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Abstract

SL2(C)-holonomy invariants of links

by

Calvin McPhail-Snyder

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Yu. Reshetikhin, Chair

The Reshetikhin-Turaev construction is a method of obtaining invariants of links (and
other topological objects) via the representation theory of quantum groups. It underlies
quantum invariants such as the Jones polynomial and its many generalizations. These in-
variants are algebraic in nature but are conjectured to detect important information about
the geometry of links. In this thesis we explore these connections using an enhanced
version of the RT construction.

The geometry of a link complement can be described by a representation of its funda-
mental group into a Lie group, equivalently the holonomy of a flat Lie algebra-valued
connection. Our invariants take this data as input, so we call them holonomy invariants.
The case of trivial holonomy recovers the ordinary RT construction.

We consider holonomy representations into SL2(C), which are closely related to hyper-
bolic geometry. In order to define our invariants we consider a particular coordinate
system on the space of representations in terms of diagrams we call shaped tangles. We
show that these coordinates are closely related to the shape parameters of a certain ideal
triangulation (the octahedral decomposition) of the link complement.

Using shaped tangles we define a family of holonomy invariants JN indexed by integers
N > 2, which we call the nonabelian quantum dilogarithm. They can be interpreted as a
noncommutative deformation of Kashaev’s quantum dilogarithm (equivalently, the Nth
colored Jones polynomial at a Nth root of unity) or of the ADO invariants, depending
on the eigenvalues of the holonomy. Our construction depends in an essential way on
representations of quantum sl2 at q = ξ a primitive 2Nth root of unity. We show that JN
is defined up to a power of ξ and does not depend on the gauge class of the holonomy.

Afterwards we introduce a version of the quantum double construction for the holonomy
invariants. We show that the quantum double TN of the nonabelian dilogarithm JN admits
a canonical normalization with no phase ambiguity. Finally, we prove that in the case
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r = 2 the doubled invariant T2 computes the Reidemeister torsion of the link complement
twisted by the holonomy representation.
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Chapter 1

Introduction

1.1 Background and motivation
This thesis lies in the intersection of two important ideas in low-dimensional topology.
We do not attempt to give a comprehensive description of either, but only mention the
parts of the story relevant to us:

hyperbolic topology [Thu80; Thu82] Topological 3-manifolds can be equipped with uni-
form geometries1 in an essentially canonical way. By studying these geometries
we can understand the topology. The most important case is hyperbolic, when the
geometry has constant negative curvature.

quantum topology [Jon85; Wit89; RT90; RT91; Oht02; Tur16] Certain special classes of
quantum field theory are topological and do not depend on the metric, so they lead
to topological invariants. These invariants can be mathematically constructed via
the representation theory of quantum groups (and related algebra) and are a pow-
erful tool for distinguishing knots, links, and 3-manifolds.

Invariants coming from quantum topology have the useful property that they can
frequently be described in an entirely algebraic and combinatorial manner, sometimes
very simply.2 On the other hand, this algebraic description makes them much harder
to interpret in terms of fundamental topological properties: it is not really clear what it
means that the trefoil has Jones polynomial −q−4 + q−3 + q−1. This is in contrast to the
geometric viewpoint, which seems to give more insight into the actual structure of knots
and links.

1The 2-dimensional case may be familiar: spheres are positively curved, tori are flat, and tori with more
than one handle are negatively curved. This is a consequence of the Gauss-Bonnet theorem.

2For example, the author has taught the Jones polynomial to (advanced) high school students after only
a week and a half of instruction in knot theory.
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1.1.1 The volume conjecture

Despite this, it seems that quantum invariants still have something to say about geometry:

Conjecture (Volume Conjecture [Kas97; MM01]). Let K be a hyperbolic knot in S3 and let
JN(K) be the Nth colored Jones polynomial of K evaluated at q = exp(πi/N), normalized so that
JN of the unknot is 1. Then

lim
N→∞ log |JN(K)|

N
=

Vol(K)
2π

where Vol(K) is the hyperbolic volume of S3 \K.

Even though JN(K) is defined entirely combinatorially (for example, via skein rela-
tions) it seems to detect fundamental geometric information about the K such as the vol-
ume. There are many generalizations [Mur10; CY18] of this conjecture which include
more topological objects (links and 3-manifolds) and more geometric data (the Chern-
Simons invariant.) There is substantial numerical and theoretical evidence for this con-
jecture, but a general proof seems a long way off.

1.1.2 Holonomy invariants

The construction in this thesis is part of a program [KR05; GP13a; Bla+20] to understand
relationships between quantum and hyperbolic topology, including conjectures like the
Volume Conjecture.

The idea is to use geometric data in the form of representations π1(M)→ G into a Lie
group G to build more powerful quantum invariants. We can equivalently describe ρ as
the holonomy of a flat g-valued connection, where g is the Lie algebra of G, so we call
these holonomy invariants:

Definition. A holonomy invariant is a function on pairs (M, ρ) where M is a manifold
and ρ : π1(M) → G is a representation into a Lie group G. It should depend only on
the conjugacy class of the representation: if ρ ′ = gρg−1 for some fixed g ∈ G, then the
holonomy invariant for (L, ρ) and (L, ρ ′) should agree.

This definition should be understood informally: we might require some extra struc-
ture, or might only allow certain classes of representation. We will usually use “holonomy
invariant” to mean a quantum holonomy invariant, i.e. one that is somehow analogous
to the Jones polynomial or related to quantum field theory.

We focus on the case M = S3 \ L a link complement and G = SL2(C), which is
closely related to hyperbolic geometry because the isometry group of hyperbolic 3-space
is PSL2(C): one way to describe the hyperbolic structure on a manifoldM is via the holon-
omy representation ρ : π1(M) → PSL2(C). Hyperbolic manifolds have a unique (up to
conjugation) ρ corresponding to their complete finite-volume hyperbolic structure.
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More generally, studying representations of 3-manifolds into SL2(C) is an important
idea in geometric topology. The collection of all such representations3 modulo conjugacy
is called the character variety X(L) of L. We can think of a holonomy invariant for L as a
function on the space X(L), and we can think of (some) ordinary quantum invariants as
the values of a holonomy invariant at certain points of X(L).

In particular, for any link L the space X(L) contains distinguished points correspond-
ing to representations of the form

αt(x) =

[
t 0
0 t−1

]
for any meridian x of π1(S

3 \ L). Since these have abelian image, we call them abelian
representations.

As discussed later in the introduction, we can think of the colored Jones polynomials
as corresponding to α±1 and the ADO invariants as corresponding to αt for t 6= ±1. Our
nonabelian quantum dilogarithm is a generalization of these constructions to nonabelian
representations. From the point of view of the character variety, the nonabelian quantum
dilogarithm is a function on (a cover of) X(L) that recovers ordinary quantum invariants
at the abelian representations.

1.1.3 Torsions

The Reidemeister torsion is a classical, well-understood invariant of links. From our per-
spective, the torsion τ(L, ρ) depends on both L and a representation ρ : π1(S

3 \ L) → G

into a matrix group G, so we can think of it as a holonomy invariant. In fact, we expect
that the torsion can be understood as a quantum holonomy invariant.

One reason this would be interesting is that there is much known about the relation-
ship between the torsion and geometric and topological properties of knots and links,
especially for nonabelian representations ρ. By understanding the relationship between
nonabelian torsions and quantum invariants, we can better understand the relationship
between quantum invariants and other properties knots and links.

As a first step, in chapter 7 we prove that the SL2(C)-torsion of a link complement can
be recovered from the nonabelian quantum dilogarithm. This generalizes the well-known
construction of the Alexander polynomial as the invariant associated to quantum sl2 at
q = i a fourth root of unity.

3Actually, usually the character variety is only the part corresponding to irreducible representations
modulo conjugacy. This provides one motivation for our admissibility condition later, although we also
allow reducible representations if they are diagonalizable.
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1.2 How to read this thesis
Structuring mathematical documents is a very difficult task: it is hard to find the right
balance between the order dictated by logical implications and the order dictated by ac-
tual understanding. I have tried to emphasize understanding, which means there are
occasional logical gaps that are filled in later. These are usually noted, and the reader
who wants to see the details first can always skip around. I suggest the following reading
order:

1. Read this introduction.

2. Read chapter 2: it’s a bit technical, but it explains a lot of choices that otherwise
seem quite odd.4

3. Read section 3.1 to fix some basic conventions on how to represent SL2(C)-links.

4. Read the overviews for each chapter, which include statements (sometimes infor-
mal) of the major results.

5. Read the other sections of the chapters as necessary.

Another issue is that readers are diverse in their backgrounds and interests. I am not
sure who (if anyone) will be reading this thesis, and I do not know exactly what they
know, so I am forced to make some guesses. I expect a reader of this thesis to know at
least something about (or be prepared to look up) the following topics.

Knot theory Definitions of knots and links, Reidemeister moves, orientations and fram-
ings, as in [Rol03]. Some familiarity with braid groups and Burau representations
thereof [BC74] would be useful, especially for chapter 7. We also need some facts
about fundamental groups of link complements, but these are mostly given in detail.
To understand the motivation for holonomy invariants and section 3.3 it would be
good to know something about the geometrization of 3-manifolds [Thu80] and/or
hyperbolic knot theory [Pur20].5

Representation theory Representations of algebras over a field, irreducible representa-
tions, multiplicity spaces, the double centralizer theorem. A nice, concise reference
is [Eti+11]. It would also be good to have some familiarity with the representation
theory of sl2.

Reshetikhin-Turaev invariants This thesis is a generalization of the RT construction [RT90]
of link invariants from quantum groups, so it would be good to understand the ba-
sics. My favorite reference is [KRT97], which may be a bit difficult to obtain. Other

4Here I speak from personal experience.
5If you don’t know much about hyperbolic topology, maybe this thesis will be your motivation to learn

some!
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Figure 1.1: Two meridians of the figure-eight knot.

sources are [Kas95b; Tur16; BK00]. Note that we only need the construction of link
invariants: the more elaborate surgery TQFT [RT91] is not required.

Algebraic geometry Because we are studying a nontrivial commutative algebra (the center
of Oξ) we need to use some very basic concepts from algebraic geometry. Specifi-
cally, we discuss the space SpecR whose points are prime ideals of R. (Actually, we
only consider the closed/geometric points, which correspond to maximal ideals.)
The Zariski topology on SpecR has closed sets V(I) = {J ∈ SpecR : I ⊆ J}. For the
classical case R = C[x1, . . . , xn], the closed sets are zero sets of systems of polynomial
equations.

1.3 Statement of resutls
Let N > 2 be an integer. We write ξ for a primitive 2Nth root of unity, which we can take
explicitly to be exp(πi/N).

A SL2(C)-link is a link L ↪→ S3 along with a representation ρ : π1(S
3 \ L) → SL2(C) of

its fundamental group, which we consider up to conjugation. We allow both the case that
ρ is irreducible (which is geometrically the most interesting) and that ρ is completely re-
ducible, which corresponds to standard quantum invariants (see section 1.3.2). However,
we exclude the case where ρ is reducible but not decomposable, i.e. when ρ is conjugate to
a representation with upper-triangular image

ρ(x) =

(
λ ∗
0 λ−1

)
.

If ρ is not of this form, we say it is completely reducible.6

Recall that π1(S
3 \ L) has distinguished generators called meridians that wrap around

a single strand, for example in fig. 1.1. Each component Li of L has many meridians, but
up to orientation they are all conjugate. Let xi be a meridian for the ith component of L.

6This is the usual meaning of “completely reducible” for a group representation.
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We call the eigenvalues λ±1
i of ρ(xi) the eigenvalues of Li. We say that an SL2(C)-link is

enhanced if for each component Li we choose a complex number µi with µNi an eigenvalue
of Li.7 We call µi a fractional eigenvalue. We require the eigenvalues of L to satisfy

• λi 6= ±1, or

• λi = (−1)N+1 and µi = ξN−1 = −ξ−1.

If the representation ρ is completely reducible and the fractional eigenvalues satisfy the
condition above, we say that the pair (L, ρ) is admissible. From now on, when we say
SL2(C)-link we mean admissible SL2(C)-link.

Recall that an element of SL2(C) is parabolic8 if it has trace ±2. The admissibility con-
dition for the eigenvalues has to do with parabolic elements: if the meridians are non-
parabolic, then we can choose any fractional eigenvalues we want. If they are parabolic,
we have to be careful: some signs are not permitted,9 and we have to pick certain canon-
ical fractional eigenvalues.

In this thesis, we construct two families of invariants (parametrized byN) of enhanced
framed oriented SL2(C)-links:

1. The nonabelian dilogarithm JN(L), which is a complex number defined up to multipli-
cation by a 2Nth root of unity. It does not depend on the framing of L (up to a 2Nth
root of unity).

2. The quantum double of the nonabelian dilogarithm, denoted TN(L), which is defined
with no scalar ambiguity. It also satisfies

TN(L) = JN(L)JN(L)

up to a 2Nth root of unity. Here L is the mirror image (definition 6.2) of L.

Both J and T depend only on the conjugacy class of the representation ρ. They are defined
on a sort of N-fold cover of the character variety, so we can think of them as holonomy
invariants.

We expect that JN and TN are related to other geometric invariants like the torsion. We
prove one such correspondence in chapter 7: when N = 2,

T2(L) = τ(L, ρ),
7This definition depends on N. To enhance a link for all N at once we could instead pick a value of

log λi.
8More geometrically, an element of SL2(C) is parabolic when it is ±I or when it has exactly one fixed

point acting on Ĉ via fractional linear transformations. We discuss this more in chapter 3.
9We could change coordinates so that the allowed eigenvalues were uniform inN. We have chosen not

to do this for notational simplicity, especially since we expect JN to behave differently depending on the
parity of N.
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where τ(L, ρ) is the Reidemeister torsion of S3 \ L twisted by the representation ρ.
It would be interesting to better understand TN as a function on the character variety:

is it meormorphic? Rational? Our result gives a partial answer in the case N = 2, be-
cause it implies that T2 does not depend on the choice of fractional eigenvalue and can be
written as

T2(L) =
∆(L, ρ)

2 − λ− λ−1

for λ ∈ C× and a polynomial function ∆(L, ρ) of the matrix coefficients of ρ. On the other
side, it is known that [BB11] the torsion is a rational function on the character variety of a
hyperbolic knot.

1.3.1 Constructing the invariants

Both invariants correspond to functors J and T from the category TangSh of extended
shaped tangles to a pivotal category.10 We usually leave N implicit. To compute them, we
use the following process:

1. Pick a diagram D of the extended SL2(C)-link L = (L, ρ, {µi}).

2. Write the representation ρ in terms of shapes associated to segments ofD.11 It is pos-
sible that this may require first conjguating (gauge-transforming) ρ to avoid some
singular cases, but this can always be done. The fractional eigenvalues {µi} of L
correspond to extended shapes.

3. Cut open the diagram D at a segment to obtain a (1, 1)-tangle T whose closure is L.

4. Apply J to obtain an endomorphism J (T) of a simple object V in a pivotal category.

5. Take the modified trace of J (T) to obtain a scalar tJ (T), which is the invariant J(L).
Because J (T) is a morphism of a simple object V , by Schur’s Lemma it satisfies
J (T) = 〈J (T)〉 idV for a scalar 〈J (T)〉, and the modified trace can be computed
as

tVJ (T) = 〈J (T)〉d(V)

where d(V) = tV idV is the modified dimension of V .

We show that the construction above does not depend on

• the gauge class of ρ,
10Specifically, we map them to the pivotal category Oξ−Mod of modules for the quantum group and

variants thereof.
11This perspective assumes we already know what ρ is. In many cases of interest, we want to compute

ρ from an abstract characterization. For example, any hyperbolic link has a unique complete finite-volume
hyperbolic structure which corresponds to a unique (up to conjugacy) ρ. In this case, we can use shaped
diagrams to compute ρ directly.
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• the choice of diagram D, or

• the choice of where to cut the diagram (i.e. the choice of representative (1, 1)-tangle).

The obvious thing to do would be to skip steps 3–5 and simply compute the image J (D)
of D in our pivotal category. Because the quantum dimensions vanish in our cases of
interest, this would result in uniformly zero invariants. The theory of modified traces
fixes this.

In order to define J we do need to make one family of arbitrary choices: to fix bases of
the modules we use we need to take someNth roots. In later terminology, we need to pick
a radical. As a consequence, the braidings defining J (hence the invariant J) are defined
only up to a power of ξ. We expect that these extra choices can be systematized; this
should be related to a flattening of the ideal triangulation of the knot complement, as in
[Zic09]. As discussed in chapter 6, the functor T can be defined with no phase ambiguity;
we can think of this as cancelling the anomaly of J .

Our definition ofJ and T is a special case of the construction of [Bla+20], which works
for any representation of the extended shape biquandle in a pivotal category assigning strands
to simple objects whose modified dimensions are gauge-invariant. J and T are examples of
such representations; another is the representation discussed in section 4.2.3, which was
used to define the invariant of [KR05; Che19; Che+21].

1.3.2 Taking the abelian limit

We mostly focus on SL2(C)-links whose holonomy representation is irreducible; this case
is novel and is geometrically the most interesting. However, JN(L, ρ) still makes sense12

when ρ is reducible.
When ρ sends every meridian to (−1)N+1, up to normalization the invariant JN(L, ρ) is

exactly Kashaev’s quantum dilogarithm invariant [Kas95a], equivalently theNth colored
Jones polynomial [MM01] at aNth root of unity. Up to a scalar, which in this context only
affects the dependence of JN(L) on the framing of L, the braiding defining J and the braid-
ing defining the quantum dilogarithm are both uniquely defined by the property that the
intertwine the outer S-matrix S. Because JN(L) is framing-independent (up to a power of
ξ) and assigns the value 1 to the unknot it must agree with the Kashaev invariant.

Similarly, when the images of the meridians are simultaneously conjugate to matrices
of the form [

λi ∗
0 λ−1

i

]
for λi 6= ±1 we recover the semi-cyclic invariants of [GP13a]; when the upper-right entries
are all 0, i.e. when the representation is decomposable, we obtain the Nth ADO invariant
[ADO92]. We discuss this further in theorem 5.5.

12There is actually a technical issue with defining it for reducible representations ρ, as discussed in
sections 5.0.4 and 5.3.1.
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1.4 Summary of the chapters

Chapter 2 We introduce quantum sl2, an algebraOq = Oq(SL2(C)∗).13 We discuss its rep-
resentation theory at q = ξ a root of unity, how this relates to holonomy invariants,
and how to get braidings from it. We also introduce a presentation of Oq in terms
of a Weyl algebraWq.

Chapter 3 We fix conventions on tangle diagrams and describe how to represent SL2(C)-
links in terms of shaped tangle diagrams. We show that these are closely related to
the octahedral decomposition of the link complement.

Chapter 4 Following Blanchet et al. [Bla+20] we give the general theory of holonomy
invariants in terms of representations of biquandles.

Chapter 5 We construct a biquandle representation from Oξ that defines the functor J .
Along with chapters 2 to 4 this completes the construction of the invariant JN(L).
In the process, we show that the braiding for Oξ is closely related to the octahedral
decompositions of chapter 3.

Chapter 6 We give a graded version of the quantum double construction. By applying it
to J , we define T and the associated holonomy invariant TN(L) and prove that is
can be defined without scalar ambiguity.

Chapter 7 We define the twisted Reidemeister torsion in terms of twisted Burau repre-
sentations of braid group(oids). By using a Schur-Weyl duality between the Burau
representation and T2 we prove that it computes the torsion.

Appendix A We explain how to construct the modified traces used in the rest of the the-
sis.

Appendix B We discuss and prove some properties of the cyclic quantum dilogarithm
used in chapter 5 to compute the braidings.

13We prefer the notation Oq to Uq because we use slightly nonstandard generators. This normalization
makes Oq a quantization of the algebra of functions on the Lie group SL2(C)∗, instead of a quantization of
the universal enveloping algebra Uq(sl2). See section 2.1 for more information.
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Chapter 2

Preliminaries on the quantum group

The key mathematical ingredient in this thesis is the quantum group associated to sl2 and
a particular presentation of it in terms of a q-Weyl algebra. We therefore begin with a brief
overview of this algebra, pointing out some features and their consequences. By doing
so, we motivate most of the technical constructions of the first three chapters.

2.1 The quantized function algebra
Definition 2.1. The quantized function algebra Oq = Oq(SL2(C)∗) of SL2(C)∗ is the algebra
over C[q,q−1] with generators K±1,E, F and relations

KK−1 = 1, KE = q2EK, KF = q−2FK, EF− FE = (q− q−1)(K−K−1).

It is a Hopf algebra with coproduct

∆(K) = K⊗K, ∆(E) = E⊗K+ 1⊗ E, ∆(F) = F⊗ 1 +K−1 ⊗ F,

counit
ε(K) = 1, ε(E) = ε(F) = 0,

and antipode
S(E) = −EK−1, S(F) = −KF, S(K) = K−1.

Oq is isomorphic (over a slightly different ring of scalars) to the usual quantum group
Uq(sl2), but the above normalization is more convenient for our purposes.1 In the limit
q → 1, Uq instead recovers the universal enveloping algebra of sl2. The group SL2(C)∗

appearing above is a matrix group closely related to SL2(C).
1To recover the conventions of [Kas95b; Bla+20], replace E by (q− q−1)E and simiarly for F.
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Definition 2.2. The Poisson dual group2 of SL2(C) is the group

SL2(C)∗ =

{([
κ 0
φ 1

]
,
[

1 ε

0 κ

])∣∣∣∣κ 6= 0
}
⊆ GL2(C)×GL2(C).

When q = 1, O1 is the commutative algebra C[SL2(C)∗] of functions on the group
SL2(C)∗. For example, the coproduct on K and E corresponds to the group multiplication[

1 ∆(E)
0 ∆(K)

]
=

[
1 E⊗K+ 1⊗ E
0 K⊗K

]
=

[
1 E

0 K

]
⊗
[

1 E

0 K

]
and similarly for K and KF.3 Since Oq is a noncommutative analogue of a commutative
object C[SL2(C)∗] recovered at q = 1, we call it a quantization.4

Proposition 2.3. When q is not a root of unity, the center ofOq is a polynomial algebra generated
by the Casimir element

Ω = EF+ q−1K+ qK−1 = FE+ qK+ q−1K−1.

Proof. [Kas95b, Theorem VI.4.8].

For generic q, the representation theory of Oq is essentially the same as the classical
theory of representations of sl2.5 This is a consequence of the above proposition: when
q is not a root of unity, the center of Oq is a polynomial algebra, so simple Oq-modules
are essentially classified by a single number, just like the highest-weight classification of
representations of sl2.

However, when q = ξ is a 2Nth root of unity the center of Oξ becomes much larger.
In particular, it contains the algebra C[SL2(C)∗]. As a consequence, the representation
theory of Oξ becomes much more complex; instead of a few discrete parameters, simple
Oξ-modules will be parameterized by points of SL2(C)∗ (plus some additional data).

Proposition 2.4. Z0 := C[K±N,EN, FN] is a central subalgebra of Oξ. The center Z := Z(Oξ)
of Oξ is generated by Z0 and the CasimirΩ, subject to the relation

CbN(Ω) = ENFN − (KN +K−N). (2.1)

Here CbN is the Nth renormalized Chebyshev polynomial, determined by

CbN(t+ t−1) = tN + t−N.
2SL2(C) is a Poisson-Lie group: a Lie group with a Poisson bracket on its algebra of functions. This gives

the Lie algebra sl2 the structure of a Poisson-Lie bialgebra; taking the dual of this structure gives a different
Lie algebra sl∗2 , whose associated Lie group is SL2(C)∗. See [ES02, Chapter 2] for more details.

3For more on how Hopf algebras relate to algebraic groups like SL2(C)∗, see [Kas95b, §III.4].
4For a more physical notation, set q = e

 h where  h is Plank’s constant.
5Formally, the module categories of Oq and U(sl2) have isomorphic Grothendieck rings.
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Definition 2.5. A Z0-character is an algebra homomorphism χ : Z0 → C, equivalently a
(closed) point of SpecZ0. χ is determined by its values on KN, EN, and FN, which we
typically denote by

κ = χ(KN), ε = χ(EN), φ = χ(KNFN) (2.2)

The set of Z0-characters is a group, with mutiplication given by

(χ1χ2)(x) = (χ1 ⊗ χ2)(∆(x)).

Proposition 2.6. The map sending a Z0-character to the group element([
χ(KN) 0
χ(KNFN) 1

]
,
[

1 χ(EN)
0 χ(KN)

])
∈ SL2(C)∗

is an isomorphism of algebraic groups.

From now on, we identify a Z0-character χ and the corresponding point of SL2(C)∗.
We can think of Oξ as being a bundle of algebras over SL2(C)∗: the fiber over a point
χ ∈ SL2(C)∗ is the algebraOξ/ kerχ, where kerχ is the ideal generated by the kernel of χ.

In turn, this gives a SL2(C)∗-grading on Oξ-modules. Suppose for simplicity that V
is a simple Oξ-module of finite dimension over C. Then by Schur’s lemma the central
subalgebra Z0 must act by scalars on V , so there is a homomorphism χ : Z0 → C given by

z · v = χ(z)v, z ∈ Z0.

We think of V as living in degree χ ∈ SL2(C)∗. The SL2(C)∗-grading on modules is
the key ingredient underlying the construction of holonomy invariants: we can assign a
strand of a link with holonomy χ a module with character χ. The braiding discussed in
the next section is similarly compatible.

We are interested in SL2(C)-representations of link complements, not SL2(C)∗-representations.
As shown by [KR05; Bla+20], this problem can be fixed by thinking of SL2(C)∗ as a fac-
torization of SL2(C) into lower- and upper-triangular parts. We give a version of this
construction in chapters 3 and 4.

Finally, we discuss the role of the Casimir element Ω. Because Ω is central, a simple,
finite-dimensional module V will be described not just by the Z0-character χ, but also by
the scalarω by whichΩ acts. From the relation (2.1), we see that

Cbr(ω) = (εφ/κ− κ− 1/κ) = − tr
[
κ −ε
φ (1 − εφ)/κ

]
where κ = χ(Kr), etc., as in (2.2), and the matrix above is (conjugate to) the holonomy
around a meridian colored by χ.

In particular, the action of Ω is related to an Nth root of the eigenvalues of the holon-
omy, so in general our invariants will depend on a link L, a SL2(C)-representation of
its complement, and a choice of roots of the eigenvalues of the representation. In the
boundary-parabolic case generalizing the colored Jones polynomial the eigenvalues are
±1 and there is a canonical choice of root.
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2.2 Braidings for the quantum group
It is well-known that the quantum group Oq is quasitriangular, but strictly speaking this
is false [Res95]. What is true is that an  h-adic versionO h ofOq defined over formal power
series in  h (with q = e h) is quasitriangular: there is a universal R-matrix R in (an appropri-
ate completion of) O h ⊗O h that intertwines the coproduct and opposite coproduct

R∆ = ∆opR

and satisfies the Yang-Baxter equation6

R12R13R23 = R23R13R12

where by Rij we mean R embedded in the ith and jth tensor factors. As a consequence, for
any O h-modules V ,W the map τR : V ⊗W →W ⊗ V gives a braiding, where τ(v⊗w) =
w⊗ v is the flip map and by R we mean the map induced by multiplication by R.

Because R does not lie in O⊗2
q , the algebra Oq is not quasitriangular. However, when

V and W are finite-dimensional Oq-modules the action of R still makes sense, because E
and F act nilpotenly on V and W. This leads to the usual construction of a braiding on
Oq−Mod underlying the colored Jones polynomials.

When q = ξ is a root of unity things are not so simple. Because E and F no longer need
to act nilpotently7 on finite-dimensional modules the universal R-matrix fails to converge.
It is still possible to obtain a braiding structure on Oξ, but we need to take a more round-
about approach.

Following Kashaev and Reshetikhin [KR04], we instead focus on the automorphism
R of O⊗2

 h given by conjugation by the universal R-matrix:

R(x) := RxR−1.

In the  h-adic case this is an inner automorphism, so it is simpler to consider R. However,
unlike R, the automorphism R makes sense even for q = ξ a root of unity. We can
therefore use the autormorphismR to define a braiding on Oξ.

Theorem 2.7. SetW = 1−K−NEN⊗ FNKN ∈ Z⊗2
0 ⊂ O⊗2

ξ . There is an algebra homomorphism

R : O⊗2
ξ → O

⊗2
ξ [W−1]

defined uniquely by

R(1⊗K) = (1⊗K)(1 − ξ−1K−1E⊗ FK)
R(E⊗ 1) = E⊗K
R(1⊗ F) = K−1 ⊗ F

6The Yang-Baxter equation becomes the RIII relation on braids if we write it in terms of τR instead of
R.

7It is possible to consider semi-cyclic modules where at least one acts nilpotently, which leads to the
ADO invariants [ADO92] and generalizations thereof [GP13a]. However, geometrically interesting repre-
sentations (as discussed in chapter 3) are essentially never semi-cyclic.
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and

R(∆(u)) = ∆op(u), u ∈ Oξ.

It satisfies the Yang-Baxter equations

(∆⊗ 1)R(u⊗ v) = R13R23(∆(u)⊗ v)
(1⊗∆)R(u⊗ v) = R13R12(u⊗∆(v))

and the identity relations

(ε⊗ 1)R(u⊗ v) = ε(u)v
(1⊗ ε)R(u⊗ v) = ε(v)u

where ε is the counit of Oξ.

Proof. See [KR04].

Definition 2.8. We call the automorphism R the outer R-matrix of Oξ. Writing τ for the
flip τ(x⊗ y) = y⊗ x, we also use the closely related map

S := τR

which we call the outer S-matrix.

It is not too hard to see (and we will show later for the Weyl presentation) that R
descends to a homomorphism of Z⊗2

0 . In particular, it acts on pairs of Z0-characters:
given two such characters χ1,χ2, there are unique χ ′1,χ ′2 such that

(χ ′1 ⊗ χ
′
2)R = χ1 ⊗ χ2.

equivalently
(χ ′2 ⊗ χ ′1)S = χ1 ⊗ χ2.

The map (χ1,χ2) → (χ ′2,χ ′1) is an example of an algebraic structure callled a biquandle,
wich are discussed more generally in section 4.1.

Because R is defined only when W is invertible it is a partially defined biquandle,
which is annoying but can be resolved by the theory of generic biquandles [Bla+20, §5].
We discuss these issues in detail for the closely related shape biquandle of section 3.1.4,
which is obtained from the presentation ofOξ in terms of a Weyl algebra given in the next
section.

The automorphismR describes the braiding on the algebraOξ, but to construct invari-
ants of links the critical ingredient is a braiding on the modules. Suppose we have some
Oξ-modules V1,V2,V ′1,V ′2 with characters χi,χ ′i. An R-matrix is a linear map R = Rχ1,χ2

that intertwinesR in the the sense that

R(u · x) = R(u) · R(x) for every x ∈ V1 ⊗ V2,u ∈ O⊗2
ξ . (2.3)
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For Oq we could obtain the matrix R as the action of the universal R-matrix, but at q = ξ

there is no universal R-matrix. Instead, we say that an R-matrix for the modules Vi is a
linear map satisfying (2.3). To construct holonomy invariants of links we need to compute
R-matrices for all χ1,χ2.

Definition 2.9. Suppose the set X parametrizes isomorphism classes of Oξ-modules8 and
there is a projection π from X to the set of Z0-characters. Let χ1,χ2 ∈ X and let (χ ′2,χ ′1)
be related to (χ1,χ2) by the braiding (i.e., by the biquandle structure on X) as above. A
holonomy R-matrix is a family of Oξ-modules {Vχ}χ∈X and a family {Rχ1,χ2}χ1,χ2∈X of linear
maps

Rχ1,χ2 : Vχ1 ⊗ Vχ2 → Vχ ′1
⊗ Vχ ′2

satisfying (2.3) when the χi are interpreted as Z0-characters and a colored version of the
Yang-Baxter equation (equivalently, the braid relation or the RIII move).

This definition is somewhat imprecise: see definition 4.18 for details. Similarly, the
term “holonomy R-matrix” is somewhat misleading because it really refers to a family of
objects; for this reason we usually call this structure a model of the biquandle X.

When the modules Vχ are simple, it is not hard to show (theorem 5.14) that solutions
to (2.3) are determined up to a scalar. As a consequence there is a canonical holonomy
R-matrix up to an overall scalar, which we can think of as a projective representation. To
obtain useful link invariance we need to lift this to a genuine representation by finding
an appropriate normalization of the R-matrices.

Unfortunately, this is a significant technical problem, in particular because we need
to normalize a family of R-matrices Rχ1,χ2 , where χ1,χ2 range over SL2(C)∗.9 We resolve
it in two different ways, both of which involve presenting Oξ in terms of a Weyl algebra
(discussed in the next section).

Our first method is to use the Weyl presentation to explicitly compute the matrix coef-
ficients of R and compute its determinant; by using a continuity argument, we can show
that an appropriate normalization satisfies the colored Yang-Baxter relation. Chapter 5 is
devoted to this computation. This method only reduces the scalar ambiguity to a power
of ξ because the computation of the matrix coefficients requires some extra choices.

In connection with torsions, a different approach is possible. We show in chapter 6
that the tensor product Rχ1,χ2 � Rχ1,χ2 of the R-matrix and an appropriate mirror image
preserves a (family of) vectors, so we can normalize the doubled R-matrix by preserving
the vectors. This allows us to define the functor T underlying the doubled invariant
without any scalar ambiguity and leads to the Schur-Weyl duality of chapter 7.

8X will be an r-fold cover of a Zariski open dense subset of SL2(C). For now, it is fine to to replace X
with SL2(C) for the purpose of understanding this definition.

9Strictly speaking the problem is worse, because as mentioned above simple Oξ-modules rely on more
data than just the Z0-characters χi.
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2.3 The quantum Weyl algebra
It is convenient to use a different presentation of Oξ in terms of a q-Weyl algebra. The
original motivation was to obtain q-difference equations for the coefficients of the R-
matix. In the process we express Z0-characters in terms of their values on the center
of the Weyl algebra (at q = ξ a root of unity). These coordinates turn out to have a di-
rect geometric interpretation in terms of ideal triangulations of the link complement, as
discussed in section 3.3.

Definition 2.10. The cyclic Weyl algebra10 is the algebraW0
q given by

W0
q = C[q,q−1]〈x,y|xy = q2yx〉.

We assume that x and y are invertible. We usually use the extended Weyl algebra Wq =
W0
q[z, z−1], which has an additional central generator z.

Proposition 2.11. There is an algebra homomorphism φ : Oq →Wq given by

K 7→ x E 7→ qy(z− x) F 7→ y−1(1 − z−1x−1)

which acts on the Casimir by
Ω 7→ qz+ (qz)−1.

Proposition 2.12. At a root of unity q = ξ the center ofWξ is generated by xN, yN, and z. The
automorphism φ takes the center of Oξ to the center ofWξ. Explicitly,

φ(KN) = xN

φ(Er) = yN(xN − zN)

φ(Fr) = y−N(1 − z−Nx−N)

Proof. KN is obvious and FN follows from the same reasoning as EN. For EN, notice that

φ(EN) = (ξy(z− x))N

= (ξy)2(z− ξ2x)(z− x) (y(z− x))N−2

· · · = (ξy)r
N−1∏
k=0

(z− ξ2kx)

All the terms in the product except zN and xN vanish. The coefficient of zN is clearly 1,
while the coefficient of xN is (−1)N times ξ raised to the power

N−1∑
k=0

(2k) = N(N− 1)

10To recover the usual Weyl relation [X, Y] = 2 h, set x = e hX, y = e
 hY , and q = e

 h.
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so that

φ(EN) = −yN(zN + (−1)NξN(N−1)xN) = −yN(zN + (−1)N(−1)N−1xN) = yN(xN − zN).

Definition 2.13. A shape is an algebra homomorphism

χ : C[x±N,y−±N, z±N]→ C

By pulling back along φ we obtain a Z0-character φ∗χ. We usually abuse notation and
denote both χ and φ∗χ by χ. The map χ is determined by its values on the generators xN,
yN, and zN, which we usually denote by

χ(xN) = a, χ(yN) = b, χ(zN) = λ. (2.4)

An extended shape is a homomorphism

χ : Z(Wξ) = C[x±N,y−±N, z±1]→ C

from the center ofWξ to C. Equivalently, an extended shape is a lift of a shape given by
a choice of Nth root of λ = χ(z). We usually write χ(z) = µ for this root. Just as before,
pulling back along the embedding φ determines a Z-character φ∗χ that we also denote
by χ.

The term “shape” refers to the geometric interpretation of the parameters a,b, and
λ in terms of the shape parameters of an ideal triangulation of the link complement, as
given in section 3.3.

The extension of a shape corresponds to the extra choice of a root of the eigenvalue
required to define the holonomy invariants. The motivation is that extended shapes
parametrize isomorphism classes of simpleWξ-modules. Pulling back along φwe obtain
the family of simple Oξ-modules we want to use in the construction of our holonomy
invariants.

When pulling back along φ, we associate the character χ in (2.4) to the group element([
a 0

(a− 1/λ)/b

]
,
[

1 (a− λ)b
0 a

])
∈ SL2(C)∗ (2.5)

where λ = µN = χ(zN). Not all of SL2(C)∗ can be written in terms of shapes, that is in
the form (2.5), but we can get around this in two different ways. One is to use the fact
that what we really care about are conjugacy classes (gauge classes) of representations
of link complements. By using the methods of [Bla+20] we show (theorem 4.16) that
every admissible representation is conjugate to one that can be expressed in terms of
shapes. We can then define a holonomy invariant for arbitrary representations by first
gauge transforming.

A more geometric method is to observe that, in practice, interesting representations
come from solving the gluing equations of section 3.1.4. For example, any nondegenerate
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solution to the gluing equations with λ = ±1 gives the complete finite-volume hyperbolic
structure of the link complement.11 By definition the holonomy of such representations
can be expressed in terms of Weyl characters.

By pulling back the outer R-matrix R to an automorphism of (the division algebra) of
Wξ we get a braiding on the shapes. We derive this action in detail in section 5.1, and
before that give it without proof in section 3.1.4.

11These should exist for generic diagrams of a hyperbolic link, but the question is somewhat subtle: see
the discussion at the end of section 3.2.3.
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Chapter 3

Shaped Tangles

Overview
As usual for the Reshetikhin-Turaev construction, we think about links in terms of their
diagrams. More generally, by allowing links with boundaries (tangles) we obtain a braided
monoidal category Tang of tangles, which will correspond to the braided monoidal cat-
egory of Oξ-modules in the standard way. To extend this to holonomy invariants, we
consider tangle diagrams decorated with complex numbers we call shapes or shape param-
eters. The shapes are closely related to the complex dihedral angles (shape parameters) of
a certain ideal triangulation of the knot complement.

The shape parameters are a particular set of coordinates on the SL2(C)-representation
variety of a punctured disc. They arise as central characters of the algebraWξ, which is a
quantum cluster algebra in the sense of [FG09]. Cluster algebras are related to ideal triangu-
lations of surfaces, such as those in fig. 3.16 used to build the octahedral decomposition.

There have been a number of papers relating cluster algebras and hyperbolic struc-
tures on links, such as [HI14; CYZ20], going back to the original work of [Kas95a]. They
are also closely related to the segment variables of [KKY18], and [BB04] use (in our lan-
guage) ratios of shape parameters as the arguments of their cyclic quantum dilogarithms.

3.0.1 Structure of the chapter

In section 3.1 we establish basic conventions on tangles and their diagrams, then show
how to label these diagrams by shapes and explain how they are related to SL2(C) rep-
resentations of the tangle complements. In section 3.2 we give a very rapid overview of
the hyperbolic geometry of link complements. Finally, in section 3.3 we connect shaped
tangles to hyperbolic geometry by explaining how the shape coordinates of a tangle are
related to a certain ideal triangulation of its complement, the octahedral decomposition.
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Figure 3.1: A (3, 1)-tangle.

3.1 Tangle diagrams
We will construct our quantum holonomy invariants using categories of modules, and to
match this we want a topological category to describe things like knots and links.

3.1.1 Tangles

Definition 3.1. For m,n ∈ Z>0, let Tm,n be the space [0, 1]3 with m marked points1 in
{0}× [0, 1]2 and nmarked points in {1}× [0, 1]2. We think of them points as incoming and
on the left, and the n points as outgoing and on the right.

An (m,n)-tangle T is a piecewise-linearizable2 embedding

fT : [0, 1]qk q (S1)q l → Tm,n

of k disjoint copies of the interval [0, 1] and l of the circle S1 into Tm,n. We require fT to
restrict to a bijection between the boundary of the intervals and the marked points.

In this case we say that T has k open components, l closed components, and k + l com-
ponents. We consider two tangles T1 and T2 equivalent if there is an ambient isotopy rel
boundary of Tm,n between them.

A link is a (0, 0)-tangle, and a knot is a (0, 0)-tangle with one component. We consider
the empty tangle to be the unique (0, 0)-tangle with zero components.

Definition 3.2. Tangles form a monoidal category with

objects nonnegative numbers.

morphisms from m to n the space of (m,n)-tangles. To compose T1 : m → n and T2 :
n → k, we glue their ambient spaces along {1}× [0, 1]2 inside Tm,n and {0}× [0, 1]2

inside Tn,k, identifying the nmarked points. (Afterward we should rescale to obtain
a tangle in an interval of the right length.)

1We should pick the locations of the marked points and for all: maybe put point k at (k/(m+ 1), 0, 0) or
similar. The exact locations do not really matter.

2We want to avoid wild tangles, which appear if only require the map to be continuous. What we call a
tangle is more specifically a tame tangle.
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◦ =

⊗ =

Figure 3.2: Tangle composition and tensor product

monoidal product horizontal composition. In more detail, if T1 : m1 → n1 and T2 : m2 →
n2 are two tangles, we can get a new tangle T1 ⊗ T2 : m1 +m2 → n1 + n2 by gluing
[0, 1]× {1}× [0, 1] inside Tm1,n1 to [0, 1]× {0}× [0, 1] inside Tm2,n2 , then rescaling so
the marked points in the boundary go where they should.

3.1.2 Tangle diagrams

To make the connection with representation theory we want a more combinatorial de-
scription of tangles.

Definition 3.3. An (m,n)-tangle diagram is the projection of an (m,n)-tangle to [0, 1]2 with
finitely many double points (and no other self-intersections), all of which are transverse.
At each double point, we record which strand went above the other. Tangle diagrams
form a monoidal category just as tangles do.

Definition 3.4. Let D be a tangle diagram. We fix some terminology on parts of D.

• An arc starts at an undercrossing, continues past overcrossings, and ends at the next
undercrossing. For example, the diagram of the trefoil knot in fig. 3.8 has three arcs,
each colored differently.

• Each arc is composed of segments, which start and end at crossings (regardless of
whether they are over or undercrossings.) The diagram in fig. 3.8 has six segments.3

• The diagram cuts the plane into regions separated from each other by the segments.
The diagram in fig. 3.8 has five regions.

3If we think of a tangle diagram as a graph, so that the crossings are vertices with 4 edges, then the
edges of this graph are the segements.
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=
(RIII)

=
(RII)

=
(RI)

Figure 3.3: The Reidemeister moves

We have already seen examples: we drew the tangle in fig. 3.1 as a tangle diagram.
Any (tame) tangle can be isotoped so that its projection gives a tangle diagram, and it is
well-known that two tangle diagrams represent the same tangle exactly when they are
related by local moves:

Theorem 3.5. Two tangle diagrams represent isotopic tangles if and only if they are related by
isotopies of [0, 1]2 fixing the boundary and the Reidemeister moves of fig. 3.3.

Notice that we do not say that two tangle diagrams are equal if they are related by
Reidemeister moves, just that they are equivalent. In the next section we will associate
each tangle diagram a system of gluing equations, which transform nontrivially if the
crossings of the diagram change. Later we will label our diagrams by parameters that are
only generically defined, so we will have to be careful as to what moves are permitted.
For both reasons we want to think of a diagram as a fixed object.

Remark 3.6. We write tangle diagrams left-to-right, so composition is horizontal and ten-
sor product is vertical, as shown in fig. 3.2. This is a slightly nonstandard convention in
quantum topology, but we find it much more convenient to read left-to-right than verti-
cally, especially since there are two conventions on which order to read vertical diagrams.

To keep track of labelings we need to orient our tangles, and we also need to keep
track of the framing.4

Definition 3.7. A framed tangle is a tangle along with a trivalization of the normal bundle
of each component. As usual, we can frame a tangle diagram by using the blackboard

4This is exactly the data needed to make into a pivotal category as in definition 4.17.
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Figure 3.4: The blackboard framing: the tip of the normal vector traces out the gold path.

Figure 3.5: An oriented tangle, specifically a morphism (−,+,+)→ (+).

framing of fig. 3.4. The RI move does not preserve the blackboard framing, so two framed
tangle diagrams are equivalent if and only if they are related by isotopy and the RII and
RIII moves. A oriented tangle is a tangle along with an orientation of each component.
We record the orientation of a tangle diagram as in fig. 3.5.

Tangle diagrams form categories just like the topological category of tangles (and its
obvious extensions to oriented and framed tangles) given in definition 3.2.

Definition 3.8. We write Tang for the monoidal category of oriented framed tangle dia-
grams, with

objects tuples (ε1, ε2, . . . , εm) of signs in {+,−}.

morphisms tangle diagrams. A morphism (ε1, . . . , εm) → (ε1, . . . , εn) is an oriented
framed (m,n)-tangle diagram with orientations matching the signs: on the left-
hand (domain) side, a + corresponds to an outgoing strand and a − to an incoming
strand. On the right-hand side the opposite holds. Compositon is given by horizon-
tal composition of diagrams.

monoidal product given by vertical composition of diagrams.

Definition 3.9. The orientation on a tangle diagram lets us separate crossings into two
types: positive and negative. These are denoted by σ and σ̃ in fig. 3.6. (We prefer the
notation σ̃ to σ−1 because negative and inverse braidings are distinct when considering
tangles colored by a biquandle.)

Tangle diagrams can be built via under composition and tensor product out of the
generators in fig. 3.6. In more algebraic language, the generators are maps

coev↑ : ( )→ (+,−) ev↑ : (−,+)→ ( ) σ : (+,+)→ (+,+)

coev↓ : ( )→ (−,+) ev↓ : (+,−)→ ( ) σ̃ : (+,+)→ (+,+)
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coev↑ ev↑

coev↓ ev↓

σ

σ̃

+

−

Figure 3.6: Generators of oriented tangle diagrams.

where ( ) is the empty tuple. We can obtain braidings (+,−) → (−,+), etc. by rotating σ
and σ using the evaluation and coevaluation morphisms, as in fig. 4.7.5

We can always isotope a tangle diagram so that it is composed out of exactly these
generators. This is sometimes called a Morse-link presentation of the tangle, because it has
isolated critical points and you prove it exists via Morse theory. We can view such a
presentation as a certain kind of decorated planar graph.

3.1.3 The fundamental groupoid of a tangle

Our aim is to study links L along with representations π1(S
3 \ L) → SL2(C) of their com-

plements, so we first establish some conventions on fundamental groups.

Definition 3.10. Let T be a (m,n) tangle. Its fundamental group π(D) is the fundamental
group π1(T(m,n) \ T) of the complement of T . When D is a tangle diagram we similarly
define π(D) to be the fundamental group of the underlying tangle.

For G a group, a G-tangle is a tangle T along with a representation ρ : π(T) → G. We
say two representations ρ1, ρ2 are conjugate or gauge-equivalent if there is some x ∈ Gwith6

xρ1(g)x
−1 = ρ2(g) for all g ∈ G.

In this case we say that ρ2 was obtained by a gauge transformation of ρ1.

Definition 3.11. Let T be a tangle represented by an oriented diagram D. The Wirtinger
presentation of π(T) has one generator for every arc (definition 3.4) ofD and a conjugation

5Our later condition of sideways invertibility (definition 4.18) is related to such rotations.
6If ρ is the holonomy of a flat g-connection, then a gauge transformation of the connection corresponds

to conjugation of ρ.
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w1

w2 ′ = w
−1
1 w2w1

w1

w2

Figure 3.7: Generators of the Writinger presentation near a crossing. Notice that the gen-
erator w1 corresponding to the over-arc is the same on each side.

w1

w2

w3

Figure 3.8: Generators of the fundamental group of the trefoil complement.

relation at each crossing. We write π(D) for the Wirtinger presentation of π(T) associated
to the diagram D.

Example 3.12. The trefoil group has three generators w1,w2,w3 as shown in fig. 3.8. The
relations from the crossings are (clockwise from top-right)

w3w1 = w2w1 w1w2 = w2w3 w2w3 = w3w1.

Since each arc corresponds to a generator of π(D), we can describe G-tangles by la-
beling their arcs by elements of G satisfying the Wirtinger relations. In the language of
chapter 4, these are tangles colored by the conjugation quandle of G.

Howver, it turns out to be much more convenient to describe things in terms of the
fundamental groupoid, for two reasons:

1. The braiding on the quantum group does not correspond to the conjugation quandle
of SL2(C), but a slightly more complicated structure (a biquandle factorization of it.)
We discuss this issue in chapter 4.

2. Using the groupoid representation allows for a direct geometric interpretation of
the matrix coefficients of the holonomy, as explained in section 3.1.4.
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x+ix−i

i

Figure 3.9: Each strand i is associated to two morphisms (paths) x+i and x−i in Π(D).

1

2 1 ′

2 ′

x−1 x
+
2 x+2 ′x

−
1 ′

Figure 3.10: Deriving the middle relation at a crossing.

Definition 3.13. A groupoid is a category in which all morphisms are invertible. A group
can be viewed as a groupoid with one object.

Example 3.14. The fundamental group π1(X,p0) of a topological space X with basepoint
p0 ∈ X is the group of homotopy classes of loops based at p0. We can equivalently view
π1(X,p0) as a category with a single object p0 and morphisms homotopy classes of paths
starting and ending at p0.

From this perspective, we can generalize to the fundamental groupoid Π1(X,X0) of X
with basepoints X0 ⊆ X. This is a category with

objects elements of X0 .

morphisms p0 → p1 homotopy classes of paths p0 to p1.

We recover the fundamental group as the special case π1(X,p0) = Π1(X, {p0}) with a single
basepoint.

Definition 3.15. LetD be a tangle diagram, and recall the definition (definition 3.4) of the
regions and segments of D. The fundamental groupoid Π(D) of D has

objects regions of D.

morphisms words in certain generators. For any two adjacent regions separated by a
segment i we assign two generators x+i and x−i , which we think of as going above
and below the segment, as in fig. 3.9. (We orient the generators to match the orien-
tation of D.)

At each crossing there are three relations

x−1 x
−
2 = x−2 ′x

−
1 ′ x−1 x

+
2 = x+2 ′x

−
1 ′ x+1 x

+
2 = x+2 ′x

+
1 ′
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1

2

3

w3

x+1

x+2

x+3

(
x−3
)−1

Figure 3.11: The path w3 in π(D) and the path x+1 x
+
2 x

+
3
(
x−3
)−1 (

x+2
)−1 (

x+1
)−1 in Π(D) are

equivalent.

obtained from paths below, between, and above the strands; we have shown the paths
corresponding to the between relation in fig. 3.10.

Proposition 3.16. There is an equivalence of categoriesΦ : π(D)→ Π(D).

We say that π(D) is the skeleton of Π(D). The skeleton of a groupoid always exists, and
here we have chosen a particular form of it by using the Wirtinger presentation with a
specified basepoint.

Proof. To see how to defineΦ, consult fig. 3.11, which shows that

Φ(w3) = x
+
1 x

+
2 x

+
3
(
x+1 x

+
2 x

−
3
)−1 .

In general, we view the Wirtinger generators as travelling over the diagram to get to their
designated segment, after which they loop around it and return. There is more than one
path to take from the basepoint at the top of the diagram, but this does not matter because
of relations like x+1 x

+
2 = x+2 ′x

+
1 ′ between the over paths.

It is geometrically evident that Φ gives an equivalence of categories.7 For details, see
[GP13a, §3.5], in particular Lemma 3.4.

3.1.4 Shaped tangle diagrams

We can now describe our preferred description of SL2(C)-tangles. We leave two technical
questions unanswered:

7When we say “geometrically evident” we mean “evident to the author and annoying to explain the
details”.
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χ1

χ2

χ ′2

χ ′1
Figure 3.12: Labels for shape parameters at a positive crossing.

χ1

χ2

χ ′2

χ ′1
Figure 3.13: Labels for shape parameters at a negative crossing.

1. Are the shapes compatible with Reidemeister moves?

2. Can every SL2(C)-tangle be represented as a shaped tangle?

We address these issues in chapter 4.

Definition 3.17. We say that a tangle diagram D is pre-shaped if

1. each segment is assigned a nonzero complex number b ∈ C×, and

2. each connected component is assigned a nonzero complex number λ ∈ C×.

We refer to these numbers as the b-variables and eigenvalues of the diagram. We typically
assume the segments of the diagram are indexed by a set I and write bi and λi for the
variables assigned to segment i ∈ I.

At every crossing of the diagram we assign a-variables to the surrounding half-segments.
At a positive crossing with labels 1, 2, 1 ′, 2 ′ (as in fig. 3.12) we set

a1 =
b2 − λ1b1

b2 ′ − b1
a1 ′ =

λ2b2 − λ1b1 ′

λ2b2 ′ − b1 ′

a2 =
1/λ1b1 ′ − 1/λ2b2

1/λ1b1 − 1/b2
a2 ′ =

1/b1 − 1/b2 ′

1/b1 ′ − 1/λ2b2 ′

(3.1)

Similarly at a negative crossing (as in fig. 3.13) we set

a1 =
1/b2 − 1/λ1b1

1/b2 ′ − 1/b1 ′
a1 ′ =

1/λ2b2 − 1/λ1b1 ′

1/λ2b2 − 1/b1 ′

a2 =
λ1b1 ′ − λ2b2

λ1b1 − b2
a2 ′ =

b1 ′ − λ2b2 ′

b1 − b2 ′

(3.2)
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It is possible that the right-hand side of one of these is of the form 0/0, so that the cor-
responding a-variable is indeterminate. (We consider 0 and ∞ as determinate but dis-
allowed values.) Such a crossing is said to be pinched, and we must additionally specify
the values of the a-variables at a pinched crossing. They are discussed in more detail in
section 3.1.5.

Definition 3.18. In a pre-shaped diagram each segment is assigned two a-variables by the
crossings at either end. The gluing equations of a pre-shaped diagram assert that the two
a-variables of each segment agree. A shaped diagram is a pre-shaped diagram whose a-
variables are not 0 or∞ and satisfy the gluing equations. We call the variables χ = (a,b, λ)
assigned to the segments of a shaped diagram shapes.8

The definition of the a-variables is somewhat complicated and as yet unmotivated. We
will see in section 3.3 that the gluing equations for the a-variables are exactly the gluing
equations associated to the octahedral decomposition of the tangle complement [KKY18].
In chapter 5 we will derive the relations of eqs. (3.1) and (3.2) from the action of the outer
R-matrixR on the center of the Weyl algebra.

As promised before, every shaped tangle is associated to a representation of its funda-
mental groupoid.

Definition 3.19. Let χ = (a,b, λ) be a shape. The upper holonomy and lower holonomy of
the shape χ are the matrices

g+(χ) :=

(
a 0

(a− 1/λ)/b 1

)
g−(χ) :=

(
1 (a− λ)b
0 a

)
The holonomy representation of the fundamental groupoid of a shaped tangle diagram D

is the representation Π(D) → GL2(C) which assigns the upper path across a segment
with shape χ to g+(χ) and the lower path to g−(χ). We similarly refer to the induced
representation π(D)→ SL2(C) ⊂ GL2(C) as the holonomy representation.

Strictly speaking the holonomy representation ofΠ(D) is a map to GL2(C), not SL2(C).
Dividing by

√
a would fix this, but introduce the problem of keeping track of the choice

of square root. In any case the restriction to π(D) lands in SL2(C).

3.1.5 Pinched crossings

In the equations (3.1–3.2) the a-variables are given by rational functions, which can have
singularities.

8Previously we said a shape was a central character of the Weyl algebra. We will explain the connection
in chapter 5.
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Proposition 3.20. A crossing of a pre-shaped tangle diagram is pinched9 if any of the following
conditions hold:

1. b2 ′ = b1

2. b2 = λ1b1

3. λ1b1 ′ = λ2b2 ′

4. b1 ′ = λ2b2 ′

At any pinched crossing in a shaped diagram all four conditions must hold.

Proof. By checking eqs. (3.1) and (3.2) we can see that if one equation holds, but not all of
them, at least one a-variable will be 0 or ∞. Since a shaped diagram has a-variables in
C \ {0}, all four conditions must be true if any is.

At a pinched crossing, we cannot use our explicit formula theorem 5.4 for the co-
efficients of the braiding. We discuss this further in section 5.0.4. It is still useful to
allow pinched crossings because they correspond to the case where the holonomy rep-
resentation is abelian: for example, by assigning every strand of a diagram the shape
χ = (λ,b, λ−1), we get a representation in which every meridian is sent to[

λ −(λ− λ−1)b

0 λ−1

]
which in turn corresponds to the ADO invariant. When λ = (ξN−1)N = (−1)N+1 we in-
stead obtain Kashaev’s quantum dilogarithm invariant, equivalently [MM01] the colored
Jones polynomial evaluated at ξ2.

3.2 Hyperbolic links and ideal tetrahedra
We give a very brief introduction to hyperbolic knot theory. For a more comprehensive
(and probably more comprehensible) description, see [Pur20]. The fundamental refer-
ences for the hyperbolic geometry of 3-manifolds are Thurston’s notes [Thu80].

3.2.1 Hyperbolic geometry for link complements

Definition 3.21. Hyperbolic 3-space is10

H3 = {(x+ iy, t) ∈ C×R|t > 0}
9We borrow this term from [KKY18]. At a pinched crossing the locations of the ideal vertices of the

ideal octahedron are “pinched” together: the points P1 and P2 lie at 1 for every tetrahedron.
10More specifically, this is the upper half-plane model of hyperbolic space.
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with metric of constant negative curvature

ds2 =
dx2 + dy2 + dt2

t2
.

Its boundary is ∂H3 = Ĉ = C∪ {∞}, with Euclidean metric.
A hyperbolic structure on a 3-manifold M is11 a cover by charts φα : Uα → H3 whose

transition maps are isometries of H3. These charts induce a metric onM, and we say that
the hyperbolic structure is complete if the induced metric is.

Informally a hyperbolic 3-manifold M is one that is locally isometric to H3, so that
gluing together the pieces gives a smooth, complete manifold M. We refer to [Pur20,
Chapter 3] for details.

For a more combinatorial perspective, we want to make sense of this in terms of a
triangulation ofM. The triangulation gives a topological decription ofM, and we extend
this to a geometric description by putting each tetrahedron in H3 and gluing together
their faces using isometries. If the isometries are compatible we get a smooth, complete
hyperbolic structure onM.

We are interested in link complements, which are hyperbolic in a slightly different
way. If L is a link in S3, the complement S3 \ L has “open” boundaries at each component
of L, which we call cusps. More formally, we say a manifold M is cusped if it is homeo-
morphic to the interior of a compact 3-manifold with tori as boundaries; each boundary
torus is called a cusp. The corresponding triangulation description also has open parts.

Definition 3.22. A link L in S3 is hyperbolic if it the complement S3 \ L can be given a
complete hyperbolic metric of finite volume.12

Definition 3.23. An ideal tetrahedron is a tetrahedron with its 0-skeleton (the ideal vertices)
removted. An ideal triangulation of a link L in S3 is a triangulation of S3 \ L by ideal tetra-
hedra whose ideal vertices lie on the cusps.

In an ideal triangulation the missing ideal vertices all lie on the link L. It is not im-
mediately clear13 why ideal triangulations should exist, or how to find them. We refer
to [Pur20, Chapter 1] for a comprehensive example, including constructions of relevant
physical models. In the next section we will describe a systematic way to build an ideal
triangulation of a link complement starting from a link diagram.14

11To use more general language, a hyperbolic structure is a (H3, Isom(H3))-structure.
12We do not define the hyperbolic volume here: see [Pur20, Chapter 9] for details. We can think of the

finite-volume condition as a kind of geometric compactness.
13It certainly was not immediately clear to the author that ideal triangulations existed at all when he first

learned about them!
14The construction places a (twisted) ideal octahedron at each crossing of the diagram, so it is called an

octahedral decomposition.
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3.2.2 Describing ideal triangulations

For now, suppose we have an ideal triangulation of a link complement. To put a metric
on S3 \L, we label the vertices of each ideal tetrahedron with points of C∪ {0} = Ĉ = ∂H3.
To keep track of orientations, we also want to pick an (arbitrary) ordering of the vertices.

Definition 3.24. A shaped ideal tetrahedron is one whose vertices are totally ordered and
labeled by points of Ĉ = C ∪ {∞}. A shaped ideal triangulation is an ideal triangulation by
shaped tetrahedra.

When we glue two shaped tetrahedra together along a face, they will in general dis-
agree about where the common vertices are located. This disagreement is resolved by
isometries called face maps.

Theorem 3.25. The group of orientation-preserving isometries of H3 is PSL2(C), which has a
left action on the boundary ∂H3 = Ĉ via fractional linear transformations:

z ·
(
a b

c d

)
=
az+ c

bz+ d
.

In particular, an element of Isom(H3) is uniquely determined by its action on three points.

Remark 3.26. In order to match our topologically natural convention that the path x fol-
lowed by the path y is xy, we need the image of the holonomy representation to act the
left.15 This forces a somewhat unfortunate convention on fractional linear transforma-
tions, as shown above.

16

Definition 3.27. Let T be a shaped ideal triangulation of the complement of L. If F and
F ′ are two faces with vertices p1,p2,p3 and q1,q2,q3 which are identified in the gluing of
T , the face map between them is the element of Isom(H3) = PSL2(C) sending p1,p2,p3 to
q1,q2,q3. The holonomy representation of T is the representation π(L)→ PSL2(C) induced
by the face maps.

We see that a hyperbolic structure on the complement of L corresponds to a representa-
tion π(L)→ PSL2(C). The converse is true as well: given a representation π(L)→ PSL2(C)
we get a hyperbolic structure on S3 \ L.

Definition 3.28. For four points p0,p1,p2,p3 ∈ Ĉ, the cross-ratio is

[p0 : p1 : p2 : p3] =
(p0 − p3)(p1 − p2)

(p0 − p2)(p1 − p3)
.

15We only need fractional linear transformations in this and the next section, while the compositions of
paths shows up again in chapters 4 and 7.

16We can think of the face maps as generating the transition maps of the hyperbolic structure.
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0 1

z

∞

Figure 3.14: An ideal tetrahedron with vertices 0,∞, 1, z. The edges are circles intersecting
the boundary sphere Ĉ at right angles.

Proposition 3.29. 1. The cross-ratio [p0 : p1 : p2 : p3] is equal to 0, 1, or ∞ if and only if
some of the points pi coincide,

2. the cross-ratio is preserved by PSL2(C), and

3. if q0, . . . ,q3 ∈ Ĉ are another set of four points, there is an element f ∈ PSL2(C) with
f(pi) = qi if and only if

[p0 : p1 : p2 : p3] = [q0 : q1 : q2 : q3] .

In particular, the cross-ratio completely describes the oriented congruence class of an ideal
tetrahedron.

We can see this more geometrically by relating the cross-ratios to dihedral angles.

Definition 3.30. Let T be a shaped tetrahedron with p0,p1,p2,p3. The edge invariant or
dihedral angle of the edge from p0 to p1 is the cross-ratio

[p0 : p1 : p2 : p3] =
(p0 − p3)(p1 − p2)

(p0 − p2)(p1 − p3)
.

We say that the tetrahedron T is flat when the cross-ratio is real and degenerate when it is
0, 1, or∞.

To understand this definition, consider the special case where the vertices of T are 0,∞, 1, and z, as shown in fig. 3.14. When standing at 0, multiplication by zmoves from the
point 1 to the point z, so we say the edge 0∞ has (complex) dihedral angle z.

Proposition 3.31. Let T be a shaped ideal tetrahedron with vertices at p0,p1,p2,p3, and set
z = [p0 : p1 : p2 : p3]. Then the edge invariants of T are given by fig. 3.15, where

z◦ :=
1

1 − z
and z◦◦ := (z◦)◦ = 1 −

1
z

.
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p0 p2

p1 p3

z◦◦

z◦◦

zz

z◦
z◦

Figure 3.15: Dihedral angles of an ideal tetrahedron.

Notice that (z◦◦)◦ = z, so the ◦ symbols work modulo 3. Using a prime ′ is the standard
notation in this context (such as [Zic09, Section 1]) but conflicts with our use of ′ for tangle
diagram parameters.

Proof. The invariant of the edge from p0 to p1 holds by definition. We can derive the
remaining invariants by acting by fractional linear transformations: recall that given any
four points p0, . . . ,p3 ∈ Ĉ there is a unique element of PSL2(C) sending them to 0,∞, 1, z.
Such an argument is used in the proof of [Pur20, Lemma 4.6].

3.2.3 The gluing and completeness equations

Finally, we turn to the question of how to determine whether a shaped ideal triangulation
corresponds to a smooth, complete hyperbolic structure. This is determined by a set of
algebraic equations called the gluing and completeness relations.

Definition 3.32. Let T be a shaped triangulation of S3 \ L. For an edge e, let T(e) be the
set of tetrahedra glued to e. The gluing equation for e says that∏

τ∈T(e)
τ(e)±ε(τ,e) = 1

where τ(e) is the shape parameter associated to e and ε(τ, e) ∈ {±1} accounts for the
orientation of e. The gluing equations for T are the set of gluing equations for each edge
of T .

Roughly speaking the gluing equations for T say that the angles inside of S3 \ L make
sense when circling around an edge. However, we need a second set of equations to
account for the behavior when circling around a cusp. It is possible to express these in
terms of the dihedral angles, but more straightforward to use the holonomy maps.17

17Since our preferred coordinate system gives us holonomy maps for free, we do not lose anything by
taking this perspective.
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Definition 3.33. An element g ∈ PSL2(C) is parabolic if it acts by a pure translation on Ĉ,
equivalently if it is conjugate to the pure translation(

1 0
1 1

)
: z 7→ z+ 1.

We say that the triangulation T is complete if the holonomy around each cusp is parabolic.
By [Pur20, Theorem 4.10] this is equivalent to requiring that the induced metric on the
manifold obtained by gluing T is complete.18

More generally, we can consider incomplete metrics, sometimes called pseudo-hyperbolic
structures. We say that the triangulation T is λ-deformed if the holonomy map around a
cusp is conjugate to the map19 (

λ 0
0 λ−1

)
: z 7→ λ2z.

More generally, we could consider the case where each cusp is λi-deformed for a different
value of λi.

In a shaped tangle diagram (say of a link for simplicity), cusps are in one-to-one cor-
respondence with connected components. We will see shortly that a diagram component
with eigenvalue λ corresponds to a λ-deformed octahedral decomposition.

Definition 3.34. We say that a shaped triangulation T is consistent if it satisfies the gluing
equations. If additionally it is complete and does not contain any flat tetrahedra (equiva-
lently, if none of the dihedral angles are real or∞) we say that it is geometric.

We emphasize that we do not need geometric tetrahedra to define our link invariants.
However, they are still an important special case. For example, to find the distinguished
complete, finite-volume hyperbolic structure on a link complement it suffices to com-
pute a geometric triangulation with parabolic holonomy around the cusps. For shape
diagrams this means that any shaped diagram of a link with eigenvalues ±1 and all di-
hedral angles (as given in tables 3.1 and 3.2) non-real gives the distinguished hyperbolic
structure.

While this is a sufficient condition, it is not necessary, and exactly when a geometric
choice of shapes exists for a given diagram is a subtle question. For example, any diagram
with a kink (as in fig. 3.4) will always have a pinched crossing where the dihedral angles
lie in {0, 1,∞}, and for links it is possible to draw diagrams [KKY18, Proposition 4.7] with
finite-volume parabolic holonomy that contain pinched crossings.

One way to avoid some of these problems is to consider braids instead of tangles.
Cho, Yoon, and Zickert [CYZ20] discus the existence of (in our language) non-pinched

18If the holonomy around a cusp acted by scaling, then we would spiral in or our of the cusp as we circled
aroudn it. To get a complete metric, this cannot happen, so the holonomy must be a pure translation.

19In the language of [KKY18] we would call this a λ2-deformed solution.
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solutions to the gluing equations. It would be interesting to understand their methods
in connection with the shape parameters, since they use a different (but closely related)
system of coordinates.

3.3 Octahedral decompositions
We have called the decorations χ = (a,b, λ) of our diagrams “shapes” but have not yet
justified this term. In this section, we explain how to interpret these parameters in terms
of the complex dihedral angles (shape parameters) of the octahedral decomposition of a
link complement. We refer extensively to the detailed description of this triangulation by
Kim, Kim, and Yoon [KKY18].

3.3.1 Building the octahedra

The octahedral decomposition of a link complement puts an ideal octahedron at each
crossing of a diagram of the link. To motivate some features of this description and make
it easier to see the connection with our description of the holonomy of shaped tangle
diagrams, we explain a perspective related to ideal triangulations of discs.20

Every link L can be represented as the closure of a braid β. If we view β as an element
of the mapping class group of the n-punctured disc Dn, then the complement S3 \ L of L
is the mapping torus21 of β. If we ideally triangulate Dn and interpret the action of β in
terms of this triangulation, we can get an ideal triangulation of the mapping torus of β,
that is of S3 \ L.

We describe this process in fig. 3.16. We start with the triangulation in fig. 3.16a. For
simplicity we consider a single crossing at a time, so we only need to consider two punc-
tures P1 and P2 (plus two auxiliary punctures P+ at the top and P− at the bottom.) We
think of these punctures as corresponding to strands oriented out of the page.22

We can modify ideal triangulations by flipping the diagonal of a quadrilateral. From a
3-dimensional perspective, we are attaching the final edge of a tetrahedron above its base.
In fig. 3.16b we add a red edge to build an ideal tetrahedron P2P−P+P1. We then add two
green edges, building two more tetrahedra. Finally, we add the blue edge to finish.

Ignoring the interior dashed edges, which are now below the tetrahedra we have
added, we have a new, twisted copy of the triangulation 3.16a. By rotating P1 above
P2, we pull the green edges taut and obtain our original picture, but with the points P1

20This has something to do with cluster algebras, and later in Chapter 5 we will present quantum sl2 in
terms of a Weyl algebra, that is a quantum cluster algebra. We hope to make these connections more precise
in the future.

21If f : Σ → Σ is a homeomorphism, them mapping torus of f is the space Σ× [0, 1] modulo the relation
(x, 0) ∼ (f(x), 1).

22It’s straightforward to extend this picture to any number of interior punctures by gluing copies of
fig. 3.16a along the vertical edges.
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P+

P−

P2 P1

(a) The initial triangulation.

P+

P−

P2 P1

(b) Building a tetrahedron on top of a
quadrilateral.

P+

P−

P2 P1

(c) Adding two more tetrahedra.

P+

P−

P2 P1

(d) The final result.

Figure 3.16: Building an ideal octahedron.



29

P1

P2

P−

P+

P ′+

P ′−

Figure 3.17: An ideal octahedron at a positive crossing, modified from [KKY18, Figure
9a].

and P2 swapped. In the process, we have braided the point P1 over the point P2. This cor-
responds to a positive braiding in our conventions, assuming that the strands are oriented
out of the page in fig. 3.16.

The resulting ideal polyhedron is composed of four ideal tetrahedra, so we call it an
ideal octahedron. We give a side view of the octahedron in fig. 3.17. However, the alert
reader will notice that these pictures do not match! The octahedron of fig. 3.17 has two
extra points P ′− and P ′+ and two extra edges.

To fix this, we need to identify the points P+ and P ′+ by pulling them above the octa-
hedron and identifying the edges P1P+ and P1P

′
+. After doing the same thing below the

octahedron with P− and P ′−, we obtain a twisted ideal octahedron [KKY18, Figures 3–4]. We
typically refer to both as ideal octahedra.

It is not hard to see [KKY18, Section 3.1] that by placing such an ideal octahedron at
each crossing of a diagram of a link L we obtain an triangulation of S3 \ (L ∪ {P+,P−}),
where P+ and P− are the extra ideal points above and below the octahedra. In particular,
this procedure gives us a combinatorial method for constructing ideal triangulations of
link complements from a diagram of the link, although with many more tetrahedra than
necessary. For example, the octahedral decomposition of the figure-eight knot has 4 · 4 =
16 tetrahedra, while the optimal triangulation[Pur20, Chapter 1] of its complement has
only 2.

3.3.2 Shaped ideal octahedra

We can now describe the relationship between the parameters of a shaped tangle diagram
and the octahedral decomposition.

Suppose that we are at a positive crossing. There are four tetrahedra in fig. 3.17, which
we call the back, left, right, and front tetrahedra; their vertices are given in the second
column of table 3.1. We think about looking into the octahedron from in front of the
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tetrahedron points P1 P2 angle z◦i
τb P2P−P+P1 −1/λ1b1 −1/b2 b2/λ1b1
τl P2P+P

′
−P1 −1/λ1b1 ′ −1/λ2b2 λ1b1 ′/λ2b2

τr P2P
′
+P−P1 −1/b1 −1/b2 ′ b1/b2 ′

τf P2P
′
−P
′
+P1 −1/b1 ′ −1/λ2b2 ′ λ2b2 ′/b1 ′

Table 3.1: Geometric data associated to the positive crossing in fig. 3.17.

braiding, to match the disc picture. Each tetrahedron thinks that P+ and P− are located at∞ and at 0, respectively, but they disagree where the points P1 and P2 are located.
Label the shapes of the diagram as in fig. 3.12, and write χi = (ai,bi, λi) as usual. The

shapes assign the geometric data of table 3.1 to the octahedron. These assignments are
chosen to be compatible with the holonomy of the shaped diagram, as we will show in
proposition 3.35. 23

The last column of table 3.1 gives the complex dihedral angle of the horizontal edge
P−P+ of the corresponding tetrahedron, equivalently of the vertical red edge. As a sanity
check, the gluing equation

z◦bz
◦
rz
◦
l z
◦
f = 1

of the vertical edge is satisfied for any shapes χi. We will see later that the angles of the
external vertical edges (P1P

′
−, etc.) are associated with the a-parameters of the shapes.

We can use this data to compute the face maps of the ideal triangulation. It is some-
what easier to think about this from the disc picture of the octahedron. In fig. 3.18, we
glue τb and τl along the shaded face P1P2P+. The tetrahedra agree on the location of P+,
but disagree on the locations of P1 and P2, and the face map fixes this.

We get similar face maps for all the internal gluings. As promised, these maps agree
with the holonomy representation defined for the shapes.

Proposition 3.35. The face maps (as elements of PSL2(C)) of the octahedron in fig. 3.17 agree
with the holonomies assigned to the diagram complement by the shape parameters.

Proof. If we think of the face map in fig. 3.18 as going from τb to τl, then it represents the
positive holonomy of strand 2, which should be mapped to g+(χ2). Observe that for any
z ∈ Ĉ,

z · g+(χ2) = z ·
(

a 0
(a− 1/λ)/b 1

)
= a2z+

a2

b2
−

1
λ2b2

.

In particular, we see that g+(χ2) fixes∞, maps −1/b2 to −1/λ2b2, and maps −1/λ1b1 to

(−1/λ1b1) · g+(χ2) = a2

(
1
b2

−
1
λ1b1

)
−

1
λ2b2

= −
1
λ1b

′
1

.

23We will see later that the coordinates of the points P1 and P2 are essentially the “segment variables”
[KKY18] of the diagram. We have chosen to vary the locations of P1 and P2 and fix P+ and P−, which is the
opposite of the convention in [KKY18].
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P+

P−

P2 P1

Figure 3.18: The face corresponding to g+(χ2).

Because fractional linear transformations are totally determined by their action on three
points of Ĉ, we conclude that the face map agrees with g+(χ2).

The negative holonomy of strand 2 does not correspond directly to a face map, but the
face map going from τb to τr similarly corresponds to the inverse negative holonomy of
χ1. We see that the transformation

z · g−(χ1)
−1 = z ·

(
1 −(1 + λ1/a1)b1
0 1/a1

)
=

[
−b1 −

λ1b1

a1
+

1
za1

]−1

preserves 0, maps 1/λ1b1 to −1/b1, and maps −1/λ2b2 to

(−1/λ2b2) · g−(χ1)
−1 =

[
−b1 −

λ1b1

a1
−
b2

a1

]−1

= −
1
b ′2

.

There is a parallel characterization of the holonomies on the other side of the crossing.
For example, g+(χ ′2) corresponds to the gluing map between τr and τf, and correspond-
ingly acts on the vertices of τr by

∞ · g+(χ ′2) =∞
(−1/b ′2) · g+(χ ′2) = −1/λ2b

′
2

(−1/b1) · g+(χ ′2) = −
a ′2
b1

+
a ′2
b ′2

−
1
λ2b

′
2
= −1/b ′1

and similarly the face map gluing τl to τf is g−(χ ′1)
−1.

We now give a similar description of negative crossings, as shown in fig. 3.19a. We
assign the octahedron at a negative crossing the geometric data of table 3.2, which is
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P2

P1

P+

P−

P ′−

P ′+

(a) An ideal octahedron at a negative
crossing, modified from [KKY18, Fig-
ure 9b].

P+

P−

P2 P1

(b) Building via flips.

Figure 3.19: The octahedron associated to a negative crossing.

tetrahedron points P1 P2 angle z◦i
τb P1P+P−P2 −1/λ1b1 −1/b2 b2/λ1b1
τl P1P−P

′
+P2 −1/λ1b1 ′ −1/λ2b2 λ1b1 ′/λ2b2

τr P1P
′
−P+P2 −1/b1 −1/b2 ′ b1/b2 ′

τf P1P
′
+P
′
−P2 −1/b1 ′ −1/λ2b2 ′ λ2b2 ′/b1 ′

Table 3.2: Geometric data associated to the negative crossing in fig. 3.19a. Notice that the
only difference from table 3.1 is the second column.

almost identical to table 3.1. To derive it, it helps to use the alternative description of the
octahedron in fig. 3.19b. For example, from fig. 3.19b we see that the face map gluing τb
and τl should correspond to g−(χ2), and we confirm that

0 · g−(χ2) = 0, (−1/b2) · g−(χ2) = −
1
λ2b2

, (−1/λ1b1) · g−(χ2) = −
1
λ1b

′
1

.

Theorem 3.36. Let L be a link in S3 presented by a shaped diagramD. The representation π(L)→
PSL2(C) induced by the face maps of the octahedral decomposition of L corresponding toD agrees
with the holonomy representation π(L)→ SL2(C) corresponding to the shaped diagram.

Proof. It is enough to check the generators of Π(D). We checked the paths near a positive
crossing in proposition 3.35, and negative crossings follow by similar computations; we
checked one just before the statement of the theorem.
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2 ′

2

3

3 ′
1

1 ′
1 ′′

Figure 3.20: An over-under crossing with labeled segments.

3.3.3 Gluing shaped octahedra

In section 3.1.4 we said that a shaped diagram was one satisfying certain gluing equations
on the a-variables eqs. (3.1) and (3.2). In this section we gave a different notion of gluing
equation coming from hyperbolic geometry: any assignment of b-variables and eigenval-
ues λ to a shaped tangle assigns complex dihedral angles to the ideal octahedra, and we
can ask whether these angles satisfy the gluing equations when the octahedra are glued
together.

Kim, Kim, and Yoon [KKY18] work out the gluing and completeness equations of the
octahedral decomposition in detail and show that they can be described by one equation
for each segment of the diagram and for each region, including the case of λ-deformed
(incomplete) structures. In terms of the shape coordinates the segment equations corre-
sponding to the consistency equations for the a-variables, while the regional equations
are automatically satisfied.

Theorem 3.37. Let D be a pre-shaped diagram of a link. The octahedral decomposition of the
complement of D satisfies the gluing equations if and only if D is a shaped diagram, i.e. if the
gluing equations of D hold.

Proof. This is exactly [KKY18, Proposition 4.1] once we make the appropriate identifica-
tions. We give details in one case.

Consider an over-under crossing as in fig. 3.20. By eq. (3.1), the a-variables assigned
to the left and right sides are

a1 ′,L =
λ2b2 − λ1b1 ′

λ2b2 ′ − b1 ′
and a1 ′,R =

1/λ3b3 − 1/λ1b1 ′

1/λ3b3 − 1/b1 ′
.

Using table 3.1 we can interpret

a1 ′,L = λ1
1 − λ2b2/λ1b1 ′

1 − λ2b2 ′/b1 ′
= λ1zl,Lz

◦◦
f,L

as λ1 times the dihedral angle of the edge P1P− of the left-hand octahedron (associated to
the crossing 1, 2, 1 ′, 2 ′). Write γ̂L = zl,Lz◦◦f,L for this angle. We can similarly interpet

a1 ′,R = λ1
1 − λ1b1 ′/λ3b3

1 − b1 ′/λ3b3
= λ−1

1 zl,Rz
◦◦
b,R
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χ1

χ2

χ ′2

χ ′1

b2/λ1b1 λ2b2 ′/b1 ′

b1/b2 ′

λ1b1 ′/λ2b2

Figure 3.21: Region variables at a crossing. The assignment does not depend on the type
of crossing.

as λ−1
1 times the dihedral angle of the edge P2P

+ of the right-hand tetrahedron; write αR
for this angle.

The a-consistency equation for the edge 1 ′ now reads

λ1γ̂L = λ
−1
1 αR, equivalently

αR
γ̂L

= λ2
1,

which is exactly the hyperbolicity equation associated to that segment by [KKY18, Figure
14a and equation (10)]. A similar check works for the remaining types of segments (over-
over, etc.)

As discussed in [KKY18, Proposition 4.4], the region equations are automatically sat-
isfied when we use the b-variables. In more detail, the region variables are the dihedral
angles of the hoizontal edges of the octahedra. Each corner of a region corresponds to
a crossing, and we associate region variables at a crossing as in fig. 3.21. The gluing
equation for each region says that the product of the variables for a region is 1. It is not
hard to see that this is automatically true for any pre-shaped diagram because the region
variables are ratios of the b-variables and eigenvalues.

Above we used the fact that the dihedral angles of the vertical edges of each octahe-
dron are related to the a-variables. For later use we give the remaining associations. At a
positive crossing, table 3.1 gives that

z◦◦b zr =
1 − b2 ′/b1

1 − b2/λ1b1
=
λ1

a1
zlz
◦◦
f =

1 − λ2b2/λ1b1 ′

1 − λ2b2 ′/b1 ′
=
a1 ′

λ1

z◦◦b zl =
1 − λ2b2/λ1b1 ′

1 − b2/λ1b1
= λ2a2 zrz

◦◦
f =

1 − b2 ′/b1

1 − λ2b2 ′/b1 ′
=

1
λ2a

′
2

(3.3)

and similarly at a negative crossing table 3.2 gives

zbz
◦◦
r =

1 − λ1b1/b2

1 − b1/b2 ′
= λ1a1 z◦◦l zf =

1 − b1 ′/λ2b2 ′

1 − λ1b1 ′/λ2b2
=

1
λ1a

′
1

zbz
◦◦
l =

1 − λ1b1/b2

1 − λ1b1 ′/λ2b2
=
λ2

a2
z◦◦r zf =

1 − b1 ′/λ2b2 ′

1 − b1/b2 ′
=
a ′2
λ2

(3.4)
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Chapter 4

Representations of shaped tangles

Overview
In this chapter we give a general theory of how to construct invariants of links via shaped
tangle diagrams. Our approach is an extension of the Reshetikhin-Turaev construction
[RT90], with a few modifications.

Specifically, we explain how to define SL2(C)-link invariants using a representation of
the shape biquandle in a pivotal category. We define these precisely in section 4.1. Because
of vanishing quantum dimensions, we also need a modified trace on the category of mod-
ules, as discussed in section 4.3 and appendix A. For now, we can think of a modified
trace as a family of linear maps

tV : EndC (V)→ C

for objects V of a (subcategory of) a pivotal category C . These traces should be cyclic and
appropriately compatible with the usual quantum trace of C coming from the pivotal
structure.

The majority of the chapter is devoted to the construction of these invariants (de-
scribed below) and the proof that they are well-defined. We also define some simple
examples of representations: scalar representations, which we can think of as changes
in normalization and correspond to biquandle 2-cocycles in the sense of [Kam+18], and
adjoint representations, which were used in the original Kashaev-Reshetikhin construc-
tion [KR05; Che19; Che+21] of holonomy invariants. In chapters 5 and 6 we construct the
representations that give the nonabelian quantum dilogarithm and its double.

4.0.1 Summary of the construction

Let L be an extended SL2(C)-link L, and let C be a pivotal category, such as the category
Oξ−Mod. A representation of the extended shape biquandle in Oξ−Mod gives a functor
F : TangSh → Oξ−Mod via a slight extension of the usual RT construction. Suppose in
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addition that we have a modified trace t on a subcategory1 I of C containing the image of
F . Then we can define an invariant F(L) from F as follows:

1. Express L as an extended shaped tangle diagram D. (This may require a gauge
transformation of the holonomy.)

2. Cut open D to obtain a (1, 1)-tangle2 diagram T .

3. Use the functor F to view T as a morphism F(T) : V → V of an object V of C .

4. Take the modified trace of F(T) and set

F(L) := tVF(T).

Our goal in this chapter is to prove that F(L) is a well-defined invariant of L.

Theorem 4.1. LetF be a representation of the extended shape biquandle (section 4.1) and t a com-
patible trace (section 4.3). If t is gauge-invariant (section 4.4) and the representation F is regular
and absolutely simple (definition 4.27), the scalar F(L) defined above is a gauge-independent
invariant of extended SL2(C)-links.

Proof. This follows from theorems 4.16, 4.19 and 4.32. We explain the idea of the proof
below.

4.0.2 Some problems

To prove theorem 4.1 we need to address the following technical issues:

Reidemeister moves If the labeling of a diagram by shapes is to describe properties of
the tangle (not just its diagrams) then the labellings must be compatible with the
Reidemeister moves defining equivalence of tangle diagrams.

Existence of shapes Can every SL2(C)-link be represented as a shaped tangle?

Gauge equivlance If two SL2(C)-links are gauge equivalent, will our functor assign the
same invariant to both?

Choice of cut How do we know our invariants do not depend on the choice of represen-
tative (1, 1)-tangle?

1As discussed in appendix A, this subcategory should be an ideal, meaning that it is closed under tensor
products and retracts.

2A (1, 1)-tangle is a tangle with one input and one output. If we join these together, we get a link,
and conversely we can obtain a (1, 1)-tangle diagram by cutting open a link along some particular strand.
(1, 1)-tangles are closely related to long knots and long links.
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These issues are dealt with by the generic biquandle factorizations of Blanchet et al. [Bla+20].
We emphasize the parts that are necessary for understanding SL2(C) holonomy invari-
ants, as their construction is more general. As part of the construction we introduce a par-
tially defined biquandle, which is related to excluding singular crossings of shaped links
where the a-variables would be 0 or∞. We de-emphasize the technical issues this causes;
the skeptical reader can consult [Bla+20, Section 5] for the details.

4.0.3 Some solutions

It is common in knot theory to describe representations of a tangle (or knot or link) funda-
mental group using the Wirtinger presentation associated to a diagram of the tangle. For
technical reasons3 we cannot use this description for SL2(C)-tangles, but instead want to
use a generalization, an algebraic structure called a biquandle. In the language of [Bla+20],
we show that the shape biquandle gives a generic factorization of the conjugation quandle
of SL2(C).

Diagrams colored by the shape biquandle are exactly shaped tangles as defined in chap-
ter 3, so they are compatible with Reidemeister moves. Actually, this is only true gener-
ically: at pinched crossings (section 3.1.5) we could send the a-variables to zero, which
we prohibit. However, since most diagrams4 allow the Reidemeister moves, we say that
shaped tangles form a generic biquandle. This resolves the first question.

We then turn to the remaining questions, which are answered together. Given a
SL2(C)-link L with a diagram D we can always describe the representation ρ : π(L) →
SL2(C) by decorating the arcs of D with elements of SL2(C). (Formally, we say that D is
colored by the conjugation quandle of SL2(C).) For generic ρ we can pull these back to get
a shaped diagram D whose holonomy is ρ, as described in In certain singular cases this
is not possible, but we show that we can always conjugate ρ to avoid these.

We can therefore define our invariants on any SL2(C)-link by first gauge-transforming
to a holonomy representation that lies in the image of the shape coordinates. At a slightly
more abstract level, recall that the representation variety of L is the space of representa-
tions ρ : π(L) → SL2(C), and the character variety is the representation variety modulo
conjugation by SL2(C).5 Shapings of diagrams of L give a coordinate system on a Zariski
open dense subset of the representation variety of L. Because every representation is con-
jugate to one lying in this set, the shapes give coordinates on the character variety, which
is our object of interest.

3The issue was already raised in chapter 2: the central subalgebra Z0 of Oξ is not the ring of functions
on SL2(C), but instead the ring of functions on SL2(C)∗. Furthermore, to match the R-matrices computed
in chapter 5 we need to restrict to characters of Z0 that pull back to the center of the Weyl algebra; these
characters are exactly the shape biquandle.

4By “most” we mean “lying in a dense Zariski open subset”.
5There are geometric subtleties with taking this quotient of the representation variety, which we do not

address here.
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For this to be well-defined the invariant of shaped tangles cannot depend on the gauge
class of shaped diagram used to represent a particular holonomy representation. In sec-
tion 4.4 we show that this is the case, as long as the modified traces are appropriately
gauge invariant. A key idea in this proof is to understand gauge transformations in a
diagram-theoretic way, so that gauge invariance is a consequence of the Reidemeister
moves. Finally, use of the modified trace introduced in section 4.3 also ensures that the
renormalized link invariants are independent of the choice of representative (1, 1)-tangle
(i.e. the choice of where to cut L.)

4.0.4 Structure of the chapter

In section 4.1 we introduce biquandles as an algebraic structure, then discuss their rep-
resentations in section 4.2, which lead to Reshetikhin-Turaev type functors for shaped
tangles. In section 4.3 we discuss modified traces and how they relate to biquandle rep-
resentations. For now, we assume that traces with the required properties exist; an ex-
planation of how to construct them is given in appendix A. We also show how to use
modified traces to show that (under a few technical hypotheses satisfied in our examples)
biquandle models automatically induce twists. In section 4.4 we explain how to view
gauge transformations of SL2(C)-links in terms of shaped tangle diagrams, which allows
us to show that our invariants are well-defined and gauge-independent. These provide
all the ingredients for the proof of theorem 4.1.

We give a simple example of a biquandle representation in section 4.2.3, where we
discuss the adjoint representation used to construct the Kashaev-Reshetikhin invariants
of [KR05; Che19; Che+21]. We conclude the chapter (section 4.5) with a discussion of
scalar representations of biquandles, which we can think of as changes in normalization.
They turn out to be equivalent to the biquandle 2-cocycles of [Kam+18]. Later in chapter 5
we will define the representation J , which gives the nonabelian quantum dilogarithm.
The functor T of chapter 6 is another example of a representation.

4.1 Biquandles
There are various algebraic structures that describe labellings of tangle diagrams, includ-
ing quandles, racks, and biquandles. Biquandles6 are the most specific structure that
capture the braiding on the quantized function algebra, so we focus on them.

Definition 4.2. A biquandle [Bla+20, Section 3] is a set Xwith a bijective map B = (B1,B2) :
X×X→ X×Xwhich satisfies the following axioms.

1. B satisfies the braid relation

(idX×B)(B× idX)(idX×B) = (B× idX)(idX×B)(B× idX).
6Actually, we need partially defined biquandles.
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x1

x2

x ′2

x ′1

Figure 4.1: Biquandle elements (x ′2, x ′1) = B(x1, x2) at a positive crossing.

2. B is sideways invertible: there is a (unique) bijection
B

: X×X→ X×X such that

B

(B1(x,y), x) = (B2(x,y),y)

for every x,y ∈ X.7

3. There is a bijection α : X→ X such that

B
(x, x) = (α(x),α(x)).

4.1.1 Biquandle colorings of diagrams

Definition 4.3. Let X be a biquandle. An oriented, framed tangle diagram D is said to be
X-colored if each segment is assigned a color in X, such that the colors at the crossings are
compatible with the map B. For example, at a labeled positive crossing (fig. 4.1) we must
have B(x1, x2) = (x ′2, x ′1). At a negative crossing we would instead have B−1(x1, x2) =
(x ′2, x ′1).
X-colored diagrams form a monoidal category denoted TangX whose

objects are tuples
((x1, ε1), (x2, ε2), . . . , (xn, εn))

of pairs of elements xi ∈ X and signs. We frequently drop the signs from the notation
when they are clear.

morphisms are X-colored tangle diagrams. Two diagrams can only be composed if their
colors and orientations match.

tensor product is given by vertical stacking, just like for tangle diagrams.

When we think of biquandles as colorings for tangle diagrams, we reveal the motiva-
tion for each axiom:

1. The colors need to be compatible with the RIII move.
7This is equivalent to saying that, for any x ∈ X, the maps y 7→ B1(x,y) and y 7→ B2(y, x) are bijections.
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x x

α(x)

Figure 4.2: Biquandle colorings at a kink.

2. Because B is a bijection, if we pick the colors on the left of a crossing we determine
them on the right (and vice-versa.) This axiom says that, in addition, picking the
colors on the top determines the colors on the bottom (and vice-versa.)

3. While we allow the colorings to change in a RI-type diagram, they can only change
in a fairly regular way, as in fig. 4.2. (Relaxing this condition would give a birack.)

Our motivating example of a biquandle is the shape biquandle, although technically
speaking it is only partially defined. Before addressing this, we give a simpler example.

4.1.2 Conjugation quandles and the fundamental group

As discussed in section 3.1.3, every tangle diagram gives a Wirtinger presentation of the
fundamental group of the complement, as shown in fig. 3.7. From a biquandle perspec-
tive, we have “input” elements w1 and w2 and ”output” elements w2 ′ = w−1

1 w2w1 and
w1 ′ = w1.

Definition 4.4. Let G be a group. The conjugation quandle8 of G is the biquandle on the set
G given by

B(g1,g2) = (g−1
1 g2g1,g1).

When we say a tangle diagram is colored by G, we mean it is colored by the conjugation
quandle of G.

Proposition 4.5. Let T be a link with a diagram D. Then representations ρ : π(T) → G of its
fundamental group are in bijection with colorings of D by (the conjugation quandle of) G.

Proof. By assigning an element of G to each segment of the diagram, we specify the im-
age of our homomorphism ρ. Requiring them to satisfy the relations of the conjugation
quandle is exactly the same as requiring them to sasisfy the relations of the Wirtinger pre-
sentation of π(D) ∼= π(T). Conversely, given a tangle and a representation ρ : π(T) → G

we can pick an oriented diagram D of T and then the image of appropriate meridians of
T under ρ gives a coloring of D by G.

8In the special case B(g1,g2) = (g ′2,g1) where the overstrand does not change we call our structure a
quandle, instead of a biquandle.



41

The obvious way to get holonomy invariants of G-links would be to construct func-
tors from TangG to a linear category, say the category H−Mod of modules over a Hopf
algebra H. 9 These correspond to objects that Turaev [Tur10] calls Hopf group-coalgebras.
Unfortunately, we are only aware of examples of this type when G is a discrete or finite
group. For Lie groups such as G = SL2(C) we need to take a different approach, which
requires a more complicated description of the holonomy.

4.1.3 Group factorizations

The necessary generalization of the colorings of a tangle corresponds to our earlier gener-
alization of Wirtinger presentation of the fundamental group to the fundamental groupoid.
Specifically, our goal is to describe representations π(D) → G in terms of Π(D) by using
the equivalence Φ of fig. 3.11 and proposition 3.16. One way to do this is to split G into
upper and lower parts G± and assign each strand a pair of elements g±i ∈ G

±. This gives
a representation Π(D) → G+ ×G−, and if we choose things appropriately pulling back
along Φwill give a representation π(D)→ G.

Strictly speaking we do not use this perspective in our construction because the shape
biquandle does not correspond to a group, as discussed below. However, we include it as
motivation for the shape coordinates.

Definition 4.6. A group factorization is a triple (G,G,G∗) of groups, with G a normal sub-
group of G, along with maps g+,g− : G∗ → G such that the map ψ : G∗ → G

ψ(a) = g+(a)g−(a)−1

restricts to a bijecton G∗ → G.

Example 4.7. Set G = GL2(C),

T :=

{(
κ −ε

0 κ−1

)}
⊆ GL2(C),

T∗ :=

{((
1 0
0 κ

)
,
(
κ ε

0 1

))}
⊆ GL2(C)×GL2(C),

and let g+,g− : G∗ → G be the inclusions of the first and second factors, respectively.
Then (T , T∗,G) is a group factorization, and the map ψ acts by

ψ :

((
1 0
0 κ

)
,
(
κ ε

0 1

))
7→
(
κ −ε

0 κ−1

)
.

This group factorization corresponds to semi-cyclic invariants [GP13a], but to get ge-
ometrically interesting representations, we need a more general notion. Instead of requir-
ing ψ to be a bijection, we only require it to be generically bijective.

9In our language, a Hopf G-coalgebra H gives a model of the conjugation quandle of G in the category
H−Mod.



42

Definition 4.8. A generic group factorization is a triple (G,G,G∗) of groups, withG a normal
subgroup of G, along with maps g+,g− : G∗ → G such that the map ψ : G∗ → G

ψ(a) = g+(a)g−(a)−1

restricts to a generic bijection G∗ → U.

Example 4.9. Recall the Poisson dual group of SL2(C):

SL2(C)∗ :=

{([
κ 0
φ 1

]
,
[

1 ε

0 κ

])}
⊆ GL2(C)×GL2(C).

Set G = SL2(C) and G = GL2(C)×GL2(C), and let g+,g− : G∗ → G be the inclusions of
the first and second factors. Then the map ψ acts by

ψ :

([
κ 0
φ 1

]
,
[

1 ε

0 κ

])
7→
[
κ −ε
φ (1 − εφ)/κ

]
(4.1)

The image of ψ is the set U of matrices with 1, 1 entry nonzero, which is a Zariski open
dense subset of SL2(C), so we obtain a generic factorization of SL2(C).

The factorization of SL2(C) in terms of SL2(C)∗ = SpecZ0 is directly related to the
braiding on Oξ given in chapter 2, and it can be used [Bla+20; McP20] to construct in-
variants of SL2(C)-links. The category of Oξ-weight modules (where Z0 acts diagonaliz-
ably) is SL2(C)∗-graded, but we would expect invariants of SL2(C)-links to come from an
SL2(C)-graded category. The factorization perspective explains why can useOξ-modules
to construct these invariants, but as a consequence we have to replace the conjugation
quandle of SL2(C) with a factorization in terms of SL2(C)∗.

Strictly speaking we do not use group factorizations here, as mentioned earlier. In
order to compute the matrix coefficients of the braiding and use the geometric ideas of
chapter 3 we want to consider the subset

Sh :=

{([
a 0

(a− 1/λ)/b 1

]
,
[

1 (a− λ)b
0 a

])}
⊆ SL2(C)∗

corresponding to Z0-characters that pull back to center ofWξ. This is not a subgroup, so
we do not have a group factorization. Nonetheless, it is large enough that it still provides
a factorization of the conjugation quandle of SL2(C), which is almost the factorization
associated to SL2(C)∗. The map ψ acts by

ψ :

([
a 0

(a− 1/λ)/b 1

]
,
[

1 (a− λ)b
0 a

])
7→
[

a −(a− λ)b

(a− 1/λ)/b λ+ λ−1 − a

]
and we think of the matrix on the right as the holonomy around a strand with shape
χ = (a,b, λ).

In both cases, we have a coordinate system on a proper dense subset of SL2(C). Be-
cause this is a proper subset, we need to use generic biquandles to describe it, as discussed
in section 4.1.4. This causes some technical difficulties, but because the set is dense we
can work around them.



43

4.1.4 Generic biquandles

Unfortunately our previous definiton of biquandle is too restrictive to describe shaped
tangles. The reason is that the shapes can fail to be defined. For example, if b2 = λ1b1 at
a positive crossing but b ′2 6= b1, by eq. (3.1) we have

a1 =
b1 − λ1β1

b2 ′ − b1
= 0.

Since we only allow a1 6= 0, the biquandle corresponding to the shapes is not defined
at such a crossing. To allow such examples we need the notion of a generically defined
biquandle.

Definition 4.10. Let X be a topological space and let D be the set of open dense subsets of
X.10

• A partial map f : A→ B is a map f : A ′ → B for A ′ ⊆ A.

• A property of (some) elements x ∈ X is generically true if it holds for all x ∈ Z, where
Z ∈ D is some open dense subset.

• A generic bijection f : X → X is is a bijection f : Z1 → Z2 for some Z1,Z2 ∈ D such
that for every Z ∈ D , the sets f(Z∩Z1) and f−1(Z∩Z2) lie in D .

Definition 4.11. A generic biquandle (X,B) is a biquandle in which B and the sideways
map

B

are only partially defined, and in which the following hold:

1. For any x1, x2, x1 ′ , x2 ′ ∈ X, the following are equivalent:

a) (x2 ′ , x1 ′) = B(x1, x2)

b) (x1, x2) = B
−1(x2 ′ , x1 ′)

c) (x1 ′ , x2) =

B

(x2 ′ , x1)

d) (x2 ′ , x1) =

B −1(x1 ′ , x2)

2. For any x0 ∈ X, the map x 7→ B1(x0, x) is a generic bijection, and similarly for the
seven other maps given by the components of B, B−1,

B

, and

B −1.

For any generic biquandle X we define the category TangX of X-colored diagrams just
as before. However, we now restrict the Reidemeister moves: they are only allowed when
they do not introduce crossings for which the map B is not defined.

10In our examples, X is always a subset of Cn with the Zariski topology.
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4.1.5 The shape biquandle

Definition 4.12. Let Sh0 = C× ×C× ×C× be the set of triples of nonzero complex num-
bers. We usually denote elements of Sh0 as χ = (a,b, λ). The shape biquandle is the generic
biquandle on Sh0 given by

a1 ′ = a1A
−1 a2 ′ = a2A

b1 ′ = b2

(
λ1

λ2
− a2

(
λ1 −

b2

b1

))−1

b2 ′ = b1

(
1 − a−1

1

(
λ1 −

b2

b1

))
λ1 ′ = λ1 λ2 ′ = λ2

where B(χ1,χ2) = (χ2 ′ ,χ1 ′), χi = (ai,bi, λi), and

A = 1 +
b1

b2
(a1 − λ1)(1 − a−1

2 λ
−1
2 ).

Here the χi correspond to segments of a knot diagram as in fig. 3.12.
We refer to the elements χ of X as shapes, and write TangSh0

for the category of shaped
tangles, that is (oriented framed) tangles colored by the shape biquandle.

The rules for B are equivalent to the gluing equations (3.1) and (3.2): we can derive
them by solving for the primed variables in terms of the unprimed variables. It is similarly
possible to compute the sideways map

B

, but we don’t need the formula.
We do, however, compute the twist map α. For any shape χ = (a,b, λ), the unique

shape α(χ) with B(χ,α(χ)) = (χ,α(χ)) is given by

α(a,b, λ) =
(
λ+ λ−1 − a−1, λb, λ

)
.

Theorem 4.13. The shape biquandle is a generic biquandle.

Proof. We first show that B satisfies the colored braid relation. We could check this di-
rectly, although this is somewhat tedious. A more systematic approach is to use the fact
that the map B is determined by the action of the outer S-matrix S on central characters
χ : Z(Wξ) → C. Because S satisfies the colored braid relation and acts bijectively on
characters, B does as well.

To see that the shape biquandle is generic, observe that Sh0 is a Zariski open dense
subset of C3, i.e. an element of D . The maps on the parameters a,b, λ defining the shape
biquandle are rational functions, so the maps defining B,

B

, and their inverses are ratio-
nal maps, so they take elements of D to elements of D . It follows that they are generic
bijections as required.

It is not hard to extend this definition to the case of extended SL2(C)-links: we just
have to keep track of some extra Nth roots.
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Definition 4.14. An extended shape is a shape χ = (a,b, λ) along with a choice µ of Nth
root µN = λ of the eigenvalue λ. We call µ a fractional eigenvalue. We consider only
diagrams of admissible links (as defined in section 1.3), so we assume that if λ = ±1 we
have µ = −ξ−1, so λ = (−1)N+1. Because the shape biquandle permutes the eigenvalues
λi extended shapes also form a biquandle, which we call the extended shape biquandle.

The nonabelian quantum dilogarithm is defined via a representation of the extended
shape biquandle constructed in chapter 5.

4.1.6 Shape presentations of SL2(C)-links

We can now make explicit what it means to represent a SL2(C)-link in terms of a shaped
link diagram.

Definition 4.15. Every shaped tangle represents a SL2(C)-colored tangle, in the sense that
there is a functor

Ψ : TangSh0
→ TangSL2(C).

IfD is a shaped tangle diagram, the holonomy representation (definition 3.19) ofD gives
a representation ρ : π(D) → SL2(C). By proposition 4.5, there is a SL2(C)-coloring D ′ of
the underlying diagram of D, and we define Ψ(D) = D ′.

Ψ is a special case of the functorQ defined in [Bla+20, Theorem 3.9]. We do not actually
need the functoriality of Ψ, so we do not prove it.

If D is the diagram of a SL2(C)-link L, by proposition 4.5 we can color the arcs of D
by elements gi ∈ SL2(C) describing the images of the Writinger generators under the
holonomy representation. We can then solve for shape parameters that give the same
holonomy. In more abstract language we are computing an inverse image of the diagram
under the functor Ψ.

For example, in fig. 4.3 the gold path wrapping around segment 1 has holonomy g1 =
ρ(w1) ∈ SL2(C), where w1 is the corresponding Wirtinger generator. We need to choose
the shape χ1 so that

ψ(χ1) = g
+(χ1)g

−(χ1)
−1 =

[
a1 −(a1 − λ1)b1

(a1 − 1/λ1)/b1 λ1 + λ
−1
1 − a1

]
= g1.

Once we choose a1, b1, and λ1, we need to choose χ2 so that

g+(χ1)g
+(χ2)g

−(χ2)
−1g+(χ1)

−1 = g2.

These formulas come from the equivalence between π(D) and Π(D) described in fig. 3.11.
Continuing in this manner, it is straightforward if tedious to compute the shapes χi of
every segment of the diagram.11

11As mentioned before, for geometrically interesting representations this process becomes much easier:
instead of solving for the shape parameters in terms of ρ, we determine the shape parameters from gluing
equations and thereby determine ρ.
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g2

g1

Figure 4.3: Solving for the shapes χ1,χ2 in terms of the holonomy g1,g2.

1

λ

λ2 λ2

λ

1

Figure 4.4: Shaping of a braid diagram corresponding to an abelian holonomy represen-
tation with eigenvalue λ.

Since not every matrix in SL2(C) lies in the image of ψ, some representations ρ might
not be expressible in terms of shapes. However, we can always conjugate away from
these singular cases:

Theorem 4.16. LetD0 be a diagram colored by the conjugation quandle of SL2(C) corresponding
to an admissible SL2(C)-link L. Then there is a shaped diagram D with Ψ(D) = D0, i.e. whose
holonomy representation is the representation of D0 induced by the colors.

Proof. Write ρ for the holonomy representation of L and fix a diagram D of L. The rep-
resentation ρ decorates the strands of D with shapes, but it is possible that We consider
three cases:

1. ρ is irreducible,

2. ρ is reducible and the meridians have eigenvalues λ 6= ±1,

3. ρ is reducible and the meridians have eigenvalues λ = ±1.

If ρ is irreducible, we can conjugate it so that the image of every meridian has nonzero
entries.
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We assume that L is admissible, so ρ is a completely reducible representation. As such,
if ρ is reducible it is conjugate to a representation of the form[

λi 0
0 λ−1

i

]
.

Consider the shapes χk = (λi, λki , λi) for integers k. It is not hard to check thatB(χk,χk+1) =
(χk,χk+1), and we can use this to find a coloring D of the diagram with the shapes χk.

This is easiest to see using a braid diagram, as in fig. 4.4. When every component
has eigenvalue λ, we assign a strand at “depth” k the parameter b = λk−1. This works
even if different components have different eigenvalues. This coloring is preserved by
Reidemeister moves, which shows how to find such a coloring of a general diagram D:
transform D to a braid diagram12 pick an abelian coloring as indicated, then transform
back to D.

If λi 6= 1, we can check that the holonomy around any meridian of the diagram will be
conjugate to a matrix [

λi 0
b λ−1

i

]
for some fixed b, and because λi 6= λ−1

i these matrices are conjugate to diagonal matrices
as required. If λi = ±1, then the any completely reducible representation is the constant
representation ρ(x) = ±I2. In this case a coloring by characters (±1, (−1)k,±1) works and
has holonomy ρ.

4.2 Representations of biquandles
Now that we know what a tangle diagram colored by a biquandle is, we can discuss how
to map them to pivotal categories.

4.2.1 Pivotal categories

Definition 4.17. Let C be a (strict)13 monoidal category with product ⊗ and unit object 1.
Under ⊗, the space k = EndC (1) becomes a commutative monoid, and the hom spaces of
C are all k-bimodules. We assume that the left and right actions of k agree. We call k the
scalars14 of C .

12Since D is a tangle diagram, strictly speaking here we mean transforming it to a braid-like diagram,
possibly with some through-strands or strands that return to the same side. Really all that is important is
that the strands of D all lie at distinct heights in the diagram and only change heights at crossings.

13As is customary, we ignore the distinction between a monoidal and strict monoidal category by the
ritual invocation of Mac Lane’s coherence theorem [Lan97, Chapter 7].

14By defining the scalars in this roundabout way we capture both categories like TangSh0
(trivial scalars)

and A−Mod for A a Hopf algebra over C (scalars are C).
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x x

α(x)

Figure 4.5: The right positive twist θRx : Vx → Vx.

x x

α−1(x)

Figure 4.6: The left positive twist θLx : Vx → Vx.

We say that C is a pivotal category if it has duals. In more detail, we require that for
every object V of C , there is a dual object V∗ and morphisms

ev↑V : V ⊗ V∗ → k coev↑V : k→ V ⊗ V∗

ev↓V : V∗ ⊗ V → k coev↓V : k→ V∗ ⊗ V

coherent in the usual way. For example, we can use these define maps φX : X → X∗∗ that
form a monoidal natural isomorphism; see section 4.3.3 and [GPV13] for details.15

The arrows decorating the evaluation and coevaluation morphism correspond to the
orientations of the cups and caps of fig. 3.6. The shaped tangle category TangSh0

is a
pivotal category with scalars the trivial monoid. In section 4.3 we give a pivotal structure
on Oξ−Mod.

We get biquandle representations by an extension of the Reshetikhin-Turaev construc-
tion. In more straightforward language, we construct them by specifying their values on
the oriented generators corresponding to those shown in fig. 3.6. The cups and caps come
from the pivotal structure on the target category C , so the key ingredient is the braiding.

4.2.2 The RT functor

Definition 4.18. Let C be a pivotal category and (X,B) a biquandle. A model of X in C is
a family {Vx}x∈X of objects indexed by X and a family of braidings, isomorphisms

Sx1,x2 : Vx1 ⊗ Vx2 → Vx2 ′ ⊗ Vx1 ′

15A pivotal category is a slight weakening of a spherical category [nLa21; BW99] where the twists need
not be trivial.
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s+L (x
′
2, x1) s−R (x

′
2, x1)
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x ′1

x2
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x ′2

x ′2

x ′1

x1

x2

x2

x ′2

x ′2

Figure 4.7: Sideways braidings.

where B(x1, x2) = (x2 ′ , x1 ′). The braidings must satisfy the colored braid relation

(S−,− ⊗ id−)(id−⊗S−,−)(S−,− ⊗ id−) = (id−⊗S−,−)(S−,− ⊗ id−)(id−⊗S−,−)

We consider two more technical conditions on our biquandle models. For (x2 ′ , x1 ′) =
B(x1, x2), the model induces the maps

s+L (x2 ′ , x1) : Vx2 ′ ⊗ Vx1 → Vx1 ′ ⊗ Vx2

s−R (x2 ′ , x1) : Vx ′1 ⊗ Vx2 → Vx2 ′ ⊗ Vx1

shown in fig. 4.7, which we call sideways braidings. The positive twists are shown in figs. 4.5
and 4.6. We say that a model

• is sideways invertible if the sideways braidings s+L and s−R are inverses, and

• induces a twist if θRx = θLx for all x ∈ X.

We can think of the twist condition as requiring the image of the model to be spherical,
and if a model induces a twist the analogous negative twists agree as well. Sideways
invertibility is a sort of compatibility condition between taking duals and the braidings:
even if the strands of a crossing aren’t oriented exactly as fig. 3.6 we can still define an
appropriate braiding.

Theorem 4.19. A representation of a biquandle (X,B) in a pivotal category C is a model (V ,S)
of (X,B) in C which is sideways invertible and induces a twist. Given such a representation, there
is a unique monoidal functor

F : TangX → C
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sending generators of TangX to the analogous morphisms

F(coev↑x) = coev↑Vx F(ev↑x) = ev↑Vx F(σx1,x2) = Sx1,x2

F(coev↓x) = coev↓Vx F(ev↓x) = ev↓Vx F(σ−1
x2 ′ ,x1 ′

) = S−1
x2 ′ ,x1 ′

In particular, F respects the colored RII and RIII relations.

Proof. The proof is basically the same as in the case where X is trivial. The details are
given in [Bla+20, Theorem 4.2].

We frequently blur the distinction between the functor induced by a representation
and the representation itself.

4.2.3 The adjoint representation

For now, we can give a simple example of a representation Let χ be an extended shape,
which we can think of as a central character ofWξ. By pulling back along the embedding
φ : Oξ → Wξ we can think of χ as a central character of Oξ. Writing kerχ for the ideal
generated by the kernel of χ, we see that Oξ/ kerχ is a Oξ-module. It is not simple, but it
is a simple (Oξ,Oξ) bimodule.

Example 4.20. The adjoint model of the extended shape biquandle is given by assigning a
character χ the module Oξ/χ and a crossing (χ1,χ2)→ (χ2 ′ ,χ1 ′) to the automorphism

S : Oξ/ kerχ1 ⊗Oξ/ kerχ2 → Oξ/ kerχ2 ′ ⊗Oξ/ kerχ1 ′ .

It is not hard to show that this model is a representation taking values in the category of
(Oξ,Oξ)-bimodules.

In the terminology of definition 4.27, this representation is regular and absolutely sim-
ple,16 since Oξ/ kerχ is a simple bimodule. The original Kashaev-Reshetikhin invariant
[KR05] is defined in terms of this representation, which is discussed in more detail in
[Che19; Che+21].

One advantage of the adjoint representation is that it is straightforward to define and
we avoid the scalar ambiguities in the braiding that cause major problems in chapter 5.
However, the topological interpretation of the adjoint invariant is less clear, while the
quantum dilogarithm can be seen either as a generalization of the colored Jones polyno-
mial or as a torsion.

We can identifyOξ/ kerχwith the endomorphism algebra of a simpleOξ-module with
character χ (which is defined explicitly in definition 5.10). For this reason, we might ex-
pect that the adjoint representation is the double of the nonabelian quantum dilogarithm,
as is the case for the usual RT construction. However, this is not the case: the holonomy
quantum double is a more elaborate construction given in chapter 6.

16These technical conditions (discussed later) are needed to prove that the invariant associated to a rep-
resentation is gauge-independent.
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f

V

Figure 4.8: The right trace of a map f : V → V .

4.3 Modified traces in pivotal categories
To obtain nonzero invariants from the non-semisimple category Oξ−Mod we need to use
modified traces. We define these axiomatically and explain their use in this section. For
more on the construction of modified traces see appendix A.

4.3.1 Oξ−Mod as a pivotal category

Oξ is a pivotal Hopf algebra with pivot KN−1. This means that the category Oξ−Mod of
finite-dimensional Oξ-modules becomes a pivotal category by setting V∗ = HomC(V , C)
and

coev↑V : C→ V ⊗ V∗ 1 7→
∑
j

vj ⊗ vj

coev↓V : C→ V∗ ⊗ V 1 7→
∑
j

vj ⊗KN−1 · vj

ev↑V : V∗ ⊗ V → C v⊗ f 7→ f(v)

ev↓V : V ⊗ V∗ → C f⊗ v 7→ f(K1−N · v)

where {vj} is any basis of V and {vj} is the dual basis of V∗.
If f : V → V is an endomorphism of Oξ−Mod, then the (right) quantum trace of f is17

qtr f := coev↑V(f⊗ idV∗) ev↓V ∈ Hom(C, C) = C.

The left trace is qtr f := coev↓V(idV∗ ⊗f) ev↑V , which agrees with the right trace because
S(KN−1) = K1−N (where S is the antipode). The quantum dimension of an object V is qtr idV .

Lemma 4.21. The quantum dimensions of the standard modules V(χ) of definition 5.10 are all
zero, so the quantum trace of any endomorphism

f : V(χ1)⊗ · · · ⊗ V(χn)→ V(χ1)⊗ · · · ⊗ V(χn)

is zero as well.
17Recall that maps in tangle categories are read left-to-right!
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Proof. Let {vm} be the usual basis of V(χ) = V(α,β,µ). Then the quantum dimension is

1 7→
∑
m

vmv
m 7→

∑
m

vmK
1−Nvm = αN−1

∑
m

vmv
m−1 7→ αN−1

∑
m

vm−1(vm) = 0.

To see that traces of morphisms vanish, write

qtr f = qtr
(
trV(χ2)⊗···⊗V(χn) f

)
where g = trV(χ2)⊗···⊗V(χn) f is the partial trace of f. (See definition 4.22.) Since g ∈
EndC (V(χ1)) is an endomorphism of a simple object, we must have

g = λ idV(χ1)

for some scalar λ, so
qtr f = qtrg = λqtr idV(χ1) = 0.

4.3.2 Modified traces

As a consequence, we cannot use qtr to define useful link invariants for Oξ−Mod. How-
ever, there is a workaround. Let f : V → V be an endomorphism of a simple18 object V in
some C-pivotal category C . By Schur’s Lemma there is a scalar 〈f〉with

〈f〉 idV = f.

Suppose F is the functor induced by a representation of a biquandle X in C and that
F maps strands to simple objects, and let D be an X-colored diagram with no free ends.
Instead of evaluating F(D) directly, we can instead cut open D to obtain a (1, 1)-tangle19

T whose closure is L. The image F(T) of T under F will be an endomorphism of a simple
object, and we can regard the scalar 〈F(T)〉 as the value of F on L.

For this to be well-defined we need to make sure that 〈F(T)〉 does not depend on our
choice of where to cut D. When every strand of D is assigned the same module it is not
hard to see that 〈F(T)〉 is an invariant of D, but for a nontrivial biquandle X this is less
clear, and in general false.

One step towards making it work is to instead consider the number

〈F(T)〉d(V)
18The scalars of C as defined in definition 4.17 might not form an algebraically closed field, a field, or

even a ring. In practice, we will restrict our attention to examples where the module assigned to a strand is
absolutely simple (see definition 4.27) so that it satisfies Schur’s Lemma by definition.

19A (1, 1)-tangle is a morphism (x,±) → (x,±) for some x ∈ X, i.e. an X-colored tangle diagram with
two free ends of matching orientation both labeled by x. To close it, we draw a strand from one free end to
the other.
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f

W

XV

Figure 4.9: The right partial trace of a map f : V ⊗W → X⊗W.

where d(V) is a scalar called the modified dimension of V . It we choose the modified di-
mensions appropriately, then we can get gauge-invariant link invariants. An elegant and
general way to do this is the theory of modified traces [GKP18], which we discuss in detail
in appendix A. We give some basic definitions here.

An ideal in a pivotal category C is a full subcategory closed under tensor products and
retracts. (See definition A.1 for details.) For C = H−Mod the category of modules of a
pivotal Hopf algebra, the subcategory Proj(C ) of projective H-modules is an ideal, and
this is the example to keep in mind.

Definition 4.22. Let C be a C-pivotal category. For W an object of C , the (right) partial
trace onW is the map

trW : Hom(V ⊗W,X⊗W)→ HomC V ,X

defined by
trW(g) = (idX⊗ ev↓W)(g⊗ idW∗)(idV ⊗ coev↑W).

Now let I be a right ideal in C . A right modified trace on I is a family of C-linear functions

{tV : HomC (V ,V)→ C}V∈I

for every object V of I that are

1. compatible with partial traces: If V ∈ I andW ∈ C , then for any f ∈ HomC (V ⊗W,V ⊗
W),

tV⊗W(f) = tV (trW(f))

2. cyclic: If U,V ∈ I, then for any morphisms f : V → U, g : U→ V , we have

tV(gf) = tU(fg)

We can similarly define left partial traces and left modified traces, and a modified trace
is one that is both left and right. A modified trace gives modified dimensions via

d(V) := tV idV .
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Theorem 4.23. There is a nontrivial modified trace on the ideal of projective objects of Oξ−Mod.
It assigns the modules V(χ) of definition 5.10 the renormalized dimensions

d(V(χ)) =

{
ξµ−(ξµ)−1

(ξµ)N−(ξµ)−N
µ not a root of unity

1 µ a root of unity

where µ is the fractional eigenvalue of the extended shape χ. In particular, the renormalized di-
mension only depends on the (fractional) eigenvalues of χ, hence is invariant under gauge trans-
formations.

Proof. See appendix A.2.2.

Remark 4.24. Our trace differs20 from that of [Bla+20, Section 6.3] by a factor ofN(−1)N+1.
This normalization is more natural for the relationship with the torsion given in chapter 7.

4.3.3 Link invariants from modified traces

Definition 4.25. Let L be an extended SL2(C)-link, represented as an extended shaped
tangle diagramD. A cutting presentation ofD is an extended shaped (1, 1)-tangle T whose
closure is D.

Now let F : TangSh → C be a functor for C a pivotal category.21 If t is a modified trace
on an ideal I of C , we say that t is compatible with F if the image of F lies in the ideal I.
The modified link invariant defined by F and a compatible trace t is the scalar computed by

F(L) := t(F(T))

where T is any cutting presentation of a diagram D of L.

Theorem 4.26. The modified link invariant F(L) associated to F and t is well-defined: it does not
depend on the choice of representative tangle diagram D or of the cutting presentation T .

Proof. Because F is a functor, it respects Reidemeister moves, so F(L) does not depend
on the choice of diagram D. We can now apply theorem A.20 to see that it also does not
depend on the choice of T .

20We also have some extra factors of ξ compared to [Bla+20, (37)], but this comes from our convention
thatΩ acts by ξµ+ (ξµ)−1, not µ+ µ−1.

21This definition works for functors out of any colored tangle category TangX. However, we have not
given an intrinsic definition of what an X-colored link is for general biquandles X; we refer to [Bla+20] for
the general theory.
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4.3.4 Twists

As an immediate application, we use modified traces to show that for the class of biquan-
dle models we consider the left and right twists agree automatically.

Definition 4.27. Let V be an object of a pivotal category C with scalars k. We say that V is

• absolutely simple if the map k→ EndC (V) sending k to k · idV is a bijection, and

• regular if the functor X 7→ V ⊗ X is a faithful endofunctor of C , that is if the map
f 7→ idV ⊗f is an injective map on Hom-sets.

A model (V−,S−,−) of a (possibly generic) biquandle X in C is absolutely simple if Vx is
absolutely simple for every x ∈ X, and regular if every Vx is regular.

Theorem 4.28. Let (V−,S−,−) be an absolutely simple and regular model of a (generic) biquandle
X in C . If this model admits a gauge-invariant modified trace t which has d(Vx) 6= 0 for every
x ∈ X then it induces a twist.

Proof. We need to show that the images of figs. 4.5 and 4.6 under the functor F induced
by the model agree. Because Vx is absolutely simple and d(Vx) 6= 0, it is enough to show
that 〈

θRx

〉
=
〈
θLx

〉
.

Recall that for endomorphisms f of an absolutely simple object V , f = 〈f〉 idV . Below we
will write 〈f⊗ g〉 = 〈f〉 〈g〉 for the tensor product f⊗ g of two such endomorphisms.

The trick is to compute the modified trace of Sx,α(x) (equivalently, the invariant of
the framed unknot) in two different ways. Because the left and right partial traces are
compatible with the partial trace, we have

〈
θRx

〉
d(Vx) = F


x

α(x)

 =
〈
θLy

〉
d(Vy)

Here y = α(x) is determined by the biquandle and F is the modified diagram invariant
associated to F and t. The left and right sides of the relation correspond to cutting the
diagram at the top and the bottom. Because t is gauge-invariant, d(Vx) = d(Vy), and by
hypothesis the modified dimensions are nonzero, so

〈
θRx
〉
=
〈
θLy
〉
.
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On the other hand, writing z = α−1(x), we see that

〈
θLx

〉
=

〈
F

 x

x

z

〉 =

〈
F

x
x

y

y

x


〉

=
〈
θLy

〉〈
F

x
y

〉

=
〈
θLy

〉
.

4.4 Internal gauge transformations
As mentioned in the introduction, the essential ingredient in proving that our invariants
are gauge-invariant is the representation of gauge transformations in terms of shaped
diagrams.

Definition 4.29. LetD be a (1, 1) shaped tangle diagram, viewed as a morphism (χ,+)→
(χ,+). We call the diagrams Γ±i (D,ψ) defined in fig. 4.10 internal gauge transformations of
D. They are defined for any shape ψ such that the relevant diagrams are well-defined.

As suggested by the name, internal gauge transformations correspond to gauge trans-
formations of the holonomy:

Theorem 4.30. Let D be a shaped (1, 1)-tangle diagram and D ′ = Γ±i (D,γ) an internal gauge
transformation of it. Write ρD for the holonomy representation ρ : π(D) → SL2(C) of the
complement ofD as given in definition 3.4 and similarly forD ′. Then the representations ρD and
ρD ′ are conjugate.

Proof. Consider the case D ′ = Γ+1 (D,γ) ; the others are similar. Write D and D ′ for the
two equivalent diagrams shown in fig. 4.10a. Below we mark two paths q and q ′ in the
complements of D and D ′, respectively:

D

D ′

χ

γ

χ

γ

q q ′

Choose a path p in the complement of the tangle diagram D representing an element of
π(D). BecauseD ′ has the same underlying tangle asD (only the labels differ), p also rep-
resents an element of π(D ′). We see that the conjugations qpq−1 and q ′p(q ′)−1 represent
elements of π(D) and π(D ′), respectively.
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D

D ′

χ

γ

χ

γ

⇒

(a) Γ+1 (D,γ) := D ′

D

D ′

γ

χ

γ

χ

⇒

(b) Γ+2 (D,γ) := D ′.

D

D ′

χ

γ

χ

γ

⇒

(c) Γ−1 (D,γ) := D ′

D

D ′

γ

χ

γ

χ

⇒

(d) Γ−2 (D,γ) := D ′

Figure 4.10: Gauge transformations of diagrams.

Because the holonomy representation is compatible with Reidemeister moves,

ρD(qpq
−1) = ρD ′(q

′p(q ′)−1).

Because q does not pass above or below any strands of the diagram, ρD(qpq−1) = ρD(p),
and similarly

ρD ′(q
′p(q ′)−1) = g+(ψ ′)ρD ′(p)g

+(ψ ′)−1,

where g+(γ) is the holonomy corresponding to crossing above a strand labelled by γ ′.
(Here γ ′ = B1(χ,γ).) In particular, we see that

ρD(p) = g
+(γ ′)ρD ′(p)g

+(γ ′)−1

so ρD(p) and ρD ′(p) are conjugate. Since this holds for every path in the complement of
D, i.e. for a representative of every element of π(D) = π(D ′), we conclude that ρD and
ρD ′ are conjugate.

The point of defining gauge transformations this way is that the diagrams in fig. 4.10
are equivalent via colored Reidemeister moves. If F is any functor respecting these
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moves, the image of the diagrams underF give relationships betweenF(D) andF(Γ±i (D))
that we can exploit to prove gauge invariance.

Definition 4.31. Let D = idχ be the diagram consisting of a single strand colored by the
extended shape χ. Then any gauge transformation Γ±i (idχ ′ ,γ) is of the form idχ ′ for some
χ ′. We say that any two characters related this way are gauge-equivalent.

We say a representation (V ,S) of the extended shape biquandle with a compatible
trace t is gauge-invariant if d(Vχ) = d(Vχ ′) whenever χ and χ ′ are gauge-equivalent.

Theorem 4.32. Let F be a gauge-invariant representation of the extended shape biquandle. Then
the diagram invariant associated to F is gauge-invariant in the sense that

F(D) = F(Γ±i (D,ψ))

for any internal gauge transformation of D.

Proof sketch. Again, we prove only the case D ′ = Γ+1 (D,γ), as the others are similar. The
trick is to consider the two diagrams

Dχ

γ

χ

γ (4.2)

and

D ′

γ
χ

γ
χ

(4.3)

Call the diagram in (4.2) X and the diagram in (4.3) X ′. Because X and X ′ are equivalent
via Reidemeister moves, we must have F(X) = F(X ′), hence

tF(X) = tF(X ′).

Because the modified trace is compatible with tensor products,

tF(X) = t
(
F(D)⊗ idF(ψ)

)
= tF(D) = d(F(χ ′)) 〈F(D)〉 .

On the other hand, because the representation F is regular and absolutely simple,

tF(X ′) =
〈
F(D ′)

〉
d(F(χ ′))

where χ ′ is the shape withD ′ : χ ′ → χ ′. Because t is gauge-invariant, d(F(χ)) = d(F(χ ′))
and we conclude that tF(D) = tF(D ′).

This is a proof sketch because the biquandle is only partially defined, so some Rei-
dmeister moves are undefined. The details of this are dealt with in [Bla+20, Appendix
A].
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4.5 Scalar representations of biquandles
A particularly simple class of biquandle representations are those taking values in scalars.
To emphasize the general nature of our results, we return to the case of an arbitrary bi-
quandle X instead of the shape biquandle. For simplicity, we do not consider the case of
partially-defined biquandles at all, although it should be easy to extend the theory to this
case.

Our primary motivation for studying scalar invariants is that we can think of them
as changes in normalization of holonomy invariants. The non-holonomy analogue for
quantum invariants is the dependence (or lack thereof) on the framing. For example, the
Kauffman bracket [Kau87] associates each framed link L a Laurent polynomial 〈L〉 inA±1.
Changing the framing of Lmultiplies 〈L〉 by a factor of A±3.

To correct this, we can change the normalization of the braiding: multiplying it by an
appropriate power of A will give an invariant (the Jones polynomial) that does not de-
pend on the framing. Even though the bracket polynomial and the Jones polynomial are
not the same invariant, they are essentially the same. Furthermore, this is essentially the
only nontrivial change22 we can make: the R-matrix of quantum sl2 fixes the braiding up
to an overall scalar, but we can change the scalar. For applications to geometric topology,
it is natural to choose this scalar so that the invariant does not depend on the framing.

For holonomy invariants the situation is more complicated. Instead of a single braid-
ing S we have a family {Sx,y}x,y∈X of them indexed by the elements of a biquandle. Given
a scalar-valued braiding ωx,y, we can think of the product ωx,ySx,y as a change in the
normalization S. Framing-independence is no longer enough to define the scalar normal-
ization: there could be two scalar-valued braidings ω and ω ′ that both take the value 1
on the twists shown in fig. 4.5.

It turns out that scalar-valued biquandle representations are classified by a known
algebraic structure: we show that they are equivalent to the birack 2-cocyles of [Kam+18].
Representations with twist 1 instead correspond to biquandle cocycles. To cohomologus
cocycles give different invariants, but we can show that they given the same invariants
on links.

It follows that one way to understand scalar normalizations of the nonabelian quan-
tum dilogarithm would be to compute the second cohomology group of the (extended)
shape biquandle. This seems like a difficult problem. Because the shape biquandle is a
factorization of the conjugation quandle of SL2(C), we could probably reduce the classifi-
cation to computing the quandle cohomology [BC74] of the conjugation quandle of SL2(C),
although this may not be much simpler.

Definition 4.33. Let k be a field, and write k× for its multiplicative group.23 A scalar
22The other normalization change is multiplying the polynomials by an overall constant. For example,

sometimes it is convenient to say that the Jones polynomial of the unknot is q+ q−1, while sometimes it is
better to say that it is 1.

23We could replace k× with any abelian group, which would be useful for examples like C×/Γn.
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x1 x2 ′

x2 x1 ′

x1 x2 ′

x2 x1 ′

ω(x1, x2)

ω(x2 ′ , x1 ′)
−1

Figure 4.11: Scalar representations of a biquandle at positive and negative crossings.

x1

x2

x1

x2

x2 ′

x1 ′

Figure 4.12: A scalar representation assigns the left-hand crossingω(x1, x2) and the right-
hand crossingω(B(x2 ′ , x1 ′))

−1 = ω(x1, x2)
−1.

representation of a biquandle X is one which sends every x ∈ X to the k-vector space k.

The category Vectk is pivotal and the usual trace of vector spaces gives a compatible
modified trace, which is automatically gauge-invariant. In addition, every scalar repre-
sentation is absolutely simple and regular.

Because Endk(k⊗2) is canonically isomorphic to k, the braiding a of scalar model is
described by a family of scalars

ω(x1, x2) ∈ k×

satisfying the colored braid relations. In more detail, we assign a positive crossing σ :
(x1, x2) → (x2 ′ , x1 ′) with incoming colors (x1, x2) a scalar ω(x1, x2). We take the conven-
tion that a negative crossing is assigned ω(B−1(x1, x2))

−1, i.e. the inverse of the value of
ω on the outgoing colors. Both are shown in fig. 4.11. This convention seems somewhat
unnatural, but as shown in fig. 4.12 it guarantees the RII relation.

The function ω must also satisfy the RIII relation, as shown in fig. 4.13. Adopting the
subscript/superscript notation shown there, it becomes

1 =
ω(y, z)ω(x, zy)ω(xzy ,y)
ω(x,y)ω(xy, z)ω(yx, zxy)

(4.4)

which we can think of as a 2-cocycle conditionfor mapsω : X×X→ k×.
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x

y

z

yx

xy
zxy

x

y

z

zy

yz

xzy

Figure 4.13: Labels for the colored RIII relation as used in the 2-cocycle relation.

Sinceω comes from a biquandle representation F , it satisfies a twist condition, specif-
ically that

ω(x,α(x)) = ω(α−1(x), x)−1 (4.5)

for every x ∈ X. To derive this, note that

ω(x,α(x)) = F(θRx) = F(θLx) = ω(B−1(α−1(x), x))−1 = ω(α−1(x), x)−1.

Kamada et al. [Kam+18] use a different convention on biquandle labels at crossings which
makes the cocycle condition (4.4) much simpler to state in general, but which is inconve-
nient for our purposes. Roughly speaking, they emphasize the sideways braiding

B

over
the braiding B. Their convention also makes the twist condition (4.5) hold automatically.

Definition 4.34. A function ω : X×X→ k× is a biquandle 2-cocycle of X with values in k×
if it satisfies eqs. (4.4) and (4.5). We sayω is framing-independent ifω(x,α(x)) = 1 for all x.
We write Z2(X; k×)fr and Z2(X;k×) for the spaces of 2-cocycles and framing-independent
2-cocyles, respectively.

Theorem 4.35. Every scalar representation F of a biquandle X corresponds to a 2-cocycle of X
and vice-versa. The cocycle is framing-independent if and only if F(θRx) is the identity for every
x, equivalently if the corresponding invariant of framed X-colored links does not depend on the
framing.

Proof. We explained how to get a 2-cocycle fromX, and it is not hard to see that the process
works in reverse.

As suggested by the terminology, there is a notion of biquandle cohomology [Kam+18],
which generalizes the quandle cohomology of [Car+03]. In the notation of fig. 4.13, a
2-coboundary is a map of the form

dφ(x,y) =
φ(x)φ(y)

φ(xy)φ(yx)
(4.6)

for someφ : X→ k×. It is not hard to see that any 1-coboundary is a framing-independent
2-cocycle.
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Definition 4.36. A biquandle 2-cocycle is a 2-coboundary if ω = dφ for some φ : X → k×,
where dφ is given in eq. (4.6). Write B2(X;k×) for the space of 2-cocycles. The framed
biquandle 2-cohomology of Xwith coefficients in k× is the space

H2(X; k×)fr :=
Z2(X;k×)fr

B2(X;k×)
.

Similarly, the biquandle 2-cohomology of X is

H2(X;k×) :=
Z2(X;k×)
B2(X; k×)

.

The framed cohomology corresponds to what [Kam+18] call the birack cohomology,
while the unframed version is their biquandle cohomology.

In general the representations corresponding to cohomologus cocycles will differ, but
their values on links will agree. Before proving this we introduce some notation. Let F be
a scalar representation of X corresponding to a 2-cocycle ω. We denote the link invariant
given by F byω(L). Concretely,ω(L) can be computed by picking a diagramD of Lwith
crossings {ci}i∈I. If ci has incoming colors (xi,yi), then

ω(L) =
∏
i∈I
Wεi
ω (xi,yi)

where εi records the sign of the crossing and

Wεi
ω (xi,yi) =

{
ω(xi,yi) εi = 1
ω(B(xi,yi))−1 εi = −1.

is the scalar associated to the crossing by F .

Theorem 4.37. The mapω 7→ ω(L) is a group homomorphism Z2(X; k×)fr → k× which depends
only on the cohomology class ofω.

As a corollary, we get a map H2(X;k×)fr → k×. Since H2(X;k×) is a subgroup of
H2(X;k×)fr, a similar result holds for the biquandle cohomology.

Proof. It is clear that ω 7→ ω(L) is a homomorphism, so to see that cocycles differing by
a coboundary give the same invariant it suffices to show that dφ(L) = 1. Pick a diagram
D of L and consider a crossing c with incoming colors (x,y). If c is positive, it is a map
(x,y)→ (xy,yx), so its contribution to dφ(L) is

dφ(x,y) =
φ(x)φ(y)

φ(xy)φ(yx)
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φ(x)−1

φ(x)

Figure 4.14: The gold segment colored by x ∈ X contributes φ(x)−1 and φ(x) to dφ(L).
Here the segment is under-under, but the cancellation happens regardless of the type of
the boundary crossings.

If instead it is negative, it is a map (x,y)→ (xy, xy) and the contribution is

dφ(B−1(x,y))−1 = dφ(xy,yx)−1 =

(
φ(yx)φ(x

y)

φ(x)φ(y)

)−1

=
φ(x)φ(y)

φ(xt)φ(xy)
.

In particular, we see that at a crossing (a,b)→ (d, c), dφ contributes the ratio

φ(a)φ(b)

φ(c)φ(d)

regardless of the sign of the crossing.
Taking the product over all crossings, we see that each segment appears twice: once

as in incoming color in the numerator, and once as an outgoing color in the denominator.
These contribute φ(x) and φ(x)−1, which cancel, as shown in fig. 4.14. It follows that
dφ(L) = 1.

Quandle and biquandle cohomology have been used to produce state-sum invariants
of links; the idea is to take a finite biquandle X and a link L and sum over ω(L) for every
X-coloring of L. Here we take a contrasting perspective: for us, the data of an X-coloring
of L is inherently interesting, so we think of biquandle invariants as a function on the
space of X-colorings of L.

We conclude with an example:

Example 4.38. The function
κ(χ1,χ2) =

a1

a1 ′

where (χ2 ′ ,χ1 ′) = B(χ1,χ2) and χi = (ai,bi, λi) is a 2-cocycle for the shape biquandle
with values in C×. This can be checked by direct computation.

In [McP20] we discussed a scalar holonomy invariant K related to a change in nor-
malization between the holonomy invariant of [Bla+20] and our version. While the BGPR
holonomy invariant F ′ and the nonabelian quantum dilogarithm J are defined in very
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similar ways, even using the same determinant normalization condition, they are not nec-
essarily equal because different families of bases are used to compute the determinants.

As for group representations, if two representations of the same biquandle agree up
to scalars, their ratio is a biquandle 2-cocyle. This interpretation is discussed in more
detail in [McP20, Section 6.4]. We expect (based on some computations with the Burau
representation) that for N = 2 the cocycle κ is closely related to the ratio between J and
F ′, which in turn is connected with K.
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Chapter 5

Constructing the nonabelian quantum
dilogarithm

Overview
In the last chapter we reduced the problem of constructing invariants of SL2(C)-links to
constructing a representation of the (extended) shape biquandle in a pivotal category. In
this chapter, we construct a family JN,N > 2 of such representations taking values in the
category Oξ−Mod/Γ2N. (We explain the notation /Γ2N below.)

Via the construction of chapter 4 the functor J produces an invariant JN(L) of ex-
tended SL2(C)-links Lwhich depends only on the gauge class of the holonomy. JN(L) is a
complex number well-defined up to multiplication by a 2Nth root of unity. We call JN(L)
the nonabelian quantum dilogarithm of L, and we justify the name in section 5.0.2.

The quotient corresponds to the scalar indeterminacy of JN. We write Γn for the group
{z : zn = 1} of complex nth roots of 1. For a C-linear category C and a subgroup Γ ⊆ C×,
the category C /Γ has the same objects and morphisms as C , except that two morphisms
are considered equivalent if they are equal after multiplication by an element of Γ .

5.0.1 Statement of results

Theorem 5.1. For each nonsingular extended shape χ there is a unique (up to isomorphism)
simple N-dimensional Oξ-module denoted V(χ), the standard module for χ. Furthermore, for
every set of characters χi at a crossing satisfying B(χ1,χ2) = (χ2 ′ ,χ1 ′), there are linear maps

Sχ1,χ2 : V(χ1)⊗ V(χ2)→ V(χ2 ′)⊗ V(χ1 ′)

which satisfy the colored RIII relation up to a 2Nth root of unity. That is, the pair (V ,S) gives a
model of the extended shape biquandle in Oξ−Mod/Γ2N.

We can show that this model is a representation, so via the construction of chapter 4 it
gives link invariants:
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Theorem 5.2. The model constructed in theorem 5.1 is sideways invertible and induces a twist,
hence gives a functor JN : TangSh → Oξ−Mod/Γ2N. Via the construction of theorem 4.1 and the
modified traces on Oξ−Mod we obtain a family of invariants JN(L) defined up to multiplication
by a 2Nth root of unity, where L is an extended SL2(C)-link. The invariants JN(L) do not depend
on the framing of L, up to a 2Nth root of unity. The JN(L) are gauge-invariant: they depend only
on the conjugacy class of the holonomy of L. We call J(L) = JN(L) theNth nonabelian quantum
dilogarithm of L.

This theorem is essentially [Bla+20, Proposition 6.9] stated for the shape biquandle
instead of the closely related factorization biquandle of SL2(C). Our main improvement
is that we can explicitly compute the braiding maps, at the cost of choosing extra roots of
unity. We are also able to compute the framing dependence explicitly in section 5.3.5: it is
a power of ξ, which we can ignore because JN is only defined up to a power of ξ.

Definition 5.3. Recall that an extended shape is a triple χ = (a,b,µ). A radical of χ is a
choice of roots αN = a and βN = b.

Unlike the global choice of fractional eigenvalue µN = λ, which only needs to be made
once for each connected component of a tangle diagram, the choice of radical is local. In
particular, Reidemeister moves on a diagram do not preserve radicals. This ambiguity
leads to the root-of-unity ambiguity in the definition of the braiding.

Theorem 5.4. Let χi be extended shapes as in theorem 5.2, and assume that the relevant crossing
is not pinched. Then:

1. Choosing radicals (αi,βi) of the shapes determines bases {vm}m∈Z/N of the modules V(χi).
If the radicals are compatible in the sense that α1α2 = α1 ′α2 ′ , then with respect to these
bases the matrix coefficients

S(vm1 ⊗ vm2) =
∑
m ′1m

′
2

S
m ′1m

′
2

m1m2vm ′1
⊗ vm ′2

of the braiding are given by

S
m ′1m

′
2

m1m2 = Θ
Λf(m

′
1 −m

′
2)Λb(m2 −m1)

Λl(m2 −m
′
2)Λr(m

′
1 −m1)

(5.1)

for functions Λi : Z/N→ C and a scalar Θ. These matrix coefficients do not depend on the
choice of radicals, up to a power of ξ.

2. The braiding factors as a product of four linear maps:

S = Sf(Sr ⊗ Sl)Sb
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where each map acts by

Sf(vm1m2) = Λf(m1 −m2)vm1m2 Sr(vm) =
∑
m

Θr

Λr(m ′ −m)
vm ′

Sb(vm1m2) = Λb(m2 −m1)vm1m2 Sl(vm) =
∑
m

Θl
Λl(m−m ′)

vm ′

Here vm1m2 := vm1⊗vm2 . Each map Si is associated to one of the four tetrahedra τf, τl, τr, τb
at the crossing of the diagram corresponding to S.

The functions Λi(m) = Λ(Bi,Ai|m) above are normalized cyclic quantum dilogarithms.
Λ(B,A|m) is a N-periodic function of m depending on two parameters A,B with AN +
BN = 1. In order for this formula to make sense we must assume that Ai,Bi 6= 0, 1, which
is generically (but not always) true; see section 5.0.4.

The scalar factorsΘi (which also depend on theAi and Bi) appearing above are related
to the discrete Fourier transform of 1/Λi. These functions are discussed in more detail in
appendix B. The parametersAi and Bi areNth roots of the complex dihedral angles of the
tetrahedra at the crossing, and are given explicitly in theorem 5.18. 1

The rest of this chapter is devoted to the proofs of these three theorems. In sections 5.1

and 5.2 we explain how to compute the coefficients Sm
′
1m
′
2

m1m2 and prove theorem 5.4 and then
theorem 5.1. Afterward in section 5.3 we discuss twists and sideways invertibility for the
braidings and prove theorem 5.2.

5.0.2 Relationship to other invariants

Via our association of the terms in the braiding with tetrahedra of the octahedral decom-
position, our invariant is closely related to the quantum hyperbolic invariants of Baseil-
hac and Benedetti [BB04], which are a generalization of Kashaev’s quantum dilogarithm
invariant [Kas95a]. The Ψ̂-systems of [GKT12] are also closely related.

As discussed in section 1.3.2 we think of the usual quantum dilogarithm invariant as
corresponding to an abelian holonomy representation sending every meridian to (plus or
minus) the identity matrix. For this reason we call the general case where the holonomy
can be a nonabelian representation of π(L) the nonabelian dilogarithm. In the abelian limit,
we recover known invariants of links:

Theorem 5.5. Let ρ be the representation with abelian image sending every meridian of L to the
matrix [

µN 0
0 µ−N

]
1In particular, the Ai and Bi are ratios of the roots αi and βi used to fix bases. Technically we have to

make one more choice of root, which introduces some ambiguity into the phases of the factors Si. It turns

out that this does not affect the values of the overall matrix coefficients Sm
′
1m
′
2

m1m2 .
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and assign every component of L the fractional eigenvalue µ. Up to a power of ξ, the invariant
JN(L, ρ,µ) is equal to

• the quantum dilogarithm invariant [Kas95a] of L when µ = ξN−1, or when µN is not a root
of unity,

• the ADO invariant [ADO92] of L.

We prove this theorem in section 5.3.1.

5.0.3 Future directions

The phase ambiguity in the nonabelian quantum dilogarithm is a deficiency in the theory.
We expect it should be fixable.

Conjecture 5.6. By choosing some extra structure on links we can remove the phase ambiguity
in J .

The matrices Sm
′
1m
′
2

m1m2 of the braiding depend on the extra choice of radicals for each
shape, leading to the phase ambiguity. We expect that there is a way to coherently choose
radicals that eliminates this ambiguity. The extra structure is likely related to a choice
of flattening [Zic09, Definition 1.3] of the triangulation associated to the shaped tangle,
which is roughly a compatible choice of logarithms of the dihedral angles. In the language
of biquandles, Inoue and Kabaya [IK14] show that such a flattening is related to a shadow
coloring of the link diagram.

The connection with flattenings also gives a geometric motivation for conjecture 5.6.
The hyperbolic volume Vol(K) = Vol(S3 \K) of a hyperbolic knot complement can be seen
as the real part of a complex volume

Vol(K) + iCS(K) ∈ C/iπ2Z

where CS(K) is the Chern-Simons invariant [Zic09] of K. Via the complexified volume con-
jecture [Mur10, Section 5.1] the phase of JN(K) should be related to the Chern-Simons
invariant of K.

5.0.4 The braiding for pinched crossings

In section 3.1.5 we discussed the singular case of pinched crossings, which occur when
the vertices of the ideal octahedra are mapped to the same point of Ĉ. At such crossings
the dihedral angles are 0 or 1. As a consequence, the formula given in theorem 5.4 is
not defined at a pinched crossing because the arguments Ai and Bi are Nth roots of the
dihedral angles.

Even though we do not have explicit matrix coefficients in this case, the functor J
is still well-defined. We consider two cases. At a good pinched crossing with modules
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V1 ⊗ V2, the element E⊗ F acts nilpotently, so we can determine the braiding using the
universal R-matrix R. This case is related to the abelian limit in theorem 5.5.

While in principle this makes sense, in practice the formula for the braiding given by R
is very different from the formula in theorem 5.4. It would be more satisfying to instead
take the Ai → 0,Bi → 1 limit of (5.1). This should give an expression for the braiding
similar to that of [Kas95a, (2.12)] and [MM01, Section 4].

At a bad pinched crossing, E⊗ F does not act nilpotently, nor does the formula of the-
orem 5.4 work. Instead we use an abstract argument to characterize the braiding matrix.
In practice, this is not a barrier to computation: bad pinched crossings are generic2 and
can be avoided.

5.1 More on the Weyl algebra
The key ingredient in both determining the matrix coefficients (5.1) and in showing that
they satisfy the colored braid relation is by presenting Oξ in terms of a Weyl algebraWξ,
as mentioned in section 2.3. By doing so, we can derive a system (5.9–5.12) of q-difference
equations3 that determine the braiding up to an overall scalar.

Our goal in this section is to derive these equations and make a first attempt at solving
them: in particular, we do not yet worry about the overall scalar. It turns out to be a
significant problem, which we deal with in the later sections.

Before starting the computation we reminder the reader of the distinction between the
R-matrix and the S-matrix. The S-matrix is a braiding which satisfies the (colored) braid
relation

(S⊗ id)(id⊗S)(S⊗ id) = (id⊗S)(S⊗ id)(id⊗S).

The matrix given in theorem 5.4 is an S-matrix.4 An R-matrix instead satisfies the Yang-
Baxter relation

R12R13R23 = R23R13R12.

These are equivalent via S = τR, where τ is the flip. Similarly, an S-matrix intertwines the
outer S-matrix S, while an R-matrix intertwines the outer R-matrixR, and these automor-
phisms are related by S = τR.

It is more convenient to use S for topological purposes and to use R for algebraic
purposes. For this reason we do some switching back and forth. In particular, we will
switch to focusing on R for a bit, before returning to S.

2One place they show up is in twists: in general, the crossing occurring in θRχ will be a bad pinched
crossing. However, we can reduce the computation of twists to the good case, as in section 5.3.5.

3Perhaps ξ2-difference equations would be a better term, since they are very special to the root-of-unity
case.

4That’s why we denoted it S!
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5.1.1 The outer R-matrix

Recall that in section 2.3 we expressed the quantum groupOξ in terms of the Weyl algebra
Wξ by giving a homomorphism φ : Oξ → Wξ. We can pull back the outer R-matrix R of
Oξ along φ to obtain an outer R-matrix for the Weyl algebra.

Proposition 5.7. There exists a unique algebra automorphismR of the division algebra Div
(
W⊗2
ξ

)
ofW⊗2

ξ which acts on the generators as

RW(x1) = x1g,

RW(x2) = g
−1x2,

RW(y−1
1 ) = y−1

2 + (y−1
1 − z−1

2 y
−1
2 )x−1

2 ,

RW(y2) =
z1

z2
y1 + (y2 − z2

−1y1)x1,

where

g = 1 − x−1
1 y1(z1 − x1)y

−1
2 (x2 − z

−1
2 ),

such that the following diagram commutes:

Div
(
O⊗2
ξ

)
Div

(
O⊗2
ξ

)

Div
(
W⊗2
ξ

)
Div

(
W⊗2
ξ

)
R

φ⊗φ φ⊗φ

RW

(5.2)

The inverse ofRW is given by

(RW)−1(x1) = x1g̃
−1,

(RW)−1(x2) = g̃x2,

(RW)−1(y−1
1 ) =

z1

z2
y−1

2 + (y−1
1 − z1y

−1
2 )x2,

(RW)−1(y2) = y1 + (y2 − z1y1)x
−1
1 ,

where
g̃ = 1 − y1(z1 − x1)y

−1
2 (1 − z−1

2 x
−1
2 ).

Proof. The rules for x1 and x2 follow directly from those for K1 and K2. We give y1 as an
example, and y2 can be computed similarly. Since R(E1) = E1K2, we have RW(ξy1(z1 −
x1)) = ξy1(z1 − x1)x2, or

RW(y1)
[
z1 − x1 + y1(z1 − x1)y

−1
2 (x2 − z

−1
2 )
]
= y1(z1 − x1)x2.
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We can multiply by y−1
1 (z1 − x1)

−1 on the right to get

RW(y1)
[
y−1

1 + y−1
2 (x2 − z

−1
2 )
]
= x2

from which it is easy to derive

RW(y−1
1 ) = y−1

2 + (y−1
1 − z−1

2 y
−1
2 )x−1

2 .

Usually we write R for RW . We are particularly interested in the action of R on the
center ofW⊗2

ξ .

Proposition 5.8. The action ofRW on the center ofW⊗2
ξ is given by

RW(xr1) = x
r
1G,

RW(xr2) = x
r
2G

−1,

RW(y−r1 ) = y−r2 +

(
y−r1 −

y−r2
zr2

)
x−r2 ,

RW(yr2) =
zr1
zr2
yr1 +

(
yr2 −

yr1
zr2

)
xr1,

where

G = 1 + x−r1
yr1
yr2

(xr1 − z
r
1)(x

r
2 − z

−r
2 )

with inverse action

(RW)−1(xr1) = x
r
1G̃

−1,

(RW)−1(xr2) = x
r
2G̃,

(RW)−1(y−r1 ) =
zr1
zr2
y−r2 + (y−r1 − zr1y

−r
2 )xr2,

(RW)−1(yr2) = y
r
1 + (yr2 − z

r
1y
r
1)x

−r
1 ,

where

G̃ = 1 + x−r2
yr1
yr2

(xr1 − z
r
1)(x

r
2 − z

−r
2 ).

Because R acts nontrivially on the center ofW⊗2
ξ , it acts nontrivially on Weyl charac-

ters, and becauseR has braiding properties this defines a biquandle on the characters. In
fact, this biquandle is exactly the shape biquandle.
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Proposition 5.9. Let χ1 and χ2 be shapes such that B(χ1,χ2) = (χ2 ′ ,χ1 ′) is well-defined, as in
fig. 3.12. Then the action ofR on the center ofW⊗2

ξ is compatible with the shape biquandle in the
sense that5

χ1 ⊗ χ2 = (χ ′1 ⊗ χ
′
2)R

Proof. Write χi(xr) = ai and χi(xr) = a ′i, and similarly for b and λ. Then since

χ ′1 ⊗ χ
′
2 = (χ1 ⊗ χ2)R−1

we can compute that

b ′2 = χ ′2(y
r
2) = (χ1 ⊗ χ2)R−1(y−r2 ) = (χ1 ⊗ χ2)

(
yr1 + (yr2 − z

r
1y
r
1)x

−r
1

)
= b1 + (b2 − λ1b1)a

−1
1

= b1

(
1 − a−1

1

(
λ1 −

b2

b1

))
.

We have derived one of the transformation rules for the shape biquandle given in defini-
tion 4.12. We can derive the other rules by checking the other generators.

We defined the shape biquandle in terms of octahedral decompositions and their
shape parameters before showing that this definition was related to quantum groups.
This is the opposite of how it was discovered: the material of section 3.3 was developed
to try to understand the algebraic rules determined byR.

5.1.2 Standard cyclic modules

In the usual construction of tangle invariants from quantum groups we assignOq-modules
to the strands of a tangle diagram. For example, theNth colored Jones polynomial comes
from assigning an N-dimensional Oq-module VN−1 to each strand.6 This is a highest-
weight module with highest weight N− 1: it is generated by a vector v with

K · v = qN−1 and E · v = 0.

When q = N, the module VN−1 is associated to the Z0-character

χ(KN) = (−1)N+1, χ(EN) = χ(FN) = 0

at plus or minus the identity. We are interested in both VN−1 and “deformations” of VN−1
to other, nonidentity Z0-characters.

5The order of the tensor factors on the left is different than for the biquandle because we are working
withR instead of S.

6There are actually two such modules [Kas95b, Theorem VI.3.5] but they determine the same invariant
up to some signs.
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On the other hand, we can obtainOξ-modules by takingWξ-modules and pulling back
along the embedding φ of proposition 2.11. At q = ξ an Nth root of unity, these modules
are N-dimensional, and they correspond exactly to the N-dimensional Oξ-modules that
generalize the colored Jones polynomial. We describe these modules concretely, then
discuss some of their properties.

Definition 5.10. Let χ be an extended shape, that is a central character χ : Z(Wξ) → C of
the (extended) Weyl algebraWξ. It is determined by its values on the central generators

χ(xN) = a, χ(yN) = b, χ(z) = µ,

which we assume are nonzero. Choose a radical of χ, that is choose roots αN = a,βN = b.
We can define aWξ-module with basis vm,m = 0, . . . ,N− 1 by

x · vm = αvm−1 y · vm = βξ2mvm z · vm = µvm.

We think of the index as lying in Z/N, so that x · v0 = αvN−1. We call this module the
standard cyclic module and denote it V(χ) or V(α,β,µ) when we want to specify the choice
of roots.

We sometimes use a Fourier dual basis v̂m of V(α,β,µ) given by

v̂m :=

r−1∑
k=0

ξ2mkvk and vm =
1
r

r−1∑
k=0

ξ−2mkv̂k.

With respect to this basis the action ofWξ is given by

x · v̂m = αξ2mv̂m y · v̂m = βv̂m+1 z · v̂m = µv̂m.

We can think of the basis {v̂m} as a highest-weight basis of V(α,β,µ) with highest
weight w satisfying α = ξw. Pulling back along φ recovers the standard formulas for the
action of Oξ, as in [MM01, Section 2]. We have chosen to emphasise vm over v̂m because
it is more useful for our computation of the braiding.

Proposition 5.11. The isomorphism class of V(α,β,µ) is determined by αN, βN, and µ, i.e. by
the associated extended shape.

Proof. In the proof of lemma 5.23 we will give an explicit family of isomorphisms between
them.

One reason to use the standard modules (instead of some other Oξ-modules) is that
they correspond toWξ-modules. However, they are essentially the only reasonable choice
for a holonomy invariant defined in terms of Oξ. For most eigenvalues, the standard
modules are the only possible choice of simple module:
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Theorem 5.12. Let χ be a shape, which determines a Z0 character χ = (φ∗χ)|Z0 : Z0 → C by
pulling back along φ : Oξ →Wξ.

1. When χ(zN) 6= ±1, equivalently when χ(CbN(Ω)) 6= ±2, every simple Oξ-module with
character χ is N-dimensional and projective.7

2. There are N isomorphism classes of such modules, determined by the N distinct values by
which z acts.

Proof. This is a version of [Bla+20, Lemma 6.3] and [GP18, Lemma 3, Lemma 24]. In our
notation, the action ofΩ is determined by χ(Ω) = χ(ξz+ (ξz)−1) = ξµ+ (ξµ)−1.

The idea is to reduce to the case where χ has upper-triangular holonomy, where we
can check this directly. To obtain this reduction, we use the quantum coajoint action of
De Concini, Kac, and Procesi [DKP91; DKP92]. By considering certain derivations of Oξ
we obtain a group G of automorphisms acting on Oξ. In particular, G acts on the center
Z , and two Z-characters χ and χ ′ are in the same orbit when their holonomy matrices
ψ(χ),ψ(χ ′) are conjugate in SL2(C). This allows us to reduce to the case χ(EN) = χ(FN) =
0. (In general, to do this we may have to consider Z-characters that do not correspond to
central characters ofWξ.) We refer to [GP18, Lemma 24] for details.

The condition on µN in this theorem excludes boundary-parabolic holonomy, which
in some sense is the most interesting case because (as discussed in definition 3.33) the
holonomy of the complete hyperbolic structure on a hyperbolic link is always boundary-
parabolic. To include this case we need to be somewhat careful. 8

In order to use modified traces we need to make sure our modules are projective, and
in order to prove gauge invariance and the uniqueness of the braiding we need them to be
simple. Fortunately as long as we use the correct root of unity things work out fine. Let χ
be an extended shape with eigenvalue λ = ±1. Recall that χ is admissible if its fractional
eigenvalue µ is equal to ξN−1. This requires λ = (ξN−1)N = (−1)N+1.

Theorem 5.13. The standard module V(χ) corresponding to a admissible extended character χ is
a simple, projective Oξ-module.

Proof. We proved the case where λ = χ(zN) 6= ±1 above, and is not hard to extend to this
case. The standard module associated to the character χ(KN) = (−1)N, χ(EN) = χ(FN) = 0
is exactly the Steinberg module VN, which is well-known to be simple and projective. If

7Here CbN is the Nth Chebyshev polynomial defined in section 2.1.
8As a particular case of boundary-parabolic holonomy we have modules where χ(xN) = χ(zN) = ±1.

These are exactly modules for the small quantum group

Oξ := Oξ
/〈
K2N − 1,EN, FN

〉
.

The representation theory ofOξ is much more complicated, and in particular is not semisimple. In fact, this
is the source of the vanishing quantum dimensions that require our use of modified traces.
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V(χ) is an admissible standard module with λ = ±1 our requirement that λ = (−1)N+1

ensures V(χ) lies in the G-orbit of VN, so V(χ) is simple and projective as in the proof of
theorem 5.12.

5.2 Constructing the model
In this section we compute the matrix coefficients of the holonomy braiding and prove
theorem 5.4.

5.2.1 The inner R -matrix

In order to define our quantum invariants we need to compute the R-matrix not just on
the algebra Wξ, but on modules for Wξ. Let χi, i = 1, 2, 1 ′, 2 ′ be extended shapes at a
positive crossing as in fig. 3.12, let Vi be the standard module associated to χi, and write
πi :Wξ → EndC(Vi) for the structure maps of the modules.

As first discussed in section 2.2, a holonomy R-matrix for these modules is a linear
operator R : V1 ⊗ V2 → V2 ′ ⊗ V1 ′ such that the diagram commutes:9

Div
(
W⊗2
ξ

)
Div

(
W⊗2
ξ

)

EndC(V1 ⊗ V2) EndC(V2 ′ ⊗ V1 ′)

R

π1⊗π2 π2 ′⊗π1 ′

a 7→RaR−1

(5.3)

In order to actually compute things we need to choose bases of the modules Vi. As
mentioned in definition 5.10, this requires a choice of radical for each shape χi. We will
analyze later how these choices affect our computation; for now we pick them arbitrarily,
with the single requirement that

α1α2 = α1 ′α2 ′ . (5.4)

This makes sense becauseR(xN ⊗ xN) = xN ⊗ xN, so a1a2 = a1 ′a2 ′ .
Given the choice of radical, we get structure maps

πi :Wξ → EndC(Vi)→ EndC(C
N)

9The braiding S and the R-matrix R are related by S = τR, where τ is the flip map. It is more convenient
to derive the relations for the R-matrix.
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For each u ∈ Wξ, πi(u) is not just an abstract endomorphism, but an explicit matrix.
Similarly, we can now think of R as a concrete N2 ×N2-matrix such that the diagram

Div
(
W⊗2
ξ

)
Div

(
W⊗2
ξ

)

EndC(C
N ⊗CN) EndC(C

N ⊗CN)

R

π1⊗π2 π1 ′⊗π2 ′

a7→RaR−1

(5.5)

commutes.

Theorem 5.14. An invertible matrix R satisfying eq. (5.5) exists and is unique up to an overall
scalar.

Proof. The module V(χ1) is simple, so itsWξ-endomorphism algebra is isomorphic to the
algebraWξ/ kerχ1. Similar arguments hold for the other representations, and we see that
R induces an automorphism

Wξ/ kerχ1 ⊗Wξ/ kerχ2 →Wξ/ kerχ ′1 ⊗Wξ/ kerχ ′2.

Pulling back along the structure maps πi gives an automorphism

End((CN)⊗2)→ End((CN)⊗2)

of matrix algebras. Any such automorphism is inner and given by conjugation by some
invertible matrix R, unique up to an overall scalar.

We are now ready to compute recurrences for the matrix coefficients of a solution R to
eq. (5.5). Abbreviate

π = π1 ⊗ π2, π ′ = π1 ′ ⊗ π2 ′ .

Commutativity of the diagram in eq. (5.5) implies matrix equations

Rπ(x) = π ′ (R(x))R, x ∈ Wξ (5.6)

and

π ′(x)R = Rπ
(
R−1(x)

)
. x ∈ Wξ (5.7)

Setting x = y−1
1 in eq. (5.6) gives the relation

Rπ(y−1
1 ) = π ′

(
y−1

2 + (y−1
1 − z−1

2 y
−1
2 )x−1

2

)
R

= π ′
(
y−1

2 + x−1
2 (y−1

1 − z−1
2 y

−1
2 )
)
R

(5.8)
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We want to understand this in terms of the matrix coefficients of R. Recall the basis vm of
V(α,β,µ) indexed by Z/N. Abbreviating vm1m2 := vm1 ⊗ vm2 , R has matrix coefficients

R · vm1m2 =
∑
m ′1m

′
2

R
m ′1m

′
2

m1m2vm ′1m
′
2
.

Here and in the rest of this chaper sums without explicit limits are over {0, . . . ,N− 1}.10

In terms of these matrix coefficients, the relation (5.8) from y−1
1 becomes∑

m ′1m
′
2

R
m ′1m

′
2

m1m2(β1ξ
2m1)−1vm ′1m

′
2

=
∑
m ′1m

′
2

R
m ′1m

′
2

m1m2(β2 ′ξ
2m ′2)−1vm ′1m

′
2

+
∑
m ′1m

′
2

R
m ′1m

′
2

m1m2

[
(β1 ′ξ

2m ′1)−1 − µ−1
2 (β2 ′ξ

2m ′2)−1
]
α−1

2 ′ vm ′1,m ′2+1

which we can rewrite as the recursion

R
m ′1m

′
2

m1m2

[
β−1

1 ξ
−2m1 −β−1

2 ′ ξ
−2m ′2

]
= R

m ′1m
′
2−1

m1m2 α−1
2 ′

[
β−1

1 ′ ξ
−2m ′1 − ξ2µ−1

2 β
−1
2 ′ ξ

−2m ′2
]

or

R
m ′1m

′
2

m1m2 = R
m ′1,m ′2−1
m1m2 α2 ′

−1β
−1
1 ′ ξ

−2m ′1 − ξ2µ−1
2 β

−1
2 ′ ξ

−2m ′2

β−1
1 ξ

−2m1 −β−1
2 ′ ξ

−2m ′2

In a slightly more convenient form, this is

R
m ′1m

′
2

m1m2 = R
m ′1,m ′2−1
m1m2

1
α2 ′µ2

1 − (µ2β2 ′/ξ
2β1 ′)ξ

2(m ′2−m
′
1)

1 − (β2 ′/β1)ξ
2(m ′2−m1)

By using eq. (5.6) with y2 and eq. (5.7) with y−1
1 and y2 we get a family of recurrences that

determine R.

Proposition 5.15. The matrix coefficients satisfy recurrence relations

R
m ′1m

′
2

m1m2 = R
m ′1,m ′2−1
m1m2

1
α2 ′µ2

1 − (µ2β2 ′/ξ
2β1 ′)ξ

2(m ′2−m
′
1)

1 − (β2 ′/β1)ξ
2(m ′2−m1)

(5.9)

R
m ′1,m ′2
m1m2 = R

m ′1−1,m ′2
m1m2

µ1

α1 ′

1 − (µ2β2/µ1β1 ′)ξ
2(m2−m

′
1)+2

1 − (µ2β2 ′/ξ
2β1 ′)ξ

2(m ′2−m
′
1)+2

(5.10)

R
m ′1m

′
2

m1,m2 = R
m ′1m

′
2

m1,m2−1α2µ2
1 − (β2/ξ

2µ1β1)ξ
2(m2−m1)

1 − (µ2β2/µ1β1 ′)ξ
2(m2−m

′
1)

(5.11)

R
m ′1m

′
2

m1m2 = R
m ′1m

′
2

m1−1,m2

α1

µ1

1 − (β2 ′/β1)ξ
2(m ′2−m1)+2

1 − (β2/ξ2µ1β1)ξ2(m2−m1)+2 (5.12)

10Usually our functions will be N-periodic, so we can think of the sums as being over Z/N.
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which determine R uniquely up to an overall scalar.

Proof. The above relations are clearly sufficient to determine R up to a scalar, and then
existence and uniqueness follow from theorem 5.14.

It is not immediately clear that the recurrences in proposition 5.15 give solutions that
are periodic mod N; we will show this by solving them in terms of the quantum diloga-
rithm.

Definition 5.16. Let A,B ∈ C \ {0, 1} satisfy AN + BN = 1. The cyclic quantum dilogarithm
11 is the function defined by

L(B,A|n) =
n∏
k=1

A−1(1 − ξ2kB)

for n = 0, . . . ,N− 1.

We are actually more interested in a particular normalization Λ(B,A|n) of the quan-
tum dilogarithm, which satisfies Λ(B,A|n)/Λ(B,A|0) = L(B,A|n). We discuss this in the
next section and in appendix B. For now, it is sufficient to check some recurrence proper-
ties of the unnormalized version:

Proposition 5.17. L(A,B|−) is well-defined on Z/N:

L(A,B|m+N) = L(A,B|m)

and satsifies the recursive relations

L(B,A|m) = B−1(1 − ξ2mA)L(B,A|m− 1)

L(B,A|m) = B(1 − ξ2m+2A)−1L(B,A|m+ 1)

Proof. The relations are obvious for m = 0, . . . ,N− 1 and follow for all m from the first
claim. It therefore suffices to show

1 = L(B,A|N) =
1
AN

N∏
k=1

(1 − ξ2kB),

and the necessary relation
N∏
k=1

(1 − ξ2kB) = 1 −BN

is the generalization of (1 − B)(1 + B) = 1 − B2 to higher-order roots of unity. To confirm
the sign of Br, notice that its coefficient is

(−1)Nξ
∑N
k=1 2k = (−1)NξN(N+1) = (−1)N+N+1 = −1.

11It is not particularly clear at first glance what this function has to do dilogarithms. See appendix B for
an explanation.
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Theorem 5.18. The coefficients of an R-matrix R = Rχ1,χ2 satisfying eq. (5.5) are periodic modN
and given by

R
m ′1m

′
2

m1m2 =
Lf(m

′
2 −m

′
1)Lb(m2 −m1)

Ll(m2 −m
′
1)Lr(m

′
2 −m1)

.

We call this matrix the unnormalized R-matrix. The functions Li are quantum dilogarithms

Lf(m) = L(Bf,Af|m) = L

(
µ2β

′
2

ξ2β ′1
,Af

∣∣∣∣m)
Lb(m) = L(Bb,Ab|m) = L

(
β2

ξ2µ1β1
,

α1

µ1µ2α
′
2
Af

∣∣∣∣m)
Ll(m) = L(Bl,Al|m) = L

(
µ2β2

µ1β
′
1

,
α ′1
µ1
Af

∣∣∣∣m)
Lr(m) = L(Br,Ar|m) = L

(
β ′2
β1

,
1

µ2α
′
2
Af

∣∣∣∣m)
and Af is a scalar such that

ANf = 1 −

(
µ2β

′
2

ξ2β ′1

)N
= 1 − λ2

b ′2
b ′1

.

The values of the coefficients Rm
′
1m
′
2

m1m2 do not depend on the choice of Af.

Remark 5.19. The four quantum dilogarithms appearing in the statement of the theorem
can be associated to the four tetrahedra at a crossing in fig. 3.17. For example, by consult-
ing table 3.1 we see that their arguments are Nth roots of the complex dihedral angles:

BNf = z◦f BNb = z◦b BNr =
1
z◦r

BNl =
1
z◦l

ANf =
1
z◦◦f

ANb =
1
z◦◦b

ANr = zr ANl = zl

As mentioned in theorem 5.4 this corresponds to the factorization of the braiding into
four terms, one for each tetrahedron.

Proof. It is immediate from propositions 5.15 and 5.17 that there is a solution in terms of
quantum dilogarithms

Lf(m) = L

(
µ2β

′
2

ξ2β ′1
,Af

∣∣∣∣m) Lb(m) = L

(
β2

ξ2µ1β1
,Ab

∣∣∣∣m)
Ll(m) = L

(
µ2β2

µ1β
′
1

,Al

∣∣∣∣m) Lr(m) = L

(
β ′2
β1

,Ar

∣∣∣∣m)



80

where

Ar

Af
=

1
α2 ′µ2

Af
Al

=
µ1

α1 ′

Al
Ab

= µ2α2
Ab
Ar

=
α1

µ1

We can solve for the parameters Al,Ar, and Ab in terms of Af:

Al =
α1 ′

µ1
Af Ar =

1
α2 ′µ2

Af Ab =
α1

µ1
Ar =

α1

α2 ′µ1µ2
Af

To see that these choices are consistent, we must check that

Al
Ab

= µ2α2

equivalently that
α1 ′

µ1

µ1µ2α2 ′

α1
= µ2α2,

which follows from the choice that α1α2 = α1 ′α2 ′ made in eq. (5.4).
We chose Af so that BNf + ANf = 1. We can show that BNi + ANi = 1 for the other

parameters by using the interpretation of the a-paramters in eq. (3.3). For example,

ANr =
ANf
a2 ′λ2

=
zrz
◦◦
f

z◦◦f
= 1 −BNr

as required.

Finally we show that the matrix coefficients Rm
′
1m
′
2

m1m2 do not depend on the choice of root
Af. Recall that

L(B,A|m) = A−m
m∏
k=1

(1 − ξ2kB)

so Rm
′
1−m

′
2

m1m2 is the product of terms depending only on the Bi and the expression

A
m ′1−m

′
2

f A
m1−m2
b

A
m ′1−m2
l A

m1−m
′
2

r

in which all factors of Af cancel.

5.2.2 The braiding for modules

We are now ready to present our computation in the form given in theorem 5.1. In addi-
tion to adding a flip (since S = τR) we also want to add some scalar factors.
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Definition 5.20. The normalized cyclic quantum dilogarithm is the function

Λ(B,A|n) := g(B,A)L(B,A|n) = g(B,A)
n∏
k=1

(1 − ξ2kB)/A

where g(B,A) is the scalar defined in lemma B.3.

Definition 5.21. The normalized holonomy braiding is the linear map Sχ1,χ2 with matrix co-
efficients

S
m ′1m

′
2

m1m2 = ΘlΘr
Λf(m

′
1 −m

′
2)Λb(m2 −m1)

Λl(m2 −m
′
2)Λr(m

′
1 −m1)

. (5.13)

Here Λi(m) = Λ(Bi,Ai|m) are normalized quantum dilogarithms

Λf(m) = Λ(Bf,Af|m) = Λ

(
µ2β

′
2

ξ2β ′1
,Af

∣∣∣∣m)
Λb(m) = Λ(Bb,Ab|m) = Λ

(
β2

ξ2µ1β1
,

α1

µ1µ2α
′
2
Af

∣∣∣∣m)
Λl(m) = Λ(Bl,Al|m) = Λ

(
µ2β2

µ1β
′
1

,
α ′1
µ1
Af

∣∣∣∣m)
Λr(m) = Λ(Br,Ar|m) = L

(
β ′2
β1

,
1

µ2α
′
2
Af

∣∣∣∣m)
with the same parameters as theorem 5.18. The normalization factors Θl and Θr are given
by

Θi =
S
(
ξ−2Ai,Bi

)
N

where S is the function12 given in theorem B.5.

Proof of theorem 5.4 (1). We claimed that S = Sf(Sr ⊗ Sl)Sb, where

Sf(vm1m2) = Λf(m1 −m2)vm1m2 Sr(vm) =
∑
m

Θr

Λr(m ′ −m)
vm ′

Sb(vm1m2) = Λb(m2 −m1)vm1m2 Sl(vm) =
∑
m

Θl
Λl(m−m ′)

vm ′

12S(A,B) is related to the sum
∑N−1
k=0 Λ(B,A|k) of values of the quantum dilogarithm. We give a rela-

tively simple expression for it in proposition B.6.
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Given our formula for S, this is an easy check:

Sf(Sr ⊗ Sl)Sb(vm1m2) = Sf(Sr ⊗ Sl)
(
Λb(m2 −m1)vm1m2

)
= Sf

∑
m ′1m

′
2

ΘrΘl
Λb(m2 −m1)

Λr(m ′1 −m1)Λl(m
′
2 −m2)

vm ′1m
′
2


=
∑
m ′1m

′
2

ΘrΘl
Λf(m

′
1 −m

′
2)Λb(m2 −m1)

Λr(m ′1 −m1)Λl(m
′
2 −m2)

vm ′1m
′
2

=
∑
m ′1m

′
2

S
m ′2m

′
1

m1m2vm1m2

= S(vm1m2).

It remains to prove part (2) of theorem 5.4. When we defined the holonomy braidings

Sχ1,χ2 : V(χ1)⊗ V(χ2)→ V(χ2 ′)⊗ V(χ1 ′)

we made two extra choices:

1. A choice of root ANf = 1 − λ2
b2 ′
b1 ′

.

2. A choice radicals of the shapes, i.e. of rootsαNi = ai andβNi = bi withα1α2 = α1 ′α2 ′ ,
which corresponds to a choice of basis for the modules V(χi).

We can now check that these extra choices only affect our answer up to some powers of
ξ. The first is easy:

Lemma 5.22. The coefficients Sm
′
1m
′
2

m1m2 depend on the choice of Af up to an overall power of ξ2.

Proof. Any other choice would be of the form ξ2kAf for some m. Recall the matrix co-

efficients Sm
′
1m
′
2

m1m2 in eq. (5.13) are a product of two normalization terms Θr,Θl and four
normalized dilogarithms Λi. Set η = ξ−(N−1)2

.
Since the A-argument of each normalized dilogarithm in eq. (5.13) is a multiple of Af,

we can use eq. (B.2) to see that changingAf → ξ2mAf changes the dilogarithms by a factor
of (

ηξ2
)−k(m ′1−m ′2+m2−m1−m2+m

′
2−m

′
1+m2)

= 1.

On the other hand, the Θi transform as

ΘrΘl → η2kΘrΘl = ξ
−2k(N−1)2

.
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Analyzing the dependence of S on the second choice is more involved because it in-
volves a change of basis. Suppose we make two different choices of radical for the same
shape, so we have two distinct isomorphic modules V(α,β,µ) and V

(
ξ2kα, ξ2lβ,µ

)
. We

pick a preferred family of isomorphisms between them:

fk,l :

{
V(α,β,µ)→ V

(
ξ2kα, ξ2lβ,µ

)
vm 7→ ξ−2(m−l)kvm−l.

(5.14)

We want to show that changing basis using the fk,l is equivalent to computing S using the
other radical, up to some powers of ξ.

In more detail, suppose B(χ1,χ2) = (χ2 ′ ,χ1 ′) and S = Sχ1,χ2 is the corresponding
holonomy braiding computed using roots αi,βi given in definition 5.21. We could have
made another choice of roots α̊i = ξ2kiαi and β̊i = ξ2liβi and computed a matrix S̊ as in
the same way as S but with the α̊i and β̊i. Write

f = fk1,l1 ⊗ fk2,l2 : V(α1,β1,µ1)⊗ V(α2,β2,µ2)

→ V
(
ξ2k1α1, ξ2l1β1,µ1

)
⊗ V

(
ξ2k2α2, ξ2l2β2,µ2

)
and

g = fk2 ′ ,l2 ⊗ fk1 ′ ,l1 ′ : V(α2 ′ ,β2 ′ ,µ2)⊗ V(α1 ′ ,β1 ′ ,µ1)

→ V
(
ξ2k2 ′α2 ′ , ξ2l2 ′β2 ′ ,µ2

)
⊗ V

(
ξ2k1 ′α1 ′ , ξ2l1 ′β1 ′ ,µ1

)
for the isomorphisms changing bases between those given by the two different choices of
roots.

Lemma 5.23. The matrices S and S̊ are compatible in the sense that

S = g−1S̊f

up to multiplication by a power of ξ.

Proof. Abbreviate ξ2 = ζ, as in appendix B. Recall that S has coefficients

S
m ′1m

′
2

m1m2 =
S
(
ζ−1Ar,Br

)
S
(
ζ−1Al,Bl

)
N2

Λ
(
Bf,Af

∣∣m ′1 −m ′2)Λ(Bb,Ab|m2 −m1)

Λ
(
Bl,Al

∣∣m2 −m
′
2
)
Λ
(
Br,Ar

∣∣m ′1 −m1
)

where the Bi and Ai are certain ratios of the αi,βi, and µi given in theorem 5.18. Because
it uses different choices of roots, the matrix S̊ has coefficients(

S̊
)m ′1m ′2
m1m2

=
S
(
ζ−1+k1 ′Al, ζl2−l1 ′Bl

)
S
(
ζ−1−k2 ′Ar, ζl2 ′−l1Br

)
N2

×
Λ
(
ζl2 ′−l1 ′Bf,Af

∣∣m ′1 −m ′2)Λ(ζl2−l1Bb, ζk1−k2 ′Ab
∣∣m2 −m1

)
Λ
(
ζl2−l1 ′Bl, ζk1 ′Al

∣∣m2 −m
′
2
)
Λ
(
ζl2 ′−k1Br, ζ−k2 ′Ar

∣∣m ′1 −m1
) .
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Set η = ξ−(N−1)2
= ζ−(N−1)2/2. By applying eqs. (B.1), (B.2), (B.7) and (B.8) we can simplify(

S̊
)m ′1m ′2
m1m2

to

(ζη)l2 ′+l2−l1 ′−l1ηk1 ′−k2 ′ (terms from S)

× ηk1−k2 ′−k1 ′+k2 ′ζ−(m2−m1)(k1−k2 ′)+(m2−m
′
2)(k1 ′)−(m ′1−m1)(k2 ′) (terms from the Ai )

× (S)
m ′1+l1 ′ ,m

′
2+l2 ′

m1+l1,m2+l2
(index shifts from the Bi)

(5.15)
Now we need to compose with f and g−1, which act by

f(vm1m2) = ζ
−(m1−l1)k1−(m2−l2)k2vm1−l1,m2−l2 .

g−1(vm ′1m
′
2
) = ζ(m

′
1+l2 ′)k2 ′+(m ′2+l1 ′)k1 ′vm ′1+l2 ′ ,m

′
2+l1 ′

.
(5.16)

By combining eqs. (5.15) and (5.16) we see that(
g−1S̊f

)m ′1m ′2
m1m2

= (ζη)l2 ′+l2−l1 ′−l1ηk1−k2 ′

× ζ−(m2−m1)(k1−k2 ′)+(m2−m
′
2)(k1 ′)−(m ′1−m1)(k2 ′)

× ζ−m1k1−m2k2+m
′
1k2 ′+m

′
2k1 ′

× Sm
′
1m
′
2

m1m2

= (ζη)l2 ′+l2−l1 ′−l1ηk1−k2 ′ζm2(k1 ′+k2 ′−k1−k2)S
m ′1m

′
2

m1m2

Recall the compatibility condition

α1α2 = α1 ′α2 ′

for the choices of αi. Imposing the same condition on the α̊i means that

ζk1+k2α1α2 = ζk1 ′+k2 ′α1 ′α2 ′ , so ζk1 ′+k2 ′−k1−k2 = 1.

Applying this, we see that g−1S̊f and S are equal up to a scalar:(
g−1S̊f

)m ′1m ′2
m1m2

= ζl2 ′+l2−l1 ′−l1ηl2 ′+l2−l1 ′−l1+k1−k2 ′S
m ′1m

′
2

m1m2 .

η and ζ are powers of ξ so this scalar is a power of ξ as claimed.

We have now completed the proof of the second claim in theorem 5.4. Our proof
suggests that it should be possible to eliminate the ambiguous phase in S by fixing some
extra structure on the shaped tangle. Since the parameters ai and bi we are taking roots
of are related to the complex dihedral angles of the octahedral decomposition, we expect
this structure to be related to flattenings [Zic09] of the octahedral decomposition.
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5.3 Wrapping up the construction
Now that we have computed the braiding, it remains to show how to define it at pinched
crossing and to prove that it satisfies the RIII relation. We check both of these via a
continuity argument by considering the space of radicals as a covering of the set Sh of
extended shapes. Afterwards we conclude the section with some miscellaneous compu-
tations: checking sideways invertibility, computing the inverse of (5.1), and computing
the twist.

5.3.1 The braiding for pinched crossings

Definition 5.24. Write N
√

Sh for the set of triples (α,β,µ) of complex numbers. We think
of these as radicals of extended shapes via the N2-fold covering map

πSh0 :
N
√

Sh→ Sh, (α,β,µ) 7→ (αN,βN,µ).

Strictly speaking, we defined the braiding S−,− as a representation of N
√

Sh, not of Sh.
However, N

√
Sh is not a biquandle because given β1 and β2 there is in general no canonical

way to choose β1 ′ and β2 ′ , and similarly for the αi. To define a representation of Sh, we
pick a section of the cover π :

N
√

Sh → Sh arbitrarily, and in lemma 5.23 we showed that
the resulting braiding is defined up to a power of ξ.

Now suppose χ1,χ2,χ1 ′ ,χ2 ′ are extended shapes at a positive crossing of a diagram,
as in fig. 4.1. We say (section 3.1.5) the crossing is pinched when the dihedral angles of
table 3.1 lie in 0, 1. In terms of the parameters Ai and Bi of the quantum dilogarithms
defining the braiding, pinched crossings are exactly the case where ANi → 0 and BNi → 1.

Understanding the behavior of the formula (5.1) in this limit would give a concrete
expression for the braiding at pinched crossings, but this is difficult.13 For now, we use
an abstract argument to show that the limit exists.

Definition 5.25. We write π : V → N
√

Sh for the bundle of vector spaces over N
√

Sh which
assigns the point (α,β,µ) the vector space V(α,β,µ).

The braidings S can be thought of as bundle isomorphisms in the following sense:

Proposition 5.26. Let χ̃1, χ̃2, χ̃1 ′ , χ̃2 ′ ∈
N
√

Sh be radicals and write χi = π(χ̃i) for the corre-
sponding extended shapes. Then whenever B(χ1,χ2) = (χ2 ′ ,χ1 ′) and the corresponding crossing
is not pinched, there are open neighborhoods Ni of the χ̃i such that the braidings Sχ1,χ2 induce
continuous isomorphisms

V |N1 ⊗V |N2 → V |N2 ′
⊗V |N1 ′

.
13However, it should be possible to take this limit. It appears to be how Kashaev derived the “mysterious

formula” of [MM01, Section 4].
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Proof. Away from pinched crossings the matrix coefficients (5.1) are continuous functions
of the radicals.

Theorem 5.27. At each pinched crossing with a choice of radicals there is a unique braiding
induced by the braidings S−,− at non-pinched crossings.

Proof. Write A2 for the subspace of N
√

Sh× N
√

Sh where the braiding is defined (that is,
throw out inadmissible crossings) and consider the bundle V2 → A2 induced by V ⊗V →
N
√

Sh× N
√

Sh. The R-matrices, hence the braidings, are solutions to the equations (5.5).
These equations are continuous on V2, with a one-dimensional space of solutions, so the
set of solutions to the braiding equations defines a fiber bundle V ′2 → A2 with fibers C×.
Our braiding matrices S−,− are a continuous section of the bundle V ′2, but are only defined
away from the points of A2 corresponding to pinched crossings. Since pinched crossings
are isolated points of A2, the section S−,− extends to all of A2.

Note that the uniqueness here depends on the choice of radicals.
As mentioned in the introduction to the chapter, at good pinched crossings another

approach is possible. At a good pinched crossing with modules V1 ⊗ V2 → V1 ′ ⊗ V2 ′ , the
operator E⊗ F acts nilpotently, so the action of the universal R-matrix

R = HH expq(E⊗ F) = q
H⊗H/2

∞∑
n=0

qn(n−1)/2

{n}!
(E⊗ F)n

converges. The linear operator R : V1 ⊗ V2 → V1 ′ ⊗ V2 ′ induced by the action of R is a
solution to the equations (2.3), so it gives a braiding. As mentioned in theorem 5.5 this
braiding corresponds to known invariants of links.

Proof of theorem 5.5. In the proof of this theorem we assume that our braidings satisfy the
colored RIII relation, as proved in the next section. (Actually, in the present case, a much
easier proof is possible by using the universal R-matrix.)

Consider a shaped link diagram in which every segment is assigned the extended
shape χ = (µN,βN,µ) for some β. This diagram has a canonical choice of radical (µ,β,µ)
for every segment. When µ = ξN−1, the module V

(
ξN−1,β, ξN−1) is exactly the module

defining the Nth colored Jones polynomial [MM01] at a Nth root of unity. The choice
of module determines the braiding is up to a scalar, so the braiding defining the colored
Jones polynomial and the braiding defining JN can differ only by a scalar θ ∈ C×. Because
this scalar is the same for every crossing (it is inverted for negative crossings) it only
affects the framing dependence of the invariant. We show in section 5.3.5 that θ is a
power of ξ.

When µN is not a root of unity, essentially the same argument works with a small
complication. The central character corresponding to (µ,β,µ) is

χ(KN) = µN, χ(EN) = 0, χ(FN) = b−1(1 − µ−2N)
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so FN does not act by 0, as it does for the ADO invariant. Instead we obtain the semi-
cyclic invariant of Geer and Patureau-Mirand [GP13a] corresponding to the holonomy
representation ρ ′ sending every meridian x to the matrix

ρ ′(x) =

[
µN 0

b−1(µN − µ−N) µ−N

]
.

(Geer and Patureau-Mirand use upper-triangular instead of lower-triangular matrices,
corresponding to FN = 0 instead of EN = 0.) The semi-cyclic invariant is gauge-invariant14

and as discussed in the proof of theorem 4.16 the representation ρ ′ is conjugate to the di-
agonal representation

ρ(x) =

[
µN 0
0 µ−N

]
.

In this case the holonomy invariant is known [CGP14] to recover the ADO invariant.

5.3.2 Obtaining a model

We can now begin the proof of theorem 5.1, which says that S gives a holonomy braiding
(that is, a model of the extended shape biquandle) up to an 2Nth root of unity. It is
immediate that S gives a holonomy braiding up to an overall scalar.

Proposition 5.28. The matrices S = Sχ1,χ2 give a model of the extended shape biquandle in
Oξ/C×.

Proof. We need to check the colored RIII relation, which for ordinary braids reads

σ1σ2σ1 = σ2σ1σ2.

Suppose we start with shapes χ1,χ2,χ3. The left-hand side is a linear map

J (σ1σ2σ1) = (S−,− ⊗ id−)(id−⊗S−,−)(Sχ1,χ2 ⊗ idV(χ3))

where we use − to represent a variable completed by the biquandle.15 This is a linear
map intertwining the homomorphism

(S ⊗ id)(id⊗S)(S ⊗ id)

of (appropriate quotients of) Oξ ⊗Oξ ⊗Oξ. Similarly, the right-hand side is a linear map

J (σ2σ1σ2)(id−⊗S−,−)(S−,− ⊗ id−)(idV(χ1)⊗Sχ2,χ3)

14This is not discussed in [GP13a], but we can use the arguments of chapter 4 to prove it.
15The notation here is a bit unfortunate: we are composing braids left-to-right but linear maps right-to-

left. Despite our earlier militancy about the order of composition for braids, reversing matrix composition
seems like a step too far.
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intertwining the homomorphism

(id⊗S)(S ⊗ id)(id⊗S).

However, S satisfies the RIII relation:

(S ⊗ id)(id⊗S)(S ⊗ id) = (id⊗S)(S ⊗ id)(id⊗S).

Because an intertwiner of either map is determined up to an overall scalar, we see that

J (σ1σ2σ1) = θJ (σ2σ1σ2)

for some scalar θ ∈ C×.

Because θ could be any element of C×, we have only proved that this gives a model
in Oξ−Mod/C×. This would produce useless link invariants: they would be elements
of C defined up to multiplication by an element of C×. To make them useful we need
to reduce the scalar indeterminacy, which we do by computing the determinants of the
matrices Sχ1,χ2 .

The idea is to pick some extra structure on the modules V(χ) that is preserved by both
sides of the RIII relation. In the holonomy case, this is tricky, because J (σ1σ2σ1) is no
longer an endomorphism.16 We follow the approach of [Bla+20, Appendix D].

Write A3 for the subset of Sh× Sh× Sh such that the colored braids

σ1σ2σ1 : (χ1,χ2,χ3)→ (χ ′1,χ ′2,χ ′3)
σ2σ1σ2 : (χ1,χ2,χ3)→ (χ ′1,χ ′2,χ ′3)

are defined, and write Ã3 for theN6-fold covering of A3 induced by the covering N
√

Sh→
Sh of extended shapes by radicals. As discussed in the previous section, the braidings are
really defined on Ã3, and picking an arbitrary lift fromA3 introduces the phase ambiguity
of a power of ξ.

To show the colored RIII relation holds up to a power of ξ, it suffices to show that the
endomorphism

J (σ1σ2σ1σ
−1
2 σ

−1
1 σ

−1
2 ) ∈ EndOξ(V(χ1)⊗ V(χ2)⊗ V(χ3))

is equal to the identity map for every (χ̃1, χ̃2, χ̃3) ∈ B3, where χ̃i is a radical for χi. By
proposition 5.28, there is a scalar function θ : Ã3 → C× with

J (σ1σ2σ1σ
−1
2 σ

−1
1 σ

−1
2 ) = θ(χ1,χ2,χ3) idV(χ1)⊗V(χ2)⊗V(χ3) .

16Later, in chapter 6 we are able to strengthen this argument by finding a family of vectors preserved by
the double T of J . Constructing such a family for J seems much more difficult.
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Lemma 5.29. The determinant of the normalized holonomy braiding S = Sχ1,χ2 given in eq. (5.1)
is 1.

We delay the proof of the lemma until the end of the section. It implies that the map
J (σ1σ2σ1σ

−1
2 σ

−1
1 σ

−1
2 ) has determinant 1. Since the identity map also has determinant

1 and both are endomorphisms of a N3-dimensional vector space we conclude that the
scalar function θ satisfies θN

3
= 1. In particular, θ takes discrete values in the group ΓN3 of

N3th roots of unity.
The set A3 is a 9-dimensional complex variety in C9 obtained by removing complex

hypersurfaces, so it is path-connected, so the finite cover Ã3 is path-connected as well.
Because the braidings are continuous, the function θ is continuous, hence locally constant
on Ã3. Because it takes values in the discrete group ΓN3 and Ã3 is connected, θ must be
constant, and we can take the constant to be 1. To see this, consider the radical χ̃0 =
(ξN−1, 1, ξN−1) corresponding to Kashaev invariant.17 Because B(χ0,χ0) = (χ0,χ0) the six
braidings appearing in the RIII relation can be given by the same matrix, so in this case
θ = 1.

We conclude that the braiding has no scalar ambiguity when defined on the set of
radicals. However, J is a representation of Sh, and we defined the braiding on Sh by
arbitrarily picking lifts to P. By lemma 5.23, a different choice of lift would change the
braiding by a power of ξ, a 2Nth root of unity. We conclude that J satisfies the RIII
relation up to a power of ξ, i.e. up to an element of Γ2N.

Proof of lemma 5.29. We use the factorization of theorem 5.4. The matrices Sf and Sb are
diagonal, so we can apply eq. (B.3):

detSf =
∏
m1m2

Λf(m
′
1 −m

′
2) =

∏
m

Λf(m)N = 1

and similarly detSb = 1.
To compute the determinants of Sr and Sl we want to diagonalize them via Fourier

17Technically speaking this is wrong when N is even: as in the proof of theorem 4.16 we need to use a
slightly more complicated coloring where the signs of the b-parameters alternate. However, this does not
affect the Oξ-isomorphism class of the modules, so the argument here still works.
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transform. We have

Sr · v̂m = Θr
∑
k

ξ2mkSr · vk

= Θr
∑
kk ′

ξ2mkΛr(k
′ − k)−1vk ′

=
Θr

N

∑
kk ′m ′

ξ2mkΛr(k
′ − k)−1ξ−2m ′k ′ v̂m ′

=
Θr

N

∑
kdm ′

ξ2mk−2m ′(k+d)Λr(d)
−1v̂m ′

= Θr
∑
dm ′

δmm ′ξ
−2m ′dΛr(d)

−1v̂m ′

= Θr

(∑
d

ξ−2mdΛr(d)
−1

)
v̂m

= Λ
(
ξ−2Ar,Br

∣∣∣−m)v̂m
where in the last line we applied eq. (B.5). By another application of eq. (B.3).

detSr =
∏
m

Λ
(
ξ−2Ar,Br

∣∣∣−m) = 1.

The same argument gives detSl = 1, and we conclude that detS = 1.

This concludes the proof of theorem 5.1.

5.3.3 The negative braiding

Before checking that the sideways braidings fig. 4.7 induced by the model are inverses we
need to compute the matrix coefficients of the usual inverse braiding. These will also be
useful in chapter 6 when we define the mirror of the braiding.

Theorem 5.30. Let χi be extended shapes at a negative crossing, as in fig. 3.13. The matrix
coefficients of the braiding assigned to this crossing are given by

S̃
m ′1m

′
2

m1m2 =
1

Θ̃lΘ̃r

Λ̃l(m
′
2 −m2)Λ̃r(m1 −m

′
1)

Λ̃f(m
′
2 −m

′
1)Λ̃b(m1 −m2)

(5.17)
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where

Λ̃f(m) = Λ
(
B̃f, Ãf

∣∣∣m) = Λ

(
β1 ′

ξ2β2 ′µ2
,
α2 ′

µ1µ2α1
Ãb

∣∣∣∣m)
Λ̃b(m) = Λ

(
B̃b, Ãb

∣∣∣m) = Λ

(
µ1β1

ξ2β2
, Ãb

∣∣∣∣m)
Λ̃l(m) = Λ

(
B̃l, Ãl

∣∣∣m) = Λ

(
µ1β1 ′

ξ2µ2β2
,
α2

ξ2µ2
Ãb

∣∣∣∣m)
Λ̃r(m) = Λ

(
B̃r, Ãr

∣∣∣m) = Λ

(
β1

ξ2β2 ′
,

1
ξ2µ1α1

Ãb

∣∣∣∣m)
and

ÃNb = 1 −

(
µ1β1

ξ2β2

)N
= 1 − λ1

b1

b2
.

Here the normalization factors are
Θ̃i = S

(
B̃i, Ãi

)
where S is given in theorem B.5. The negative braiding factors into four terms as

S̃ = S̃f(S̃r ⊗ S̃l)S̃b.

Proof. The computation goes as for S, but replacing S with S−1, although translating the
matrix computed this way to the form given requires some applications of the identities
of appendix B.

We instead directly check that S̃ is the inverse of S. Because the matrices have param-
eters, we need to be somewhat careful when interpreting this claim: since the braiding is
a map

S : V(χ1)⊗ V(χ2)→ V(χ2 ′)⊗ V(χ1 ′)

its inverse is the negative braiding with shapes

S̃ : V(χ2 ′)⊗ V(χ1 ′)→ V(χ1)⊗ V(χ2),

so when we compute the matrix product S̃ · S we want to swap 1 and 2 and primed and
unprimed indices in the parameters of S̃.

We need to compute the product

S̃f(S̃r ⊗ S̃l)S̃bSf(Sr ⊗ Sl)Sb.

Notice that
ANf = 1 − λ2

b2 ′

b1 ′
= ÃNb
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so we can choose Af = Ãb. Then

S̃b(Sf(vm1m2)) =
Λ
(
µ2β2 ′
ξ2β1 ′

,Af
∣∣∣m1 −m2

)
Λ
(
µ2β2 ′
ξ2β1 ′

,Af
∣∣∣m1 −m2

)vm1m2 = vm1m2 .

Now we turn to the products S̃rSr and S̃lSl. We want to work in the Fourier dual basis
v̂m, where (as discussed in the proof of lemma 5.29)

Sr · v̂m = Λ
(
ξ−2Ar,Br

∣∣∣−m)v̂m = Λ

(
Af

ξ2µ2α2 ′
,
β ′2
β1

∣∣∣∣−m)v̂m.

By a similar computation with eq. (B.4) we get

S̃r · v̂m =
1

S
(
B̃r, Ãr

) S
(
B̃r, Ãr

)
Λ
(
Ãr, ξ2B̃r

∣∣∣−m) = Λ

(
Ãb

ξ2µ2α2 ′
,
β2 ′

β1

∣∣∣∣∣−m
)−1

v̂m.

Because Ãb = Af we see that S̃r(Sr(v̂m)) = vm. A similar argument works for S̃lSl, so

(S̃r ⊗ S̃l)(Sr ⊗ Sl) = 1.

A computation analogous to the one given for S̃bSf shows that S̃fSb = 1.

5.3.4 Sideways invertibility

Lemma 5.31. Let V = V(α,β,µ) be a standard module. Then the evaluation and coevaluation
maps act by

coev↑V : 1 7→
∑
m

vm ⊗ vm

coev↓V : 1 7→ αN−1
∑
m

vm ⊗ vm+1

ev↑V : vm ⊗ vn 7→ δnm

ev↓V : vm ⊗ vn 7→ α1−Nδn,m−1

Lemma 5.32. The image of the sideways braiding s+L (χ2 ′ ,χ1) under the quantum dilogarithm
model of the extended shape biquandle has matrix coefficients

vm1 ⊗ vm2 7→
∑
m ′1m

′
2

S
m1m

′
1

m2m
′
2
vm ′1
⊗ vm

′
2
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so it factors as the product Cl(Cf ⊗Cb)Cr, where

Cr(v
m1
m2

) =
Θr

Λr(m1 −m2)
vm1

m2
Cf(v

m1) =
∑
m ′1

Λf(m1 −m
′
1)vm ′1

Cl(v
m2

m1
) =

Θl
Λl(m2 −m1)

v m2
m1

Cb(vm2) =
∑
m ′2

Λb(m
′
2 −m1)v

m ′2

Proof. By putting the component morphisms of s+L (χ2 ′ ,χ1) together, we get

vm1 ⊗ vm2 7→
∑
m3

vm1vm2m3 ⊗ v
m3

7→
∑

m3,m ′2,m ′3

S
m ′2m

′
3

m2m3v
m1 ⊗ vm ′2m ′3 ⊗ v

m3

7→
∑

m3,m ′2,m ′3

S
m ′2m

′
3

m2m3δm1m
′
2
vm ′3
⊗ vm3

=
∑
m3,m ′3

S
m1m

′
3

m2m3vm ′3
⊗ vm3

after which we can relabel some indices. The factorization is analogous to the factoriza-
tion of S.

Lemma 5.33. The image of the sideways braiding s−R (χ2 ′ ,χ1) under the quantum dilogarithm
model of the extended shape biquandle has matrix coefficients

v m2
m1

7→
(
α2 ′

α2

)N−1 ∑
m ′1,m ′2

S̃
m ′2,m2+1
m ′1+1,m1

vm
′
1 ⊗ vm ′2

so it factors as the product (α2 ′/α2)
N−1C̃r(C̃b ⊗ C̃f)C̃l, where

C̃r(v
m1
m2

) =
Λ̃r(m1 −m2 + 1)

Θ̃r
vm1

m2
C̃f(v

m2) =
∑
m ′2

1

Λ̃f(m2 −m
′
2 + 1)

vm ′2

C̃l(v
m2

m1
) =

Λ̃l(m2 −m1 + 1)

Θ̃l
v m2
m1

C̃b(vm1) =
∑
m ′2

1

Λ̃b(m
′
1 −m1 + 1)

vm
′
1

Proof. Again we can directly compute

vm2 ⊗ v
m3 7→ αN−1

2 ′
∑
m1

vm1−1 ⊗ vm1m2 ⊗ v
m3
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7→ αN−1
2 ′

∑
m1,m ′1,m ′2

S̃
m ′1m

′
2

m1m2v
m1−1 ⊗ vm ′1m ′2 ⊗ v

m3

7→ αN−1
2 ′ α1−N

2

∑
m1,m ′1,m ′2

S̃
m ′1m

′
2

m1m2δm3,m ′2−1v
m1−1 ⊗ vm ′1

=

(
α2 ′

α2

)N−1 ∑
m1,m ′1

S̃
m ′1,m3+1
m1+1,m2

vm1 ⊗ vm ′1

Proposition 5.34. The model (V ,S) of theorem 5.1 is sideways invertible.

Proof. Now that we have the matrix coefficients and the quantum dilogarithm identities
of appendix B this is an explicit computation, which works just as in the proof of theo-
rem 5.30. We show enough of the computation to give an idea of how it works. We need
to compute the product

Cl(Cf ⊗Cb)CrC̃r(C̃b ⊗ C̃f)C̃l.
Here

Cr(v
m1
m2

) = N−1S

(
1

ξ2µ2α2 ′
Af,

β2 ′

β1

)
Λ

(
β2 ′

β1
,

1
µ2α2 ′

Af

∣∣∣∣m1 −m2

)−1

C̃r(v
m1
m2

) = S

(
β2 ′

ξ2β1
,

1
ξ2µ2α2 ′

Af

)
−1Λ

(
β2 ′

ξ2β1
,

1
ξ2µ2α2 ′

Af

∣∣∣∣m1 −m2 + 1
)

where as before the second braiding acts after a transformation of the shapes, so it has
indices and primes swapped, and we have again used Ãb = Af. We can simplify

S

(
β2 ′

ξ2β1
,

1
ξ2µ2α2 ′

Af

)
=

(
µ2α2 ′β2 ′

β1

)N−1

S

(
1

ξ2µ2α2 ′
Af,

β2 ′

β1

)
and

Λ

(
β2 ′

ξ2β1
,

1
ξ2µ2α2 ′

Af

∣∣∣∣m1 −m2 + 1
)

= Λ

(
β2 ′

β1
,

1
ξ2µ2α2 ′

Af

∣∣∣∣m1 −m2

)
= ξ−2(m1−m2)ξ−(N−1)2

Λ

(
β2 ′

β1
,

1
ξ2µ2α2 ′

Af

∣∣∣∣m1 −m2

)
so that

CrC̃r(v
m1
m2

) = ξ−2(m1−m2)ξ−(N−1)2
(
µ2α2 ′β2 ′

β1

)N−1

vm1
m2

.

Unlike in the proof of theorem 5.30 they do not cancel. However, the action vm1 7→
ξ−2m1vm1 works out just right to compensate for the index shift in C̃b, and similarly for
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vm2 and C̃f. When computing the products of the other factors we also get terms of the
form (Ai/Bi)

±(N−1) and ξ±(N−1)2
, and together with the factor (α1/α1 ′)

N−1 these all cancel
out.

5.3.5 Determining the twist

By theorem 4.28, we know that our model induces a twist θRχ = θLχ. Furthermore, via the
gauge transformations of section 4.4, the scalar 〈θχ〉 depends only on the gauge class of
the extended shape χ, i.e. the fractional eigenvalue µ of χ. We can now show that the
twist is a power of ξ for every shape, so that (up to a power of ξ) our invariant JN does
not depend on the framing of the link L.

Theorem 5.35. The model J induces a twist

θχ = ξ
N(N−1)/2

for every admissible extended shape χ. In particular, the framing dependence is a power of ξ.

Proof. Via gauge transformations, we may assume without loss of generality that χ =
(µN,b,µ) for some µ, so that EN acts by 0 on V(χ). As in appendix A.2.2, V(χ) = Vγ is a
highest-weight module: it is generated by a vector vγ with

E · vγ = 0 and K · vγ = ξγvγ, where µ = ξγ.

We can choose a weight basis18 {vγ−2k,k = 0, . . . ,N− 1} for Vγ with

K · vγ−2k = ξ
γ−2kvγ−2k.

The dual basis of V∗γ will be denoted vγ−2k.
In this case α(χ) = χ, so we can compute the twist using the braiding for Vγ ⊗ Vγ.

As discussed in section 5.3.1 and appendix A.2.2 we can compute this braiding using the
universal R-matrix

R = HH expq(E⊗ F) = q
H⊗H/2

∞∑
n=0

qn(n−1)/2

{n}!
(E⊗ F)n

By proposition A.14, the action of τR defines a braiding Vγ ⊗Vγ → Vγ ⊗Vγ. However, to
compute the twist correctly we need to normalize this braiding to match ours, that is to
have determinant 1.

Because E⊗ F acts nilpotently on Vγ ⊗ Vγ, the expξ(E⊗ F) term has determinant 1. In
more detail, since (E⊗ F)N acts by 0, we can replace expq(E⊗ F) with a truncation

N∑
n=0

ξn(n−1)/2

{n}!
(E⊗ F)n = 1 + p(E⊗ F)

18In the notation of definition 5.10 vγ−2k = v̂−k.
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where p is some polynomial with no constant term. Since E⊗ F is nilpotent, there is a
basis of Vγ ⊗ Vγ where its matrix is strictly upper-triangular, so the matrix of p(E⊗ F) is
as well, so the determinant of expq(E⊗ F) is 1 as claimed.

It is straightforward to compute the determinant of ξH⊗H/2 using the weight basis:
because

(H⊗H) · (vλ−2k ⊗ vλ−2l) = (λ− 2k)(λ− 2l)(vλ−2k ⊗ vλ−2l)

and
N∑

k,l=0

(λ− 2k)(λ− 2l) = (Nλ−N(N− 1))2 = N2(λ− (N− 1))2

the determinant of the action of ξH⊗H/2 on Vγ ⊗ Vγ is

ξN
2(λ−(N−1))2/2.

Because the vector space Vγ is N-dimensional, the flip τ has determinant

(−1)N(N+1)/2 = (−1)N(N−1)/2 = ξN
2(N−1)/2.

Set
Ξ(λ) = ξ−(γ−(N−1))2/2−(N−1)/2 = ξ−γ

2/2+γ(N−1)−N(N+1)/2.
Then, writing Rγ,γ for the action of R on Vγ ⊗ Vγ, we conclude that

Sγ,γ = Ξ(λ)τRγ,γ

is a braiding with determinant 1.
We can now compute the twist using Sγ,γ. It suffices to understand the action of

θRχ = (idVγ ⊗ coev↑Vγ)(Sγ,γ ⊗ V∗γ)(idVγ ⊗ ev↓Vγ)

on the highest-weight vector vγ. (Here for clarity we write function composition left-to-
right.) Then

θRχ : vγ 7→
N−1∑
k=0

vγ ⊗ vγ−2k ⊗ vγ−2k

7→ Ξ(γ)

N−1∑
k=0

ξγ(γ−2k)/2vγ−2k ⊗ vγ ⊗ vγ−2k

7→ Ξ(γ)

N−1∑
k=0

ξγ(γ−2k)/2vγ−2k ⊗ vγ−2k(K1−N · vγ)

= ξγ
2/2ξ(1−N)γΞ(γ)vγ.

The twist simplifies as
ξγ

2/2ξ(1−N)γΞ(γ) = ξ−N(N+1)/2.
In particular, this is a power of ξ.
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Chapter 6

The graded quantum double

Overview
In the previous three chapters we constructed a (family of) functors

J : TangSh → Oξ−Mod/ΓN2

that compute the deformed Kashaev invariants. They are interesting, but are in some
ways quite difficult to handle. We point out two issues in particular:

1. The phase of J is only defined up to a 2Nth root of unity.

2. The explicit matrices computed in chapter 5 are rather complicated,1 which makes
understanding the corresponding invariants quite difficult.

In this chapter, we solve these problems by taking the quantum double ofJ . Specifically,
we define a functor

T : TangSh → Oξ ⊗O
cop
ξ −Mod

which we can think of as the external tensor product of J and its mirror image J :

T = J �J .

There are two equivalent ways to get J from J . One is to define a functorM : TangSh →
TangSh that corresponds to taking the mirror image and set J = JM after reversing the
order of tensor factors. Alternately, we can algebraically describe J in using the opposite
braiding between dual modules (compared to J ). As we show later these are equivalent.

Because J comes from a representation of the extended shape biquandle, T does as
well. The modified trace on Oξ compatible with J also works for J , and we show in ap-
pendix A.3 how to construct a trace on Oξ ⊗O

cop
ξ −Mod from them. Via the construction

1For example, the braiding matrices are very nonsparse: every entry is nonzero!
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of chapter 4, the functor T yields an invariant T of enhanced SL2(C)-links. The proof of
the following theorem is essentially automatic from the construction of T and the corre-
sponding modified trace.

Theorem 6.1. The functor T defines an invariant T(L) of extended SL2(C)-links which satisfies

T(L) = T(L)

and
T(L) = J(L)J(L).

Just like passing from z to |z|2 loses information about a complex number z, the invari-
ant T is weaker than the invariant J. Despite this, by using T we gain two advantages:

1. We can prove directly that T satisfies the colored braid relation with no phase am-
biguity.2

2. The braid action defined by T is very closely related to the action of the outer S-
matrix S on O⊗2

ξ .

The second point is key to our proof of Schur-Weyl duality for N = 2 in chapter 7, and
thus to the proof that T gives the torsion of the link complement when N = 2.

6.0.1 Anomaly cancellation

We can think of the indeterminacy of the phase of J as a anomaly. This phrase comes
from physics, so its exact mathematical meaning is somewhat unclear. For our purposes,
an anomaly is a failure of a function to be well-defined, which can be fixed by some choice
of extra structure. In this case, the anomaly is the phase indeterminacy of J , which arises
from making arbitrary choices of roots αi,βi. The (conjectural) extra structure required to
fix this was discussed at the end of section 5.2.2. When we take the norm-square T of J
the anomalies of J and J cancel, so we do not need to add any extra structure.

The relationship between T andJ is a familiar one in quantum topology: it is analagous
to the relationship between surgery (Reshetikhin-Turaev) and state-sum (Turaev-Viro)
theories. In particular, the cancellation of the anomaly is to be expected.

Chern-Simons theory with gauge group SU(2) [Wit89] can be rigorously realized as
the Reshetikhin-Turaev or surgery topologial quantum field theory [RT91; BK00]. As a spe-
cial case, the values of this theory on links in S3 are colored Jones polynomials at certain
roots of unity. This theory has an anomaly: if one tries to define it as a functor from a
cobordism category, it is not well-defined. To fix this, extra data (a sort of framing) is
required.

There is a different theory called the Turaev-Viro or state-sum TQFT [TV92; BK10] that
can be constructed from similar algebraic data as the surgery theory. The definition of this

2In fact, the structure of T is such that we can have this hold by definiton.
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theory is (apparently) quite different, but its values are closely related: the value of the
state-sum theory on M is the value of the surgery theory on M times its value on M (M
with the opposite orientation). In addition, there is no anomaly in the TV theory; we can
think of this as the anomalies of M and M cancelling. For details, see [Tur16] and [BK10;
Bal10a; Bal10b].

The anomaly of J is of a different type: among other things, it appears at the level
of links, not just manifolds. In addition, we do not yet understand exactly what extra
structure is required on shaped tangles to remove the anomaly. Nonetheless, it still seems
reasonable to interpret T as a version of J where the anomalies cancel.

6.0.2 Surgery and state-sum theories

While we can identify T as a state-sum theory because it is the double of a surgery theory,
we still compute it as a surgery theory. Concretely, we mean that we define T in terms
of braiding matrices, not state-sums over triangulations. It would be interesting to give a
definition of T in terms of state-sums. We mention some constructions related to such a
description.

Let C be a G-graded fusion category. Turaev and Virelizier [TV19] define notions of
state-sum and surgery homotopy quantum field theory (a.k.a. G-graded TQFT) and show
that the state-sum theory from C is equivalent to the surgery theory from ZG(C), where
ZG(C) is a graded version of the Drinfeld center of C.

In our context, C is the category of Oξ-weight modules, by which we mean finite-
dimensional Oξ-modules on which Z0 acts diagonalizably. ZG(C) would be something
like C � C, where C is the category of weight modules for Ocop

ξ and the braiding is given
by an inverted, flipped version of J .

To get a state-sum definition of T it would be useful to directly relate our construction
of C � C to the more abstract construction of the G-center ZG(C). Objects of C � C are of
the form V � V∗ for V an object of C, while objects of ZG(C) are pairs (V ,σV) with σV a
half-braiding relative to the identity-graded component C1 of C.

One difficulty in understanding this relationship is that the category C is not semisim-
ple, and the non-semisimplicity is concentrated in C1. We expect that an appropriate
semisimplification of C1 will allow an application of the theory of Turaev and Virelizier to
the construction of C � C. A less serious issue is that the braid action on the gradings of C
is not simply conjugation, as it is in [TV19].

We mention a few state-sum holonomy invariants that are not constructions of T . Ba-
seilhac and Benedetti [BB04] constructed holonomy invariants (in their language, quan-
tum hyperbolic invariants) using state-sums of quantum dilogarithms over decorated tri-
angulations. Their invariants should correspond to to J and not to T because they use
6j-symbols for the Borel subalgebra of Oξ, not the whole thing. A similar story holds
for the Ψ̂-system invariants defined in [GKT12, Section 12], although it is possible that a
different Ψ̂-system could give a construction of T .
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6.1 The mirror of J
Before we can discuss what we mean by J � J , we must first explain what J is. The
basic idea is to take J and then:

• invert the holonomy,

• take the opposite coproduct, and

• take the inverse braiding.

Together all these inversions give a representation J of TangSh in Ocop
ξ −Mod that we can

think of as the mirror image of J . In particular, the holonomy invariant J defined by J
will satisfy

J(L) = J(L)

where L is the mirror image of L in the usual topological sense.

6.1.1 Dual modules, the antipode, and mirrors of shapes

Definition 6.2. Let χ = (a,b, λ) be a shape. The mirror image of χ is the shape

χ := (a−1,bλ, λ−1).

For extended shapes we replace the fractional eigenvalue µ with ξ−2µ−1.

To understand this definition, observe that the mirror image of a shape corresponds
to taking the inverse holonomy:

χ↔
([

a 0
(a− 1/λ)/b 1

]
,
[

1 (a− λ)b
0 a

])
χ↔

([
1/a 0

−(1 − 1/aλ)/b 1

]
,
[

1 −(1 − λ/a)b
0 1/a

])
This relationship is how to derive the mirror of a shape. Recall that central characters
of Oξ form a group, with multiplication χ1χ2 := (χ1 ⊗ χ2)∆ given by the coproduct and
inverse χ−1 := χS given by the antipode. We can pull back the antipode along φ to get an
inverse on centralWξ-characters, i.e. shapes.

Lemma 6.3. The antiautomorphism S :Wq →Wq given by

S(x) = x−1, S(y) = q2zy, S(z) = q−2z−1

pulls back the antipode Oq along the embedding φ : Oq →Wq.
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Proof. Since S(K) = K−1, we must have S(x) = x−1. Guessing S(z) = q−2z−1, we see that
S(E) = −EK−1 becomes

S(qy(z− x)) = −qy(z− x)x−1

or
(q−2z−1 − x−1)S(y) = y(1 − zx−1) = (1 − q2zx−1)y

which matches S(y) = q2zy. A similar check works for S(F).

As an immediate corollary, we see that mirror of a shape is given by composition with
the antipode:

χ = χS.

Since the antipode makes the dual space of a module into a module, we see that mirror im-
ages are related to taking duals. For anyWξ-moduleN, the dual spaceN∗ := HomC(N, C)
is aWξ-module via u · f : n 7→ f(S(u) ·n). This is exactly the standard definition for Hopf
algebras, except thatWξ isn’t a Hopf algebra.

Proposition 6.4. Let χ = (a,b,µ) be an extended character and pick roots αN = a, βN = b. As
in definition 5.10 this determines a basis {vm} of the standard module V(χ). If {vm} is the basis of
V(α,β,µ)∗ dual to {vm}, then the action ofWξ on V(χ)∗ is given by

x · vm = α−1vm−1 y · vm = ξ2µβξ2mvm z · vm = ξ−2µ−1vm.

In particular, the dual of a standard module is isomorphic to the standard module corresponding
to the mirrored shape:

V(α,β,µ)∗ ∼= V
(
α−1, ξ2µβ, ξ−2µ−1

)
.

6.1.2 Mirror images of shaped tangles

Now that we know how to take mirror images of shapes, we can discuss how to take
mirror images of links.

Definition 6.5. Let L be an SL2(C)-link in S3. Recall that this means that L is a link in S3

along with a representation ρ : π1(S
3 \ L) → SL2(C). Let r : S3 → S3 be an orientation-

reversing homeomorphism. The mirror image L of L is the link r(L) with representation
ρ ◦ r. Similarly, the mirror image of an extended SL2(C)-link is the mirror image of the
underlying link with the inverse fractional eigenvalues.3

We are interested in a particular way of taking mirror images of shaped tangle dia-
grams, such that the mirror image of a shaped diagram of L is a shaped diagram of L.

Definition 6.6. The mirror image of a tangle diagram is the reflection across the horizontal
axis, as in fig. 6.1. To take the mirror image of a shaped tangle diagram, take its mirror
image as a diagram and then take the mirror image of every shape.

3This is a different convention on the fractional eigenvalues than in [McP20].
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Figure 6.1: The mirror image of a tangle.

Proposition 6.7. The process of taking the mirror image is functorial. We write

M : TangSh → TangSh

for the functor taking an extended shaped tangle to its mirror image. (There are similar functors
for Tang and TangSh0

, which we also denote byM.)

Proof. We need to check that the gluing equations work. This is tedious but elementary.
Alternately, this proposition is a consequence of proposition 6.8; we have chosen to talk
aboutM and first in order to motivate J , but the logical order is the opposite.

We can almost define J as JM, but this will cause problems later. To explain this, let’s
first work out some of the properties of JM. Suppose we have (extended) shapes with
B(χ1,χ2) = (χ2 ′ ,χ1 ′). The braiding defining J is a map

J (σ) : V(χ1)⊗ V(χ2)→ V(χ2 ′)⊗ V(χ1 ′)

and it follows that the braiding for JM is

JM(σ) : V(χ2)⊗ V(χ1)→ V(χ1 ′)⊗ V(χ2 ′)

equivalently
JM(σ) : V(χ2)

∗ ⊗ V(χ1)
∗ → V(χ1 ′)

∗ ⊗ V(χ2 ′)
∗

To understand T we want the tensor factors to line up: the first tensor factor on the left-
hand side should be V(χ1)

∗, not V(χ2)
∗. This will be very important for the computations

in section 6.3 and chapter 7.
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To get this to work, we want to switch tensor factors and define J to be the representa-
tion of the extended shape biquandle that sends χ to V(χ) and whose braiding intertwines

S := τS−1τ = τR−1. (6.1)

We will see later in section 6.1.4 that J defines the same invariant on links as JM. To
match the automorphism defined in eq. (6.1) we need to use the opposite comultiplication
for Oξ :

∆op(E) = E⊗ 1 +K⊗ E, ∆op(F) = F⊗K−1 + 1⊗ F.
We write Ocop

ξ for Oξ with the opposite comultiplication.
Recall that the holonomy braidings constructed in chapter 5 that define J are maps

intertwining S = τS . This leads to a braiding because

S∆ = ∆, equivalentlyR∆ = ∆op.

Dually, can think ofR−1 as intertwining ∆op and (∆op)op = ∆,

R−1∆op = ∆,

so to get maps commuting with ∆op we look for those that intertwine the automorphism

S = τR−1 = τS−1τ

of Ocop
ξ ⊗Ocop

ξ . More generally, a holonomy braiding for J should be a family of linear
maps intertwining S.

Proposition 6.8. Suppose we have (extended) shapes χi related by the shape biquandle asB(χ1,χ2) =
(χ2 ′ ,χ1 ′), so that S gives an algebra automorphism

S : Oξ/ kerχ1 ⊗Oξ/ kerχ2 → Oξ/ kerχ2 ′ ⊗Oξ/ kerχ1 ′

which acts by the identity on the image of ∆(Oξ). Then the mirror braiding S gives an algebra
automorphism

S : Oξ/ kerχ1 ⊗Oξ/ kerχ2 → Oξ/ kerχ2 ′ ⊗Oξ/ kerχ1 ′

which acts by the identity on the image of ∆(Ocop
ξ ) = ∆op(Oξ).

Proof. This is not hard to compute directly by using the defining relations of R given in
theorem 2.7 and the defining relations

S(E) = −EK−1, S(F) = −KF, S(K) = K−1

of the antipode. Because

S(Ω⊗ 1) = 1⊗Ω and S(1⊗Ω) = Ω⊗ 1

there are no issues with passing to extended shapes.
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6.1.3 The mirror representation

Corollary 6.9. For extended shapes χi as in proposition 6.8, there is an invertible holonomy
braiding

Sχ1,χ2 : V(χ1)⊗ V(χ2)→ V(χ2 ′)⊗ V(χ1 ′)

equivalently a map
Sχ1,χ2 : V(χ1)

∗ ⊗ V(χ2)
∗ → V(χ2 ′)

∗ ⊗ V(χ1 ′)
∗

Proof. The argument is exactly as for theorem 5.14.

Just as before, it is straightforward to abstractly characterize the braiding but comput-
ing the explicit matrix coefficients is more difficult. We can use the same techniques as in
chapter 5 to find them in terms of quantum dilogarithms.

Theorem 6.10. Let χi be extended shapes with B(χ1,χ2) = (χ2 ′ ,χ1 ′) and components χi =
(ai,bi,µi), and pickNth roots αNi = ai, βNi = bi. The matrix coefficients of the mirror holonomy
braiding are

S
m ′1m

′
2

m1m2
= ΘlΘr

Λl(m2 −m
′
2)Λr(m

′
1 −m1)

Λf(m
′
1 −m

′
2)Λb(m2 −m1)

(6.2)

where we use the bases {vm} of the modules V(χi)
∗

induced by the choice of roots αi,βi. The factors
are each normalized quantum dilogarithms

Λf(m) = Λ
(
Bf,Af

∣∣m) = Λ(µ2β2 ′

ξ2β1 ′
,Af

∣∣∣∣m)
Λb(m) = Λ

(
Bb,Ab

∣∣m) = Λ( β2

ξ2µ1β1
,

α1

µ1µ2α2 ′
Ab

∣∣∣∣m)
Λl(m) = Λ

(
Bl,Al

∣∣m) = Λ( β2 ′

ξ2β1
,
α1 ′

ξ2µ1
Af

∣∣∣∣m)
Λr(m) = Λ

(
Br,Ar

∣∣m) = Λ( µ2β2

ξ2µ1β1 ′
,

1
ξ2µ2α2 ′

Af

∣∣∣∣m)
and

Θi = S(Bi,Ai)

where S is the function given in theorem B.5. Notice that the parameters for Λf and Λb are the
same as those for Λf and Λb, while those for Λr and Λl differ by a factor of ξ2.

Theorem 6.11. Assigning the modules V(χ)∗ to extended shapes χ and crossings to the holon-
omy braidings given in theorem 6.10 gives a representation of the extended shape biquandle in
Ocop
ξ −Mod/ΓN2 . This representation is compatible with the modified trace t of theorem 4.23.
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Proof. The proof goes exactly as the proof of theorem 5.1 given in section 5.3.2. We know
that the matrix S given in eq. (6.2) intertwines S , so it must give a model up to an overall
scalar. Since the determinant of S is 1 (by using the same results on quantum dilogarithms
as in lemma 5.29) we can show that it actually gives a model up to an N2th root of unity.
This model is sideways invertible and induces a twist for exactly the same reasons as J ,
so it gives a representation, and it is is similarly compatible with t so it gives an invariant
of extended SL2(C)-links.

6.1.4 Properties of J
As an immediate corollary of theorem 6.11 we get an invariant J(L) of extended shaped
links L defined via the functor J . This invariant is not anything new, but is just the value
of J(L) on the mirror image of L.

Theorem 6.12. Let L be an extended shaped link. Then

J(L) = J(L)

where L is the mirror image of L.

Proof. Consider a crossing of a diagram L with extended shapes χi as in fig. 3.12. The
functor J assigns this crossing the matrix S given in eq. (6.2). On the other hand, the
mirror image of this crossing is assigned the matrix S̃ given in eq. (5.17) but with mirrored
coefficients:

α 7→ α−1, β 7→ µβ, µ 7→ ξ−2µ−1.

We can check directly that the matrices Sm
′
1m
′
2

m1m2
and S̃m

′
1m
′
2

m1m2 are identical after swapping m1
andm2 andm ′1 andm ′2 (that is, after conjugating by the flip).

Now suppose L is represented as the closure of an extended shaped braid β on n
strands. (See section 7.1.1 for more on braids.) The functor J assigns β some Nn ×Nn
matrix

M
m ′1m

′
2···m

′
n

m1m2···mn

and similarly JM assigns β a matrix

M̃
m ′1m

′
2···m

′
n

m1m2···mn .

By the argument in the previous paragraph,

M
m ′1m

′
2···m

′
n

m1m2···mn = M̃
m ′nm

′
n−1···m

′
1

mnmn−1···m1

so these matrices are equal after conjugating by the linear isomorphism

F(vm1m2···mn) = F(vmnmn−1···m1).

It follows that their modified traces agree and thus that J(L) = J(L).
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6.2 The doubled braiding

6.2.1 External tensor products

The category Oξ−Mod is a monoidal category: given two objects V and W, we can take
their tensor product V ⊗W, which becomes a Oξ-module via the coproduct of Oξ. Be-
cause it stays inside Oξ−Mod we call this an internal tensor product and denote it by ⊗.

To construct T , we want to consider an external tensor product that takes two cate-
gories or functors and produces another, larger category or functor. To distinguish this
from the internal tensor product, we denote it by �.

Definition 6.13. Let H1 and H2 be Hopf algebras over C, and write Hi−Mod for the cat-
egory of (finite-dimensional) H-modules. The tensor product of H1−Mod and H2−Mod is
the category

H1−Mod�H2−Mod := (H1 ⊗C H2)−Mod

of finite-dimensional H1 ⊗C H2-modules. If V1 and V2 are modules for H1 and H2 respec-
tively, then we write

V1 � V2 := V1 ⊗C V2

for the corresponding (H1 ⊗C H2)-module, an object of H1−Mod�H2−Mod.
Now suppose f1 : V1 →W1 is a morphism of H1−Mod, and similarly for f2 : V2 →W2.

Then we define their external tensor product f1 � f2 : V1 � V2 →W1 �W2 by

(f1 � f2)(v1 � v2) = f1(v1)� f2(v2)

for all v1 ∈ V1, v2 ∈ V2.

This is a special case of the Deligne tensor product [Eti+15, §1.11] of categories, which
is one reason we use the notation �. Since we only are interested in (subcategories of)
Oξ−Mod, we do not need the construction in full generality.

Remark 6.14. Notice that ⊗ and � commute4 in the sense that

(V1 ⊗W1)� (V2 ⊗W2) = (V1 � V2)⊗ (W1 �W2).

Here the tensor products ⊗ on the left are the internal tensor products of H1−Mod and
H2−Mod, respectively, while on the right⊗ is the internal tensor product of (H1 ⊗C H2)−Mod.

Depending on the context, both sides of the above equation are useful. For example,
it is much easier to describe an external tensor product of two maps using the left-hand
side.

4Formally speaking, this equality should be a natural isomorphism.
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Definition 6.15. Let H1 and H2 be Hopf algebras as above. Suppose we have functors

Fi : TangX → Hi−Mod, i = 1, 2

from a colored tangle category to the category modules of a Hopf algebra.5 The external
tensor product of F1 and F2 is the functor

F1 �F2 : TangX → (H1 ⊗C H2)−Mod

defined by
(F1 �F2)(χ1, · · · ,χn) = (F1(χ1, . . . ,χn))� (F2(χ1, . . . ,χn))

on objects and by
(F1 �F2)(T) = F1(T)�F2(T)

on morphisms.6

Remark 6.16. When the functors Fi above come from a representation of a biquandle X,
they are monoidal in the sense that

Fi(χ1, . . . ,χn) = Fi(χ1)⊗ · · · ⊗ Fi(χn).

for χj ∈ X. For example, J and J are of this type. As noted in remark 6.14, we can think
of the image of (χ1, . . . ,χn) under their tensor product in two equivalent ways:

n⊗
j=1

F1(χj)�F2(χj) = (F1 �F2)(χ1, . . . ,χn) =

 n⊗
j=1

F1(χj)

�
 n⊗
j=1

F2(χj)

 .

The left-hand side is more useful when trying to understand tensor products inH1−Mod�
H2−Mod, while the right-hand side is more useful when defining the image of morphisms
under F1 �F2.

6.3 The double of the quantum holonomy invariant
Definition 6.17. The double of functor J is the external tensor product

T := J �J : TangSh → Oξ ⊗O
cop
ξ −Mod/ΓN2

of J and its mirror image. Equivalently, it is the functor corresponding to the represen-
tation of the extended shape biquadle in Oξ ⊗O

cop
ξ −Mod given by (V(−)�V(−)∗,S−,−�

S−,−).
5J and J are two examples of such functors.
6We can think of this as a “grouplike” coproduct, especially when we restrict to shaped braid groupoids

in chapter 7.
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6.3.1 Determining the phase

We can now show that the phase of T can be defined unambiguously.

Theorem 6.18. The functor T lifts to a functor

T : TangSh → Oξ ⊗O
cop
ξ −Mod

with no scalar ambiguity.

Proof. The key idea is to use the fact that a strand with shape χ is mapped to the module

T (χ) = V(χ)� V(χ)∗.

As a consequence, we get a basis-independent family of vectors

w(χ) :=
∑
m

vm � v
m ∈ T (χ).

We check in the lemma below that T preserves these in the sense that

T (σ)(w(χ1)⊗w(χ2)) = w(χ2 ′)⊗w(χ1 ′).

This condition that T preserves the w(χ) is enough to show that it satisfies the colored
braid relation exactly. The two homomorphisms

T (σ1σ2σ1), T (σ2σ1σ2) : T (χ1,χ2,χ3)→ T (χ3 ′′′ ,χ2 ′′′ ,χ1 ′′′)

appearing on each side of the RIII relation are determined up to a scalar. Since

T (σ1σ2σ1)(w(χ1)⊗w(χ2)⊗w(χ3))

= w(χ3 ′′′)⊗w(χ2 ′′′)⊗w(χ1 ′′′)

= T (σ2σ1σ2)(w(χ1)⊗w(χ2)⊗w(χ3))

we conclude that
T (σ1σ2σ1) = T (σ2σ1σ2).

Lemma 6.19. The functor T preserves the vectors w(χ).

Proof. First consider a non-pinched crossing; to extend to the pinched case, we can use the
same continuity argument as in theorem 5.27. Now that we know the matrix coefficients
and factorizations7 of S and S this is straightforward. For example,

Sb � Sb ·w⊗w =
∑
m1m2

Λb(m2 −m1)

Λb(m2 −m1)
vm1 � v

m1 ⊗ vm2 � v
m2 = w⊗w

7Computing these was quite hard, but it had other benefits. In any case, the proof here is more enlight-
ening than the complicated proof in [McP20, Appendix C], which only works in the case N = 2.
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because Λb(m) = Λb(m). To check invariance under Sr � Sr we (as before) want to work
in the Fourier dual basis as in the proof of lemma 5.29. Because w is basis-independent,∑

m

vm � v
m =

∑
m

v̂m � v̂
m,

and since (by eqs. (B.4) and (B.5))

Sr · v̂m = Λ
(
ξ−2Ar,Br

∣∣∣−m)v̂m
Sr · v̂m = Λ

(
ξ−2Ar,Br

∣∣∣−m)v̂m
we also have

Sr � Sr ·w⊗w = w⊗w.

Similar checks work for l and f.

6.3.2 Proof of theorem 6.1

Because T satisfies the colored Reidemeister relations, it gives a model of the extended
shape biquandle in Oξ−Mod�Ocop

ξ −Mod. This model is absolutely simple and regular,
so it induces a twist, and it is sideways invertible because J and J are. By theorem A.19
there is a modified trace on the ideal of projective objects of Oξ−Mod�Ocop

ξ −Mod that is
compatible with those for Oξ−Mod and Ocop

ξ −Mod in the sense that for any f : X → X,
g : Y → Y,

tX�Y(f� g) = tX(f)tY(g).

In particular this modified trace is gauge invariant. We can therefore apply theorem 4.1
to conclude that T is well-defined and gauge invariant.

The compatibility property of the trace and the fact that (up to N2th roots of unity)
T = J �J shows that

T(L) = J(L)J(L)

up to N2th roots of unity, and we can apply theorem 6.12 to conclude that

T(L) = J(L)J(L).
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Chapter 7

Torsions

Overview
Set N = 2, so that ξ = i. Our goal in this chapter is to prove:

Theorem 7.1. Let L be an admissible enhanced SL2(C)-link. Then

T2(L) = τ(L)

where τ(L) is the Reidemeister torsion of S3 \L twisted by the holonomy representation ρ : π(L)→
SL2(C).

Recall that forN = 2, a link is admissible when no meridian has 1 as an eigenvalue. As
discussed in section 7.1.4 this condition is also required for the torsion to be well-defined.

The torsion is a well-understood invariant of topological spaces, and twisting by a
nonabelian representation ρ incorporates geometric information. We can think of the tor-
sion as a classical1 holonomy invariant, as mentioned in the introduction. As such, this
result is a first step towards understanding better what the nonabelian quantum diloga-
rithm says about geometry. It would be very interesting to understand how TN forN > 2
relates to the torsion, especially in the context of the semiclassical limitN→∞ appearing
in the Volume Conjecture.

7.0.1 Strategy of the proof

We first need to define the torsion in the context of shaped tangles. When we think of our
link L as the closure of a shaped braid β we can think of β as acting on a punctured disc.
This gives a braid group action on the homology of the punctured disc (twisted by the
holonomy of the shapes) called the Burau representation which can be used to compute the
torsion. We discuss this in more detail in section 7.1.

1“Classical” has two interpretations here, both of which apply: the physical “not quantum”, or the
mathematical “understood before the author started their PhD”.
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Figure 7.1: The braid σ1σ
−1
2 σ1σ

−1
2 on 3 strands, whose closure is the figure-eight knot.

To relate the Burau representation to the braid group representation coming from T we
prove a Schur-Weyl duality between them in section 7.2. As discussed in section 7.2.1, the
idea is to find a subalgebra ofO⊗ni corresponding to the homology that (super)commutes
with the image of Oi under the coproduct and use this to understand the decomposition
of tensor products of Oi-modules and the braid group action on them.

Actually applying Schur-Weyl duality to the tensor decomposition of the image of T
requires a bit of a detour; we need to slightly weaken the type of multiplicity space we
consider. In section 7.3 we work out these issues and prove a version (theorem 7.39) of
Schur-Weyl duality for modules. Once this is done theorem 7.1 is an immediate corollary.

7.1 The shaped braid groupoid and Burau representations
To define the Burau representation and the torsion we want to work with with diagrams
more regular than tangles.2

7.1.1 Braids and shaped braids

Definition 7.2. A braid is a tangle that only goes left-to-right. More formally, it is a tangle
in which the x-components of the tangent vectors to the strands have constant sign. A
braid β is necessarily a morphism n→ n for some n = 0, 1, . . . , in which case we call β a
braid on n strands. An example is given in fig. 7.1.

We assume for simplicity that the strands of a braid are oriented left-to-right, and
write Braid for the subcategory of Tang of oriented braids. Braid is a groupoid, and its
connected components are the usual groups Braidn of braids on n strands.

To use braids to compute holonomy invariants we color their segments just as for
tangles.

Definition 7.3. If X is a biquandle, we write BraidX for the subcategory of TangX of braids,
which we call the X-colored braid groupoid. As before we write BraidnX for the subgroupoid
of X-colored braids on n strands.

2From another perspective, our functor T2 can be seen as a generalization of the exterior algebra on the
twisted reduced Burau representation to tangles.
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w2 w1

Figure 7.2: Generators of the fundamental group π1(D2) of the twice-punctured disc. This
picture can be obtained from fig. 3.7 by slicing a vertical plane perpendicular to the page
through the left-hand side of the diagram.

This definition still works when X is partially defined; we simply have to disallow Rei-
demeister moves and compositions that would result in undefined colors. In particular,
we have the shaped braid groupoid BraidSh0

and extended shaped braid groupoid BraidSh of
braids colored by the shape biquandle and extended shape biquandle, respectively.

As before, the simplest way to describe SL2(C)-links is as closures of the braids colored
by (the conjugation quandle of) G, as discussed below. However, in the context of Oξ we
want to use shaped braids instead, and as before this works because the holonomy of the
shapes gives an appropraite representation into SL2(C). In the context of torsions, it is
also more convenient to derive the Burau representation in terms ofG-colored braids and
then pull back this description to shaped braids.

Example 7.4. Let G be a group. The conjugation quandle (recall definition 4.4) is the
biquandle given by

B(g1,g2) = (g−1
1 g2g1,g1).

We call the category BraidG of braids colored by the conjugation quandle ofG the category
of G-colored braids. In more detail, BraidG is the category with:

objects are tuples (g1, . . . ,gn) of elements of G.

morphisms (g1, . . . ,gn) → (g ′1, . . . ,g ′n) are braids on n strands, which act on the group
elements by the Wirtinger rule σ1 : (g1,g2) → (g−1

1 g2g1,g1) given above and in
fig. 3.7.

Topologically, morphisms of BraidG are braids with representations of their comple-
ments into G, just as for G-colored tangles in section 4.1.2. Because the fundamental
group of Dn is a free group Fn on n generators w1, . . . ,wn (see fig. 7.2), we can associate
an object (g1, . . . ,gn) BraidnG to the representation ρ : π1(Dn)→ G given by ρ(wi) = gi.
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To understand this definition topologically, recall that Braidn is the mapping class
group of an n-punctured disc. 3In particular, the braid group Braidn on n strands acts
on Dn by homemorphisms fixing the boundary, hence acts on π1(Dn). We can explicitly
give this action as

wj · σi =


w−1
i wi+1wi j = i,

wi j = i+ 1,
wj otherwise.

(7.1)

This is a right action because braids are composed left-to-right. 4

Braids act on these representations via β : ρ 7→ ρβ−1 and the conjugation biquandle is
just an algebraic description of this action. The G-colored braid groupoid is a version of
the mapping class group of Dn where we keep track of the additional data of the repre-
sentations ρ : π1(Dn)→ G and the corresponding action on them by the braids.

Example 7.5. The (extended) shaped braid groupoid has

objects tuples (χ1, . . . ,χn) of shapes. Recall that a shape is a tuple χ = (a,b, λ) of nonzero
complex numbers, equivalently a character of the central subalgebra C[x±N,y±N, z±N]
of the algebraWξ. An extended shape replaces λwith a Nth root µ.

morphisms (χ1, . . . ,χn)→ (χ ′1, . . . ,χ ′n) braids on n strands acting on the shape according
to the rules in definition 4.12.

The same topological interpretation works for the shaped braid groupoid: we can
think of it as a mapping class groupoid forDn that also keeps track of geometric data via
the shapes. The shapes are an alternative coordinate system on the variety of represen-
tations π1(Dn)→ SL2(C) that is more convenient for quantum invariants and hyperbolic
geometry the. We can obtain a SL2(C)-colored braid from a shaped braid via the functor
Ψ (theorem 4.16), just as for tangles.

In the case of braids, we can be more explicit about the action of Ψ on objects: a tuple
(χ1, . . . ,χn) has Ψ(χ1, . . . ,χn) = (g1, . . . ,gn), where

gk = g
+(χ1) · · ·g+(χk−1)g

+(χk)g
−(χk)g

+(χk−1)
−1 · · ·g+(χ1)

−1.

In terms of the generators yk = wk · · ·w1 introduced later, the formula is a bit simpler:

ρ(yk) = gk · · ·g1 = g+(χ1) · · ·g+(χk)
(
g−(χ1) · · ·g−(χk)

)−1 .
3The mapping class group of a space X is the quotient of the automorphism group of X where we

identify isotopic maps. In this case, we want to think of Dn as a closed disc with punctures and consider
automorphisms fixing the boundary.

4I feel strongly that topological morphisms like braids and tangles should be written left-to-right, since
that is the natural order of composition in a language like English that is written left-to-right. The required
right actions look strange, but I think this is worth the cost.
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7.1.2 Twisted homology and Burau representations

Because braids act on the punctured disc they also act on topological invariants like ho-
mology. We are interested in the Burau representations, which come from the action of the
braid group on twisted homology. For simplicity, we first describe this for GL(V)-colored
braids, then explain how to pull this description back to the shaped braid groupoid.

Definition 7.6. Let X be a finite CW complex with fundamental group π = π1(X), and let
ρ : π→ GL(V) be a representation, where V is a vector space.5 We think of this as a right
representation acting on row vectors, so that V is a right Z[π]-module.

Let X̃ be the universal cover of X. The group π = π1(X) acts on the cells of the universal
cover, and this action commutes with the differentials. We take this to be a left action, so
that the cellular chain complex C∗(X̃) of the universal cover becomes a complex of left
Z[π]-modules.

The ρ-twisted homology H∗(X; ρ) of X is the homology of the ρ-twisted chain complex

C∗(X; ρ) := V ⊗Z[π] C∗(X̃).

We have given this definition in terms of a CW complex for X and a choice of lifts, but
it can be shown to not depend on the choice of lifts. In fact, the ρ-twisted homology also
does not depend on the CW structure. One way to see this is to give a definition in terms
of GL(V)-local systems.

The Burau representation is given by the action of braids on the twisted homology
groups. Because a braid β acts nontrivially on the representations, it should be under-
stood as a representation of the groupoid BraidGL(V).

Definition 7.7. The Burau representation is the functor B̃ : BraidGL(V) → VectC sending an
object ρ to the vector space H1(Dn; ρ) and a GL(V)-colored braid β : ρ → ρ ′ to the linear
map

B̃(β) : H1(Dn; ρ) → H1(Dn; ρ ′)

corresponding to the action of β onDn. Here VectC is the category of C-vector spaces and
linear maps.

Any braid β fixes the boundary of Dn, so we can define the boundary-reduced Burau
representation as the action on homology relative to the boundary:

B∂(β) : H1(Dn,∂Dn; ρ) → H1(Dn,∂Dn; ρ ′).

In connection with the reduced Burau representation, it is helpful to use a slighly
different presentation of π1(Dn). Recall the generators w1, . . . ,wn of π1(Dn) shown in
fig. 7.2. There is another set of generators

yi := wi · · ·w1, for i = 1, . . . ,n.
5More generally this works for a module over any commutative ring; this perspective is important

when defining the twisted Alexander polynomial.
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y3

y2

y1

Figure 7.3: Alternative generators for π1(D3).

on which the braid group acts by

yj · σi =

{
yi−1y

−1
i yi+1 i = j,

yj i 6= j
(7.2)

The generators for D3 are shown in in fig. 7.3.
The images of the yi give a basis for the twisted homology. More formally, if e1, . . . , ek

is a basis of the vector space V , then

{yi ⊗ ej : i = 1, . . .n, j = 1, . . . ,k}

is a basis of H1(Dn; ρ); here we abuse notation and write yi for its image. The final gen-
erator yn corresponds to the boundary of the disc, so we similarly have a basis

{yi ⊗ ej : i = 1, . . .n− 1, j = 1, . . . ,k}

of H1(Dn,∂Dn, ρ).

Example 7.8. Let V = Q(t) be the one-dimensional vector space over the field6 Q(t) of
rational functions in t, and let α be the representation sending every meridian to t−1.
(We choose t−1 instead of t to match later conventions.) Then the groupoid BraidnGL(V)
preserves α, so the group of endomorphisms of α is equivalent to the ordinary braid
group Braidn. By choosing an appropriate basis we get a Burau representation

Bα : Braidn → GLn(Q(t))

and a reduced Burau representation

B∂α : Braidn → GLn−1(Q(t))

We call these the abelian Burau representations; usually [BC74, Section 3.3] the term “Bu-
rau representation” refers to them.

6We want to work over fields for simplicity, but we could equally well define this over Z[t, t−1], equiv-
alently the group ring of Z. Then the map α is roughly the abelianization map of Braidn extended to the
group ring.
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The reduced abelian Burau representation sends the generator σi braiding strand i
over strand i− 1 to the matrix

Ii−2 ⊕

1 0 0
1 −t t

0 0 1

⊕ In−i−2

with 1,−t, t appearing in the ith row. 7 V is one-dimensional, and we are using the basis
{yi, i = 1, . . . ,n− 1} of H1(Dn,∂Dn;α).

To match the left-to-right composition of braids, we want to think of this matrix as
acting on row vectors. By doing so, we get a representation

B∂(β1β2) = B∂(β1)B∂(β2)

instead of an anti-representation.

This computation is a special case of the general formula:

Proposition 7.9. Choose a basis e1, . . . , ek of V , so that we can identify GL(V) with GL(Ck).
With respect to the basis

{yi ⊗ ej : i = 1, . . .n− 1, j = 1, . . . ,k}

of H1(Dn,∂Dn; ρ), the matrices of the boundary-reduced twisted Burau representation are given
on braid generators σi : ρ0 → ρ1 by

[
B∂(σi)

]
= I(i−2)k ⊕

Ik 0 0
Ik −ρ0(yi−1y

−1
i ) ρ0(yi−1y

−1
i )

0 0 Ik

⊕ I(n−i−2)k

= I(i−2)k ⊕

Ik 0 0
Ik −ρ1(yiy

−1
i+1) ρ1(yiy

−1
i+1)

0 0 Ik

⊕ I(n−i−2)k

where the matrices act on row vectors from the right. 8

Proof. This is a standard result, which can be computed by identifying the action of the
braid group on the twisted chain groups with the action of the Fox derivatives on the free
group Fn = π1(Dn). For more details, see [Con17], in particular [Con17, Example 11.3.7].
Our matrices differ slightly from those of Conway because we have picked a different
convention for the action of Braidn on Fn.

To see that ρ0(yi−1y
−1
i ) = ρ1(yiy

−1
i+1), recall that by definition ρ1 = ρ0β

−1.
7For sufficiently large or small i the identity summands are zero and we may have to truncate the 3× 3

matrix in the middle.
8We have switched notation from ρ→ ρ ′ to ρ0 → ρ1 as to avoid conflict with the notation ρ∨ appearing

below.
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y2 y1

z1 z2

Figure 7.4: A basis z1, z2 of the locally-finite homology H1(D3)
lf and the dual basis y1,y2

of the homology rel boundary H1(D3,∂D3).

To match the braid action on the quantum group we want the dual of this representa-
tion. The most convenient way to do this is to consider locally-finite or Borel-Moore homol-
ogy H1(Dn; ρ)lf.

The untwisted form of this homology has a basis spanned by arcs between the punc-
tures of Dn, and it is dual to H1(Dn,∂Dn) via the obvious intersection pairing. For
example, fig. 7.4 shows the basis y1,y2 of H1(D3,∂D3; C) associated to the generators
y1,y2 ∈ π1(D3) and the dual basis z1, z2 of H1(D3; C)lf.

To extend this to the twisted case, we need to obtain a right Z[π]-module dual to V .
The dual space V∗ := HomC(V , C) is a right Z[π]-module via

x · f = v 7→ f(vρ(x−1))

We write (V∨, ρ∨) for this representation.

Proposition 7.10. There is a π-equivariant nondegenerate pairing

H1(Dn; ρ∨)lf ⊗H1(Dn,∂Dn; ρ) → C.

Proof. This is an easy extension of the result for untwisted homology, using the π-equivariant
pairing between V∨ and V given by

x · (f⊗ v) 7→ f(ρ(x−1)ρ(x)v) = f(v).

Definition 7.11. The reduced twisted Burau representation (from here on the Burau represen-
tation) is the functor sending a braid β : ρ0 → ρ1 to the map

B(β) : H1(Dn; ρ∨0 )
lf → H1(Dn; ρ∨1 )

lf

Corollary 7.12. Let e1, . . . , ek be the basis of V∗ dual to the basis chosen in proposition 7.9,
and similarly let z1, . . . , zn−1 be the basis dual to y1, . . . ,yn−1. Then with respect to the basis
{zi ⊗ ej : i = 1, . . . ,n− 1, j = 1, . . .k} of H1(Dn; ρ)lf, the matrices of the Burau representation B
are given on braid generators by

[B(σi)] = I(i−2)k ⊕

Ik Ik 0
0 −ρ∨1 (yiy

−1
i+1) 0

0 ρ∨1 (yiy
−1
i+1) Ik

⊕ I(n−i−2)k
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where the matrices ρ∨ are the inverse transposes of those of ρ.

7.1.3 Burau representations for shaped braids

To define the Burau representation, it is most natural to use braid groupoids colored by
the conjugation quandle of a matrix group. However, because BraidSL2(C) is equivalent to
BraidSh0

we can similarly define a Burau representation for the shaped braid groupoid by
pulling back along the functor Ψ of theorem 4.16. By choosing appropriate bases we can
considerably simplify this matrix.

Theorem 7.13. Let σ : ρ0 → ρ1 be a shaped braid generator, with target shapes

ρ1 = (χ1, . . . ,χn) and χi = (ai,bi, λi).

There exists a family of bases of the homology H1(Dn; ρ)lf such that the matrix of B(σi) is given
by

I2(i−2) ⊕


1 0 a−1

i −φia
−1
i

0 1 0 1
−a−1

i φia
−1
i

−εi+1 −ai+1
1 0 1 0
εi+i ai+1 0 1

⊕ I2(n−i−2) (7.3)

where εi = (ai − λi)bi and φi = (ai − λ
−1
i )b−1

i .

Proof. For a groupoid representation F : G → VectC, choosing bases means choosing a
basis of the vector space F(ρ) for each object ρ of G , so that we obtain matrices [F(g)] for
each morphism g : ρ0 → ρ1 of C. Changing the bases transforms the matrix of g as

[F(g)] 7→ Qρ0 [F(g)]Q
−1
ρ1

.

Because our matrices are acting on row vectors the domain ρ0 goes on the left. The theo-
rem follows from making the right choice of Qρ.

We need some notation: we write s±i and t±i for the transposes of the holonomy of the
components of ρ0 and ρ1. Specifically, we have

t+i =

[
ai φi
0 1

]
t−i =

[
1 0
εi ai

]
where ai, εi, and φi are determined by the components χi of ρ1. We similarly write s±i for
the same matrices, but determined by the component shapes χ̃i of ρ0. Setting

pj(ρ1) := t
+
j · · · t

+
1 mj(ρ1) := t

−
j · · · t

−
1

pj(ρ0) := s
+
j · · · s

+
1 mj(ρ0) := s

−
j · · · s

−
1
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we have

ρ∨1 (yj) = pj(ρ1)
−1mj(ρ1)

ρ∨0 (yj) = pj(ρ0)
−1mj(ρ0)

and in particular

ρ∨1 (yi+1y
−1
i ) = pi+1(ρ1)

−1t−i+1pi(ρ1)

ρ∨0 (yiy
−1
i−1) = pi(ρ0)

−1s−i pi−1(ρ0)

so the non-identity block of the matrix of corollary 7.12 isI2 I2 0
0 −ρ∨1 (yiy

−1
i+1) 0

0 ρ∨1 (yiy
−1
i+1) I2

 =

I2 I2 0
0 −pi+1(ρ1)

−1t−i+1pi(ρ1) 0
0 pi(ρ0)

−1s−i pi−1(ρ0) I2

 .

The right change-of-basis matrices are

Qρ =

p1(ρ)
. . .

p1(ρ)


Because pj(ρ0) = pj(ρ1) for all j 6= i, we see the identity blocks of the matrix of corol-
lary 7.12 are unchanged, while the nontrivial block becomespi−1(ρ0) 0 0

0 pi(ρ0) 0
0 0 pi+1(ρ0)

I2 I2 0
0 −pi(ρ0)

−1s−i pi−1(ρ0) 0
0 pi+1(ρ1)

−1t−i+1pi(ρ1) I2

pi−1(ρ1)
−1 0 0

0 pi(ρ1)
−1 0

0 0 pi+1(ρ1)
−1


=

pi−1(ρ0) pi−1(ρ0) 0
0 −s−i pi−1(ρ0) 0
0 pi+1(ρ0)pi+1(ρ1)

−1t−i+1pi(ρ1) pi+1(ρ0)

pi−1(ρ1)
−1 0 0

0 pi(ρ1)
−1 0

0 0 pi+1(ρ1)
−1


=

pi−1(ρ0)pi−1(ρ1)
−1 pi−1(ρ0)pi(ρ1)

−1 0
0 −s−i pi−1(ρ0)pi(ρ1)

−1 0
0 pi+1(ρ0)pi+1(ρ1)

−1b−i+1pi(ρ1)pi(ρ1)
−1 pi+1(ρ0)pi+1(ρ1)

−1


=

pi−1(ρ1)pi−1(ρ1)
−1 pi−1(ρ1)pi−1(ρ1)

−1(t+i )
−1 0

0 −s−i pi−1(ρ0)pi−1(ρ0)
−1(t+i )

−1 0
0 pi+1(ρ1)pi+1(ρ1)

−1t−i+1pi(ρ1)pi(ρ1)
−1 pi+1(ρ1)pi+1(ρ1)

−1


=

I2 (t+i )
−1 0

0 −s−i (t
+
i )

−1 0
0 t−i+1 I2
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Again the cancellations follow from the fact that pj(a) = pj(b) for all j 6= i.
We have immediately that

(t+i )
−1 =

[
a−1
i −φia

−1
i

0 1

]
and t−i+1 =

[
1 0
εi+1 ai+1

]
so it remains only to check that −s−i (t

+
i )

−1 gives the correct 2× 2 matrix. Writing

s−i =

[
1 0
ε̃i ãi

]
and (t+i )

−1 =

[
a−1
i −φia

−1
i

0 1

]
we have

s−i (t
+
i )

−1 =

[
a−1
i −φia

−1
i

ε̃ia
−1
i ãi − ε̃iφia

−1
i

]
To simplify the bottom row, we need the identities

ε̃i = aiεi

κ̃i = κi+1 +φiεi+1

equivalently, the identities

S(E2 ⊗ 1) = K2 ⊗ E2

S(K2 ⊗ 1) = 1⊗K2 +K2F2 ⊗ E2

which can be derived from theorem 2.7. Then we see that

s−i (t
+
i )

−1 =

[
a−1
i −φia

−1
i

ε̃ia
−1
i ãi − ε̃iφia

−1
i

]
=

[
a−1
i −φia

−1
i

εi+1 ãi − εi+1φi

]
=

[
a−1
i −φia

−1
i

εi+1 ai+1

]
as claimed.

7.1.4 Torsions

The Reidemeister torsion is a well-known invariant of links defined using the twisted Bu-
rau represenations. It is closely related to the Alexander polynomial. The classical un-
twisted/abelian case is discussed in [Tur01], while twisted torsions (in the form of the
closely related twisted Alexander polynomials) are discussed in [Con18; Con17; FV09].

We sketch the definition. Let L be a SL2(C)-link (with representation ρ : π1(S
3 \ L) →

SL2(C)) obtained as the closure of a SL2(C)-colored braid β. In general, the complex
C∗(S

3 \ L; ρ) is acyclic: all the twisted homology groups vanish. However, we can still
obtain a nontrivial invariant via the torsion.

Acyclicity is equivalent to exactness of the sequence

· · ·Ci
∂i−→ Ci−1 · · ·
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in which case we get isomorphisms ker∂i = im∂i−1. If we choose a basis of each Ci,
we can use the above isomorphisms to change these bases. The alternating product of
determinants of the basis-change matrices gives an invariant of the acyclic complex C∗.
In general this torsion can depend on the choice of basis for each chain space, but for link
complements it does not.

Given a presentation of L as the closure of a braid β we get a presentation of πL =
〈y1, . . . ,yn|yi = yi ·β〉, which in turn gives a CW structure on S3 \ L; the 2-cells are ob-
tained by the relations yi = yi ·β. Link complements are aspherical, so we do not need to
add any higher-dimensional cells.

Definition 7.14. Let ρ : π1(S
3 \ L) → GL(V) be a representation such that the ρ-twisted

chain complex C∗(S3 \ L; ρ) is acyclic, in which case we say the GL(V)-link L is acyclic.
Then the ρ-twisted torsion τ(L, ρ) is the torsion of the ρ-twisted homology C∗(S3 \ L; ρ).
Usually when ρ has abelian image this is called the Reidemeister torsion. When the image
of ρ is nonabelian it is called the twisted torsion. We prefer to instead refer to these cases
as abelian and nonabelian torsions.

Theorem 7.15. Let (L, ρ) be a SL2(C)-link, and let β be a braid whose closure is L. View β :
(g1, . . . ,gn)→ (g1, . . .gn) as a morphism of the colored braid groupoid BraidSL2(C), and suppose
that

det(1 − gn · · ·g1) 6= 0,

that is, that the holonomy gn · · ·g1 of the path yn around all the punctures of Dn does not have 1
as an eigenvalue. Then

1. The twisted homology H∗(S3 \ L, ρ) is acyclic, so the torsion τ(L, ρ) is a complex number
defined up to ±det ρ = ±1,

2. we can compute the torsion as

τ(L, ρ) =
det(1 −B∂(β))

det(1 − gn · · ·g1)
=

det(1 −B(β))
det(1 − (gn · · ·g1)−1)

,

3. and if (L, ρ) is an SL2(C)-link such that det(1 − ρ(wi)) 6= 0 for every meridian wi, then
such a braid β always exists.

Proof. (1) and (2) are standard results in the theory of torsions. The idea is that we use the
basis corresponding to y1, . . . ,yn−1 for H1(Dn; ρ) and to yn for H0(Dn; ρ), and these bases
give nondegenerate matrix τ-chains [Tur01, Section 2.1] for the complex, so they compute
the torsion. More details can be found in [Con18, Theorem 3.15]; that paper discusses
twisted Alexander polynomials, which correspond with the torsion when the variables ti
are all 1. Finally, we can use B and locally-finite homology instead of B∂ and ordinary
homology to compute the torsion because these are dual.



122

The only novel claim (to our knowlege) is (3). The proof is due to Bertrand Patureau-
Mirand (via private communication). Represent (L, ρ) as the closure of a SL2(C)-braid β
on n strands which is an endomorphism of the color tuple (g1, . . . ,gn), and write hn =
gn · · ·g1 for the total holonomy. Consider the colored braids

β : (g1, · · · ,gn)→ (g1, · · · ,gn)
βσn : (g1, · · · ,gn,gn)→ (g1, · · · ,gn,gn)

βσnσn+1 : (g1, · · · ,gn,gn,gn)→ (g1, · · · ,gn,gn,gn)

Their closures are all (L, ρ), and they have total holonomies

hn, gnhn, g2
nhn

respectively. Because these matrices all lie in SL2(C), we have

tr(g2
nhn) + tr(hn) = tr(gn) tr(gnhn)

Recall that an element g ∈ SL2(C) has 1 as an eigenvalue if and only if trg = 2. Since
trgn 6= 2, at least one of tr(g2

nhn), tr(gnhn), or trhn has trace not equal to 2. We conclude
that at least one braid with closure (L, ρ) has nontrivial total holonomy.

Taking the closure of a braid relates the complex C∗(Dn; ρ) to C∗(S3 \ L; ρ) by adding
a term in dimension 2, so it is reasonable to expect a relationship between the torsion and
the Burau representation. As a special case, we have a formula for shaped braids.

Corollary 7.16. Let L be an admissible SL2(C)-link (that is, one without 1 as the eigenvalue of a
meridian) expressed as the closure of a shaped braid β : (χ1, . . . ,χn)→ (χ1, . . . ,χn), and let

hn = g+(χ1) · · ·g+(χn)g−(χn) · · ·g−(χ1)

be the holonomy around all the strands of the braid. Let λ±1 be the eigenvalues of hn.
Every SL2(C)-link can conjugated so that it admits presentation as the closure of a shaped

braid with λ 6= ±1, in which case the torsion of L can be computed as

det(1 −B(β))
2 − λ+ λ−1

where B is given by eq. (7.3).

Proof. By theorem 7.15, whenever L is admissible it can be expressed as the closure of a
SL2(C)-colored braid such that the total holonomy does not have 1 as an eigenvalue. Such
a braid may not be expressible in terms of shapes, but we can always conjugate it so that
it is.

The denominator can be computed as

det
(

1 − (gn · · ·g1)
−1
)
= det

(
1 −

[
λ−1 0

0 λ

])
= 2 − λ− λ−1.
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7.2 Schur-Weyl duality
In this section we prove theorem 7.18, which gives a Schur-Weyl duality between the (re-
duced twisted) Burau representation B and the algebra Oi = Oi(SL2(C)∗). To apply this
duality to the proof of theorem 7.1 we need to also give a mirrored version, lemma 7.28;.
We apply these theorems in the next section.

7.2.1 Motivation and statement

Before stating the theorem, we explain what we mean by “Schur-Weyl duality.” Consider
a Hopf algebra H and a simple H-module V with structure map π : H → EndC(V). The
algebra H acts on V⊗n via the map π⊗n ◦∆n : H→ H⊗n → EndC(V

⊗n).
We want to understand the decomposition of the tensor product module V⊗n into

simple factors. One way is to find a subalgebra B ⊆ H⊗n that commutes with ∆n(H), the
image ofH under the iterated coproduct. If B is large enough, then we can use the double
centralizer theorem to understand the decomposition of V⊗n. In this section, we address
this problem in the case H = Oi, with a few modifications.

To get a satisfactory answer, we want think of Oi as a superalgebra and find a subal-
gebra Cn (which turns out to be a Clifford algebra generated by a space Hn) that super-
commutes with ∆n(Oi). In addition, to match the shaped braid groupoid and its Burau
representation, we consider tensor products of the form

Oi/ kerχ1 ⊗ · · · ⊗Oi/ kerχn

where the functions χi : Z0 → C are the Z0-characters induced by the shapes. Since the
Burau representation is a braid group representation, we also describe the braiding onOi
and its action on our subalgebra.

Recall the outer S-matrix S = τR of Oξ; it is the algebra automorphism that the braid-
ings intertwine. We can think of S as giving a braiding directly on the algebra Oξ in the
following sense. Let χ1,χ2 be shapes, which we can think of as characters χ : Z0 → C.
Then by assigning χ to Oξ/ kerχ and a braid generator σ : (χ1,χ2)→ (χ2 ′ ,χ1 ′) to

S : (Oξ ⊗Oξ)/ ker(χ1 ⊗ χ2)→ (Oξ ⊗Oξ)/ ker(χ2 ′ ⊗ χ1 ′)

we get a model9 of the shape biquandle in the category of algebras and algebra homo-
morphisms. We are interested in the corresponding functor for braids.

Definition 7.17. The outer S-matrix S gives a functor from the shaped braid groupoid to
the category of algebras and algebra homomorphisms. We also denote this functor by S ,
10 and it is defined on

9Strictly speaking we would need to make the target category pivotal for this to match our earlier
definition of the model of a biquandle.

10In [McP20] we wrote A (for “algebra”) for the functor S and Ř for the automorphism S.
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objects by S(χ1, . . . ,χn) :=
⊗n
i=1Oξ/ kerχi = O⊗nξ / ker(χ1 ⊗ · · ·χn)

braid generators σi by acting by S on the corresponding tensor factors:

S(σi) := Si,i+1

The functor S extends to all braids in the obvious way.

In the future, we hope to find a Schur-Weyl duality between S and an appropriate
Burau representation for N > 2. For now, we limit ourselves to the case N = 2, ξ = i.

Theorem 7.18 (Schur-Weyl duality for the Burau representation). Let

β : (χ1, . . . ,χn)→ (χ ′1, . . . ,χ ′n)

be an admissible shaped braid on n strands, and let ρ : π1(Dn) → SL2(C) be the representation
given by the holonomy of the shapes (χ1, . . . ,χn), and similarly for ρ ′ and (χ ′1, . . . ,χ ′n). Then for
each n > 2 :

1. There exists a subspace 11 Hn ⊆ Oi[Ω−1]⊗n and a family of injective linear maps φρ such
that the diagram commutes:

H1(Dn; ρ)lf H1(Dn; ρ ′)lf

Hn/ ker(χ1 ⊗ · · · ⊗ χn) Hn/ ker(χ1 ⊗ · · · ⊗ χn)

φρ

B(β)

φρ ′

S(β)

2. The subspace Hn generates a Clifford algebra Cn inside O⊗ni which supercommutes with
∆(Oi), the image of Oi in O⊗ni under the coproduct.

The proof is a computation that is entirely striaghtforward once Hn is given and we
have the version of the Burau representation given in eq. (7.3). First, we need to discuss
superalgebras.

7.2.2 Superalgebras

Definition 7.19. A superalgebra is a Z/2-graded algebra. We call the degree 0 and 1 the
even and odd parts, respectively, and write |x| for the degree of x. We say that x and y
supercommute if

xy− (−1)|x||y|yx = 0.
11We need to invert the Casimir Ω for the computations to work out. The condition that our braid be

admissible (i.e. not have 1 as the eigenvalue of a meridian) is exactly the same as χi(Ω) acting invertibly for
all i.
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Example 7.20. Let V be a module over a commutative ring Z and η a symmetric Z-valued
bilinear form on V . The Clifford algebra generated by V is the quotient of the tensor algebra
on V by the relations

vw+wv = η(v,w)

for v,w ∈ V . By considering the image of V to be odd the Clifford algebra becomes a
superalgebra.

Write F̃ = iKF. We can regard Oi as the algebra generated by K±1,E, F̃with relations

{E,K} = {F̃,K} = 0, [E, F̃] = −2iKΩ,

where {A,B} := AB+BA is the anticommutator and

Ω = FE+ iK− iK−1.

Using these generators, we see that Oi is a superalgebra with grading

|E| = |F̃| = 0, |K| = |Ω| = 1.

The choice that E and iKF (instead of iKE and F) are even is for compatibility with the
outer S-matrix S. More generally, our choice of grading here is motivated by Schur-Weyl
duality, is rather ad hoc, and seems very special to the caseN = 2, q = i. At q a 4mth root
of unity we expect a Z/m-grading instead. 12

7.2.3 Proof of theorem 7.18

Definition 7.21. For j = 1, . . . ,n, consider the elements13

α1
j := K1 · · ·Kj−1EjΩ

−1
j

α2
j := K1 · · ·Kj−1F̃jΩ

−1
j

of Oi[Ω−1], where F̃ = iKF, and set

βνj = ανj −α
ν
j+1.

We write Hn ⊆ (Oi[Ω−1])⊗n for the (Z0[Ω
−2])⊗n-span of the βνj . Similarly, we write Cn

for the subalgebra generated by Hn.

Lemma 7.22. Cn is a Clifford algebra over the ring (Z0[Ω
−2])⊗n.

12Generalizing this relationship to N > 2 will probably involve more use of the Weyl algebra, especially
once we no longer have ξ2 = ξ−2.

13Here the upper index ranges over the space C2 where SL2(C) acts, and the lower index ranges over the
homology. Below we will see that βνj corresponds to the basis element vνj of theorem 7.13.
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Proof. The ανj satisfy anticommutation relations

{α1
j ,α

1
k} = 2δjkK2

1 · · ·K
2
j−1E

2
jΩ

−2
j

{α2
j ,α

2
k} = 2δjkK2

1 · · ·K
2
j−1K

2
j F

2
jΩ

−2
j

{α1
j ,α

2
k} = 2iδjkK2

1 · · ·K
2
j−1(1 −K−2

j )Ω−2
j .

In particular, their anticommutators lie in (Z0[Ω
−2])⊗n, so the same holds for anticommu-

tators of elements of Hn.

Lemma 7.23. The braiding automorphism S acts by

S(α1
1) = α

1
2

S(α1
2) = (K2)

2α1
1 + (1 − (K2)

2)α1
2 − (E2)

2(α2
1 −α

2
2)

S(α2
1) = (1 − (K1)

−2)α1
2 + (K1)

−2α2
2 + (F1)

2(α1
1 −α

1
2)

S(α2
2) = α

1
2

so that the matrix of Si,i+1 acting on Hn is given by

I2(i−2) ⊕



1 0 K−2
i −F2

i
0 1 0 1

−K−2
i F2

i

−E2
i+1 −K2

i+1
1 0 1 0
E2
i+1 K2

i+1 0 1

⊕ I2(n−1)−2(i+1) (7.4)

with the matrix action given by right multiplication on row vectors with respect to the basis
{β2

1,β1
1, · · · ,β2

n−1,β1
n−1} of Hn.

Proof. This is straightforward to verify.

We can now explicitly give the embeddings φρ and prove the duality.

Definition 7.24. Recall the basis vνj of H1(Dn; ρ)lf constructed in theorem 7.13. For each
nonsingular object14 ρ = (χ1, . . . ,χn) of BraidSh0

, define a linear map

φρ :

{
H1(Dn; ρ)lf → Hn/ kerχ1 ⊗ · · · ⊗ χn

vνj 7→ βνj
14A nonsingular object is just a tuple of shapes whose total holonomy does not have 1 as an eigenvalue.
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Proof of theorem 7.18. The proof of the first part (commutativity of the diagram) is essen-
tially done: the last ingredient is the observation that the image of the matrix in eq. (7.4)
under (χ ′1, . . . ,χ ′n) is exactly the matrix in eq. (7.3).

It remains to prove the second statement about supercommutativity. We showed in
lemma 7.22 that the image of Hn generates a Clifford algebra. We therefore think of the
elements βνj as being odd, so to check that they supercommute we must show that

{∆K,βνk} = 0 [∆E,βνk] = 0

{∆Ω,βνk} = 0 [∆F̃,βνk] = 0

where {A,B} := AB+ BA and [A,B] := AB− BA. To check this, we can use the anticom-
mutation relations

{α1
j ,α

1
k} = −2δjkK2

1 · · ·K
2
j−1E

2
jΩ

−2
j

{α2
j ,α

2
k} = −2δjkK2

1 · · ·K
2
j−1K

2
j F

2
jΩ

−2
j

{α1
j ,α

2
k} = −2iδjkK2

1 · · ·K
2
j−1(1 −K−2

j )Ω−2
j ,

the fact that βνj := ανj −α
ν
j+1, and the identity

Ω = iK− iK−1(1 + EF̃).

7.2.4 Mirrored Schur-Weyl duality

Recall that the functor T2 is construced by using Oi�O
cop
i -modules and a braiding inter-

twining S � S. We gave Schur-Weyl duality for S, so now we give a version for S.

Definition 7.25. For j = 1, . . . ,n, set

α1
j := EjΩ

−1
j Kj+1 · · ·Kn

α2
j := F̃jΩ

−1
j Kj+1 · · ·Kn

and

β
ν
j := ανj −α

ν
j+1.

We write Hn for the (Z0[Ω
−2])-span of the βνj and Cn for the algebra generated by Hn.

Lemma 7.26. Cn is the Clifford algebra on Hn and it supercommutes with the image of Oi under
the opposite coproduct:

{∆opK,βνk} = 0 [∆opE,βνk] = 0

[∆opF̃,βνk] = 0 {∆opΩ,βνk} = 0
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Proof. This follows from the relations

{α1
j ,α

1
k} = −2δjkE2

jΩ
−2
j K

2
j+1 · · ·K

2
n

{α2
j ,α

2
k} = −2δjkK2

j F
2
jΩ

−2
j K

2
j+1 · · ·K

2
n

{α1
j ,α

2
k} = −2iδjk(1 −K−2

j )Ω−2
j K

2
j+1 · · ·K

2
n

and then from the same argument as in the proof of theorem 7.18.

Lemma 7.27. The braiding automorphism S for Ocop
i acts by

S(α1
1) = α

1
2

S(α1
2) = (K2)

−2α1
1 + (1 − (K2)

−2)α1
2 + (K2)

−2(E2)
2(α2

1 −α
2
2)

S(α2
1) = ((K1)

2 − 1)α1
1 + (K1)

2α2
2 + (K1)

2(F1)
2(α1

1 −α
1
2)

S(α2
2) = α

2
1

so the matrix of Si,i+1 acting on Hn is

I2(i−2) ⊕



1 0 K2
i −K2

iF
2
i

0 1 0 1
−K2

i K2
iF

2
i

−K−2
i+1E

2
i+1 −K−2

i+1
1 0 1 0

K−2
i+1E

2
i+1 K−2

i+1 0 1

⊕ I2(n−1)−2(i+1) (7.5)

Recall the functor S of definition 7.17 constructed from the automorphism S. There is
a mirror version S is constructed in the same way from S, and we have shown that it also
satisfies a Schur-Weyl duality:

Lemma 7.28. Let β : ρ → ρ ′ be an admissible braid in SL2(C), and let ρ and ρ ′ correspond to
characters χi and χ ′i, respectively. Define linear maps φρ : H1(Dn; ρ) → Hn by

φρ(v
ν
j ) = β

ν
j .

Then the diagram commutes:

H1(Dn; ρ)lf H1(Dn; ρ)lf

Hn/ ker(χ−1
1 ⊗ · · · ⊗ χ

−1
n ) Hn/ ker((χ ′1)

−1 ⊗ · · · ⊗ (χ ′n)
−1)

B(β)

φρ φρ ′

S(β)

Proof. This is proved exactly the same way as theorem 7.18 but using the computations
above. A key observation is that the matrix (7.5) is sent to the matrix (7.3) under the map
(χ ′1)

−1 ⊗ · · · (χ ′n)−1 = (χ ′1 ◦ S)⊗ · · · ⊗ (χ ′n ◦ S), where S is the antipode.15

15The conflict of S for the antipode and S for the outer S-matrix is unfortunate.
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7.3 The torsion as a quantum invariant
We can now prove theorem 7.1.

7.3.1 Graded multiplicity spaces for T
Represent the link L of theorem 7.1 as the closure of a shaped braid β : (χ1, . . . ,χn) →
(χ1, . . . ,χn). To define T2(β), we need the characters χi to be extended, so pick square
roots µi of the eigenvalues λi.16 Then T2(β) is an endomorphism of

W(β) :=W(χ1,µ1)⊗ · · · ⊗W(χn,µn) (7.6)

and to compute the trace of T2(β) we want to decompose theOi�O
cop
i -module in eq. (7.6)

into simple direct summands. Write χ for the Z0-character of this module, which is the
product of the characters for the factors:

χ := χ1 · · ·χn = (χ1 ⊗ · · ·χn)∆n

and let λ be an eigenvalue for χ. Choose a square root µ of λ. By corollary 7.16, we may
assume that λ 6= 1.

By making this assumption, we can guarantee that the module T2(χ1, . . . ,χn) of eq. (7.6)
decomposes into a direct sum of simple Oi �O

cop
i -modules. In the case N = 2, these are

fairly easy to compute.

Lemma 7.29. Let χ1,χ2 be shapes with fractional eigenvalues µi. Thinking of the χi as Z0-
characters, their product is χ = (χ1 ⊗ χ2)∆. If χ is nonsingular (i.e. does not have 1 as an
eigenvalue), then

V(χ1,µ1)⊗ V(χ2,µ2) ∼= V(χ,µ)⊕ V(χ,−µ)

where V is the standard 2-dimensional representation of Oi. Similarly we have

V(χ1,µ1)
∗ ⊗op V(χ2,µ2)

∗ ∼= V(χ,µ)∗ ⊕ V(χ,−µ)∗.

Proof. We know that
X = V(χ1,µ1)⊗ V(χ2,µ2)

is a 4-dimensional module withZ0-character χ, so by theorem 5.12 it must be a direct sum
of modules of the form V(χ,±µ). We can then check the action of ∆Ω to see that there is
one summand for each sign.

The second relation follows similarly; there it is important that we took the opposite
coproduct for the mirrored Oi, so that the product

χ−1
1 ·

op χ−1
2 = χ−1

2 · χ
−1
1 = (χ1χ2)

−1 = χ−1

works out.
16Since there is only one eigenvalue for each connected component of L, we only need to pick one square

root for each component.
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As a consequence, tensor products like W(χ1,µ1)⊗W(χ2,µ2) will decompose into a
direct sum of modules of the form

Wε1ε2(χ,µ) := V(χ, (−1)ε1µ)� V(χ, (−1)ε2µ)

where ε1, ε2 ∈ Z/2. In our previous notation,W(χ,µ) =W00(χ,µ).
We can iterate the decomposition in lemma 7.29 to compute

n⊗
j=1

V
(
χj,µj

)
∼= V(χ,µ)⊕2n−2

⊕ V(χ,−µ)⊕2n−2

= (X0 ⊗C V(χ,µ))⊕ (X1 ⊗C V(χ,−µ))

where X0 and X1 are multiplicity spaces, vector spaces which index the repeated copies of
each simple direct summand. Similarly in the mirrored case we have

n⊗
j=1

V
(
χj,µj

)∗ ∼= (X0 ⊗C V(χ,µ)∗)⊕ (X1 ⊗C V(χ,−µ)∗)

were as before we think of the left-hand side as a product of Ocop
i -modules. We can then

understand the decomposition of the module (7.6) in terms of the multiplicity spaces Xε
and Xε.

Theorem 7.30. 1. The module (7.6) decomposes as

n⊗
i=1

W(χi,µi) ∼=
⊕

ε1,ε2∈Z/2

(Xε1 ⊗Xε2)⊗Wε1ε2(χ,µ).

2. The modified dimension ofWε1ε2(χ,µ) is

d(Wε1ε2(χ,µ)) = −
(−1)ε1+ε2

(µ− µ−1)2 =
(−1)ε1+ε2

2 − λ− λ−1 .

3. Let f ∈ EndOi�O
cop
i

(W(β)) be an endomorphism. Then there are linear maps gε1ε2 ∈
EndC(Xε1 ⊗Xε2) with

f =
⊕

ε1,ε2∈Z/2

gε1ε2 ⊗ idWε1ε2(χ,µ),

and the modified trace of f is given by

t(f) =
∑

ε1,ε2∈Z/2

(−1)ε1+ε2

(µ− µ−1)2 trgε1ε2 .
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Proof. The first statement is immediate from lemma 7.29, and the third follows from the
first two. To prove (2), first note that by theorem 4.23 we have

d(V(χ,µ)) =
(iµ) − (iµ)−1

(iµ)2 − (iµ)−2 =
1

iµ+ (iµ)−1 =
−i

µ− µ−1

so that by theorem A.19

d(Wε1ε2(χ,µ)) = −
(−1)ε1+ε2

(µ− µ−1) =
(−1)ε1+ε2

2 − λ− λ−1 .

Part (3) says that the modified trace of an endomorphism of W(β) (in particular the
trace of T2(β)) can be computed as a Z/2-graded trace on the multiplicity space.

Definition 7.31. A super vector space is a Z/2-graded vector space Y = Y0 ⊕ Y1. We call Y0
and Y1 the even and odd parts, respectively. A morphism f = f0⊕ f1 of super vector spaces
preserves the grading, and we define the supertrace by

str f := tr f0 − tr f1.

Example 7.32. If W is an ordinary vector space, then the exterior algebra
∧
W becomes a

super vector space by setting the image of W in
∧
W to be odd. A Clifford algebra on W

becomes a super vector space in the same way.

Definition 7.33. The multiplicity superspace ofW(β) is the super vector space

Y = Y((χ1,µ1), . . . , (χn,µn))

with even part

Y0 := X0 ⊗X0 ⊕X1 ⊗X1

and odd part

Y1 := X0 ⊗X1 ⊕X1 ⊗X0.

We see that the problem of computing the modified trace t(T2(β)) of a braid can be
reduced to understanding the action of T2(β) on the multiplicity superspace Y. To solve
this problem, we identify Y with the exterior algebra

∧
H1(Dn, ρ)lf of the twisted homol-

ogy, then apply theorem 7.18 and lemma 7.28 to compute the braid action on Y in terms
of the Burau representation B.
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7.3.2 Computing the multiplicity spaces

To compute the space Y we use a sort of tensor product of the algebras Hn and Hn.

Definition 7.34. Set 17

γνj := ανj � 1 +∆K�ανj

θνj := βνj � 1 +∆K�β
ν
j = γνj − γ

ν
j+1

Write Hn for the (Z0[Ω
−2]�Z0[Ω

−2])⊗n-span of the θνj and Cn for the algebra generated
by Hn. As before, Cn is a Clifford algebra.

Unfortunately, we still are not quite ready to use theorem 7.18 to compute the action
on the multiplicity superspaces. The problem is that Cn does not quite supercommute
with the superalgebra Oi ⊗O

cop
i , regardless of whether we take the ordinary or super

tensor product. Fortunately, this is not necessary.
According to part 3 of theorem 7.30, to compute the modified traces we do not need the

detailed multiplicity spacesXε1⊗Xε2 , only the spaces Y0 = X00⊕X11 and Y1 = X01⊕X10.18

The simpler problem of computing Y has a very nice answer in terms of Cn, given below.
After proving it we will be able to immediately apply Schur-Weyl duality.

Theorem 7.35. The Z/2-graded multiplicity space Y(ρ) of T (ρ) is isomorphic as a super vector
space to Cn. Explicitly, a basis is given by

(θ1
k1

1
· · · θ1

k1
s1
θ2
k2

1
· · · θ2

k2
s2
) ·w(ρ)

wherew(ρ) is the invariant vector of lemma 6.19, 1 < kν · · · < ksν 6 n− 1, and sν = 0, . . . ,n−
1 for ν = 1, 2. Furthermore, the actions of the θνk on w(ρ) anticommute, so we can identify Y(ρ)
as an exterior algebra with one generator for each θνk.

We give the proof in the remainder of this subsection; the theorem is a corollary of
lemma 7.38.

Because we only need to understand the space Y it suffices to consider a weaker sort
of supercommutativity. Let W be a Oi ⊗O

cop
i -module. It becomes a Oi-module via the

action (w ∈W)
K ·w = (K�K) ·w,
E ·w = (E�K+ 1� E) ·w,

F ·w = (F� 1 +K−1 � F) ·w,
17Since the operators ανj are sort of like E, it makes sense that we embed them using the E-like coproduct

X 7→ X� 1 +K�X.
18We can think of this as flattening the Z/2×Z/2-graded space ⊕ε1ε2Xε1ε2 to the Z/2-graded space

Y0 ⊕ Y1 along the homomorphism (x1, x2) 7→ x1 + x2.
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that is by embedding Oi into Oi ⊗O
cop
i via the coproduct. In each product V(χ)� V(χ)∗

the factors have characters χ and χ−1, so their product has character

ε = χ · χ−1, ε(K2) = 1, ε(E2) = ε(F2) = 0.

The character ε is the identity19 of the group SpecZ0, and we need to introduce some
modules with character ε.

Definition 7.36. P0 is the 4-dimensional Oi-module with character ε described by the
diagram

t 1

Et Ft −1

b 1

E F

F E

The vectors are eigenvectors of K, whose action is given by the numbers in the right
column. The blue arrows give the action of E, the red arros give the action of F, and the
absence of an arrow means the corresponding generator acts by 0.

There is a similar module P1 given by the same diagram, but with the action of K
negated. It still has character ε because K2 acts by 1.

We will use a family of modules generalizing P0 (there denoted P) to define modified
traces in appendix A.2.

Proposition 7.37. As a Oi-module,Wε1ε2(χ,µ) ∼= Pε1+ε2 .

Proof. It is not hard to see that the linear map f : P0 → V(χ,µ)⊗ V(χ,µ)∗ given by

f(t) = v̂0 ⊗ v̂0 − v̂1 ⊗ v̂1

f(b) = v̂0 ⊗ v̂0 + v̂1 ⊗ v̂1

extends to an isomorphism of Oi-modules. A similar computation works for P1.

Lemma 7.38. Let ρ = ((χ1,µ1) · · · , (χn,µn)) be a tuple of extended shapes with nonsingular
total holonomy. Write πρ for the structure map

πρ : (Oi �Oi)⊗n → EndC(T (ρ))

Then
19We can obtain ε by restricting the counit of Oi to Z0. While ε(Ω) = 0, there are modules like P0 with

Z0 character on whichΩ does not act by zero butΩ2 does.
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1. πρ(Cn) is an exterior algebra on 2(n− 1) generators,

2. Cn acts faithfully on T (ρ), and

3. thinking of T (ρ) as a Oi-module, πρ(Cn) super-commutes with Oi.

Proof. (1) We show that the anticommutators

πρ({γ
µ
j ,γνk})

vanish, so that the image is an exterior algebra on the 2n independent generators πρ(γνk),
k = 1, . . . ,n, ν = 1, 2. Since Cn is generated by the θνk = γνk − γ

ν
k+1 we get the desired

result.
To start, use {ανk,∆K} = 0 to compute that

{γ
µ
j ,γνk} = {α

µ
j ,ανk}� 1 +∆K2 � {α

µ
j ,ανk}

By using the anticommutator computations of lemmas 7.22 and 7.26 we can show directly
that these vanish. For example, the above expression vanishes unless j = k. We give the
case µ = ν = 1 in detail; the remaining others follow similarly.

Observe that

{α1
j ,α

1
j }� 1 +∆K2 � {α1

j ,α
1
j }

= −2K2
1 · · ·K

2
j−1E

2
jΩ

−2
j � 1 − 2K1 · · ·K2

n � E
2
jΩ

−2
j K

2
j+1 · · ·K

2
n

Write χj(K2) = κj, χj(E2) = εj, χj(Ω2) = ω2
j , so that

πρ(K
2
j � 1) = κj πρ(1�K2

j ) = κ
−1
j

πρ(E
2
j � 1) = εj πρ(1� E2

j ) = −εjκ
−1
j

πρ(Ω
2
j � 1) = ω2

j πρ(1�Ω2
j ) = ω

2
j

using the fact that the representations in the second half of the � product (corresponding
to J ) use the inverse characters. Hence

πρ(2K2
1 · · ·K

2
j−1E

2
jΩ

−2
j � 1 + 2K1 · · ·K2

n � E
2
jΩ

−2
j K

2
j+1 · · ·K

2
n)

=
2
ω2
j

(
κ1 · · ·κj−1εj + κ1 · · ·κn(−εjκ−1

j )κ−1
j+1 · · ·κ

−1
n

)
= 0

as claimed.
(2) It is enough to show that the operators πρ(γνk) all act independently. Since up to a

scalar γ1
k,γ2

k only act on the kth ⊗-factor of the product

T (ρ) =
n⊗
j=1

V
(
χj,µj

)
� V

(
χ̂j,µj

)∗
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it is enough to check that γ1
k and γ2

k act independently. It is not hard to compute explicitly
that the vectors

πρ(γ
1
k) ·w(ρ) and πρ(γ2

k) ·w(ρ)

are independent, where w(ρ) is the invariant vector of lemma 6.19, and (2) follows.
(3) We can check directly that

[∆E�∆opK+ 1�∆opE, θνk]

= [∆E�∆opK+ 1�∆opE,βνk � 1 +∆K�β
ν
k]

= [∆E,βνk]� 1 +∆K� [∆opE,βνk]
= 0

The other generators K, F̃ follow similarly.

Proof of theorem 7.35. Apply a (super version) of the double centralizer theorem. By (3) of
lemma 7.38, πρ induces an inclusion Cn → Y(ρ), and by (2) this inclusion is injective. Both
spaces have dimension 22n−2 over C, so it is an isomorphism.

7.3.3 Schur-Weyl duality for modules and the proof

By using theorems 7.18 and 7.35 we can compute the action of T2(β) on the multiplicity
space Y(ρ) ofW(ρ) and prove theorem 7.1.

Theorem 7.39 (Schur-Weyl duality for modules). Let

β : (χ1, . . . ,χn)→ (χ ′1, . . . ,χ ′n)

be an admissible shaped braid on n strands, and let ρ : π1(Dn) → SL2(C) be the representation
given by the holonomy of the shapes (χ1, . . . ,χn), and similarly for ρ ′ and (χ ′1, . . . ,χ ′n). Write
Φρ for the linear map sending the basis vector vνj of H1(Dn; ρ) to the element θνj ·w(ρ), as in
theorem 7.35.

1. Φρ induces an isomorphism of super vector spaces
∧
Φρ :

∧
H1(Dn; ρ) → Y(ρ)

2. such the diagram commutes

∧
H1(Dn; ρ)lf ∧

H1(Dn; ρ ′)lf

Y(ρ) Y(ρ)

∧
Φρ

∧
B(β)

∧
Φρ ′

T2(β)
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Proof. (1) is an immediate corollary of theorem 7.35. To prove (2) it is enough to check
commutativity on generating vectors vνj and their images θνj ·w(ρ) under Φρ. Explicitly,
for a braid generator σi we have

T2(σi)(θ
ν
j ·w(ρ)) = (Si,i+1 � Si,i+1)(θ

ν
j ) · T2(σi)(w(ρ))

= (Si,i+1 � Si,i+1)(θ
ν
j ) ·w(ρ ′).

Since

(Si,i+1 � Si,i+1)(θ
ν
j ) = Si,i+1(β

ν
j )� Si,i+1(1) + Si,i+1(∆K)� Si,i+1(β

ν
k)

= Si,i+1(β
ν
j )� 1 +∆K� Si,i+1(β

ν
k)

the result follows from theorem 7.18 and lemma 7.28.

Once we recall a fact about exterior powers we can prove T2 computes the torsion.

Lemma 7.40. LetW be a vector space of dimensionm and A :W →W a linear map. Write
∧
A

for the induced map
∧
W →

∧
W on the exterior algebra ofW. Then

str
(∧

A
)
= (−1)m det(1 −A).

Proof. Recall that

det(λ−A) =
m∑
k=0

λm−k(−1)m−k tr

(
k∧
A

)
so in particular

det(1 −A) = (−1)m
m∑
k=0

(−1)k tr

(
k∧
A

)
= (−1)m str

(∧
A
)

.

Proof of theorem 7.1. Let L be an extended admissible SL2(C)-link. By corollary 7.16 we can
represent L as the closure of an extended shaped braid β : ρ → ρ with admissible total
holonomy. We want to compute

T2(L) := tT2(β).

Choose a fractional eigenvalue µ for the total holonomy of β. By theorem 7.39 the inter-
twiner T (β) = T2(β) factors through the multiplicity superspace Y(ρ) as

∧
B(β), so by

theorem 7.30 and lemma 7.40 we have

tT (β) =
str
∧
B(β)

(µ− µ−1)2 =
det(1 −B(β))

2 − λ+ λ−1 .

By corollary 7.16 this is exactly the torsion τ(L, ρ) of L.
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Appendix A

Modified traces

Overview
We apply the methods of Geer, Kujawa, and Patureau-Mirand [GKP18] to construct the
modified traces used in chapter 4. The approach of [GKP18] is rather abstract, and few
concrete examples have appeared in the literature,1 so this appendix may also be help-
ful as a guide to applying their techniques to quantum topology. In particular, in ap-
pendix A.2 we sketch the relationship between the abstract methods of appendix A.1 and
[GKP18] and the more concrete Hopf link methods of [GPT09; GP18].

In this appendix we frequently state results for a pivotal C-linear category C , by which
mean a pivotal category whose Hom-spaces are vector spaces over C and whose tensor
product is C-bilinear. Oξ−Mod and more generally the category of modules of a pivotal
Hopf C-algebra are examples of such categories.

More specific results of [GKP18] place extra conditions on C (local finiteness) and on
certain distinguished objects (absolute decomposability, end-nilpotence, etc.) which are
satisfied for finite-dimensional representations of an algebra over an algebraically closed
field, perhaps with some diagonalizability assumptions. All our examples satisfy these
hypotheses.

A.1 Construction of modified traces
Definition A.1. Let C be a pivotal C-category. A right (left) ideal I is a full subcategory of
C that is:

1. closed under right (left) tensor products: If V is an object of I and W is any object of C ,
then V ⊗W (W ⊗ V) is an object of I.

1One discussion is [McP20, Appendix B], which is what this section of the thesis is based on.
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2. closed under retracts: If V is an object of I, W is any object of C , and there are mor-
phisms f,gwith

W V W
f

idW

g

commuting, thenW is an object of I.

An ideal of C is a full subcategory which is both a left and right ideal.

Definition A.2. Let C be a category. We say an object P of C is projective if for any epimor-
phism p : X → Y and any map f : P → Y, there is a lift g : P → X such that the diagram
commutes:

X

P Y

p
g

f

We say I is injective if I is a projective object in C op, i.e. if I satisfies the opposite of the
above diagram. We write Proj(C ) for the class of projective objects of C .

Proposition A.3. Let C be a pivotal category. Then the projective and injective objects coincide
and Proj(C ) is an ideal.

Proof. See [GPV13, Lemma 17].

Let C be a pivotal C-category with tensor unit 1. Consider the projective cover P → 1,2

and assume that P is finite-dimensional. Then P is indecomposable and projective and the
space HomC (P, 1) is 1-dimensional over C. Because C is pivotal, P is also injective and
HomC (1,P) is similarly 1-dimensional.

The choice of P and a basis of each space are the data necessary to define a modified
trace on Proj(C ), which we call a trace tuple. Our definition is a special case ([GKP18,
§5.3]) of the more general trace tuples of [GKP18], setting α = β = 1. These more general
traces can be defined for larger ideals than Proj(C ).

Definition A.4. Let C be a pivotal C-category with tensor unit 1, and let P → 1 be a
finite-dimensional cover. (P, ι,π) is a trace tuple if P is indecomposable and projective, ι is
a basis of HomC (1,P), and π is a basis of HomC (P, 1).

Example A.5. A finite-dimensional Oξ-module W is a weight module if Z0 acts diagonal-
izably on W. Consider the case N = 2, ξ = i. Let W be the category of finite-dimensional
Oi-weight modules, and let P0 be the module defined in definition 7.36, which can be
obtained as V ⊗V∗, where V is any irreducibleN-dimensional modules of definition 5.10.
As discussed in appendix A.2, P0 is the projective cover of the tensor unit with covering
map ev↓V : P0 ∼= V ⊗ V∗ → 1 and (P0, coev↑V , ev↓V) is a trace tuple for W .

2If C is semisimple, then 1 is projective and we recover the usual trace in a pivotal category.
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Because P is indecomposable, projective, and finite-dimensional, any endomorphism
f ∈ EndC (P) decomposes f = a+n as an automorphism plus a nilpotent part. Because C

is algebraically closed, a is a scalar, and we write 〈f〉 = a ∈ C.
If g ∈ HomC (1,P),h ∈ HomC (P, 1) are any morphisms, we can similarly define

〈g〉ι, 〈h〉π ∈ C by
g = 〈g〉ιι, h = 〈h〉ππ

Lemma A.6. Let (P, ι,π) be a trace tuple. Then for any f ∈ EndC (P),

1. πf = 〈f〉ππ

2. fι = 〈f〉ιι

3. 〈f〉 = 〈fι〉ι = 〈πf〉π

Proof. We have f = 〈f〉 idP +n for some nilpotent n. The first statement follows from
πn = 0. Since π is a basis for HomC (P, 1), we have πn = λπ for some λ ∈ C. But nk = 0
for some k, so λk = 0 ⇒ λ = 0 because C is an integral domain. The second statement
follows from a similar argument, and the third from the first two.

Lemma A.7. Let (P, ι,π) be a trace tuple for C and V a projective object. Then there are maps
σV : P⊗ V → V , τV : V → P⊗ V such that the diagrams commute:

P⊗ V

V V ∼= 1⊗ V

σV

ι⊗idV

ι⊗idV

P⊗ V

V V ∼= 1⊗ V

π⊗idV
τV

idV

Proof. V is projective and π⊗ idV : P ⊗ V → 1⊗ V → V is an epimorphism, so a lift τV
exits. The dual argument works for σV .

Theorem A.8. Let (P, ι,π) be a trace tuple for C and choose maps as in lemma A.7. Then there
exits a right modified trace on Proj(C ) defined for f ∈ HomC (V ,V) by

tV(f) = 〈trrV(τVf)〉ι = 〈trrV(σVf)〉π

This is a special case of [GKP18, Theorem 4.4].

Proof. In the diagrams in this proof, we identify

EndC (P)/J ∼= HomC (1,P) ∼= HomC (P, 1) ∼= C

via the maps 〈−〉, 〈−〉ι, and 〈−〉π. Here J is the ideal of nilpotent elements of EndC (P), so
when we draw a diagram representing a morphism P → P we really mean its image in
this quotient.
τV and σV exist by lemma A.7, but are not unique. We show that the trace does not

depend on the choice of either. In graphical notation, trrV(τVf) can be written as
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f �V
P

Since σV(ι⊗ idV) = idV , we can rewrite this morphism as

f �V
P

�V

�

where ι has no left-hand arrows because it is a map 1 → P. By Lemma A.6, the above
diagram is equal to

f �V
P

�V

�

But since (π⊗ idV)τV = idV , this is equal to trrV(fσV):

f
P

�V

It follows that
〈trrV(τVf)〉ι = 〈trrV(σVf)〉π

as claimed.
To check the compatibility with the partial trace, let f : V ⊗W → V ⊗W. Choose τV

with (π⊗ idV)τV = idV , and notice that we can set τV⊗W = τV ⊗ idW . Then tV⊗W(f) is
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f
�V

P

W

V

which is clearly equal to tV(trrW(f)).
Finally, we show cyclicity. Suppose f : V →W and g :W → V . Then tV(gf) is equal to

f�V g f�V
g=

by the cyclicity of the usual trace. But by inserting (π⊗ idW)τW = idW and then applying
lemma A.6 as before, we can rewrite this as

f�V
g

�W

�

f�V
g

�W

�

=

By absorbing ι into σV , we see that this is equal to

fg �W
= tW(fg).

It can be shown that the modified trace on Proj(C ) is essentially unique; choosing
different ι or π will simply change t by an overall scalar. The paper [GKP18] proves this
and a number of other useful results about these modified traces, such as non-degeneracy
and compatibility with the left-hand version of the construction.
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Concretely, if t ′ is defined using the tuple (P,αι,βπ) and t using (P, ι,π), then

t ′ =
1
αβ

t.

A.2 Application to the quantum function algebra
Definition A.9. We say a finite-dimensional Oξ-module W is a weight module if the cen-
tral subalgebra Z0 acts diagonalizably on W. We write W for the category3 of finite-
dimensional weight modules, and W for weight modules of Ocop

ξ .

The image of the functors J and J lie in W and W , specifically in their ideals of
projective objects. Our goal in this section is to construct a modified trace on W (from
which W is an easy corollary) giving the dimensions of theorem 4.23. We can think of this
as an expansion of Section 5.4 of [GKP18] that makes the connection to the open Hopf
links of [GPT09; GP13b; GP18] explicit.

A.2.1 Constructing projective lifts

We begin by explaining how to construct the lifts τV of idV for objects of W by using the
braiding of W . By picking well-behaved objects whenever possible, we can express the
braiding using the  h-adic R-matrix and make explicit computations.

Definition A.10. Recall the integer N > 2 and 2Nth root of unity ξ. The Jones-Kashaev
module VN−1 is generated by a highest-weight vector v with

K · v = ξN−1v = −ξ−1v and E · v = 0.

It is N-dimensional, with basis {v,Ev, . . . ,EN−1v}. We can alternatively describe VN−1 as
the standardWξ-module V

(
ξN−1,β, ξN−1) for any β ∈ C×.

The module VN−1 has Z0-character ηN(KN) = (−1)N,ηN(EN) = ηN(F
N) = 0, which is

(−1)N+1 times the identity element of SpecZ0 = SL2(C)∗. As mentioned in section 5.1.2,
the quantum invariant corresponding to the module VN−1 is Kashaev’s quantum dilog-
arithm [Kas95a], equivalently [MM01] the Nth colored Jones polynomial at a Nth root
of unity. Alternately, VN−1 is one of the Steinberg modules4 for Oξ defined in [Sut94,
Corollary 3.9]. In particular, it is projective, simple, and has VN−1

∼= V∗N−1.
Because V∗N−1 ⊗ VN−1 is a projective module with a map

ev↓VN−1
: V∗N−1 ⊗ VN−1 → 1

3In [McP20] we wrote C for W .
4Specifically, it is St when N is odd, so that N+ 1 is even, and similarly St when N is even.
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• ξ2(N−1)

...

• ξ2

t b 1

• ξ−2

...

• ξ−2(N−1)

Figure A.1: The weight spaces of the cover P → 1. Here F acts by red arrows, E by blue
arrows, and K by the scalars in the right column.

it contains the projective cover P → 1 of the tensor unit, and similarly coev↓VN−1
contains

the injective hull of 1. More formally:

Proposition A.11. The projective cover P → 1 is a direct summand of V∗N−1 ⊗ VN−1 and the
restrictions

π := ev↓VN−1

∣∣∣
P
: P → 1

ι := coev↓VN−1
: 1→ P ⊆ V∗N−1 ⊗ VN−1

give a trace tuple for W .

Proof. By [Sut94, Theorem 3.7] the module P (in Suter’s notation, P0) is 2N-dimensional
and can be described by the diagram in fig. A.1. Here the red upward arrows give the
action of F, the blue downward arrows give the action of E, and the right column describes
the action of K. When an arrow is missing the corresponding generator acts by 0.

From the diagram, we see that the map 1 7→ b gives an inclusion 1→ P, and similarly
the quotient sending all vectors other than t to zero gives a cover P → 1. It follows that
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V

VN−1

Figure A.2: The squared braiding with the Jones-Kashaev module.

VN−1

V

VN−1

Figure A.3: The lifting map τ̃V : V → V∗N−1 ⊗ VN−1 ⊗ V . The unlabeled semicircle is the
inclusion ι : 1→ P.

P is a submodule of V∗N−1 ⊗ VN−1, and as discussed in [Sut94, Section 4] (in particular, by
Fact 1) it is a direct summand.

Remark A.12. The trace tuple corresponding to the modified dimensions in theorem 4.23
is a slightly different normalization, using N(−1)N+1π instead of π.

The point of expressing P this way is that VN−1 behaves well with respect to the braid-
ing. If we identify the Z0-character of VN−1 with the shape5

η = ((−1)N+1, 1, (−1)N+1),

then for any other shape χ = (a,b, λ) the braiding acts as

B(η,χ) =
(
(a, (−1)N+1b, λ), ((−1)N+1, (−1)N+1, (−1)N+1)

)
B(B(η,χ)) = (η,χ).

In particular, the squared braiding σVN−1,VσV ,VN−1 shown in fig. A.2 is an endomorphism
of VN−1⊗V for any object V of W . We can use these endomorphisms to construct the lifts
required to define the modified trace.

Specifically, we consider the map τ̃V defined in fig. A.3 for any object V of W . (There
is a similar map σ̃V , but we only need one of them to compute the modified traces.) This
is not quite the map τV of lemma A.7, for two reasons. The first is that it has codomain
V∗N−1 ⊗ VN−1 ⊗ V , not P ⊗ V . However, because the braiding is a Oξ-module morphism,
the image of τ̃V lies in P⊗ V , so we can think of τ̃V as having codomain P⊗ V , although
this is awkward to indicate diagrammatically.

The more significant problem is that τV might be a lift of some scalar multiple of idV ,
instead of idV . Abstractly, this is not a problem, but it is if we want to be able to explicitly
compute our modified traces. In the next section, we show how to understand this scalar
in terms of open Hopf links.

5Here we choose 1 as the value of b for simplicity: any nonzero complex number would work.
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A.2.2 Modified dimensions of weight modules

Because our functors J and T assign strands of a diagram to simple modules, to com-
pute their modified diagram invariants (defined theorem A.20) it suffices to compute the
modified dimensions

d(V(χ)) = t idV(χ)
where V(χ) is the simple Oξ-module corresponding to the extended shape χ. In this
section, we prove the formula6

d(V(χ)) =

{
ξµ−(ξµ)−1

(ξµ)N−(ξµ)−N
µ not a root of unity

1 µ a root of unity
(A.1)

given in theorem 4.23, where µ = χ(z) is the fractional eigenvalue of χ.

Definition A.13. Let α ∈ C. If α ∈ C\Z∪ (N−1)Z, then we say Vα is admissible. We write
Vα for the standard module V(ξα, 1, ξα) and call Vα a semi-cyclic highest-weight module.7 Vα
is a N-dimensional Oξ-module Vα generated by a highest-weight vector wα with

K ·wα = ξαwα and E ·wα = 0.

When α = N− 1 we recover the Jones-Kashaev module VN−1.

In our previous notation8 the highest-weight vector wα is v̂0. The isomorphism class
of Vα depends only on the value of α modulo 2NZ, and V∗α ∼= V2(N−1)−α. In general F
does not act nilpotently on Vα, although E does, which is why we call them semi-cyclic
modules.

Because E acts nilpotently on Vα it is straightforward to compute the formula (A.1)
for highest-weight modules; we obtain the general case by another application of the
quantum coadjoint action used in the proof of theorem 5.12.

Proposition A.14. For any admissible weights α and β the action of the universal R-matrix

R = HH expq(E⊗ F) = q
H⊗H/2

∞∑
n=0

qn(n−1)/2

{n}!
(E⊗ F)n

on Vα ⊗ Vβ is well-defined, and the action of τR defines a braiding

Sα,β : Vα ⊗ Vβ → Vβ ⊗ Vα.

Here
{n} = qn − q−n and {n}! = {n}{n− 1} · · · {1}.

6This formula for the modified dimensions appears as early as [ADO92, Proposition 5.3].
7Because Z0 acts by scalars on Vα, highest-weight modules are weight modules in the sense of defi-

nition A.9. However, for general cyclic modules V(χ) it doesn’t make sense to consider a highest weight
because the action of E has no kernel.

8We have a conflict between the multiplicative notation K ·wα = αwα and the additive notation K ·
wα = ξαwα, but we only use the second one here.
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Vα

Vβ

Figure A.4: The open Hopf linkH(α,β).

Proof. The formal power series R is the usual universal R-matrix for quantum sl2 as in
[Kas95b, Theorem XVII.4.2] and [Oht02] using our normalization of Oξ. We discuss the
factors HH and expq(E⊗ F) separately.

Because we are acting on highest-weight modules, we have

HH ·(wα ⊗wβ) = ξαβ/2

and more generally

HH ·(Eiwα ⊗ Ejwβ) = ξ(α−2i)(β−2j)/2.

As discussed in chapter 2 the q-exponential expq can fail to converge when q = ξ is a root
of unity. However, because EN acts by 0 on any highest-weight module, we can replace it
with the truncation

exp<Nq (E⊗ F) =
N−1∑
n=0

qn(n−1)/2

{n}!
(E⊗ F)n.

The formal power series computations that give R∆ = ∆opR and the Yang-Baxter relation
still work when we replace expq with exp<Nq , so we still get a braiding. For details, see
[Oht02].

We have previously emphasized that braidings for q = ξ can fail to preserve isomor-
phism classes, but at a crossing between weight modules this is not the case and the action
of R gives a map

Vα ⊗ Vβ → Vα ⊗ Vβ
as required. Because the braidings Sα,β are defined by the action of a universal R-matrix
they satisfy the RIII relation exactly.

To match the braidings constructed in chapter 5, we should strictly speaking normal-
ize Sα,β by detSα,β = 1. However, we will see below that this does not affect the compu-
tation of the modified dimensions.

Definition A.15. For two weights α,β, the associated open Hopf link H(α,β) is given by
fig. A.4. The crossings are defined using the braiding Sα,β of proposition A.14, or in
algebraic notation, H(α,β) = Sα,βSβ,α. Because Vβ is simple, we can also consider the
scalar H(α,β) := 〈H(α,β)〉, i.e. byH(α,β) = H(α,β) idVβ .



147

Proposition A.16. The modified dimension of Vα is given by

d(Vα) =
H(α,N− 1)
H(N− 1,α)

and does not depend the scalar normalization of Sα,β.

Proof. The independence is an immediate consequence of the claimed equation because
the numerator and denominator both contain Sα,β and Sβ,α. It remains to prove the first
claim. Recall our construction of the map τ̃ = τ̃Vα : Vα → P ⊗ Vα by using the braiding
with VN−1. To obtain a lift of the identity map of Vα and not some multiple of it, we must
to consider the map τ̃(π⊗ idVα) : Vα → Vα, or diagrammatically

=

VN−1

Vα

= H(N− 1,α).

Here the left semicircle represents ι : 1 → P and the right semicircle π : P → 1; because P
is a proper submodule of V∗N−1⊗VN−1 this is a slight abuse of notation. However, because
ι and π are defined in terms of the coevaluation and evaluation, we see that τ̃(π⊗ idVα) is
simply the open Hopf linkH(N− 1,α), as shown above.9

We conclude that
τVα :=

τ̃

H(N− 1,α)
: Vα → P⊗ Vα

is the required lift of idVα , so that

d(Vα) =
〈
trrVα(τVα)

〉
ι
=

〈
trrVα(τ̃)

〉
ι

H(N− 1,α)
.

Because the right partial trace of τ̃ is given by

Vα

VN−1

we similarly have 〈
trrVα(τ̃)

〉
ι
= H(α,N− 1). .

9Strictly speaking this is false: the diagram above has the opposite orientation on the strand colored by
VN−1 as in fig. A.4, so we should replace VN−1 with V∗N−1. However, these are isomorphic, so it doesn’t
affect the argument.
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Lemma A.17. H(α,N− 1) = N and

H(N− 1,α) = (−1)N+1ξ
N(α+1) − ξ−N(α+1)

ξ(α+1) − ξ−(α+1)

= (−1)N+1
[
ξ(N−1)(α+1) + ξ(N−3)(α+1) + · · ·+ ξ−(N−1)(α+1)

]
Proof. By computing the action of R on highest-weight vectors we can mostly ignore the
exp<Nq factor. As a first example, we computeH(N− 1,α). Let vN−1 be the highest weight
vector of VN−1; because VN−1 is simple we have

H(N− 1,α)(vN−1) = H(N− 1,α)vN−1.

Consider the weight basis wα−2k = E
kwα for k ∈ {0, . . . ,N− 1} of Vα and write wα−2k for

the dual basis. Since E ·wN−1 = 0, for any w ∈ Vα we have

R · (wN−1 ⊗wα−2k) = HH ·(wN−1 ⊗wα−2k) = ξ
(N−1)(α−2k)/2wN−1 ⊗wα−2k

so the open Hopf link (writing function composition left-to-right)

H(α,N− 1) = (idVN−1 ⊗ coev↑Vα)(SN−1,α ⊗ idV∗α)(Sα,N−1 ⊗ idV∗α)(idVN−1 ⊗ ev↓Vα)

acts on wN−1 by

wN−1 7→
N−1∑
k=0

wN−1 ⊗wα−2k ⊗wα−2k

7→
N−1∑
k=0

ξ(N−1)(α−2k)/2wα−2k ⊗wN−1 ⊗wα−2k

7→
N−1∑
k=0

ξ(N−1)(α−2k)wN−1 ⊗wα−2k ⊗wα−2k + (lower-weight terms)

7→
N−1∑
k=0

ξ(N−1)(α−2k)wN−1ξ
(1−N)(α−2k)wα−2k(wα−2k) + 0

= wN−1

N−1∑
k=0

1 = NwN−1

and H(α,N− 1) = N as claimed. The key part of this computation is the third step: by
“lower-weight terms” we mean a sum of vectors of the form

FlwN−1 ⊗ Elwα−2k ⊗wα−2k, 0 < l < N.
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The first tensor factor has a weight strictly lower than wN−1, so terms of this form can
never contribute10 to the scalar by whichH(α,N− 1) acts on wN−1.

By a parallel argument, we see that

H(N− 1,α) =
N−1∑
k=0

ξα(N−1−2k)ξ(1−N)(N−1−2k)

=

N−1∑
k=0

ξ(α+1−N)(N−1−2k)

= ξ(α+1−N)(N−1) + ξ(α+1−N)(N−3) + · · ·+ ξ−(α+1−N)(N−1)

=
ξN(α+1−N) − ξ−N(α+1−N)

ξ(α+1−N) − ξ−(α+1−N)

= (−1)N+1ξ
N(α+1) − ξ−N(α+1)

ξ(α+1) − ξ−(α+1)

We can now prove theorem 4.23. By proposition A.16 and the previous lemma, the
modified dimension of the module Vα associated to the trace tuple (P, ι,π) is

H(α,N− 1)
H(N− 1,α)

= N(−1)N+1 ξ(α+1) − ξ−(α+1)

ξN(α+1) − ξ−N(α+1) . =
ξµ− (ξµ)−1

(ξµ)N − (ξµ)−N

since µ = ξα. This formula differs from theorem 4.23 and eq. (A.1) by a factor ofN(−1)N+1,
so to obtain those we use the trace tuple (P, ι,N(−1)N+1) as in remark A.12.

We have only proved this formula for modules of the form Vα = V(ξα, 1, ξα), so it
remains to prove that it works for the general case

V = V
(
ξα
′
,β, ξα

)
with α ′ not necessarily equal to α. One method is to again use the quantum coadjoint
action, as in the proof of theorem 5.13. This shows that the modified dimension of V(χ,µ)
depends only on the action of the Casimir Ω, hence on the value of µ = ξα. More details
of this argument are given in [GP18, proof of Lemma 21].

Another method is to use diagrammatic arguments as in section 4.4 to show that the
modified dimension function d(V) must be gauge invariant. It is not hard to show that the
open Hopf links11 satisfy H(V ,VN−1) = N idV for any module V , so the key computation
is understandingH(VN−1,V). By manipulations like

10The reader who is unsatisfied with this justification can work out the details: when we apply the
coevaluation map these vectors will contribute terms like

∑N−1
n=0 ξ

2ln = 0 to the final answer.
11Here we modify the notation from before, writingH(Vα,Vβ) forH(α,β).
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↔

VN−1 VN−1

V

VαV

V

we can show that H(V ,VN−1) depends only on the gauge class of V , which reduces the
computation of the modified dimensions to the case of semi-cyclic highest-weight mod-
ules. (Here the blue strand is colored by some module chosen to gauge-transform V to a
highest-weight module.)

A.3 Traces for external tensor products
Using the formalism of appendix A.1, it is not hard to compute modified traces for Oξ ⊗
Ocop
ξ -modules.

Definition A.18. A Oξ ⊗O
cop
ξ -module X is a weight module if Z0 ⊗Z0 acts diagonalizably

on X. We write D for the category12 of weight modules that are locally homogeneous in the
sense that for any Z ∈ Z0,

Z� 1 ·w = 1� S(Z) ·w.

In particular, the modulesWε1ε2(χ) are objects of D and the image of T lies in Proj(D).
We do not explicitly use the local homogeneity condition, but it is included so that D
becomes a SL2(C)∗-graded category.

Theorem A.19. Let Proj(D) be the subcategory of projectiveOξ⊗O
cop
ξ -modules in D . Proj(D)

admits a nontrivial modified trace which is compatible with the trace for W in the following sense:
let X be a projective object of W and X a projective object of W . Then for any endomorphisms
f : V → V , g : V ⊗ V ,

t(f� g) = t(f)t(g)

with f� g the obvious endomorphism of V � V . In particular, the modified dimensions for D are
given by

d(V(χ,µ)� V
(
χ ′,µ ′

)
) = d(V(χ,µ))d(V

(
χ ′,µ ′

)
).

12In [McP20] we wrote D for D .
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Proof. Suppose the trace for Proj(W ) is given by the trace tuple (P, ι,π). It is not hard to
see that (P, ι,π) is also a trace tuple for Proj(W ). The modified trace on D is constructed
using the trace tuple

(P0 � P
∗
0, ι� ι,π� π).

We need to show the compatibility of the traces. Choose lifts τV , τV as usual. Then the
diagram

(P0 � P∗0)⊗ (V � V)

V � V V � V

(π�π)⊗(idV � idV )
τV�τV

idV�V

commutes, so τV � τV is a lift for V � V . But then we can use the compatibility of the
pivotal structures to write

t(f� g) =
〈

trr
V�V

((τV � τV)(f� g))
〉
ι�ι

=
〈

trrV(τVf)� trr
V
(τVg)

〉
ι�ι

= 〈trrV(τVf)〉ι
〈

trr
V
(τVg)

〉
ι

= t(f)t(g).

A.4 Cutting presentations and invariants of closed
diagrams

We can now prove that modified traces give invariants of closed diagrams. If D is a
closed X-colored diagram for some biquandle X, the image of D under a model F of X in
C might vanish for nontrivial D. However, we can extract an invariant of D by cutting
it open to obtain a (1, 1)-tangle T (i.e. by choosing a cutting presentation) and computing
t(F(T)). This is well-defined by [GPV13, Theorem 5]. We give a self-contained version of
the relevant part of their theorem.

Theorem A.20. Let D be a closed X-colored tangle diagram and T a cutting presentation of D,
and let F : TangX → C be a representation of X in C compatible with the modified trace t. Then
the scalar t(F(T)) does not depend on the choice of T . We call F(D) := t(F(T)) the modified
diagram invariant associated to F and t.

Before giving the proof we mention a few technical points about pivotal categories
and prove a lemma (which is essentially [GPV13, Lemma 4 (a)]). The pivotal structure
on C gives a monoidal natural isomorphism φ between the identity and the double dual
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f

V

W

Figure A.5: The dual of a map f : V →W.

which acts on objects X of C as

φX : X→ X∗∗ = (ev↓X⊗ idX∗∗)(idX⊗ coev↑X∗)

The string diagram of φX looks like a snake, but is a bit awkward to draw (try it yourself!)
because the arrows collide. This is because the whole point of a pivotal category is that
you can straighten out snake diagrams. As such, we typically do not indicate the mor-
phisms φ− in our diagrams, but use them implicitly whenever we need to identify X and
X∗∗.

Second, recall that for any morphism f : V → W in a pivotal category we have the
dual f∗ :W∗ → V∗ defined by

f∗ = (idY∗ ⊗ coev↑X)(idY∗ ⊗f⊗ idX∗)(ev↑Y ⊗ idX∗)

= (coev↓X⊗ idY∗)(idX∗ ⊗f⊗ idY∗)(idX∗ ⊗ ev↓Y)

As usual, a better way to explain what f∗ is is to look at the diagram in fig. A.5.

Lemma A.21. Let f ∈ EndC (X0 ⊗X∗1). Then for any modified trace on an ideal I containing X0
and X1, we have

tX1

(
φX1

(
trlX0

(f)
)∗
φ−1
X1

)
= tX0

(
trrX∗1 (f)

)
or, pictorially,

f
X0

X∗1

= f
X0

X∗1
tX0tX1

Proof. The trick is to use the maps α and β defined in figs. A.6 and A.7. By using cyclicity
and compatibility with partial traces, we have

tX1

(
trlX∗1 (αβ)

)
= tX1⊗X∗1 (αβ) = tX∗0 ⊗X0(βα) = tX0

(
trlX∗0 (βα)

)
.

But trlX∗1 (αβ) is equal to
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f
X0

X∗1

Figure A.6: The map α : X∗1 ⊗X1 → X∗0 ⊗X0.

X0 X∗1

Figure A.7: The map β : X0 ⊗X∗0 → X∗1 ⊗X1.

f
X∗1

X∗1

X0

which is just φX1

(
trlX0

(f)
)∗
φ−1
X1

. Similarly, trlX∗0 (βα) = trrX∗1 (f), and the lemma follows.

Proof of theorem A.20. Suppose we have two cutting presentations Ti ∈ EndTangX(xi, εi) for
i ∈ 0, 1 of the same diagram D. Without loss of generality, we can draw D as

E

x0

x∗1

for some morphism E : (x0,+)⊗ (x1,−) → (x0,+)⊗ (x1,−). Cutting along the top edge
produces T0 and cutting along the bottom edge produces T1, and our claim is that

tF(x0)F(T0) = tF(x1)F(T1).

This follows from lemma A.21 applied to f = F(E).
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Appendix B

The cyclic quantum dilogarithm

Let A,B ∈ C \ {0, 1} satisfy AN +BN = 1. The cyclic quantum dilogarithm is given by

L(B,A|m) = A−m
m∏
k=1

(1 − ξ2kB).

In this appendix we prove some properties of this and a related normalization

Λ(B,A|m) = g(B,A)L(B,A|m).

The name “dilogarithm” can appear strange without context. A variant of the function
m 7→ L(B,A|m) function was introduced in [FK94] as a truncated version of the quantum
dilogarithm

Ψ(x) =

∞∏
n=1

(1 − qnx)

which is interpreted there as an analog of the classical dilogarithm

Li2(x) = −

∫x
0

log(1 − z)

z
dz.

The function Li2 shows up in a number of places in mathematics, including (via the
closely related Rogers dilogarithm) the computation of the complex volumes of hyper-
bolic 3-manifolds [Zic09].

One perspective on our holonomy invariants is that they are cyclic analogues of the
complex volume obtained by replacing the classical dilogarithm with the cyclic quantum
dilogarithm. This idea appears to have motivated Kashaev’s construction of the diloga-
rithm invariant [Kas95a] and statement of the volume conjecture [Kas97], and Baseilhac
and Benedetti [BB04] explicitly take this perspective on their invariants, which appear to
be closely related to J .

Particularly important are the formulas for the Fourier transforms of the cyclic dilog-
arithm and its inverse derived in appendix B.2. These appear to be “well-known” but not
written down in most sources, so we follow the method given in [HI14, Appendix D].
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B.1 Basic definitions
Definition B.1. The shifted quantum factorialis defined for n ∈ Z by

(x;q)n :=


(1 − x)(1 − qx) · · · (1 − qn−1x) n > 0,
1 n = 0,
(1 − q−1x)−1(1 − q−2x)−1 · · · (1 − q−nx)−1 n < 0.

Recall that ξ = exp(πi/r) is a primitive 2rth root of 1, so that ζ = ξ2 is an rth root of 1.
Since we usually consider q = ζ = ξ2, we abbreviate

(x)n := (x; ζ)n =
(
x; ξ2

)
n

.

Remark B.2. We can think of (q;q)n (1 − q)−n as a q-analog of n! corresponding to the
q-analog

lim
q→1

1 − qn

1 − q
= n

of n. In the quantum groups literature it is common to use the alternative q-analogs

[n]q =
qn − q−n

q− q−1 and [n]q! = [n]q[n− 1]q · · · [1]q

of n and n!. They are related via 1

[n]q! =
q−n(n−1)/2

(q− q−1)n

(
q;q2

)
n

.

From definition 5.16 and proposition 5.17,

L(B,A|n) =
n∏
k=1

A−1(1 − ζkB) = A−n (ζB)n

and L(B,A|−) is well-defined on Z/N. In definition 5.20 we introduced a normalized
version

Λ(B,A|n) = g(B,A)L(B,A|n)

of the quantum dilogarithm.

1Kassel states this formula slightly differently [Kas95b, IV.2, eq. 2.2].
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Lemma B.3. Let A,B be nonzero complex numbers such that AN +BN = 1. Define a function g
by

g(B,A) := A(N−1)/2
N−1∏
k=1

(1 − ξ−2kB)−k/N

= exp

(
(N− 1)

2N
log(1 −BN) −

1
N

N−1∑
k=1

k log(1 − ξ−2kB)

)
where the branch of the logarithm is chosen so that

exp
(

1
N

log
(
(1 −BN)

))
= A.

This function satisfies
g(ξ2mB,A) = g(B,A)L(B,A|m).

Proof. Write

g(ξ2B,A)
g(B,A)

= exp

(
−

1
N

(
N−1∑
k=1

k log(1 − ξ−2kB) − k log(1 − ξ−2(k−1)B)

))
.

We can compute that

N−1∑
k=1

k log(1 − ξ−2(k−1)B) − k log(1 − ξ−2kB)

= log(1 − ξ0B) − log(1 − ξ−2B) + 2 log(1 − ξ−2B) − 2 log(1 − ξ−4B)+

· · ·
+ (N− 1) log(1 − ξ−2(N−2)B) − (N− 1) log(1 − ξ−2(N−1)B)

= log(1 −B) + log(1 − ξ−2B) + · · ·+ log(1 − ξ−2(N−1)B)

+ log(1 − ξ−2(N−1)B) −N log(1 − ξ−2(N−1)B)

= −N log(1 − ξ2B) +

N−1∑
k=0

log(1 − ξ−2kB).

Since
N−1∑
k=0

log(1 − ξ−2kB) = log

(
N−1∏
k=0

(1 − ξ−2kB)

)
= log(1 −BN)

we conclude that

g(ξ2B,A)
g(B,A)

= exp
(

log(1 − ξ2B) −
1
N

log(1 −BN)

)
=

1 − ξ2B

A
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since we chose the branch of the logarithm matching (1 − BN)1/N = A. By induction we
have

g(ξ2mB,A) =
1 − ξ2mB

A
g(ξ2(m−1)B,A) = · · · = L(B,A|m)g(B,A).

Proposition B.4. The normalized quantum dilogarithm satisfies:

Λ
(
ξ2mB,A

∣∣∣n) = Λ(B,A|n+m) (B.1)

Λ
(
B, ξ2mA

∣∣∣n) = ξ−2nmξ−m(N−1)2
Λ(B,A|n) (B.2)

and

N∏
k=1

Λ(B,A|k) = 1. (B.3)

Proof. For (B.1), we have

Λ
(
ξ2mB,A

∣∣∣n) = g(ξ2mB,A)L
(
ξ2mB,A

∣∣∣n)
= g(B,A)L(B,A|m)

L(B,A|n+m)

L(B,A|m)

= Λ(B,A|n+m).

We check (B.2) in two parts. The unnormalized dilogarithm transforms as

L
(
B, ξ2mA

∣∣∣n) =

n∏
k=1

(ξ2mA)−1(1 − ξ2kB) = ξ−2mkL(B,A|n).

The transformation of g is more subtle. The branch of the logarithm log ′ with log ′(1 −
BN) = ξ2mA has

log ′ = log+2πim

so

g(B, ξ2mA) = exp

(
(N− 1)

2N
(2πim+ log(1 −BN)) −

1
N

N−1∑
k=1

k(2πim+ log(1 − ξ−2kB))

)

= g(B,A) exp

(
2πi
N
m

[
N− 1

2
−

N−1∑
k=1

k

])

= g(B,A) exp
(
πi

N
m [N− 1 −N(N− 1)]

)
= g(B,A)ξ−m(N−1)2

.
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Finally, for (B.3) we have

N∏
k=1

Λ(B,A|k) = g(B,A)N
N−1∏
k=1

L(B,A|k)

= AN(N−1)/2

[
N−1∏
k=1

(1 − ξ−2kB)−k

]

×A−N(N−1)/2

[
N−1∏
k=1

(1 − ξ2kB)N−k

]
= 1.

B.2 Fourier transforms
Another reason to introduce the normalized quantum dilogarithm is that we can compute
its Fourier transform.

Theorem B.5. The Fourier transfroms of the cyclic dilogarithm and is inverse are given by

N−1∑
k=0

ξ−2mkΛ(B,A|k) =
1

Λ(A, ξ2B|m)
S(B,A) (B.4)

N−1∑
k=0

ξ2mk 1
Λ(B,A|k)

= Λ
(
ξ−2A,B

∣∣∣m) N

S(ξ−2A,B)
(B.5)

where the auxiliary function

S(B,A) :=
(
B

A

)N−1

g(B,A)
N−1∑
k=0

Λ(A,B|k) (B.6)

satisfies

S
(
ξ2mB,A

)
= ξ−m(N−1)2

S(B,A) (B.7)

S
(
B, ξ2mA

)
= ξ2mξ−m(N−1)2

S(B,A) (B.8)

S(B,A) =
(
B

A

)N−1

S(A,B) (B.9)
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Proof. Following [HI14] we view the transforms as terminating q-hypergeometric series.
We first prove (B.4). Specifically, we use the transformation formula [GR04, eq. III.6]

n∑
k=0

(q−n;q)k (b;q)k
(c;q)k (q;q)k

zk

=
(c/b;q)n
(c;q)n

(
bz

q

)n n∑
k=0

(q−n;q)k (q/z;q)k
(
q1−n/c;q

)
k(

bq1−n/c;q
)
k
(q;q)k

qk.

(B.10)

By using the expansion

(x/c;q)n = (−1)nqn(n−1)/2(x/c)n +O(1/cn−1)

we see that as c→ 0, (B.10) becomes

n∑
k=0

(q−n;q)k (b;q)k
(q;q)k

zk =

(
bz

q

)n n∑
k=0

(q−n;q)k (q/z;q)k
(q;q)k

(q
b

)k
. (B.11)

Setting n = N− 1 and q = ζ = ξ2, we obtain

N−1∑
k=0

(b)k z
k =

(
bz

ζ

)N−1 N−1∑
k=0

(ζ/z)k (ζ/b)
k. (B.12)

By substituting b = ζB and z = ζ−m/A, we can use (B.12) to compute

N−1∑
k=0

Λ(B,A|k)ζ−mk =
N−1∑
k=0

g(B,A)L(B,A|k)ζ−mk

= g(B,A)
N−1∑
k=0

(ζB)kA
−kζ−mk

= g(B,A)
(
B

A
ζm
)N−1 N−1∑

k=0

(
Aζm+1

)
k
B−k
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=
g(B,A)
g(ζmA,B)

ζ−m
(
B

A

)N−1 N−1∑
k=0

Λ(Aζm,B|k)

=
g(B,A)
Λ(A,B|m)

ζ−m
(
B

A

)N−1 N−1∑
k=0

Λ(Aζm,B|k).

By (B.1) and periodicity, we can simplify

N−1∑
k=0

Λ(Aζm,B|k) =
N−1∑
k=0

Λ(A,B|k+m) =

N−1∑
k=0

Λ(A,B|k).

Absorbing the power of ζ via the identity

Λ(A,B|m)ζ−m = Λ(A, ζB|m)

we conclude that
N−1∑
k=0

Λ(B,A|k)ζ−mk =
1

Λ(A, ζB|m)

(
B

A

)N−1

g(B,A)
N−1∑
k=0

Λ(A,B|k)

=
1

Λ(A, ζB|m)
S(B,A).

We now prove the relations for the function S(B,A). We have

S(B, ζmA) =
(

B

ζmA

)N−1

g(B, ζmA)
N−1∑
k=0

Λ(ζmA,B|k)

= ζm
(
B

A

)N−1

ξ−m(N−1)2
g(B,A)

N−1∑
k=0

Λ(A,B|m+ k)

= ζmξ−m(N−1)2
S(B,A)

which gives (B.8). For (B.9), first write

S(A,B) =
(
A

B

)N−1

g(A,B)
N−1∑
k=0

g(B,A)L(B,A|k)

=

(
A

B

)N−1

g(A,B)g(B,A)
N−1∑
k=0

(ζB)kA
−k.

By another application of eq. (B.12) (with b = ζB and z = A−1) we see that

N−1∑
k=0

(ζB)kA
−k =

(
B

A

)N−1 N−1∑
k=0

(ζA)k B
−k =

(
B

A

)N−1 N−1∑
k=0

L(A,B|k)
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so that

S(A,B) = g(A,B)g(B,A)
N−1∑
k=0

L(A,B|k)

=

(
A

B

)N−1(
B

A

)N−1

g(B,A)
N−1∑
k=0

Λ(A,B|k)

=

(
A

B

)N−1

S(B,A)

as claimed. (B.7) now follows from (B.8) and (B.9).
To obtain (B.5) we take the Fourier transform of (B.4). The left-hand side is

N−1∑
m,k=0

ζmn−mkΛ(B,A|k) = NΛ(B,A|n)

while the right-hand side is

S(B,A)
N−1∑
m=0

ζmn

Λ(A, ζB|m)
.

After the change of variables A→ B,B→ ζ−1A we obtain

NΛ
(
ζ−1A,B

∣∣∣n) = S
(
ζ−1A,B

) N−1∑
m=0

ζmn

Λ(B,A|m)

or equivalently

N−1∑
m=0

ζnm

Λ(B,A|m)
= Λ

(
ζ−1A,B

∣∣∣n) N

S
(
ζ−1A,B

)
By renaming some indices we get (B.5).

Finally, we can give a simpler expression for the normalization factor S.

Proposition B.6. Up to a power of ξ,

S(B,A) =
N

γ(1)

(
B

A

)(N−1)/2

where

γ(1) =
N−1∏
k=1

(1 − ξ−2k)N/k.
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Since the function (A/B)(N−1)/2 is not continuous on the curve AN+BN = 1 this is the
best we could do without changing some normalizations.

Proof. We follow [BB05, Section 8]. As above, write ζ = ξ2 for a primitive Nth root of
unity. Consider the following variants of 1/g and S:

γ(B) :=

N−1∏
k=1

(1 −Bζ−k)k/N,

S(B|A) :=

N−1∑
m=0

1
L(B,A|m)

,

where AN + BN = 1 as usual. The definition of γ requires a choice of logarithm branch,
so is only defined up to a power of ζ; we will deal with this later.2

By studying the poles of the function
∏N−1
k=0 S(B, ζkA) one can derive [BB05, Lemma

8.3 (iii)] the identity

S(B|ζA) = ζ?B
N−1γ(1)
γ(B)γ(A)

which as indicated holds up to some power of ζ. To connect with our notation, observe
that by settingm = 0 in (B.5), we obtain

S(B|ζA) = g(B, ζA)Λ(A,B|0)
N

S(A,B)

or
S(A,B) = g(B, ζA)g(A,B)

N

S(B|ζA)

Since up to a power of ξ
g(B,A) = A(N−1)/2γ(B)−1,

we see that

S(B|ζA) = ξ?γ(1)
(
B

A

)(N−1)/2

g(B,A)g(A,B)

and thus conclude that

S(A,B) = N
g(B, ζA)g(A,B)

S(B|ζA)

where

γ(1) =
N−1∏
k=1

(1 − ζ−k)k/N

2This is the reason that we defined g(B,A) in terms of B and A, instead of just writing g(B,A) =

A(N−1)/2γ(B)−1.
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is defined using the standard branch of log whose imaginary part takes values in (−π,π].
We have derived the relation

S(A,B) = ξ? N

γ(1)

(
A

B

)(N−1)/2

which holds up to a power of ξ.
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