the reason the clinical effects of adoptive transfer 
of NK cells have been limited may be due to rapid 
exhaustion of NK cells to tumor antigens and targets. 
NK cells exhibited strong anti-tumor functions and 
cytokine production early after adoptive transfer; 
however, starting at day 5 post-transfer, NK cells 
exhibited weak IFNγ production and cytotoxicity, 
despite being present at the tumor sites.54 Exhaustion 
thus appears to be a significant concern in clinical 
utilization and targeting of NK cells during cancer, as 
rapid exhaustion of NK cells impairs their anti-tumor 
functions. Repeated adoptive transfers or additional 
immunotherapy to increase the functionality of NK 
cells may be needed to maintain the strong anti-
tumor role of NK cells.
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IV. THERAPEUTIC UTILIZATION OF NK 
CELLS DURING CANCER 

A. NK Immunotherapy

Preclinical and clinical studies have focused on 
ways to enhance anti-tumor functionality of NK 
cells in the host. Administration of stimulatory and 
activating cytokines such as IL-2 and IL-15 have 
been utilized with mixed results. IL-2 was shown 
to be efficacious in mice to improve anti-tumor 
responses and approved for clinical use in renal cell 
carcinoma,55 metastatic melanoma,56 and metastatic 
breast cancer.57 Even though NK expansion was 
seen after IL-2 injection in patients, tumor relapse 
rates and overall survival of patients was not sig-
nificantly altered.

However, high-dose IL-2 administration can 
result in vascular leak syndrome, pulmonary edema, 
and eventually cardiovascular failure, making con-
tinued utilization of IL-2 problematic.58–60 IL-15 
is an alternative to IL-2 and is potentially superior 
due to the lack of the side effects associated with 
IL-2 and no activation of Tregs as seen with IL-2 
administration.61,62 Combined IL-2 and anti-CD25 
can also reduce Treg activation and enhance anti-
tumor responses.63 Utilization of IL-15 is being 
explored through a number of different approaches 
including giving IL-15/IL-15Rα complexes to 
mirror the trans-presentation of IL-15 that occurs 
physiologically 64 and in combination with other 
immunotherapies, including IL-6 and anti-TGFβ  
administration.65

B. Adoptive Transfer

Beyond enhancing the NK cells present in patients, 
adoptive transfer of NK cells has been pursued as 
a novel immunotherapy in a number of cancers. 
Adoptive transfer of NK cells is usually utilized in 
conjunction with either irradiation and hematopoietic 
stem cell transplantation or chemotherapy in hopes 
of NK cells eliminating surviving cancer cells and 
reducing cancer relapse rates.66 Clinical adoptive 
transfers of either autologous or allogeneic NK cells 

have resulted in successful engraftment and expan-
sion of NK cells.66,67 However, only limited clinical 
benefit was observed when utilized in patients with 
leukemia, lymphoma, breast and lung cancer, or 
metastatic melanoma. Allogeneic NK cell transfer 
has been the most promising therapeutic, with some 
studies demonstrating improved survival rates and no 
side effects, but other studies have reported minimal 
changes in survival and metastasis occurring after NK 
transfer.68–72 In all studies, NK trafficking, engraft-
ment, and expansion appeared to be occurring, but 
potential NK cell exhaustion, the suppressive tumor 
environment, immunoregulation, or suppressive NK 
cells subsets could all contribute to the mixed and 
minimal results obtained in clinical studies.

C. Cancer Stem Cells

The study of cancer biology has greatly expanded 
with the concept of cancer stem cells (CSCs), or 
tumor-initiating cells. These cells are a relatively small 
proportion of cancer cells, but they have the ability to 
maintain long-term growth potential and are highly 
resistant to conventional cancer therapies.73 Avril et 
al. and Tallerico et al. have suggested that NK cells 
may preferentially target CSC populations, making 
NK cells a promising target for immunotherapy.74,75 
Recent work in our lab has confirmed these findings 
through utilization of cell lines and unmanipulated 
human primary tumor samples to model NK targeting 
of CSCs. We have also demonstrated that combined 
immunotherapy with either a proteasome inhibitor, 
bortezomib,76,77 or local radiotherapy and adoptive 
transfer of NK cells significantly improved survival 
of mice and reduced tumor burden. This supported 
the notion of utilizing traditional cancer therapies to 
debulk and remove the majority of cancer cells and 
then utilize NK cells to remove the CSC population. 

V. CONCLUSION

The nuances of NK cell regulation and function dur-
ing cancer has become increasingly complicated with 
new advances in NK cell biology. The discovery of 
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unique subsets of NK cells with distinct functional 
capabilities demonstrates the intricacies of NK and 
cancer cell interactions to be more than just NK cells 
lysing cancer cells. The multifaceted regulation of 
NK cells by other immune cells, the cytokine milieu 
present in the tumor microenvironment, the various 
levels and diversity of antigens expressed by cancer 
cells, and NK exhaustion all make the therapeutic 
targeting and utilization of NK cells in cancer dif-
ficult and complex. Only by better understanding 
the multitude of regulatory pathways and subsets of 
NK cells can we begin to understand their diverse 
functions during cancer and better utilize these cells 
as a cancer therapeutic.
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