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ABSTRACT OF THE DISSERTATION

Learning-Based, Muscle-Actuated Biomechanical Human Animation:

Bipedal Locomotion Control and Facial Expression Transfer

by

Wuyue Lu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Demetri Terzopoulos, Chair

This dissertation explores the frontier of biomimetic virtual human animation. Ap-

plying state-of-the-art machine learning techniques, we develop neuromuscular control

frameworks that significantly enhance the naturalness and realism of simulated human

motions. In particular, we address the challenges of achieving locomotion-based animation

with biomechanical musculoskeletal fidelity and in the transfer of head pose and facial

expressions from images and videos to a muscle-actuated model of the face-head-neck

biomechanical complex. Key technical contributions of the thesis include (1) integration

of Central Pattern Generator (CPG) controllers with a biomechanical body model, which

enables the generation of adaptive and flexible locomotion patterns through reinforcement

learning-based control parameter optimization, and (2) leveraging of the Facial Action

Coding System in a computer-vision-based estimation of facial expressions and their trans-

fer to a 3D face model via the coordinated activation of the muscles of facial expression.

With regard to implementation, the migration of our simulation environments to Nvidia’s

GPU-accelerated Omniverse platform affords improved computational performance and

advanced rendering techniques. By demonstrating the versatility of machine learning

applied to muscle-driven face and body animation, this work advances the exploitation

of biomimetic, physics-based human modeling and simulation in computer graphics and

vision.
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CHAPTER 1

Introduction

Modern computer graphics technologies have yielded graphical characters with increasingly

realistic appearance and human resemblance. Enormous efforts have been devoted in

the pursuit of photo-realistic graphics and, with the support of modern graphic devices

and rendering techniques, this has been successful for static scenes. Especially in the

case of human animation, however, the audience has become increasingly sensitive to the

annoying unpleasantness of even minor imperfections, which researchers have described

as the “Uncanny Valley” phenomenon (Mori et al., 2012) (Figure 1.1).

Consequently, the increasing demand from the modern motion picture and game

industries for visually natural, high-fidelity human characters animated with physically

Figure 1.1: The “Uncanny Valley” phenomenon, illustrating the relationship between
an object’s human likeness and its perceived familiarity or affinity. The graph shows
that as human likeness increases, the perceived affinity increases until a point where it
sharply drops. This valley-like dip is more pronounced for moving objects compared to
still objects. Adapted from (Mori et al., 2012).
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realistic motions has motivated considerable recent research into biomechanical human

modeling and simulation. Meanwhile, massive improvements in computational power

through Graphics Processing Units (GPUs) has enabled the efficient simulation of anatom-

ically accurate, full-body human models with heightened complexity and biomechanical

fidelity, although a trade-off between accuracy and real-time performance is still necessary

for most applications.

This dissertation presents innovative techniques for synthesizing animations of the

human face and body through biomechanical models. Motion capture techniques have long

been the industry standard in human character animation. While offering high motion

fidelity and realism, motion capture has tended to suffer from high equipment costs and

technical complexity (Kitagawa and Windsor, 2020). Furthermore, editing and adapting

pre-recorded motion capture data into dynamic scenarios presents significant challenges

(Salisu et al., 2023; Wade et al., 2022). By contrast, animation through physics-based

simulation can, in principle, provide a wide range of motion on the fly, adapting to

rich scenarios and unique physical constraints. Such adaptability is critical in dynamic

environments such as interactive games or virtual reality, where characters must respond

to unpredictable elements and user input in a lifelike manner. However, replicating human

body movements and facial expressions with biomechanical fidelity, down to individual

skeletal and facial muscle activations, presents significant challenges.

1.1 Scope of the Research

In the pursuit of more natural and realistic character animation, this thesis explores a

fusion of machine learning with muscle-actuated biomechanical simulation and animation

techniques. The main research topics that we pursue are as follows:

• Musculoskeletal Body Control: In the field of full-body musculoskeletal model

control, the objective is to simulate human anatomy and movement with biome-

chanical fidelity. Research in this area is fundamental not only for creating realistic

digital characters or artificial life, but also for advancing prosthetic design and

2



rehabilitation techniques for impaired individuals. A critical trade-off of this topic

is the balance between simulation accuracy and computational efficiency. Despite

the advances in computing power, the complexity of the human body still poses sig-

nificant challenges to parallel computing. This complexity encourages the increasing

integration of state-of-the-art machine learning techniques into this research topic;

e.g., deep learning and reinforcement learning.

• Central Pattern Generators: CPGs are self-organized biological neural circuits

that are fundamental to the control of rhythmic, repetitive motor behaviors, such

as walking, running, and swimming. They are helpful in the biomimetic modeling

of vertebrates, including humans, because of their ability to autonomously generate

periodic signals. Research in this area has two main focuses: the biomimetic

modeling and implementation of CPGs in simulated characters; and fine-tuning

CPG parameters to achieve precise motion control. Traditionally, CPG parameter

tuning has been manual or based on genetic algorithms. However, recent advances

have shifted the focus to machine learning techniques, particularly reinforcement

learning, to optimize these parameters more efficiently and effectively.

• The Face-Head-Neck Complex and Facial Expression: Biomechanical mod-

eling with a focus on the neuromuscular control of the face-head-neck complex, is a

cross-disciplinary domain that combines insights from neuroscience, biomechanics,

and computer graphics. It involves understanding the interactions between the

muscles and neurons that are responsible for human facial expression. Research

into these connections is essential for achieving consistent expression representation

across different simulation environments and scenarios, thus contributing to the

development of digital human characters. Meanwhile, the cross-disciplinary nature

of this field, which requires synthesizing diverse forms of information, highlights the

significant role of machine learning in effectively bridging these gaps.

• Learning-Based Expression Transfer: Transferring facial expressions from

images or videos to face models is a classic challenge in computer graphics. It often

3



involves studying a generalized parametric representation of human facial expressions

and adapting this intermediate representation to 3D face models through mesh

deformation or shape blending. A more biomimetic and natural approach, however,

is to transfer expressions to anatomically accurate musculoskeletal face models. In

this context, the Facial Action Coding System (FACS) Ekman and Friesen (1978);

Cohn et al. (2007) proves to be an effective intermediate representation, which

encodes expressions into distinct action units (AUs), each of which is correlated with

specific coordinated facial muscle activations, thus making it particularly suitable

for expression transfer through facial muscle activation and control.

In short, the scope of the thesis includes biomechanical, muscle-actuated bipedal

human locomotion and facial animation. For the former, we integrate reinforcement

learning into a Central Pattern Generator (CPG) skeletal muscle-control structure, thus

circumventing the need for laborious manual fine-tuning of CPG neurons in traditional

methods. For the latter, we utilize the FACS as an intermediate representation, and

deep learning techniques to effectively transfer facial expressions from images and video

into facial muscle activations that animate a model of the face-head-neck musculoskeletal

complex.

1.2 Contributions

This thesis combines research projects that share a common theme of biomimetic virtual

human modeling and control. Based on earlier PhD thesis research conducted in the

UCLA Computer Graphics & Vision Laboratory (Lee et al., 2009; Nakada et al., 2018),

which first developed a biomechanical model of the face-head-neck complex and, ultimately,

a high-fidelity, full-body biomechanical human musculoskeletal model, our present work

makes several key contributions:

1. We migrate our high-fidelity biomechanical human model to Nvidia’s Omniverse

platform. The model employed advanced hybrid system dynamics algorithms Lee

4



et al. (2009), but was constrained by its limited GPU parallelism. We demonstrate

the improved performance enabled by PhysX, Omniverse’s GPU-friendly multi-body

physics simulation system. We also present new simulation capabilities, such as

soft-body dynamics and simulation. Additionally, the platform’s cutting-edge ray

tracing integration significantly improves our simulations’ graphical performance

and visual realism.

2. We integrate the CPG structure into the model’s neuromuscular control system.

We improve the existing CPG implementation designed for robotics and locomotion

studies and make its parametric representation more suitable for machine learning-

based optimization. By utilizing this biomimetic structure that intrinsically exerts

rhythmic control signals, we establish a foundation for generating natural and

adaptive locomotion patterns.

3. We explore the use of reinforcement learning techniques to optimize the control

parameters of the CPG-based locomotion system. While pure CPG control signals

can effectively actuate motions such as salamander crawling (Ijspeert et al., 2007),

human bipedal motions require additional considerations to maintain balance and

respond to external perturbations. To address this challenge, we propose a novel

architecture that cohesively tunes CPG and reflex control signals. In addition, we

propose a reward design that encourages agents to mimic reference motions while

maintaining natural stepping behaviors. This approach combines the strengths of

both biologically inspired CPG structures and feedback-based reflex control.

4. We introduce a novel framework for animating human facial expressions and head

movements using our biomechanical face-head-neck model Lee and Terzopoulos

(2006). Our framework features a controller that efficiently translates human facial

expressions into the intermediate representation of FACS AUs. It then maps these

to the activations of muscle actuators that drive the biomechanical model. Our

approach is versatile and can be adapted to any muscle-driven facial model.

5



1.3 Thesis Overview

The subsequent chapters of this dissertation are as follows:

In Chapter 2, we review related work published in the existing literature.

In Chapter 3, we introduce our biomechanical human musculoskeletal model and

explain the underlying control systems.

In Chapter 4, we present the design and implementation of the Central Pattern

Generator for human locomotion control, accompanied by extensive experiments and

discussions.

In Chapter 5, we discuss our work on deep learning-based human facial expression

transfer, emphasizing the biomechanical plausibility of our approach.

In Chapter 6, we present our conclusions and discuss promising avenues for future

work.

6



CHAPTER 2

Related Work

Our work represents a cross-disciplinary research endeavor that integrates insights from

multiple fields, including biomechanical modeling, neuromuscular control, facial anima-

tion, and machine learning. In this chapter, we examine the relevant techniques and

advancements in each of these areas, emphasizing their relevance to our research and

explaining the major challenges researchers face.

2.1 Biomechanical Human Modeling and Simulation

Biomechanical modeling and simulation of the human body have gained significant atten-

tion in the field of computer graphics, with researchers focusing on creating anatomically

accurate representations of the human body and its motions. The musculoskeletal system

(Nordin, 2020), which accounts for the dynamics of bones and muscles, has been a primary

target of human modeling that is relevant to this dissertation. Such models have evolved

from early efforts in modeling specific body parts, such as the hand (Sueda et al., 2008;

Van Nierop et al., 2008; Tsang et al., 2005), torso (DiLorenzo et al., 2008; DiLorenzo,

2009), face (Sifakis et al., 2005; Kähler et al., 2002; Lee et al., 1995), and neck(Lee and

Terzopoulos, 2006), to more comprehensive full-body models (Rajagopal et al., 2016; Si

et al., 2014; Nakada et al., 2018; Lee et al., 2019; Zhou, 2019).

State-of-the-art biomechanical models have achieved remarkable complexity and

anatomical fidelity, enabling the simulation of a wide range of human movements and fea-

tures, from subtle facial expression control (Lee and Terzopoulos, 2006) to complex motions

that involve the whole body (Song et al., 2021). For example, Si et al. (2014) developed
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a comprehensive full-body musculoskeletal model incorporating more than 800 muscle

actuators and dynamic soft tissue simulation that exhibited realistic locomotion-based

swimming patterns in a simulated fluid environment, and Lee et al. (2019) implemented

a full-body musculoskeletal model comprising 346 muscles that produced realistic human

motions, including walking, running, and jumping.

These models often utilize advanced physics simulation techniques, such as Feather-

stone’s algorithm (Featherstone, 2014) and Rosenbrock methods (Van Den Bogert et al.,

2011), to compute the dynamics of the musculoskeletal system efficiently. However, the

increasing complexity of these models poses challenges in achieving real-time performance

(Phinyomark et al., 2018) or generating large amounts of data for machine-learning pur-

poses. Our research constantly faces the dilemma of biomechanical fidelity and sample

efficiency, and the main chapters in this thesis will explain our strategy to balance them

under different circumstances.

2.2 Learning-Based Neuromuscular Control

Neuromuscular control of biomechanical models uses biomimetic approaches to replicate

the neurofeedback and muscular responses observed in the human body. Pioneering in

this field, the early work by Lee and Terzopoulos (2006) utilized neuromuscular learning

methods to control a biomechanical model of the human neck-head complex driven by a

total of 72 Hill-type muscles. They employed traditional artificial neural networks trained

offline through backpropagation to map target head orientations to muscle activations

required to achieve those orientations in physical simulation subject to gravity and other

external forces. While this conventional neural network design, consisting of only a few

hidden layers, can effectively handle a limited number of dimensions, it struggles to cope

with higher dimensionalities. Their subsequent work (Lee et al., 2009) extended this

control scheme to the entire upper human body but still faced challenges due to the

limitations of machine learning at the time.

Over the recent decades, the field of machine learning has seen substantial advance-

8



ments. Deep learning techniques, such as deep reinforcement learning (DRL), convolutional

neural networks (CNNs), and recurrent neural networks (RNNs), have proven effective in

handling high-dimensional data and capturing complex patterns (LeCun et al., 2015). Re-

searchers have explored these new learning architectures and approaches to neuromuscular

control (Nakada et al., 2018; Zhou, 2019). Peng et al. (2018) and Lee et al. (2019) utilized

deep reinforcement learning to train policies that generate intermediate representations of

desired local poses. Furthermore, Nakada et al. (2018) employed vision-based CNN models

for biomimetic eye control, demonstrating the potential of deep learning to integrate

sensory information for sensorimotor control.

Deep learning models are often considered “black boxes” due to their complex ar-

chitectures and large numbers of trainable parameters. This lack of interpretability can

impede the trust and adoption of these models in critical applications, such as medical

analysis and rehabilitation (Tjoa and Guan, 2020; Holzinger et al., 2019). One approach

to overcome this drawback is to incorporate domain knowledge into the architecture. For

instance, Jiang et al. (2019); Peng and Van De Panne (2017) integrated physiological

constraints and state-dependent torque limits into the deep reinforcement learning to

improve naturalness. In a similar manner, our approach incorporates a biomimetic struc-

ture, Central Pattern Generators (CPGs), into our learning procedure, adding intrinsic

naturalness and biomechanical realism to the learned movements.

2.3 Central Pattern Generator

Central Pattern Generators (CPGs) are neural networks capable of producing rhythmic

patterns without sensory feedback, making them particularly useful for simulating and

controlling intrinsic rhythmic movements, such as walking or swimming, in biomechanical

models (Ijspeert, 2008). CPGs have been widely used to model locomotion in lower-level

organisms, such as reptiles, and the basic locomotive patterns in higher-level ones, such

as mammals. For example, Ijspeert et al. (2007) presented a salamander robot that was

driven by a CPG-based spinal cord model together with PD controllers.
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In the context of human locomotion control, CPGs have been employed to generate

stable and natural walking patterns for bipedal models. Taga (1995) built a musculoskeletal

model of eight links and twenty muscles, which were simulated in two dimensions and

driven by seven pairs of neural oscillators. This model demonstrated the emergence of

basic walking gaits with muscle force patterns aligned with measured EMG reference.

Additionally, the human swimming locomotion model developed by (Si et al., 2014)

also utilized the CPGs but in a different manner, where the generated cyclic signals

represent the desired muscle lengths over time, and the muscle activations are calculated in

accordance with the biomechanical Hill-type muscle modeling. However, the integration of

CPGs with high-dimensional, muscle-actuated biomechanical models remains a significant

challenge due to the inherent complexity of the neuromuscular control problem (Dzeladini

et al., 2018).

Our research explores the integration of CPGs with deep reinforcement learning

techniques to enable the control of complex biomechanical models for human locomotion.

By leveraging the intrinsic naturalness brought by CPGs, we aim to develop a flexible and

robust framework for generating stable and adaptable walking patterns in high-dimensional,

muscle-actuated models.

2.4 Facial Animation and Expression Transfer

Facial animation has been a long-standing challenge in computer graphics. While tech-

niques such as mesh deformation and texture animation are capable of animating simple

facial expressions (Parke, 1972; Waters, 1987), incorporating physics simulation and

neuromuscular control into the face model enhances anatomical realism and transferability.

Pioneering works, such as those of Sifakis et al. (2005) and Lee and Terzopoulos (2006),

constructed anatomically accurate face models driven by muscle activations. However,

their systems require extensive manual setup and parameter tuning due to the complexity

of facial soft-tissue structures. Moreover, such methods often rely on reference motion

capture data from specialized devices, which can be a limitation.
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To address these challenges, recent work in the field has explored data-driven ap-

proaches. For instance, Weise et al. (2011) and Li et al. (2013) introduced a facial

performance capture framework based on an adaptive PCA model, which achieves real-

time performance and is free of manual calibration. Similarly, Edwards et al. (2016)

developed JALI, which achieves expressive lip synchronization through an animator-centric

viseme model. Many researchers also utilized the Facial Action Coding System (FACS)

(Ekman and Friesen, 1978) as an intermediate representation, encoding facial expressions

and head poses as a vector of Action Units (AUs).

Our research focuses on developing a deep learning-based approach for facial expression

transfer that can map facial expressions from 2D images or videos to a 3D biomechanical

model of the face via neuromuscular control. Unlike many recent works following an end-

to-end design trend, we incorporate domain knowledge to ensure biomimetic naturalness.

2.5 Deep Reinforcement Learning in Character Animation

Deep reinforcement learning (DRL) has proven to be a powerful tool for learning complex

control policies in high-dimensional environments (Schulman et al., 2017). In the context

of character animation, researchers have applied DRL to learn locomotion skills for

both bipedal and quadrupedal characters (Peng et al., 2016, 2017), enabling characters

to interact with complex environments. For instance, Peng et al. (2018) introduced

DeepMimic, a DRL-based framework that leverages reference motion data to guide the

learning process. Moreover, Merel et al. (2019) discussed the hierarchical motor control

in mammal models, arguing that biomimetic hierarchical structures benefit the learning

of complex and sophisticated motor skills.

However, the application of DRL to muscle-actuated biomechanical models remains

a challenge due to the high dimensionality of the action space and the difficulty in

defining suitable reward functions. Lee et al. (2019) addressed this challenge by proposing

a scalable, two-level imitation learning algorithm. In their approach, an upper-level

trajectory mimicking module outputs the desired joint angles, while a lower-level muscle
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coordination module determines the muscle activations required to achieve them.

Our research investigates the integration of DRL with CPGs and neuromuscular control

to learn stable and adaptable locomotion controllers for high-dimensional, muscle-actuated

biomechanical models, leveraging the strengths of hierarchical learning and biomimetic

structures.
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CHAPTER 3

Biomechanical Simulation and Control

This chapter covers the simulation fundamentals of our virtual human body model,

including musculoskeletal simulation for full-body models and the soft-tissue simulation

techniques for facial expressions.

3.1 Overview

We build our biomechanical human model upon two primary layers for physics simulation:

an articulated rigid-body system representing the skeleton and a refined version of the

Hill-type muscle system (Zajac, 1989) for actuation. Together, these components form

an anatomically accurate musculoskeletal simulator. The geometric data for our model

are derived from The Ultimate Human model, a comprehensive commercial 3D human

anatomy model designed for educational and medical purposes, ensuring high anatomical

fidelity and realism.

In addition to the skeletal and muscular systems, our model also simulates soft tissue

and skin, adding another layer of realism. The geometry of these soft tissues is influenced

by, and in turn influences, the underlying skeletal and muscular systems. Accordingly, this

thesis focuses on applying this layer to the simulation and learning of facial expressions.

Figure 3.1 shows the musculoskeletal simulation of the latest full-body model with

additional complexity on the right hand, modeled and rendered in the Nvidia Omniverse

framework. We can modify the complexity of each body part according to different

purposes and applications. The majority of our experiments are conducted using the

full-complexity model without the extended muscle actuators on the hands.
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(a) Frontal view of full-body (b) Dorsal view of full-body

(c) Frontal view of right hand (d) Top-down view of right hand

Figure 3.1: Comprehensive anatomical renderings of our virtual human model’s skeletal
and muscular systems. Frontal (a) and dorsal (b) views are color-coded to delineate
muscle groups. Close-up views of the right hand (c, d) detail the additional complexity of
the musculoskeletal structure.

In our simulation, the skeletal system not only shapes the model’s rendering and

physical properties but also interfaces dynamically with the muscle system and soft

tissue. Control agents, such as reflex controllers and Central Pattern Generators (CPGs),

dynamically adjust muscle activations in response to sensory feedback and temporal

signals. Subsequent sections will explore these interactive layers in depth, extensively

referencing existing literature (Lee et al., 2009; Lee and Terzopoulos, 2006) and our

investigations on facial models (Zeng et al., 2021a,b).
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(a) Frontal view (b) Dorsal view

Figure 3.2: The bones are colored according to the DOF types of their connected joints.
Ball joints (3 rotational DOFs) are colored blue; universal joints (2 rotational DOFs) are
colored green; and revolute joints (1 rotational DOF) are colored red.

3.2 Musculoskeletal Simulation

3.2.1 Skeletal System

The biomechanical human model’s skeleton is represented by an articulated multi-body

system consisting of 103 rigid bone links, each of which has unique physical properties.

These bones are configured with mass, inertia, and joint kinematic constraints derived from

the aforementioned anatomical reference and geometrical model data. The skeletal system

includes joints with appropriate rotational degrees of freedom (DOFs). For example, the

cervical spine consists of seven stacked vertebrae that have 3-DOF rotational motion at the

joints, while the ribs and costal cartilages have more constraints. Figure 3.2 categorizes

the bones by their joint types using a color scheme.

The equations of motion of the skeleton system are written as

M(q)

q̈m

q̈p

+ C(q, q̇) = P(q)

f c

0

+ JTf e, (3.1)
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where qm and qe refer to the generalized coordinates of the joints that are torque-driven

and passive, respectively, q̇ and q̈ are the joint velocities and accelerations, and M(q)

is the mass matrix, C(q, q̇) accounts for the Coriolis forces and centrifugal forces from

the motion, together with the force from connecting tissues and muscle parallel elements

(f p). On the right-hand side of the above equation, f c represents the contractile muscle

force generated by muscles with efferent activation inputs, and P(q) is the moment arm

matrix that maps these muscle forces to joint torques. The computation technique for the

moment arm matrix is introduced in (Gonzalez et al., 1997). Finally, f e is the external

forces, and J is the Jacobian matrix that maps them to torques.

Physically, the first term on the right-hand side of Equation 3.1 encapsulates the total

force generated by the internal muscular system. The second term accounts for external

influences such as gravity, support from surfaces, and interactions with objects or other

environmental factors. By shifting the Coriolis force component C(q, q̇) to the right and

rearranging terms, we streamline the equations as follows:

q̈ = ϕ(q, q̇, τ ), (3.2)

where τ includes the joint torques resulting from muscle and external forces.

Following the approach proposed by (Lee et al., 2009), forward dynamics is used to

compute ϕ by calculating q̈ from the generated joint torques. We then apply the implicit

Euler time integration method to determine the velocity term q̇(t + ∆t) at the next time

step, which involves solving:

q̇(t + ∆t) − q̇(t) = ∆tϕ (q(t + ∆t), q̇(t + ∆t), τ ) . (3.3)

Despite the presence of variables at the next time step on the right-hand side, the

problem may be simplified using a first-order approximation, allowing us to reformulate
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the equations as follows:

δq̇ = ∆t

[
ϕ(q(t), q̇(t), τ ) +

∂ϕ

∂q
δq +

∂ϕ

∂q̇
δq̇

]
= ∆t

[
ϕ(q(t), q̇(t), τ ) +

∂ϕ

∂q
∆t(q̇(t) + δq) +

∂ϕ

∂q̇
δq̇

]
.

(3.4)

Thus, with the joint velocities for the next time step computed, we can proceed to calculate

the joint angles at the next time step using an explicit Euler time integration.

3.2.2 Muscle System

The Hill-type muscle model, first proposed by (Hill, 1938), is a fundamental component

in biomechanical modeling. It provides a concise but effective representation of muscle

mechanics by assuming that there are two primary sources of muscle force: the parallel

element (PE), which passively generates a restoring force fp due to the material elasticity

of the muscle, and the contractile element (CE), which actively generates a contractile

force fc in response to motor neuron excitation. The total muscle force is fm = fp + fc.

More details of this popular model are presented by Ng-Thow-Hing (2001) and Winters

(1990).

We use a modified version of the Hill-type muscle model for our biomechanical virtual

human, which is a good balance of biomechanical accuracy and computational efficiency.

We represent the passive element (PE) as a uniaxial exponential spring, given by the

following equation:

fp = max
(
0, ks

(
ekce − 1

)
+ kdė

)
, (3.5)

where ks and kc are the elastic coefficients, and kd is the damping coefficient. The strain

e is defined as e = (l − l0)/l0, where l denotes the current muscle length and l0 denotes

the slack muscle length. The strain rate ė is given by ė = l̇/l0.

Obviously, only the state of the muscle system determines the passive element force

fp. Therefore, in Equation 3.1 we treat the passive element as part of C(q, q̇) instead of

the input part on the right.
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Figure 3.3: Relationship between total muscle force and stretch ratio in the Hill-type
muscle model. The total muscle force reaches its maximum and then decreases following
the active force (the contractile element), but then grows rapidly following the passive
force (the parallel element). Plot from (Wisdom et al., 2015).

The contractile element (CE), on the other hand, is proportional to the activation

level of the muscle and can be formulated as:

fc = aFl(l)Fv(l̇), (3.6)

Fl(l) = max (0, kmax(l − lm)) , (3.7)

Fv(l̇) = max
(

0, 1 + min(l̇, 0)/vm

)
, (3.8)

where a ∈ [0, 1] is the muscle activation level, and Fl and Fv are the force-length relation

and force-velocity relation, respectively.

The plots of the two relations are presented in Figure 3.4, and additional details

about the parameter settings and the biomechanical background are given by Lee and

Terzopoulos (2006). In brief, kmax is the maximum stiffness of a fully activated muscle,

lm is the minimum length at which the muscle can produce force, and vm is the velocity

threshold under which the contractile force can be exerted.
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(a) force-length relationship (b) force-velocity relationship

Figure 3.4: Plots illustrating the force relationships of the Hill-type muscle model.
The force-length relationship (a) shows the proportional force increase with muscle
length beyond the minimum muscle length lm, while the force-velocity relationship (b)
demonstrates the inverse relationship between force output and contraction velocity.

In most of our experimental configurations, we set the coefficient kc to 7 for all muscles,

and lm is set to l0/2 and vm to l0 s−1. The coefficients related to muscle stiffness, such as

ks, kd in the passive element (PE) and kmax in the contractile element (CE), are scaled to

be proportional to the strength of each muscle, which is approximated by the physiological

cross-sectional area (PCSA) of the muscle geometry. A detailed table regarding these

weights is found in (Lee et al., 2009).

As shown in Figure 3.1, the full-body musculoskeletal structure consists of a total of

850 muscles with more than 2,500 force points. Depending on the specific use case, only

a portion of the muscles in the area of interest will be enabled. In the bipedal motion

experiments, we focus on the lower body and enable 78 muscles to capture the necessary

details for high-fidelity simulations. On the other hand, our facial expression transfer

experiments utilize the face-head-neck complex subset of the musculoskeletal model, as

illustrated in Figure 3.5. This subset comprises 72 active cervical muscles that control

the orientation of the head and face.
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(a) Neck skeletons (b) Deep muscles

(c) Intermediate muscles (d) Superficial muscles

Figure 3.5: Detail of the musculoskeletal structure of the face-head-neck complex as
specified in (Lee and Terzopoulos, 2006). (a) The red dots represent the pivots of the
eight cervical vertebrae (C1-C7) and the skull. The neck muscle system consists of (b) 48
deep muscles, (c) 12 intermediate muscles, and (d) 12 superficial muscles.
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Figure 3.6: The triangular prism elements in the layered synthetic tissue model. The
skin is made up of four layers—epidermis, dermis, sub-cutaneous connective tissue, and
fascia—together with the fifth layer that includes the muscles of facial expression. Figure
from (Lee et al., 1995).

3.3 Facial Soft Tissue

We adopt the physics-based facial tissue model introduced by Lee et al. (1995) for

experiments requiring soft tissue simulation for delicate facial expression animation.

In this scheme, a structured generic face mesh is adapted to the laser-scanned facial

images using a feature-based deformable model matching algorithm that fits the mesh

to the labeled facial contours. This captures the facial geometry and provides texture

coordinates for mapping the color image onto the mesh triangles. As a result, the

reconstructed face mesh represents the relaxed, neutral expression as the base.

To dynamically simulate facial expressions, the original scheme constructs a layered

synthetic tissue model consisting of the epidermis, dermis, sub-cutaneous connective

tissue, and fascia layers. The tissue model is composed of triangular prism elements that

match the adapted facial mesh triangles, with the nodes of each layer connected by spring
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structures, as illustrated in Figure 3.6. In addition, synthetic muscle actuators (linear and

piecewise linear) are embedded in the muscle layer and contribute to skin deformation

through their contractions.

The physical simulation of the muscle-actuated facial skin model is implemented as a

discrete deformable model (DDM), where a network of fascia nodes is connected using

uniaxial springs. The force exerted from spring j on node i is given by

gj
i = cj(lj − lrj )sj, (3.9)

where lj and lrj are the current and resting lengths of spring j, respectively, and sj =

(xj−xi)/lj is the spring direction vector. The coefficient cj is the stress-strain relationship,

and each layer has its own value.

The underlying synthetic muscle fibers also actuate the facial skin model. The force

f j
i exerted from muscle j on node i is calculated according to the length scaling function

Θ1 and the muscle-width scaling function Θ2 as follows:

f j
i = Θ1(εj,i)Θ2(ωj,i)mj, (3.10)

where mj is the normalized muscle vector for muscle j; Θ1 scales the force according

to the distance ratio εj,i = ρj,i/dj, with dj the muscle length; and Θ2 scales the force

according to the width ratio ωj,i/wj, with wj the muscle width.

Figure 3.7 demonstrates the simulated facial model integrated with the face-head-neck

biomechanical complex. The structured facial soft-tissue mesh is attached directly to the

skull’s surface, with the underlying face-head-neck system driven by the Hill-type muscle

actuators, which we have detailed in Section 3.2.2. To improve simulation efficiency, we

decouple the muscle influences on soft tissue deformation from the articulation within the

rigid body system.
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(a) Musculoskeletal system with
eye and teeth models.

(b) Layered facial tissue model at-
tached to the skull.

(c) High-fidelity facial texture ap-
plied.

(d) Neuromuscular control for ex-
pressions and face orientation.

Figure 3.7: An overview of the neuromuscular simulation and control of the facial model.
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3.4 Neuromuscular Control Frameworks

Exploring the capacity of neuromuscular control in biomechanical simulations requires

robust and versatile frameworks. In our research, we leverage three such systems, each

selected for its unique capabilities and advantages to specific experimental needs. This

section delves into the characteristics of each framework—the “Heads Up” neuromuscular

simulation and control framework for facial expressions, an OpenSim-based framework for

prototyping reinforcement learning concepts in locomotion, and the modern Omniverse

framework powered by the PhysX physics simulator for enhanced computational speed

and scalability. We will discuss their implementation, advantages, and the limitations we

encountered, providing insight into the evolving demands of computational biomechanics.

3.4.1 The “Heads Up” Face-Head-Neck Neuromuscular Framework

For facial expression simulation and transfer experiments, we adopted an improved version

of the “Heads Up” face-head-neck neuromuscular simulation framework introduced in (Lee

and Terzopoulos, 2006). This framework is implemented in native C++ and integrates

the skeletal, muscular, and facial soft-tissue structures previously discussed. Leveraging

Featherstone’s algorithm and backward Euler time integration, it facilitates semi-real-time

animation of the face-head-neck complex on ordinary computing hardware, making it

particularly suitable for our learning-based expression transfer experiments.

While effective for facial simulations, one of the limitations of this framework is its

computational efficiency when extending to more complex body models. Several works,

such as (Si et al., 2014), (Zhou, 2019), and (Nakada et al., 2018), have extended this

framework to full-body biomechanical virtual human models. Figure 3.8 shows an example

of such extension. However, these full-body simulations operate significantly slower than

real-time, especially when inverse dynamics-based reflex control is enabled. The root

cause of this efficiency issue lies in the framework’s inability to parallelize computations,

therefore confining the simulation on the CPU in a single-thread manner.

As computational hardware techniques advance, physical simulation frameworks are
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Figure 3.8: The full-body extension of the “Heads Up” face-head-neck neuromuscular
framework introduced in (Zhou, 2019). In this example, the human model stands up from
a seated position on the chair and remains standing through muscle activation control.

increasingly optimized for parallel computing devices such as GPUs.

3.4.2 OpenSim-Based Neuromuscular Framework

To investigate the potential of reinforcement learning for tuning the CPG controller for

human locomotion, with a particular focus on bipedal locomotion, we used a modified

implementation from the “Learn to Move” challenge of the NeurIPS 2019 competition

track (Kidziński et al., 2018), which is based on OpenSim (Seth et al., 2018). OpenSim

provides a powerful platform for studying neuromuscular systems, and the “Learn to

Move” framework builds on this foundation by incorporating a convenient interface for

reinforcement learning. This allows us to leverage the biologically realistic modeling

provided by OpenSim while seamlessly integrating it with state-of-the-art reinforcement

learning techniques. The framework uses a simplified full-body skeleton without arms and

removes the upper body degrees of freedom, as shown in Figure 3.9, making it lightweight
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(a) Simplified model (b) Simulation in OpenSim

Figure 3.9: The OpenSim-based simulation framework with a simplified full-body model.
The skeleton and muscles are shown in (a). Tthe arms are omitted to reduce complexity
and computational load. (b) A simulation of the model stepping forward, with muscle
activation levels indicated by color (red represents high activation; blue represents low
activation).

in terms of memory consumption and computational load. As a result, we can speed up

the data acquisition for the reinforcement learning procedure via multi-processing.

As for its limitations, compared to our model geometry, the Learn to Move framework

has fewer lower body muscles and uses an oversimplified rigid body collision model for both

internal interactions within the human body and external interactions with the ground.

In addition, while the sampling efficiency is sufficient for multiprocessing reinforcement

learning on CPUs, the framework does not currently take advantage of the computational

power of GPUs. This leaves a bottleneck in terms of CPU performance and kernel count.

3.4.3 Omniverse With the PhysX Simulation Framework

To overcome the limitations of previous frameworks and take advantage of the latest

advances in GPU-accelerated physics simulation, we explored NVIDIA’s Omniverse

platform with the PhysX simulation engine. Omniverse provides a unified environment for

creating, simulating, and visualizing complex virtual worlds through an extension-based

ecosystem. In particular, we used Isaac Sim, a powerful tool designed for physically
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(a) Simplified model (b) Simulation in Omniverse Issac Sim

Figure 3.10: (a) The simplified human musculoskeletal model used in our reinforcement
learning-based CPG control task, with arms removed and reduced degrees of freedom in
the upper body. (b) A total of 512 instances of the model are simulated simultaneously in
NVIDIA Omniverse Isaac Sim, enabling efficient trial and error for reinforcement learning.

accurate robotics simulation and synthetic data generation (NVIDIA Corporation, 2023).

However, we discovered that Isaac Sim’s capabilities extend beyond its primary domain,

making it well-suited for our neuromuscular simulations for virtual human models.

We migrated our high-fidelity human model into the Isaac Sim environment and

simplified it for our reinforcement learning-based CPG control task. As illustrated in

Figure 3.10, to improve computational efficiency similar to the approach described above,

we removed the arms and reduced the degrees of freedom in the upper body. Isaac Sim’s

native support for the Gym interface allows for seamless integration with reinforcement

learning algorithms. Moreover, Isaac Sim’s scalability, powered by the GPU-accelerated

PhysX engine, enables the simultaneous simulation of hundreds or even thousands of

instances of the model. Each instance serves as an independent learning agent, facilitating

efficient exploration and learning. We leverage the computational capability of an NVIDIA

RTX 4070 GPU with 12GB of RAM to achieve this level of parallelism.
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CHAPTER 4

CPG-Based Bipedal Locomotion Control

This chapter investigates the synergistic combination of Central Pattern Generators (CPGs)

and reinforcement learning techniques to achieve muscle-level locomotion control in a

virtual human model. We formulate our problem as a model-free reinforcement learning

task and detail our methodology, which includes a dynamical system-based representation

of CPGs, multiple state-of-the-art deep reinforcement learning algorithms, and various

experimental setups optimized for hardware-accelerated performance. Subsequently, we

conduct extensive experiments and present a detailed analysis of our results.

4.1 Overview

Locomotion control for neuromuscular human models presents significant challenges,

particularly when employing muscle activation-based control. Traditional optimization

methods, such as inverse dynamics, can estimate the desired torque and muscle activation

over time with the help of reference motion or retroreflective (infrared) markers (Sylvester

et al., 2021). However, the human body has biological redundancy, resulting in an

indeterminate system of physics-based equations due to the presence of more muscles

than necessary to actuate joint movements. This makes it challenging to determine the

optimal muscle activation patterns. Additionally, the muscle activation results computed

from optimization algorithms are not necessarily biomimetic, may not guarantee natural

motions, and struggle to adapt to changes in the environment.

Recent advances in deep learning have inspired researchers to address these challenges

through imitation learning, where a controller is trained to mimic captured reference
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Figure 4.1: Overview of our proposed control framework for integrating deep reinforce-
ment learning with a Central Pattern Generator (CPG) to enable adaptive and flexible
locomotion control for a simulated environment. The learning agent receives observations
and dispatches them to the CPG Tuner and Reflex Controller networks. The CPG Tuner
outputs modulation signals φ and ρ to fine-tune the phase and amplitude of the CPG
Controller, which generates rhythmic patterns of muscle activations acpg. These patterns
are combined with reflex control signals areflex to produce the final muscle activation
signals for the simulated virtual human model.
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data or expert behavior. However, the controller may exhibit poor generalization to

new environments and tasks that deviate from the training data. While the generated

motions appear human-like, they are not necessarily optimized for the dynamics of the

musculoskeletal model, as mentioned in (Song et al., 2021).

Deep reinforcement learning, on the other hand, has shown potential for dynamic

and generalizable locomotion control. It allows controllers to refine their actions through

direct interaction with the physical simulation environment, optimizing their behavior

for the given task and dynamics in a more robust and adaptive manner. Due to the

high-dimensional control space and local optima, controllers trained from scratch with

deep reinforcement learning may converge to unnatural, inefficient gaits that are not

human-like, even if they accomplish the task and maximize the reward. In addition, the

computational requirements of deep reinforcement learning are substantial.

We propose a sophisticated methodology for constructing and training a locomotion

controller that synergistically combines deep reinforcement learning with the traditional

biomimetic approach of the Central Pattern Generator (CPG). Our focus is on bipedal

locomotion control, such as walking and running. In our methodology, we first utilize

expert behaviors to initialize the CPG parameters, allowing the human model to generate

cyclic and naturally coordinated stepping movements via muscle activations. Deep

reinforcement learning is then used to fine-tune the behavior of the CPG. Our approach

enables the controller to produce stable and natural gaits that are capable of efficiently

performing various tasks in dynamic simulation environments. Figure 4.1 presents an

overview of our method.

In the following sections, we explain the methodologies underlying each component of

our framework. This discussion is intended to provide a comprehensive understanding

of the fundamental elements of our approach, emphasizing their collective contribution

towards realizing adaptive and biomimetic locomotion control in virtual human models.

30



4.2 Central Pattern Generator

Central Pattern Generators (CPGs) are neuronal circuits typically located in the vertebrate

spinal cord or brain stem area. These circuits play a crucial role in controlling various

rhythmic motor patterns in mammals, such as breathing, swimming, and walking. The

ability of CPGs to generate rhythmic signals without requiring rhythmic input has made

them an attractive concept for robotics researchers seeking to replicate natural locomotion

patterns.

4.2.1 Dynamical System Formulation

The CPG controller in our framework is implemented based on a nonlinear dynamical

system introduced by (Gams et al., 2009). The system is designed to learn and encode

periodic signals without prior knowledge of their frequency and waveform. Additionally,

it modulates the learned periodic patterns in response to external events. The system

consists of two main components: the Canonical Dynamical System (CDS), responsible

for extracting the fundamental frequency of the input signal using adaptive frequency os-

cillators, and the Output Dynamical System (ODS), responsible for learning the waveform

using a locally weighted regression (LWR) algorithm.

For clarity, we demonstrate the nonlinear dynamical system in a single degree of

freedom (DOF). The trajectory y, which represents the output signal of our CPG,

oscillates around the anchor point g based on the pattern determined by the following set

of differential equations:

ż = Ω

(
αz(βz(g − y) − z) +

∑N
i=1 Ψiwir∑N

i=1 Ψi

)
, (4.1)

ẏ = Ωz, (4.2)

Ψi = exp(h(cos(Φ − ci) − 1)). (4.3)

Here, z(t) is an intermediate variable that describes the first derivative of the trajectory
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y. The variable Φ denotes the phase of the signal, which is based on the fundamental

frequency Ω provided by the Canonical Dynamical System (CDS). For periodic motions

like walking, we can specify Ω as a constant, such as 2π
T

, where T is the period of the

motion cycle determined by the reference motion or specified by the task. The positive

constants αz and βz (both (Gams et al., 2009) and (Si et al., 2014) set them to αz = 8 and

βz = 2) ensure critical damping and monotonic variation of the system around the anchor

point g. The number of Gaussian-like periodic kernel functions Ψi is denoted by N , and

h determines the width of these kernel functions. We set N = 25 and h = 2.5N for all

our simulations, and ci are equally spaced between 0 and 2π in N steps. The amplitude

control parameter is r, which we initially set to 1.0.

4.2.2 Reference-Based CPG Pattern Learning

The trajectory pattern of the CPG within a full cycle is determined by the kernel weights

wi, and to initialize the weights based on reference data (denoted as ydemo), we can employ

Incremental Locally Weighted Regression (ILWR) (Vijayakumar and Schaal, 2000), which

minimizes the quadratic error criterion

Ji =
P∑
t=1

Ψi(t) (ftarg(t) − wir(t))2 , (4.4)

where t denotes the discrete time step, P denotes the number of time steps, which could

be finite or infinite, and the target data points are formulated as

ftarg =
1

Ω2
ÿdemo − αz

(
βz(g − ydemo) −

1

Ω
ẏdemo

)
. (4.5)

According to (Gams et al., 2009), the regression could either be performed as a

batch regression or as incremental minimization of the error criterion Ji with a stream of

reference signal over time. Since the reference motion we use may present perturbations

and noise in different cycles, we prefer the latter as do the original authors. Specifically,
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given the target data ftarg(t) and r(t), the kernel weights wi are updated iteratively by

wi(t + 1) = wi(t) + ΨiPi(t + 1)r(t)er(t), (4.6)

Pi(t + 1) =
1

λ

(
Pi(t) −

Pi(t)
2r(t)2

λ
Ψi

+ Pi(t)r(t)2

)
, (4.7)

er(t) = ftarg(t) − wi(t)r(t). (4.8)

In these equations, Pi is the inverse covariance matrix introduced by (Ljung and Söderström,

1983), λ is the forgetting factor, and er is the weight learning error. The incremental

optimization process starts with wi = 0 and Pi = 1. When the forgetting factor λ is set

to 1, batch learning regression and incremental learning regression will obtain the same

weights wi for the same training set. However, when the forgetting factor is less than 1,

incremental regression will give more weight to the most recent data, effectively tending to

forget older data. We set this factor ranging from 0.95 to 0.99 based on different sources

of reference motions. Figure 4.2 demonstrates an example of the learning procedure with

the above method.

4.2.3 Modulation of the CPG Signals

As shown in Figure 4.1, our trained CPG acts as a separate controller that outputs muscle

activation signals (acpg) that directly actuate the muscles in our simulated environment.

The policy does not determine the phase or pattern of the CPG directly but uses

intermediate modulation signals (φ and ρ) to tune the CPG controller.

The frequency multiplier φ (ranging from 0.25 to 1.75 in most of our experiments)

will modulate the phase velocity of the CPG, and the amplitude multiplier vector ρ with

each ρi ranging from 0 to 1.0 will modulate the strength of each muscle activation signal.

In other words, φ is applied to Ω and ρi is applied to wi. The modulated version of
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(a) Changing of kernel weights

(b) Value of kernel functions over time

(c) Learned signal and the reference

Figure 4.2: An example of the learning procedure of the trajectory pattern using Incre-
mental Locally Weighted Regression (ILWR). The modification of the kernel weights and
kernel function values over time is demonstrated in (a) and (b). In (c), the dashed orange
line is the reference signal to learn, the dotted blue line is the output signal during the
learning process, showing the current learned pattern at each time step, and the solid
green line represents the final learned signal after the learning procedure converges.

34



Equation 4.1 may be expressed as

ż = Ωtuned

(
αz(βz(g − y) − z) +

∑N
i=1 Ψiwiρir∑N

i=1 Ψi

)
, (4.9)

where the modulated fundamental frequency is

Ωtuned = (1 + φ) × Ωoriginal. (4.10)

4.3 Deep Reinforcement Learning

Reinforcement learning (RL) is a framework for learning and decision-making in which

an agent interacts with an environment and learns to maximize a cumulative reward

signal through trial and error. Our proposed locomotion control scheme employs deep

reinforcement learning algorithms to optimize a policy that modulates and adapts the

Central Pattern Generator (CPG) controller to maintain stable motions in complex

scenarios.

As shown in Figure 4.1, our reinforcement learning agent optimizes a policy consisting of

two neural networks: the CPG Tuner and the Reflex Controller. The CPG Tuner outputs

modulation signals to adjust the CPG controller, while the Reflex Controller generates

muscle activation adjustment signals in response to the environment. These networks

are parameterized by deep neural networks, allowing the agent to learn sophisticated

locomotion behaviors from high-dimensional observations and adapt to diverse tasks and

dynamic environments.

The reinforcement learning framework may be formalized as a Markov decision process

(MDP) consisting of the following components (Arulkumaran et al., 2017):

• A series of states st ∈ S representing the status or configuration of the environment

over time. At the beginning, the RL agent samples an initial state according to the

distribution of the start state s0 ∼ p(s0).
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• A series of actions at ∈ A denoting how the agent reacts to the environment, which

are sampled from its policy at ∼ π(at|st).

• Transition dynamics T (st+1|st,at) that describe how the environment evolves from

one state to another based on the agent’s actions, i.e., st+1 ∼ T (st+1|st,at).

• A reward function R(st,at, st+1) that determines the rewards rt received by the

agent, serving as the optimization target of the policy.

• A discount factor γ ∈ [0, 1] that determines the priority of short-term and long-term

rewards. A lower discount factor places more emphasis on immediate rewards.

The objective of the RL agent is to discover an optimal policy π∗ that maximizes

the expected cumulative reward J(π) over time. The expected cumulative reward, also

known as the objective function of the policy, is defined as the expectation of the sum of

discounted rewards over a finite or infinite horizon:

π∗ = arg max
π

J(π). (4.11)

Here,

J(π) = Eτ∼π

[
T∑
t=0

γtrt

]
, (4.12)

where τ = (s0,a0, r0, s1,a1, r1, . . . ) represents a trajectory of states, actions, and rewards

sampled from the policy π, whose distribution p(τ |π) may be induced as

p(τ |π) = p(s0)
T∏
t=0

T (st+1|st,at)π(at|st). (4.13)

4.3.1 Actor-Critic Methods

Although basic optimization methods such as the Policy Gradient can be effective in

straightforward environments by directly optimizing the policy based on the gradient

of the expected reward with respect to the policy parameters, they can be problematic
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in more complex settings due to high variance in the gradient estimates, resulting in

unstable learning.

The use of actor-critic methods has proven advantageous in complex reinforcement

learning environments. These techniques divide the learning process into two specific

parts: the actor, in charge of adjusting the policy parameters through exploration and

exploitation, and the critic that predicts the future rewards for specific states or state-

action pairs using value functions. The critic’s estimates serve as a baseline for the actor’s

policy updates, helping to reduce the variance in the gradient estimates. By decoupling

policy parameters and value function optimization, actor-critic methods can stabilize the

learning process and improve the overall performance of the reinforcement learning agent.

There are two main types of value functions for the critics:

• State Value Function, typically denoted as V π(s), which estimates the expected

cumulative reward starting from a given state s and then following the policy π:

V π(s) = Eτ∼π

[
T−1∑
t=0

γtrt|s0 = s

]
. (4.14)

• State-Action Value Function, typically denoted as Qπ(s,a) and also known as

the Q-function, which estimates the expected cumulative reward starting from a

given state s, taking action a, and then following the policy π:

Qπ(s,a) = Eτ∼π

[
T−1∑
t=0

γtrt|s0 = s, a0 = a

]
. (4.15)

The actor-critic framework has been successfully applied in various state-of-the-art

reinforcement learning algorithms, such as Proximal Policy Optimization (PPO) and Soft

Actor-Critic (SAC). These algorithms employ the actor-critic architecture in different

ways to address specific challenges in reinforcement learning, such as ensuring stability

and robustness in policy updates, or encouraging exploration and reducing bias in value

estimates.
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The subsequent sections will examine how PPO and SAC implement the actor-critic

framework and their distinct characteristics and benefits in the context of our research on

virtual character locomotion control.

4.3.2 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a state-of-the-art actor-critic algorithm that has

gained popularity due to its simplicity, stability, and strong performance across a wide

range of reinforcement learning tasks (Schulman et al., 2017). PPO was developed to

address the shortcomings of previous actor-critic methods, such as Trust Region Policy

Optimization (TRPO) (Schulman et al., 2015a), which can be computationally expensive

and difficult to implement.

The clipped surrogate objective is at the core of PPO. Its purpose is to stabilize policy

updates by limiting the size of the policy change at each step. The objective is defined as

LCLIP(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

]
, (4.16)

where rt(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio between the new and old policies, and ϵ is

a hyperparameter that controls the clipping range (usually set to 0.2).

The actor in PPO is represented by a policy network that outputs the mean and

standard deviation of a Gaussian distribution over actions, from which the actual actions

are sampled. The critic is a value function network V π(s) that estimates the expected

cumulative reward from a given state. The advantage estimates Ât are computed using

Generalized Advantage Estimation (GAE) (Schulman et al., 2015b), which balances the

trade-off between bias and variance in the advantage estimates.

During training, PPO switches between collecting experience using the current policy

and updating the policy using the clipped surrogate objective. The hyperparameters and

network architectures can be tuned to optimize performance for specific tasks. In our

research, PPO is one of the primary algorithms for locomotion controller learning due to
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its stability and robustness. We use PPO in both OpenSim-based and Omniverse-based

simulation environments.

However, one drawback of PPO is its sample efficiency compared to other algorithms,

such as Soft Actor-Critic (SAC). PPO requires a larger number of samples to achieve

optimal performance, which can be a limitation in computationally expensive environ-

ments. This issue is particularly relevant in the OpenSim-based simulation environment,

which suffers from constrained parallelism and limited hardware acceleration for efficient

sample acquisition. In contrast, the Omniverse-based environment, powered by the

GPU-accelerated PhysX engine, allows for more efficient sample collection through the

simultaneous simulation of hundreds of instances of our human neuromuscular model.

4.3.3 Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm that aims to maximize both

the expected cumulative reward and the entropy of the policy (Haarnoja et al., 2018).

By incorporating entropy maximization into the objective function, SAC encourages

exploration and learns versatile policies that can adapt to different tasks and dynamic

environments, making it suitable for continuous control tasks like our environments.

The SAC algorithm is based on the maximum entropy reinforcement learning frame-

work. This framework augments the standard RL objective (as in Equation 4.12) with an

entropy term

J(π) = Eτ∼π

[
T∑
t=0

γtrt + αH(π(·|st))

]
, (4.17)

where H(π(·|st)) is the entropy of the policy at state st, which encourages the selection

of diverse actions. The temperature parameter α, which controls the trade-off between

maximizing reward and maximizing entropy, can be adaptively adjusted to maintain a

desired level of entropy.

Similar to PPO, the actor in SAC is a policy network that outputs the mean and

standard deviation of a Gaussian distribution over actions. However, the critic in SAC
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consists of two Q-function networks that estimate the expected cumulative reward plus the

entropy term. The use of two independently updated Q-functions helps mitigate positive

bias in the value estimates by taking the minimum of the two estimates. Additionally,

SAC employs a separate value function network that computes entropy-adjusted value

estimates for policy training.

SAC employs a soft policy iteration scheme that alternates updates between the

Q-functions and the policy. The Q-functions are updated using a combination of Bellman

backups and entropy regularization (Sutton and Barto, 2018), which helps ensure they

remain consistent with the current policy while integrating the entropy term. This

consistency is crucial as it encourages exploration and aims to maximize the expected

cumulative reward. The policy itself is updated based on these Q-function estimates.

In our research, we employ SAC as an alternative algorithm for the OpenSim-based

simulation framework. The sample efficiency and robustness of SAC, combined with

its ability to efficiently leverage past experience and adaptively balance exploration

with reward maximization, make it particularly well-suited for this environment, where

computational costs are high and sample budgets are limited.

4.3.4 Architecture

The architecture of the reinforcement learning agent plays a significant role in its per-

formance, efficiency, and the resources needed to learn the optimal policy. Additionally,

a well-designed architecture can improve the agent’s ability to adapt to new environ-

ments. In this section, we present the architecture of our proposed deep reinforcement

learning agent for locomotion control, which employs a dual policy network approach to

separate the Central Pattern Generator (CPG) modulation signals and muscle activation

adjustments from the reflex control.

Our proposed architecture, as illustrated in Figure 4.3, consists of two main components:

the CPG Tuner and the Reflex Controller, both of which are fully connected neural

networks. The pipeline takes the current state of the virtual human s, which includes
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Figure 4.3: The proposed architecture for locomotion control, featuring a dual-module
design with a CPG Tuner and a Reflex Controller. The shared feature extraction module
efficiently processes the body state s into a latent space representation zs. Φ is the
current phase of the CPG, g is the goal representation, and acpg is the current CPG
output signals, which are muscle activations.

information such as joint angles, velocities, and muscle states, and passes it through

a shared Feature Extraction module. This module transforms the state into a latent

space representation, resulting in a state feature vector zs. In the next stage, the feature

vector is concatenated with different auxiliary information and fed as input to the two

networks. Each network processes the input and generates specific control signals based

on its designated role in the control scheme.

The CPG Tuner is responsible for modulating the CPG signals based on the current

body state, represented by the feature vector zs, the CPG phase Φ, and the goal

representation g. By adjusting the frequency and amplitude of the CPG controller

through the φ and ρ signals, respectively, the CPG Tuner adapts the generated motion

patterns to the desired task and environmental conditions. The self-contained nature of

the CPG signals encourages the generation of natural motions that are consistent with

biological principles.

The Reflex Controller, on the other hand, generates muscle activation adjustments

areflex based on the current body state in the form of feature vector zs, CPG controller
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output acpg, and goal representation g. These adjustments serve as reflexive responses

to perturbations and deviations from the desired motion, enabling the virtual human to

maintain balance and stability. The Reflex Controller complements the CPG Tuner by

providing real-time feedback-based adaptations to the muscle activation signals. When

manually enabled, these adjustments can be used to fine-tune the CPG kernel weights for

better output patterns, allowing for further refinement of the generated motions.

This architectural design incorporates domain expert knowledge of human biomimetics

and hierarchical locomotion. The shared feature extraction module allows the CPG Tuner

and Reflex Controller networks to utilize a common latent space representation of the

body states, which reduces computational redundancy and encourages consistent learning

across the two networks. Meanwhile, the synergistic combination of the rhythmic CPG

signals and the feedback-based reflex signals creates a control system that exploits the

inherent stability and naturalness of the CPG while allowing flexible adjustment to new

circumstances.

Our experiments demonstrate that this dual-modular design is advantageous for

learning more natural motions and accelerating the initial stages of the training process,

which allows the agent to efficiently improve its performance and achieve longer episode

lengths compared to alternative architectures.

4.4 Experimental Setup

This section outlines the two primary configurations of simulation environments utilized

in our experiments. As previously discussed in Section 3.4, for the reinforcement learning

experiment on locomotion control, we employed the OpenSim-based environment and the

Omniverse-based environment. Since we have already discussed their characteristics and

comparisons regarding their physics simulation backends and simulation efficiency, in this

section we will focus primarily on the details of the virtual human models utilized in the

two setups. We will discuss the degrees of freedom, observation and action spaces, as well

as the amount and distribution of muscles associated with each model. Additionally, we
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Component Variables Dimensions

Pelvis position 3
Pelvis state Pelvis linear velocity 3

Pelvis angular velocity 3

Joint states (per side) Joint positions (hip×2, knee, ankle) 4 × 2
Joint velocities (hip×2, knee, ankle) 4 × 2

Ground forces (per side) Force sensors on the feet (toe×2, heel) 3 × 2

Muscle force 11 × 2
Muscle states (per side) Muscle length 11 × 2

Muscle velocity (change rate of length) 11 × 2

Total 97

Table 4.1: Observation space components in the OpenSim-based environment

detail the configuration of the reward design, initial state distribution, as well as the early

termination policy and how they contribute to successful learning.

4.4.1 Observations and Actions

The observation spaces in the two major simulation environments differ due to the varia-

tions in the musculoskeletal models employed. Table 4.1 provides a detailed breakdown

of the body state observation space dimensions for the simplified musculoskeletal human

model in our OpenSim-based simulation environment. The observation space consists of

a total of 97 dimensions, consisting of crucial information about the pelvis, joints, ground

reaction forces, and muscle states.

The design of this observation space is a modified version based on the configuration in

(Kidziński et al., 2018). The pelvis state is represented by 9 variables, including position,

linear velocity, and angular velocity, which capture the global movement of the model.

Each side of the legs contains 4 DOFs for the joint angles, determining the local lower

body configuration, and 11 muscles, each with length, velocity (rate of length change),

and force states, providing detailed information about the individual muscle behavior.

Additionally, 3 ground reaction force sensors on each foot provide essential data about
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(a) Frontal view (b) Left-side view

Figure 4.4: Degrees of freedom of the pelvis and joints in the observation space of the
OpenSim-based model.

the interaction between the model and the environment. Figure 4.4 illustrates these

dimensions and joint DOFs.

The action space in our CPG-based locomotion control framework differs from tradi-

tional action spaces in reinforcement learning-based control schemes, where each muscle

exactly matches an action signal. As previously shown in Figure 4.3, our action space

is composed of the outputs from the CPG Tuner and the Reflex Controller. The CPG

Tuner generates two types of signals: a scalar frequency multiplier φ and a vector ρ of

amplitude multipliers, with each element corresponding to an individual muscle. And the

Reflex Controller outputs muscle activation adjustment signals for each muscle. The total

dimension of the action space for a specific simulation setup is thus given by 2×Nmuscles+1.
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4.4.2 Reward Design

Proper design of reward functions and reward shaping is essential for reinforcement

learning algorithms to learn the desired behavior through optimization successfully. A

well-designed reward should balance encouraging desired behavior and penalizing failure

scenarios while aligning with long-term objectives, such as maintaining steady stepping

motions for all future cycles. Furthermore, the reward should be carefully tuned to avoid

discouraging agent exploration. Our reward design incorporates three components: model

sustaining, motion imitation, and alignment to the specific goal.

Model Sustaining: To encourage the agent to learn a policy that sustains the model

for a longer time, we provide a constant but small amount of alive reward for every

time step, denoted as ralive. Conversely, we apply a significant penalty when the model

falls, teaching the agent to avoid actions that lead to instability or falls, denoted as cfall.

In practice, we adjust the amount of this penalty based on the remaining time for the

episode:

cfall(t) = wfall ×
tmax − t

tmax

, (4.18)

where wfall controls the maximum amount of falling penalty.

Furthermore, a moderate amount of step reward, denoted as rstep, is given for the

model making reasonable steps. The step reward is given only when the ground contact

with the feet is detected, and the contact is from a different foot than the last time the

step reward was emitted. This helps to encourage the model to alternate between feet

when stepping, promoting a more natural gait. This design is derived from one of the

examples in (Kidziński et al., 2018).
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Overall, the model sustaining reward component can be summarized as follows:

rsustain(t, s) =


−cfall(t) if the model falls;

rstep + ralive if a new step is detected;

ralive otherwise.

(4.19)

Typically, the scales of the aforementioned rewards are set at ralive = 0.01, rstep = 3.0, and

wfall = 10.0. These values were selected through trials to provide a good balance between

encouraging the model to remain alive and take natural steps while strongly discouraging

falling.

Motion Imitation: Despite the ability to generate long-lasting motions with stepping-

like behaviors, using solely the model sustaining reward often results in unnatural locomo-

tion patterns, even when combined with the rhythmic patterns from CPG. The learned

motions exhibit biomechanically implausible movements and a lack of naturalness. To

address this limitation, we draw inspiration from the reward design in the DeepMimic

method (Peng et al., 2018) and the Trajectory Mimicking idea introduced in (Lee et al.,

2019), and introduce a mimic reward term that encourages the agent to imitate reference

motion data as follows:

rmimic(t, s) = wq
mimicr

q
mimic(t, s) + we

mimicr
e
mimic(t, s), (4.20)

where rqmimic and remimic refer to the reward terms that promote the similarity of the joint

angles and the positions of the end-effectors, respectively, and wq
mimic and we

mimic are their

corresponding weights.
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The individual reward terms are calculated as

rqmimic(t, s) = exp

[
−σq

∑
j

∥q̂j(t) − qj(s)∥2
]
, (4.21)

remimic(t, s) = exp

[
−σe

∑
e

∥p̂e(t) − pe(s)∥2
]
, (4.22)

where j and e are the indices of the joints and the end-effectors, q̂j(t) and p̂e(t) denote

the reference joint angles and end-effector positions at time t, respectively, while qj(s)

and pe(s) represent the corresponding values of the agent in state s. The parameters σq

and σe control the sensitivity of the reward terms to the differences between the reference

and agent values, which are typically set to 3.0 and 15.0 in our experiments.

Compared to the reward term in DeepMimic (Peng et al., 2018), our mimic reward

differs in two aspects. First, ours does not include a term for the similarity of joint

velocities. In practice, we found this metric can be unstable, which may arise from the

sensitivity of velocity measurements in the reference motions we use. Moreover, unlike

both (Peng et al., 2018) and (Lee et al., 2019), which use the quaternion difference for

the joint orientation in rqmimic, we opt for a simpler approach and directly take the norm

of the difference between the joint angles. Our experiments show that this simplified

configuration can work effectively with reduced computational complexity. The mimic

reward term complements the sustaining reward by providing explicit guidance towards

desired natural bipedal motions.

Goal Alignment: We use a goal alignment reward to encourage the agent to learn

to perform locomotion control in a particular style while maintaining imitation of the

reference motions. Our goal representation is a 4-dimensional vector that acts as part

of the input to the two networks in the policy architecture. The first two dimensions

represent the desired direction of motion as a normalized vector in the x-y plane, while

the next two scalar values represent the desired velocity and pelvis height, respectively.
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▶ ▶ ▶ ▶

▶ ▶ ▶ ■

Figure 4.5: A sequence of snapshots demonstrating a complete walking forward cycle
generated by our trained locomotion controller.

The goal reward may be formalized as

rgoal(t, s) = wd
goal∥d̂− d(s)∥2 + wv

goal∥v̂ − v(s)∥2 + wh
goal∥ĥ− h(s)∥2, (4.23)

where wd
goal, w

v
goal, and wh

goal are the weights for the rewards that promote the alignment

to the desired direction, speed, and pelvis height, respectively, and d̂, v̂, and ĥ denote the

target direction vector, speed, and pelvis height provided in the goal vector, while d(s),

v(s), and h(s) represent the corresponding values of the agent in state s.

4.5 Results

In this section, we demonstrate and analyze the results from our experiments. We will

compare the result of our proposed locomotion controller, integrated with the CPG

and dual-modular architecture, with two established methods, namely the CPG-based

48



Figure 4.6: The learning curve for the proposed locomotion controller, showing the
improvement in cumulative rewards. The solid line represents the rolling mean, and the
shaded area represents the rolling standard deviation. The learning procedure terminates
at 6.5 million steps, where stable walking forward behavior is achieved.

swimming control scheme (Si et al., 2014) and the feedback-based DeepMimic method

(Peng et al., 2018). We also conducted several ablation experiments to further validate

the benefits of the dual-modular design and CPG tuning mechanism.

4.5.1 Training

As mentioned in Section 4.3, we applied both the SAC and PPO methods to our biome-

chanical model. While PPO is comparatively stable, the advantage of sample efficiency

for SAC makes it outperform most of the experiments. Figure 4.6 demonstrates our

training procedure and learning curve of the proposed locomotion control model with

dual-modular architecture, where we can achieve the desired performance with 6 million

steps.

The training was conducted on a workstation equipped with an Intel Core 14th Gen

i7-14700KF CPU, 32GB of RAM, and an NVIDIA GeForce RTX 4070 GPU with 12GB of

VRAM. The simulation environment was built using OpenSim 4.1, and the reinforcement

learning algorithms were implemented using the PyTorch library and the Stable-Baselines3
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(Raffin et al., 2021) framework. The entire training process took approximately 32 hours

to complete.

4.5.2 Walking Forward

One of the fundamental tasks for evaluating the performance of our locomotion controller

is its ability to generate stable and natural forward walking motions. Figure 4.5 illustrates

a sequence of snapshots where our control framework generates muscle activations to drive

the biomechanical human model to walk forward continuously in the OpenSim simulation

environment. The upper body maintains a slightly forward-leaning posture throughout

the walking cycle, contributing to the overall balance and stability of the motion.

The successful generation of this natural walking behavior demonstrates the effec-

tiveness of our CPG-based controller, where the learned rhythmic patterns from the

CPG module produce coordinated muscle activations as the basis for locomotion. The

dual-modular architecture, consisting of the CPG Tuner and Reflex Controller, allows the

model to adjust its gait to the environment and maintain a steady forward pace.

4.5.3 Comparison: Dual-Modular versus Flattened Architecture

To validate the benefits of a dual-modular architecture, we compare our proposed con-

troller’s performance with a variant using a flattened architecture, where the CPG Tuner

and Reflex Controller modules are united into a single fully-connected network. In partic-

ular, the input signals are simplified as a concatenation of the body state s, CPG module

status acpg and Φ, and the goal representation g, while the output signals combine both

CPG modulation signals and the reflex control adjustments to muscle activations. To

ensure a fair comparison, the number of trainable parameters is set to a similar amount

compared to the dual-modular version.

Figure 4.7 presents the reinforcement learning curves for both architectures, illustrating

the agents’ progress during training. It is evident that our dual-modular architecture

demonstrates faster learning and better performance in terms of the highest episode
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Figure 4.7: Comparison of the learning curves for the dual-modular and flattened archi-
tectures. The dual-modular architecture demonstrates faster learning and higher best
performance compared to the flattened architecture.

reward compared to the flattened architecture. This advantage can be attributed to the

separation of the CPG Tuner and Reflex Controller modules, which allows each module to

focus on its specific role in the control process with the relevant input signals. The CPG

Tuner module learns to modulate CPG patterns for base locomotion, while the Reflex

Controller module learns to provide corrective muscle activation adjustments based on

the current model state and environment.

4.5.4 Goal-Based Control

Figure 4.8 demonstrates the controller’s ability to generate walking motions that turn left

or right based on a goal direction specified as a normalized vector in the x-y plane as part

of the goal representation. The goal is incorporated into the controller’s architecture as

part of the input to the CPG Tuner and Reflex Controller modules, allowing the controller

to adapt its behavior to achieve the desired turning motion.

To generate the turning motion, the controller adjusts the gait pattern by modulating

the CPG signals and generating appropriate muscle activation adjustments. The inner leg
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▶ ▶ ▶ ▶

▶ ▶ ▶ ■
(a) Turning left.

▶ ▶ ▶ ▶

▶ ▶ ▶ ■
(b) Turing right.

Figure 4.8: Sequence of snapshots demonstrating the model walking in a left or right turn
based on a specified target direction.
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(the leg closer to the center of the turn) takes shorter steps and has a longer stance phase,

while the outer leg takes longer steps and has a shorter stance phase. This asymmetry in

the gait pattern allows the model to smoothly change direction while maintaining forward

progression.

Throughout the turning motion, the controller ensures that the model maintains a

stable pace while minimizing deviations from the reference motions, where the Reflex

Controller module plays a crucial role. The turning motion demonstrates the adaptability

and versatility of our controller.
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CHAPTER 5

Learning-Based Facial Expression Transfer From

Images and Videos

5.1 Overview

In this chapter, we introduce an innovative learning-based method for transferring facial

expressions from images and videos to the biomechanical model of the face-head-neck

complex as discussed in Section 3.3. We utilize the Facial Action Coding System (FACS)

as an intermediate representation of facial expressions and train a deep neural network

to map FACS Action Units (AUs) to facial muscle activation signals. This chapter is a

reproduction of our published work (Zeng et al., 2021b) with additional data and technical

details not included in the original publication due to length limitations.

5.2 Facial Action Coding System

The Facial Action Coding System (FACS) is a comprehensive system for taxonomizing

human facial movements based on the underlying muscle anatomy. Developed by Paul

Ekman and Wallace V. Friesen in 1978 (Ekman and Friesen, 1978), the FACS has become

a standard tool in facial expression analysis and synthesis. The system defines a set

of Action Units (AUs), each representing the movement or activity of a specific facial

muscle or muscle group. The original FACS scheme introduced 44 AUs for facial surface

movements, 6 AUs for eye gaze, and 8 AUs for head movements (Wojde l and Rothkrantz,

2005). These AUs can be combined to represent a wide range of human facial expressions,

from subtle to more complex ones, and they have also been adapted for analyzing facial
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expressions in non-human species (Parr et al., 2007).

Many works about facial expression synthesis and computer animation have em-

ployed FACS to generate realistic facial expressions with virtual characters. For example,

Platt and Badler (1981) and Wojde l and Rothkrantz (2005) showcase model generation

techniques using FACS AUs as the basis for their animation control parameters. More

recently, researchers have developed methods to map FACS AUs to facial mesh deforma-

tions automatically (Sumathi et al., 2012), with the help of advanced machine learning

techniques.

In our work, we utilize OpenFace 2.0 (Baltrušaitis et al., 2018) for facial expression

recognition and head pose estimation. OpenFace is an open-source tool that provides

state-of-the-art facial behavior analysis, including facial landmark detection, head pose

estimation, and facial action unit recognition based on FACS. It employs a combination

of computer vision and machine learning techniques, such as Convolutional Experts Con-

strained Local Models (CE-CLMs) for facial landmark detection and tracking. Specifically,

OpenFace uses CE-CLMs to detect and track 68 facial landmarks in real-time, providing

a robust and accurate foundation for further analysis. In the context of our use case,

OpenFace provides a pre-trained deep neural network that takes the aligned facial image

as input and outputs the intensity estimates for 18 FACS AUs that contribute to the

expression representation, as illustrated in Table 5.1.

5.3 Training Data Generation

In this section, we introduce the training data generation pipeline for our facial expression

transfer system, which utilizes the OpenFace 2.0 toolchain described in the previous

section.

The overall process of generating training data comprises two principal steps: first, a

substantial number of facial expressions are synthesized by randomly combining different

muscle activation patterns on our biomechanical model; second, OpenFace is utilized

to extract the corresponding FACS AU intensities from the rendered images of these
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AU Full Name Illustration Intensity Presence

AU1 Inner brow raiser ✓ ✓

AU2 Outer brow raiser ✓ ✓

AU4 Brow lowerer ✓ ✓

AU5 Upper lid raiser ✓ ✓

AU6 Cheek raiser ✓ ✓

AU7 Lid tightener ✓ ✓

AU9 Nose wrinkler ✓ ✓

AU10 Upper lip raiser ✓ ✓

AU12 Lip corner puller ✓ ✓

AU14 Dimpler ✓ ✓

AU15 Lip corner depressor ✓ ✓

AU17 Chin raiser ✓ ✓

AU20 Lip stretched ✓ ✓

AU23 Lip tightener ✓ ✓

AU25 Lips part ✓ ✓

AU26 Jaw drop ✓ ✓

AU28 Lip suck ✓

AU45 Blink ✓ ✓

Table 5.1: List of 18 FACS AUs used in OpenFace 2.0. According to (Baltrušaitis et al.,
2018), both the intensity and presence of these AUs are predicted, except for AU28, for
which only the presence are predicted. This table is adapted and extended from the
OpenFace paper.

synthesized expressions.

5.3.1 Muscle-Based Facial Expression Synthesis

To generate a variety of facial expressions, we first define a set of basic muscle activation

patterns for basic expressions. Given n muscles contributing to the facial soft tissue

simulation (n = 52 for our model), we define We as a set of weights we,i, where we,i

represents the effect of the i-th muscle (1 ≤ i ≤ n) for the basic expression e. The
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activation ai for each muscle in a synthesized expression is then calculated as the weighted

sum of the weights of the basic expressions, given by ai =
∑

ewe,ise, where se is the

scaling term that determines the intensity of each basic expression.

We manually fine-tune the weights for a single basic expression by visually analyzing

the synthesized expression along with expert knowledge derived from (Lee and Terzopoulos,

2006). As a result, we constructed the muscle weights over six basic expressions, namely

(1) Joy, (2) Sadness, (3) Anger, (4) Fear, (5) Disgust, and (6) Surprise. The corresponding

sets are WJoy, WSadness, WAnger, WFear, WDisgust, and WSurprise, respectively.

We then sample the scaling terms se independently for each base expression from a

uniform distribution in the range [0.0, 1.0], thus constructing a randomized expression. To

further enrich the diversity of the dataset, we assign a random value to the jaw rotation

parameter while keeping the jaw twist and jaw slide values at 0.5, which corresponds to a

neutral jaw position. By repeating this process, we collect a set A of muscle activations

representing a wide range of randomized facial expressions.

5.3.2 Action Units Recognition and Labeling

The muscle activation set A, generated in the previous step, is employed to synthesize a

vast array of facial expression images with our biomechanical model. For each rendering,

a random set of muscle activations from A is selected and applied to the model. In

order to enhance the diversity of the dataset, we also randomize the neck poses and face

orientations by applying random rotations to the head, which are obtained by randomly

sampling angles for each axis of rotation (pitch, yaw, and roll).

Subsequently, OpenFace 2.0 is employed to label the rendered images with FACS AUs.

For each image, OpenFace detects the facial landmarks, estimates the head pose, and

predicts the intensities of 18 FACS AUs, as mentioned in previous sections and Table 5.1.

However, one of the predicted AUs (AU #28) does not contain intensity information, so

it is excluded from our labeling. Consequently, each rendered facial expression image is

paired with a set of 17 AU intensities, which serve as labels for the corresponding muscle
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activations used to generate the expression.

5.4 Model Architecture and Training

In this section, we present the architecture of our deep learning model for facial expression

transfer and provide details on the training process. Figure 5.1 shows an overview of the

proposed transfer framework as well as the controller modules over the offline training

and online transferring procedures.

5.4.1 Network Architecture

Our Expression Learning Neural Network (Figure 5.1a) takes FACS AUs extracted from

facial imagery data by OpenFace as input features. These AUs serve as an encoding of

the facial expression, which the network then uses to generate facial muscle activation

signals for our biomechanical model to reproduce the expression.

Figure 5.2 illustrates the fully-connected architecture of our network. The input layer

comprises 17 neurons, each receiving a normalized AU intensity value. The network

comprises four fully-connected hidden layers, each containing 100 neurons with ReLU

activation functions. The output layer generates 56 signals, with 52 signals representing

the activations ai (1 ≤ i ≤ 52) for the 26 pairs of facial muscles and the remaining

4 signals representing jaw rotation, jaw slide, jaw twist, and an auxiliary value. The

network, implemented using Keras with a TensorFlow backend, has a total of 37,300

learnable weights.

5.4.2 Network Training

To train our Expression Learning Neural Network, we use the Adam optimizer (Kingma

and Ba, 2014) with a Mean Squared Error (MSE) loss function. We set the batch size

to 32 and the learning rate to 0.01, based on empirical experiments and considering the

trade-off between convergence speed and stability. The network is trained for 100 epochs
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(a) Expression Transfer Framework

(b) Hierarchy of Controllers & Flow of Signals

Figure 5.1: Overview of the proposed facial expression transfer framework (a) and the
controllers for the musculoskeletal and facial soft-tissue structures (b). The Expression
Learning Neural Network (yellow) is trained offline before being integrated into the online
transfer pipeline. During the transfer task, an input facial image or video sequence is
processed to generate the desired facial muscle activations and head orientation. Sub-
sequently, the control model utilizes these outputs to simulate the biomechanical face
model (orange), which reproduces the corresponding facial expression, and to drive the
head-neck musculoskeletal model (green), which produces the desired head pose. From
(Zeng et al., 2021b)
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Figure 5.2: Architecture of our Expression Learning Neural Network.

Figure 5.3: Convergence of the MSE loss during the training of our Expression Learning
Neural Network over 100 epochs.
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on an NVIDIA GeForce GTX 1650 GPU installed on a Windows 10 machine with a

2.6GHz Intel Core i7-9750H CPU. Figure 5.3 shows the convergence of the training loss

over the epochs.

To address the discrepancy in AU intensity values between the synthetic training

data and the real faces encountered during the expression transfer task, we normalize the

intensity values of each AU class across all training pairs. This normalization step ensures

consistency and enhances the generalizability of the trained network. The training dataset

comprises a total of 6,000 pairs, with approximately 1,000 pairs for each of the six basic

expressions (joy, sadness, anger, fear, disgust, and surprise).

5.5 Experiments and Results

In this section, we present the experimental setup and results of our facial expression

transfer method. We evaluated the effectiveness of our approach using several publicly

available datasets, including the Karolinska Directed Emotional Faces (KDEF) dataset

(Calvo and Lundqvist, 2008), the Cohn-Kanade (CK) dataset (Kanade et al., 2000), and

the Extended Cohn-Kanade (CK+) dataset (Lucey et al., 2010). Appendix A presents

detailed information about these datasets.

5.5.1 Online Facial Expression Transfer

With the trained model, we establish a mapping between the FACS AUs and the muscle

activations required to reproduce the corresponding facial expressions. This enables us to

perform online facial expression transfer using the AU intensities extracted by OpenFace

from input facial images or videos. As demonstrated in Figure 5.4, the whole pipeline can

reconstruct the facial expression from arbitrary face imagery, provided that OpenFace

can accurately detect the AUs. For video sequences, we process each frame independently

and generate a corresponding sequence of muscle activations to animate the model.

We evaluated the performance of our facial expression transfer method on a wide range
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(a) Input Image (b) Face Recognition (c) Output AUs (d) Reconstructed

Figure 5.4: The procedure of online facial expression transfer. Given an input facial
image or video frame (a), OpenFace performs facial landmark recognition (b) and detects
the AU intensities (c), which are then fed into our trained Expression Learning Neural
Network. The network generates the appropriate muscle activations, which are used to
drive our biomechanical facial model to reproduce the observed expression (d).

of facial expressions from the KDEF dataset. Figure 5.5 presents the transfer results for

each of the six basic expressions performed by two subjects (one female and one male).

We can observe that our approach successfully reproduces the reference expressions and

captures the subtle facial features that distinguish each individual’s nuanced expression

characteristics. For instance, the female subject displays a more intense expression of joy

compared to the male subject, as evidenced by the wider smile and more pronounced

cheek raising. Similarly, the female subject’s expression of fear is characterized by a

stronger jaw drop compared to the male subject.

We also investigated the impact of AU normalization and jaw activation on the

quality of the transferred expressions, as demonstrated in Figure 5.6. By comparing

the transfer result with and without AU normalization mentioned in Section 5.4.2, we

can observe that the normalization effectively helps the pipeline to reduce artifacts and

over-exaggerated facial features. in a later section, we will also present a quantitative

comparison indicating that AU normalization improves the transfer accuracy. Meanwhile,

enabling jaw activation leads to more accurate and lifelike reproductions, particularly for

those that involve significant mouth movements, such as surprise and fear.
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(a) Input images of Subject 4 in KDEF

(b) Reconstructed results of Subject 4 in KDEF

(c) Input images of Subject 5 in KDEF

(d) Reconstructed results of Subject 5 in KDEF

Figure 5.5: Facial expression transfer results for six basic expressions performed by two
subjects from the KDEF dataset. The expressions are fear, anger, disgust, joy, sadness,
and surprise, respectively.
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(a) Input Image (b) No Normalization (c) With Normalization

(d) Input Image (e) No Jaw Activation (f) With Jaw Activation

Figure 5.6: Comparison of transfer results over AU normalization and jaw activation. In
the first row, we compare the result with and without AU normalization, and the second
row shows the result with jaw activation enabled and disabled.

5.5.2 Head Orientation Transfer

In addition to facial expressions, our method also enables the transfer of head orientation

from the input images or videos to the biomechanical model. Figure 5.7 presents examples

of head pose transfer along with facial expressions for different subjects from the KDEF

dataset.

The head orientation in our biomechanical model is controlled at the musculoskeletal

level by a reflex controller, where muscle activations around the neck are adjusted to

achieve the desired angle. Further details about the reflex controller and its role in tuning

head orientation are presented by Lee and Terzopoulos (2006).
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(a) Subject 1 (b) Subject 2

Figure 5.7: Examples transferring both head orientation and facial expression for two
subjects in KDEF dataset.

KDEF KDEF RAVDESS CK
(unnormalized) (normalized) (video) (video)

MSEAU1 0.191 0.118 0.012 0.038
MSEAU4 0.088 0.064 0.222 0.054
MSEAU6 0.186 0.186 0.107 0.059
MSEAU9 0.133 0.068 0.044 0.015
MSEAU12 0.011 0.028 0.083 0.008
MSEAU15 0.155 0.109 0.016 0.023
MSEAU20 0.129 0.146 0.077 0.057
MSEAU25 0.092 0.052 0.036 0.034

Average 0.157 0.129 0.086 0.048

Table 5.2: Average Mean Squared Error (MSE) of selected Action Units (AUs) over the
transfer results and their corresponding references in different datasets. For the KDEF
dataset, we also compare the results with and without the AU normalization.

5.5.3 Quantitative Accuracy Evaluation

To quantitatively evaluate the accuracy of our facial expression transfer method, we

compute the Mean Squared Error (MSE) between the OpenFace recognition results over

the input and reconstructed faces. Table 5.2 shows the average MSE of selected AUs over

the transfer results and their corresponding reference in different datasets. We selected 8

of the 17 AUs that served as the input to our Expression Learning Neural Network.

From the results, we can observe that our method achieves low MSE values across

different datasets, indicating the accuracy of our facial expression transfer. The average
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MSE ranges from 0.048 in the CK dataset to 0.157 in the unnormalized KDEF dataset.

The lower MSE values in the video datasets (RAVDESS and CK) compared to the KDEF

dataset can be attributed to the more subtle and continuous changes in facial expressions

present in videos, which our method can effectively capture and transfer.

Comparing the results between the unnormalized and normalized KDEF datasets,

we can see that the AU normalization leads to a notable improvement in the transfer

accuracy. The average MSE decreases from 0.157 in the unnormalized dataset to 0.129 in

the normalized dataset. This improvement is consistent across most of the selected AUs,

demonstrating the effectiveness of AU normalization. It is also worth noting that the

MSE values for individual AUs vary depending on the dataset and the specific AU. For

example, AU6 (cheek raiser) has relatively high MSE values in the KDEF and RAVDESS

datasets, while AU12 (lip corner puller) has low MSE values in all datasets.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

This dissertation primarily examined two significant areas in the field of human modeling

and animation: the locomotion control of muscle-actuated biomechanical body models

and anatomically accurate human facial expression transfer from images and videos

to a model of the face-head-neck biomechanical complex. The long-term motivation

behind this research is to create natural, biomimetic virtual characters by addressing the

limitations of traditional motion capture-based approaches, which often lack adaptability

and responsiveness.

A methodology that carries through our endeavor is the integration of prior knowledge

into the machine learning framework. While end-to-end learning approaches have gained

popularity in recent years due to increasing computational power and their ability to learn

complex patterns from vast amounts of data, we argue that incorporating domain knowl-

edge and biological principles remains valuable in the context of biomimetic modeling and

control. By leveraging expert insights in human anatomy, physiology, and neuromuscular

control, we can guide the learning process toward more plausible and interpretable models.

In our work on locomotion control, we proposed a synergistic combination of Central

Pattern Generators (CPGs) and deep reinforcement learning to achieve adaptive and

natural locomotion control in a biomechanical virtual human model. The CPG provides

a biologically-inspired means for generating rhythmic muscle activation patterns, while

the reinforcement learning component enables the model to adapt to the environment.

We demonstrated the effectiveness of our approach through extensive experiments, show-
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ing that the model can learn stable walking gaits and adapt to different goals. The

incorporation of domain knowledge in the form of CPGs proved to be a valuable strategy.

Furthermore, the dual-module architecture, consisting of a CPG Tuner and a Reflex

Controller, provided a clear separation of responsibilities and improved learning speed and

performance compared to a flat architecture. This modular design allows each component

to focus on its specific role, with the CPG Tuner modulating the base locomotion patterns

and the Reflex Controller providing corrective adjustments based on the current state

and environment.

In our work on facial expression transfer, we proposed a deep learning framework

that uses the Facial Action Coding System (FACS) as an intermediate representation

of facial expressions. This allowed us to map Action Units (AUs) detected from input

images or videos to corresponding muscle activations in the biomechanical model. We also

developed a data generation pipeline that synthesizes a large dataset of facial expressions

and uses OpenFace to extract the corresponding AUs for labeling. This dataset was used

to train our expression transfer network, allowing it to learn the mapping between AUs

and muscle activations.

We then presented a real-time expression transfer pipeline that combines our trained

network with OpenFace for AU detection and the biomechanical model for expression

synthesis. This pipeline can transfer facial expressions and head poses from arbitrary

input images or videos to our biomechanical model, producing anatomically consistent

animations. We performed experiments on the KDEF, CK, and RAVDESS datasets

to evaluate the effectiveness of our approach. The results showed that our method can

effectively transfer a range of facial expressions and head poses.

6.2 Limitations and Future Work

While our approach achieved promising results in the neuromuscular control of biome-

chanical human musculoskeletal models, it has several limitations that open up potential

avenues for future research.
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6.2.1 Central Pattern Generator for Bipedal Locomotion Control

One limitation of our current approach is that it focuses primarily on bipedal locomotion,

specifically walking. While this is a fundamental locomotion skill, human beings are capa-

ble of a much wider range of repetitive motions, such as climbing, swimming, and dancing.

Additionally, our work does not address upper-body movements, such as arm swinging,

in bipedal locomotion, which play a crucial role in maintaining balance. Extending our

framework to encompass these additional locomotion modes and incorporating helpful

upper-body motions can greatly enhance the completeness and versatility of our method.

Another limitation is that our experiments primarily focus on locomotion on flat, even

surfaces. Real-world environments often present uneven terrains, obstacles, and other

challenges that require more advanced adaptation and control strategies. A promising

direction for future research is to test our approach in adapting to uneven terrains or

external perturbations.

Furthermore, integrating higher-level planning and decision-making capabilities into

our locomotion control framework is an important area for future research. Currently, our

model relies on externally provided goals and cannot autonomously adjust to complex

environments. A notable related work is (Peng et al., 2022), where the authors achieve

high-level motion planning via hierarchical reinforcement learning.

6.2.2 Learning-Based Facial Expression Transfer From Images and Videos

Although our approach achieves promising results, several limitations remain in our work

to date. First, while the pioneering framework and musculoskeletal model developed

by Lee and Terzopoulos (2006) provided a solid foundation for our work, its limited

anatomical fidelity and primitive facial soft tissue simulation techniques hinder the

achievement of higher levels of realism. In our experiments, we observed that the model

occasionally generates wrinkles or artifacts that do not accurately represent the reference

expressions, which negatively impacts visual quality. Enhancing our biomechanical face

model is a potential focus in the future, and the Phace framework (Ichim et al., 2017)
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is a noticeable related work that applies advanced physics-based simulation methods to

improve biomechanical accuracy.

In addition, our method focuses on transferring facial expressions and head poses

but does not consider other crucial aspects of facial animation, such as eye gaze and lip

synchronization. These elements play a crucial role in creating fully expressive and lifelike

facial animations. Incorporating these elements would require additional modeling and

control techniques in our biomechanical face model, as well as the integration of relevant

data sources, such as eye tracking and audio signals.

Moreover, our current approach relies on OpenFace for AU detection, which can be

regarded as a limitation. Although OpenFace provides state-of-the-art performance in AU

recognition, it struggles with certain challenging expressions or lighting conditions. An

interesting direction for future work would be to explore end-to-end learning approaches

that directly map input images or videos to muscle activations. Comparing the perfor-

mance of such approaches with our method, which leverages an expert knowledge-based

intermediate representation, would be valuable in assessing the trade-offs between the

two paradigms.
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APPENDIX A

Facial Expression Datasets

In our experiments, we utilized four widely-used facial expression datasets: the Karolinska

Directed Emotional Faces (KDEF) dataset, the Cohn-Kanade (CK) dataset, the Extended

Cohn-Kanade (CK+) dataset, and the Ryerson Audio-Visual Database of Emotional

Speech and Song (RAVDESS) dataset. These datasets contain a variety of facial expres-

sions from multiple subjects and provide a comprehensive platform for evaluating our

facial expression transfer method.

This appendix, as with the main chapter on facial expression transfer, is heavily

borrowed from our publication (Zeng et al., 2021b).

A.1 Karolinska Directed Emotional Faces (KDEF)

The Karolinska Directed Emotional Faces (KDEF) dataset (Calvo and Lundqvist, 2008)

consists of 4,900 pictures of human facial expressions. It features 70 subjects (35 female

and 35 male) enacting all six basic facial expressions, namely neutral, joy, sadness, anger,

fear, disgust, and surprise. Each expression performed by a subject is imaged from

multiple directions. In our experiments, we used the KDEF dataset to evaluate the

performance of our facial expression transfer method on a wide range of expressions and

subjects.
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A.2 Cohn-Kanade (CK) and Extended Cohn Kanade (CK+)

The Cohn-Kanade (CK) dataset (Kanade et al., 2000) is a widely-used benchmark dataset

for facial expression recognition and analysis. It contains 486 sequences from 97 subjects,

each sequence starting with a neutral expression and ending with a peak expression. The

peak expressions are FACS coded, providing a ground truth for action unit activation.

The Extended Cohn-Kanade (CK+) dataset (Lucey et al., 2010) is an extension of

the original CK dataset, containing 593 sequences from 123 subjects. Similar to the CK

dataset, each sequence starts with a neutral expression and ends with a peak expression.

The main difference is that the CK+ dataset includes more sequences and subjects, as

well as additional metadata such as emotion labels and action unit intensity scores.

A.3 Ryerson Audio-Visual Database of Emotional Speech and

Song (RAVDESS)

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset

(Livingstone and Russo, 2018) is a multimodal database containing speech and song

recordings from 24 professional actors (12 female and 12 male). Each actor performs 60

speech trials and about 44 song trials with 8 emotions (neutral, calm, happy, sad, angry,

fear, disgust, and surprise) and 2 intensities (normal and strong). This yields a total of

2,452 video files for the complete dataset. In our experiments, we used the RAVDESS

dataset to evaluate the performance of our facial expression transfer method on dynamic

expressions in video sequences.
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