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Abstract

Neural induction is the process through which pluripotent cells are committed to a neural fate. 

This first step of Central Nervous System formation is triggered by the "Spemann organizer" in 

amphibians and by homologous embryonic regions in other vertebrates. Studies in classical 

vertebrate models have produced contrasting views about the molecular nature of neural inducers 

and no unifying scheme could be drawn. Moreover, how this process evolved in the chordate 

lineage remains an unresolved issue. In this work, by using graft and micromanipulation 

experiments, we definitively establish that the dorsal blastopore lip of the cephalochordate 

amphioxus is homologous to the vertebrate organizer and is able to trigger the formation of neural 

tissues in a host embryo. In addition, we demonstrate that Nodal/Activin is the main signal 

eliciting neural induction in amphioxus, and that it also functions as a bona fide neural inducer in 

the classical vertebrate model Xenopus. Altogether, our results allow us to propose that Nodal/

Activin was a major player of neural induction in the ancestor of chordates. This study further 

reveals the diversity of neural inducers deployed during chordate evolution and advocates against a 

universally conserved molecular explanation for this process.

The first developmental step in the formation of the vertebrate Central Nervous System 

(CNS) is called neural induction. It is the instructive process by which naive ectodermal 

cells are committed to a neural fate. The concept of neural induction was established by 
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Hilde Mangold and Hans Spemann. They showed that the dorsal blastopore lip of a newt 

gastrula, when grafted to the ventral side of a host gastrula, was able to induce the formation 

of a Siamese twin embryo in which the secondary CNS developed from the host and not 

from the graft 1. This embryonic territory with inductive capacities was called the organizer 

and many efforts have been dedicated to understand the nature of the neural inductive 

signals emanating from this structure. In the first molecular model of neural induction, 

called the "default model", it was proposed that ectodermal cells become epidermal when 

exposed to Bone Morphogenetic Protein (BMP) signals and neural when deprived of BMP 

and of any other signals 2. In the early vertebrate embryo, the BMP signalling pathway is 

active in the ventral region, whereas the dorsal organizer produces BMP antagonists that act 

as neural inducers 3–5. However, this model has been challenged by various studies 

suggesting that Fibroblast Growth Factor (FGF) signalling also contributes directly to neural 

induction in Xenopus and chick 6–11.

If the mechanisms controlling neural induction in vertebrates are subject to debate, their 

evolutionary origins are even more obscure. In tunicates, the sister group of vertebrates, the 

embryo lacks an organizer and inhibition of the BMP signal is not required for the formation 

of the CNS 12, whereas the FGF signal is indispensable 13. Therefore, understanding how 

the CNS develops in cephalochordates (i.e. amphioxus), the sister group of all remaining 

chordates, may shed light on the ancestral mechanisms controlling neural induction in this 

lineage. Graft experiments 14 and gene expression data 15 have suggested that the 

amphioxus dorsal blastopore lip could be homologous to the vertebrate organizer. 

Additionally, it has been shown that activation of the BMP signalling pathway ventralizes 

the amphioxus embryo, leading to loss of the neural plate 15–17. However, experiments 

undertaken in order to inhibit this signal resulted in modest expansion of axial neural plate 

gene expression, calling into question the applicability of the default model 18. On the other 

hand, inhibition of the FGF signalling pathway does not suppress neural induction 19, 

supporting the idea that FGF is not unconditionally required. Interestingly, activation of the 

Nodal/Activin pathway in amphioxus leads to complete dorsalization of the embryo in 

which the whole ectoderm expresses neural genes 16. However, the precise mode of action 

of Nodal in ectoderm neuralization remains to be elucidated. In vertebrates, Nodal is a key 

signal produced by the organizer, which acts as a mesendoderm inducer and controls 

gastrulation movements 20. While these early functions of Nodal signalling were deeply 

studied, its putative role during neural induction remains to be addressed.

Study of neural induction in amphioxus has been hampered by the lack of appropriate 

experimental setups. To overcome this fundamental problem, we developed micro-surgery to 

obtain naive ectodermal explants. Using graft experiments combined to molecular analyses, 

we show that the dorsal blastopore lip of amphioxus is a functional organizer able to 

promote the formation of a secondary body axis and the acquisition of neural fate by naive 

ectodermal cells. We also demonstrate that Nodal/Activin is the main neural induction signal 

emanating from the organizer in amphioxus. Finally, we show that this pathway also 

participates to neural induction in Xenopus.
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Amphioxus organizer

If previous studies 14–15 suggested that the dorsal blastopore lip of amphioxus may be 

homologous to the vertebrate organizer, there was no direct evidence demonstrating that it is 

able to trigger neural induction. To address this question, we first reproduced old grafting 

experiments 14 . We grafted the dorsal lip of the blastopore of early gastrula (G2) stage 

embryos onto the ventral side of the archenteron of host embryos (Fig 1a). Grafted embryos 

showed partial secondary axis formation (Fig. 1a), as previously described 14, or complete 

secondary axis development (Fig. 1a). We then explored the putative neural inductive 

capacity of the dorsal blastopore lip on naive ectoderm. Ectoderm explanted from G1 

gastrulae (Gastrula Explant, GE) developed into blastula shaped hollow balls consisting of a 

single cell layer, or of an outer single cell layer associated with an inner cell mass, as 

previously observed 21. The inner cell mass acquired a mesodermal fate as indicated by 

Brachyury expression (Fig. 1b). The external cell layer developed entirely into epidermis as 

revealed by the expression of Keratin 1 (K1, Fig. 1b and Supplementary Fig. 1). Moreover, 

no Neurogenin expression could be detected (Fig. 1b), regardless of the presence or not of 

Brachyury-positive cells, showing that GE developed by default into epidermis. To ascertain 

the inductive capacities of the organizer, we grafted the mesendodermal part of the dorsal 

blastopore lip of fluorescent embryos onto GE (Fig. 1c). In grafted GE, Neurogenin was 

broadly expressed exclusively in explant cells, indicating that host cells received a neural 

inducing signal produced by the graft (Fig. 1c). In contrast, we never observed Neurogenin 
expression when we recombined GE and ventral blastopore lip (Fig. 1d).

BMP signal

In cephalochordates, the BMP pathway is active very early during embryogenesis, as 

indicated by a nuclear pSmad1/5/8 signal observed before the blastula stage 18. Ectopic 

activation of this pathway leads to a complete ventralization of the embryo in which the 

whole ectoderm becomes epidermis 15, 17, whereas repression of BMP signalling via 
application of dorsomorphin, a chemical inhibitor of BMP receptors, at blastula stage, only 

induces a modest expansion of neural markers 18. Given that nuclear pSmad1/5/8 labelling 

was reported at cleavage stages 18, we reasoned that earlier dorsomorphin application was 

required to obtain more penetrant effects. When the drug was applied at cleavage stage (3.5 

hpf at 19°C), embryos kept a gastrula shape, with no contact between mesendoderm and 

ectoderm. Dorsomorphin-treated embryos displayed a completely dorsalized mesendoderm, 

as revealed by the radial expression of dorsal markers (Nodal, Vg1 and Zic (Fig. 2a-b)). 

Strikingly, the ectoderm behaved differently. Indeed, although the expression of the ventral 

ectoderm marker EvxA was lost, there was no expansion of the expression of the dorsal 

ectoderm markers towards the ventral region (Fig 2a-b). In fact, expression of these genes 

was lost in the entire ectoderm, which also failed to express markers of epidermal (K1) or 

neural (Neurogenin, Hu/Elav) fates (Fig. 2a-b). However, the ectoderm expressed SoxB1a, 

ruling out a non-specific blockage of transcription. In control embryos, SoxB1a is first 

expressed throughout the ectoderm, until the onset of gastrulation, and is later restricted to 

the neural plate (Fig. 2a, Supplementary Fig. 2). Therefore, after dorsomorphin treatment, 

the ectoderm showed an expression profile similar to uncommitted ectoderm: SoxB1a-

positive and Neurogenin/K1-negative. To verify that dorsomorphin efficiently inhibited the 
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BMP pathway, we undertook double treatments with recombinant zBMP4 protein. In such 

embryos, K1 expression was not recovered, indicating that in our assays dorsomorphin 

totally abolished BMP activity (Fig. 2c). Altogether these data show that inhibiting the BMP 

signalling pathway at early developmental stages leads to dorsalization of the mesendoderm 

and that it blocks ectodermal cell fate commitment.

Nodal/Activin signal and interaction with FGF and BMP

Nodal signalling is active before the blastula stage in amphioxus, as indicated by the zygotic 

expression of Nodal and of its target Lefty at cleavage stage22. Early ectopic activation of 

the Nodal/Activin signalling pathway through recombinant Activin protein treatment 

induces embryo dorsalization 15. In such conditions, the whole anterior ectoderm expresses 

Otx, whereas the whole posterior ectoderm expresses Wnt3, suggesting complete 

neuralization 16. On the other hand, inhibition of Nodal/Activin signalling using SB505124, 

an inhibitor of the Alk4/5/7 receptors, induces ventralization, and consequently the loss of 

neural structures 16. We confirmed that in Activin-treated embryos the ectoderm was 

entirely neuralized as indicated by the expression of the pan-neural markers Neurogenin and 

Hu/Elav, and by the complete loss of K1 expression (Fig. 3). We previously showed that 

embryos in which the FGF signalling pathway was inhibited still displayed ectodermal 

Neurogenin expression 19. We asked whether FGF signalling was involved in Nodal/

Activin-mediated neuralization. Addition of the FGF receptor inhibitor SU5402 to Activin-

treated embryos did not suppress Neurogenin expression at the G4 stage (Fig. 3). In contrast, 

at the N2 stage, neural genes expression was lost in the anterior ectoderm (Fig. 3). 

Conversely, K1 expression was recovered in the anterior ectoderm (Fig. 3), indicating a 

change of fate in the anterior ectodermal region from neural to epidermal. The Nodal/

Activin signalling pathway is therefore able to completely neuralize the ectoderm 

independently of the FGF signal, which is however probably required for the maintenance of 

the anterior neural fate and/or the patterning of the anterior neural tissue.

We tested whether neuralization by Nodal/Activin pathway in amphioxus involved BMP 

pathway inhibition by first analyzing nuclear pSmad1/5/8. As expected, no labelling could 

be detected in dorsomorphin-treated neurula (Supplementary Fig. 3a). In contrast, 

pSmad1/5/8 nuclear staining was observed in the ectoderm of Activin-treated embryos 

(Supplementary Fig. 3a), suggesting that the intracellular cascade activated by BMP was not 

interrupted by Activin. We then analyzed the effects of dorsomorphin and Activin treatments 

at a global scale using an RNA-seq approach. Transcriptome analyses supported the 

specificity of the treatments and reinforced the previous conclusions based on in situ 
hybridization experiments: Activin induced neuralization, and dorsomorphin inhibited the 

differentiation of ectoderm cells, whereas it induced dorsalization of the mesendoderm 

(Supplementary Fig. 3b). We also undertook double treatments with Activin and zBMP4 

recombinant proteins. Treated embryos displayed a phenotype similar to what was observed 

after Activin/SU5402 treatment (Supplementary Fig. 3c). The whole ectoderm expressed 

Neurogenin at the G4 stage but at the N2 stage this expression was lost in the anterior region 

(Supplementary Fig. 3c), suggesting that BMP inhibition is required for the maintenance of 

the anterior neural territory. Next, we tested the ability of the Nodal/Activin pathway to 

neuralize the ectoderm of dorsomorphin-treated embryos. Double Activin/dorsomorphin 
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treatment often led to exogastrulation and the whole ectoderm always expressed Neurogenin 
(Supplementary Fig. 3c). This result demonstrates that the uncommitted ectoderm of 

dorsomorphin-treated embryos can resume neural differentiation. Altogether, our data 

strongly suggest that Nodal/Activin is able to neuralize the amphioxus ectoderm 

independently of BMP signalling.

Ectodermal explants and grafts

In whole embryo assays, ectodermal cells are exposed to both endogenous signals produced 

by the organizer and the mesendoderm, and to exogenous inducers or inhibitors. This 

multiplicity of signals complicates interpretations. To overcome this issue, we undertook 

experiments on ectodermal explants. In addition to GE, we prepared explants grown from 

animal blastomeres (Supplementary Fig. 4), dissected at the 8-cell stage (Blastomere 

Explant, BE), in order to test the effect of our reagents at an earlier stage. Similar to GE, BE 

ectoderm always developed into epidermis (Fig. 4a and Supplementary Fig. 5). When we 

inhibited the BMP signal in GE and BE, K1 expression was lost (Fig. 4a), but no expression 

of Neurogenin was detected (Fig. 4a), as observed in whole embryos (Fig. 2a). To test which 

signals could trigger neural induction in explants, we used treatments with Activin, FGF1/2, 

or both. In Activin and in FGF1/2 treated GE, neural identity was promoted only in a subset 

of cells (Fig. 4a). However, the double Activin and FGF1/2 treatment induced Neurogenin 
expression in a broader region, and caused nearly complete loss of K1 expression (Fig. 4a). 

Interestingly, these effects were more pronounced when using BE, consistent with our 

experiments on the time window of neural induction in whole embryo (Supplementary Fig. 

6). Thus, Activin treatment alone or with FGF1/2 induced expression of Neurogenin in the 

whole BE and complete loss of K1 expression (Fig. 4a). These results were similar 

regardless of the presence or not of Brachyury-positive inner cells, showing that 

neuralization was independent of the presence of mesoderm. Therefore, both FGF and 

Nodal/Activin pathways are able to induce neural fate in ectodermal explants, probably 

through complementary mechanisms.

In order to test putative epistatic relationships between these two signals, we undertook 

double treatments with Activin and SU5402 or FGF1/2 and SB505124. When treatments 

were applied on GE, Neurogenin was still expressed in a restricted region of the explants 

(Fig. 4b). In contrast, for BE, Neurogenin expression mostly disappeared after FGF1/2-

SB505124 application, whereas it persisted in Activin-SU5402 treated explants (Fig. 4b). 

This again advocates for a primary role of Nodal/Activin and a secondary role for the FGF 

signalling pathway.

Finally, since we showed that the dorsal blastoporal lip was able to induce neural tissue 

formation in ectodermal explants (Fig. 1), we tested which could be the signal responsible 

for this induction. We applied FGF and Nodal/Activin signalling pathway inhibitors on 

grafted ectoderm explants. We found that inhibition of the FGF signal did not prevent neural 

tissue formation, whereas inhibition of the Nodal/Activin signal abrogated Neurogenin 
expression (Fig. 4c). Overall these data strongly suggest that in amphioxus the organizer 

triggers the first step of neuroectoderm development through the Nodal/Activin signal.
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Nodal signal in Xenopus

We decided to test whether in the classical vertebrate model Xenopus Nodal signalling could 

also induce neural tissue. As Nodal is involved in inducing the Spemann organizer 23, its 

role as a direct neural inducer is difficult to test. Our prior work showed that the response of 

Xenopus embryonic cells to Nodal signals changes with time 24. Thus, we reasoned that 

treatment with Nodal past the stage of competence of embryonic cells to become 

mesendodermal in response to this signal could allow us to evaluate its potential as a neural 

inducer. We found that in whole-embryos or in ectoderm explants, the application of Nodal 

recombinant protein at mid-gastrula stage 11 was unable to induce ectopic expression of 

organizer (gsc, chd) or mesendoderm markers (Xbra, Xnot-2, sox17, mixer) (Fig. 5a, 

Supplementary Fig. 7a). However, Nodal induced ectopic neural tissue expressing sox2 and 

foxD5 in both whole-embryos and in ectoderm explants (Fig. 5b and Supplementary Fig. 

7a). Conversely, the epidermal marker k81 was strongly repressed (Supplementary Fig. 7a). 

Furthermore, direct neural induction in ectoderm explants was also achieved through the 

expression of an inducible form of activated Smad2 25, when induced at stage 11 (Fig. 5c 

and Supplementary Fig. 7b). The induced neural tissue was of anterior character as revealed 

by otx2 expression (Supplementary Fig. 7b), and was stable as revealed by the presence of 

ectopic neurons expressing N-tubulin at tailbud stage (Fig. 5b).

We then tested whether the effect of Nodal on neural induction was achieved through 

inhibition or competition with the BMP signal. As previously shown 11, injection of BMP4 

protein into embryos at stage 11 did not expand the epidermal tissue, whereas injection of 

Nodal, or co-injection of Nodal and BMP4, caused the expansion of the neural plate (Fig. 

5d). Moreover, in the three conditions, we observed prominent pSmad1 nuclear staining in 

the ectoderm (Fig. 5e), demonstrating that Nodal does not induce neural tissue through BMP 

inhibition. Finally, combining cycloheximide and Activin treatments on animal caps, we 

showed that the early neural regulator foxD5 11, 26, but not sox2, is an immediate early 

target of the Nodal signalling pathway (Fig. 5f and Supplementary Fig 7c), which is 

consistent with the recent finding that Smad2/3 binds to an active enhancer of this gene at 

stage 10.5 but not at blastula stage 9 27.

Next, we asked whether Nodal/Activin signalling was required for neural induction in 

Xenopus. When the inhibitors of Nodal/Activin receptors, SB505124 and SB431542, were 

applied on stage 11 embryos, morphogenesis proceeded normally, but neural tissue 

development was altered as revealed by the significant down-regulation of foxD5, sox2 and 

N-tubulin expression (Supplementary Fig. 8). We also injected a dominant-negative form of 

the Nodal/Activin receptor Alk4 (dn-Alk4) in the presumptive neural ectoderm in 8-cell 

embryos in order to potently inhibit the Nodal/Activin pathway from the earliest possible 

stage, while avoiding perturbations of the organizer mesoderm. In such embryos, chd 
expression was maintained, whereas foxD5, sox2 and N-tubulin expression was severely 

down-regulated in injected ectodermal cells (Fig. 6a, b). Strikingly, Noggin recombinant 

protein injection could neuralize control ectoderm cells but not cells that received dn-Alk4, 

further demonstrating the BMP-independent role of the Nodal/Activin pathway (Fig. 6c). We 

conclude that in standard assays in Xenopus, Nodal behaves as a bona fide neural inducer, as 

it is capable of directly activating neural markers in the absence of organizer mesoderm, is 
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required for neural tissue development and functions without interfering with the BMP 

signal.

Discussion

Although previous embryological studies 14 and gene expression data 15 suggested that the 

dorsal blastopore lip of amphioxus has the same properties as the vertebrate organizer, no 

direct evidence for its capacity to induce neural fate was ever reported. By using challenging 

microsurgery techniques we demonstrate that the amphioxus dorsal blastopore lip is indeed 

equivalent to the vertebrate dorsal organizer. It can induce a secondary nervous system when 

grafted into a host embryo and convert ectodermal cells from epidermal to neural identity.

The results we present in this work also suggest that the default model does not account for 

neural induction in amphioxus. Although BMP inhibition is required for neural tissue to 

emerge, it is not sufficient, and instructive cues must be delivered. Indeed, both in whole 

embryos and in explants, inhibition of BMP signalling led to the maintenance of an 

undifferentiated state of the ectoderm. At first glance, this result appears different from what 

was published when the same approach was undertaken at later stages on whole embryos 18. 

Indeed, Kozmikova and co-workers observed a modest lateral expansion of the specific 

neural plate markers Brn1/2/4 and SoxB1c, whereas SoxB1a expression became widespread 

in the non-neural ectoderm. The effects caused by BMP inhibition in their study are in fact 

consistent with our own observations using earlier treatment. We suggest, however, that late 

BMP inhibition probably did not fully prevent neural induction in this assay and that the 

enlarged expression of the neural markers Brn1/2/4 and SoxB1c would reflect the 

conversion of the neural plate border territory into axial neural ectoderm, although this 

hypothesis remains to be tested.

We also provide compelling evidence that both Nodal/Activin and FGF signals are 

implicated in different steps of CNS formation in amphioxus. Altogether, our data suggest 

that Nodal/Activin is the main neural inducing signal emanating from the organizer, whereas 

FGF would be implicated in the maintenance/patterning of the anterior neural territory. 

Importantly, we also show that the activity of Nodal/Activin on neural induction is 

independent of the presence of mesodermal cells. Likewise, we report here that neuralization 

of ectoderm by Nodal in Xenopus can occur independently of the presence of organizer 

mesoderm. Moreover, neuralization by Nodal/Activin is maintained in the presence of active 

BMP signalling in both amphioxus and Xenopus.

Our results have major implications for the evolution of the molecular control of neural 

induction. First, we propose that the default model does not account for neural induction 

throughout the chordate lineage. Indeed, although BMP signal inhibition is necessary for 

neural induction in all vertebrates 3, BMP plays no role in this process in tunicates 12 and 

BMP inhibition appears insufficient to trigger neural induction in chick and amphioxus 

although it may be required to maintain the anterior neural territory in both species 9. The 

situation is different in the urochordate Ciona, where FGF is the main neural inducer13, 

whereas Nodal is required for posterior neural tube formation and for the specification of 

trunk epidermal sensory neurons 28–30. Concerning vertebrates, Nodal activity was shown 
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to be required to prevent precocious neural differentiation in the mouse pluripotent epiblast 

31. Likewise, concomitant inhibition of Smad1 and Smad2 was proposed as a necessary 

condition for neural induction in Xenopus 32. In contrast, the activity of Smad2/3 seems to 

be required for neural induction in zebrafish 33, raising the possibility that multiple phases 

of intervention of this pathway may complicate interpretations. Here, we provide new 

evidence showing that Nodal behaves as a bona fide neural inducer in Xenopus. Key to this 

demonstration was our finding that the mesendoderm and neural inductive capacities of 

Nodal could be uncoupled. Thus, our assay provides a new and valuable technical 

framework to work out the mechanisms of neural induction in this animal. Multiple Nodal 

ligands are expressed in the Spemann organizer, possibly contributing directly to neural 

induction 24, 34. In support to this idea, we showed here that in two assays designed to 

preserve organizer formation, Nodal pathway inhibition caused severe loss of neural marker 

gene expression. Collectively, our data suggest that the implication of Nodal/Activin 

signalling in the first step of CNS formation might be ancestral in chordates. Interestingly, it 

has been recently shown that Nodal is also able to trigger secondary body axis formation and 

neural fate commitment in the sea urchin 35, pushing back the possible ancestral role of this 

signal in neural induction to the base of the deuterostome lineage. In conclusion, we suggest 

that neural induction can be triggered by BMP inhibition, by FGF and by Nodal signalling 

but that the precise spatio-temporal contribution of each pathway may vary across chordate 

lineages.

Materials and Methods

Obtaining embryos, micro-dissection and graft experiments

Branchiostoma lanceolatum adults were collected at the Racou beach in Argelès-sur-Mer 

(France). Spawning was induced as previously described 36, 37. Staging is according to 

Hirakow and Kajita 38, 39. For explantation experiments, embryos were fertilized and kept 

in scratched Petri dishes. Gastrula stage explants (GE) preparation was undertaken on 

embryos that were not previously dechorionated except when GE were prepared for graft 

experiments. To maintain the chorion surrounding the embryo immobile, the bottom of the 

Petri dish was cut with a micro-scalpel to create two or three stripes. When the chorion was 

immobilized, the position of the embryo inside the chorion was stabilized (with the antero-

posterior axis parallel to the bottom of the Petri dish) and GE explants were obtained using 

dissection perpendicular to the Petri dish with a micro-scalpel. For blastomere explants (BE) 

preparation and grafting, the embryos were manually dechorionated just before the first cell 

division by projection against the borders of an agarose coated Petri dish (0,8% agarose in 

0.2 µm filtered sea water) until micro-dissection. Embryos were dissected with an eyelash. 

For grafts experiments, after micro-dissection, hosts and grafts were gently put into contact 

and were left stationary for one hour, the time needed for at least one cell division to occur. 

To avoid any effect of the agarose coat on the molecules used for treatments, all the 

treatments were undertaken in scratched Petri dishes. For graft experiments using 

fluorescent embryos, Dextran (10,000 MW) coupled to Texas Red (Invitrogen) was injected 

in unfertilized eggs. Eggs obtained from NASCO Xenopus laevis females were fertilized in 
vitro, de-jellied, cultured, staged, and injected as previously described 10, 40.
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Embryo and explant treatments

Amphioxus embryos, explants or grafts were treated with the following molecules: 

dorsomorphin (35 µM for whole embryos and 10 µM for explants, prepared as in 41, 

Sigma), Activin (50 ng/mL, human recombinant protein, R&D), zBMP4 (250 ng/mL, 

zebrafish recombinant protein, R&D ), SB505124 (50 µM, dissolved in dimethyl sulfoxide 

(DMSO), Sigma), FGF1/2 (2 µg/mL, B. lanceolatum recombinant protein), SU5402 (50 µM, 

dissolved in DMSO, Calbiochem). The concentration used were defined after pilot 

experiments using the following ranges of drug or recombinant protein concentration: 

dorsomorphin: 10 µM-50 µM, Activin: 10 ng/mL-100 ng/mL, zBMP4: 50-250 ng/mL, 

SB505124: 25 µM-100µM, FGF1/2: 500 ng/mL-2 µg/mL, SU5402: 25 µM-100µM. Whole 

embryos were treated at 3.5 hpf at 19°C except when specified. Explants and grafted 

explants/embryos were directly treated following the explantation or graft procedure. For 

time window experiments, embryos were washed at least 4 times after treatment to ensure 

that no drug/recombinant protein were left in the culture medium. Xenopus embryos were 

injected in the blastocoel with 10 ng mouse recombinant Nodal protein (R&D), 3.5 ng 

zebrafish recombinant BMP4 protein (R&D), or 30 ng recombinant human Noggin (R&D). 

dn-Alk4 and GR-t-Smad2 25 mRNAs were synthesized with the Ambion mMessage 

mMachine kit. 8-cell embryos were injected with 3 ng of dnAlk4 in one of the two dorsal-

animal blastomere. Fixable fluorescein lysine dextran (FLDx, 2.5 ng/cell) was co-injected to 

sort properly injected embryos, and anti-fluorescein immunodetection (anti-fluorescein/

alkaline phosphatase antibody and iodonitrotetrazolium/5-bromo-4-chloro-3-indolyl 

phosphate substrate, Roche) was performed to reveal injected territories in fixed embryos. 2-

cell embryos were injected with 400 pg of GR-t-Smad2 mRNA, animal caps were explanted 

at early gastrula stage 10 and treated with dexamethasone at 10 µg/ml. Negative controls 

were treated with 1% ethanol. Cycloheximide treatment (10 μg/ml) was started 1 hour prior 

to the addition of Activin (5 ng/ml, human recombinant protein, R&D) to avoid any delay of 

action, and treatment was continued for 2 hours at 18°C. SB505124 (Sigma) and SB431542 

(Sigma) were dissolved in DMSO, diluted 1/100 in 0,1X MBS (final concentrations 200µM 

and 800µM, respectively) and applied on gastrula stage 11 embryos. Control embryos were 

treated with 1% DMSO (Sigma) diluted in 0,1X MBS.

In situ hybridization, immunostaining and quantitative RT-PCR

Amphioxus in situ hybridization was performed as previously described 42 and unless 

mentioned otherwise were undertaken on at least 12 embryos, all of them showing the same 

phenotype. Amphioxus anti-tubulin immunostaining was undertaken as described in 19 

using a primary antibody against acetylated tubulin (Sigma T6793, 1:500), and a secondary 

antibody (1:500) coupled to fluorescein. Immunostaining against pSmad1/5/8 was 

undertaken using a rabbit polyclonal anti-pSmad1/5/8 primary antibody (Cell Signaling 

9511L, 1:150) and a secondary antibody (1:500) coupled to FITC. Photographs were 

processed in ImageJ using the Parallel Iterative Deconvolution 2D plug-in. Xenopus 
embryos or animal caps were processed for in situ hybridization as described in 11. For 

quantitative RT-PCR, total RNAs were extracted with the RNeasy mini kit (Qiagen), cDNAs 

were synthesized using the SuperScript II reverse transcriptase (Invitrogen), and 

amplifications were performed in the presence of SYBR Green mix (Invitrogen) on an iQ5 

machine (Bio-Rad). Immunostaining against pSmad1 in Xenopus was undertaken as 
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described in 43 using a rabbit polyclonal anti-pSmad1/5/8 primary antibody (Cell Signaling 

9511L, 1:100) and a secondary antibody (1:500) coupled to Alexa561. Accession numbers 

and primer sequences are given in Supplementary Tables 1 and 2.

RNA-seq analysis

Embryos from two females were separated in three independent batches for each female: 

control, dorsomorphin-treated and Activin-treated. Embryos were collected from each batch 

at the G4 (half of the embryos) and N2 stages and frozen in liquid nitrogen. RNA extraction 

was performed using the RNeasy mini kit (Qiagen). Sequencing was done at the CRG 

Genomics Unit and raw reads submitted to the BioProject database (accession number 

PRJNA354850). The clean sequencing reads from each sample were mapped to a 

Branchiostoma lanceolatum transcriptome assembly 44 using the software Bowtie2 with 

default parameters 45. To calculate and normalize the mapped read counts, we used the 

software RSEM (http://deweylab.biostat.wisc.edu/rsem/) 46. We analyzed the differential 

expression between control and treated embryos for selected genes and generated a heatmap 

using Morpheus (https://software.broadinstitute.org/morpheus/).

Data availability statement

Accession numbers of sequences used for in situ hybridization probe synthesis and the 

sequences of primers used for quantitative PCR analysis are given in Supplementary Tables 

1 and 2. RNA-seq raw reads are available at the BioProject database (accession number 

PRJNA354850).

Statement that all experiments were performed in accordance with relevant guidelines and 
regulations

All the experiments were performed following the Directive 2010/63/EU of the European 

parliament and of the council of 22 September 2010 on the protection of animals used for 

scientific purposes. All Xenopus experiments were approved by the "Direction 

départementale de la Protection des Populations, Pôle Alimentation, Santé Animale, 

Environnement, des Bouches du Rhône" (agreement number F 13 055 21). Ripe adults from 

the Mediterranean invertebrate amphioxus species (Branchiostoma lanceolatum) were 

collected at the Racou beach near Argelès-sur-Mer, France, (latitude 42° 32’ 53” N and 

longitude 3° 03’ 27” E) with a specific permission delivered by the Prefect of Region 

Provence Alpes Côte d’Azur.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The dorsal blastoporal lip of amphioxus is homologous to the vertebrate organizer.
a, Graft experiments were undertaken by dissecting and inserting the blastopore lip of a G2 

gastrula stage embryo in the ventral archenteron of a host embryo at the same developmental 

stage. Some embryos showed partial double axis as indicated using the neural marker 

Netrin. Other embryos formed a complete double axis as indicated by expression of the 

notochordal marker Brachyury and by immunostaining of axons for acetylated α-tubulin. 

The arrowhead indicates the position of the transverse section and the asterisks the ectopic 

expression of Netrin. b, Ectodermal explants were obtained through micro-dissection of the 
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animal pole of G1 gastrula (gastrula explants, GE). Half of the ectodermal explants showed 

an inner cell mass expressing the mesoderm marker Brachyury. The external cell layer 

expressed the epidermal marker K1, whereas no expression of the neural marker Neurogenin 
was detected. c, Graft on GE of a fluorescently labelled (Texas Red) dorsal blastoporal lip 

induced the expression of Neurogenin exclusively in host cells. Green signal corresponds to 

auto-fluorescence. d, Negative control grafts of the mesendoderm part of the ventral 

blastopore lip onto GE did not induce Neurogenin expression. Anterior is to the left. Scale 

bar, 50 µm and 10 µm for section. Numbers correspond to embryos presenting similar 

labelling.
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Figure 2. Role of BMP in ectodermal cell fate commitment.
a, Expression of Nodal, Vg1, Zic, EvxA, SoxB1a, K1, Neurogenin and Hu/Elav in G1, G4 

and N2 stage control embryos and in dorsomorphin-treated N2 stage embryos. The white 

arrow head indicates the early ectodermal Neurogenin expression domain in control 

embryos. b, Schematic partial representation of the results presented in (a). c, Expression of 

K1 and Neurogenin at the N2 stage in control embryos and embryos treated with both 

dorsomorphin and zBMP4. All in situ hybridization images are side views with anterior 

towards the left. Scale bar, 50 µm.
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Figure 3. Role of Nodal/Activin and FGF signalling pathways in ectoderm specification.
Expression at G4 and N2 stages of Neurogenin, Hu/Elav, K1 and Otx in control embryos, in 

embryos treated with recombinant Activin protein, and in embryos treated with both Activin 

and SU5402. All in situ hybridization images are side views with anterior towards the left. 

Enlargements of the anterior region (white frame) of N2 stage embryos are presented below 

the pictures of whole embryos to highlight Otx expression in the ectoderm. Scale bar, 50 µm.
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Figure 4. Nodal/Activin is the main signal triggering neural induction.
a, Expression of K1 and Neurogenin in control, dorsomorphin-treated, Activin-treated, 

FGF1/2-treated or Activin+FGF1/2-treated GE and BE. b, Expression of Neurogenin in 

FGF1/2+SB505124-treated and Activin+SU5402-treated GE and BE. c, Neurogenin 
expression induction by the graft of the dorsal blastoporal lip on GE is lost after SB505124 

treatment in most cases, but maintained after SU5402 treatment. Number of explants 

showing the presented expression pattern is indicated on each panel. Scale bar, 50 µm.
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Figure 5. Nodal induces neural tissue in Xenopus.
a, Expression of gsc, Xbra and Xnot-2 at early neurula stage 13 in control embryos and in 

embryos injected with Nodal recombinant protein at stage 10 or 11. Dorsal views for gsc and 

Xnot-2, ventral views for Xbra. b, Expression of sox2 and foxD5 (left: front view; right: 

dorsal view) and N-tubulin (ectopic neurons indicated by a white asterisk) in control and 

Nodal-injected embryos. c, Embryos were injected with GR-t-Smad2 mRNA, animal caps 

were explanted at early gastrula stage, induced or not with dexamethasone at stage 11 and 

processed for sox2 in situ hybridization. d, Expression of sox2 and k81 in control embryos 
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and in embryos injected with zBMP4, Nodal or both recombinant proteins. Scale bar, 250 

µm. e, Confocal images of pSmad1 immunostaining and nuclear DAPI staining in control 

embryos and in embryos injected with zBMP4, Nodal or both recombinant proteins. Scale 

bar, 50 µm. f, in situ hybridization of sox2 and foxD5 in animal caps treated with 

cycloheximide, Activin, or both. Scale bars, 200 µm. The number of embryos showing the 

phenotype displayed over the total number of embryos analyzed is indicated on each panel.
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Figure 6. Activin/Nodal signaling is required within the ectoderm for neural induction in 
Xenopus.
a, Expression of chd, sox2 and foxD5 at stage 10 in control embryos and in embryos 

injected with dnAlk4 mRNA in dorsal animal cells. Vegetal view for chd and dorsal view for 

sox2 and foxD5. b, Expression of chd at stage 13 and N-tubulin at stage 15 and 25 in control 

embryos and in embryos injected with dnAlk4 mRNA in dorsal animal cells. Dorsal view for 

chd and N-tubulin at stage 15 and stage 25 (left) and lateral view for N-tubulin at stage 25 

(right). c, Expression of sox2 at stage 10 in control embryos and in embryos injected with 

dnAlk4 mRNA in dorsal animal cells. Noggin recombinant protein was injected in the 

blastocoele at stage 8 to induce neural tissue. Embryos are shown in dorsal view. In all cases, 

embryos were injected with fixable fluorescein lysine dextran and revealed by 

immunostaining (orange). The number of embryos showing the phenotype displayed over 

the total number of embryos analyzed is indicated on each panel. Scale bars, 250µm.
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