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Figure 4.3. The trajectory of input θ resulting from the application of the delay-
compensated uES (4.23) in the presence of a delay of D = 5 seconds. . . . . 104

Figure 4.4. The trajectory of input θ resulting from the application of the diffusion
PDE-compensated uES (4.86). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.1. Unbiased ES scheme with constant-frequency probing for the ith element
θi of θ , which guarantees θ → θ ∗(t) at the rate that 1/φ(t) converges to
zero. Refer to Table 5.1 for the function and parameters. . . . . . . . . . . . . . . 112

Figure 5.2. Unbiased ES scheme with chirpy probing for the ith element θi of θ , which
guarantees θ → θ ∗(t) at the rate that 1/φ(t) converges to zero. Refer to
Table 5.2 for the function and parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.3. (a) The trajectories of the classical ES [96] with two distinct parameter sets.
(b) The trajectory of the asymptotic uES (5.16) using constant frequency
probing and achieving a convergence rate of 1/(1+0.1t)3. . . . . . . . . . . . . . 124

Figure 5.4. Perfect tracking of an asymptotically shifting optimum by asymptotic
uES with constant-frequency probing (5.16). The convergence rate is
1/(1+0.1t)0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 5.5. (a) Tracking of an exponentially shifting optimum by exponential uES
with chirped probing (5.82). (b) Evolution of ζ (t) and the instantaneous
frequency ωγdζ q/dt, with their growth terminated at t = 40 seconds. . . . . 132

Figure 5.6. (a) Unbiased convergence to θ ∗ = 2 in user-prescribed T = 5 seconds with
two different parameter sets. (b) Evolution of their corresponding update
laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 5.7. (a) Experimental setup consisting of a light source and a unicycle robot
equipped with a light sensor on top. (b) The vehicle trajectory for two ES
designs on a 2D plane, with color-coded light intensity in lux representing
the intensity at each position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 6.1. The structure of the neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 6.2. The evolution of the frequency estimates with the first and last 8 seconds
zoomed in. The convergence of our estimate is compared with that of
[69, 12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 6.3. Prescribed-time model-free adaptive controller design scheme. . . . . . . . . . . 161

ix



Figure 6.4. Experimental setup with the illustrated control inputs in the actuation unit.
The tip position used for feedback control is measured by an electromag-
netic sensor taped to the robot. The harmonic disturbance affects the robot
only in the zb direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 6.5. A comparative analysis of three distinct control strategies for driving the
robot tip to a target position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 6.6. The norm of the tip position error resulting from the application of each
algorithm, which is activated at t = 30 seconds. . . . . . . . . . . . . . . . . . . . . . . . 168

Figure 6.7. The upper subplot displays the robot tip position in the zb axis that is
disturbed by harmonics δ3(t) with two distinct frequencies, namely ω1 and
ω2. The lower subplot illustrates the offline estimation of the low frequency
ω1 using the estimator (6.25)–(6.27). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

x



LIST OF TABLES

Table 5.1. Time-varying functions used in Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 5.2. Time-varying functions used in Figure 5.2 with any β ,λ ,v,ρ,ki,αi > 0 for
i = 1, . . . ,n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xi



ACKNOWLEDGEMENTS

This thesis is the product of many hands, minds, and hearts working together. I am deeply

grateful to all those who have contributed to it.

First and foremost, I am profoundly grateful to my advisor, Prof. Miroslav Krstic, for

his unwavering support and insightful guidance. His commitment to producing high-quality

research has been a guiding force in shaping my academic growth. His attention to detail, vast

knowledge, and ability to critically evaluate and deeply analyze even the most intricate elements

of my work have been instrumental in refining my skills as a researcher. His approach has helped

me cultivate a deep level of analytical and critical thinking. I have also been consistently inspired

by his responsiveness and exceptional time management, which have shown me the value of

discipline and dedication, not only in research but in life as a whole.

I extend my heartfelt gratitude to my co-advisor Prof. Mamadou Diagne, who has also

been a great mentor over the past two years. I am truly grateful for his insightful conversations, his

constant encouragement that lifted my motivation, and for his tremendous support in advancing

my development and growth. I also deeply appreciate his unwavering belief in me, his efforts

to put me forward, introduce me to remarkable people in the field, and create opportunities for

me. These experiences have not only enriched my academic journey but also helped me build

valuable connections and grow as a researcher. These invaluable moments will always hold a

special place in my heart.

I would also like to thank Prof. Tania Morimoto for her time and effort during our

collaboration on the continuum robot project. It was a field I discovered with great enthusiasm

and truly enjoyed working in. I am also grateful for her support as a member of my committee.

A milestone in my career was receiving the MAE PhD Outstanding Student of the Year

Award, nominated by Prof. Krstic, Prof. Diagne, and Prof. Morimoto. I am deeply grateful for

their support and belief in my work.

I extend my sincere gratitude to Prof. Jorge Poveda for his exceptional work on extremum

seeking, which has greatly inspired my research, and for dedicating his valuable time to serve on

xii



my committee.

Another valuable person who played a significant role in my career and helped me take

my first steps in the field is Dr. Halil Basturk, a former member of the lab and a great advisor

during my master’s at Bogazici University. I am deeply grateful for his guidance, which helped

me develop the skills needed for conducting quality research.

A special thanks goes to my friends, colleagues, lab mates, and collaborators, who have

been my companions on this journey: Alan Williams, Bhathiya Rathnayake, Brad Ratto, Cenk

Demir, Connor Watson, Drew Steves, Eranda Somathilake, Evelia Zapien Ramos, Imoleayo Abel,

Kwang Hak Kim, Luke Bhan, Mohammad Al Suwaidan, Patrick McNamee, Peihan Zhang, Qixu

Wang, Shumon Koga, and Velimir Todorovski. I am also grateful to Wenhan Tang, Max Lee, Eric

Foss, and Sankalp Kaushik for their tremendous effort and dedication during the experiments.

Last but certainly not least, I wish to express my deepest gratitude to my wife, Elif

Sandalci Yilmaz, to whom I dedicate this thesis. Words fall short in capturing my appreciation

for her unwavering support, patience, and kindness throughout this journey. My heartfelt thanks

also extend to the Yilmaz family—Gulsen, Hudai, Alper, and Firdevs—and to the Sandalci

family—Nuray, Cem, Zeynep, and Affan—for their continuous encouragement and support

along the way.

This dissertation includes reprints and adaptations of the following papers, which have

been published or submitted for publication and are included in Chapters 2 through 6, respec-

tively:

• C. T. Yilmaz and M. Krstic, “Prescribed-Time Extremum Seeking for Delays and PDEs

Using Chirpy Probing”, IEEE Transactions on Automatic Control, 69(11):7710–7725,

2024.

• C. T. Yilmaz, M. Diagne, and M. Krstic, “Exponential and Prescribed-Time Extremum

Seeking with Unbiased Convergence”, Automatica, under review, 2023.

xiii



• C. T. Yilmaz, M. Diagne, and M. Krstic, “Unbiased Extremum Seeking for PDEs”, IEEE

Conference on Decision and Control (CDC), to appear, 2024.

• C. T. Yilmaz, M. Diagne, and M. Krstic, “Asymptotic, Exponential, and Prescribed-Time

Unbiasing in Seeking of Time-Varying Extrema”, IEEE Transactions on Automatic Control,

under review, 2024.

• C. T. Yilmaz, C. Watson, T. K. Morimoto, and M. Krstic, “Adaptive Model-Free Distur-

bance Rejection for Continuum Robots”, Automatica, vol. 171, p. 111949, 2025.

Chapter 1 includes sections adapted from these publications.

xiv



VITA

2015 Bachelor of Science in Mechanical Engineering, Bogazici University, Turkey

2018 Master of Science in Mechanical Engineering, Bogazici University, Turkey

2024 Doctor of Philosophy in Engineering Sciences (Mechanical Engineering), Univer-
sity of California San Diego

PUBLICATIONS

Journal Articles

1. C. T. Yilmaz, C. Watson, T. K. Morimoto, M. Krstic, “Adaptive Model-Free Disturbance
Rejection for Continuum Robots”, Automatica, vol. 171, pp. 111949, 2025.

2. C. T. Yilmaz, M. Diagne, M. Krstic, “Asymptotic, Exponential, and Prescribed-Time
Unbiasing in Seeking of Time-Varying Extrema”, Transactions on Automatic Control,
under review, 2024.

3. C. T. Yilmaz and M. Krstic, “Prescribed-Time Extremum Seeking for Delays and PDEs
Using Chirpy Probing”, IEEE Transactions on Automatic Control, 69(11):7710–7725,
2024.

4. C. T. Yilmaz, M. Diagne, M. Krstic, “Exponential and Prescribed-Time Extremum Seeking
with Unbiased Convergence”, Automatica, under review, 2023.

5. C. T. Yilmaz, H. I. Basturk, “Adaptive Output Regulator for Wave PDEs with Unknown
Harmonic Disturbance”, Automatica, vol. 113, pp. 108808, 2020.

6. C. T. Yilmaz, H. I. Basturk, “Output Feedback Control for Unknown LTI Systems Driven
by Unknown Periodic Disturbances”, Automatica, vol. 99, pp. 112–119, 2019.

7. C. T. Yilmaz, H. I. Basturk, “Rejection of Sinusoidal Disturbances for Known LTI Systems
in the Presence of Output Delay”, Automatica, vol. 92, pp. 41–48, 2018.

Conference Proceedings

1. C. T. Yilmaz, M. Diagne, M. Krstic, “Unbiased Extremum Seeking Based on Lie Bracket
Averaging”, submitted to American Control Conference (ACC), 2025.

2. C. T. Yilmaz, M. Diagne, M. Krstic, “Unbiased Extremum Seeking for PDEs”, Conference
on Decision and Control (CDC), to appear, 2024.

3. C. T. Yilmaz, M. Diagne, M. Krstic, “Perfect Tracking of Time-Varying Optimum by
Extremum Seeking”, American Control Conference (ACC), pp. 2936–2943, 2024.

xv



4. C. T. Yilmaz, M. Diagne, M. Krstic, “Exponential Extremum Seeking with Unbiased
Convergence”, Conference on Decision and Control (CDC), pp. 6743–6748, 2023.

5. C. T. Yilmaz, M. Krstic, “Accelerated Learning and Control of Robots with Uncertain
Kinematics and Unknown Disturbances”, American Control Conference (ACC), pp. 806–
811, 2023.

6. C. T. Yilmaz, M. Krstic, “Prescribed-Time Extremum Seeking with Chirpy Probing for
PDEs—Part II: Heat PDE”, American Control Conference (ACC), pp. 800–805, 2022.

7. C. T. Yilmaz, M. Krstic, “Prescribed-Time Extremum Seeking with Chirpy Probing for
PDEs—Part I: Delay”, American Control Conference (ACC), 1000–1005, 2022.

8. C. T. Yilmaz, J. George, A. Chakrabortty, “Observer-Based Extremum Seeking Control of
Static Maps with Delays”, American Control Conference (ACC), pp. 162–167, 2020.

9. J. George, A. Parayil, C. T. Yilmaz, B. Allik, H. Bai, A. Chakrabortty “Multi-Agent
Coordination for Distributed Transmit Beamforming”, American Control Conference
(ACC), pp. 144–149, 2020.

10. J. George, C. T. Yilmaz, A. Parayil, A. Chakrabortty “A model-free approach to distributed
transmit beamforming”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5170–5174, 2020.

11. C. T. Yilmaz, H. I. Basturk, “Adaptive Harmonic Disturbance Cancellation for LTI
Systems with Heat PDE Actuator Dynamics”, American Control Conference (ACC), pp.
1274–1279, 2019.

12. C. T. Yilmaz, H. I. Basturk, “Output Feedback Controller Design for LTI Systems with
Heat PDE Actuator Dynamics and Periodic Disturbances”, American Control Conference
(ACC), pp. 1268–1273, 2019.

13. C. T. Yilmaz, H. I. Basturk, “Adaptive Backstepping Control Design for Active Suspension
Systems with Output Feedback”, American Control Conference (ACC), pp. 1712–1717,
2019.

14. C. T. Yilmaz, H. I. Basturk, “Adaptive Cancellation of Unmatched Unknown Periodic Dis-
turbances for Unknown LTI Systems by Output Feedback”, American Control Conference
(ACC), pp. 3026–3031, 2019.

15. C. T. Yilmaz, H. I. Basturk, “Compensation of Simultaneous Input/Output Delay and Un-
known Sinusoidal Disturbances for Known LTI Systems”, European Control Conference
(ECC), pp. 2788–2793, 2018.

xvi



ABSTRACT OF THE DISSERTATION

Unbiased Extremum Seeking with Prescribed-Time Convergence and Adaptive
Model-Free Control of Continuum Robots

by

Cemal Tugrul Yilmaz

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2024

Professor Miroslav Krstic, Chair

This thesis introduces model-free control and optimization strategies for static and dy-

namic systems with model uncertainties. It comprises two main parts: the first focuses on

extremum seeking (ES) control, a model-free, real-time optimization method with a century-old

history, while the second develops adaptive control strategies for continuum robots, where kine-

matic models are complex and variable due to unknown contact forces, and where physiological

disturbances, such as respiration and heartbeat, present further challenges.

In the first part, we develop a new form of ES, referred to as prescribed-time ES (PT-ES),

which uses time-varying frequencies and gains to achieve convergence to a neighborhood of
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the optimum within a user-defined time. Motivated by the optimization challenges in systems

governed by partial differential equations (PDEs), we then extend PT-ES to handle delays, wave

PDEs, and heat PDEs.

Next, to eliminate the steady-state oscillations inherent in traditional ES and achieve

convergence directly to the optimum, we introduce unbiased ES (uES) with a user-defined expo-

nential convergence rate, and unbiased PT-ES (uPT-ES) with user-prescribed convergence time.

These approaches gradually shift from exploration to exploitation by employing a perturbation

signal with decaying amplitude and a demodulation signal with growing amplitude.

Building on these designs, we introduce PDE-compensated uES strategies as our third

ES design. In the fourth design, we extend the uES approach to achieve perfect tracking of

time-varying optima, with convergence rates that are asymptotic, exponential, or prescribed-time,

depending on the choice of time-varying parameters. We experimentally test the effectiveness of

exponential uES on a unicycle seeking a static light source.

The second part of this thesis presents two model-free control strategies for rejecting

unknown disturbances in continuum robots. These strategies employ a neural network-based

approximation to estimate the uncertain Jacobian matrix using only position measurements. The

first strategy is designed for periodic disturbances, integrating an adaptive model-free controller

with an adaptive disturbance observer. The second strategy, designed to handle arbitrary distur-

bances, uses time-varying input gains and adaptation laws that increase monotonically, enabling

asymptotic, exponential, or prescribed-time tracking of a reference trajectory. Both strategies are

validated experimentally on a concentric tube robot subject to unknown disturbances.
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Chapter 1

Introduction

In this thesis, we present two distinct adaptive control strategies: extremum seeking

(ES) designs for optimizing unknown cost functions, developed in Chapters 2–5, and adaptive

model-free control algorithms for continuum robots, developed in Chapter 6. This chapter

begins with a historical background on ES, followed by the motivation, literature survey, and

contributions of each ES algorithm developed. These include prescribed-time extremum seeking

for partial differential equations (PDEs), unbiased ES for fixed optima, unbiased ES for PDEs,

and unbiased ES for tracking time-varying optima, which are presented in Chapters 2, 3, 4, and 5,

respectively. Subsequently, we examine the modeling and control challenges in continuum robots,

emphasizing the need for model-free control to manage uncertain kinematics and physiological

disturbances, and we outline our contributions to this field.

1.1 Extremum Seeking

ES has been an effective optimization technique in real-time optimization for over a

century [92], originating from the pioneering work of Maurice LeBlanc, a French industrialist

and inventor [63]. The algorithm was studied extensively in the 1950s and 1960s under the

names “extremum control” and “self-optimizing control” [15, 72, 84]. After that, ES experienced

a period of stagnation. It wasn’t until the development of stability proof in [59] around the year

2000 that the algorithm began to regain momentum. Since then, the field of ES has witnessed
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remarkable theoretical advancements [19, 25, 81, 82, 92, 98], and has found practical applications

across various domains [26, 93, 126].

This thesis introduces four novel ES designs. In the following subsections, we discuss

the motivation, advantages, and contributions of each design, highlighting its unique features

and advancements over existing methods.

1.1.1 Prescribed-Time ES for PDE systems

Motivation. Much of the ES literature focuses on optimizing systems modeled by

ordinary differential equations (ODEs). However, many physical systems, such as drilling rigs,

reactors, batteries, and continuum robots, are more accurately described by partial differential

equations (PDEs), presenting unique optimization challenges.

In certain systems like network control systems, and cyber-physical systems, time delays

between control action and system response are inevitable. This issue requires a delay-aware ES,

as designs that ignore the delay may lead to instability, especially with large delays. In oil drilling

systems [1], the input dynamics involve a cascade of wave PDE and ODE, and the objective is

to maximize the rate of penetration (ROP) up to a certain threshold known as the foundering

point. Beyond this point, ROP starts decreasing, leading to energy wastage and potential cutter

damage. In tubular reactors [44], which are defined by coupled hyperbolic PDEs, the goal is to

seek a reactor temperature profile maximizing the reactor exit concentration. Another intriguing

challenge arises in pool boiling systems [4]. As heat flux increases during boiling, bubbles form

and rise to the surface. Beyond a critical heat flux, bubbles cease to rise, and a vapor film covers

the heater surface, acting as an insulator. This leads to a significant temperature increase above

the heater material’s melting point, causing physical burnout of the heater. In such systems, there

is a need for an optimizer to stabilize the heat flux at its unknown optimal level.

The ES designs developed in [1, 44] focus on optimization at the steady state and do not

fully account for the underlying PDE dynamics. This limits their applicability to PDE systems

with slow transient and motivates the development of PDE compensated ES designs.
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A notable advancement in recent years is the development of prescribed-time (PT)

stabilizing controllers, which feature time-varying gains inspired by classical “proportional

navigation” algorithms [41]. These controllers have been attracting extensive interest because

they enable the user not only to achieve convergence in some finite time but to achieve it in

arbitrary prescribed time, independently of the initial condition and system parameters. This

represents an advantage over asymptotic and finite-time stabilization.

The integration of PDE input dynamics compensation and prescribed-time optimization

has the potential to greatly enhance system performance by improving stability, responsiveness,

and robustness to disturbances. This motivates the development of prescribed-time extremum

seeking (PT-ES) with PDE compensators in this thesis.

Literature survey. Recent advancements in ES field have introduced concepts such as

finite-time ES [34] and fixed-time ES [86], [87], to accelerate convergence to the optimum’s

vicinity. The key distinction between these concepts is that in finite-time stability, convergence

time depends on initial conditions, while in fixed-time stability, it is determined by the system’s

parameters regardless of initial conditions. Prescribed-time stability, introduced by [103],

strengthens these notions further. It allows users to pre-define a desired terminal time regardless

of initial conditions and system’s parameters. Incorporating this concept into ES, [110] develops

an algorithm for prescribed-time seeking of a repulsive source by a unicycle.

Additionally, ES designs have been developed for functions with input/output delays [82]

and for systems with inputs governed by diffusion PDEs [22], wave PDEs [80], and PDE-PDE

cascades [79]. For a more comprehensive treatment of the problem, refer to the monograph

[81]. However, the PDE-compensating ES designs in [22, 80, 79, 81] are limited to ensuring

exponential-in-time convergence to a neighborhood of the optimum.

Contributions. In Chapter 2, we develop PT-ES schemes that incorporate compensation

techniques for delay, diffusion, and wave PDEs. We add two new ingredients to the ES toolkit,

in order to achieve PT convergence by time-varying feedback: (1) “chirpy” perturbation and

demodulation signals (sinusoids whose frequency grows unbounded) and (2) tuning gains which
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grow unbounded. In implementation, for noise-robustness and numerical, the gains are “clipped”

to some moderately large values, sufficient for the remaining distance to the extremum at the

prescribed terminal time T to be imperceptible.

In PT-ES, we replace the conventional probing sinusoid, whose frequency ω is constant,

by a sinusoid with the argument ω(t0 +(t − t0)T/(t0 +T − t)). This argument goes to infinity as

the time t approaches the terminal time t0 +T , where T is the prescribed convergence horizon.

To introduce the reader to PT-ES concepts, we start in Section 2.1 with a fundamental

result for a static map. We show how the existing theory of infinite-horizon averaging can be

employed for a stability study in a finite (prescribed) time setting. In comparison with FxT-ES in

[87], which yields a settling time that is user-assignable only with Newton-based algorithms, to

make the settling times independent of the unknown Hessian, our use of chirped probing and

a time-varying gain achieves a desired settling time T without the estimation of the Hessian’s

inverse and without the Newton approach.

In Section 2.2, we take the idea of Section 2.1 to delay-compensated PT-ES, which is

inspired by maximizing flow through traffic bottlenecks [123], and convert the predictor ideas

for infinite-time ES [82] to prescribed time. Already in this section the rather complex relation

between the probing and the demodulating chirpy signals becomes evident, as an interesting

problem of an open-loop “motion planning” type. For more details on “motion planning” for

hyperbolic and parabolic PDEs, refer to [58] and [61].

After giving a not particularly difficult extension from ES under a delay to ES for the

wave PDE in Section 2.3, in Section 2.4 we turn our attention to the much harder problem of

compensating a diffusion PDE in prescribed time, which is motivated by the melt pool dynamics

in additive manufacturing [52]. The “motion planning” design of a chirpy probing signal for the

PDEs is far more challenging than for the delay in Section 2.2.

The averaging analysis in Section 2.1 and [110] is quite simple and follows an idea in [53]

to employ a time-dilation transformation τ(t) = t0 +(t − t0)T/(t0 +T − t) from the finite time

horizon [t0, t0 +T ) in the time scale t to the infinite time horizon [t0,∞) in the time scale τ . Both
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times start at τ = t = t0. The time τ becomes infinite when t → t0+T . The dilation lets us perform

design and averaging analysis, done for periodic ODEs, in the infinite time τ , while implementing

the algorithm and stating its properties in the finite time t(τ) = t0 +T (τ − t0)/(T + τ − t0).

The averaging for the infinite-dimensional systems in Sections 2.2 and 2.4 is significantly

harder. Employing the time dilation results in the transport speed (for the delay) or diffusion

(for the heat equation) converging to zero as the dilated time advances to infinity, destroying

exponential stability of the time-dilated average system. Therefore, we are forced to develop

an averaging method for our infinite-dimensional and not necessarily periodic systems, with

not necessarily uniformly bounded right hand sides, over an arbitrarily long subset of the time

interval t ∈ [t0, t0 +T ). We develop an averaging technique for infinite-dimensional systems,

inspired by [16, Theorem 5.16]. In the process, we treat the argument µ(t) = T/(t0 +T − t), in

chirpy sinusoid sin(ω(t0 +(t − t0)µ(t))), as a state of the system rather than as a time-varying

signal.

1.1.2 Unbiased ES for seeking fixed optima

Motivation. The fundamental principle of ES is to introduce a small perturbation to

the system through an excitation signal, observe the system’s response, estimate the gradient

by demodulating the output, and adjust the system’s inputs towards the vicinity of the optima.

Due to the persistent excitation present in the process, achieving exact convergence to the

extremum cannot be ensured, and instead, steady-state oscillations around the extremum are

commonly observed. While these oscillations ensure robustness against potential drifts in the

optima, eliminating them and reducing the convergence error offer significant advantages in

various applications, such as maximizing power extraction in solar systems [74], more accurate

localization of leakage sources [46], improved tuning of controller parameters [51], and increased

efficiency in combustion engines [50]. This motivates the development of a novel ES design that

achieves exponential and unbiased convergence directly to the unknown extremum.

As discussed in Section 1.1.1, the PT-ES designs developed in [110] and Chapter 2
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guarantee convergence to a neighborhood of the extremum while leading to unbounded control

signals, which is impractical for real-world applications. This limitation underscores the need

for an unbiased PT-ES (uPT-ES), which converges to the extremum within a user-prescribed

time, without bias, and ensures bounded control signals. Furthermore, this fast and precise

optimization is critical in specific applications such as particle accelerators with high-frequency

electromagnetic fields, where extremely precise control of electric field amplitude and phase is

necessary within strict tolerances and short time frames [94].

Literature survey. To address persistent oscillation around the fixed optimum, [109]

introduces a method involving a time-varying perturbation amplitude that decays to zero, ensur-

ing practical asymptotic convergence to the global extremum despite local extrema. Another

approach in [113] adjusts the perturbation amplitude based on system output. However, the claim

of exponential convergence to the optimum in [113] has been theoretically [7] and numerically

[33, 38] disputed. Kalman filtering techniques, with feedback to dynamically update the ampli-

tude, are employed in [85] and [8], achieving asymptotic convergence to a neighborhood of the

extremum with diminishing oscillation. In [62], the authors established a connection between

stochastic approximation and ES by replacing the stochastic perturbations with periodic ones. To

minimize convergence bias, [62] employs filtering techniques and reduces learning/update gains

while keeping the perturbation amplitude constant. The same work also develops state-dependent

probing signals to improve transient performance, but still leads to biased convergence. Regula-

tion of inputs directly to their unknown optimal values is achieved in [32] and [97] using an ES

that vanishes at the origin, assuming the optimal value of the cost function is known beforehand.

Relaxing this restriction, [2], [33], [38], and [106] present control designs that achieve asymptotic

convergence of both inputs and outputs to their unknown optimum values. Specifically, [2]

achieves this under certain initial conditions, [38] employs time-varying tuning parameters with

decaying frequency and amplitude, [33] reduces the size of the search region by estimating the

uncertainty set around the optimizer and updating the amplitude accordingly, and [106] adopts

an approach with unboundedly growing update rates and frequencies. In summary, none of the
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aforementioned results achieve unbiased convergence directly to the unknown extremum, either

exponentially or within a prescribed time.

Contributions. In Chapter 3, we introduce three ES algorithms: (i) exponential uES

with vanishing oscillations and unbiased convergence, (ii) robust exponential ES with adjustable

oscillations, but less accurate convergence, (iii) unbiased PT-ES (uPT-ES) with vanishing

oscillations and unbiased convergence in prescribed time. Our exponential uES is the first to

provide exponentially fast convergence directly to the true optimum. The uPT-ES offers the

strongest results to date in the field in terms of both rate (arbitrarily fast) and accuracy (zero error).

Unlike finite-time ES [34] and fixed-time ES [86, 87] algorithms, which exhibit steady-state

oscillations after reaching the terminal time, the developed uPT-ES: (i) eliminates steady-state

oscillations, (ii) guarantees unbiased convergence to the extremum, and (iii) achieves this within

an arbitrarily defined terminal time, independent of initial conditions and system parameters.

The concept of exponential uES relies on an exponential decay function that reduces

the effect of the perturbation signal and the use of its multiplicative inverse, which grows

exponentially, to maximize the effect of the demodulation signal multiplied by the high-pass

filtered output. Similar to the prescribed-time stabilization concept presented in [103], the

convergence of the filtered output occurs at a faster rate than the divergence of the inverse

function and the convergence of the perturbation, keeping the controller bounded. For the

stability analysis, we transform the system using the exponentially growing function and then

apply classical averaging and singular perturbation methods to show the local stability of the

transformed system, which in turn implies the local exponential stability of the original system

as well as exponential convergence of the output to the extremum with proper choice of gains.

We introduce the robust exponential ES, which is our second algorithm, by modifying the

exponential decay function so that it converges to a small value arbitrarily defined. Our third

and final algorithm, uPT-ES, replaces the exponential decay function with a prescribed-time

convergent function and employs chirp signals as perturbation/demodulation signals that grow

in frequency over time and ultimately diverge to infinity at the terminal. The prescribed-time
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stability of the closed-loop system is achieved by using a time-dilation transformation, a state

transformation, a classical averaging method, and a time-contraction transformation.

We evaluate our three ES designs numerically by studying the source seeking problem

with a two-dimensional velocity actuated point mass, which has been previously solved with a

traditional ES in [126]. A discovery that stands as a common ground of the proposed unbiased

algorithms is a duality between learning and unbiased convergence: learning must occur at a

rate that surpasses the rate of decay of the waning oscillations.

1.1.3 Unbiased ES for PDEs

Motivation. The PDE-compensating ES designs in Chapter 2 and in [22, 79, 80, 81] can

only ensure convergence to a neighborhood of the optimum point due to the active perturbing

signal in the design, resulting in suboptimal performance.

Contributions. Chapter 4 introduces unbiased ES that compensates for delay and diffu-

sion PDE dynamics while ensuring exponential and unbiased convergence to the optimum. This

extends the exponential uES design for maps without PDE dynamics developed in Chapter 3.

We present two distinct uES designs: one can handle arbitrarily long and known time delays,

while the other compensates for diffusion PDEs. The designs consist of a PDE compensator,

a perturbation signal with exponentially decaying amplitude (to eliminate steady-state oscilla-

tion), demodulation signals with exponentially growing amplitude and properly selected design

parameters (to ensure unbiased convergence).

1.1.4 Unbiased ES for tracking time-varying optima

Motivation. Real-world processes often face changing external conditions, causing the

optimal input value to shift over time. It occurs for renewable energy systems operating in

fluctuating weather conditions while being subject to varying energy demand, which prompt

adjustments of the controller parameters to maximize power generation [57], [74]. In mineral

processing, continuously adjusting aeration rates is necessary to maintain optimal air recovery
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[119]. In CO2 heat pump systems, the efficiency, represented by the coefficient of performance,

varies due to environmental factors, requiring real-time optimization for maximum efficiency

[43]. Therefore, there is a need not only for seeking fixed optima but also for tracking arbitrarily

varying ones.

Literature survey. Several ES designs have been developed for plants with periodic

steady-state outputs and constant optimizers. A scheme in [112] minimizes the limit cycle size

by detecting its amplitude and adjusting a controller parameter to reach a constant optimum

value. Another design in [35] uses the system’s flatness property to track an optimal orbit of

a nonlinear dynamical system. For plants with periodic outputs of known periodicity, an ES

controller with a moving-average filter is presented in [39]. However, the reliance on periodic

performance functions in these designs limits their applicability to a broad and rich set of

engineering applications, such as those investigated in [57, 74, 119, 43] (and the references

therein).

The optimization of arbitrary time-varying cost functions using ES is considered in

various studies. The groundwork for time-varying optimizers is laid in [55], where a generalized

ES scheme is developed to track optimizers with known dynamics but unknown coefficients,

employing the internal model principle. For slowly varying optima, [90] introduces a delay-based

strategy to extract the gradient signal. This strategy is further extended to handle dynamic systems

with input constraints in [120]. In [95], an ES is developed to provide unknown reference tracking

and stabilization for a class of unknown nonlinear systems, based on time-varying nonlinear high-

gain feedback. To address unstable nonlinear systems with time-varying extrema, [73] presents

a model-based adaptive ES algorithm. The results in [31] and [40] establish local and semi-

global practical asymptotic stability of the extremum with a dynamic map. While [40] seeks a

constant optimizer by ES to optimize time-varying steady-state plant, [31] extends the Lie bracket

approximation method to prove convergence toward a neighborhood of a time-varying optimizer.

The robustness of Lie bracket-based ES schemes with respect to time-varying parameters is

investigated in [60] within the framework of input-to-state stability (ISS). Additionally, [86]
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studies ISS-like properties of fixed-time extremum seeking with a time-varying cost function. In

contrast to prior results, which utilize high-frequency dither signals, [71] develops a cooperative

ES scheme for tracking moving sources without the need for dither signals. Although all these

studies achieve convergence to a small neighborhood of the time-varying optimum, they do not

ensure perfect tracking.

Contributions. In Chapter 5 of this thesis, we introduce three uES designs that achieve

perfect tracking of arbitrarily time-varying optima: asymptotic uES, exponential uES, and

prescribed-time uES, which achieve convergence asymptotically, exponentially, and in prescribed

time, respectively. Our key contributions are listed below:

• We extend the capabilities of our exponential and PT uES designs from Chapter 3 by (i)

broadening the strong convexity assumption to encompass a wider class of convex cost

functions, (ii) relaxing the fixed optima assumption to include time-varying optima, and

(iii) accommodating C 2 functions (continuously differentiable up to the second order)

instead of C 4.

• We establish feasibility conditions for selecting time-varying design parameters and their

decay/growth rates in relation to the convexity of the map and the decay/growth rate of the

optima. These conditions imply that the use of constant-frequency probing restricts the

range of achievable asymptotic unbiasing rates, depending on the “flatness” of the map at

the optimum. In contrast, employing chirpy probing enables users to define the unbiasing

rate arbitrarily–whether asymptotic, exponential, or in prescribed time–provided that the

frequency and adaptation rates grow sufficiently fast.

• Compared to existing designs [2, 33, 38, 106], which achieve asymptotic unbiased conver-

gence, our asymptotic uES design offers convergence at a user-defined asymptotic rate. To

the best of our knowledge, perfect tracking of time-varying optima at a desired rate has

not been achieved in prior works in the field.

Other contributions are as follows:

10



• We develop an exponential uES tailored to a unicycle, which requires singular perturbation

analysis in addition to averaging.

• We experimentally test the developed design on a light-seeking task by tuning the angular

velocity of a unicycle robot based on real-time light sensor data.

Our ES designs are built upon two main methodological advances: state scaling and time

scaling. Based on state scaling, the system states are multiplied by an unboundedly growing

function, and the original system is converted to a new “transformed system”. The stability of the

transformed system is equivalent to that of the original system, whether asymptotic, exponential,

or within a prescribed time, depending on the growth rate of the scaling function. A crucial

aspect of this accelerated control technique is that the states converge faster than the gains

diverge, which guarantees boundedness of the input signal.

The state scaling technique has its roots in the mid-60s, with work by [91] and [125] on

analysis of nonlinear feedback systems, which later became known as the “exponential weighting

technique”. For systems lacking persistency of excitation (PE), exponentially growing gains is

used in [77] to compensate for the PE loss and achieve unbiased parameter identification at a

desired exponential rate. A major advancement in stability is introduced in [103] with a scaling

function that grows and blows up at a user-defined time. This has spurred significant interest in

prescribed-time control [104].

Time scaling provides an alternative approach to achieve faster convergence. By concep-

tually “dilating” the fixed time interval to infinity, controller design and stability analysis are

performed in a virtual infinite time domain. Crucially, stability proven in this dilated time domain

translates back to guaranteed stability over the original finite time interval after “contracting”

time back. We use this method to dilate time from the domain (not necessarily finite) to a new

infinite one, allowing us to handle the arbitrarily varying optimum by slowing its speed in the

dilated time domain. This enables tracking of the optimum asymptotically, exponentially, or

within a prescribed time.
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Throughout this thesis, we refer to these techniques as state transformation and time

transformation.

1.2 Adaptive Model-Free Control of Continuum Robots

In this section, we shift focus from extremum seeking to a distinct challenge: adaptive

control and disturbance rejection in continuum robots.

Continuum robots, which are characterized by their continuously bending structure,

are inherently compliant and can conform to highly curved paths [17]. These features make

continuum robots particularly well-suited for minimally invasive surgery, where access to the

surgical site is often limited and requires high precision [5]. However, the infinite degrees of

freedom and nonlinear properties they possess, result in more complex mathematical models.

Moreover, the kinematics of robots operating in constrained environments may differ from those

in free space due to unknown contact forces along the body of the robot [121]. Therefore, there

is a growing need for more accurate models that account for their nonlinear properties and

unknown contact forces, as well as more advanced control strategies that ensure their safe and

precise navigation.

Continuum robot modeling. Several models have been developed that describe the

kinematics and dynamics of continuum robots. The simplest model is the piecewise constant

curvature model, which approximates a multi-segment robot as a finite series of serially connected

circular arcs [118]. The pose of the robot’s backbone is defined by triplets of arc length, curvature,

and orientation angle, but this model neglects the deformations of the robot under external loads.

This model is further extended by the variable curvature model, in which each segment is defined

by a finite number of serially connected circular arcs, for robots with non-uniform curvature [68].

However, this model has not gained widespread acceptance as it makes the kinematic formulation

complex without providing a generalized solution for deformed shapes due to external forces

and moments. The Cosserat rod theory has shown promising results in the static modeling of
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continuum robots as a set of nonlinear ODEs, as well as in the dynamic modeling of these

robots as a set of nonlinear PDEs, for non-constant curvatures deformed by external loading,

which cause bending, torsion, shear and extension [89]. The Cosserat rod model, while being a

powerful tool, has high computational cost and struggles to capture all nonlinear properties of

continuum robots.

Model-based and model-free control of continuum robots. The common approach for

model-based control of continuum robots is to compute the kinematic Jacobian matrix, using

either an analytical formulation or using numerical methods, and to update the input proportional

to the inverse of the Jacobian [24]. Additional approaches have included the development

of optimal control techniques [114] and model-predictive control methods [48] based on the

Cosserat rod model. Despite their advantages in terms of predictability and reliability, there

are still several limitations of these model-based control methods. For example, the analytical

solution of the derived model may not be possible, and numerical methods may not produce

satisfactory results in terms of accuracy and computation time [28]. Additionally, unstructured

external forces on the robot may not be measured or estimated, and sensor feedback may be

limited [24]. Without reliable sensor feedback, model-based controllers may cause instability on

the robot interacting with unstructured environments [121].

An alternative approach is the use of model-free control techniques, which are appealing

due to their adaptability to robot characteristics, changes in the environment, and computational

efficiency [24]. One of the widely used model-free control techniques is to estimate the Jacobian

matrix online using input-output data and to design a controller using the pseudo-inverse of the

Jacobian estimate. Several methods have been developed for Jacobian estimation, including a

windowing approach [122], an adaptive Kalman filter [64], an update law that uses the velocity,

acceleration information of the end-effector [108, 13] and a technique that uses online image

data of robot [111]. Another popular model-free control technique is the use of neural networks

[115]. This technique involve training a neural network offline to learn the kinematics of the

robot, and then using this pre-trained network to control the robot’s movement to a desired
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position. Furthermore, by fine-tuning the network online with sensor feedback, the robot can

adapt to changes in the environment, making it robust to disturbances.

Physiological disturbance compensation. Continuum robots are designed to be used

for surgical operations inside live bodies and interact with dynamic anatomy. However, one

of the challenges facing continuum robots in such operations is the presence of physiological

disturbances inside the body, such as respiration and heartbeat [27]. These disturbances can

cause significant movement of the robot tip, making it difficult to maintain a stable position

or to stabilize a camera view with respect to a dynamically disturbed target. Therefore, the

compensation of these disturbances is critical for precise and safe surgical operations.

The motion of the heart is a complex and dynamic process that is difficult to model,

making it challenging to compensate for the heart motion using traditional control methods.

Additionally, the physical limits of most robots, such as the speed of their actuators, can make it

difficult to compensate for its fast and unpredictable movement [5]. In contrast, the respiration

cycle of a patient under artificial ventilation is often shown to be periodic [27, 83]. This

characteristic allows for the design of control algorithms, such as repetitive control [83, 88, 6],

model-predictive control [27, 6, 3], and Extended Kalman filter [124, 65, 36], to estimate or

compensate for the predictable and repetitive nature of the respiration cycle. However, the

breathing frequency may change over time, resulting in a deviation in the estimation of the

breathing motion [65]. Overall, there remains a need for disturbance rejection strategies for

robots that are subject to both periodic and non-periodic disturbances.

Contributions. In Chapter 6, we introduce a novel model-free adaptive controller that

is robust to unknown disturbances and capable of tracking a reference trajectory. We adopt a

neural network-based approximation technique, inspired by [66, 76], to estimate the uncertain

Jacobian matrix. The neural network weights are estimated online, and a dynamic controller

is designed based on the pseudo-inverse of the Jacobian estimate. To reject disturbances, we

develop two control strategies. The first strategy is designed for disturbances that are periodic

and unknown. The fundamental frequency of the disturbance is determined in an offline mode
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while the controller is inactive. Subsequently, an adaptive model-free disturbance rejection

algorithm is implemented online, in conjunction with an adaptive disturbance observer, which

incorporates the internal model of the disturbance with a finite number of harmonics of the

estimated frequency. The adaptation of the neural network and the estimation of the disturbance

are performed simultaneously in an online manner. The second control strategy is designed for

robustness to any unknown and arbitrary disturbance, which does not necessarily need to be

periodic. This strategy utilizes time-varying input and update law gains that grow monotonically

and have been shown to be effective in controlling uncertain nonlinear systems for exponential

stabilization [105] and for fixed-time stabilization in user-prescribed time [103, 54], herein

referred to as prescribed-time stabilization. This speeds up the convergence of the system

states and makes the system robust to any arbitrary disturbance. Through the use of these

gain functions, we achieve the asymptotic, exponential and prescribed-time convergence of the

trajectory tracking error to zero. This stability result is notable compared to the result of the first

strategy, which solely guarantees the ultimate boundedness of the tracking error.

Additionally, we present the following contributions:

• The periodic disturbance rejection algorithms presented in [83, 27] compute the funda-

mental frequency of the disturbance using power spectral density analysis. We introduce

an adaptive frequency estimator, presented in Section 6.4, that estimates the fundamental

frequency in an adaptive manner. Compared to the adaptive estimators in [69, 12], which

employ a cascade of low-pass filters, referred to as prefilters, and additional filters applied

to the prefiltered signal to estimate the frequency, our developed estimator employs only

low-pass and high-pass filters without any additional filters. This approach results in a

reduction in the number of filters used and an improvement in the accuracy of the frequency

estimation.

• In contrast to the existing results achieving robustness against disturbances with a sliding-

mode term [24], our controllers are continuous, reducing the risk of chattering that may
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occur with discontinuous controllers.

• To the best of the our knowledge, this work introduces a novel approach that has not been

previously reported in the literature, which utilizes an adaptive observer to estimate a

periodic disturbance online and a model-free controller to reject this disturbance, while

continuously updating the Jacobian matrix using only position measurements. The ac-

celerated algorithms presented in Section 6.5 are the first results in the literature that

achieve rapid convergence to a reference trajectory, as well as robustness against arbitrary

disturbances in continuum robots.
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Chapter 2

Prescribed-Time Extremum Seeking for
Delays and PDEs

In this chapter, we introduce a prescribed-time extremum seeking (PT-ES) approach to

reaching the optimum in a user-assignable “prescribed” time (PT), independent of the initial

condition of the estimator. Instead of conventional sinusoidal probing signals, we employ “chirpy”

perturbations, i.e., sinusoids with growing frequencies. In addition to providing a result for a

static input-output map, we provide algorithms for a map in cascade with (1) a delay, (2) a wave

PDE, and (3) a heat/diffusion PDE. The designs are based on the time-varying PT backstepping

approach, which transforms the PDE-ODE cascade into a suitable PT-stabilized target system,

and on averaging-based estimates of the gradient and Hessian of the map. Classical averaging

does not apply for the analysis of PT-ES algorithms for four reasons: neither is probing periodic,

nor is the ‘average system’ exponentially stable, nor is the original system finite-dimensional,

nor is the interval of operation infinite. We develop an averaging technique needed for this

non-periodic finite-time infinite-dimensional problem. Along with PDE Lyapunov analysis, we

show that the input converges to the optimizer in prescribed time. We present three numerical

examples to illustrate the effectiveness of the proposed technique for delay-free case as well as

for compensation of time-delay and diffusion PDE dynamics.

The structure of this chapter is as follows: we introduce the first result in the literature

achieving prescribed-time extremum seeking, starting with static maps in Section 2.1 and
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extending to maps with delay in Section 2.2. Section 2.3 addresses maps with wave PDE

dynamics, while Section 2.4 focuses on those with diffusion PDE dynamics. The paper concludes

with Section 2.5, followed by acknowledgments.

Notation. The partial derivatives of a function u(x, t) are denoted by ∂xu(x, t) =

∂u(x, t)/∂x, ∂tu(x, t) = ∂u(x, t)/∂ t. The spatial L2[0,D] and H1[0,D] norm of u(x, t) are de-

noted by ||u(·, t)||2L2[0,D] =
∫ D

0 u2(x, t)dx and ||u(·, t)||2H1[0,D] = ||u(·, t)||2L2[0,D]+ ||∂xu(·, t)||2L2[0,D],

respectively. The real part of a complex number z is denoted by Re{z}. L(α)
k (·),Jm(·) and

Im(·) denote the generalized Laguerre polynomial, Bessel function and modified Bessel func-

tion of the first kind, respectively, which are defined by the following formulas: L(α)
k (p) =

∑
k
r=0
( k+α

k−r

) (−p)r

r! ,Jm(p) = ∑
∞
k=0

(−1)k(p/2)m+2k

k!(k+m)! , Im(p) = ∑
∞
k=0

(p/2)m+2k

k!(k+m)! .

2.1 Basic PT-ES for Static Map

The main objective of scalar PT-ES is to find the optimum of the unknown static map

Q(θ) in a prescribed-time by employing harmonic excitation to the input θ ∈ R, and extracting

the gradient information Ĝ from the output response y ∈ R. Regarding the structure of the

unknown static map, we assume the following:

Assumption 2.1 The unknown nonlinear static map has the following quadratic form,

Q(θ) = y∗+
H
2
(θ −θ

∗)2, (2.1)

where y∗ ∈ R and θ ∗ ∈ R are the unknown optimum output and input value, respectively, H < 0

is the unknown Hessian of the static map Q(θ).

We illustrate the basic procedure of the PT-ES scheme in Fig. 2.1. It is clear from (2.1)

and Fig. 2.1 that the output signal y(t) is written as follows

y(t) = y∗+
H
2
(θ(t)−θ

∗)2. (2.2)
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Q(·)

M(t, µ)S(t, µ)

y = Y (t, µ)θ
ẏl = (−ωhyl + ωhy)µ

2

Ġ = (−ωlG+ ωlΛ)µ
2˙̂

θ = kµ2G
Gθ̂

yh

Λ

yh = y − yl

Figure 2.1. Basic PT-ES scheme.

We define the following dilation and contraction transformations

τ = t0 +(t − t0)µ, (2.3)

t = t0 +
T (τ − t0)
T + τ − t0

, (2.4)

with the following smooth function

µ(t) =
T

T + t0 − t
, (2.5)

for t ∈ [t0, t0 +T ), τ ∈ [t0,∞), where t0 is the initial time and T is the prescribed-time. The

dynamics of the blowing up function (2.5) is given by

µ̇ =
1
T

µ
2. (2.6)

In general, the perturbation signals S(t) and M(t) are chosen as asin(ωt) and 2
a sin(ωt) in order

to ensure the exponential stability of the averaged error-dynamics. To achieve PT convergence to

the extremum, we replace the sinusoids with “chirpy” perturbation and demodulation signals

whose frequency grows rather than being constant:

S(t,µ) = asin(ω(t0 +(t − t0)µ)) , (2.7)
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M(t,µ) =
2
a

sin(ω(t0 +(t − t0)µ)) . (2.8)

We summarize closed-loop system depicted in Fig. 2.1 as follows

d
dt


θ̃

G

ỹl

=


kµ2G

−ωlµ
2G+ωlµ

2(y− y∗− η̃)M(t,µ)

−ωhµ2ỹl +ωhµ2(y− y∗)

 , (2.9)

in view of the transformations

θ̃ = θ̂ −θ
∗, (2.10)

ỹl = yl − y∗, (2.11)

where θ̂ is the estimate of θ ∗, θ̃ is the estimation error, and yl is governed by

ẏl =−ωhµ
2yl +ωhµ

2y.

Let us note that θ = θ̂ +asin(ω(t0 +(t − t0)µ)), which yields θ −θ ∗ = θ̃ +asin(ω(t0+(t− t0)

×µ)). Then, we can rewrite the output signal (2.2) as follows

Y (t,µ) = y∗+
H
2
(
θ̃ +asin(ω(t0 +(t − t0)µ))

)2
.

Considering (2.3), (2.4) along with

dτ

dt
= µ

2,
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we can write the system (2.9) in the dilated τ-domain

d
dτ


θ̃ ∞

G∞

ỹ∞
l

=


kG∞

−ωlG∞ +ωl

[
H
2

(
θ̃ ∞ +asin(ωτ)

)2 − η̃

]
2
a sin(ωτ)

−ωhỹ∞
l +ωh

H
2

(
θ̃ ∞ +asin(ωτ)

)2

 , (2.12)

where


θ̃ ∞(τ)

G∞(τ)

ỹ∞
l (τ)

=


θ̃

(
t0 +

T (τ−t0)
T+τ−t0

)
G
(

t0 +
T (τ−t0)
T+τ−t0

)
ỹl

(
t0 +

T (τ−t0)
T+τ−t0

)
 .

The averaging of (2.12) yields

d
dτ


θ̃ ∞

av

G∞
av

ỹ∞
l,av

=


kG∞

av

−ωlG∞
av +ωlHθ̃ ∞

av

−ωhỹ∞
l,av +ωh

H
2 (θ̃

∞
av)

2 +ωha2 H
4

 , (2.13)

where θ̃ ∞
av,G

∞
av, ỹ

∞
l,av denote the average versions of the states θ̃ ∞,G∞, ỹ∞

l . We obtain the equilib-

rium of the average system (2.13) as
[

θ̃ ∞
av,e G∞

av,e ỹ∞
l,av,e

]
=

[
0 0 Ha2/4

]
. The Jacobian of

the average system (2.13) at the equilibrium
[

θ̃ ∞
av,e G∞

av,e ỹ∞
l,av,e

]
is given by

Jav,e =


0 k 0

ωlH −ωl 0

0 0 −ωh

 ,

which is Hurwitz. Then, we deduce the local exponential stability of the average system (2.13) in

τ-domain, τ ∈ [t0,∞) as well as the local stability of the system (2.9) in t-domain, t ∈ [t0, t0 +T ).

The following theorem concludes the properties of the basic PT-ES scheme depicted in Fig. 2.1.
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Theorem 2.1 Consider the system in Fig. 2.1 and the transformations (2.3), (2.4) under As-

sumption 2.1. There exists ω∗ > 0 such that ∀ω > ω∗, the feedback system (2.12) with states

θ̃ ∞ (τ) ,G∞ (τ) , ỹ∞
l (τ) has a unique prescribed-time stable solution in t-domain, denoted by

θ̃ Π(t0 +(t − t0)µ), GΠ(t0 +(t − t0)µ), ỹΠ
l (t0 +(t − t0)µ), where θ̃ Π (τ) ,GΠ (τ) , ỹΠ

l (τ) are the

unique exponentially stable periodic solutions in τ of period Π = 2π/ω satisfying ∀τ ≥ t0:

(∣∣θ̃ Π (τ)
∣∣2 + ∣∣GΠ (τ)

∣∣2 + ∣∣ỹΠ
l (τ)−Ha2/4

∣∣2)1/2
≤ O(1/ω). (2.14)

Furthermore,

lim
t→t0+T

sup |θ(t)−θ
∗|= O(a+1/ω), (2.15)

lim
t→t0+T

sup |y(t)− y∗|= O(a2 +1/ω
2). (2.16)

Proof By the application of the averaging theorem [49] to (2.13), we prove the existence of

unique exponentially stable periodic solutions of (2.12), θ̃ Π (τ) ,GΠ (τ) , ỹΠ
l (τ), which satisfy

(2.14). Performing the time contraction τ → t in (2.14), we deduce the PT stable solution of

(2.9). Then, we can write

lim
τ→∞

sup |θ̃ ∞(τ)|2 = lim
τ→∞

sup
{
|θ̃ ∞(τ)+ θ̃

Π(τ)− θ̃
Π(τ)|2

}
,

≤
√

2 lim
τ→∞

sup
{
|θ̃ ∞(τ)− θ̃

Π(τ)|2 + |θ̃ Π(τ)|2
}
,

= O(1/ω),

by noting (2.14) and recalling that θ̃ ∞(τ) → θ̃ Π(τ) as τ → ∞. Considering the property of

θ ∞(τ)− θ ∗ = θ̃ ∞(τ)+ asin(ωτ) and performing the time contraction τ → t, we get (2.15).

Considering (2.2) and (2.15), we conclude (2.16). ■

Example 2.1 [Numerical simulation (delay-free)] We consider the following static quadratic
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Figure 2.2. The performance of the delay-free PT-ES.

map

Q(Θ) = 5− (Θ−2)2. (2.17)

We assume that the map (2.17) is measured with no delay. We select the perturbation signal

parameters a = 0.2, ω = 10, the initial time t0 = 0, the terminal time T = 40 and set all initial

conditions to zero. The cut-off frequencies of the high-pass and low-pass filters are ωl = ωh = 5.

We implement the basic delay-free PT-ES algorithm with the gain k = 0.01, the time step 10−4

and show the result in Fig. 2.2. It is clear that the output signals oscillate with the frequency,

which grows over time and converges to the neighborhood of the extremum in the prescribed-time.

Remark 2.1 The utilization of chirpy signals and time-varying gains in the ES loop offers

distinct advantages over the use of existing sinusoidal perturbations. In addition to enabling

convergence within user-defined time interval, the introduced PT-ES also provides enhanced

robustness against dynamic variations of extrema and external disturbances. For an in-depth
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discussion on the performance of classical ES and PT-ES concerning the problem of source

seeking by a unicycle in the presence of destabilizing drift, interested readers can refer to [110].

Remark 2.2 The application of our PT-ES approach to a physical system presents a significant

challenge due to the presence of the blow-up gain µ . In order to address this concern, a

pragmatic approach involves ‘clipping’ the function µ to feasible large values that enable

convergence to a sufficiently close neighborhood to the extremum. Regarding the numerical

implementation of a delay-free PT-ES approach for a unicycle, the incorporation of a saturation

function to restrict the growth of µ is detailed in [110].

2.2 PT-ES with Delays

In this section, we consider the case that the output y(t) has a known and constant delay

D ∈ R, i.e.,

y(t) = Q(θ(t −D)). (2.18)

Note that the static map Q(θ) allows us to write the delay D as D = Du +Dy, where Du and

Dy are the delays in the actuation and measurement path, respectively. Our aim is to design a

scalar PT-ES which compensates the delay and stabilizes the output signal y(t) around a small

neighborhood of the extremum in the prescribed time T > D. In addition to Assumption 2.1, we

make the following assumption regarding the bound of the Hessian.

Assumption 2.2 The lower bound of the unknown Hessian of the static map, H̄ < H, is known.

Considering Assumption 2.1, we can write the output of the static map as follows

y(t) = y∗+
H
2
(θ(t −D)−θ

∗)2. (2.19)

Fig. 2.3 illustrates the closed-loop ES with prescribed-time delay compensation controller, which

is to be designed.

24



1
s Q(·)

N(t, η)

M(t, η)

S(t+D, η(t+D))

G(t, η)
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Figure 2.3. PT-ES scheme with delay compensation.

Remark 2.3 We incorporate modified high-pass and low-pass filters into the delay-free ES

scheme depicted in Fig. 2.1. These filters are specifically designed to smooth the estimates

of the gradient G(t) and Hessian estimate Ĥ(t) over a predefined time interval. However, the

integration of these filters into the ES loop in Fig. 2.3 and the temporal transformation from

t ∈ [0,T ) to τ ∈ [t0,∞), results in a nonlinear evolution equation, which requires more rigorous

analysis as pointed out in [67]. The ES schemes and numerical simulations presented in this

section, as well as subsequent sections, do not incorporate these filters.

2.2.1 Perturbation signals and gradient/Hessian estimates

In this subsection, we define the signals introduced in Fig. 2.3. We introduce the

following estimator

θ̂(t) = θ(t)−asin(ω(t0 +(t +D− t0)µ(t +D))) , (2.20)

for t ∈ [t0 +D, t0 +T ) and θ̂(t) = θ̂0 ∈ R for t ∈ [t0, t0 +D). We define the delayed parameter

estimation error as follows

ϑ(t) = θ̂(t −D)−θ
∗, (2.21)
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for t ∈ [t0 +D, t0 +T +D). Considering (2.21) and using the technique in [56], we can write the

following transport PDE

ϑ(t) = ū(0, t), (2.22)

∂t ū(x, t) = ∂xū(x, t), (2.23)

ū(D, t) = θ̂(t)−θ
∗, (2.24)

where the solution of (2.23) and (2.24) is given by ū(x, t) = θ̂(t + x−D)−θ ∗. Let us define an

infinite dimensional state η : X → X , where X := R×R×L2[0,D]×R, by

η(t) =
[

ϑ(t), µ(t), ū(·, t), θ̂(t)

]T

. (2.25)

Then, we rewrite the output signal (2.19) using (2.20), (2.21) in the following form

Y (t,η) = y∗+
H
2
(ϑ +asin(ω(t0 +(t − t0)µ)))2, (2.26)

for t ∈ [t0 +D, t0 +T +D). Moreover, one gets from (2.20) and Fig. 2.3 that

θ̇(t) = ˙̂
θ(t)+S(t +D,η(t +D)),

where the perturbation signal is

S(t +D,η(t +D)) = aω cos(ω(t0 +(t +D− t0)µ(t +D)))µ
2(t +D),

for t ∈ [t0 +D, t0 +T ). The final step before proceeding to the controller design is to generate

the estimate of the gradient and Hessian as follows

G(t,η) = M(t,η)Y (t,η), (2.27)
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Ĥ(t,η) = N(t,η)Y (t,η), (2.28)

with the following multiplicative excitation signals

M(t,η) =
2
a

sin(ω(t0 +(t − t0)µ)) , (2.29)

N(t,η) = − 8
a2 cos(2ω(t0 +(t − t0)µ)) . (2.30)

Lemma 2.1 The averaged version of the gradient (2.27) and Hessian estimate (2.28) are given

by

Gav(t,η) = Hϑ , (2.31)

Ĥav(t,η) = H. (2.32)

Proof Considering (2.4), let us define

G∞(τ,η∞(τ)) = G
(

t0 +
T (τ − t0)
T + τ − t0

,η

(
t0 +

T (τ − t0)
T + τ − t0

))
,

Ĥ∞(τ,η∞(τ)) = Ĥ
(

t0 +
T (τ − t0)
T + τ − t0

,η

(
t0 +

T (τ − t0)
T + τ − t0

))
,

ϑ
∞(τ) = ϑ(t0 +T (τ − t0)/(T + τ − t0),

and compute (2.27), (2.28) along with (2.26), (2.29), (2.30) in τ-domain as follows

G∞(τ,η∞) =
2
a

sin(ωτ)

[
y∗+

H
2
(ϑ ∞ +asin(ωτ))2

]
,

Ĥ∞(τ,η∞) = − 8
a2 cos(2ωτ)

[
y∗+

H
2
(ϑ ∞ +asin(ωτ))2

]

from which we conclude that their average with respect to τ over the period 2π/ω treating ϑ ∞ as

constant are computed as G∞
av(τ,η

∞) = Hϑ ∞, Ĥ∞
av(τ,η

∞) = H. Performing the time contraction
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τ → t, we prove (2.31) and (2.32). ■

2.2.2 Controller design

Let us take the derivative of (2.22)–(2.24) as follows

ϑ̇(t) = u(0, t), (2.33)

∂tu(x, t) = ∂xu(x, t), (2.34)

u(D, t) = ˙̂
θ(t), (2.35)

where u(x, t) = ∂t ū(x, t). Following the technique discussed in [56], we consider the following

backstepping transformation

w(x, t) = u(x, t)+ k̄µ
2(t + x−D)

(
ϑ(t)+

∫ x

0
u(y, t)dy

)
, (2.36)

which maps (2.33)–(2.35) into the target system

ϑ̇(t) = − k̄µ
2(t −D)ϑ(t)+w(0, t), (2.37)

∂tw(x, t) = ∂xw(x, t), (2.38)

w(D, t) = 0, (2.39)

where k̄ > 0. By letting x = D in (2.36), we obtain the controller as follows

˙̂
θ(t) =−k̄µ

2(t)
(

ϑ(t)+
∫ D

0
u(y, t)dy

)
. (2.40)

The implementation of the controller (2.40) is not possible since there is no measurement of

ϑ(t). To achieve this, let us define k̄ = kH where H < 0 is the unknown Hessian and the gain

k < 0 is assigned by the user. Considering Lemma (2.1), we can rewrite the controller (2.40) in
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terms of (2.27) and (2.28) as follows

˙̂
θ(t) = Ĥ(t,η(t))Q(η(t))+G(t,η(t))P(η(t)), (2.41)

where

Q(η(t)) = − kµ
2(t)

∫ D

0
∂t ū(y, t)dy

= − kµ
2(t)

(
θ̂(t)− θ̂(t −D)

)
, (2.42)

P(η) = − kµ
2. (2.43)

In (2.42), we use the fact that ∂t ū(y, t) = u(y, t) = ˙̂
θ(t +y−D) and ∂t θ̂(t +y−D) = ∂yθ̂(t +y−

D). Let us substitute (2.27) and (2.28) into (2.41). Then, we obtain the following closed-loop

error system

ϑ(t) = ū(0, t), (2.44)

∂t ū(x, t) = ∂xū(x, t), (2.45)

ū(D, t) = θ̃(t), (2.46)

˙̃
θ = − kHµ

2
θ̃ + sin(ω(t0 +(t − t0)µ)) f1(η)− cos(2ω(t0 +(t − t0)µ)) f2(η)

− sin(3ω(t0 +(t − t0)µ)) f3(η)+ cos(4ω(t0 +(t − t0)µ)) f4(η), (2.47)

where

f1(η) = P(η)

[
2y∗

a
+

H
a

ϑ
2 +

3Ha
4

]
+Q(η)

[
4H
a

ϑ

]
, (2.48)

f2(η) = P(η)[Hϑ ]+Q(η)

[
2H +

8y∗

a2 +
4H
a2 ϑ

2
]
, (2.49)

f3(η) = P(η)

[
Ha
4

]
+Q(η)

[
4H
a

ϑ

]
, (2.50)

f4(η) = Q(η)H. (2.51)
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2.2.3 Numerical simulation (with delay)
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Figure 2.4. (a) The performance comparison of the delay-free PT-ES and the delay compensated
PT-ES in the presence of delay (b) The evolution of the input θ(t), the estimate θ̂(t) and the
optimum input θ ∗ under the delay compensated PT-ES.

We return to Example 2.1 and consider the map (2.17). We select the parameters a, the

initial time t0, the terminal time T and the initial conditions as in Example 2.1. We choose ω = 80.
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We assume that the measurement y(t) is subject to a known delay D = 5. We implement the

delay-compensated PT-ES (2.41) with k =−0.01. In Fig. 2.4 (a), we compare the performance

of the basic delay-free PT-ES and the proposed delay-compensated PT-ES in the presence of

delay. One can see that the proposed PT-ES algorithm compensates the delay and ensures

convergence of the output towards a vicinity of the extremum point y∗, whereas the basic PT-ES

which ignores the delay cannot achieve the convergence. In Fig. 2.4 (b), we present the evolution

of relevant variables under the proposed scheme.

2.2.4 Stability analysis

The main theorem is stated as follows.

Theorem 2.2 For T̄ > D arbitrarily close to T , there exists some ω∗(T̄ ), where ω∗(T̄ )→ ∞ as

T̄ → T , such that ∀ω > ω∗(T̄ ), the error system (2.44)–(2.47) satisfies

limsup
t→t0+T̄+D

(
|ϑ(t)|+ ||ū(·, t)||L2[0,D]

)
= O(1/ω), (2.52)

and

limsup
t→t0+T̄

|θ̂(t)−θ
∗|= O(1/ω). (2.53)

Furthermore,

limsup
t→t0+T̄

|θ(t)−θ
∗|= O(a+1/ω), (2.54)

limsup
t→t0+T̄+D

|y(t)− y∗|= O(a2 +1/ω
2). (2.55)

Proof Let us proceed through the proof step by step.

Step 1: (Averaging operation) Let us define a linear operator A : D(A )⊂ X → X
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by

A η(t) =
[

dū(0,t)
dx 0 dū(·,t)

dx 0

]T

,

and the domain

D(A ) =
{
[ϑ(t),µ(t), ū(·, t), θ̂(t)] ∈ X : ū(D, t) = θ̂(t)−θ

∗}.
We can write the derivative of the infinite-dimensional state vector (2.25) as follows

η̇ = A η + J (ωt,η) , (2.56)

for t ∈ [t0 +D, t0 + T̄ ] where

J (ωt,η) =

[
0 1

T µ2 0 −kHµ2θ̃ + f̌ (ωt,η)

]T

,

with

f̌ (ωt,η) = sin(ω(t0 +(t − t0)µ)) f1(η)− cos(2ω(t0 +(t − t0)µ)) f2(η)

− sin(3ω(t0 +(t − t0)µ)) f3(η)+ cos(4ω(t0 +(t − t0)µ)) f4(η). (2.57)

Let us define the following averaged system

η̇av = A ηav + Jav (ηav) , (2.58)

where

Jav (η) = lim
ω→∞

1
ω(T̄ −D)

∫
ω(T̄−D)

0
J(s,η)ds,
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=

[
0 1

T µ2 0 −kHµ2θ̃

]T

.

Inspired by [16, Theorem 5.16], we write the weak formulation of (2.56) by adding and sub-

tracting the term
〈∫ t

t0+D Jav(η(s))ds,ϕ
〉

, where ⟨·, ·⟩ stands for the inner product on X , as

follows

⟨η(t),ϕ⟩= ⟨η(t0 +D),ϕ⟩+
∫ t

t0+D
⟨η(s),A ∗

ϕ⟩ds+
〈∫ t

t0+D
Jav(η(s))ds,ϕ

〉
+

〈∫ t

t0+D
[J (ωs,η(s))− Jav(η(s))]ds,ϕ

〉
, (2.59)

with η(t0 +D) ∈ X for all ϕ ∈ dom(A ∗) with A ∗, the adjoint operator of A . Let us denote

the final term of (2.59) by R(t) and define σ = ω(s− t0 −D), η̌(σ) = η (σ/ω + t0 +D). Then,

we write

R(t) =
〈

1
ω

∫
ω(t−t0−D)

0
Je (σ , η̌(σ))dσ ,ϕ

〉
, (2.60)

where

Je (σ , η̌) = J (σ̄ , η̌)− Jav(η̌),

=

[
0, 0, 0, 0, f̌ (σ̄ , η̌)

]T

, (2.61)

and σ̄ = σ +ω(t0 +D). It follows from the second line of (2.42), (2.43), (2.48)–(2.51), (2.57),

(2.61), that Je(σ , η̌) is a continuous function of η̌ . Let us assume for now that ||η̌ ||X ≤C f for

some C f > 0 for all σ ∈ [0,ω(T̄ −D)], where || · ||X denotes the induced norm of X . Let us

compute the upper bound of (2.60) as follows

||R(t)||X ≤ 1
ω

δ (T̄ )||ϕ||X , (2.62)
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where

δ (T̄ ) = sup
||η̌ ||X ≤C f

sup
t0+D≤t<t0+T̄

∣∣∣∣∣∣∣∣∫ ω(t−t0−D)

0
Je (σ , η̌)dσ

∣∣∣∣∣∣∣∣
X

. (2.63)

Consider (2.57), (2.61), (2.63) and note the following fact

∣∣∣∣∫ ω(t−t0−D)

0
sin(ks(σ +ω(t0 +D))µ̌ +φs)dσ

∣∣∣∣≤ 2
ksµ̌

,

for any ks ∈ R+,φs ∈ R. Then, from (2.62), we get

||R(t)||X = O(1/ω), ∀t ∈ [t0 +D, t0 + T̄ ], (2.64)

for all ω > ω∗(T̄ )≫ δ (T̄ ). Then, we conclude that η(t) in (2.59) becomes a weak solution of

(2.58) as ω → ∞ and

||η(t)−ηav(t)||X = O(1/ω), ∀t ∈ [t0 +D, t0 + T̄ ] (2.65)

for all ω > ω∗(T̄ ). From (2.58), we obtain the average PDE system

ϑav(t) = ūav(0, t), (2.66)

∂t ūav(x, t) = ∂xūav(x, t), (2.67)

ūav(D, t) = θ̃av(t), (2.68)

˙̃
θav = − kHµ

2
θ̃av. (2.69)

Step 2: (Stability analysis) It is obvious from (2.69) and (2.66) that θ̃av(t) → 0 as

t → t0 +T and ϑav(t) = θ̃av(t −D)→ 0 as t → t0 +T +D, respectively. Let us define the norm
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W (t) := ||ūav(·, t)||2L2[0,D] and take its derivative as follows

Ẇ (t) =
∫ D

0
−2µ

2(t + x−D)ū2
av(x, t)dx

≤−2µ
2(t −D)W (t). (2.70)

It follows from (2.70) that

||ūav(·, t)||2L2[0,D] ≤ e−2T (µ(t−D)−1)||ūav(·, t0)||2L2[0,D],

from which we can conclude that ||ūav(·, t)||L2[0,D] → 0 as t → t0 +T +D.

Step 3: (Convergence to a small neighborhood of the extremum) Recalling ϑ 2
av(t)+

||ūav(·, t)||2L2[0,D] → 0 as t → t0 + T , we prove (2.52) from (2.65). In view of the fact that

θ̃av(t)→ 0 as t → t0 +T , we show (2.53) from (2.65). Considering (2.10) and (2.20), we get the

relation θ(t)−θ ∗ = θ̃(t)+asin(ω(t0 +(t +D− t0)µ(t +D))) and prove (2.54). Finally, from

(2.26) and (2.52), we prove (2.55). ■

2.3 PT-ES for Wave PDEs

In this section, we consider the following cascade of a wave PDE and ODE (integrator)

with Neumann interconnection

Θ̇(t) = ∂xα(0, t), (2.71)

∂ttα(x, t) = ∂xxα(x, t), (2.72)

α(0, t) = 0, (2.73)

∂xα(D, t) = θ̇(t), (2.74)

where (x, t) ∈ [0,D]× [t0, t0+T ). The reason why we deal with this particular case of wave PDE

dynamics is that we can reformulate this wave PDE compensation problem as the compensation
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Figure 2.5. ES algorithm that compensates the wave PDE actuation dynamics in prescribed
time.

of the cascade of two transport PDEs and an ODE using a set of transformations, which allows

us to use the procedure presented in Section 2.2 for the reformulated cascade system. Fig.

2.5 illustrates the closed-loop ES with actuation dynamics and prescribed-time wave PDE

compensation controller, which is to be designed. The integrator at the output of the PDE is

leveraged to generate an estimate of the optimal input, Θ∗, of the unknown static map Q(Θ). The

output of the static map is given by

y = y∗+
H
2
(Θ−Θ

∗)2 . (2.75)

This problem is motivated by an optimization challenge encountered in oil drilling systems.

In these systems, the goal is to maximize the rate of penetration until a specific threshold,

referred to as the ’foundering point’, is reached. Beyond this threshold, the rate of penetration

decreases, resulting in cutter damage and energy wastage, as discussed in [1]. Furthermore,

it’s demonstrated that a convex static mapping exists between the input (weight on bit) and the

output (rate of penetration) with input dynamics represented by the wave PDE-ODE cascade.

The task of optimization within a specified time frame could be one of the potential challenges

in these systems.
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Let us define the following estimators in order to find the optimal unknown actuator Θ∗

Θ̂ = Θ−asin(ω(t0 +(t − t0)µ))) , (2.76)

θ̂(t) = θ(t)−
∫ t

t0
S(σ ,η(σ))dσ . (2.77)

In [80], the dither signal S(t,η) is designed such that S(t) at the input of the wave PDE pro-

duces asin(ωt) at the output. Similar to this idea, since we want to achieve the prescribed-

time stabilization, we design the following PDE system to obtain the “chirpy” probing signal

asin(ω(t0 +(t − t0)µ)) after the integration of the output of the wave PDE,

S(t,η(t)) = ∂xβ (D, t), (2.78)

∂ttβ (x, t) = ∂xxβ (x, t), (2.79)

β (0, t) = 0, (2.80)

∂xβ (0, t) = aω cos(ω(t0 +(t − t0)µ(t))))µ
2(t), (2.81)

where

η(t) =
[

ϑ(t), µ(t), ū(·, t), θ̂(t)

]T

, (2.82)

and ū(·, t) is to be defined. The estimation errors at the input and output of the actuator dynamics

can be defined as follows

θ̃ = θ̂ −Θ
∗, (2.83)

ϑ = Θ̂−Θ
∗. (2.84)
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Let us define the following error system

ϑ(t) = ∂xū(0, t), (2.85)

∂tt ū(x, t) = ∂xxū(x, t), (2.86)

ū(0, t) = 0, (2.87)

∂xū(D, t) = θ̂(t)−Θ
∗, (2.88)

in which the time derivative is given by

ϑ̇(t) = ∂xu(0, t), (2.89)

∂ttu(x, t) = ∂xxu(x, t), (2.90)

u(0, t) = 0, (2.91)

∂xu(D, t) = ˙̂
θ(t), (2.92)

by noting that u(x, t) = ∂t ū(x, t) = α(x, t)−β (x, t) for (x, t) ∈ [0,D]× [t0, t0 +T ). Considering

(2.76), (2.82) and (2.84), we can rewrite the output as follows

Y (t,η) = y∗+
H
2
(ϑ +asin(ω(t0 +(t − t0)µ))) . (2.93)

Note that G(t,η), Ĥ(t,η),M(t,η),N(t,η) in Fig. 2.5 have the same form as in (2.27), (2.28),

(2.29) and (2.30) respectively.

Lemma 2.2 The solution for S(t,η(t)) in (2.78) is given by

S(t,η) = Re
{

∞

∑
k=0

aω
1

T 2k µ
2k+2(2k)!e jω(t0+(t−t0)µ)L(1)

2k (−(T jω)µ)
D2k

(2k)!

}
, (2.94)

for t ∈ [t0, t0 +T ).

Proof We can consider (2.78)–(2.81) as a trajectory generation problem. Following the approach
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in [58, Ch. 12], we search for the solution in the following form:

β (x, t) =
∞

∑
k=0

ak(t)
xk

k!
, (2.95)

where the time-varying coefficients ak(t) are determined from (2.79)–(2.81). From (2.80) and

(2.81), we obtain

a0(t) = 0 (2.96)

a1(t) = aω cos(ω(t0 +(t − t0)µ(t)))µ
2(t)

= Re
{

aωe jω(t0+(t−t0)µ(t))µ2(t)
}
. (2.97)

By substituting (2.95) into (2.79), we get the following recursive relationship

ak+2(t) = äk(t), (2.98)

which implies that a2k(t) = 0 from (2.96). Considering (2.98) in view of (2.6), we can compute

a2k+1 for k = 1,2 as follows

a3(t) = Re
{

aω
1

T 2 µ
4(t)
(
(T jω)2

µ
2(t)+6(T jω)µ(t)+6

)
e jω(t0+(t−t0)µ(t))

}
,

a5(t) = Re
{

aω
1

T 4 µ
6(t)
(
(T jω)4

µ
4(t)+20(T jω)3

µ
3(t)+120(T jω)2

µ
2(t)

+240(T jω)µ(t)+120
)

e jω(t0+(t−t0)µ(t))
}
.

The iterative computations lead to the following recursive pattern

a2k+1(t) = Re
{

aω
1

T 2k µ
2k+2(t)(2k)!e jω(t0+(t−t0)µ(t))L(1)

2k (−(T jω)µ(t))
}
. (2.99)
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Substituting (2.99) into (2.95), we get

β (x, t) = Re
{

∞

∑
k=0

aω
1

T 2k µ
2k+2(t)(2k)!e jω(t0+(t−t0)µ(t))L(1)

2k (−(T jω)µ(t))
x2k+1

(2k+1)!

}
,

(2.100)

which blows up at t = t0 +T . By taking the partial derivative of (2.100) with respect to x and

evaluating at x = D, we get (2.94). ■

Next step is to convert the wave PDE-ODE cascade (2.89)–(2.92) to a cascade of two first-

order transport PDEs convecting in opposite directions by performing the following Riemann

transformations

ζ̄ (x, t) = ∂tu(x, t)+∂xu(x, t),

ω̄(x, t) = ∂tu(x, t)−∂xu(x, t).

Then, system (2.89)–(2.92) is reformulated as

ϑ̇(t) = ζ̄ (0, t), (2.101)

∂tω̄(x, t) = −∂xω̄(x, t), (2.102)

ω̄(0, t) = − ζ̄ (0, t), (2.103)

∂t ζ̄ (x, t) = ∂xζ̄ (x, t), (2.104)

ζ̄ (D, t) = ˙̂
θ(t)+∂tu(D, t). (2.105)

Let us employ the following backstepping transformations

z(x, t) = ζ̄ (x, t)+ k̄µ
2(t + x−D)

[
ϑ(t)+

∫ x

0
ζ̄ (y, t)dy

]
, (2.106)

p(x, t) = ω̄(x, t)− k̄µ
2(t − x−D)

[
ϑ(t)+

∫ x

0
ω̄(y, t)dy

]
,
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which map (2.101)–(2.105) into the following target system

ϑ̇(t) = − k̄µ
2(t −D)ϑ(t)+ z(0, t), (2.107)

∂tz(x, t) = ∂xz(x, t), (2.108)

z(D, t) = 0, (2.109)

z(0, t) = − p(0, t), (2.110)

∂t p(x, t) = −∂x p(x, t). (2.111)

Let us set x = D in (2.106) and derive the controller as

˙̂
θ(t) = − k̄µ

2(t)
[

ϑ(t)+
∫ D

0
ζ̄ (y, t)dy

]
−∂tu(D, t). (2.112)

For the implementation of the controller, we replace (2.112) by

˙̂
θ(t) = − kµ

2(t)
[
G(t,µ(t))+ Ĥ(t,µ(t))

(
θ̂(t)+u(D, t)− θ̂(t −D)−u(D, t −D)

)]
−∂tu(D, t),

(2.113)

for k < 0, where we use the solution ζ̄ (x, t) = ˙̂
θ(t + x−D)+ ∂tu(D, t + x−D) from (2.104)–

(2.105) and apply the integration by parts. We limit our attention only to the derivation of the

controller ˙̂
θ(t) for this problem. A detailed stability analysis is omitted since it can be performed

similarly to the proof of Theorem 2.2.

2.4 PT-ES for Diffusion PDEs

We consider actuation dynamics governed by a diffusion PDE with an integral at its

output,

Θ̇(t) = ∂xα(0, t), (2.114)
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∂tα(x, t) = ∂xxα(x, t), (2.115)

α(0, t) = 0, (2.116)

∂xα(D, t) = θ̇(t), (2.117)

where (x, t) ∈ [0,D]× [t0, t0 +T ). This ODE-PDE cascade with Neumann interconnection arises

in Stefan models of thermal phase change [52] though in this chapter we limit our attention to

a linearized version on a fixed spatial interval. The compensation of Stefan PDE by ES has

been recently considered in [23] without any time constraint. The diffusion PDE with Neumann

actuation is also applicable to tubular reactors (see [101, 58], and references therein). ES has

also been shown to be a useful tool for optimizing the reactor exit components at steady state

[44]. The compensation of input dynamics and optimization within a specified time frame could

contribute to enhanced reactor performance.

2.4.1 Perturbation signal

We need to redesign the perturbation signal S(t,η), which can compensate the diffusion

process as well as the integrator. Let us define this trajectory generation problem as follows

S(t,η(t)) = ∂xβ (D, t), (2.118)

∂tβ (x, t) = ∂xxβ (x, t), (2.119)

β (0, t) = 0, (2.120)

∂xβ (0, t) = aω cos(ω(t0 +(t − t0)µ(t)))µ
2(t), (2.121)

for (x, t) ∈ [0,D]× [t0, t0 +T ), where η : X → X , X := R×R×H1[0,D]×R, is defined by

η(t) =
[

ϑ(t), µ(t), ū(·, t), θ̃(t)

]T

, (2.122)
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and ū(·, t) is to be defined. Similarly to the proof of Lemma 2.2, the explicit solution for S(t,η)

in (2.118) is obtained by

S(t,η) = Re

{
∞

∑
k=0

aω

T k µ
k+2k!e jω(t0+(t−t0)µL(1)

k (−(T jω)µ)
D2k

(2k)!

}
,

which diverges to infinity as t → t0 +T . Let us define the following error system

ϑ(t) = ∂xū(0, t) (2.123)

∂t ū(x, t) = ∂xxū(x, t), (2.124)

ū(0, t) = 0, (2.125)

∂xū(D, t) = θ̂(t)−Θ
∗, (2.126)

in which the time derivative is given by

ϑ̇(t) = ∂xu(0, t), (2.127)

∂tu(x, t) = ∂xxu(x, t), (2.128)

u(0, t) = 0, (2.129)

∂xu(D, t) = ˙̂
θ(t), (2.130)

by noting that u(x, t) = ∂t ū(x, t) = α(x, t)−β (x, t) for (x, t) ∈ [0,D]× [t0, t0 +T ).

2.4.2 Controller design and error dynamics

Consider the PDE–ODE cascade (2.127)–(2.130) and use the backstepping transforma-

tion

w(x, t) = u(x, t)−
∫ x

0
q(x,y, t)u(y, t)dy− γ(x, t)ϑ(t), (2.131)
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for (x, t) ∈ [0,D]× [t0, t0 +T ) with the kernels

∂tq(x,y, t) = ∂xxq(x,y, t)−∂yyq(x,y, t)−µ0µ
2(t)q(x,y, t), (2.132)

q(x,0, t) = γ(x, t), (2.133)

q(x,x, t) = − x
2

µ0µ
2(t), (2.134)

for t ∈ [t0, t0 +T ), (x,y) ∈ T = {(x,y) ∈ R2 |0 ≤ y ≤ x ≤ D} and

∂tγ(x, t) = ∂xxγ(x, t)−µ0µ
2(t)γ(x, t), (2.135)

γ(0, t) = 0, (2.136)

∂xγ(0, t) = − k̄µ
2(t), (2.137)

for (x, t) ∈ [0,D]× [t0, t0 +T ) which transforms (2.127)–(2.130) into the target system

ϑ̇(t) = − k̄µ
2(t)ϑ(t)+∂xw(0, t), (2.138)

∂tw(x, t) = ∂xxw(x, t)−µ0µ
2(t)w(x, t), (2.139)

w(0, t) = 0, (2.140)

∂xw(D, t) = 0, (2.141)

with k̄,µ0 > 0. By taking the partial derivative of the backstepping transformation (2.131) with

respect to x, and evaluating at x = D, we get the controller as follows

˙̂
θ(t) = q(D,D, t)u(D, t)+

∫ D

0
∂xq(D,y, t)u(y, t)dy+∂xγ(D, t)ϑ(t). (2.142)

Note that we impose the time–varying damping, which blows up at t = t0 +T , to (2.139) and

recover the prescribed time-stabilization rather than exponential stabilization, which is to be

proved in Section 2.4.5. However, the controller (2.142) is not implementable because ϑ(t) is
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not directly measured. Considering the averaging-based estimates (2.31) and (2.32) and noting

∂t ū(x, t) = u(x, t), we can redesign the controller (2.142) as follows

˙̂
θ = Ĥ(t,η)Q(η)+G(t,η)P(η)+R(η), (2.143)

where

Q(η) =
∫ D

0
∂xqc(D,y, t)∂t ū(y, t)dy, (2.144)

P(η) = ∂xγc(D, t), (2.145)

R(η) = qr(D,D, t)∂t ū(D, t)+
∫ D

0
∂xqr(D,y, t)∂t ū(y, t)dy,

and G(t,η), Ĥ(t,η) have the same form as in (2.27), (2.28), respectively, with

∂tqc(x,y, t) = ∂xxqc(x,y, t)−∂yyqc(x,y, t)−µ0µ
2(t)qc(x,y, t), (2.146)

qc(x,0, t) = γc(x, t), (2.147)

qc(x,x, t) = 0, (2.148)

and

∂tqr(x,y, t) = ∂xxqr(x,y, t)−∂yyqr(x,y, t)−µ0µ
2(t)qr(x,y, t), (2.149)

qr(x,0, t) = 0, (2.150)

qr(x,x, t) = − x
2

µ0µ
2(t), (2.151)

and

∂tγc(x, t) = ∂xxγc(x, t)−µ0µ
2(t)γc(x, t), (2.152)

γc(0, t) = 0, (2.153)
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∂xγc(0, t) = − kµ
2(t), (2.154)

by choosing k̄ = kH, where H < 0 is the unknown Hessian and the gain k < 0 is assigned by the

user. Let us substitute (2.27) and (2.28) into (2.143) and substitute the resulting expression into

(2.130). Then, we obtain the following closed-loop error system

ϑ(t) = ∂xū(0, t), (2.155)

∂t ū(x, t) = ∂xxū(x, t), (2.156)

ū(0, t) = 0, (2.157)

∂xū(D, t) = θ̃(t), (2.158)

˙̃
θ = q(D,D, t)∂t ū(D, t)+

∫ D

0
∂xq(D,y, t)∂t ū(y, t)dy+∂xγ(D, t)ϑ + f̌ (ωt,η), (2.159)

for (x, t) ∈ [0,D]× [t0, t0 +T ), where f̌ (ωt,η) has the same form as in (2.57), f1, f2, f3, f4 are

as in (2.48), (2.49), (2.50) and (2.51), respectively, except that Q(η),P(η) are defined in (2.144)

and (2.145), respectively.

It is worth noting that the solution to kernels with time-varying diffusion coefficients

is addressed in [102]. These results are then extended to a more general setting in [70], in

which the diffusion coefficient varies with both time and space. However, the solution of our

kernel PDEs require a significantly different treatment due to the blow-up characteristics of the

diffusion coefficient, as well as boundary conditions that differ from those in the aforementioned

papers. The solutions of the kernel PDEs (2.146)–(2.148), (2.149)–(2.151) and (2.152)–(2.154)

are given in Appendix A.1.
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2.4.3 Inverse transformation

The invertibility of the transformation (2.131) needs to be shown to analyze the stability

of the original system (2.127)–(2.130). It is given by

u(x, t) = w(x, t)+
∫ x

0
p(x,y, t)w(y, t)dy+Γ(x, t)ϑ(t),

for (x, t) ∈ [0,D]× [t0, t0 +T ) with the kernels

∂t p(x,y, t) = ∂xx p(x,y, t)−∂yy p(x,y, t)+µ0µ
2(t)p(x,y, t), (2.160)

p(x,0, t) = Γ(x, t), (2.161)

p(x,x, t) = − x
2

µ0µ
2(t), (2.162)

for t ∈ [t0, t0 +T ), (x,y) ∈ T and

∂tΓ(x, t) = ∂xxΓ(x, t)+ kHµ
2(t)Γ(x, t), (2.163)

Γ(0, t) = 0, (2.164)

∂xΓ(0, t) = − kHµ
2(t), (2.165)

for (x, t) ∈ [0,D]× [t0, t0 + T ), which transforms the target system (2.138)–(2.141) into the

original system (2.127)–(2.130). The solutions of the inverse kernel PDEs (2.160)–(2.162) and

(2.163)–(2.165) are given in Appendix A.

2.4.4 Numerical simulation

We again return to Example 2.1 and consider the map (2.17) with same parameters (except

ω) and initial conditions and consider the coupled diffusion PDE-ODE dynamics (2.114)–(2.117)

with the domain length D = 1. We choose ω = 100,k =−0.01,µ0 = 0.01. The simulation of

the diffusion PDE (2.115)–(2.117) is carried out by the Crank-Nicholson method, where we use
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Figure 2.6. The evolution of the input Θ(t), the estimate Θ̂(t) and the optimum input θ ∗ under
the diffusion PDE compensated PT-ES.

grid size N = 50 in space and time step ∆t = 10−4. The kernel (2.146)–(2.148) is numerically

computed by the proposed successive approximation formulas, where the time derivative of the

kernels are computed numerically. In Fig. 2.6, we depict the evolution of the input signal Θ(t)

and estimate Θ̂(t) with respect to time under the effect of the diffusion PDE compensated PT-ES.

2.4.5 Stability analysis

The main theorem is stated as follows.

Theorem 2.3 For T̄ > 0 arbitrarily close to T , there exists some ω∗(T̄ ), where ω∗(T̄ )→ ∞ as

T̄ → T , such that ∀ω > ω∗(T̄ ), the error system (2.155)–(2.159) satisfies

limsup
t→t0+T̄

(
|ϑ(t)|+ ||ū(·, t)||L2[0,D]+ ||∂xū(·, t)||L2[0,D]+ |θ̂(t)−Θ

∗|
)
= O(1/ω) (2.166)

provided that the gains k,µ0, which both tune the convergence rate, are selected such that
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min{kH,µ0}> 3D2/T 2. Furthermore,

limsup
t→t0+T̄

|Θ(t)−Θ
∗|= O(a+1/ω), (2.167)

limsup
t→t0+T̄

|y(t)− y∗|= O(a2 +1/ω
2). (2.168)

Proof Let us proceed through the proof step by step.

Step 1: (Averaging operation) Define a linear operator A : D(A )⊂ X → X by

A η(t) =
[

d3ū(0,t)
dx3 0 d2ū(·,t)

dx2 0

]T

(2.169)

and the domain

D(A ) =
{
[ϑ(t),µ(t), ū(·, t), θ̂(t)] ∈ X :

dū(D, t)
dx

= θ̂(t)−Θ
∗, ū(0, t) = 0

}
. (2.170)

We can write the derivative of the infinite-dimensional state vector (2.122) with the help of

(2.155)–(2.159) as follows

η̇ = A η + J (ωt,η) , (2.171)

for t ∈ [t0, t0 + T̄ ] where

J (ωt,η) =

[
0 1

T µ2 0 ǧ(η)+ f̌ (ωt,η)

]T

, (2.172)

with

ǧ(η(t)) = q(D,D, t)∂t ū(D, t)+
∫ D

0
∂xq(D,y, t)∂t ū(y, t)dy+∂xγ(D, t)ϑ(t). (2.173)
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Let us define the following averaged system

η̇av = A ηav + Jav (ηav) , (2.174)

where

Jav (η) = lim
ω→∞

1
ωT̄

∫
ωT̄

0
J(s,η)ds

=

[
0 1

T µ2 0 ǧ(η)

]T

. (2.175)

Following the similar steps done through (2.59)–(2.65), we conclude that

||η(t)−ηav(t)||X = O(1/ω), ∀t ∈ [t0, t0 + T̄ ], (2.176)

for all ω > ω∗(T̄ ). Recall that || · ||X denotes the induced norm of X . By noting ∂t ū(x, t) =

∂xxū(x, t) = u(x, t), we write the following average PDE system from (2.174)

ϑ̇av(t) = ∂xuav(0, t), (2.177)

∂tuav(x, t) = ∂xxuav(x, t), (2.178)

uav(0, t) = 0, (2.179)

∂xuav(D, t) = q(D,D, t)uav(D, t)+
∫ D

0
∂xq(D,y, t)uav(y, t)dy+∂xγ(D, t)ϑav(t) (2.180)

for (x, t) ∈ T2.

Step 2: (Backstepping transformation) The backstepping transformation

w(x, t) = uav(x, t)−
∫ x

0
q(x,y, t)uav(y, t)dy− γ(x, t)ϑav(t) (2.181)

with the gain kernels (2.132)–(2.134) and (2.135)–(2.137) transforms (2.177)–(2.180) into the
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target system

ϑ̇av(t) = − kHµ
2(t)ϑav(t)+∂xw(0, t), (2.182)

∂tw(x, t) = ∂xxw(x, t)−µ0µ
2(t)w(x, t), (2.183)

w(0, t) = 0, (2.184)

∂xw(D, t) = 0. (2.185)

Step 3: (Stability of the target system) Let us consider the following Lyapunov func-

tional

ϒ(t) =
ϑ 2

av(t)
2

+
1
2
||w(·, t)||2L2[0,D]+

cw

2
||∂xw(·, t)||2L2[0,D] (2.186)

with cw =
√

1/(2µ0kH). Taking the time derivative of ϒ(t) along with (2.182)–(2.185) and

applying the integration by parts, we obtain

ϒ̇(t) =− kHµ
2(t)ϑ 2

av(t)+∂xw(0, t)ϑav(t)−µ0µ
2(t)
(
||w(t)||2L2[0,D]+ cw||∂xw(t)||2L2[0,D]

)
−
(
||∂xw(t)||2L2[0,D]+ cw||∂xxw(t)||2L2[0,D]

)
. (2.187)

Let us apply Young’s and Agmon’s inequalities on the cross term ∂xw(0, t)ϑav(t)

∂xw(0, t)ϑav(t)≤
kH
2

ϑ
2
av(t)+

1
2kH

(∂xw(0, t))2

≤ kH
2

ϑ
2
av(t)+

cwµ0

2
||∂xw(·, t)||2L2[0,D]+

1
2cwµ0(kH)2 ||∂xxw(·, t)||2L2[0,D].

(2.188)

Then, noting this inequality as well as cw =
√

1/(2µ0(kH)2), we rewrite (2.187) as follows

ϒ̇(t)≤− kH
2

µ
2(t)ϑ 2

av(t)−µ0µ
2(t)||w(·, t)||2L2[0,D]−

cwµ0

2
µ

2(t)||∂xw(·, t)||2L2[0,D]. (2.189)
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We obtain for c0 = min{kH,µ0} that ϒ̇(t)≤−c0µ2(t)ϒ(t). Hence, we get

ϒ(t)≤ e−c0T (µ(t)−1)
ϒ(t0). (2.190)

Step 4: (Stability of the original system) Let us consider the inverse transformation

uav(x, t) = w(x, t)+
∫ x

0
p(x,y, t)w(y, t)dy+Γ(x, t)ϑav(t), (2.191)

where the kernels p(x,y, t) and Γ(x, t) satisfy (2.160)–(2.162) and (2.163)–(2.165), respectively.

From the inverse transformation (2.191), we obtain the following inequalities

||uav(·, t)||2H1[0,D] ≤
[
4+D2

µ
2
0 µ

4(t)+3D2|p(·, ·, t)|2 +4D2|∂x p(·, ·, t)|2
]
||w(·, t)||2H1[0,D]

+
(
3D|Γ(·, t)|2 +4D|∂xΓ(·, t)|2

)
ϑ

2
av(t), (2.192)

(∂xuav(D, t))2 ≤ 4(∂xw(D, t))2 +
[
4D3

µ
2
0 µ

4(t)+4D|∂x p(·, ·, t)|2
]
||w(·, t)||2H1[0,D]

+4(∂xΓ(·, t))2
ϑ

2
av(t). (2.193)

Let us compute the bound of the following terms from (A.27), (A.28), (A.29) and (A.30)

(
|Γ(·, t)|2 + |∂xΓ(·, t)|2

)
ϑ

2
av(t)≤C14µ

4(t)eµ(t)
(

2D2
T −c0T

)
ϑ

2
av(t0), (2.194)(

|p(·, ·, t)|2 + |∂x p(·, ·, t)|2
)
||w(·, t)||2H1[0,D] ≤C15µ

6(t)eµ(t)
(

3D2
T −c0T

)
||w(·, t0)||2H1[0,D], (2.195)

where C14 = (C2
7 +(kH)2)ec0T , C15 = (C2

12 +C2
13)e

c0T , from which we prove that (2.194) and

(2.195) converge to zero as t → t0+T provided that c0 > 3D2/T 2. In view of this fact, we obtain

from (2.192) and (2.193) that ||uav(·, t)||H1[0,D] and ∂xuav(D, t) → 0 as t → t0 +T . Applying

Poincare’s inequality twice and noting ∂t ūav(x, t) = ∂xxūav(x, t) = uav(x, t), we get

||ūav(·, t)||2H1[0,D] ≤ (2+8D2)ϑ 2
av(t)+(4D2 +16D4)||uav(·, t)||2, (2.196)
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from which we conclude ||ūav(·, t)||2H1[0,D] → 0 as t → t0 +T .

Step 4: (Convergence to a small neighborhood of the extremum) Considering the PT

stability results in Step 3, we prove (2.166) from (2.176). In view of (2.76) and (2.84), we can

write Θ(t)−Θ∗ = ϑ(t)+asin(ω(t0 +(t − t0)µ(t))). Then, we prove (2.167). Recalling (2.93)

and (2.166), we prove (2.168). ■

2.5 Conclusion

The heavily-studied problems of (finite- and infinite-dimensional) PT stabilization and

the exponential convergence of PDE-compensated ES algorithms are seemingly disparate. We

combine them to achieve PT convergence to extrema of unknown maps with PDE input dynamics.

We employ the tools of time dilation, chirpy signals, finite-time PDE motion planning, PDE

backstepping, averaging, and Lyapunov analysis to design PT-convergent PDE-compensated ES

algorithms. The numerical simulations illustrate the PT convergence of the system output to a

small neighborhood of the extremum.
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Chapter 3

Exponential and Prescribed-Time
Extremum Seeking with Unbiased
Convergence

In this chapter, we present multivariable extremum seeking (ES) designs that achieve

unbiased convergence of the inputs to their corresponding optima, eliminating steady-state

oscillations. Two designs are introduced: one with exponential unbiased convergence (unbiased

extremum seeker, uES) and the other with user-assignable prescribed-time unbiased convergence

(unbiased PT extremum seeker, uPT-ES). In contrast to the conventional ES, which uses per-

sistent sinusoids and results in steady-state oscillations around the optimum, the exponential

uES employs an exponentially decaying amplitude in the perturbation signal (for achieving

convergence) and an exponentially growing demodulation signal (for making the convergence un-

biased). The achievement of unbiased convergence also entails employing an adaptation gain that

is sufficiently large in relation to the decay rate of the perturbation amplitude. Stated concisely,

the bias is eliminated by having the learning process outpace the waning of the perturbation.

The other algorithm, uPT-ES, employs prescribed-time convergent/blow-up functions in place of

constant amplitudes of sinusoids, and it also replaces constant-frequency sinusoids with chirp

signals whose frequency grows over time. Among the convergence results in the ES literature,

uPT-ES may be the strongest yet in terms of the convergence rate (prescribed-time) and accuracy

(unbiased). To enhance the robustness of uES to a time-varying optimum, exponential functions
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are modified to keep oscillations at steady state. Stability analysis of the designs is based on

a state transformation, averaging, local exponential/PT stability of the averaged system, local

stability of the transformed system, and local exponential/PT stability of the original system.

For numerical implementation of the developed ES schemes and comparison with previous ES

designs, the problem of source seeking by a two-dimensional velocity-actuated point mass is

considered.

The structure of this chapter is as follows: Section 3.1 presents the exponential ES

scheme for static maps, followed by an extension to dynamic systems in Section 3.3. Section

3.2 introduces the concept of uPT-ES, while Section 3.4 covers the robust exponential ES. Our

approaches to the source-seeking problem are discussed in Section 3.5. Numerical results and

their analysis are provided in Section 3.6, and the chapter concludes with Section 3.7.

3.1 Exponential Unbiased Extremum Seeker for Static
Maps

We consider the following optimization problem

max
θ∈Rn

h(θ), (3.1)

where θ ∈ Rn is the input and h ∈ Rn → R is an unknown smooth function. We make the

following assumption regarding the unknown static map h(·):

Assumption 3.1 The function h is C 4, and there exists θ ∗ ∈ Rn such that

∂

∂θ
h(θ ∗) = 0, (3.2)

∂ 2

∂θ 2 h(θ ∗) = H < 0, H = HT . (3.3)

Assumption 3.1 requires the function h(·) to be four times continuously differentiable. Compared

to the C 2 assumption made in the classical design [59], the C 4 assumption is necessary for
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h(·)
s

s+ωh

ωl
s+ωl

K
s

yθ

θ̂ Ĝ y − η

S(t)

α̇ = −λα

M(t)

α 1
α

Figure 3.1. Exponential uES scheme. The design uses an exponential decay function α to
gradually reduce the effect of the perturbation signal S(t) and its multiplicative inverse 1

α
to

gradually increase the effect of the demodulation signal M(t).

the application of the classical averaging theorem, as the perturbation and demodulation signal

amplitudes in our closed-loop system are time-varying and treated as part of the system state. A

detailed discussion on this is to be given. The conditions (3.2) and (3.3) ensure the existence and

uniqueness of a maximum of the function h(θ) at θ = θ ∗. The negative definite Hessian matrix

H in (3.3) implies strong concavity at θ ∗ (or strong convexity if H were positive definite).

We measure the unknown function h(θ) in real time as follows

y(t) = h(θ(t)), t ∈ [t0,∞), (3.4)

in which y ∈ R is the output. Our aim is to design an ES algorithm using output feedback y(t)

in order to achieve exponential convergence of θ to θ ∗ while simultaneously maximizing the

steady state value of y, without requiring prior knowledge of either θ ∗ or the function h(·). Our

exponential uES design for static maps is schematically illustrated in Fig. 3.1, where K is an

n×n positive diagonal matrix, the filter coefficients ωh and ωl are positive real numbers, the

perturbation and demodulation signals are defined as

S(t) =
[

a1 sin(ω1t) · · · an sin(ωnt)

]T

, (3.5)

56



M(t) =
[

2
a1

sin(ω1t) · · · 2
an

sin(ωnt)

]T

, (3.6)

respectively and the exponential decay function α is governed by

α̇(t) =−λα(t), α(t0) = α0. (3.7)

The parameters α0,λ are positive real numbers, the amplitudes ai are real numbers, ωi/ω j are

rational and the frequencies are chosen such that ωi ̸= ω j and ωi+ω j ̸= ωk for distinct i, j and k.

Note that the magnitude of α0 determines the initial perturbation amplitude; a larger α0 leads to

larger-amplitude oscillations at the beginning. We select the probing frequencies ωi’s as follows

ωi = ωω
′
i , i ∈ {1,2, . . . ,n}, (3.8)

where ω is a positive constant and and ω ′
i is a rational number. In addition, the parameters should

satisfy the following conditions:

λ <
ωl

2
,
ωh

2
, (3.9)

K > (ωl −λ )
λ

ωl

(
1

−H

)
> 0, (3.10)

where division by the matrix −H denotes multiplication by its inverse, −H−1. Note that if

K > λ

−H , stability is achieved for all admissible λ (not exceeding ωl/2). The algorithm can be

used without the low-pass filter, in which case these conditions become, taking the limit ωl → ∞,

λ <
ωh

2
, (3.11)

K >
λ

−H
> 0. (3.12)

The interpretation of the conditions is that perturbation amplitude α and the demodulation
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amplitude 1/α can decay and grow, respectively, but not too fast, while the estimate θ̂ needs

to be updated fast enough, for the given rate of decay/growth of the amplitudes. In essence,

learning needs to outpace the waning of the perturbation. Additionally, to satisfy the condition

in (3.10) or (3.12), the gain K should be chosen sufficiently large as the Hessian matrix H is

unknown. However, a large gain K may adversely affect transient performance, leading to

significant overshoot. To make the conditions independent of H, a potential solution is to employ

a Newton-based approach, as developed in [25].

We summarize closed-loop system depicted in Fig. 3.1 as follows

d
dt



θ̃

Ĝ

η̃

α


=



KĜ

−ωlĜ+ωl(y−h(θ ∗)− η̃) 1
α

M(t)

−ωhη̃ +ωh(y−h(θ ∗))

−λα


, (3.13)

in view of the transformations

θ̃ = θ̂ −θ
∗, (3.14)

η̃ = η −h(θ ∗), (3.15)

where η is governed by

η̇ =−ωhη +ωhy. (3.16)

The convergence result is stated in the following theorem.

Theorem 3.1 Consider the feedback system (3.13) with the parameters that satisfy (3.9), (3.10)

under Assumption 3.1. There exists ω̄ and for any ω > ω̄ there exists an open ball B centered

at the point (θ̂ , Ĝ,η ,α) = (θ ∗,0,h(θ ∗),0) =: ϒ such that for any initial condition starting in

the ball B, the system (3.13) has a unique solution and the solution converges exponentially to
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ϒ. Furthermore, y(t) exponentially converges to h(θ ∗).

Before presenting the proof, we need to emphasize that the system (3.13) does not exhibit

an equilibrium point in the conventional sense. Theorem 3.1 establishes the convergence of the

system to a point ϒ within the state space. This point, ϒ, is not an asymptotically or exponentially

stable equilibrium; rather, it represents a specific point in the state space towards which the

system converges.

Proof Let us proceed through the proof step by step.

Step 1: State transformation. Consider the following transformations

θ̃ f =
1
α

θ̃ , Ĝ f =
1
α

Ĝ, η̃ f =
1

α2 η̃ , (3.17)

which transform (3.13) to the following system

d
dt



θ̃ f

Ĝ f

η̃ f

α


=



λ θ̃ f +KĜ f

(λ −ωl)Ĝ f +ωl
[
ν(θ̃ f α +S(t)α)− η̃ f α2] M(t)

α2

(2λ −ωh)η̃ f +ωh
1

α2 ν(θ̃ f α +S(t)α)

−λα


, (3.18)

where

ν(z) = h(θ ∗+ z)−h(θ ∗) (3.19)

with z = θ̃ f α +S(t)α in view of θ = θ̂ +S(t)α and (3.14). From Assumption 3.1, we get

ν(0) = 0,
∂

∂ z
ν(0) = 0,

∂ 2

∂ z2 ν(0) = H < 0. (3.20)

Step 2: Verification of the feasibility of (3.18) for averaging. We rewrite the system
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(3.18) in the time scale τ = ωt as follows

d
dτ



θ̃ f

Ĝ f

η̃ f

α


=

1
ω



λ θ̃ f +KĜ f

(λ −ωl)Ĝ f +ωl
[
ν(θ̃ f α + S̄(τ)α)− η̃ f α2] M̄(τ)

α2

(2λ −ωh)η̃ f +ωh
1

α2 ν(θ̃ f α + S̄(τ)α)

−λα


, (3.21)

where S̄(τ) = S(τ/ω),M̄(τ) = M(τ/ω). Let us write the system (3.21) in compact form as

dζ f

dτ
= (1/ω)F (τ,ζ f ), (3.22)

where ζ f =

[
θ̃ f Ĝ f η̃ f α

]T

, and F (τ,ζ f ) represents the vector on the right-hand side of

(3.21). For the application of the averaging theorem in [49], we need to show that F (τ,ζ f )

and its partial derivatives with respect to ζ f up to the second order on compact sets of ζ f for

all τ ≥ ωt0 are continuous and bounded. The proof is trivial for F (τ,ζ f ) excluding the term

ν(αθ̃ f +α S̄(τ)) 1
α2 . To complete the proof, we utilize Taylor’s theorem to write

ν(z) =
n

∑
i=1

n

∑
j=1

ziz j

∫ 1

0
(1− s)

∂ 2ν

∂ zi∂ z j
(sz)ds (3.23)

in view of (3.20). By substituting z = αθ̃ f +α S̄(τ) into (3.23) and multiplying both sides by 1
α2 ,

we obtain

1
α2 ν(θ̃ f α + S̄(τ)α) =

n

∑
i=1

n

∑
j=1

(θ̃ fi +ai sin(ω ′
i τ))(θ̃ f j +a j sin(ω ′

jτ))

×
∫ 1

0
(1− s)

∂ 2ν

∂ zi∂ z j

(
sθ̃ f α + sS̄(τ)α

)
ds. (3.24)
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Next, we apply the mean value theorem to obtain

1
α2 ν(θ̃ f α + S̄(τ)α) =

1
2

n

∑
i=1

n

∑
j=1

(θ̃ fi +ai sin(ω ′
i τ))(θ̃ f j +a j sin(ω ′

jτ))
∂ 2ν

∂ zi∂ z j

(
sθ̃ f α + sS̄(τ)α

)
(3.25)

for some s ∈ [0,1]. By Assumption 3.1, (3.25) is continuous and bounded on compact sets of

θ̃ f and α . Considering the C 4 property of ν and using the mean value theorem, we prove the

continuity and boundedness of the partial derivatives of (3.24) with respect to θ̃ f and α up to

the second order on compact sets of θ̃ f and α . Therefore, F (τ,ζ f ) satisfies the continuity and

boundedness assumptions of the averaging theorem in [49].

Step 3: Averaging operation. Let us define the common period of the probing frequen-

cies as follows

Π = 2π ×LCM
{

1
ωi

}
, i ∈ {1,2 . . . ,n}, (3.26)

where LCM stands for the least common multiple. The average of the system (3.21) over the

period Π is given by

d
dτ



θ̃ a
f

Ĝa
f

η̃a
f

αa



T

=
1
ω



λ θ̃ a
f +KĜa

f

(λ −ωl)Ĝa
f

(2λ −ωh)η̃
a
f

−λαa


+

1
ω



0

ωl
1
Π

∫
Π

0 ν(θ̃ a
f αa + S̄(σ)αa) M̄(σ)

(αa)2 dσ

ωh
1
Π

∫
Π

0 ν(θ̃ a
f αa + S̄(σ)αa) 1

(αa)2 dσ

0


, (3.27)

where θ̃ a
f , Ĝ

a
f , η̃

a
f and αa denote the average versions of the states θ̃ f , Ĝ f , η̃ f and α , respectively.

It follows from (3.27) that the average equilibrium denoted as
[

θ̃
a,e
f Ĝa,e

f η̃
a,e
f αa,e

]T

satisfies

λ θ̃
a,e
f = −KĜa,e

f ,
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α
a,e = 0,

(ωl −λ )Ĝa,e
f = lim

αa,e→0

[
ωl

Π

∫
Π

0
ν(θ̃ a,e

f α
a,e + S̄(σ)αa,e)

M̄(σ)

(αa,e)2 dσ

]
,

(ωh −2λ )η̃a,e
f = lim

αa,e→0

[
ωh

Π

∫
Π

0
ν(θ̃ a,e

f α
a,e + S̄(σ)αa,e)

1
(αa,e)2 dσ

]
. (3.28)

By performing a Taylor series approximation of ν in view of (3.20) as follows

ν(z) =
1
2

n

∑
i=1

n

∑
j=1

∂ 2ν

∂ zi∂ z j
(0)ziz j +

1
3!

n

∑
i=1

n

∑
j=1

n

∑
k=1

∂ 3ν

∂ zi∂ z j∂ zk
(0)ziz jzk +O(|z|4) (3.29)

with z = θ̃
a,e
f αa,e + S̄(σ)αa,e, we compute

lim
αa,e→0

[
1
Π

∫
Π

0
ν(θ̃ a,e

f α
a,e + S̄(σ)αa,e)

M̄(σ)

(αa,e)2 dσ

]
= lim

αa,e→0

[
1
Π

∫
Π

0

1
2

n

∑
i=1

n

∑
j=1

∂ 2ν

∂ zi∂ z j
(0)(θ̃ a,e

fi +ai sin(ω ′
i σ))

× (θ̃ a,e
f j

+a j sin(ω ′
jσ))(αa,e)2 M̄(σ)

(αa,e)2 dσ +
(αa,e)3

(αa,e)2 O(|a|2)

]
,

= Hθ̃
a,e
f , (3.30)

and

lim
αa,e→0

[
1
Π

∫
Π

0
ν(θ̃ a,e

f α
a,e + S̄(σ)αa,e)

1
(αa,e)2 dσ

]
=

1
2

n

∑
i=1

n

∑
j=1

Hi, jθ̃
a,e
fi θ̃

a,e
f j

+
1
4

n

∑
i=1

Hi,ia2
i ,

(3.31)

by L’Hospital’s rule, where Hi, j =
∂ 2ν

∂ zi∂ z j
(0) and θ̃

a,e
fi is the ith element of θ̃

a,e
f . Then, we obtain
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the equilibrium of the average system (3.27) as



θ̃
a,e
f

Ĝa,e
f

η̃
a,e
f

αa,e


=



01×n

01×n

ωh
4(ωh−2λ ) ∑

n
i=1 Hi,ia2

i

0


, (3.32)

provided that ωl ̸= λ ,ωh ̸= 2λ and K ̸= λ (λ −ωl)ω
−1
l H−1.

Step 4: Stability analysis. The Jacobian of the average system (3.27) at the equilibrium

(3.32) is given by

Ja
f =

1
ω



λ In×n K 0n×1 0n×1

ωlH (λ −ωl)In×n 0n×1
ωl
Π

∫
Π

0

∂

(
νM̄

(αa)2

)
∂αa dσ

01×n 01×n (2λ −ωh)
ωh
Π

∫
Π

0

∂

(
ν

(αa)2

)
∂αa dσ

01×n 01×n 0 −λ


. (3.33)

Note that Ja
f is block-upper-triangular and Hurwitz provided that (3.9) and (3.10) are satisfied.

This proves the local exponential stability of the average system (3.27). Then, based on the

averaging theorem [49], we show that there exists ω̄ and for any ω > ω̄ , the system (3.21) has

a unique exponentially stable periodic solution (θ̃ Π
f (τ), Ĝ

Π
f (τ), η̃

Π
f (τ),α

Π(τ)) of period Π and

this solution satisfies ∣∣∣∣∣∣∣∣∣∣∣∣∣



θ̃ Π
f (τ)

ĜΠ
f (τ)

η̃Π
f (τ)−

ωh
4(ωh−2λ ) ∑

n
i=1 Hi,ia2

i

αΠ(τ)



∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ O

(
1
ω

)
. (3.34)

In other words, all solutions (θ̃ f (τ), Ĝ f (τ), η̃ f (τ),α(τ)) exponentially converge to an O (1/ω)-
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neighborhood of the equilibrium point in (3.32). The signal α(τ), in particular, exponentially

converges to zero. Noting this fact and recalling the transformations (3.17), we can deduce that

the system (3.13) with states θ̃(t), Ĝ(t), η̃(t) has a unique solution and is exponentially stable at

the origin. In particular, based on (3.17), both θ̃(t) and Ĝ(t) exhibit exponential convergence to

zero at a rate of λ , while η̃(t) converges to zero exponentially with a rate of 2λ .

Step 5: Convergence to extremum. Considering the results in Step 4 and recalling from

(3.17) and Fig. 3.1 that

θ(t) = α(t)θ̃ f (t)+θ
∗+α(t)S(t), (3.35)

we conclude the exponential convergence of θ(t) to θ ∗ at the rate of λ . Taking into account

the boundedness of θ̃ f (t) for all t ≥ t0, we deduce from (3.19) and (3.25) the exponential

convergence of y(t) = h(θ(t)) to h(θ ∗) at the rate of 2λ . This completes the proof of Theorem

3.1. ■

According to Theorem 3.1, the initial value of the decaying function α(t) should be

sufficiently close to zero, which limits the range of possible values for α0 in (3.7). This can also

be interpreted as the requirement for the amplitudes to be small enough in traditional extremum

seeking approaches.

3.2 Unbiased Prescribed-Time Extremum Seeker for Static
Maps

In this section, our aim is to design an ES algorithm for static maps, which guarantees

the unbiased convergence of θ to θ ∗ within a terminal time T , where the time T is prescribed

by user a priori. Our uPT-ES design is schematically illustrated in Fig. 3.2. Different from the

exponentially convergent α-dynamics (3.7), we define a prescribed-time convergent α-dynamics
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h(·)
η̇ = (−ωhη + ωhy)µ

q

˙̂
G = (−ωlĜ+ ωlΓ)µ

q˙̂
θ = KµqĜ

yθ

θ̂ Ĝ

yh

S(µ)

Γ

α̇ = −λµqα

M(µ)

α 1
α

yh = y − η

Figure 3.2. uPT-ES scheme. The design modifies the exponential uES in Fig. 3.1 by incorporat-
ing µq, with q ≥ 1, into all system dynamics and using hyperbolic chirps in the perturbation and
demodulation signals.

as follows

α̇(t) =−λ µ
q(t − t0)α(t), α(t0) = α0 (3.36)

with q ≥ 1 and the following smooth function

µ(t − t0) =
T

T + t0 − t
, t ∈ [t0, t0 +T ). (3.37)

The solution of (3.36) is given by

α(t) = α(t0)e
−λ

∫ t
t0

µq(σ−t0)dσ

=


α0µ−λT (t − t0), if q = 1,

α0e−
λT
q−1(µq−1(t−t0)−1), if q > 1

(3.38)

with the property that α(t0+T ) = 0. Note that the growth of the µ-signal in the second condition

of (3.38) increases as q is increased beyond 1, resulting in a faster decay of the α-signal.
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We summarize closed-loop system depicted in Fig. 3.2 as follows

d
dt



θ̃

Ĝ

η̃

α


=



KµqĜ

−ωlµ
qĜ+ωlµ

q(y−h(θ ∗)− η̃) 1
α

M(µ)

−ωhµqη̃ +ωhµq(y−h(θ ∗))

−λ µqα


, (3.39)

in view of the transformations (3.14), (3.15) where η is governed by

η̇ = (−ωhη +ωhy)µq. (3.40)

We define the following dilation and contraction transformations

τ̌ =


t0 +T ln(µ), if q = 1,

t0 +T
(

µq−1−1
q−1

)
, if q > 1,

(3.41)

t =


t0 +T

(
1− e−

τ̌−t0
T

)
, if q = 1,

t0 +T
(

1−
(

T
T+(q−1)(τ̌−t0)

) 1
q−1
)
, if q > 1,

(3.42)

for τ̌ ∈ [t0,∞), t ∈ [t0, t0 + T ). To achieve PT convergence to the extremum, we replace the

sinusoids with “chirpy” perturbation and demodulation signals whose frequency grows rather

than being constant:

S(µ) =


[
a1 sin(ω1(t0 +T ln(µ)) · · · an sin(ωn(t0 +T ln(µ))

]T
, if q = 1,[

a1 sin
(

ω1

(
t0 +T µq−1−1

q−1

))
· · · an sin

(
ωn

(
t0 +T µq−1−1

q−1

))]T
, if q > 1,

(3.43)
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M(µ) =


[

2
a1

sin(ω1(t0 +T ln(µ)) · · · 2
an

sin(ωn(t0 +T ln(µ))
]T

, if q = 1,[
2
a1

sin
(

ω1

(
t0 +T µq−1−1

q−1

))
· · · 2

an
sin
(

ωn

(
t0 +T µq−1−1

q−1

))]T
, if q > 1.

(3.44)

PT convergence is achieved at the expense of unboundedly growing excitation frequencies.

In practice, the instantaneous frequencies (i.e., the first derivatives of the arguments of the

sinusoids in (3.43) and (3.44)) can be limited to suitably large values that enable convergence to

a sufficiently close neighborhood of the extremum.

The convergence result is stated in the following theorem.

Theorem 3.2 Consider the feedback system (3.39) with the parameters that satisfy (3.9), (3.10)

under Assumption 3.1. There exists ω̄ and for any ω > ω̄ there exists an open ball B centered

at the point (θ̂ , Ĝ,η ,α) = (θ ∗,0,h(θ ∗),0) =: ϒ such that for any initial condition starting in

the ball B, the system (3.39) has a unique solution and the solution converges to ϒ in prescribed

time T . Furthermore, y(t) converges to h(θ ∗) in prescribed time T .

Proof

Step 0: Time dilation from t to τ̌ . Considering (3.41), (3.42) along with

dτ̌

dt
= µ

q(t − t0), (3.45)

we can write the system (3.39) in the dilated τ̌-domain

d
dτ̌



θ̃

Ĝ

η̃

α


=



KĜ

−ωlĜ+ωl(y−h(θ ∗)− η̃) 1
α
M (τ̌)

−ωhη̃ +ωh(y−h(θ ∗))

−λα


, (3.46)
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with the following perturbation/demodulation signals

S (τ̌) =

[
a1 sin(ω1τ̌) · · · an sin(ωnτ̌)

]T

, (3.47)

M (τ̌) =

[
2
a1

sin(ω1τ̌) · · · 2
an

sin(ωnτ̌)

]T

. (3.48)

Note that the system (3.46) with (3.47), (3.48) is in the similar form to (3.13) with (3.5),

(3.6), except that the dilated time τ̌ is used instead of t. The utilization of this temporal transfor-

mation technique facilitates the application of the averaging theorem because the frequency of

perturbation/demodulation signals becomes constant in τ̌-domain. The remainder of the proof

can be completed similarly to the proof of Theorem 3.1 by following steps from 1 to 5 and

performing time contraction from τ̌ to t. ■

3.3 Exponential Unbiased Extremum Seeker for Dynamic
Systems

In this section, we extend our results in Section 3.1 to dynamic systems. For this, we

consider a general multi-input single-output nonlinear model

ẋ = f (x,u), (3.49)

y = h(x), (3.50)

where x ∈ Rm is the state, u ∈ Rn is the input, y ∈ R is the output and the unknown functions

f : Rm ×Rn → Rm and h : Rm → R are smooth. Suppose there is a smooth control law

u = φ(x,θ) (3.51)
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parametrized by a vector parameter θ ∈ Rn. The closed-loop system

ẋ = f (x,φ(x,θ)) (3.52)

then has equilibria parameterized by θ . We make the following assumptions about the closed-

loop system:

Assumption 3.2 There exists a smooth function l : Rn → Rm such that f (x,φ(x,θ)) = 0 if and

only if x = l(θ).

Assumption 3.3 For each θ ∈ Rn, the equilibrium x = l(θ) of the system (3.52) is locally

exponentially stable uniformly in θ .

Assumption 3.4 The function h◦ l is C 4, and there exists θ ∗ ∈ Rn such that

∂

∂θ
(h◦ l)(θ ∗) = 0, (3.53)

∂ 2

∂θ 2 (h◦ l)(θ ∗) = H < 0, H = HT . (3.54)

Assumptions 3.2–3.4, standard in the literature (e.g., [59, 25, 109]), ensure the existence

and local exponential stability of the equilibrium x = l(θ) for the closed-loop system (3.52).

Assumption 3.4 states that the steady-state output, y = (h ◦ l)(θ), exhibits a unique global

maximum at θ ∗, is four times continuously differentiable, and strongly concave in the vicinity

of θ ∗, similar to the static map case in Assumption 3.1. For a visual representation of the

implications of Assumptions 3.2-3.4, please see [92].

We aim to design a controller u to drive the output y directly to its optimum h ◦ l(θ ∗)

exponentially without any steady-state oscillation and without the need for knowledge of θ ∗, h,

or l.

The perturbation and demodulation signals are defined by (3.5) and (3.6), respectively,

and α is governed by (3.7). The probing frequencies ωi’s, the filter coefficients ωh and ωl , the
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gain K, and the parameter λ are selected as follows

ωi = ωω
′
i = O(ω), i ∈ {1,2, . . . ,n}, (3.55)

ωh = ωωH = ωδω
′
H = O(ωδ ), (3.56)

ωl = ωωL = ωδω
′
L = O(ωδ ), (3.57)

K = ωK′ = ωδK′′ = O(ωδ ), (3.58)

λ = ωλ
′ = ωδλ

′′ = O(ωδ ), (3.59)

where ω and δ are small positive constants, ω ′
i is a rational number, ω ′

H ,ω
′
L and λ ′′ are O(1)

positive constants, K′′ is a n×n diagonal matrix with O(1) positive elements. In addition, the

parameters should satisfy (3.9) and (3.10). Note that the selection of the parameters according

to (3.55)–(3.59) implies that the frequencies ωi need to be large in relation to the parameters

ωh,ωl,K,λ .

We summarize the closed-loop system as follows

d
dt



x

θ̃

Ĝ

η̃

α


=



f (x,φ(x,θ ∗+ θ̃ +S(t)α))

KĜ

−ωlĜ+ωl(y−h◦ l(θ ∗)− η̃) 1
α

M(t)

−ωhη̃ +ωh(y−h◦ l(θ ∗))

−λα


. (3.60)

The convergence result is stated in the following theorem.

Theorem 3.3 Consider the feedback system (3.60) with the parameters (3.55)–(3.59) that satisfy

(3.9), (3.10) under Assumptions 3.2–3.4. There exists ω̄ > 0 and for any ω ∈ (0, ω̄) there exists

δ̄ > 0 such that for the given ω and δ ∈ (0, δ̄ ) there exists an open ball B centered at the

point (x, θ̂ , Ĝ,η) = (l(θ ∗),θ ∗,0,h ◦ l(θ ∗)) =: ϒ such that for any initial condition starting in

the ball B, the system (3.60) has a unique solution and the solution converges exponentially to
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ϒ. Furthermore, y(t) exponentially converges to h◦ l(θ ∗).

Proof Let us proceed through the proof step by step.

Step 1: Time-scale separation. We rewrite the system (3.60) in the time scale τ = ωt as

ω
dx
dτ

= f (x,φ(x,θ ∗+ θ̃ + S̄(τ)α)), (3.61)

d
dτ



θ̃

Ĝ

η̃

α


= δ



K′′Ĝ

−ω ′
LĜ+ω ′

L(y−h◦ l(θ ∗)− η̃) 1
α

M̄(τ)

−ω ′
H η̃ +ω ′

H(y−h◦ l(θ ∗))

−λ ′′α


, (3.62)

where S̄(τ) = S(τ/ω),M̄(τ) = M(τ/ω).

Step 2: State transformation. Consider the following transformations

θ̃ f =
1
α

θ̃ , Ĝ f =
1
α

Ĝ, η̃ f =
1

α2 η̃ , (3.63)

which transform (3.61), (3.62) to the following system

ω
dx
dτ

= f (x,φ(x,θ ∗+ θ̃ f α + S̄(τ)α)), (3.64)

dζ f

dτ
= δE(τ,x,ζ f ), (3.65)

where ζ f =

[
θ̃ f Ĝ f η̃ f α

]T

and

E(τ,x,ζ f ) =



λ ′′θ̃ f +K′′Ĝ f

(λ ′′−ω ′
L)Ĝ f +ω ′

L(y−h◦ l(θ ∗)− η̃ f α2) 1
α2 M̄(τ)

(2λ ′′−ω ′
H)η̃ f +ω ′

H
1

α2 (y−h◦ l(θ ∗))

−λ ′′α


. (3.66)
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Step 3: Averaging analysis for reduced system. We first freeze x in (3.64) at its

equilibrium value x = L(τ,ζ f ) = l(θ ∗+ θ̃ f α + S̄(τ)α), substitute it into (3.65) and then get the

reduced system

dζ f ,r

dτ
= δE(τ,L(τ,ζ f ,r),ζ f ,r), (3.67)

where ζ f ,r =

[
θ̃ f ,r Ĝ f ,r η̃ f ,r α

]T

,

E(τ,L(τ,ζ f ,r),ζ f ,r) =



λ ′′θ̃ f ,r +K′′Ĝ f ,r

(λ ′′−ω ′
L)Ĝ f ,r +ω ′

L(ν(θ̃ f ,rα + S̄(τ)α)− η̃ f ,rα
2) M̄(τ)

α2

(2λ ′′−ω ′
H)η̃ f ,r +ω ′

H
1

α2 ν(θ̃ f ,rα + S̄(τ)α)

−λ ′′α


(3.68)

and

ν(z) = h◦ l(z+θ
∗)−h◦ l(θ ∗) (3.69)

with z = θ̃ f ,rα + S̄(τ)α . From Assumption 3.4, we get

ν(0) = 0,
∂

∂ z
ν(0) = 0,

∂ 2

∂ z2 ν(0) = H < 0. (3.70)

Note that the reduced system (3.67) has the same structure as (3.21) except the different constant

parameters. Therefore, we can perform averaging analysis and stability analysis in Step 3 and 4

of the proof of Theorem 1, respectively, for the reduced system (3.67). Then, we conclude that

there exists δ such that for all δ ∈ (0, δ̄ ), the system (3.67) has a unique exponentially stable
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periodic solution ζ Π
f ,r(τ) =

[
θ̃ Π

f ,r(τ) ĜΠ
f ,r(τ) η̃Π

f ,r(τ) αΠ(τ)

]T

such that

dζ Π
f ,r(τ)

dτ
= δE(τ,L(τ,ζ Π

f ,r(τ)),ζ
Π
f ,r(τ)). (3.71)

Step 4: Singular perturbation analysis. To convert the system (3.64) and (3.65) into

the standard singular perturbation form, we shift the states ζ f and x using the transformations

ζ̃ f = ζ f −ζ Π
f ,r(τ) and x̃ = x−L(τ,ζ f ) such that

dζ̃ f

dτ
= δ Ẽ(τ, x̃, ζ̃ f ), (3.72)

ω
dx̃
dτ

= F̃(τ, x̃, ζ̃ f ), (3.73)

where

Ẽ(τ, x̃, ζ̃ f ) = E(τ, x̃+L(τ, ζ̃ f +ζ
Π
f ,r(τ)), ζ̃ f +ζ

Π
f ,r(τ))−E(τ,L(τ,ζ Π

f ,r(τ)),ζ
Π
f ,r(τ)), (3.74)

F̃(τ, x̃, ζ̃ f ) = f
(

x̃+L(τ, ζ̃ f +ζ
Π
f ,r(τ)),φ

(
x̃+L(τ, ζ̃ f +ζ

Π
f ,r(τ)),θ

∗+ ζ̃ f1α +ζ
Π
f1,r(τ)α

+ S̄(τ)α
))

, (3.75)

where ζ̃ f1 = θ̃ f − θ̃ Π
f ,r(τ) and ζ Π

f1,r(τ) = θ̃ Π
f ,r(τ). Note that x̃ = 0 is the quasi-steady state. By

substituting the quasi-steady state into (3.72), we obtain the following reduced model

dζ̃ f ,r

dτ
= δ Ẽ(τ,0, ζ̃ f ,r), (3.76)

which has an equilibrium at the origin ζ̃ f ,r = 0. We prove in Step 3 that this equilibrium is

exponentially stable.

The next step in the singular perturbation analysis is to examine the boundary layer model
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in the time scale t = τ/ω as follows

dxb

dt
= F̃(τ,xb, ζ̃ f ),

= f (xb + l(θ),φ(xb + l(θ),θ)). (3.77)

Recalling f (l(θ),φ(l(θ),θ))≡ 0, we deduce that xb ≡ 0 is an equilibrium of (3.77). According

to Assumption 2, this equilibrium is locally exponentially stable uniformly in θ .

By combining exponential stability of the reduced model (3.76) with the exponential

stability of the boundary layer model (3.77), and noting that Ẽ(τ,0,0) = 0, F̃(τ,0,0) = 0, we

conclude from Theorem 11.4 of [49] that ζ̃ f → 0 and x̃ → 0, i.e., ζ f → ζ Π
f ,r and x → l(θ) =

L(τ,ζ f ) exponentially as τ → ∞.

Step 5: Convergence to extremum. Note that θ̃ f (τ)→ θ̃ Π
f (τ) and α → 0 exponentially.

It follows then that θ(τ) = θ ∗+ θ̃ f (τ)α + S̄(τ)α → θ ∗ exponentially and l(θ) = l(θ ∗+ θ̃ f α +

S̄(τ)α)→ l(θ ∗) exponentially. Consequently, y = h(x) exponentially converges to h◦ l(θ ∗). ■

Remark 3.1 The concept of time scale separation in stability analysis requires further discussion.

The plant dynamics in (3.61) operate on a fast time scale, while the dither signal with a small ω

varies more slowly. The ES scheme in (3.62) has the slowest dynamics, characterized by a small

δ . In Section 3.2, a similar principle is applied for static maps, where the dither signal must

vary faster than the ES dynamics, necessitating a high ω . In dynamic maps, however, a small ω

is needed to ensure that the plant dynamics in (3.61) remain fast, while a small δ ensures that

the ES dynamics (3.62) with small parameters (3.56)–(3.59) are much slower than the probing

signal.

3.4 Robust Exponential Extremum Seeker

An important aspect of our design depicted in Fig. 3.1 is that the multiplicative inverse of

the function α experiences exponential growth, while the high-pass filtered signal y−η decays to
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zero at a much faster rate, resulting in a bounded signal. However, in practical implementations,

the boundedness of the resulting signal may not be guaranteed due to various factors such as

measurement noise which prevents the complete convergence of y−η to zero, and numerical

inaccuracies that may arise from the multiplication of large and small values. The aforementioned

limitation is not specific to our design but applies to any given prescribed-time stabilization

scheme available in the literature [103], [104]. Furthermore, there may be instances where the

extremum point changes over time, rather than being stationary, in which case the traditional

extremum seeking design is capable of tracking it. To overcome these challenges and enhance

the robustness of our design, we propose a modified α-signal that exponentially converges to

an arbitrarily defined small positive number β rather than exponential decay function (3.7). In

this case, our design offers a convergence to the neighborhood of the extremum with adjustable

steady state oscillations. The new α-signal is governed by the following dynamics

α̇(t) =−λα(t)+λβ , α(t0) = α0. (3.78)

Remark 3.2 Our new design may seem to boil down to the traditional ES in [59]. However,

a classical ES design that employs a constant, small perturbation amplitude α(t) ≡ β for

all t ≥ t0 in Figure 3.1 may lead to a large overshoot due to a high demodulation amplitude

1/β (i.e., a high gain in the update of the gradient estimate), while converging to a much

smaller neighborhood of the optimum. Our design, with an amplitude starting large initially and

gradually decaying, addresses this issue. A further discussion is provided in Section 3.6.

By relaxing the C 4 condition in Assumption 3.1, we make the following assumption:

Assumption 3.5 The function h is C 2, and there exists θ ∗ ∈ Rn such that

∂

∂θ
h(θ ∗) = 0, (3.79)

∂ 2

∂θ 2 h(θ ∗) = H < 0, H = HT . (3.80)
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We summarize the closed-loop system depicted in Fig. 3.1 with the modified α-dynamics (3.78)

as follows

d
dt



θ̃

Ĝ

η̃

α


=



KĜ

−ωlĜ+ωl(y−h(θ ∗)− η̃) 1
α

M(t)

−ωhη̃ +ωh(y−h(θ ∗))

−λα +λβ


. (3.81)

We present the following result for static maps, which can be easily extended to dynamic systems.

Theorem 3.4 Consider the feedback system (3.81) under Assumption 3.5. There exist ω̄, ā > 0

such that for all ω > ω̄ and β |a| ∈ (0, ā) there exists an open ball B centered at the point

(θ̂ , Ĝ,η ,α) = (θ ∗,0,h(θ ∗),β ) =: ϒ such that for any initial condition starting in the ball B,

the system (3.81) has a unique solution and the solution converges exponentially to an O(β/ω +

β |a|)-neighborhood of ϒ. Furthermore, y(t) exponentially converges to an O(β 2/ω2 +β 2|a|2)-

neighborhood of h(θ ∗).

The proof of this result is given in Appendix B.

From Theorem 3.4, we conclude that the estimate θ̂ converges to a neighborhood of the

optimum θ ∗, characterized by β , a, and ω . Its average converges to a point biased from the

optimum due to higher-order terms in (B.11), which do not appear in quadratic maps. As a result,

the robust ES with non-zero β introduces a bias in both the system states and their averages. As

β approaches 0, this bias vanishes, aligning the robust ES with the exponential uES.

3.5 Source Seeking by a Velocity-Actuated Point Mass

In this section, we investigate the problem of source localization using an autonomous

vehicle modeled as a point mass in a two-dimensional plane

ẋ1 = vx1, ẋ2 = vx2, (3.82)
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h(·) y

αωo cos(ωotµ)
kx1
α sin(ωotµ)αλ sin(ωotµ)

αωo sin(ωotµ)
kx2
α cos(ωotµ)αλ cos(ωotµ)

η̇ = ωh(y − η)µ2
1
s

1
s

µ2

µ2

x2

x1

vx2

vx1

yh

Vehicle Dynamics

yh = y − η

Figure 3.3. The developed ES scheme for a velocity-actuated point mass. For exponential
convergence, choose µ ≡ 1,α = α0e−λ t ∀t ∈ [0,∞) and for prescribed-time convergence, choose
µ = T

T−t ,α = α0eλT(1− T
T−t ) ∀t ∈ [0,T ) with α0,λ > 0.

in which the vehicle’s position is represented by the vector
[

x1 x2

]T

, and its velocity is

controlled by the inputs vx1 and vx2 . The objective of this problem is to guide the vehicle towards

the static source of a scalar signal in an environment where the vehicle’s position data is not

available. The only information provided to the vehicle at its current location is the strength of

the signal, which is assumed to decrease as the distance from the source increases. Our specific

goal is to detect the source while continuously measuring the source signal, ultimately bringing

the vehicle to a complete stop at the exact location of the source. We give a block diagram

in Fig. 3.3, in which we can apply our exponential uES and uPT-ES designs by using their

corresponding µ and α functions.

For simplicity, but without loss of generality, we assume that the nonlinear map is

quadratic with diagonal Hessian matrix, i.e.,

h(x1,x2) = h∗−qx1(x1 − x∗1)
2 −qx2(x2 − x∗2)

2, (3.83)

where (x∗1,x
∗
2) is the unknown maximizer, h∗ = h(x∗1,x

∗
2) is the unknown maximum, and qx1 , qx2
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are some unknown positive constants.

Before presenting our results, let us first introduce the new coordinates

x̃1 = x1 − x∗1 −α sin(ωotµ), (3.84)

x̃2 = x2 − x∗2 +α cos(ωotµ), (3.85)

η̃ = η −h(x∗1,x
∗
2), (3.86)

where the signal η is defined in (3.16). For exponential stability, we can choose µ ≡ 1 and α

as in (3.7) for all t ∈ [0,∞). For prescribed-time stability, we can choose µ and α as in (3.37),

(3.38), respectively, for all t ∈ [0,T ). Then, we summarize the system in Fig. 3.3 as follows

d
dt



x̃1

x̃2

η̃

α


=



+kx1 µ2 sin(ωotµ)(y−h∗− η̃)(1/α)

−kx2 µ2 cos(ωotµ)(y−h∗− η̃)(1/α)

−ωhµ2η̃ +ωhµ2(y−h∗)

−λ µ2α


(3.87)

with the parameters chosen as

ωh > 2λ , kxi > λ/qxi, i = 1,2. (3.88)

An extension of the exponential uES result in Theorem 3.1 as well as the uPT-ES result

in Theorem 3.2 to the system (3.87) can be easily done. For convenience, we give the uPT-ES

result for this source seeking problem below without a proof.

Theorem 3.5 Consider the feedback system (3.87) with the parameters that satisfy (3.88) and

with the nonlinear map of the form (3.83). There exists ω̄o and for any ωo > ω̄o, there exists

an open ball B centered at the point (x1,x2,η ,α) = (x∗1,x
∗
2,h

∗,0) =: ϒ such that for any initial

condition starting in the ball B, the system (3.87) has a unique solution and the solution

converges to ϒ in prescribed time T . Hence, y(t) converges to h(x∗1,x
∗
2) in prescribed time T .
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Furthermore, the velocity inputs remain bounded over [0,T ).

The main contribution of the developed uPT-ES technique in Fig. 3.3 is that we achieve

to drive the vehicle directly to the source h∗ by keeping the velocities vx1,vx2 bounded whereas

the PT-ES technique in Chapter 2 (which can be suitably modified to fit the structure shown in

Figure 3.3 with λ = 0, α ≡ α0 and µ-function (3.37)) achieves the convergence of the vehicle to

a small neighborhood the source with the velocities growing unbounded. The boundedness of

the velocities vx1,vx2 in our design follows from the fact that the signal y−η converges to zero

in prescribed time proportionally to α as well as the fact that the square of the blow-up function

µ is multiplied by the function α which decays to zero faster, resulting in the boundedness and

convergence of the velocities to zero, i.e.,

lim
t→T

(
α(t)µ(t)2)= lim

t→T

(
α0

T 2

(T − t)2 eλT(1− T
T−t )
)
= 0. (3.89)

3.6 Application to Source Seeking Problem

We consider the application of the developed ES techniques to the problem of source

seeking by a velocity-actuated point mass as defined in Section 3.5. The velocity of the vehicle

in Fig. 3.3 is controlled by the following ES controllers with appropriate µ and α functions:

• Controller 1. Nominal ES with µ ≡ 1, α ≡ α0, (i.e., λ = 0). This design boils down to

Fig. 1 in [126], in which the vehicle asymptotically converges to a neighborhood of the

source and shows steady-state oscillations around it.

• Controller 2. Exponential uES with µ ≡ 1, α-function dynamics (3.7). This design is a

modified version of Fig. 3.1.

• Controller 3. Robust Exponential ES with µ ≡ 1, α-function dynamics (3.78) and

additional terms λβ sin(ωot) in vx1 as well as −λβ cos(ωot) in vx2 . This design is a

modified version of Fig. 3.1 with α-dynamics (3.78).
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Figure 3.4. Static source seeking by an autonomous vehicle (3.82). The nominal ES with low
amplitude α0 approaches the source more closely but requires high initial velocity, leading to an
initial deviation from the source. The exponential uES (3.13), with its exponentially decaying
amplitude, avoids this issue.

• Controller 4. uPT-ES with µ-function (3.37), α-function (3.38). This design is a modified

version of Fig. 3.2 with q = 2.

We now present the results of four numerical simulations to demonstrate the performance

of Controllers 1-4 for the source-seeking problem. The real-time measurement is defined as

y(t) = h(x1(t),x2(t)), where the function h(·) is described in (3.83) and its parameters are chosen

as (x∗1,x
∗
2) = (−1,−1),h∗ = 1,qx1 = 1,qx2 = 0.5.

Controller 1 and 2. The first simulation compares the performance of the nominal ES

and exponential uES for a static source. The parameters in Fig. 3.3 are selected as ωh = 1,

kx1 = kx2 = 0.1,λ = 0.045 and ωo = 5. The comparison between the nominal ES and exponential

uES is shown in Fig. 3.4. The exponential uES exhibits exponential convergence to the source at

(−1,−1) with circular trajectories and exponentially decaying amplitude. On the other hand, the

nominal ES with constant amplitude asymptotically converges to the vicinity of the source and
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Figure 3.5. Time-varying source seeking by an autonomous vehicle (3.82). The trajectory of
the source is illustrated by yellow circles at 10 second intervals. The robust exponential design
(3.81) successfully tracks the source, owing to its amplitude that decays but does not vanish,
while exponential design (3.13) fails to track.

shows steady-state oscillation around it. The nominal design with α0 = 0.06 converges closer to

the source than the one with α0 = 0.3, but it initially moves away from the source due to its high

initial velocity. Low initial velocity and perfect convergence are achieved through our design.

Controller 2 and 3. The second simulation examines the case of a time-varying source.

The source is modeled as

x∗1(t) = 1− e−0.0003(t−70)2
, (3.90)

x∗2(t) = − tanh(0.03(t −70)). (3.91)

Note that the Gaussian function in (3.90) and the hyperbolic tangent function in (3.91) can be

referred to as saturating activation functions. The performance of the exponential uES and the

robust exponential ES for tracking the time-varying source is shown in Fig. 3.5. The parameters
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Figure 3.6. Static source seeking for t ∈ [0,30) in seconds. (a) Both designs follow the same
trajectory, but the exponential uES (3.13) falls behind the uPT-ES (3.39). (b) The velocity inputs
of the uPT-ES (3.39) exhibit more rapid changes compared to those of the exponential uES
(3.13).

are set as β = 0.02,kx1 = 0.2,kx2 = 0.3 with α0,ωh,ωo being the same as the first simulation.

The robust design demonstrates robustness to non-stationary sources with adjustable amplitude,
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Figure 3.7. Static source seeking for t ∈ [0,30) in seconds. (a) The convergence of our uPT-ES
(3.39) is compared with the one of delay-free PT-ES in Chapter 2, which is implemented on
the 2D vehicle illustrated in Fig. 3.3 by choosing λ = 0, α ≡ α0, and µ as in (3.37). (b) The
velocity inputs in our design are kept bounded, while the inputs in Chapter 2 grow unbounded.

while the exponential uES fails to achieve convergence.

Controller 2 and 4. The third simulation considers the static source problem and
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implements both the exponential uES design and uPT-ES design for comparison. The final time

is set to T = 30s, and the rest of the parameters are chosen as in the first simulation. As shown in

Fig. 3.6a, both designs track the same trajectory, but the exponential uES cannot reach the source

in prescribed time. This is because the uPT-ES design performs more rapid velocity changes,

resulting in bounded but high acceleration in the vehicle, as seen in Fig. 3.6b.

Controller 4 and the Delay-Free PT-ES in Chapter 2. In our fourth and final simulation,

we illustrate the difference between these two different prescribed-time ES designs. The delay-

free design in Chapter 2 can be implemented into Fig. 3.3 by choosing λ = 0,α ≡ α0, and µ as

in (3.37). The final time is set to T = 30s, and the rest of the parameters are the same as in the

first simulation. The PT-ES in Chapter 2 basically improves the convergence of the nominal ES

as demonstrated in Fig. 3.7a. However, we can see in Fig. 3.7b that this comes with the cost of

velocities growing unbounded. Our design, on the other hand, achieves unbiased convergence in

prescribed time with bounded velocities.

Remark 3.3 The capabilities of the developed designs extend beyond closed-loop systems

assumed to be stable under Assumption 3.3. By selecting a Lyapunov function as the cost

function to optimize, as demonstrated in [98], we can achieve model-free stabilization of unstable

dynamic systems. Consider the open-loop unstable scalar system

ẋ = cx+bu, c > 0, (3.92)

where the control direction b is unknown and non-zero. The classical ES controller is given by

u = aω cos(ωt)− k
a

sin(ωt)V (x), (3.93)

where the Lyapunov function V (x) = x2. Performing the change of variables x̃ = x−absin(ωt),

we obtain ˙̃x = cx̃ + cabsin(ωt)− b k
a sin(ωt)(x̃ + absin(ωt))2. The average system is ˙̃xa =

(c− kb2)x̃a, which is exponentially stable for k > c/b2. This implies local stability of the x-
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system for sufficiently large ω , according to the averaging theorem [49, Theorem 10.4]. For

exponential and prescribed-time stabilization at the origin, the controller can be updated as

follows

u = µ
2
(

αω cos(ωtµ)−αλ sin(ωtµ)− k
α

sin(ωtµ)V (x)
)
, (3.94)

where k > c/b2 +λ and the signals µ and α are defined as described in the caption of Fig. 3.3.

This approach can be extended to multi-input systems, following the methodology in [98].

3.7 Conclusion

In this chapter, we address the issue of steady-state oscillations in classical ES. We

develop accelerated ES algorithms that not only eliminate the steady-state oscillations, but

also achieves unbiased convergence to the extremum exponentially and in prescribed time by

employing proper time-varying functions in the perturbation and demodulation stage of the ES

loop. For tracking non-stationary optima, we introduce a robust ES scheme with user-adjustable

oscillations that gradually decrease but remains non-zero. We evaluate the performance of our

ES algorithms on a source-seeking problem. With bounded velocity inputs, our uPT-ES design

accurately locates the source, while the delay-free PT-ES algorithm in Chapter 2 converges to a

neighborhood of the source with unbounded input growth.
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Chapter 4

Unbiased Extremum Seeking for PDEs

In this chapter, we present two distinct unbiased extremum seeking (uES) designs: one

can handle arbitrarily long and known time delays, while the other compensates for diffusion

PDEs. The designs consist of a PDE compensator, a perturbation signal with exponentially de-

caying amplitude (to eliminate steady-state oscillation), demodulation signals with exponentially

growing amplitude and properly selected design parameters (to ensure unbiased convergence).

Unlike previous PDE-compensating ES designs in the literature, which only guarantee local

stability around the extremum, our uES designs not only compensate for PDE dynamics but

also ensure exponential, unbiased convergence to the optimum. Our method leverages expo-

nentially decaying/growing signals within the modulation/demodulation stages and carefully

selected design parameters. The stability analysis of our designs relies on a state transformation,

infinite-dimensional averaging, local exponential stability of the averaged system, local stability

of the transformed system, and local exponential stability of the original system. Numerical

simulations are presented to demonstrate the efficacy of the developed designs.

This chapter is structured as follows. Section 4.1 presents problem formulation. Section

4.2 and Section 4.3 introduce unbiased ES with delay compensator and unbiased ES with

diffusion PDE compensator, respectively, along with formal stability analysis. Numerical results

are presented in Section 4.4, followed by the conclusion in Section 4.5 and acknowledgments.

Notation. We denote the Euclidean norm by | · |. The partial derivatives of a function
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u(x, t) are denoted by ∂xu(x, t) = ∂u(x, t)/∂x, ∂tu(x, t) = ∂u(x, t)/∂ t. The spatial L2[0,D] norm

of u(x, t) is denoted by ||u(·, t)||2 =
∫ D

0 u2(x, t)dx.

4.1 Problem Statement

We consider the optimization problem given by

min
θ∈R

Q(θ), (4.1)

where θ ∈R represents the input, Q ∈R→R is an unknown smooth function. We introduce the

following assumption regarding the unknown static map Q(·).

Assumption 4.1 The unknown static map is characterized by the following quadratic form

Q(θ) = y∗+
H
2
(θ −θ

∗)2, (4.2)

where y∗ ∈R and θ ∗ ∈R denote the unknown optimal output and input values, respectively, and

H > 0 represents the unknown Hessian of the static map Q(θ).

In Chapter 3, we design a multivariable ES that achieves unbiased and exponential

convergence to the optimum, assuming the absence of actuator dynamics. This work addresses

a more challenging and application-relevant optimization problem by considering the same

objective function (4.1) but incorporating actuator dynamics modeled by a delay and diffusion

PDE. Our current objective is to develop a scalar unbiased ES that effectively compensates for

PDE dynamics and exponentially guides the input θ(t) towards the optimum θ ∗.
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Figure 4.1. Unbiased ES with delay compensator. The design employs exponentially growing
multiplicative signals, M(t) = 2

aeλ t sin(ωt), and N(t) =− 8
a2 e2λ t cos(2ωt), as well as exponen-

tially decaying dither signal Ṡ(t +D) = d
dt

(
e−λ (t+D)asin(ω(t +D))

)
to achieve exponential

and unbiased convergence to the optimum θ ∗ at the rate of the user-defined λ > 0.

4.2 Unbiased ES with Delay

In this section, we consider the scenario where the output y(t) is subject to a known and

constant delay D ≥ 0, expressed as

y(t) = Q(θ(t −D)), t ∈ [0,∞). (4.3)

Note that the static map Q(θ) enables the representation of the overall delay D as the sum of

individual components, denoted as Du and Dy, corresponding to the delays in the actuation and

measurement paths, respectively. Fig. 4.1 illustrates the closed-loop unbiased ES with delay

compensator. Before delving into the estimator design, we introduce the signals presented in Fig.

4.1 in the following subsection.

4.2.1 Excitation signals and gradient/Hessian estimates

Let us define the following parameter estimate

θ̂(t) = θ(t)−S(t +D), (4.4)
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with the perturbation signal

S(t +D) = e−λ (t+D)asin(ω(t +D)), (4.5)

where λ > 0 is the decay rate of the perturbation signal, a ∈ R is the perturbation amplitude,

ω > 0 is the probing frequency. Let us define the delay-free and delayed parameter estimation

error variables

θ̃(t) = θ̂(t)−θ
∗, θ̃(t −D) = θ̂(t −D)−θ

∗. (4.6)

Applying the technique in [56], we represent the signals (4.6) through the transport PDE as

θ̃(t −D) = ū(0, t), (4.7)

∂t ū(x, t) = ∂xū(x, t), (4.8)

ū(D, t) = θ̃(t) (4.9)

for x ∈ (0,D). The solution of this PDE is given by

ū(x, t) = θ̃(t + x−D). (4.10)

We compute the estimate of the gradient and Hessian as follows

G(t) = M(t)(y(t)−η(t)), (4.11)

Ĥ(t) = N(t)(y(t)−η(t)), (4.12)

where the multiplicative excitation signals are given by

M(t) =
2
a

eλ t sin(ωt), N(t) =− 8
a2 e2λ t cos(2ωt) (4.13)
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and η(t) is governed by

η̇(t) = −ωhη(t)+ωhy(t). (4.14)

We use exponentially decaying signals in the modulation stage, as defined in (4.5), and exponen-

tially growing signals in the demodulation stage, as defined in (4.11) and (4.12). The important

aspect of our design lies in the fact that the high-pass filtered state y−η exhibits exponential

decay to zero at the rate of 2λ . This crucial feature ensures that despite the growing amplitudes

in (4.13), the estimates in (4.11) and (4.12) remain bounded.

4.2.2 Parameter estimator design and error dynamics

The time derivative of (4.7)–(4.9) is given by

˙̂
θ(t −D) = u(0, t), (4.15)

∂tu(x, t) = ∂xu(x, t), (4.16)

u(D, t) = ˙̂
θ(t), (4.17)

by noting ˙̃
θ(t) = ˙̂

θ(t) from (4.6). Following the methodology presented in [56], we consider the

following backstepping transformation

w(x, t) = u(x, t)+ k̄
(

θ̃(t −D)+
∫ x

0
u(σ , t)dσ

)
(4.18)

to convert the system (4.15)–(4.17) into the target system

˙̃
θ(t −D) = − k̄θ̃(t −D)+w(0, t), (4.19)

∂tw(x, t) = ∂xw(x, t), (4.20)

w(D, t) = 0, (4.21)
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with the gain k̄ > 0. By substituting x = D into (4.18) and considering (4.17) and (4.21), we

obtain the update law

˙̂
θ(t) = − k̄

(
θ̃(t −D)+

∫ D

0
u(σ , t)dσ

)
,

= − k̄θ̃(t −D)− k̄
(
θ̂(t)− θ̂(t −D)

)
, (4.22)

where we use the property u(σ , t) = ∂t ū(σ , t) = ∂xū(σ , t), use the solution (4.10), and recall

(4.6). We obviously cannot use (4.22) since the error θ̃(t −D) is not measured. To overcome

this limitation, we define k̄ = kH, where H > 0 represents the unknown Hessian, and the user

specifies the positive gain k. Then, we replace the signals Hθ̃(t −D) and H with their respective

estimates, G(t) from (4.11) and Ĥ(t) from (4.12). This leads to the following implementable

version of (4.22)

˙̂
θ(t) = − kG(t)− kĤ(t)

(
θ̂(t)− θ̂(t −D)

)
. (4.23)

The design parameters should satisfy the following conditions

λ <
ωh

2
, k >

λ

H
. (4.24)

The essence of these conditions is that the adaptation (learning) rate should surpass the decay

rate of the perturbation (exploration) signal.

In view of the transformation,

η̃(t) = η(t)− y∗, (4.25)

we write the closed-loop system in the form

θ̃(t −D) = ū(0, t), (4.26)
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∂t ū(x, t) = ∂xū(x, t), (4.27)

ū(D, t) = θ̃(t), (4.28)

˙̃
θ(t) = − kG(t)− kĤ(t)(θ̃(t)− θ̃(t −D)), (4.29)

˙̃η(t) = −ωhη̃(t)+ωh (y(t)− y∗) , (4.30)

where (4.11) and (4.12) are rewritten as

G(t) =
2
a

eλ t sin(ωt)(y(t)− y∗− η̃(t)) , (4.31)

Ĥ(t) = − 8
a2 e2λ t cos(2ωt)(y(t)− y∗− η̃(t)) . (4.32)

Recalling (4.2)–(4.6), the output (4.3) is rewritten as

y(t) = y∗+
H
2

(
θ̃(t −D)+ e−λ tasin(ωt)

)2
. (4.33)

4.2.3 Stability analysis

The main theorem is stated as follows.

Theorem 4.1 Let Assumption 4.1 hold and the parameters satisfy (4.24). Then, there exists ω̄

and for any ω > ω̄ , the closed-loop system (4.26)–(4.30) is exponentially stable at the origin in

the sense of the norm

(
||ū(·, t)||2 + |θ̃(t)|2 + |η̃(t)|2

)1/2
. (4.34)

Furthermore, the input θ(t) and output y(t) exponentially converge to θ ∗ and y∗, respectively.

Proof Let us proceed through the proof step by step.
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Step 1: State transformation. Let us consider the following transformations

θ̃ f (t −D) = eλ (t−D)ū(0, t), (4.35)

ū f (x, t) = eλ (t+x−D)ū(x, t), (4.36)

θ̃ f (t) = eλ t
θ̃(t), (4.37)

η̃ f (t) = e2λ t
η̃(t), (4.38)

which transform (4.26)–(4.30) to the following system

θ̃ f (t −D) = ū f (0, t), (4.39)

∂t ū f (x, t) = ∂xū f (x, t), (4.40)

ū f (D, t) = θ̃ f (t), (4.41)

˙̃
θ f (t) = λ θ̃ f (t)− k

2
a

sin(ωt)
H
2

[(
eλD

θ̃ f (t −D)+asin(ωt)
)2

− η̃ f (t)
]

− k
(
− 8

a2 cos(2ωt)
)

H
2

[(
eλD

θ̃ f (t −D)+asin(ωt)
)2

− η̃ f (t)
]

×
(

θ̃ f (t)− eλD
θ̃ f (t −D)

)
, (4.42)

˙̃η f (t) = − (ωh −2λ )η̃ f (t)+ωh
H
2

(
eλD

θ̃ f (t −D)+asin(ωt)
)2

, (4.43)

in view of (4.31)–(4.33).

Step 2: Averaging operation. The average of the transformed system (4.39)–(4.43) over

the period Π = 2π/ω is given by

θ̃
av
f (t −D) = ūav

f (0, t), (4.44)

∂t ūav
f (x, t) = ∂xūav

f (x, t), (4.45)

ūav
f (D, t) = θ̃

av
f (t), (4.46)

˙̃
θ

av
f (t) = − (kH −λ )θ̃ av

f (t), (4.47)
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˙̃ηav
f (t) = − (ωh −2λ )η̃av

f (t)+ωh
H
2

(
e2λD(θ̃ av

f (t −D))2 +a2/2
)
, (4.48)

where θ̃ av
f (t), ūav

f (·, t), and η̃av
f (t) denote the average versions of the states θ̃ f (t), ū f (·, t), and

η̃ f (t), respectively.

Step 3: Stability of average system. The solution to (4.47) is given by θ̃ av
f (t) =

θ̃ av
f (0)e−(kH−λ )t . Then, we write the solution to the PDE (4.45) as

ūav
f (x, t) = θ̃

av
f (0)e−(kH−λ )(t+x−D). (4.49)

Thus, the (θ̃ av
f , ūav

f )-system is exponentially stable at the origin for kH > λ . Using this fact, it is

trivial to show that η̃av
f (t) of (4.48) exponentially converges to ωhHa2

4(ωh−2λ ) for ωh > 2λ .

Step 4: Invoking averaging theorem. Applying the averaging theorem for infinite-

dimensional systems [37], we establish that there exists ω̄ and for any ω > ω̄ , the transformed

system (4.39)–(4.43) with states (ū f (·, t), θ̃ f (t), η̃ f (t)) has a unique exponentially stable periodic

solution (ūΠ
f (·, t), θ̃ Π

f (t), η̃
Π
f (t)) of period Π = 2π/ω and this solution satisfies

(
||ūΠ

f (·, t)||2 + |θ̃ Π
f (t)|2 +

∣∣∣∣η̃Π
f (t)−

ωhHa2

4(ωh −2λ )

∣∣∣∣2) 1
2

≤ O
( 1

ω

)
(4.50)

for all t ≥ 0. Considering (4.50) and recalling the transformations (4.35)–(4.38), we deduce that

the original error system (4.26)–(4.30) with states ū(·, t), θ̃(t), η̃(t) has a unique solution and is

exponentially stable at the origin in the sense of the norm (4.34).

Step 5: Convergence to extremum. Taking into account the results in Step 4 and

recalling from (4.4)–(4.6), (4.37) that

θ(t) = e−λ t
θ̃ f (t)+θ

∗+ e−λ (t+D)asin(ω(t +D)), (4.51)

we conclude the exponential convergence of θ(t) to θ ∗. We establish the convergence of the
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output y(t) to y∗ from (4.33) and complete the proof of Theorem 4.1. ■

4.3 Unbiased ES with Diffusion PDE

In this section, we consider the following cascade of a diffusion PDE and ODE (integrator)

with Neumann interconnection

θ̇(t) = ∂xα(0, t), (4.52)

∂tα(x, t) = ∂xxα(x, t), (4.53)

α(0, t) = 0, (4.54)

∂xα(D, t) = Θ̇(t) (4.55)

for (x, t) ∈ (0,D)× [0,∞). The output of the static map is

y(t) = y∗+
H
2
(θ(t)−θ

∗)2. (4.56)

The diffusion PDE with Neumann actuation arises in thermal systems, such as Stefan models of

thermal phase change [52], tubular reactors [9], and batteries [75], where the control input is the

heat flux. Our methodology can be extended to systems with Dirichlet actuation. The unbiased

ES with diffusion PDE compensator is schematically illustrated in Fig. 4.2.

4.3.1 Perturbation signal

Let us define the following parameter estimates to determine the optimal unknown

actuator θ ∗

θ̂(t) = θ(t)− e−λ tasin(ωt), (4.57)

Θ̂(t) = Θ(t)−S(t). (4.58)
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Figure 4.2. Unbiased ES with diffusion PDE compensator. The design requires feedback of θ ,
uses the same excitation signals, M(t) and N(t) as in Fig. 4.1, and employs a properly designed
perturbation signal, Ṡ(t).

We need to redesign the perturbation signal, S(t), such that when applied as input to the diffusion

PDE it produces the desired output, e−λ tasin(ωt). We formulate this trajectory generation

problem as follows

S(t) = ∂xβ (D, t), (4.59)

∂tβ (x, t) = ∂xxβ (x, t), (4.60)

β (0, t) = 0, (4.61)

∂xβ (0, t) = e−λ tasin(ωt) (4.62)

for (x, t) ∈ (0,D)× [0,∞). We present the solution to S(t) in the following lemma.

Lemma 4.1 The explicit solution to S(t) in (4.59) is

S(t) =
a
2

e−λ t (sin(ωt +qD)epD + sin(ωt −qD)e−pD) , (4.63)

where p =

√√
λ 2+ω2−λ

2 and q =

√√
λ 2+ω2+λ

2 .
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Proof Following the PDE-based motion planning technique presented in [58, Ch. 12], we seek

the solution in the following form

β (x, t) =
∞

∑
k=0

ck(t)
xk

k!
, (4.64)

where ck(t) are the time-varying coefficients. To determine these coefficients, we first use the

boundary conditions (4.61) and (4.62), and obtain

c0(t) = 0, (4.65)

c1(t) = e−λ tasin(ωt) = Im
{

ae(−λ+ jω)t
}
. (4.66)

Next, we substitute (4.64) into (4.60), resulting in the recursive relationship ck+2(t) = ċk(t).

From (4.65) and (4.66), we get

c2k(t) = 0, (4.67)

c2k+1(t) = Im
{

a(−λ + jω)ke(−λ+ jω)t
}
. (4.68)

Substituting (4.68) into (4.64), we get

β (x, t) = Im

{
∞

∑
k=0

a(−λ + jω)k x2k+1

(2k+1)!
e(−λ+ jω)t

}
,

= Im

{
∞

∑
k=0

a
(√

(−λ + jω)x
)2k+1√

(−λ + jω)(2k+1)!
e(−λ+ jω)t

}
,

= Im

{
a√

−λ + jω
sinh(

√
(−λ + jω)x)e(−λ+ jω)t

}
,

= Im
{(

epx−λ t+ j(qx+ωt)− e−px−λ t+ j(−qx+ωt)
)
+a(p− jq)/(2p2 +2q2)

}
, (4.69)
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where p+ jq =
√
(−λ + jω) and p and q are defined after (4.63). Finally, we arrive at

β (x, t) =
[
(psin(ωt +qx)−qcos(ωt +qx))epx−λ t

− (psin(ωt −qx)−qcos(ωt −qx))e−px−λ t]a/(2p2 +2q2). (4.70)

Differentiating (4.70) with respect to x and setting x = D, we derive (4.63). ■

Defining the error variables

θ̃(t) = θ̂(t)−θ
∗, Θ̃(t) = Θ̂(t)−θ

∗, (4.71)

we write the following error system

θ̃(t) = ∂xū(0, t), (4.72)

∂t ū(x, t) = ∂xxū(x, t), (4.73)

ū(0, t) = 0, (4.74)

∂xū(D, t) = Θ̃(t), (4.75)

where the time derivative is given by

˙̂
θ(t) = ∂xu(0, t), (4.76)

∂tu(x, t) = ∂xxu(x, t), (4.77)

u(0, t) = 0, (4.78)

∂xu(D, t) = ˙̂
Θ(t), (4.79)

by noting that u(x, t) = ∂t ū(x, t) = α(x, t)−∂tβ (x, t) for (x, t) ∈ (0,D)× [0,∞) and recalling the

cascades (4.52)–(4.55), (4.59)–(4.62) and the solution of β (x, t) in (4.70).
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4.3.2 Parameter estimator design and error dynamics

We consider the following backstepping transformation

w(x, t) = u(x, t)+
∫ x

0
q(x,r)u(r, t)dr+ γ(x)θ̃(t), (4.80)

with the gain kernels q(x,r) = k̄(x− r) and γ(x) = k̄x, k̄ < 0, which transform the cascade

(4.76)–(4.79) into the target system

˙̃
θ(t) = − k̄θ̃(t)+∂xw(0, t), (4.81)

∂tw(x, t) = ∂xxw(x, t), x ∈ (0,D), (4.82)

w(0, t) = 0, (4.83)

∂xw(D, t) = 0, (4.84)

by noting ˙̃
θ(t) = ˙̂

θ(t) from (4.71). Taking the derivative of (4.80) with respect to x, setting

x = D in the resulting expression, and recalling (4.84), we derive the update law as

˙̂
Θ(t) = − k̄θ̃(t)− k̄

∫ D

0
u(r, t)dr,

= − k̄θ̃(t)− k̄
(
Θ̂(t)− θ̂(t)

)
. (4.85)

In (4.85), we apply the property that u(x, t) = ∂t ū(x, t) = ∂xxū(x, t), and use (4.71), (4.72), and

(4.75). However, (4.85) requires direct measurement of θ̃(t). As discussed in the text following

(4.22), we can redesign (4.85) as follows

˙̂
Θ(t) = − kG(t)− kĤ(t)

(
Θ̂(t)−θ(t)+ e−λ tasin(ωt)

)
(4.86)

by recalling (4.57), using the feedback of θ(t), and choosing k̄ = kH where H > 0 represents the

unknown Hessian and k > 0 is the user-defined gain. The estimates G(t), Ĥ(t), and η-dynamics
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have the same form as in (4.11), (4.12) and (4.14), respectively. Additionally, the parameters

should satisfy the following conditions

λ < min
{

ωh

2
,

π2

4D2

}
, k >

λ

H
. (4.87)

Using (4.14), (4.25), (4.57), (4.71)–(4.75), and (4.86), we write the following closed-loop error

system

θ̃(t) = ∂xū(0, t), (4.88)

∂t ū(x, t) = ∂xxū(x, t), (4.89)

ū(0, t) = 0, (4.90)

∂xū(D, t) = Θ̃(t), (4.91)

˙̃
Θ(t) = − kG(t)− kĤ(t)

(
Θ̃(t)− θ̃(t)

)
, (4.92)

˙̃η(t) = −ωhη̃(t)+ωh (y(t)− y∗) , (4.93)

where G(t) and Ĥ(t) are rewritten in the same form as (4.31) and (4.32), respectively. Using

(4.57), (4.71), the output (4.56) is rewritten as

y(t) = y∗+
H
2
(θ̃(t)+asin(ωt))2. (4.94)

4.3.3 Stability analysis

The main theorem is stated as follows:

Theorem 4.2 Let Assumption 1 hold and parameters satisfy (4.87). Then, there exists ω̄ and for

any ω > ω̄ , the closed-loop system (4.88)–(4.93) exponentially stable at the origin in the sense

of the norm

(
||ū(·, t)||2 + |Θ̃(t)|2 + |η̃(t)|2

)1/2
. (4.95)
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Furthermore, the input θ(t) and output y(t) exponentially converge to θ ∗ and y∗, respectively.

Proof Let us proceed through the proof step by step.

Step 1: State transformation. Let us consider the following transformations

θ̃ f (t) = eλ t
∂xū(0, t), (4.96)

u f (x, t) = eλ t ū(x, t), (4.97)

Θ̃ f (t) = eλ t
Θ̃(t), (4.98)

η̃ f (t) = e2λ t
η̃(t), (4.99)

which transform (4.88)–(4.93) to the following system

θ̃ f (t) = ∂xū f (0, t), (4.100)

∂t ū f (x, t) = ∂xxū f (x, t)+λu f (x, t), (4.101)

ū f (0, t) = 0, (4.102)

∂xū f (D, t) = Θ̃ f (t), (4.103)

˙̃
Θ f (t) = λ θ̃ f (t)− k

2
a

sin(ωt)
H
2

[(
θ̃ f (t)+asin(ωt)

)2
− η̃ f (t)

]
− k
(
− 8

a2 cos(2ωt)
)

× H
2

[(
θ̃ f (t)+asin(ωt)

)2
− η̃ f (t)

](
Θ̃ f (t)− θ̃ f (t)

)
, (4.104)

˙̃η f (t) = − (ωh −2λ )η̃ f (t)+ωh
H
2
[
θ̃ f (t)+asin(ωt)

]2
. (4.105)

Step 2: Averaging operation. The average of the transformed system (4.100)–(4.105)

over the period Π = 2π/ω is given by

θ̃
av
f (t) = ∂xūav

f (0, t), (4.106)

∂t ūav
f (x, t) = ∂xxūav

f (x, t)+λuav
f (x, t), (4.107)

ūav
f (0, t) = 0, (4.108)
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∂xūav
f (D, t) = Θ̃

av
f (t), (4.109)

˙̃
Θ

av
f (t) = − (kH −λ )Θ̃av

f (t), (4.110)

˙̃ηav
f (t) = − (ωh −2λ )η̃av

f (t)+ωh
H
2

(
(θ̃ av

f (t))2 +
a2

2

)
, (4.111)

where θ̃ av
f (t), ūav

f (·, t), Θ̃av
f (t), and η̃av

f (t) denote the average versions of the states θ̃ f (t), ū f (·, t),

Θ̃ f (t), and η̃ f (t), respectively.

Step 3: Stability of average system. The solution to (4.110) is given by Θ̃av
f (t) =

Θ̃av
f (0)e

−(kH−λ )t . Then, using the method of separation of variables, we obtain the exact solution

to the reaction-diffusion equation (4.107)–(4.109) as

ūav
f (x, t) =

(
Θ̃av

f (0)√
kH cos(

√
kHD)

)
sin
(√

kHx
)

e−(kH−λ )t +
∞

∑
n=1

e

(
λ− π2(2n−1)2

4D2

)
t

× sin
(

π(2n−1)x
2D

)
Mn, (4.112)

where

Mn =
1
D

∫ 2D

0
ūav

f (x,0)sin
(

π(2n−1)x
2D

)
dx. (4.113)

Thus, the (Θ̃av
f , ū

av
f )-system is exponentially stable at the origin for kH > λ and λ < π2

4D2 . We

establish the exponential convergence of θ̃ av
f (t) to zero recalling (4.106) and using (4.112).

Using this fact, it is trivial to show that η̃av
f (t) of (4.111) exponentially converges to ωhHa2

4(ωh−2λ ) for

ωh > 2λ .

Step 4: Invoking averaging theorem. Applying the averaging theorem [37], we establish

that there exists ω̄ and for any ω > ω̄ , the transformed system (4.100)–(4.105) with states

(ū f (·, t),Θ̃ f (t), η̃ f (t)) has a unique exponentially stable periodic solution (ūΠ
f (·, t),Θ̃Π

f (t), η̃
Π
f (t))
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of period Π = 2π/ω and this solution satisfies

(
||ūΠ

f (·, t)||2 + |Θ̃Π
f (t)|2 +

∣∣∣∣η̃Π
f (t)−

ωhHa2

4(ωh −2λ )

∣∣∣∣2) 1
2

≤ O
( 1

ω

)
(4.114)

for all t ≥ 0. Considering (4.114) and recalling the transformations (4.96)–(4.99), we deduce that

the original error system (4.88)–(4.93) with states ū(·, t),Θ̃(t), η̃(t) has a unique solution and is

exponentially stable at the origin in the sense of the norm (4.95). In addition, θ̃(t) = ∂xū(0, t)

exponentially converges to zero.

Step 5: Convergence to extremum. Taking into account the results in Step 4 and

recalling from (4.57), (4.71) that

θ(t) = e−λ t
θ̃ f (t)+θ

∗+ e−λ tasin(ωt), (4.115)

we conclude the exponential convergence of θ(t) to θ ∗. Then, we establish the convergence of

the output y(t) to y∗ from (4.56) and complete the proof of Theorem 4.2. ■

4.4 Numerical Simulation

In this section, we perform a numerical simulation to evaluate the performance of the

developed ES algorithms. We consider the following static quadratic map

Q(θ) = 1+(θ −2)2. (4.116)

In the first scenario, we examine a case where the map (4.116) is measured with a

known delay of D = 5. We implement the delay-compensated uES (4.23) with parameters

k = 0.03,a = 0.8,ω = 5,ωh = 1,λ = 0.04. All initial conditions are set to zero. As illustrated

in Fig. 4.3, the delay-compensated uES algorithm effectively compensates for the delay and

ensures unbiased convergence of the input θ to its optimum value θ ∗ = 2 exponentially at a rate
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Figure 4.3. The trajectory of input θ resulting from the application of the delay-compensated
uES (4.23) in the presence of a delay of D = 5 seconds.

of λ .

In the second scenario, we examine a case where the map (4.116) is coupled with a

diffusion PDE (4.52)–(4.55), with D = 1. We employ the diffusion PDE-compensated uES

(4.86) with parameters identical to those used in the delay-compensated design, and depict the

result in Figure 4.4. Our approach effectively compensates for the diffusion PDE dynamics and

achieves exponential convergence to the optimum θ ∗ = 2.

4.5 Conclusion

Motivated by the need to address optimization challenges in complex physical systems

described by PDEs, we introduce two distinct uES algorithms designed to handle PDE dynamics.

One algorithm addresses arbitrarily long input-output delays, while the other deals with diffusion

PDE input dynamics. Unlike existing designs that use constant amplitude dither signals, we use

additive and multiplicative dither signals with exponentially decaying and growing amplitudes,

respectively. By carefully adjusting the design parameters, we achieve unbiased convergence at
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Figure 4.4. The trajectory of input θ resulting from the application of the diffusion PDE-
compensated uES (4.86).

a user-defined exponential rate. A promising direction for future research would be to explore

the application of this approach for seeking the critical heat flux in pool boiling systems.
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Chapter 5

Asymptotic, Exponential, and Prescribed-
Time Unbiasing in Seeking of Time-
Varying Extrema

Our “unbiased” extremum seeking (uES) algorithms developed in Chapter 3 ensure

perfect convergence to the optimum at a user-assigned exponential rate, in spite of not using

the Newton approach, or, more powerfully, within a user-prescribed time. Unlike classical

approach, these algorithms use time-varying adaptation and controller gains, along with constant

or time-varying probing frequencies (chirp signals). This chapter advances our earlier uES

designs from strongly convex maps with static optima to a broader class of convex cost functions

with time-varying optima diverging at arbitrary rates, even in finite time. This advancement

first motivates the use of Lie bracket averaging instead of classical averaging due to the average

system system, which doesn’t necessarily need to be exponentially convergent, and the existence

of non-periodic time-varying parameters; second, it necessitates the formulation of non-trivial

and key feasibility conditions for the choice of time-varying design parameters and their de-

cay/growth rates in relation to the convexity of the map and the divergence rate of optima. These

conditions indicate that, for constant-frequency probing, the user-defined asymptotic rate of

unbiasing is limited by the convexity of the map. However, this rate can be made arbitrarily fast

(including asymptotic, exponential, and prescribed time) using chirpy probing, which requires

sufficiently rapid frequency and adaptation growth to enable tracking of faster-diverging optima.
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Furthermore, our uES methodology leverages state and time scaling techniques. State scaling

involves scaling the state by an unboundedly growing function, while time scaling involves time

dilation/contraction transformations. The practical stability of the state-scaled system in the

dilated time domain is established through Lie bracket averaging, which provides unbiased and

accelerated convergence of states to the optimum in the original time domain. In addition to

numerical simulations of the designs, we experimentally test the feasibility of exponential uES

for tuning the angular velocity of a unicycle to seek a static light source.

The structure of this chapter is as follows. Section 5.1 introduces fundamental stability

concepts, which serve as references throughout the chapter. Section 5.2 outlines the problem

formulation. Sections 5.3, 5.4, and 5.5 introduce designs for asymptotic, exponential and

prescribed-time uES, along with formal stability analysis. Section 5.6 considers the problem of

source seeking and presents the experimental results obtained. Finally, Section 5.7 concludes the

chapter.

Notation. We denote the Euclidean norm by | · |. The δ -neighborhood of a set S ⊂ Rn

is denoted by US
δ

= {x ∈ Rn : infe∈S |x− e| < δ}. The Lie bracket of two vector fields f ,g :

Rn ×R→ Rn with f (·, t),g(·, t) being continuously differentiable is defined by [ f ,g](x, t) :=
∂g(x,t)

∂x f (x, t)− ∂ f (x,t)
∂x g(x, t). The notation ei corresponds to the ith unit vector in Rn. R+ denotes

the set of non-negative real numbers. We denote the gradient of a function h : Rn → R by ∇h(x).

5.1 Preliminaries

5.1.1 Lie bracket averaging

Consider a control-affine system

ẋ = f0(x, t)+
m

∑
i=1

fi(x, t)
√

ωui(ωt), (5.1)

where x(t0) = x0 ∈Rn, t0 ∈R+, ω > 0, f j ∈ C 2 : Rn ×R+ → Rn for j = 0, . . . ,m, and ui ∈ C 1 :

R+ →R for i = 1, . . . ,m. The functions ui are T -periodic with some T > 0, and
∫ T

0 ui(σ)dσ = 0
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for i = 1, . . . ,m. We compute the Lie bracket system corresponding to (5.1) as follows

˙̄x = f0(x̄, t)+
1
T

m

∑
i=1

j=i+1

[ fi, f j](x̄, t)
∫ T

0

∫
ϑ

0
u j(ϑ)ui(σ)dσ dϑ , (5.2)

where x̄(t0) = x(t0). We make the following assumption regarding the boundedness of vector

fields and their partial derivatives:

Assumption 5.1 For every compact set X ⊂ Rn, | fi(x, t)|,
∣∣∣∂ fi(x,t)

∂ t

∣∣∣, ∣∣∣∂ fi(x,t)
∂x

∣∣∣, ∣∣∣∂ 2 f j(x,t)
∂ t∂x

∣∣∣,∣∣∣∂ [ f j, fk](x,t)
∂ t

∣∣∣, ∣∣∣∂ [ f j, fk](x,t)
∂x

∣∣∣ are bounded for all x ∈ X , t ≥ t0, i = 0, . . . ,m, j = 1, . . . ,m, k =

j, . . . ,m.

To understand the relationship between the stability of (5.1) and (5.2), we revisit a

theorem presented in [19]. Refer to Definition C.1 in Appendix C.2 for the formal definition of

practical stability.

Theorem 5.1 ([19]) Consider the system (5.1) under Assumption 5.1. If a compact set S ⊂ Rn

is locally (globally) uniformly asymptotically stable for (5.2), then S is locally (semi-globally)

practically uniformly asymptotically stable for (5.1).

5.1.2 Singularly perturbed Lie bracket averaging

Consider the system of the form

ẋ = ε f0(x,z,εt)+ ε
√

ω

m

∑
i=1

fi(x,z,εt)ui(ωεt), (5.3)

ż = g(x,z), (5.4)

with x(t0) = x0 ∈ Rn, z(t0) = z0 ∈ Rm, t0 ∈ R+, ε,ω > 0, f j ∈ C 2 : Rn ×Rm ×R+ → Rn for

j = 0, . . . ,m, and ui ∈ C 1 : R+ → R for i = 1, . . . ,m. The functions ui are T -periodic with

some T > 0, and
∫ T

0 ui(σ)dσ = 0 for i = 1, . . . ,m. To analyze stability, we first find the quasi-

steady-state, denoted by l(x), which satisfies g(x, l(x)) = 0. Performing the change of variables
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zb = z− l(x), we get the boundary layer model as

żb = g(x,zb + l(x)). (5.5)

Then, by substituting the quasi-steady state into (5.3), we obtain a reduced model as

ẋr = ε f0(xr, l(xr),εt)+ ε
√

ω

m

∑
i=1

fi(xr, l(xr),εt)ui(ωεt), (5.6)

in which the corresponding Lie bracket average, for ε = 1, is given by

˙̄xr = f0(x̄r, l(x̄r), t)+
1
T

m

∑
i=1 j=i+1

[ fi, f j](x̄r, l(x̄r), t)
∫ T

0

∫
ϑ

0
u j(ϑ)ui(σ)dσdϑ . (5.7)

We make the following assumption, similar to Assumption 5.1:

Assumption 5.2 For every compact sets X ⊂Rn and Z ⊂Rm, | fi(x,z, t)|,
∣∣∣∂ fi(x,z,t)

∂ t

∣∣∣, ∣∣∣∂ fi(x,z,t)
∂x

∣∣∣,∣∣∣∂ fi(x,z,t)
∂ z

∣∣∣, ∣∣∣∂ 2 f j(x,z,t)
∂ t∂x

∣∣∣, ∣∣∣∂ 2 f j(x,z,t)
∂ t∂ z

∣∣∣, ∣∣∣∂ [ f j, fk](x,z,t)
∂ t

∣∣∣, ∣∣∣∂ [ f j, fk](x,z,t)
∂x

∣∣∣, ∣∣∣∂ [ f j, fk](x,z,t)
∂ z

∣∣∣ are bounded for all

x ∈ X , z ∈ Z , t ≥ t0, i = 0, . . . ,m, j = 1, . . . ,m, k = j, . . . ,m.

We present the following theorem from [18] and provide the corresponding stability definition in

Definition C.2 in Appendix C.2.

Theorem 5.2 ([18]) Consider the system (5.3) and (5.4) under Assumption 5.2. Suppose that a

compact set S ⊂ Rn is globally uniformly asymptotically stable for the average of the reduced

system (5.7) and the origin of the boundary layer model (5.5) is globally exponentially stable.

Then, the set S is singularly semi-globally practically uniformly asymptotically stable for (5.3).

5.2 Problem Statement

We consider the following optimization problem

min
θ∈Rn

J(θ), (5.8)
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where θ ∈Rn is the input, J ∈C 2 : Rn →R is an unknown cost function. We make the following

assumptions regarding the unknown static map J(·).

Assumption 5.3 The cost function J(·) has a unique minimum at θ ∗(t) ∈ Rn, i.e., J(θ ∗(t))<

J(θ) for ∀θ ̸= θ ∗(t) with ∇J(θ ∗(t)) = 0.

Assumption 5.4 There exist constants ρ1, ρ2, ρ3, ρ4 > 0 and κ ∈ N such that

ρ1|θ −θ
∗(t)|2κ ≤ J(θ)− J(θ ∗(t))≤ ρ2|θ −θ

∗(t)|2κ , (5.9)

(θ −θ
∗(t))T

∇J(θ)≤ ρ3|θ −θ
∗(t)|2κ , (5.10)∣∣∣∣∂ 2J(θ)

∂θ 2

∣∣∣∣≤ ρ4|θ −θ
∗(t)|2κ−2 (5.11)

for all θ ,θ ∗(t) ∈ Rn.

Assumption 5.5 The derivatives of the time-varying optimizer θ ∗(t) and the time-varying

optimum J(θ ∗(t)) up to the second order obey the following bounds:

|θ̇ ∗(t)|+ |θ̈ ∗(t)| ≤ Mθ φ
c(t), t ∈ [t0,∞), (5.12)∣∣J̇(θ ∗(t))

∣∣+ ∣∣J̈(θ ∗(t))
∣∣≤ MJφ

d(t), t ∈ [t0,∞), (5.13)

with unknown constants Mθ ,MJ ≥ 0, c,d ∈ R, and a continuous strictly increasing function

φ(t) : R+ → R.

Assumption 5.3 guarantees the existence of a minimum of the function J(θ) at θ = θ ∗(t).

Assumption 5.4 establishes bounds on the cost function J(θ), its gradient, and its Hessian. These

bounds exhibit specific growth rates governed by power functions, similar to those exploited in

[32] and [110]. For κ = 1, this simplifies to a more conservative assumption of strong convexity,

which is considered in Chapter 3. For κ > 1, the assumption requires a specific class of convexity

for J(θ). Assumption 5.5 imposes bounds on the growth or decay of the time-varying optimizer
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and optimum, based on the parameters c and d. Note that this assumption encompasses scenarios

where the optimum diverges asymptotically, exponentially, or even in finite time.

Using the first order condition of convexity [10, pp. 69], we obtain from (5.9) that

(θ −θ
∗(t))T

∇J(θ)≥ ρ1|θ −θ
∗(t)|2κ . (5.14)

We measure the unknown function J(θ) in real time as

y(t) = J(θ(t)), t ∈ [t0,∞), (5.15)

in which y ∈ R is the output. Our aim is to design ES algorithms using output feedback y(t) in

order to achieve the unbiased convergence of θ to θ ∗(t) while simultaneously minimizing the

steady state value of y, without requiring prior knowledge of either the optimum input θ ∗(t) or

the function J(·).

In the subsequent sections, we present three types of unbiased ES algorithms: asymp-

totic uES, exponential uES, and prescribed-time uES. These algorithms aim to achieve the

aforementioned objective asymptotically, exponentially, and in user-prescribed time. For vi-

sualization, Figures 5.1 and 5.2 depict the uES designs schematically. These figures illustrate

constant-frequency probing and chirpy probing approaches, which can handle both convergent

and divergent optimums. Further details on amplitude and gain functions can be found in Tables

5.1 and 5.2. It is important to note that our uES design modifies the alternative ES design

[96], which can only ensure practical stability around the fixed optimum, by incorporating

time-varying design parameters.

Remark 5.1 In the unbiased ES designs depicted in Fig. 5.1, the gain kiφ
r(t) experiences either

asymptotic or exponential growth based on the chosen ES type, while the update rate φ p(t)
√

αiωi

experiences asymptotic or exponential decay corresponding to the specific ES type. The crucial

aspect of our designs is that the high-pass filtered state y−η decays to zero at least as fast as
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J(·)1
s

yθi

ωit

ϕp(t)
√
αiωi cos(·) kiϕ

r(t)

s
s+ωh

y − η

Figure 5.1. Unbiased ES scheme with constant-frequency probing for the ith element θi of θ ,
which guarantees θ → θ ∗(t) at the rate that 1/φ(t) converges to zero. Refer to Table 5.1 for the
function and parameters.

Table 5.1. Time-varying functions used in Figure 5.1.

φ(t) p Conditions

(1+β (t − t0))
1
v −1

κ ≥ 1
v > 2κ − r ≥ 0

Asymptotic ki,αi,β > 0
uES c <−1−2κ + r

d <−2κ

eλ (t−t0) −1

κ = 1
r = 2

Exponential kiαi > 2λ/ρ1
uES 0 < λ < ωh/2

c <−1
d <−2

the gain kiφ
r(t) grows, ensuring the boundedness of the resulting signal. For a more detailed

analysis, refer to Theorem 5.3 and 5.5.

Remark 5.2 Another point that requires discussion is how parameters r and v influence the

performance of asymptotic uES with constant-frequency probing in Fig. 5.1. The constraint on r

is r ≤ 2κ , as provided in Table 5.1. When κ is known, one can choose r = 2κ and satisfy the

condition v > 2κ − r ≥ 0 with any arbitrarily small v. This makes the rate of growth of φ(t)

faster, which in turn accelerates convergence. For a κ-blind user, the “safe” choice of r and v

would be 2 and a sufficiently large value, respectively, compromising the rate of convergence.
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J(·)1
s

yθi

ωi(t0 + γ(ϕq(t)− 1))

ϕp(t)
√
αiωi cos(·) kiϕ

r(t)

η̇ = (−ωhη + ωhy)ϕ
p+1(t)

yh = y − η

yh

Figure 5.2. Unbiased ES scheme with chirpy probing for the ith element θi of θ , which
guarantees θ → θ ∗(t) at the rate that 1/φ(t) converges to zero. Refer to Table 5.2 for the
function and parameters.

Table 5.2. Time-varying functions used in Figure 5.2 with any β ,λ ,v,ρ,ki,αi > 0 for i= 1, . . . ,n.

φ(t) p Conditions

(1+β (t − t0))
1
v q− v−1

κ ≥ 1
q > 2κ − r ≥ 0

Asymptotic γ = v/(βq)
uES c < p−2κ + r

d < p−2κ +1

eλ (t−t0) q−1

κ ≥ 1
q > 2κ − r ≥ 0

Exponential γ = 1/(λq)
uES c < p−2κ + r

d < p−2κ +1

(
T

T+t0−t

) 1
ρ q+ρ −1

κ ≥ 1
q > 2κ − r ≥ 0

Prescribed-time γ = ρT/q
uES c < p−2κ + r

d < p−2κ +1

Remark 5.3 The uES designs with chirpy probing in Table 5.2 relax the conditions on c and d

in (5.12) and (5.13), which characterize the rate of growth of optima. A divergent optimum with

any growth rate can be tracked perfectly with a sufficiently large p, which determines the growth

rate of the adaptation and frequency. In addition, compared to the exponential uES in Table 5.1,

the exponential uES with chirp probing in Table 5.2 achieves convergence for any κ ≥ 1.

Remark 5.4 In practical scenarios, the implementation of the developed algorithms might

113



be limited by various factors. To mitigate this, the time-varying signal φ(t) along with the

instantaneous frequency ωiγdφ q/dt in the case of chirped probing, can be constrained to

moderately large values that are sufficient for close tracking of the extremum.

5.3 Asymptotic uES

5.3.1 Asymptotic uES with constant-frequency probing

We introduce an ES with asymptotic and unbiased convergence in the following theorem.

Theorem 5.3 Consider the following asymptotic uES design


θ̇ = ξ

−1(t)
n

∑
i=1

√
αiωiei cos

(
ωit + kiξ

r(t)(J(θ)−η)
)
,

η̇ = −ωhη +ωhJ(θ),

(5.16)

with the asymptotically growing function

ξ (t) = (1+β (t − t0))
1
v , t ∈ [t0,∞). (5.17)

Let ωi = ωω̂i such that ω̂i ̸= ω̂ j ∀i ̸= j, t0 ≥ 0, αi,ki,β ,ωh > 0 ∀i = 1, . . . ,n and v > 2κ − r ≥ 0.

Let Assumptions 5.3, 5.4 hold, and Assumption 5.5 hold with φ(t) = ξ (t), c < −1− 2κ + r,

d <−2κ . Then, there exists ω∗ > 0 such that for all ω > ω∗, the following holds

• θ(t)→ θ ∗(t) semi-globally with respect to ω and asymptotically at the rate of 1/ξ (t), and

there exist a class K L function B, a class K function Y , and a nonnegative constant

D(θ(t0),θ ∗(t0),η(t0)) such that

|θ(t)−θ
∗(t)| ≤ ξ

−1(t)
(

D+B (|θ(t0)−θ
∗(t0)|, t − t0)

+ sup
t0≤s≤t

B
(
Y
(
ξ
−1(s)

)
, t − s

))
. (5.18)
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• η(t),y(t)→ J(θ ∗(t)) semi-globally with respect to ω and asymptotically at the rate of

1/ξ 2κ(t).

Proof Let us proceed through the proof step by step.

Step 1: State transformation. Let us consider the following transformations

θ f = ξ (t)(θ −θ
∗(t)), (5.19)

η f = ξ
2κ(t)(η − J(θ ∗(t))), (5.20)

which transform (5.16) to


θ̇ f = −ξ (t)θ̇ ∗(t)+

β

v
ξ
−v(t)θ f +

n

∑
i=1

√
αiωiei cos(ωit + kiξ

r(t)
(
J f (θ f , t)−ξ

−2κ(t)η f
)
),

η̇ f =

(
2βκ

v
ξ
−v(t)−ωh

)
η f +ωhξ

2κ(t)J f (θ f , t)−ξ
2κ(t)J̇(θ ∗(t)),

(5.21)

with

J f (θ f , t) = J(θ f /ξ (t)+θ
∗(t))− J(θ ∗(t)). (5.22)

The initial and most critical step in our analysis relies on transformations (5.19), (5.20). These

establish a precondition: once we demonstrate the stability of the transformed system (5.21),

the asymptotic convergence of θ to θ ∗(t) and η to J(θ ∗(t)) naturally follows. To analyze the

stability of (5.21), we employ the Lie bracket averaging technique. As a first step, we rewrite the

θ f -system in (5.21) by expanding the cosine term, as shown below

θ̇ f =−ξ (t)θ̇ ∗(t)+
β

v
ξ
−v(t)θ f +

n

∑
i=1

√
αiωiei cos(ωit)cos

(
kiξ

r(t)
(
J f (θ f , t)−ξ

−2κ(t)η f
))

−
n

∑
i=1

√
αiωiei sin(ωit)sin

(
kiξ

r(t)
(
J f (θ f , t)−ξ

−2κ(t)η f
))

. (5.23)

Next, we integrate the η f -system from (5.21) with the transformed θ f -system (5.23) to construct
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the following system

θ̇ f

η̇ f

= b0(θ f ,η f , t)+
n

∑
i=1

bc,i(θ f ,η f , t)
√

ωi cos(ωit)−bs,i(θ f ,η f , t)
√

ωi sin(ωit), (5.24)

where

b0(θ f ,η f , t) =

 −ξ (t)θ̇ ∗(t)+ β

vξ v(t)θ f(
2βκ

vξ v(t) −ωh

)
η f +ξ 2κ(t)

(
ωhJ f (θ f , t)− J̇(θ ∗(t))

)
 , (5.25)

bc,i(θ f ,η f , t) =

√αiei cos
(

kiξ
r(t)
(
J f (θ f , t)−ξ−2κ(t)η f

))
0

 , (5.26)

bs,i(θ f ,η f , t) =

√αiei sin
(

kiξ
r(t)
(
J f (θ f , t)−ξ−2κ(t)η f

))
0

 . (5.27)

Step 2: Feasibility analysis of (5.24) for averaging. To ensure the applicability of Lie

bracket averaging, we need to verify that (5.24) satisfies the boundedness assumption outlined

in Theorem 5.1. Towards this end, let M ⊂ Rn and Z ⊂ R be compact sets, and consider the

bounds (5.9), (5.12), and (5.13). Then, we derive

ξ
2κ(t)|J f (θ f , t)| ≤ ρ2|θ f |2κ , (5.28)

ξ
2κ(t)

(
|J̇(θ ∗(t))|+ |J̈(θ ∗(t))|

)
≤ MJξ

d+2κ(t), (5.29)

ξ (t)
(
|θ̇ ∗(t)|+ |θ̈ ∗(t)|

)
≤ Mθ ξ

c+1(t). (5.30)

Note that c+ 1 < 0 due to c < −1− 2κ + r and r ≤ 2κ , and also that d + 2κ < 0. Based

the bounds (5.28)–(5.30), we establish the boundedness of |b0(θ f ,η f , t)|, |bc,i(θ f ,η f , t)|, and

|bs,i(θ f ,η f , t)| for (t,θ f ,η f ) ∈ [t0,∞)×M ×Z . Noting from (5.19) that

dθ

dθ f
=

1
ξ (t)

, (5.31)
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and recalling the bounds in Assumption 5.4, we derive the following inequalities

ξ
2κ(t)

∣∣∣∣∂J f (θ f , t)
∂θ f

∣∣∣∣= ξ
2κ−1(t)

∣∣∣∣∂J(θ)
∂θ

∣∣∣∣≤ ρ3|θ f |2κ−1, (5.32)

ξ
2κ(t)

∣∣∣∣∣∂ 2J f (θ f , t)
∂θ 2

f

∣∣∣∣∣= ξ
2κ−2(t)

∣∣∣∣∂ 2J(θ)
∂θ 2

∣∣∣∣≤ ρ4|θ f |2κ−2, (5.33)

ξ
2κ(t)

∣∣∣∣∂J f (θ f , t)
∂ t

∣∣∣∣≤ ξ
2κ(t)

(
|J̇(θ ∗(t))|+

∣∣∣∣∂J(θ)
∂θ

∣∣∣∣
(
|θ f |

ξ̇ (t)
ξ 2(t)

+ |θ̇ ∗(t)|

))
,

≤ MJξ
d+2κ(t)+ρ3|θ f |2κ−1(βξ

−v(t)|θ̄ f |/v+Mθ ξ
1+c(t)), (5.34)

ξ
2κ(t)

∣∣∣∣∂ 2J f (θ f , t)
∂θ f ∂ t

∣∣∣∣= ξ
2κ(t)

∣∣∣∣ ∂

∂ t

(
∂J(θ)

∂θ

1
ξ (t)

)∣∣∣∣ ,
≤ ξ

2κ−1(t)
∣∣∣∣∂ 2J(θ)

∂θ 2

∣∣∣∣
(
|θ f |

ξ̇ (t)
ξ 2(t)

+ |θ̇ ∗(t)|

)
+ξ

2κ(t)
∣∣∣∣∂J(θ)

∂θ

∣∣∣∣ ξ̇ (t)
ξ 2(t)

≤ (βρ3/v)ξ−v(t)|θ f |2κ−1 +ρ4|θ f |2κ−2(βξ
−v(t)|θ f |/v+Mθ ξ

c+1(t)),

(5.35)

which are bounded for (t,θ f ,η f ) ∈ [t0,∞)×M ×Z . Considering the bounds (5.28)–(5.30),

(5.32)–(5.35) and conditions in Table 5.1, we establish the boundedness of
∣∣∣∂b0(θ f ,η f ,t)

∂θ f

∣∣∣,∣∣∣∂b0(θ f ,η f ,t)
∂η f

∣∣∣, ∣∣∣∂b0(θ f ,η f ,t)
∂ t

∣∣∣, ∣∣∣∂bc,i(θ f ,η f ,t)
∂θ f

∣∣∣, ∣∣∣∂bs,i(θ f ,η f ,t)
∂θ f

∣∣∣, ∣∣∣∂bc,i(θ f ,η f ,t)
∂η f

∣∣∣, ∣∣∣∂bs,i(θ f ,η f ,t)
∂η f

∣∣∣,∣∣∣∂bc,i(θ f ,η f ,t)
∂ t

∣∣∣, ∣∣∣∂bs,i(θ f ,η f ,t)
∂ t

∣∣∣, ∣∣∣∂ 2bs,i(θ f ,η f ,t)
∂θ f ∂ t

∣∣∣, ∣∣∣∂ 2bc,i(θ f ,η f ,t)
∂θ f ∂ t

∣∣∣, ∣∣∣∂ 2bs,i(θ f ,η f ,t)
∂η f ∂ t

∣∣∣, and
∣∣∣∂ 2bc,i(θ f ,η f ,t)

∂η f ∂ t

∣∣∣
within the domain (t,θ f ,η f ) ∈ [t0,∞)×M ×Z . Next, we compute the following Lie bracket

[
bc,i(θ f ,η f , t) bs,i(θ f ,η f , t)

]
= ki

√
αiξ

r(t)

ei
∂J f (θ f ,t)

∂θ f
cos(ρ) −eiξ

−2κ(t)cos(ρ)

0 0


×bc,i(θ f ,η f , t)+ ki

√
αiξ

r(t)

×

ei
∂J f (θ f ,t)

∂θ f
sin(ρ) −eiξ

−2κ(t)sin(ρ)

0 0

bs,i(θ f ,η f , t),

= kiαiξ
r(t)

ei
∂J f (θ f ,t)

∂θ f ,i

0

 , (5.36)
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where

ρ = kiξ
r(t)
(
J f (θ f , t)−ξ

−2κ(t)η f
)
. (5.37)

The boundedness of
∣∣∣∂ [bc,i(θ f ,η f ,t),bs,i(θ f ,η f ,t)]

∂θ f

∣∣∣ and
∣∣∣∂ [bc,i(θ f ,η f ,t),bs,i(θ ,η f ,t)]

∂ t

∣∣∣ for r ≤ 2κ in (t,θ f ,

η f ) ∈ [t0,∞)×M ×Z is established by recalling the bounds (5.32)–(5.35). Additionally,

it should be noted that
∣∣∣∂ [bc,i(θ f ,η f ,t),bs,i(θ f ,η f ,t)]

∂η f

∣∣∣ = 0. As a result, we fulfill the boundedness

requirement for Lie bracket averaging.

Step 3: Lie bracket averaging. We derive the Lie bracket system for (5.24) as follows

 ˙̄
θ f

˙̄η f

= b0(θ̄ f , η̄ f , t)−
1
2

n

∑
i=1

[
bc,i(θ̄ f , η̄ f , t) bs,i(θ̄ f , η̄ f , t)

]
. (5.38)

Considering (5.25) and (5.36), we can express (5.38) as


˙̄
θ f = −ξ (t)θ̇ ∗(t)+

β

v
ξ
−v(t)θ̄ f −

n

∑
i=1

kiαi

2
ξ

r(t)ei
∂J f (θ̄ f , t)

∂ θ̄ f ,i
,

˙̄η f =

(
2βκ

v
ξ
−v(t)−ωh

)
η̄ f +ωhξ

2κ(t)J f (θ̄ f , t)−ξ
2κ(t)J̇(θ ∗(t)).

(5.39)

Step 4: Stability of average system. Let us consider the following Lyapunov function

V (θ̄ f ) =
1
2
|θ̄ f |2. (5.40)

Considering Assumption 5.4 and (5.14), we compute the time derivative of (5.40) along with

(5.39) as

V̇ ≤ ξ (t)|θ̄ f ||θ̇ ∗(t)|+ β

v
ξ
−v(t)|θ̄ f |2 −

n

∑
i=1

kiαi

2
ξ

r(t)θ̄ f ,i
∂J f (θ̄ f , t)

∂ θ̄ f ,i
,

≤ Mθ ξ
1+c(t)|θ̄ f |+

β

v
ξ
−v(t)|θ̄ f |2 −

(kα)minρ1

2
ξ
−2κ+r(t)|θ̄ f |2κ , (5.41)
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where (kα)min = min{kiαi} for i = 1, . . . ,n. However, (5.41) is not suitable for input-to-state

stability (ISS) analysis presented in [49, Chapter 4.9] due to the asymptotically decaying signal

in the third term. Nevertheless, the analysis can be performed in a different time domain. Let us

define a new time domain as follows

τ = t0 + γ
(
ξ
−2κ+r+v(t)−1

)
, τ ∈ [t0,∞),

= t0 + γ

(
(1+β (t − t0))

−2κ+r+v
v −1

)
, (5.42)

where γ = v
β (−2κ+r+v) > 0. Then, we get

dτ

dt
= (1+β (t − t0))

−2κ+r
v = ξ

−2κ+r(t). (5.43)

We rewrite (5.41) in the contracted time domain τ as follows

dV
dτ

≤ ξ
2κ−r
τ (τ)|θ̄ f |

(
Mθ ξ

1+c
τ (τ)+

β

v
ξ
−v
τ (τ)|θ̄ f |

)
− (kα)min

2
ρ1|θ̄ f |2κ , (5.44)

where

ξτ(τ) = (1+(τ − t0)/γ)
1

−2κ+r+v . (5.45)

For κ = 1, (5.44) results in

dV
dτ

≤ −
(
(kα)minρ1

2
−ξ

2−r−v
τ (τ)

2β

v

)
V, ∀|θ̄ f | ≥

2Mθ ξ 2−r+1+c
τ (τ)

(kα)minρ1
=: Y1

(
ξ
−1
τ (τ)

)
,

(5.46)

from which, by comparison principle, we derive

V (τ)≤ ξ

2βγ

v
τ (τ)e−

(kα)minρ1
2 (τ−t0)V (t0), ∀|θ̄ f | ≥ Y1

(
ξ
−1
τ (τ)

)
. (5.47)

119



Here, Y1 is a class K function. For κ > 1, we first apply Young’s inequality to get

β

v
|θ̄ f | ≤

ς2κ−1

2κ −1
|θ̄ f |2κ−1 +Mς , (5.48)

where

Mς =
2κ −2
2κ −1

(
β

ςv

) 2κ−1
2κ−2

(5.49)

with

ς =

(
(2κ −1)

(kα)min

8
ρ1

) 1
2κ−1

, (5.50)

and rewrite (5.44) as

dV
dτ

≤ − (kα)min

4
ρ1|θ̄ f |2κ −|θ̄ f |

(
(kα)min

8
ρ1|θ̄ f |2κ−1 −ξ

2κ−r+1+c
τ (τ)Mθ −ξ

2κ−r−v
τ (τ)Mς

)
,

≤ − (kα)min

4
ρ1|θ̄ f |2κ , (5.51)

for all

|θ̄ f | ≥
(

8ξ 2κ−r
τ (τ)

(kα)minρ1

(
ξ

1+c
τ (τ)Mθ +ξ

−v
τ (τ)Mς

)) 1
2κ−1

=: Y2
(
ξ
−1
τ (τ)

)
. (5.52)

Note that Y2 is a class K function. Then, from (5.47) and (5.51), we establish the ISS of the

θ̄ f -system for κ ≥ 1 in τ-domain. Since ξ 2κ−r+1+c
τ (τ) and ξ 2κ−r−v

τ (τ) decay to zero due to the

conditions c+1+2κ − r < 0 and 2κ − r− v < 0, we prove the asymptotic convergence of θ̄ f to

zero in τ domain, and consequently, in t-domain. By exploiting the decaying nature of the inputs

of the functions Y1 and Y2, we can characterize the “fading memory” ISS bound of θ̄ f (see [30]
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and [47]). Considering (5.46) and (5.51), the bound in the t-domain is given by

|θ̄ f (t)| ≤ B
(
|θ̄ f (t0)|, t − t0

)
+ sup

t0≤s≤t
B
(
Y
(
ξ
−1(s)

)
, t − s

)
, (5.53)

where B and Y are class K L and K functions, respectively, defined by

B
(
|θ̄ f (t0)|, t − t0

)
=


p0e−p1(ξ

−2κ+r+v(t)−1)|θ̄ f (t0)|, if κ = 1,

√
2(p2 + p3(ξ

−2κ+r+v(t)−1))
1

2−2κ , if κ > 1,
(5.54)

and

Y (s) =


Y1 (s) , if κ = 1,

Y2 (s) , if κ > 1,
(5.55)

with some p0 > 0, p1 < (kα)minρ1γ/4, p2 =
(
|θ̄ f (t0)|/2

)1−κ , p3 = (kα)minρ1γ(κ −1)/4.

In addition to establishing the asymptotic stability of the θ̄ f -system, we also need to

confirm the asymptotic stability of the η̄ f -system in (5.39). We first examine the unforced system

˙̄η f =
(

2βκ

vξ v(t) −ωh

)
η̄ f , which yields the following solution

η̄ f (t) = ξ
2κ(t)e−ωh(t−t0)η̄ f (t0). (5.56)

Therefore, the unforced system is exponentially stable at the origin. Furthermore, by revisiting

the bound (5.28), we characterize an upper bound for the input of the η̄ f -system in (5.39) as

|ωhξ
2κ(t)J f (θ̄ f ,ξ (t))−ξ

2κ(t)J̇(θ ∗(t))| ≤ ωhρ2|θ f |2κ +MJξ
d+2κ(t). (5.57)

Since d <−2κ and |θ̄ f | → 0, the η̄ f -system is input-to-state stable and uniformly asymptotically

stable at the origin.
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Step 5: Lie bracket averaging theorem. Given the uniform asymptotic stability

established for the averaged system in (5.39) in Step 4, we conclude from Theorem 5.1 that

the origin of the transformed system (5.21) is practically uniformly asymptotically stable. The

existence of ω∗ and the role of ω are as defined in Definition C.1.

Step 6: Convergence to extremum. Considering the result in Step 5 and recalling from

(5.17), (5.19) that

θ = θ
∗(t)+

1

(1+β (t − t0))
1
v

θ f , (5.58)

we conclude the asymptotic convergence of θ(t) to θ ∗(t) at the rate of 1/ξ (t). Considering the

fading memory ISS bound (5.53), we can provide bound on the convergence error as follows

|θ(t)−θ
∗(t)| ≤ ξ

−1(t)
(
|θ f (t)− θ̄ f (t)|+ |θ̄ f (t)|

)
, (5.59)

from which we conclude (5.18). The convergence of θ(t) to θ ∗(t) implies the asymptotic

convergence of the output y(t) and the filtered state η(t) to J(θ ∗(t)) at the rate of 1/ξ 2κ(t),

based on (5.9), (5.19), (5.20), and thereby concludes the proof of Theorem 5.3. ■

5.3.2 Asymptotic uES with linearly-chirped probing

The following theorem presents an asymptotic ES design that employs a chirped probing

signal, which grows asymptotically, in contrast to the constant probing in (5.16).

Theorem 5.4 Consider the following asymptotic uES design


θ̇ = ξ

q−v−1(t)
n

∑
i=1

√
αiωiei cos

(
ωi(t0 + γ(ξ q(t)−1))+ kiξ

r(t)(J(θ)−η)
)
,

η̇ = (−ωhη +ωhJ(θ))ξ
q−v(t),

(5.60)

with the asymptotically growing function ξ (t) defined by (5.17). Let ωi = ωω̂i such that ω̂i ̸= ω̂ j

∀i ̸= j, t0 ≥ 0, αi,ki,β ,ωh > 0 ∀i = 1, . . . ,n, γ = v/(βq), and q > 2κ − r ≥ 0. Let Assumptions
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5.3, 5.4 hold, and Assumption 5.5 hold with φ(t) = ξ (t), c < q− v−1−2κ + r, d < q− v−2κ .

Then, there exists ω∗ > 0 such that for all ω > ω∗, the input θ(t)→ θ ∗(t) semi-globally with

respect to ω and asymptotically at the rate of 1/ξ (t), and there exist a class K L function B, a

class K function Y , and a nonnegative constant D(θ(t0),θ ∗(t0),η(t0)) such that

|θ(t)−θ
∗(t)| ≤ ξ

−1(t)
(

D+B (|θ(t0)−θ
∗(t0)|, t − t0)+ sup

t0≤s≤t
B
(
Y
(
ξ
−1(s)

)
, t − s

))
.

(5.61)

Proof Refer to the proof of Theorem C.1 by choosing the parameters and satisfying conditions

as in Table 5.2. ■

5.3.3 Numerical simulation

This subsection presents numerical results to illustrate the capabilities of the developed

designs under two scenarios: a constant optimum and a diverging optimum.

Seeking constant θ ∗

We consider the optimization problem (5.8) with the following nonlinear map

J(θ) = 1+(θ −2)4. (5.62)

Note that the function (5.62) has a unique minimum at θ ∗ = 2 and satisfies Assumption 5.4

with κ = 2. To provide a basis for comparison, we use the classical ES introduced in [96].

Setting β = 0 in the asymptotic uES (5.16), our design simplifies to the classical approach. In all

simulations, initial conditions are set to zero, and the oscillation frequency and high-pass filter

frequency are set to ω = 5 and ωh = 3, respectively.

In Figure 5.3a, we depict the trajectories of the classical ES with two distinct parameter

sets. We observe that the classical ES with k = 0.3 and α = 1 converges to a large neighborhood

of the optimum due to the high α . To reduce the size of the steady-state oscillation, one might
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Figure 5.3. (a) The trajectories of the classical ES [96] with two distinct parameter sets. (b)
The trajectory of the asymptotic uES (5.16) using constant frequency probing and achieving a
convergence rate of 1/(1+0.1t)3.

consider decreasing α from 1 to 0.1, while simultaneously increasing the gain k from 0.3 to 3

to maintain the same convergence rate. However, as observed in Figure 5.3a, such adjustment

leads to poorer transient performance, with an initial deviation in the opposite direction, despite

the reduced oscillations at the steady state compared to one with higher amplitude. Our design,

illustrated in Figure 5.3b, addresses this issue. We employ the asymptotic uES (5.16) with

β = 0.1, k = 0.3, α = 1, v = 1/3, r = 4. It starts with a high α = 1 and low k = 0.3, and as ξ (t)

increases over time, the input settles to its optimum value with good transient performance. The
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Figure 5.4. Perfect tracking of an asymptotically shifting optimum by asymptotic uES with
constant-frequency probing (5.16). The convergence rate is 1/(1+0.1t)0.5.

chosen parameters ensure a convergence rate of 1/(1+0.1t)3.

Tracking divergent θ ∗(t)

We consider the following map where the optimum input θ ∗(t) shifts from 2 to infinity

J(θ) = 1+
(

θ −2(1+0.1t)0.45
)4

. (5.63)

The initial conditions and the parameters are same as in Fig. 5.3, except that the parameter v

is increased from 1/3 to v = 2 to make our design (5.16) capable of tracking a slowly shifting

optimum. This adjustment slows the convergence rate to 1/(1+ 0.1t)0.5. Note that θ ∗(t) =

2(1+ 0.1t)0.45 = 2ξ
0.9
2 (t) satisfies (5.12) with c = −1.1 < −1. Fig. 5.4 illustrates the the

performance of the design in terms of tracking a varying optimum.
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5.4 Exponential uES

5.4.1 Exponential uES with constant-frequency probing

An ES design with unbiased and exponential convergence is presented in the following

theorem.

Theorem 5.5 Consider the following exponential uES design


θ̇ = ζ

−1(t)
n

∑
i=1

√
αiω iei cos

(
ωit + kiζ

2(t)(J(θ)−η)
)
,

η̇ = −ωhη +ωhJ(θ),

(5.64)

with the exponentially growing function

ζ (t) = eλ (t−t0), λ > 0, t ∈ [t0,∞). (5.65)

Let ωi = ωω̂i such that ω̂i ̸= ω̂ j ∀i ̸= j, t0 ≥ 0, and kiαi > 2λ/ρ1, and ωh > 2λ for all i =

1, . . . ,n. Let Assumptions 5.3, 5.4 hold with κ = 1, and Assumption 5.5 hold with φ(t) = ζ (t),

c <−1,d <−2. Then, there exists ω∗ > 0 such that for all ω > ω∗, the following holds

• θ(t)→ θ ∗(t) semi-globally with respect to ω and exponentially at the rate of λ , and there

exist a nonnegative constant D(θ(t0),θ ∗(t0),η(t0)) such that

|θ(t)−θ
∗(t)| ≤ e−λ (t−t0)

[
e−ℓ0ℓ1(t−t0)|θ(t0)−θ

∗(t0)|+
Mθ

(1− ℓ0)ℓ1
e−min{ℓ0ℓ1,ℓ2}(t−t0)

+D
]

(5.66)

for any 0 < ℓ0 < 1 with

ℓ1 = (kα)minρ1/2−λ > 0, (5.67)

ℓ2 = −λ (c+1)> 0. (5.68)
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• η(t),y(t)→ J(θ ∗(t)) semi-globally with respect to ω and exponentially at the rate of 2λ .

Remark 5.5 The design parameters λ and (kα)min, as well as the system parameters Mθ , ρ1,

and c, determine the size and decay rate of the bound (5.66). Increasing λ accelerates the

decay of the update gain and the growth of the controller gain in (5.64), leading to a faster

convergence rate for the bound (5.66). The convergence rate λ can be made arbitrarily fast,

provided that λ < (kα)minρ1/2. A large gain (kα)min further contributes to a faster decay of

the initial conditions and to the rate of expiration of the time-dependent term parameterized by

Mθ if ℓ0ℓ1 < ℓ2, where ℓ2 is an increasing function of c. The effect of the residual term D, which

arises from the difference between the average and original state, diminishes exponentially at

the rate of λ , independent of other parameters.

Proof Let us proceed through the proof step by step.

Step 1: State transformation. Let us consider the following transformations

θ f = ζ (t)(θ −θ
∗(t)), (5.69)

η f = ζ
2(t)(η − J(θ ∗(t))). (5.70)

Using (5.69) and (5.70), we transform (5.64) to


θ̇ f = −ζ (t)θ̇ ∗(t)+λθ f +

n

∑
i=1

√
αiωiei cos

(
ωit + kiζ

2(t)
(
J f (θ f , t)−ζ

−2(t)η f
))

,

η̇ f = (2λ −ωh)η f +ωhζ
2(t)J f (θ f , t)−ζ

2(t)J̇(θ ∗(t)),
(5.71)

with

J f (θ f , t) = J(θ f /ζ (t)+θ
∗(t))− J(θ ∗(t)). (5.72)

Step 2: Lie bracket averaging and stability analysis. The feasibility of the error system

(5.71) for Lie bracket averaging can be verified analogously to Step 2 in the proof of Theorem
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5.3. In contrast to (5.39), the average of (5.71) results in


˙̄
θ f = −ζ (t)θ̇ ∗(t)+λ θ̄ f −

n

∑
i=1

kiαi

2
eiζ

2(t)
∂J f (θ̄ f , t)

∂ θ̄ f ,i
,

˙̄η f = (2λ −ωh)η̄ f +ωhζ
2(t)J f (θ̄ f , t)−ζ

2(t)J̇(θ ∗(t)).

(5.73)

Consider the following Lyapunov function

V =
1
2
|θ̄ f |2. (5.74)

Taking Assumption 5.4 into consideration and using (5.73), we compute the time derivative of

(5.74) as

V̇ ≤ ζ (t)|θ̄ f ||θ̇ ∗(t)|+λ |θ̄ f |2 −
n

∑
i=1

kiαi

2
ζ

2(t)θ̄ f ,i
∂J f (θ̄ f , t)

∂ θ̄ f ,i
,

≤ Mθ ζ
c+1(t)|θ̄ f |−

(
(kα)minρ1

2
−λ

)
|θ̄ f |2,

≤ − ℓ0ℓ1|θ̄ f |2, ∀|θ̄ f | ≥
Mθ ζ c+1(t)
(1− ℓ0)ℓ1

=: Y
(
ζ
−1(t)

)
, (5.75)

which establishes ISS of the θ̄ f -system for kiαi > 2λ/ρ1. In (5.75), 0 < ℓ0 < 1, ℓ1 is defined in

(5.67), and Y is a class K function. Recalling c <−1, we prove the asymptotic convergence of

θ̄ f to zero. The corresponding fading memory ISS bound can be written as

|θ̄ f (t)| ≤ B
(
|θ̄ f (t0)|, t − t0

)
+ sup

t0≤s≤t
B
(
Y
(
ζ
−1(s)

)
, t − s

)
(5.76)

with

B
(
|θ̄ f (t0)|, t − t0

)
= e−ℓ0ℓ1(t−t0)|θ̄ f (t0)|. (5.77)

We can characterize the decay rate of the sup term in (5.76) using (5.65), (5.75) and (5.77) as
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follows

sup
t0≤s≤t

B
(
Y
(
ζ
−1(s)

)
, t − s

)
= sup

t0≤s≤t

Mθ e−ℓ0ℓ1(t−s)−ℓ2(s−t0)

(1− ℓ0)ℓ1

≤ Mθ e−min{ℓ0ℓ1,ℓ2}(t−t0)

(1− ℓ0)ℓ1
(5.78)

with ℓ2 as defined in (5.68), respectively. We note that −ℓ0ℓ1(t − s)− ℓ2(s− t0)<−ℓ0ℓ1(t − t0)

for ℓ0ℓ1 ≤ ℓ2 and −ℓ0ℓ1(t − s)− ℓ2(s− t0)<−ℓ2(t − t0) for ℓ2 ≤ ℓ0ℓ1.

To establish the asymptotic stability of the η̄ f -system, we analyze its unforced dynamics,

governed by ˙̄η f = (2λ −ωh)η̄ f . This system is exponentially stable at the origin for ωh > 2λ .

The input-to-state stability of the η̄ f -system is established by noting from (5.9) that

ζ
2(t)|ωhJ f (θ̄ f ,ζ (t))− J̇(θ ∗(t))| ≤ ωhρ2|θ̄ f |2 +Mθ ζ

d+2(t). (5.79)

Since d <−2, the asymptotic convergence of θ̄ f results in the asymptotic convergence of η̄ f as

well.

Step 3: Lie bracket averaging theorem. Given the uniform asymptotic stability

established for the averaged system in (5.73) in Step 2, we conclude from Theorem 5.1 that

the origin of the transformed system (5.71) is practically uniformly asymptotically stable. The

existence of ω∗ and the role of ω are as defined in Definition C.1.

Step 4: Convergence to extremum. Considering the result in Step 3 and recalling from

(5.65), (5.69) that

θ = θ
∗(t)+ e−λ (t−t0)θ f , (5.80)

we conclude the exponential convergence of θ(t) to θ ∗(t) at the rate of λ . Recalling the ISS
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bound (5.76), the bound on the convergence error is provided below

|θ(t)−θ
∗(t)| ≤ ζ

−1(t)
(
|θ f (t)− θ̄ f (t)|+ |θ̄ f (t)|

)
, (5.81)

from which we conclude (5.66). The convergence of θ(t) to θ ∗(t) implies the exponential

convergence of the output y(t) and the filtered state η(t) to J(θ ∗(t)) at the rate of 2λ , as evident

from (5.9), (5.69), (5.70), and completes the proof of Theorem 5.5. ■

5.4.2 Exponential uES with exponentially-chirped probing

The following theorem presents an alternative design to (5.64) using an exponentially

chirped probing signal.

Theorem 5.6 Consider the following asymptotic uES design


θ̇ = ζ

q−1(t)
n

∑
i=1

√
αiωiei cos

(
ωi(t0 + γ(ζ q(t)−1))+ kiζ

r(t)(J(θ)−η)
)
,

η̇ = (−ωhη +ωhJ(θ))ζ
q(t),

(5.82)

with the exponentially growing function ζ (t) defined by (5.65). Let ωi = ωω̂i such that ω̂i ̸= ω̂ j

∀i ̸= j, t0 ≥ 0, αi,ki,β ,ωh > 0 ∀i = 1, . . . ,n, γ = 1/(λq), and q > 2κ − r ≥ 0. Let Assumptions

5.3, 5.4 hold, and Assumption 5.5 hold with φ(t) = ζ (t), c < q−1−2κ + r, d < q−2κ . Then,

there exists ω∗ > 0 such that for all ω > ω∗, the input θ(t)→ θ ∗(t) semi-globally with respect

to ω and exponentially at the rate of λ , and there exist a class K L function B, a class K

function Y , and a nonnegative constant D(θ(t0),θ ∗(t0),η(t0)) such that

|θ(t)−θ
∗(t)| ≤ ζ

−1(t)
(

D+B (|θ(t0)−θ
∗(t0)|, t − t0)+ sup

t0≤s≤t
B
(
Y
(
ζ
−1(s)

)
, t − s

))
.

(5.83)

Proof Refer to the proof of Theorem C.1 by choosing the parameters and satisfying conditions

as in Table 5.2. ■
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5.4.3 Numerical simulation

We consider a quadratic map of the form

J(θ) = 1+
(
θ −2e0.01t)2

, (5.84)

in which the optimum input θ ∗(t) = 2e0.01t diverges exponentially. We apply the exponential

uES with chirped probing (5.82) by setting the parameters λ = 0.1, k = 0.3, ω = 1, ωh = 3,

α = 1, q = 1.2, and r = 2. Note that θ ∗(t) = 2ζ 0.1(t) and κ = 1. Thus, the parameters c and

q satisfy the conditions q = 1.2 > 2κ − r = 0 and c = 0.1 < q−1−2κ + r = 0.2. We present

the results in Fig. 5.5. As discussed in Remark 5.4, we terminate the growth of the signal ζ (t)

and the instantaneous frequency, ωγdζ q/dt, at t = 40 seconds, which is sufficient to track the

optimum closely.

5.5 Prescribed-Time uES

We present the prescribed-time uES design in the following theorem, which offers the

strongest result in terms of convergence speed and convergence error compared to the asymptotic

and exponential designs.

Theorem 5.7 Consider the following prescribed-time uES design


θ̇ = µ

q+ρ−1(t)
n

∑
i=1

√
αiωiei cos

(
ωi(t0 + γ(µq(t)−1))+ kiζ

r(t)(J(θ)−η)
)
,

η̇ = (−ωhη +ωhJ(θ))µ
q+ρ(t),

(5.85)

with the blow-up function

µ(t) =
(

T
T + t0 − t

) 1
ρ

, t ∈ [t0, t0 +T ), (5.86)

Let ωi = ωω̂i such that ω̂i ̸= ω̂ j ∀i ̸= j, t0 ≥ 0, αi,ki,β ,ωh > 0 ∀i = 1, . . . ,n, γ = ρT/q, and
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Figure 5.5. (a) Tracking of an exponentially shifting optimum by exponential uES with chirped
probing (5.82). (b) Evolution of ζ (t) and the instantaneous frequency ωγdζ q/dt, with their
growth terminated at t = 40 seconds.

q > 2κ − r ≥ 0. Let Assumptions 5.3, 5.4 hold, and Assumption 5.5 hold with φ(t) = µ(t),

c < q+ρ − 1− 2κ + r, d < q+ρ − 2κ . Then, there exists ω∗ > 0 such that for all ω > ω∗,

the input θ(t) → θ ∗(t) semi-globally with respect to ω and in prescribed-time t0 + T , and

there exist a class K L function B, a class K function Y , and a nonnegative constant

132



D(θ(t0),θ ∗(t0),η(t0)) such that

|θ(t)−θ
∗(t)| ≤ µ

−1(t)
(

D+B (|θ(t0)−θ
∗(t0)|, t − t0)+ sup

t0≤s≤t
B
(
Y
(
µ
−1(s)

)
, t − s

))
.

(5.87)

Proof Refer to the proof of Theorem C.1 by choosing the parameters and satisfying conditions

as in Table 5.2. ■

Remark 5.6 For strongly convex maps with κ = 1 and fixed optima, two alternative PT-uES

designs are developed in Chapter 3. One design has a frequency that grows at a power-of-µ

rate and an update rate that decays at an exp-of-power-of-µ rate. The other design has a

frequency that grows at a log-of-µ rate and an update rate that decays at a power-of-µ rate.

However, convex maps with κ ≥ 1 and time-varying optima require a different design approach,

as presented in (5.85).

5.5.1 Numerical simulation

In this section, we return to the cost function (5.62), now aiming for convergence to θ ∗

within the time period of T = 5 seconds. We apply the prescribed-time uES (5.85) with two

different parameter sets:

• In the first configuration, we use parameters q = 0.01, ρ = 0.6 α1 = 1, ω1 = 10, ωh = 3,

and k1 = 0.1. The motivation here is to demonstrate that the update law, θ̇ , can be

guaranteed to remain bounded by choosing r = 2κ = 4 and making p = q+ρ −1 negative

through small values of q and ρ .

• In the second configuration, we use parameters q = 2.1, ρ = 2, and the parameters

α1,ω1,ωh, and k1 are the same as in the first configuration. Opting for a “safe” r = 2 (as

discussed in Remark 5.2) leads to a compromise on the boundedness of the update law.

This is because the condition q > 2κ − r = 2 must be met, which forces p = q+ρ − 1
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Figure 5.6. (a) Unbiased convergence to θ ∗ = 2 in user-prescribed T = 5 seconds with two
different parameter sets. (b) Evolution of their corresponding update laws.

to be positive. To mitigate the aggressive increase in frequency during the transient, a

relatively high value of ρ is used compared to the first configuration.

We present the simulation results in Fig. 5.6, which illustrate the trade-off between the

parameter sets. Both designs achieve prescribed-time convergence, but they differ in the growth

rate of adaptation and frequency.
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5.6 Unbiased Source Seeking by Unicycle

In this section, we investigate the problem of source localization by a unicycle in a

two-dimensional plane modeled by

ẋ = u1

cos(θ)

sin(θ)

 , (5.88)

θ̇ = u2, (5.89)

where x =
[

x1, x2

]T

∈R2 denotes the coordinates of the vehicle’s center with x(0) = x0, θ ∈R

is the orientation of the unicycle with θ(0) = θ0, u1(t) ∈ R and u2(t) ∈ R are the forward and

angular velocity inputs, respectively. For simplicity, but without loss of generality, we assume

that J(·) is quadratic with diagonal Hessian matrix, i.e.,

J(x) = J∗− ρx1

2
(x1 − x∗1)

2 − ρx2

2
(x2 − x∗2)

2, (5.90)

where x∗ =
[

x∗1, x∗2

]T

∈ R2 is the unknown maximizer, J∗ = J(x∗) ∈ R is the unknown maxi-

mum, and ρx1 , ρx2 are some unknown positive constants. Our aim is to design an unbiased source

seeker that drives the vehicle to the exact position of the source, i.e. x → x∗, exponentially at a

user-defined rate of λ > 0.

The source seeker design follows similar steps to those of exponential uES with constant-

frequency probing in Section 5.4.1, but a challenge arises because the angle θ is not directly

controlled; instead, the angular velocity θ̇ is manipulated. This makes the system (5.88) and

(5.89) compatible with (5.3) and (5.4) instead of (5.1), requiring singular perturbation analysis

as another layer of the design.
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5.6.1 Design and analysis

We design the inputs u1 and u2 in (5.88) and (5.89) such that

ẋ = e−λ t√
αω

cos(θ)

sin(θ)

 , (5.91)

θ̇ = ω − ke2λ t (η + J(x)) (5.92)

with a low-pass filter

η̇ = −ωhη −ωhJ(x). (5.93)

The parameters satisfy

kα >
2λ

ρxi

(ωh −2λ ), λ <
ωh

2
, i = 1,2. (5.94)

We present the exponential convergence result for this source seeking problem as follows.

Theorem 5.8 Consider the closed-loop system (5.91)–(5.92) with the parameters that satisfy

(5.94) and with the cost function of the form (5.90). Then, there exists ω∗ such that for all

ω > ω∗ there exists ω∗
h > 0 such that for all ωh > ω∗

h + 2λ , x(t) semi-globally exponentially

converges to x∗ at the rate of λ .

Proof Let us proceed through the proof step by step.

Step 1: State transformation. Let us consider the following transformations

x f = eλ t(x− x∗), (5.95)

η f = e2λ t (η + J∗) (5.96)
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with

x f =

[
x1, f x2, f

]T

. (5.97)

We write the transformed system using (5.91) and (5.93) as

ẋ f =

λx1, f +
√

αω cos(θ)

λx2, f +
√

αω sin(θ)

 , (5.98)

θ̇ = ω − k(η f + J f (x f )), (5.99)

η̇ f = − (ωh −2λ )η f −ωhJ f (x f ), (5.100)

where

J f (x f ) = − ρx1

2
x2

1, f −
ρx2

2
x2

2, f . (5.101)

In view of (5.100), θ -dynamics in (5.99) can be expressed as

θ̇ = ω +
k

ωh
η̇ f −

2kλ

ωh
η f . (5.102)

Considering (5.102), let us perform the change of variables

θe = θ −ωt − k
ωh

η f , (5.103)

and rewrite (5.98) as

ẋ f =

λx1, f +
√

αω cos(ωt + ǩη f +θe)

λx2, f +
√

αω sin(ωt + ǩη f +θe)

 , (5.104)

θ̇e = −2ǩλη f , (5.105)
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η̇ f = − (ωh −2λ )η f − (ωh −2λ )J̌ f (x f ), (5.106)

where

ǩ = k/ωh, (5.107)

J̌ f (x f ) = − ρ̌x1

2
x2

1, f −
ρ̌x2

2
x2

2, f , (5.108)

with

ρ̌xi = ρxi

ωh

ωh −2λ
, i = 1,2. (5.109)

Step 2: Singular perturbation analysis. In order to use the singular perturbation

analysis outlined in Section 5.1.2, we consider a new time scale t = ετ , where ε = 1/(ωh −2λ ).

Then, using trigonometric identities, we rewrite (5.104)–(5.106) in τ-domain as

d
dτ


x1, f

x2, f

θe

= ε


λx1, f

λx2, f

−2ǩλη f

+ ε


√

αω cos(ǩη f +θe)

√
αω sin(ǩη f +θe)

0

cos(ωετ)+ ε


−
√

αω sin(ǩη f +θe)

√
αω cos(ǩη f +θe)

0


× sin(ωετ), (5.110)

dη f

dτ
= −η f − J̌ f (x f )︸ ︷︷ ︸

=g(x f ,η f )

. (5.111)

The quasi-steady-state is η f = −J̌ f (x f ). Defining η f ,b = η f − (−J̌ f (x f )), the boundary layer

model for (5.111) is obtained es

dη f ,b

dτ
= g(x f ,η f ,b − J̌ f (x f ))

= −η f ,b, (5.112)
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which is globally exponentially stable. By substituting the quasi-steady state into (5.110), we

obtain the reduced model as

d
dτ


x1, f ,r

x2, f ,r

θe,r

= ε


λx1, f ,r

λx2, f ,r

2ǩλ J̌ f (x f ,r)

+ ε


√

α cos(−ǩJ̌ f (x f ,r)+θe,r)

√
α sin(−ǩJ̌ f (x f ,r)+θe,r)

0

√ω cos(ωετ)

+ ε


−
√

α sin(−ǩJ̌ f (x f ,r)+θe,r)

√
α cos(−ǩJ̌ f (x f ,r)+θe,r)

0

√ω sin(ωετ) (5.113)

with x f ,r =

[
x1, f ,r x2, f ,r

]T

.

Step 3: Lie bracket averaging and stability analysis. The Lie bracket average of the

reduced system (5.113) is given by

d
dτ


x̄1, f ,r

x̄2, f ,r

θ̄e,r

=


(λ − ǩαρ̌x1/2)x̄1, f ,r

(λ − ǩαρ̌x2/2)x̄2, f ,r

2ǩλ J̌ f (x̄ f ,r)

 , (5.114)

with x̄ f ,r =

[
x̄1, f ,r x̄2, f ,r

]T

. We compute from (5.114) that

x̄i, f ,r(τ) = x̄i, f ,r(0)e(λ−ǩαρ̌xi/2)τ , i = 1,2, (5.115)

θ̄e,r(τ) = θ̄e,r(0)−
2

∑
i=1

ǩλρ̌xi x̄
2
i, f ,r(0)

2(λ − ǩαρ̌xi/2)

(
e2(λ−ǩαρ̌xi/2)τ −1

)
. (5.116)

Then, we conclude that (x̄1, f ,r, x̄2, f ,r, θ̄e,r) = (0,0, pθ ) =: ϒ, where pθ = θ̄e,r(0)+∑
2
i=1

ǩλρ̌xi x̄
2
i, f ,r(0)

2(λ−ǩαρ̌xi/2)
, of (5.114) is globally uniformly exponentially stable for ǩα > 2λ

ρ̌xi
for i = 1,2. This

condition implies from (5.107) and (5.109) that (5.94) needs to be satisfied.

Step 4: Singularly perturbed Lie bracket averaging theorem. Combining the global
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uniform exponential stability of (5.114) at ϒ with the global exponential stability of the boundary

layer system (5.112) at the origin, by Theorem 5.2, we prove the semi-global practical uniform

asymptotic stability of (5.110) at ϒ. The result holds for ε < ε∗ with some ε∗ > 0, which implies

1/ε = ωh −2λ > 1/ε∗ =: ω∗
h . This simplifies to ωh > ω∗

h +2λ . The existence of ω∗ and the

role of ω are as defined in Definition C.2.

Step 5: Convergence to extremum. Considering the result in Step 4 and

x = e−λ tx f + x∗, (5.117)

we conclude the semi-global exponential convergence of x(t) to x∗ at the rate of λ . This implies,

from (5.90) and (5.96), the semi-global exponential convergence of the cost function J(x(t)) and

the filtered state −η(t) to J(x∗) at the rate of 2λ . ■

5.6.2 Experimental results

We demonstrate the effectiveness of the exponential uES designed in (5.91)–(5.92)

through a light-seeking experiment for proof-of-concept. Fig. 5.7a depicts the experimental

setup, which includes a 750-lumen lamp positioned approximately 80 cm above the surface, and

a TurtleBot3 unicycle robot starting about 112 cm from the center of maximum light intensity on

the surface. The robot is equipped with a light sensor (Adafruit VEML7700) mounted on top.

We placed the camera above, parallel to the surface, to capture a top-down view of the robot’s

motion and used Python’s Open Computer Vision (OpenCV) library to visualize the robot’s

trajectory from the recorded videos.

The parameters in (5.91)–(5.93) are set to ω = 0.5,ωh = 7,k = 0.01,α = 0.002,λ =

0.005, resulting in an initial forward velocity of u1(0) = 0.1 m/s and an angular velocity of

u2(0) = 0.5 rad/s, with η(0) =−J(0). The initial position is approximately x(0) =
[

1.5 1.5

]T

in meters. For a comparison, we implement classical ES with the same parameters except for

λ = 0. The vehicle trajectories for both designs are shown in Fig. 5.7a, where the light intensity

shifts from blue to red as it increases. We can see the enhancement of the convergence error
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Figure 5.7. (a) Experimental setup consisting of a light source and a unicycle robot equipped
with a light sensor on top. (b) The vehicle trajectory for two ES designs on a 2D plane, with
color-coded light intensity in lux representing the intensity at each position.

with the developed design. The classical ES reaches an average light intensity of 3627 lux at

steady state, while uES increases this value to 4179 lux, exceeding the classical ES by more

than 15 percent. However, several practical limitations and challenges were encountered in this

implementation. First, sensor noise significantly affects the light intensity readings, along with

the limited resolution of the light sensor. Second, the spatial distribution of light intensity includes

a relatively large region near the center of maximum intensity. These limitations constrain the
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further reduction of the convergence error. Furthermore, the real-time implementation required

careful fine-tuning of the design parameters, considering the robot’s motion constraints.

For the classical ES design, reducing the size of the neighborhood around the optimum

at steady state is possible by decreasing α in (5.91) and increasing k in (5.92) for the same

convergence rate. However, a large k in (5.92) can result in a high initial angular velocity,

exceeding the robot’s speed limits and causing a large deviation from the current path. Our

design addresses this issue with smooth transient behavior. A similar discussion is provided in

Section 5.3.3 for Fig. 5.3.

5.7 Conclusion

There has been a long-standing interest in designing ES that can seek and track optima

as closely and quickly as possible. We provide various ES designs that achieve unbiased seeking

of fixed optima and perfect tracking of time-varying optima at any user-defined rate, including

asymptotic, exponential, and in prescribed time. The optima can be static, decaying, or growing

unbounded at any rate, including in finite time. These designs leverage methods known as state

scaling and time scaling. In essence, these methods use the boundedness of the state-scaled state

in a dilated time domain to guarantee convergence of the original system in the original time

domain, resulting in accelerated and unbiased optimization. Numerical results are accompanied

by experimental results on the problem of source seeking by a unicycle. Future work involves

extending these results to achieve unbiased Nash equilibrium seeking.
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Chapter 6

Adaptive Model-Free Disturbance
Rejection for Continuum Robots

This chapter presents two model-free control strategies for the rejection of unknown

disturbances in continuum robots. The strategies utilize a neural network-based approximation

technique to estimate the uncertain Jacobian matrix using position measurements. The first

strategy is designed for periodic disturbances and employs an adaptive model-free controller

in conjunction with an adaptive disturbance observer. The second strategy is designed for

robustness against arbitrary disturbances and employs time-varying input and update law gains

that grow monotonically, resulting in the achievement of asymptotic, exponential, and prescribed-

time reference trajectory tracking. The notion of fixed-time stabilization in prescribed time is

particularly noteworthy, as it allows for the predefinition of a terminal time, independent of initial

conditions and system parameters. A formal stability analysis is presented for each strategy, and

the strategies are both tested experimentally with a concentric tube robot subject to unknown

disturbances.

This chapter is organized as follows: Section 6.1 defines the problem. Section 6.2

introduces a neural network-based Jacobian estimation technique. Adaptive model-free control

designs, both without and with a disturbance estimator, are presented in Sections 6.3 and 6.4,

respectively. Accelerated robust adaptive model-free algorithms are detailed in Section 6.5. The

effectiveness of the two control strategies is evaluated experimentally on a concentric tube robot
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in Section 6.6, and the chapter concludes in Section 6.7.

Notation. Throughout the paper, we use the following notation: state/parameter esti-

mation and estimation errors are denoted with the symbols “ ˆ ” and “ ˜ ”, respectively. As an

example, estimation error of x state is x̃ = x− x̂ where x̂ is the estimation of x. We denote the

Euclidean norm by ∥ · ∥. trace(·) denotes the trace of a matrix. Ĵ†(u) denotes the pseudo inverse

of the matrix Ĵ(u). The exponential function is denoted by exp.

6.1 Problem Statement

The kinematic equation of a continuum robot can be written as

x = f (u), (6.1)

where x ∈ Rn denotes the position and orientation of the robot tip, u ∈ Rm denotes the input

vector, and m ≥ n. The time derivative of (6.1) is given by

ẋ = J(u)u̇, (6.2)

where J(u) =
[

J1(u)T . . . Jn(u)T

]T

∈Rn×m is the Jacobian matrix that defines the relationship

between ẋ and u̇. Due to the physiological disturbances described in Section 1.2, continuum

robots can experience unwanted fluctuations in tip position. Thus, robot tip position measurement,

denoted as y ∈ Rn, is expressed as a combination of the actual robot tip position x and the

unknown disturbance δ =

[
δ1 · · · δn

]T

∈ Rn, i.e.,

y(t) = x(t)+δ (t). (6.3)
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Let us define the following error state

e(t) = y(t)− yr(t), (6.4)

where yr ∈ Rn is the desired trajectory. Our objective is to design a neural-network-based

estimator for the Jacobian of the uncertain forward kinematic function f , and to develop an

adaptive model-free controller u̇ that uses error feedback e. In order to reject the disturbance δ

in the measurement, we develop two algorithms. The first algorithm is capable of estimating and

rejecting harmonic disturbances with unknown periodicity, while the second algorithm is capable

of rejecting any type of disturbance by achieving asymptotic, exponential, and prescribed-time

convergence of the error state e to zero through the use of monotonically increasing gain functions.

We make the following assumptions regarding the disturbance and reference trajectory.

Assumption 6.1 Each element of the disturbance δ and their first derivative are bounded

|δi(t)| ≤ δ
max
i , |δ̇i(t)| ≤ δ̄

max
i , ∀t ∈ [0,∞), (6.5)

where the bounds are unknown.

Assumption 6.2 The reference signal yr and its first derivative are known and bounded.

Assumption 6.1, asserting that δ (t) and δ̇ (t) exhibit finite energy, with unknown upper

bounds, aligns with common practices in disturbance rejection strategies for continuum robots,

as discussed in [27, 83].

6.2 Neural Network Based Jacobian Estimation

As suggested in [66], [76], by preserving the structure of (6.2), each element of the state

derivative ẋ can be approximated by a single-layer feedforward neural network over a compact
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set U as

ẋi = (Ψi(u)TW ∗
i )u̇+ εi(ū), ∀ū ∈ U⊂ R2m (6.6)

with ū =

[
u u̇

]T

for i = 1, . . . ,n, where Ψi(u) ∈ Rq×1 is the basis function vector, εi(ū) ∈ R is

the approximation error, q ∈ N is the number of neurons, and W ∗
i ∈ Rq×m is the ideal constant

weight matrix defined by

W ∗
i = arg min

Wi∈Rq×m

{
sup
ū∈U

∣∣Ji(u)u̇− (Ψi(u)TWi)u̇
∣∣} . (6.7)

By the high-order Weierstrass approximation theorem [42], we define an upper bound for the

approximation error εi over the defined compact region

|εi(ū)| ≤ ε̄i, ∀i = 1, . . . ,n, ∀ū ∈ U⊂ R2m, (6.8)

where the bound ε̄i ∈ R+ is unknown. In addition, the approximation error εi for i = 1, . . . ,n

converges to zero as the number of basis functions n increases, i.e., εi → 0 for i = 1, . . . ,n as

n → ∞. The neural network structure is illustrated in Fig. 6.1.

Remark 6.1 The neural network approximation technique requires the input space of the uncer-

tain function to be a compact set, which makes the stability results semi-global [42]. In other

words, the results are valid as long as ū stays within U. We can choose the set U to be arbitrarily

large at the expense of a larger approximation error εi. Global results are obtained for the case

in which (6.8) holds for all ū ∈ R2m.

Remark 6.2 It is important to note that approximating the state derivative in (6.6) by maintain-

ing the structure of (6.2) is crucial for controller design and stability analysis. A naive approach

that approximates the function f (·) in (6.1) and takes the time derivative of the approximation

would cause the term ∇εi(u)u̇ to appear in (6.6) instead of εi(ū), which makes it difficult to
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W ∗
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Figure 6.1. The structure of the neural network. The first layer consists of the input vector u,
which is fed into basis functions Ψi at the middle layer. The output of this layer is multiplied by
weights W ∗

i and summed up at the third layer, which gives us an approximation of elements in
each row of Jacobian matrix Ji for i = 1, . . . ,n.

design a controller and guarantee stability.

We therefore write the time derivative of (6.4) in view of (6.3) and (6.6) as follows

ė =


Ψ1(u)TW ∗

1
...

Ψn(u)TW ∗
n

 u̇+ δ̇ − ẏr + ε, (6.9)

where ε = [ε1 · · · εn]
T .

6.3 Adaptive Model-Free Control Design without Distur-
bance Estimator

In this section, we introduce a model-free adaptive controller that ignores the effect of

the disturbance in (6.9) but still guarantees the boundedness of the closed-loop system. We state

the following theorem that presents the designed controller with the update law and provide an

ultimate bound for the closed-loop system.
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Theorem 6.1 Consider the closed-loop system consisting of (6.9), the following controller

u̇ = Ĵ†(u)(−Ke+ ẏr) (6.10)

with the Jacobian estimate

Ĵ(u) =


Ψ1(u)TŴ1

...

Ψn(u)TŴn

 (6.11)

and the parameter update law

˙̂Wi = ΓwiΨi(u)u̇T ei −ΓwiγwiŴi, ∀i = 1, . . . ,n, (6.12)

where K = diag(k1, . . . ,kn), Γwi are positive definite gain matrices, γwi is a positive scalar gain.

Under Assumptions 6.1-6.2, the signals ei,W̃i for i = 1, . . . ,n are uniformly ultimately bounded

and each error state ei converges to a compact set provided that the estimated Jacobian matrix

(6.11) is nonsingular. Moreover,

|ei(t)| ≤ exp−cit/2

(
|ei(0)|+ trace

(
W̃i(0)Γ−1

wi
W̃ T

i (0)
) 1

2

)
+

√
2

Di

ci
(6.13)

for i = 1, . . . ,n, where

ci = min
{

ki,
γwi

λmax(Γ
−1
wi )

}
, (6.14)

Di =
1
ki

ε̄
2
i +

1
ki
(δ̄ max

i )2 +
γwi

2
trace

(
W ∗

i (W
∗
i )

T) . (6.15)

The proof of this result is given in Appendix D.2.

Remark 6.3 The stability result presented in Theorem 6.1 and other results presented throughout
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this chapter are based on the assumption that the neural network Jacobian estimation Ĵ(u)

with the updated weights is nonsingular. This assumption is common in many papers (see

[111, 108, 66, 76, 13, 121]) that develop algorithms that require the existence of the Jacobian

estimation during the implementation of the controller. While some suitable parameter projection

algorithms that prevent this singularity condition have been introduced in [11, 14], it remains

an open problem.

Remark 6.4 It is well known that online update laws help the system adapt to changing environ-

ments and achieve the desired control objectives. However, poor initial values for the estimated

weight matrices Ŵi ∈ Rq×m can degrade the transient performance of the closed-loop system. To

mitigate this issue, the weights can be trained offline using the following state observer in an

environment without external disturbances before implementing the controller online,

˙̂x =


Ψ1(u)TŴ1

...

Ψn(u)TŴn

 u̇+Fx(x− x̂) (6.16)

with the learning law

˙̂Wi = ΓwiΨi(u)u̇T (x− x̂)−ΓwiγwiŴi, ∀i = 1, . . . ,n, (6.17)

where x̂ is the estimate of x, Fx ∈ Rn×n is a positive definite matrix. As highlighted in the

Introduction, the adaptation of weight matrices Wi and the estimation of the Jacobian matrix J(u)

rely on state feedback x. Note that the leakage term −ΓwiγwiŴi is integrated into our update laws

(6.12) and (6.17) to avoid the parameter drift arising from model inaccuracies and unmodeled

disturbances [45]. This technique is widely adopted in the adaptation of weight matrices of

neural networks [20]. Note also that the minimal W̃i at the initial time enhances the transient

performance of the closed-loop system, as indicated in (6.13). To further minimize the ultimate
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bound of the error signal, it is crucial to simultaneously reject disturbances and learn the weight

matrices online.

6.4 Adaptive Model-Free Control Design with Disturbance
Estimator

In this section, we consider the case in which each element of the unknown disturbance

vector δ (t) ∈Rn is a continuous periodic signal. We develop a control strategy that estimates the

fundamental frequency using a cascade of low-pass and high-pass filters, along with a parameter

update law in an offline setting. The disturbance is then compensated for by adding a reduplicated

model of an exosystem consisting of a finite number of estimated harmonics to the feedback

loop. We make the following assumption regarding the structure of the disturbance vector δ (t).

Assumption 6.3 Each element of the unknown disturbance vector δ (t) ∈ Rn is a continuous

periodic signal. For simplicity, but without loss of generality, we assume that each element of

the disturbance vector δ (t) ∈ Rn is identical (i.e., δ1(t) = · · ·= δn(t) for all t ≥ 0) and can be

represented by its Fourier series expansion

δ1(t) = a0 +
∞

∑
k=1

[ak cos(kωt)+bk sin(kωt)] (6.18)

in which the fundamental frequency ω ∈R, the bias a0 ∈R and the amplitudes ak,bk ∈R, k ∈N

are unknown. The amplitude of the first harmonics is nonzero, i.e.,
√

a2
1 +b2

1 > 0.

6.4.1 Offline frequency estimation

In offline mode, where the controller is deactivated, the output measurement is written as

follows

y j(t) = x j +δ1(t), j = 1, . . . ,n,

= x j +a0 + ā1 sin(ωt + ϕ̄)+δ1,h(t), (6.19)
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where ā1 =
√

a2
1 +b2

1, ϕ̄ = arctan(a1/b1) and δ1,h(t) contains the high frequency components

as follows

δ1,h(t) =
∞

∑
k=2

[ak cos(kωt)+bk sin(kωt)] . (6.20)

In order to attenuate the higher order harmonics (6.20) and detect the fundamental frequency, we

design the following filters, which are inspired by [78]:

y f = yη +Byy j, j = 1, . . . ,n, (6.21)

ẏη = Ay(yη +Byy j), (6.22)

with the matrices Ay ∈ Rp×p,By ∈ Rp, p ≥ 3, defined by

Ay =



−λ f λ f 0 · · · 0

0 −λ f λ f
. . . 0

... . . . . . . . . . ...

... . . . . . . −λ f λ f

0 · · · · · · 0 −λ f


, By =



0

0
...

0

λ f


. (6.23)

Note that taking the derivative of (6.21) yields a cascade of low-pass filters of order p−1 and a

first-order high-pass filter of the washout filter type, expressed as ẏ f = Ayy f +Byδ̇1. Additionally,

Lemma D.1 in Appendix D shows that the second filter state y f2 can be expressed in terms of

the first and third filter states, and this relationship includes information about the unknown

fundamental frequency ω . Considering this lemma and defining the following constant

Ω = ω
2, (6.24)
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a least-squares frequency estimator is designed as follows

˙̂
Ω = 2ρyλ

2
f y f1

[
y f2 −

(
Ω̂+λ 2

f

2λ 2
f

y f1 +
1
2

y f3

)]
, (6.25)

ρ̇y = ρyβy −ρ
2
y y2

f1, ρy(0)> 0, (6.26)

ω̂ =
√

Ω̂, ∀Ω̂ > 0

= 0, otherwise (6.27)

with positive gain βy. Based on the solution of the filter states obtained through (D.2)–(D.4), we

ensure the persistent excitation of the regressor of y f1 . As stated in the proof of Corollary 4.3.2

of [45], as long as this persistent excitation is satisfied, then the following holds

0 < ρyl ≤ ρy(t)≤ ρyu, ∀t ≥ 0, (6.28)

for some positive lower and upper bounds ρyl ,ρyu .

Lemma 6.1 The frequency estimator (6.25)–(6.27) with the output signal (6.19) and the low-

pass filters (6.21)–(6.23) ensure that

|ω2 − ω̂
2| ≤

√
2ρyuV0 exp−

cv
2 t +

√
2ρyu

cv
εω , (6.29)

for all t ≥ 0 with some positive constants V0,cv,εω .

The proof of this result is given in Appendix D.3.

6.4.2 Frequency estimator comparison

We present a comparison of our frequency estimator, as described in (6.25)–(6.27), with

the frequency estimators introduced in [69, 12]. The primary difference between our approach

and the previously mentioned estimators lies in the fact that their overall dynamics have a state

dimension of l f +9 and l f +5, respectively, where l f is the number of prefilters, a positive integer
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and the prefilters used are essentially a cascade of low-pass filters. In contrast, our estimator

has a reduced number of filters used and a dimension of l f +2, where l f ≥ 3. The minimum

dynamic-order of the estimators in [69, 12] and (6.25)–(6.27) are 10,8 and 5, respectively.

To facilitate comparison, we replicate the example presented in [69, 12], which involves

the estimation of the fundamental frequency of a noisy square wave given by

δ1(t) = 1+ sign(sin(3t)−0.5)+nr(t), (6.30)

where nr(t) denotes uniformly distributed random noise over the interval [−0.25,0.25]. We use

the same parameters as in [69, 12] to implement their estimators, while for our estimator we

select the filter parameter λ = 2.75, the number of filters p = 5, the gain βy = 0.1, and the initial

gain ρy(0) = 70 to achieve a similar response time. The initial estimate Ω̂(0) is set to 0.1 for

all three estimators. It is worth noting that the dynamics of our estimator has a dimension of

7, whereas the dynamics of the estimators proposed in [69, 12] have dimensions of 10 and 8,

respectively. Our estimator provides a smoother transition and more accurate estimation of the

fundamental frequency of ω = 3 rad/s at steady state, as shown in Figure 6.2. This is achieved

using a smaller number of filters as compared to the estimators in [69, 12].

6.4.3 Disturbance observer-based control design

The first derivative of the disturbance δ1(t) appears in the derivative of the error state

(6.9) and needs to be rejected by the controller u̇. To achieve this, we first represent the first

derivative of (6.18) as the output of a linear exosystem, as follows

Ẇ = S W , (6.31)

δ̇1 = hT W + δ̇1,hq, (6.32)
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Figure 6.2. The evolution of the frequency estimates with the first and last 8 seconds zoomed in.
The convergence of our estimate is compared with that of [69, 12].

where δ̇1,hq defines the harmonics higher than a user defined number q ∈ N\{1,2} and

W =



ā1ω sin(ωt +ϕ1)

ā1ω cos(ωt +ϕ1)

...

āqqω sin(qωt +ϕq)

āqqω cos(qωt +ϕq)


, h =



1

0
...

1

0


S = block diag

[
S1 · · · Sq

]
,

Si =

 0 iω

−iω 0

 , i = 1, . . . ,q (6.33)

with āi =
√

a2
i +b2

i , ϕi = arctan(ai/bi) for i = 1, . . . ,q. In the next theorem, we design a distur-

bance observer for the unknown exosystem (6.31)–(6.32) using the offline learned frequency ω̂
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and its q number of harmonics as well as design an adaptive disturbance rejection algorithm.

Theorem 6.2 Consider the closed-loop system consisting of (6.9), the following controller

u̇ = Ĵ†(u)

−Kê−


hT Ŵ

...

hT Ŵ

+ ẏr +


c1ẽ1

...

cnẽn


 (6.34)

with the Jacobian estimate

Ĵ(u) =


Ψ1(u)TŴ1

...

Ψn(u)TŴn

 , (6.35)

the parameter update law

˙̂Wi = ΓwiΨi(u)u̇T (ei − êi)−ΓwiγwiŴi, (6.36)

the state and disturbance observers

˙̂ei = (Ψi(u)TŴi)u̇+hT Ŵ − ci(ei − êi)− ẏr, (6.37)

˙̂W = Ŝ Ŵ + L̂ (ei − êi), (6.38)

where the structure of Ŝ is equivalent to that of (6.33), with the exception that the offline-learned

ω̂ is utilized in place of the unknown ω , and the observer gain L̂ is selected such that the

desired poles are assigned to the following matrix

A =

−ci hT

L̂ Ŝ

 . (6.39)
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Under Assumptions 6.1–6.3, the signals ei,W̃i,W̃ for i = 1, . . . ,n are uniformly ultimately

bounded and each error state ei converges to a compact set provided that the estimated Ja-

cobian matrix (6.11) is nonsingular. Moreover,

|ei(t)| ≤ exp−cit/2

(
|ẽi(0)|+ trace

(
W̃i(0)Γ−1

wi
W̃ T

i (0)
)1/2

+ ||W̃ (0)||

)
+ exp−kit |êi(0)|

+

√
2

Di

ci
(6.40)

where

ci = min
{

κλ

2
,

γwi

λmax(Γ
−1
wi )

}
, (6.41)

Di =
ε̄2

i
κλ

+
(δ̄ max

hq
)2

κλ

+
(qω̃)2

2κλ

q

∑
j=1

(ā j jω)2 +
γwi

2
× trace

(
W ∗

i (W
∗
i )

T) , (6.42)

κλ = λmin(A ), (6.43)

with δ̇1,hq ≤ δ̄ max
hq

for some positive constant δ̄ max
hq

for all t ∈ [0,∞).

The proof of this result is given in Appendix D.4.

Remark 6.5 While certain neural networks, such as Recurrent Neural Networks, can handle

both spatial and periodic temporal features, our control strategy requires separate estimations

of the unknown Jacobian matrix and the unknown periodic disturbance. This is due to the

use of the Jacobian matrix’s pseudo-inverse in our control formulation (6.34), which would be

incompatible with a joint neural network estimate of both elements.

6.5 Accelerated Robust Adaptive Model-Free Algorithms

In this section, we introduce accelerated robust adaptive model-free algorithms. The idea

is motivated by the fact that the second term on the right hand side of (6.13) can be eliminated by

using high controller and parameter update gains. We define three different time-varying gains
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that grow linearly, grow exponentially, and grow and blow up at a final time in order to achieve

asymptotic, exponential and prescribed-time convergence of the error state e to zero, respectively,

despite any arbitrary unknown disturbances, that do not necessarily need to be periodic as in

Section 6.4, as well as neural network approximation error.

6.5.1 Adaptive robust design for asymptotic regulation

Let us define the following linearly growing signal

µa(t) = 1+β t, β > 0, t ∈ [0,∞). (6.44)

Then apply the following scaling transformation

z = µae, (6.45)

which obeys the following dynamics

ż = µaė+ µ̇ae,

= µa




Ψ1(u)TW ∗
1

...

Ψn(u)TW ∗
n

 u̇+ δ̇ − ẏr + ε +
β

µa
e

 . (6.46)

The aim is to design a controller which stabilizes the state z as well as the error state e. We state

the following theorem that summarizes our results in this subsection.

Theorem 6.3 Consider the closed-loop system consisting of (6.9), the following controller

u̇ = Ĵ(u)†
(
−Kµae+ ẏr − β

1+β t
e
)

(6.47)
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with the Jacobian estimate

Ĵ(u) =


Ψ1(u)TŴ1

...

Ψn(u)TŴn

 (6.48)

and the parameter update law

˙̂Wi = Γwi µ
2
a Ψi(u)u̇T ei −Γwiγwi µaŴi, ∀i = 1, . . . ,n, (6.49)

where K = diag(k1, . . . ,kn), Γwi are positive definite gain matrices, γwi is a positive scalar gain.

Under Assumptions 6.1-6.2, the signals ei,W̃i for i = 1, . . . ,n are uniformly ultimately bounded

and each error state ei converges to zero asymptotically, provided that the estimated Jacobian

matrix (6.48) is nonsingular. Furthermore,

|ei(t)| ≤
1

1+β t

[
exp−ci(t/2+β t2/4)

(
|ei(0)|+ trace

(
W̃i(0)Γ−1

wi
W̃ T

i (0)
) 1

2

)
+

√
2

Di

ci

]
, (6.50)

where

ci = min
{

ki,
γwi

λmax(Γ
−1
wi )

}
, (6.51)

Di =
1
ki

ε̄
2
i +

1
ki
(δ̄ max

i )2 +
γwi

2
trace

(
W ∗

i (W
∗
i )

T) . (6.52)

In addition, the controller u̇ is bounded for all t ∈ [0,∞).

The proof of this result is given in Appendix D.5.
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6.5.2 Adaptive robust design for exponential regulation

Let us define the following exponentially growing signal

µe(t) = expλ t , λ > 0, t ∈ [0,∞). (6.53)

We state the following theorem.

Theorem 6.4 Consider the closed-loop system consisting of (6.9), the following controller

u̇ = Ĵ(u)† (−Kµee+ ẏr −λe) (6.54)

with the Jacobian estimate

Ĵ(u) =


Ψ1(u)TŴ1

...

Ψn(u)TŴn

 (6.55)

and the parameter update law

˙̂Wi = Γwi µ
2
e Ψi(u)u̇T ei −Γwiγwi µeŴi, ∀i = 1, . . . ,n, (6.56)

where K = diag(k1, . . . ,kn), Γwi are positive definite gain matrices, γwi is a positive scalar gain.

Under Assumptions 6.1-6.2, the signals ei,W̃i for i = 1, . . . ,n are uniformly ultimately bounded

and each error state ei converges to zero exponentially, provided that the estimated Jacobian

matrix (6.55) is nonsingular. Furthermore,

|ei(t)| ≤exp−λ t

[
exp−

ci
2λ

(expλ t −1)

(
|ei(0)|+ trace

(
W̃i(0)Γ−1

wi
W̃ T

i (0)
) 1

2

)
+

√
2

Di

ci

]
, (6.57)
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Figure 6.3. Prescribed-time model-free adaptive controller design scheme.

where

ci = min
{

ki,
γwi

λmax(Γ
−1
wi )

}
, (6.58)

Di =
1
ki

ε̄
2
i +

1
ki
(δ̄ max

i )2 +
γwi

2
trace

(
W ∗

i (W
∗
i )

T) . (6.59)

In addition, the controller u̇ is bounded for all t ∈ [0,∞).

The proof of this result is analogous to that of Theorem 6.3 and is omitted for brevity.

6.5.3 Adaptive robust design for prescribed-time regulation

Let us define the following blow-up function

µp(t) =
T 2

(T − t)2 , t ∈ [0,T ), (6.60)

where T is a final time that can be prescribed arbitrarily by user. We state the following theorem

and give the closed-loop system schematically in Fig. 6.3.

Theorem 6.5 Consider the closed-loop system consisting of (6.9), the following controller

u̇ = Ĵ(u)†
(
−Kµpe+ ẏr − 2

T − t
e
)

(6.61)

161



with the Jacobian estimate

Ĵ(u) =


Ψ1(u)TŴ1

...

Ψn(u)TŴn

 (6.62)

and the parameter update law

˙̂Wi = Γwi µ
2
pΨi(u)u̇T ei −Γwiγwi µpŴi, ∀i = 1, . . . ,n, (6.63)

where K = diag(k1, . . . ,kn), Γwi are positive definite gain matrices, γwi is a positive scalar gain.

Under Assumptions 6.1-6.2, the signals ei,W̃i for i = 1, . . . ,n are uniformly ultimately bounded

and each error state ei converges to zero in prescribed time, i.e.,

lim
t→T

|ei(t)|= 0, ∀i = 1, . . . ,n, (6.64)

provided that the estimated Jacobian matrix (6.62) is nonsingular. Furthermore,

|ei(t)| ≤
(T − t)2

T 2

[
exp−

ciT
2 ( T

T−t −1)

(
|ei(0)|+ trace

(
W̃i(0)Γ−1

wi
W̃ T

i (0)
) 1

2

)
+

√
2

Di

ci

]
, (6.65)

where

ci = min
{

ki,
γwi

λmax(Γ
−1
wi )

}
, (6.66)

Di =
1
ki

ε̄
2
i +

1
ki
(δ̄ max

i )2 +
γwi

2
trace

(
W ∗

i (W
∗
i )

T) . (6.67)

In addition, the controller u̇ is bounded for all t ∈ [0,T ).

The proof of this result is analogous to that of Theorem 6.3 and is omitted for brevity.

Remark 6.6 In practice, measurement noise prevents perfect error convergence and can lead to
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unbounded input signals and parameter estimates. To address this challenge, the time-varying

gains can be constrained to a specific value, as discussed in [103, 54], at the cost of sacrificing

ideal convergence.

6.6 Results and Discussions

We evaluate our proposed algorithms for disturbance rejection through an experiment

involving a concentric tube robot (CTR). CTRs are a particular type of continuum robot made

up of flexible, precurved tubes arranged in a telescoping fashion. The tubes can be inserted and

rotated relative to one another, using an actuation unit (such as the one in Fig. 6.4), causing them

to interact in bending and torsion. The ultimate shape of the continuum robot is dictated by the

mechanical equilibrium of the tubes [99, 117].

We compare our proposed algorithms on a setpoint regulation task using a CTR subject to

an applied periodic disturbance that perturbs the robot’s tip position. By using a hardware system

for comparison, we can better evaluate the performance of these algorithms in the presence

real-world constraints such as joint velocity limits and sensor noise. While our accelerated

algorithms are capable of rejecting any arbitrary bounded disturbance, for a fair comparison, we

opt for a periodic disturbance that both approaches can handle.

6.6.1 Experimental setup

The particular CTR used in this experiment is the one from [29] (Fig. 6.4). The robot is

tracked using an Aurora electromagnetic (EM) system (NDI), which measures the 3-D position

of the robot’s tip. Note that this measurement device has a reported accuracy of < 1 mm though

this can increase due to noise present in the environment [100]. The CTR joint positions, which

are the rotational and translational positions of each of its tubes, are measured by magnetic

encoders attached to each of the motors housed in the robot’s actuation unit.

In order to apply a periodic disturbance to the robot tip position, the robot is mounted to

a lead screw that is driven by a stepper motor. The stepper motor, in turn, is controlled by an
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(a) Hardware setup for experimental evaluation of the proposed algorithms.
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(b) An illustration of the concentric tube robot with three nested precurved
tubes that are translated by the inputs ui for i = 1,2,3 and rotated by the
inputs ui for i = 4,5,6.

Figure 6.4. Experimental setup with the illustrated control inputs in the actuation unit. The tip
position used for feedback control is measured by an electromagnetic sensor taped to the robot.
The harmonic disturbance affects the robot only in the zb direction.

Arduino and can be programmed to produce a repeatable disturbance signal for testing. Though

this disturbance input is unidirectional, its rejection requires coordinated motion of all of the

CTR tubes due to the highly nonlinear nature of the robot’s kinematics. The disturbance signal

used in our experiment is a sum of two sine waves, one with high amplitude and low frequency,
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and the other with low amplitude and high frequency, defined as

δ3(t) = a1 sin(ω1t)+a2 sin(ω2t), (6.68)

which perturbs the robot only in zb-direction. In other words, δ (t) =
[

0 0 δ3(t)

]T

. The

values of a1, a2, ω1, and ω2 are set to −3.75 mm, −1.25 mm, 0.41 rad/sec, and 1.36 rad/sec,

respectively. It should be noted that although the timescales of this disturbance are slower than

what would be typical for physiological signals, this is primarily a limitation of the linear actuator

used to apply the disturbance and not the algorithms considered.

For our evaluation, we conduct three trials to assess three different control strategies for

regulating the robot tip to a desired set point in the presence of a disturbance. These control

strategies include: (a) the nominal adaptive controller with constant gain and without disturbance

observer (6.10) presented in Section 6.3, (b) the accelerated adaptive controller with linearly

growing gain (6.47) presented in Section 6.5, and (c) the adaptive controller with disturbance

observer (6.34) presented in Section 6.4. The desired position yr is
[

22.34 −12.89 100.00

]T

in mm. In all cases, the initial robot joint positions are set to 105 mm, 79 mm, and 40 mm in trans-

lation, and 0◦ in rotation, resulting in a initial tip error of
[
−22.00 −14.00 0.00

]T

in mm. To

illustrate this initial tip error as well as the effect of the disturbance, the controller is turned off for

at the beginning of each trial and then switched on after 30 seconds. For all control algorithms, we

use a gain of K = σ I, where σ = 0.25. For the accelerated method, we employ a linearly growing

signal (6.44) with β = 0.06 chosen to highlight the ability of the method to gradually decrease er-

ror over time. For the disturbance observer based algorithm, we choose the observer gain L̂ such

that the closed loop poles are placed at [−0.1,−0.125,−0.15,−0.175,−0.2,−0.25,−0.225].

During parameter selection, we conducted trials to evaluate their impact on system response.

The use of high gains, while offering faster reactions, resulted in amplified noise sensitivity,

instability in disturbance estimation, and high initial control effort, due to the large initial error,

exceeding actuator limits. To achieve good control performance without these drawbacks, we
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opted for moderate gains, as described earlier. Notably, our accelerated controller initiates with a

low gain K and linearly increases it over time. This approach eliminates the need for high initial

control effort, enhances the rejection of disturbances, and ensures that actuator efforts remain

within their limits.

The process of selecting parameters makes clear that non-idealities in the experimental

hardware can pose challenges for the implementation of our control strategies. Phenomena such

as sensor noise, a low sampling rate, physical limits of the actuators, and friction/hysteresis in

the flexible tubes all constrain how aggressively the disturbance can be rejected in practice. The

impact of these limitations may be reduced by using more performant hardware.

6.6.2 Results

Prior to conducting the experiment, we train the neural network weights offline using a

set of input and output data consisting of random robot configurations and their corresponding

tip positions over a limited workspace in a disturbance-free environment. The experimental

results are presented in Fig. 6.5 through Fig. 6.7. Fig. 6.5 illustrates the evolution of the robot

tip, as well as the translations and rotations of each tube over time for each algorithm. It is

evident from Fig. 6.5 that all control strategies are able to substantially reduce the large, initial

error in the robot tip position. However, it is also evident that the nominal controller is not as

effective at suppressing the periodic disturbance as the other two algorithms. The presence of

disturbance estimate in the observer-based controller manifests as additional oscillations, absent

in the nominal controller’s behavior. The rapid oscillation observed in the tube rotations around

the 40th second is likely due to the slippage of gears in our prototype robot.

To quantitatively assess the efficacy of algorithms in rejecting the disturbances, we

analyze the mean absolute error in the robot tip position along the zb-direction after the controllers

are activated. Specifically, we compute this statistic for times t > 30 s. For the nominal controller,

this mean tip error is 1.26 mm. The adaptive controller employing estimated disturbance

rejection however, achieves a much lower error of 0.65 mm. This result shows a clear gain
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(a) (b) (c)

Figure 6.5. A comparative analysis of three distinct control strategies for driving the robot tip
to a target position. The strategies are: (a) nominal adaptive controller with constant gain and
without disturbance observer (6.10), (b) accelerated adaptive controller with linearly growing
gain (6.47), (c) adaptive controller with disturbance observer (6.34). The plots depict the robot
tip position in the xb, yb, and zb directions, as well as the translational and rotational movement
of tubes u1 through u6. The algorithms are activated at t = 30 seconds. The robot tip position in
the zb axis is disturbed harmonically by an unknown disturbance δ3(t).

in performance over the nominal controller, even in the presence of some sensor noise. As

expected, the accelerated adaptive algorithm similarly shows improvement, 0.77 mm mean error,

although slightly larger than for the case where the disturbance is explicitly estimated and then

rejected. This is likely due in large part to the design of the growth signal µa. Here we have

chosen this signal to grow linearly over time with a rate that highlights the method’s capability
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Figure 6.6. The norm of the tip position error resulting from the application of each algorithm,
which is activated at t = 30 seconds.

to gradually decrease error over time. This is illustrated in the zoomed portion of Fig. 6.6 where

the Euclidean norm of the tip position error of the accelerated algorithm is initially similar to

the error of the nominal controller, but then slowly decreases for the rest of the experiment. It is

possible to choose this signal to be more aggressive, as described in Sections 6.5.2 and 6.5.3,

but with the trade-off that error due to sensor noise will be amplified as well. Furthermore, the

continuous decrease in the norm of the error associated with the nominal design is a result of its

convergence to an ultimate bound, as characterized in (6.13).

Prior to implementing the disturbance observer based algorithm (6.34), we estimate

the low frequency ω1 in the harmonically disturbed robot tip position in an offline mode. To

filter the output, we employ the filters designed in (6.21) and (6.22), with λ f = 1 and p = 16.

Then, utilizing the frequency estimator in (6.25)–(6.27) with ρy(0) = 30, Ω̂(0) = 0.8, βy = 0.75,

we obtain a very accurate estimate of ω1, as shown in Fig. 6.7. The obtained disturbance

estimate is then integrated into the controller (6.34) to effectively reject the disturbances. For

disturbances with varying periodicity, such as changes in the breathing frequency over time, a

potential solution could involve continuous monitoring of the frequency using external sensing,
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Figure 6.7. The upper subplot displays the robot tip position in the zb axis that is disturbed by
harmonics δ3(t) with two distinct frequencies, namely ω1 and ω2. The lower subplot illustrates
the offline estimation of the low frequency ω1 using the estimator (6.25)–(6.27).

as discussed in [65], and updating the frequency estimate online within the observer (6.38).

6.7 Conclusion

In this chapter, we have presented two distinct adaptive model-free control strategies for

continuum robots subjected to unknown disturbances: (i) disturbance observer-based adaptive

controller (6.34), and (ii) accelerated adaptive controllers with asymptotic, exponential and

prescribed-time convergence (6.47), (6.54), (6.61), respectively. The designs differ in their

approach to disturbance rejection and their ability to drive the robot tip to a desired position. The

disturbance observer-based design estimates periodic disturbances explicitly and drives the error

state to an ultimate bound due to the residual term at the right hand side of (6.40). Although

this residual term can be minimized by improving the neural-network model and disturbance

estimate, it does not vanish. On the other hand, the accelerated designs suppress any type of
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disturbances through monotonically increasing gains and ensure that the error state converges to

zero. The error states vanish at the same rate that the gains grow over time, as shown in (6.50),

(6.57) and (6.65).

We have conducted hardware experiments with a concentric tube robot to compare the

performance of these strategies on a setpoint regulation task, serving as a proof-of-concept.

Contrary to the theoretical results, the experimental findings demonstrate that the disturbance

observer-based design (6.34) has slightly outperformed the accelerated design (6.47) in terms of

the mean absolute error in the robot tip position over a finite time. This is primarily due to the

physical limitation of the actuators and sensor noise, which limit the feasibility of accelerated

designs. Consequently, we believe that the thorough theoretical and experimental validation

presented in this chapter highlights the usefulness of these methods.
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Appendix A

Solutions of the Kernels in Chapter 2

A.1 Solutions of γc(x, t), qc(x,y, t), and qr(x,y, t)

Proposition A.1 The time-varying kernel equations (2.146)–(2.148), (2.149)–(2.151), and

(2.152)–(2.154) have unique solutions. The growth-in-time bounds of these time-varying kernels

are given as follows

|γc(·, t)| ≤C1eC2µ(t), (A.1)

|qc(·, ·, t)| ≤C4eC5µ(t), (A.2)

|qr(·, ·, t)| ≤ eµ(t)
(

D2
4T +C6

√
µ0

)
, (A.3)

where C1 := |k|
µ0D , C2 := D2

T +D
√

5µ0, C3 :=C2 +µ0T , C4 := 2C1, C5 :=
√

5C3D2/(4T )+C2 +

D2/(4T ), and some positive C6 independent of µ0 and µ(t).

Proof

The Kernel γc(x, t): Let us integrate (2.152) twice with respect to x in view of the

boundary conditions (2.153) and (2.154). Then, we obtain the following implicit solution

γc(x, t) =
∫ x

0

∫
τ

0

(
∂tγc(s, t)+µ0µ

2(t)γc(s, t)
)

dsdτ − kµ
2(t)x. (A.4)
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We can show that the solution of (A.4) exists by using the method of successive approximations

γc(x, t) =
∞

∑
n=0

γ
n
c (x, t), (A.5)

where

γ
0
c (x, t) =− kµ

2(t)x, (A.6)

γ
n+1
c (x, t) =

∫ x

0

∫
τ

0

(
∂tγ

n
c (s, t)+µ0µ

2(t)γn
c (s, t)

)
dsdτ, (A.7)

for n ∈ N0. Let us compute the iteration formula (A.7) for a few steps to obtain a recursive

formula

γ
1
c (x, t) =− k

x3

3!
1
T

µ
3(t)(2+T µ0µ(t)),

γ
2
c (x, t) =− k

x5

5!
1

T 2 µ
4(t)
(

6+6(T µ0)µ(t)+(T µ0)
2
µ

2(t)
)
,

γ
3
c (x, t) =− k

x7

7!
1

T 3 µ
5(t)
(

24+36(T µ0)µ(t)+12(T µ0)
2
µ

2(t)+(T µ0)
3
µ

3(t)
)
.

Continuing the iterations, we observe the following pattern

γ
n
c (x, t) =− k

x2n+1

(2n+1)!
n!
T n µ

n+2(t)L(1)
n (−(T µ0)µ(t)), (A.8)

which is written in terms of the generalized Laguerre polynomial L(1)
n . We prove by induction

that the expression (A.8) holds for all n > 0. Before giving the proof, recall the properties of

generalized Laguerre polynomials:

L(α)
n+1(p̌) =

1
n+1

(
(2n+α +1− p̌))L(α)

n (p̌)− (n+α)L(α)
n−1(p̌)

)
, (A.9)

d
d p

L(α)
n (p̌) = p̌−1

(
nL(α)

n (p̌)− (n+α)L(α)
n−1(p̌)

)
, (A.10)
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for any α >−1. Let us define p̌ =−T µ0µ(t) and assume that the formula (A.8) is valid for an

arbitrary n. Then, substituting (A.8) into (A.7) yields

γ
n+1
c (x, t) =− k

x2n+3

(2n+3)!
n!
T n

(
(n+2)

T
µ

n+3(t)L(1)
n (p̌)+µ

n+2 1
p̌

(
nL(1)

n (p̌)− (n+1)L(1)
n−1(p̌)

)
× d p̌

dt
+µ0µ

2(t)µn+2(t)L(1)
n (p̌)

)
, (A.11)

where we use the property (A.10). By noting that d p̌/dt =−µ0µ2(t), we get

γ
n+1
c (x, t) =− k

x2n+3

(2n+3)!
n!

T n+1 µ
n+3(t)

(
(2n+2+T µ0µ(t))L(1)

n (p̌)− (n+1)L(1)
n−1(p̌)

)
.

(A.12)

In the light of the fact (A.9), we rewrite (A.12) as follows

γ
n+1
c (x, t) =− kx2n+3

(2n+3)!
(n+1)!

T n+1 µ
n+3(t)L(1)

n+1(−(T µ0)µ(t)),

which proves that (A.8) is valid for n+1 as well. In other words, it is proved by induction that

(A.8) holds for all n > 0. Then, we finally obtain the unique C∞ solution of the kernel from (A.5)

and (A.8) as follows

γc(x, t) =− kµ
2(t)

∞

∑
n=0

x2n+1

(2n+1)!
n!
T n µ

n(t)L(1)
n (−(T µ0)µ(t)).

The estimation of the growth-in-time of γc(x, t) is given by

|γc(x, t)| ≤ |k|µ2(t)x
∞

∑
n=0

(µ(t)x2)n

T n(n+1)!
L(1)

n (−(T µ0)µ(t)),

≤ |k|µ2(t)De
D2
T µ(t) I1(2

√
D2µ0µ2(t))√

D2µ0µ2(t)
, (A.13)

where we use the relation given in [107, Theorem 5.1], and where I1 is the modified Bessel
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function of the first kind. Let us consider the bound of the following term

µ
2(t)D

I1(2
√

D2µ0µ2(t))√
D2µ0µ2(t)

= µ
2(t)D

∞

∑
m=0

(√
D2µ0µ2(t)

)2m

m!(m+1)!

=
1

µ0D

∞

∑
m=1

(√
D2µ0µ2(t)

)2m

(m−1)!m!

≤ 1
µ0D

∞

∑
m=0

(√
5D2µ0µ2(t)

)2m

(2m)!

≤ 1
µ0D

eD
√

5µ0µ(t), (A.14)

by using the inequality 1
(n−1)!n! ≤

5n

(2n)! for any n ∈ N and the property ∑
∞
k=0

z2k

(2k)! = cosh(z) for

any z ∈ R. In view of the bound (A.14), we can rewrite (A.13) as (A.1).

The Kernel qc(x,y, t): The kernel qc(x,y, t) defined in (2.146)-(2.148) can be recursively

computed by a successive approximation. Let ξ = 1
2(x+ y) and η = 1

2(x− y), and perform the

change of variables

Qc(ξ ,η , t) = qc(ξ +η ,ξ −η , t). (A.15)

Then, (2.146)-(2.148) become

∂ξ ηQc(ξ ,η , t) = ∂tQc(ξ ,η , t)+µ0µ
2(t)Qc(ξ ,η , t), (A.16)

Qc(ξ ,ξ , t) = γc(2ξ , t), (A.17)

Qc(ξ ,0, t) = 0. (A.18)

This PDE needs to be solved on the domain (ξ ,η , t) ∈ Ω = [η ,D−η ]× [0,D/2]× [t0, t0 +T ).

Let us integrate (A.16) with respect to ξ and η in view of (A.17), (A.18) as follows

Qc(ξ ,η , t) = γc(2η , t)+
∫

ξ

η

∫
η

0

(
∂tQc(σ ,β , t)+µ0µ

2(t)Qc(σ ,β , t)
)
dβdσ , (A.19)

174



which yields an implicit solution. Similarly, we look for a solution of (A.19) in terms of the

infinite series

Qc(ξ ,η , t) =
∞

∑
n=0

Qn
c(ξ ,η , t), (A.20)

where

Q0
c(ξ ,η , t) = γc(2η , t), (A.21)

Qn
c(ξ ,η , t) =

∫
ξ

η

∫
η

0

(
∂tQn−1

c (σ ,β , t)+µ0µ
2(t)Qn−1

c (σ ,β , t)
)

dβdσ . (A.22)

Let us compute the following estimates from (A.1), (A.21), (A.22)

|Q0
c(ξ ,η , t)| ≤C1eC2µ(t),

|Q1
c(ξ ,η , t)| ≤C1

1
T

C3µ
2(t)eC2µ(t)

ηξ ,

|Q2
c(ξ ,η , t)| ≤C1

1
T 2C3µ

3(t)(2+C3µ(t))eC2µ(t) (ξ η)2

2!2!
,

|Q3
c(ξ ,η , t)| ≤C1

1
T 3C3µ

4(t)
(

6+6C3µ(t)+C2
3 µ

2(t)
)

eC2µ(t) (ξ η)3

3!3!
. (A.23)

The iterative computations yield the following pattern

|Qn
c(ξ ,η , t)| ≤C1

1
T nC3µ

n+1(t)(n−1)!eC2µ(t) (ξ η)n

n!n!
L(1)

n−1(−C3µ(t)), (A.24)

for n ∈ N, which can be proved by induction following the similar procedure done for (A.8).

Then, it follows from (A.24) that the series (A.20) converges uniformly and absolutely on the

domain Ω. We obtain the growth-in-time of the kernel by substituting (A.24) into (A.20) and

inverting the change of variables as follows

|qc(x,y, t)| ≤C1eC2µ(t)+
∞

∑
n=0

C1C3

(
(x2 − y2)

4T

)n+1 n!
((n+1)!)2 µ

n+2(t)L(1)
n (−C3µ(t))eC2µ(t),
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≤C1eC2µ(t)+C1C3
D2

4T
µ

2(t)e
(

C2+
D2
4T

)
µ(t) I1(2

√
C3µ2(t)D2/(4T ))√

C3µ2(t)D2/(4T )
, (A.25)

where we use the relation given in [107, Theorem 5.1]. Let us consider the bound of the following

term

C3µ
2(t)

D2

4T
I1(2

√
C3µ2(t)D2/(4T ))√

C3µ2(t)D2/(4T )
=

∞

∑
m=1

(√
C3µ2(t)D2/(4T )

)2m

(m−1)!m!
,

≤
∞

∑
m=0

(√
5C3µ2(t)D2/(4T )

)2m

(2m)!
,

≤ e
√

5C3D2/(4T )µ(t), (A.26)

by noting the fact that 1
(m−1)!m! ≤

5m

(2m)! for all m ∈ N. In view of the bound (A.26), we can

rewrite (A.25) as (A.2). The next step is to prove the uniqueness of the solution of the integral

equation (A.19). Let us assume that q′c(x,y, t) and q′′c (x,y, t) are two different solutions of (A.19).

Then, let us define ∆qc(x,y, t) = q′c(x,y, t)−q′′c (x,y, t). Considering the boundedness result (A.2),

we get |∆qc(x,y, t)| ≤ 2C4eC5µ(t). We use this inequality and follow the same estimates as in

(A.24) to get

|∆Qc(ξ ,η , t)| ≤ 2C3C4

(
(x2 − y2)

4T

)n
(n−1)!

n!n!
µ

n+1(t)L(1)
n−1(−C3µ(t))eC5µ(t) → 0

as n → ∞ from which we conclude that the integral equation (A.19) has a unique solution for

t ∈ [t0, t0 +T ), (x,y) ∈ T .

The Kernel qr(x,y, t): The analytical solution of this kernel is given in [21] as follows

qr(x,y, t) =−yµ0µ
2(t)e

µ(t)(x2−y2)
4T

I1

(√
µ0µ2(t)(x2 − y2)

)
√

µ0µ2(t)(x2 − y2)

which is unique and C∞ for t ∈ [t0, t0+T ), (x,y) ∈T . Additionally, it is shown in [21] that (A.3)

holds. ■

176



A.2 Solutions of Γ(x, t), p(x,y, t)

Proposition A.2 The time-varying kernel equations (2.160)–(2.162) and (2.163)–(2.165) have

unique solutions. The growth-in-time bounds of these time-varying kernels and their spatial

derivatives are given as follows

|Γ(x, t)| ≤C7µ
2(t)e

D2
T µ(t), (A.27)

|∂xΓ(·, t)| ≤ kHµ
2(t)e

D2
T µ(t), (A.28)

|p(·, ·, t)| ≤C12µ
2(t)e

3D2
2T µ(t), (A.29)

|∂x p(·, ·, t)| ≤C13µ
3(t)e

3D2
2T µ(t), (A.30)

where C7 := kHD, C13 := kH +C12 for some C12 > 0.

Proof

The Kernel Γ(x, t): We perform the similar procedure as in the derivation of the solution

for γc(x, t) to characterize the kernel defined in (2.163)–(2.165). The integration of (2.163) twice

with respect to x in view of the boundary conditions (2.164) and (2.165) yields following implicit

solution

Γ(x, t) =− kHµ
2(t)x+

∫ x

0

∫
τ

0

(
∂tΓ(s, t)− kHµ

2(t)Γ(s, t)
)
dsdτ. (A.31)

The existence of the solution of (A.31) can be shown by using the method of successive approxi-

mations

Γ(x, t) =
∞

∑
n=0

Γ
n(x, t), (A.32)
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where

Γ
0(x, t) =− kHµ

2(t)x, (A.33)

Γ
n+1(x, t) =

∫ x

0

∫
τ

0

(
∂tΓ

n(s, t)− kHµ
2(t)Γn(s, t)

)
dsdτ, (A.34)

for n ∈ N0. Computing (A.32) using the recursive formula (A.34) with the initial value (A.33),

we obtain the following unique C∞ solution

Γ(x, t) =
∞

∑
n=0

−kH
x2n+1

(2n+1)!
n!
T n µ

n+2L(1)
n (T kHµ(t)). (A.35)

The growth-in-time bound of (A.35) is determined as follows

|Γ(x, t)| ≤ kHDµ
2(t)

∞

∑
n=0

(D2µ(t))n

T n(n+1)!
L(1)

n ((T kH)µ(t)),

= kHDµ
2(t)e

D2
T µ(t) J1(2

√
kHD2µ2(t))√

kHD2µ2(t)
,

≤ kHDµ
2(t)e

D2
T µ(t), (A.36)

where J1(·) is the Bessel function of the first kind, as defined in the Notation paragraph of

Chapter 2. In (A.36), we use the relation in [107, Theorem 5.1] and note from [116, p. 49]

the fact that
∣∣∣J1(2σ)

σ

∣∣∣≤ 1 for all σ ∈ R. Then, we get (A.27). The growth-in-time bound of the

spatial derivative of (A.35) is obtained in a similar fashion as (A.28).

The Kernel p(x,y, t): Due to two independent boundary conditions of the kernel defined

in (2.160)–(2.162), we can separate this kernel PDE into two sets of PDE systems as follows

p(x,y, t) = pc(x,y, t)+ pr(x,y, t), (A.37)
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where

∂t pc(x,y, t) = ∂xx pc(x,y, t)−∂yy pc(x,y, t)+µ0µ
2(t)pc(x,y, t), (A.38)

pc(x,0, t) = Γ(x, t), (A.39)

pc(x,x, t) = 0, (A.40)

and

∂t pr(x,y, t) = ∂xx pr(x,y, t)−∂yy pr(x,y, t)+µ0µ
2(t)pr(x,y, t), (A.41)

pr(x,0, t) = 0, (A.42)

pr(x,x, t) = − x
2

µ0µ
2(t), (A.43)

for t ∈ [t0, t0 +T ), (x,y) ∈ T . The solution of the kernel (A.38)–(A.40) is proved by the method

of successive approximation. Let ξ = 1
2(x+ y) and η = 1

2(x− y), and perform the change of

variables

Pc(ξ ,η , t) = pc(ξ +η ,ξ −η , t), (A.44)

for (ξ ,η , t) ∈ Ω. Then, (A.38)-(A.40) become

∂ξ ηPc(ξ ,η , t) = ∂tPc(ξ ,η , t)−µ0µ
2(t)Pc(ξ ,η , t) (A.45)

Pc(ξ ,ξ , t) = Γ(2ξ , t), (A.46)

Pc(ξ ,0, t) = 0. (A.47)

The implicit solution of (A.45)–(A.47) follows from the integration of (A.45) with respect to ξ
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and η in view of (A.46) and (A.47),

Pc(ξ ,η , t) = Γ(2η , t)+
∫

ξ

η

∫
η

0

(
∂tPc(σ ,β , t)−µ0µ

2(t)Pc(σ ,β , t)
)

dβdσ . (A.48)

The solution of the integral equation (A.48) is obtained by the method of successive approxima-

tion

Pc(ξ ,η , t) =
∞

∑
n=0

Pn
c (ξ ,η , t), (A.49)

where

P0
c (ξ ,η , t) = Γ(2η , t), (A.50)

Pn
c (ξ ,η , t) =

∫
ξ

η

∫
η

0

(
∂tPn−1

c (σ ,β , t)−µ0µ
2(t)Pn−1

c (σ ,β , t)
)

dβdσ . (A.51)

The recursion formula (A.51) with (A.50) results in the following upper bound

|Pn
c (ξ ,η , t)| ≤C7

1
T n µ

n+2(t)n!eC8µ(t) (ξ η)n

n!n!
L(1)

n (−C9µ(t)), (A.52)

where C8 := D2/T , C9 :=C8 −µ0T < 0 provided that µ0 >C8/T = D2/T 2. The bound (A.52)

holds for n ∈ N0 and its proof is obtained by induction following the similar procedure done for

(A.8). It follows from (A.52) that the series (A.49) converges uniformly and absolutely on the

domain Ω. Let us invert the change of variables in (A.52) from (ξ ,η , t) to (x,y, t) and substitute

it into (A.49) as follows

|pc(x,y, t)| ≤
∞

∑
n=0

C7

(
x2 − y2

4T

)n 1
n!

µ
n+2(t)eC8µ(t)L(1)

n (−C9µ(t)),

≤C7µ
2(t)e

D2
2T µ(t)+C8µ(t)

J1

(
2
√

D2C9µ2(t)/(2T )
)

√
D2C9µ2(t)/(2T )

,

≤C7µ
2(t)e

3D2
2T µ(t), (A.53)

180



by using the relation [107, Theorem 5.1], noting from [116, p. 49] the fact that
∣∣∣J1(2σ)

σ

∣∣∣≤ 1 for

all σ ∈R and considering the property 1
n! ≤

2n

(n+1)! for all n ∈N0. We can prove the uniqueness of

the inverse kernel |pc(x,y, t)| as we proved for the direct kernel |qc(x,y, t)|. Moreover, replacing

the boundary condition (A.39) by ∂xΓ(x, t) and following the same procedure in view of (A.28),

we obtain the following bound

|∂x pc(·, ·, t)| ≤ kHµ
2(t)e

3D2
2T µ(t). (A.54)

The unique C∞ solution of (A.41)–(A.43) can be found in [21] and it is as follows

pr(x,y, t) =−yµ0µ
2(t)e

µ(t)(x2−y2)
4T

J1

(√
µ0µ2(t)(x2 − y2)

)
√

µ0µ2(t)(x2 − y2)

for t ∈ [t0, t0+T ), (x,y) ∈T . The estimation of the growth-in-time bound is obtained as follows

|pr(·, ·, t)| ≤C10µ
2(t)e

D2
4T µ(t), (A.55)

where C10 = Dµ0/2, by noting
∣∣∣J1(σ)

σ

∣∣∣ ≤ 0.5 for all σ ∈ R. Taking the spatial derivative of

pr(x,y, t) and following the similar procedure, we obtain the following bound

|∂x pr(·, ·, t)| ≤C11µ
3(t)e

D2
4T µ(t), (A.56)

where C11 = µ0(1+D2/(2T )). The solution of the kernel (2.160)–(2.162) is obtained from the

solutions of (A.38)–(A.40) and (A.41)–(A.43). Hence, its growth-in time is calculated as follows

|p(·, ·, t)| ≤ |pc(·, ·, t)|+ |pr(·, ·, t)|,

=C7µ
2(t)e

3D2
2T µ(t)+C10µ

2(t)e
D2
4T µ(t). (A.57)

Then, we obtain (A.29). Furthermore, we get the bound (A.30) from (A.37), (A.54), (A.56). ■
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Appendix B

Proof of Theorem 3.4

Proof Let us proceed through the proof step by step.

Step 1: State transformation. Consider the following transformations

θ̃ f =
1
α

θ̃ , Ĝ f =
1
α

Ĝ, η̃ f =
1

α2 η̃ , (B.1)

which transform (3.81) to the following system

d
dt



θ̃ f

Ĝ f

η̃ f

α


=



λ θ̃ f −λ
β

α
θ̃ f +KĜ f

(λ −ωl −λ
β

α
)Ĝ f +ωl

[
ν(θ̃ f α +S(t)α)− η̃ f α2] M(t)

α2

(2λ −ωh −2λ
β

α
)η̃ f +ωh

1
α2 ν(θ̃ f α +S(t)α)

−λα +λβ


, (B.2)

where ν is as defined in (3.19) and satisfies (3.20).

Step 2: Averaging operation. We rewrite the system (B.2) in the time scale τ = ωt as

follows

d
dτ



θ̃ f

Ĝ f

η̃ f

α


=

1
ω



λ θ̃ f −λ
β

α
θ̃ f +KĜ f

(λ −ωl −λ
β

α
)Ĝ f +ωl

[
ν(θ̃ f α + S̄(τ)α)− η̃ f α2] M̄(τ)

α2

(2λ −ωh −2λ
β

α
)η̃ f +ωh

1
α2 ν(θ̃ f α + S̄(τ)α)

−λα +λβ


. (B.3)
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where S̄(τ) = S(τ/ω),M̄(τ) = M(τ/ω). The average of the system (B.3) over the period Π

defined in (3.26) is given by

d
dτ



θ̃ a
f

Ĝa
f

η̃a
f

αa


=

1
ω



(λ −λ
β

αa )θ̃ a
f +KĜa

f

(λ −ωl −λ
β

αa )Ĝa
f

(2λ −ωh −2λ
β

αa )η̃a
f

−λαa +λβ


+

1
ω



0

ωl
1
Π

∫
Π

0 ν(θ̃ a
f αa + S̄(σ)αa) M̄(σ)

(αa)2 dσ

ωh
1
Π

∫
Π

0 ν(θ̃ a
f αa + S̄(σ)αa) 1

(αa)2 dσ

0


. (B.4)

It follows from (B.4) that the average equilibrium denoted as
[

θ̃
a,e
f Ĝa,e

f η̃
a,e
f αa,e

]T

satisfies

α
a,e = β , (B.5)

Ĝa,e
f = 0, (B.6)

ωl

Π

∫
Π

0
ν(θ̃ a,e

f β + S̄(σ)β )
M̄(σ)

β 2 dσ = 0, (B.7)

1
Π

∫
Π

0
ν(θ̃ a,e

f β + S̄(σ)β )
1

β 2 dσ = η̃
a,e
f . (B.8)

Let us postulate the ith element θ̃
a,e
fi of θ̃

a,e
f in the following form

θ̃
a,e
fi =

n

∑
j=1

bi
ja j +β

n

∑
j=1

n

∑
k≥ j

ci
j,ka jak +O(β 2|a3|), (B.9)

where bi
j and ci

j,k are real numbers, substitute (B.9) into (B.7), perform a Taylor series expansion

of ν as in (3.29) and equate the like powers of a j. Then, we obtain bi
j = 0 ∀i, j ∈ {1,2 . . . ,n},
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ci
j,k = 0 ∀i, j,k ∈ {1,2, . . . ,n} such that j ̸= k as well as



c1
j, j
...

ci−1
j, j

ci
j, j

ci+1
j, j
...

cn
j, j



= −H−1



1
4

∂ 3ν

∂ z1∂ z2
j
(0)

...

1
4

∂ 3ν

∂ z j−1∂ z2
j
(0)

1
8

∂ 3ν

∂ z3
j
(0)

1
4

∂ 3ν

∂ z2
j ∂ z j+1

(0)

...

1
4

∂ 3ν

∂ z2
j ∂ zn

(0)



. (B.10)

Following the same methodology, we compute η̃
a,e
f in view (3.29), (B.8), (B.9). Then, we find

the equilibrium of the average system (B.4) as follows

θ̃
a,e
fi = β

n

∑
j=1

ci
j, ja

2
j +O(β 2|a|3), (B.11)

η̃
a,e
f =

1
4

n

∑
i=1

Hi,ia2
i +O(β 2|a|4) (B.12)

together with (B.5) and (B.6).

Step 3: Stability analysis. The Jacobian of the average system (B.4) at equilibrium is

given by

Ja
f =

1
ω



0n×n K 0n×1 0n×1

ωl
Π

∫
Π

0

∂

(
νM̄

(αa)2

)
∂ θ̃ f

dσ −ωlIn×n 0n×1
ωl
Π

∫
Π

0

∂

(
νM̄

(αa)2

)
∂αa dσ

ωh
Π

∫
Π

0

∂

(
ν

(αa)2

)
∂ θ̃ f

dσ 01×n −ωh
ωh
Π

∫
Π

0

∂

(
ν

(αa)2

)
∂αa dσ

01×n 01×n 0 −λ


. (B.13)

Considering the structure of (B.13), we get that it is Hurwitz if and only if the following inequality

184



is satisfied

ωl

Π

(∫
Π

0

M̄(σ)

(αa,e)2
∂

∂ θ̃ f
ν(θ̃ a,e

f α
a,e + S̄(σ)αa,e)dσ

)
< 0. (B.14)

By performing a Taylor expansion of ν as in (3.29), we get that (B.14) is equal to ωlH +

[O(β |a|)]n×n. Let us define

A =

 0n×n K

ωlH +[O(β |a|)]n×n −ωlIn×n

 , (B.15)

which corresponds to 2n×2n submatrix in the upper left corner of (B.13). Then, we compute

det(λA I2n×2n − (1/ω)A ) = det
(
(λ 2

A +ωl(1/ω)λA )In×n −ωl(1/ω
2)KH

+[O(β (1/ω
2)|a|)]n×n

)
, (B.16)

which, in view of H < 0, proves that Ja
f is Hurwitz for sufficiently small β |a|. Then, based on

the averaging theorem [49], we show that there exist ω̄, ā > 0 such that for all ω > ω̄ and β |a| ∈

(0, ā), the system has a unique exponentially stable periodic solution (θ̃ Π
f (τ),µ

Π
f (τ), η̃

Π
f (τ),

αΠ(τ)) of period Π and this solution satisfies

∣∣∣∣∣θ̃ Π
fi (τ)−β

n

∑
j=1

ci
j, ja

2
j

∣∣∣∣∣≤ O(1/ω +β
2|a|3), (B.17)

∣∣ĜΠ
f (τ)

∣∣≤ O(1/ω), (B.18)∣∣∣∣∣η̃Π
f (τ)−

1
4

n

∑
i=1

Hi,ia2
i

∣∣∣∣∣≤ O(1/ω +β
2|a|4), (B.19)

∣∣αΠ(τ)−β
∣∣≤ O(1/ω). (B.20)

In other words, the signals θ̃ f (τ), Ĝ f (τ), η̃ f (τ) converge to an O(1/ω +β |a|2)-, O(1/ω)-, and

O(1/ω + |a|2)-neighborhood of the origin, respectively. The signal α(τ) converges to β .
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Step 4: Convergence to extremum. Considering the results in Step 3 and recalling from

(B.1) and Fig. 3.1 with the modified α-dynamics (3.78) that

θ(t) = α(t)θ̃ f (t)+θ
∗+α(t)S(t), (B.21)

we conclude the exponential convergence of θ(t) to an O(β/ω +β |a|)-neighborhood of θ ∗.

Hence, performing a Taylor series expansion of ν as in (3.29) and noting (B.21), we conclude the

convergence of the output y(t) to an O((β/ω)2 +β 2|a|2)-neighborhood of h(θ ∗) and complete

the proof of Theorem 3.4. ■
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Appendix C

Additional Theorem and Useful
Definitions for Chapter 5

C.1 Additional Theorem

Theorem C.1 Consider the following uES design


θ̇ = φ

p(t)
n

∑
i=1

√
αiωiei cos

(
ωi(t0 + γ(φ q(t)−1))+ kiφ

r(t)(J(θ)−η)
)
,

η̇ = (−ωhη +ωhJ(θ))φ
p+1(t),

(C.1)

where the function φ(t) is defined in Table 5.2 with the corresponding parameters p,q,r,γ . Let

ωi = ωω̂i such that ω̂i ̸= ω̂ j ∀i ̸= j, t0 ≥ 0, αi,ki,ωh > 0 ∀i = 1, . . . ,n. Let Assumptions 5.3, 5.4

hold, and Assumption 5.5 hold with c < p−2κ + r, d < p−2κ +1. Then, there exists ω∗ > 0

such that for all ω > ω∗, the input θ(t)→ θ ∗(t) semi-globally with respect to ω and at the same

rate that 1/φ(t)→ 0, and there exist a class K L function B, a class K function Y , and a

nonnegative constant D(θ(t0),θ ∗(t0),η(t0)) such that

|θ(t)−θ
∗(t)| ≤ φ

−1(t)
(

D+B (|θ(t0)−θ
∗(t0)|, t − t0)+ sup

t0≤s≤t
B
(
Y
(
φ
−1(s)

)
, t − s

))
.

(C.2)

Proof Let us proceed through the proof step by step.
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Step 1: State transformation. Let us consider the following transformations

θ f = φ(t)(θ −θ
∗(t)), (C.3)

η f = φ
2κ(t)(η − J(θ ∗(t))), (C.4)

which transform (5.16) to



θ̇ f = −φ(t)θ̇ ∗(t)+
φ̇(t)
φ(t)

θ f +φ
p+1(t)

n

∑
i=1

√
αiωiei cos

(
ωi(t0 + γ(φ q(t)−1))+ kiφ

r(t)

×
(
J f (θ f , t)−φ

−2κ(t)η f
))

,

η̇ f =

(
2κφ̇(t)

φ(t)
−ωhφ

p+1(t)
)

η f +ωhφ
2κ+p+1(t)J f (θ f , t)−φ

2κ(t)J̇(θ ∗(t)),

(C.5)

with

J f (θ f , t) = J(θ f /φ(t)+θ
∗(t))− J(θ ∗(t)). (C.6)

Step 2: Time transformation. We introduce the following time dilation and contraction

transformations

τ = t0 + γ(φ q(t)−1) (C.7)

t = φ
−1
(
(1+(τ − t0)/γ)

1
q

)
, (C.8)

where φ−1(·) denotes the inverse of the function φ(·). Each φ(t) function in Table 5.2 with the

corresponding the parameters p,q yields

φ̇(t) = φ
p−q+2(t)/(γq). (C.9)
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Using (C.7) and (C.9), we compute

dτ

dt
= φ

p+1(t). (C.10)

Then, we rewrite (C.5) in dilated τ-domain as



dθ f

dτ
= −φτ(τ)

dθ ∗
τ (τ)

dτ
+

1
γqφ

q
τ (τ)

θ f +
n

∑
i=1

√
αiωiei

× cos
(

ωiτ + kiφ
r
τ (τ)(J f ,τ(θ f ,τ)−φ

−2κ
τ (τ)η f )

)
dη f

dτ
=

(
2κ

γqφ
q
τ (τ)

−ωh

)
η f +ωhφ

2κ
τ (τ)J f ,τ(θ f ,τ)−φ

2κ
τ (τ)

∂J(θ ∗
τ (τ))

∂τ
,

(C.11)

where

φτ(τ) = (1+(τ − t0)/γ)
1
q , (C.12)

θ
∗
τ (τ) = θ

∗
(

φ
−1
(
(1+(τ − t0)/γ)

1
q

))
(C.13)

with

J f ,τ(θ f ,τ) = J(θ f /φτ(τ)+θ
∗
τ (τ))− J(θ ∗

τ (τ)). (C.14)

Step 4: Stability analysis. Note that the system (C.11) is in similar form to (5.21) with

γ = 1
β
,q = v, except that the bounds in Assumption 5.5 need to be satisfied in τ-domain for

(C.11). The growth bounds in Assumption 5.5 is rewritten in τ-domain as

∣∣∣∣dθ ∗
τ (τ)

dτ

∣∣∣∣+φ
p+1
τ (τ)

∣∣∣∣d2θ ∗(t)
dτ2

∣∣∣∣≤ Mθ φ
c−p−1
τ (τ), (C.15)∣∣∣∣∂J(θ ∗

τ (τ))

∂τ

∣∣∣∣+φ
p+1
τ (τ)

∣∣∣∣∂ 2J(θ ∗
τ (τ))

∂τ2

∣∣∣∣≤ MJφ
d−p−1
τ (τ), (C.16)

for τ ∈ [t0,∞). Recall that the conditions on the powers c,d in Assumption 5.5, for the practical
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stability of the system (5.21) is that c < −1− 2κ + r and d < −2κ , as provided in Table 5.1.

Following this analogy, for the stability of (C.11), the powers of the function φτ(τ) should satisfy

c− p−1 <−1−2κ + r, (C.17)

d − p−1 <−2κ, (C.18)

which are simply

c < p−2κ + r, (C.19)

d < p−2κ +1. (C.20)

Following the Step 2 to 6 in the proof of Theorem 5.3, we prove that the origin of (C.11) is

practically uniformly asymptotically stable. By the time contraction (C.8), we conclude the

practical uniform stability of (C.5) with the existence of ω∗ and the role of ω attributed as in

Definition C.1.

Similar to (5.53), the fading memory ISS bound of the average state θ̄ f in t-domain is

obtained as

|θ̄ f (t)| ≤ B
(
|θ̄ f (t0)|, t − t0

)
+ sup

t0≤s≤t
B
(
Y
(
φ
−1(s)

)
, t − s

)
, (C.21)

where the functions B and Y are defined as in (5.54) and (5.55), except that ξ (t),β , and v in

(5.54) and (5.55) are replaced by φ(t), 1
γ
, and q, respectively.

Step 5: Convergence to extremum. Considering the result in Step 4 and recalling from

(C.3) that

θ = θ
∗(t)+

1
φ(t)

θ f , (C.22)

we conclude the convergence of θ(t) to θ ∗(t) at the same rate that 1/φ(t)→ 0. The bound on
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the convergence error is obtained as

|θ(t)−θ
∗(t)| ≤ φ

−1(t)
(
|θ̄ f (t)|+ |θ f (t)− θ̄ f (t)|

)
, (C.23)

from which we conclude (C.2). From (5.9), (C.3), and (C.4), we prove the convergence of the

output y(t) and the filtered state η(t) to J(θ ∗(t)) at the rate of 1/φ 2κ(t) and complete the proof

of Theorem C.1. ■

C.2 Useful Definitions

Definition C.1 ([19]) A compact set S ⊂ Rn is said to be locally practically uniformly asymp-

totically stable for (5.1) if the following three conditions are satisfied:

• Practical Uniform Stability: For any ε > 0 there exist δ ,ω∗ > 0 such that for all t0 ∈ R+

and ω > ω∗, if x(t0) ∈US
δ

, then x(t) ∈US
ε for t ∈ [t0,∞).

• δ -Practical Uniform Attractivity: Let δ > 0. For any ε > 0 there exist t1 ≥ 0 and ω∗ > 0

such that for all t0 ∈ R+ and ω > ω∗, if x(t0) ∈US
δ

, then x(t) ∈US
ε for t ∈ [t0 + t1,∞).

• Practical Uniform Boundedness: For any δ > 0 there exist ε > 0 and ω∗ > 0 such that

for all t0 ∈ R+ and ω > ω∗, if x(t0) ∈US
δ

, then x(t) ∈US
ε for t ∈ [t0,∞).

Furthermore, if δ -practical uniform attractivity holds for every δ > 0, then the compact set S is

said to be semi-globally practically uniformly asymptotically stable for (5.1).

Definition C.2 ([18]) A compact set S ⊂ Rn is said to be singularly semi-globally practically

uniformly asymptotically stable for (5.3) if the following three conditions are satisfied:

• Singular Practical Uniform Stability: For all εx,εz ∈ (0,∞) there exist δx,δz ∈ (0,∞) and

ω∗ ∈ (0,∞) such that for all ω ∈ (ω∗,∞) there exists a ε∗ ∈ (0,∞) such that for all

ε ∈ (0,ε∗) and for all t0 ∈ R if x0 ∈US
δx

and z0 − l(x0) ∈U0
δz

, then x(t; t0,x0) ∈US
εx

and

z(t; t0,z0)− l(x(t; t0,x0)) ∈U0
εz

for t ∈ [t0,∞).
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• Singular Practical Uniform Attractivity: For all δx, δz, εx, εz ∈ (0,∞), there exist a t f ∈

[0,∞) and ω∗ ∈ (0,∞) such that for all ω ∈ (ω∗,∞) there exists a ε∗ ∈ (0,∞) such that for

all ε ∈ (0,ε∗) and for all t0 ∈ R, if x0 ∈ US
δx

and z0 − l(x0) ∈ U0
δz

, then x(t; t0,x0) ∈ US
εx

,

t ∈ [t0 +
t f
ε
,∞) and z(t; t0,z0)− l(x(t; t0,x0)) ∈U0

εz
for t ∈ [t0 + t f ,∞).

• Singular Practical Uniform Boundedness: For all δx, δz ∈ (0,∞) there exist εx,εz ∈ (0,∞)

and ω∗ ∈ (0,∞) such that for all ω ∈ (ω∗,∞) there exists a ε∗ ∈ (0,∞) such that for all

ε ∈ (0,ε∗) and for all t0 ∈ R, if x0 ∈US
δx

and z0 − l(x0) ∈U0
δz

, then x(t; t0,x0) ∈US
εx

and

z(t; t0,z0)− l(x(t; t0,x0)) ∈U0
εz

for t ∈ [t0,∞).
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Appendix D

Additional Lemma for Chapter 6 and
Proofs of Lemma 6.1 and Theorems
6.1–6.3

D.1 Additional Lemma for Chapter 6

Lemma D.1 The second element of the filter state y f , y f2 , can be expressed as follows

y f2 =
1

2λ 2
f

[
λ 2

f +ω2 λ 2
f

]y f1

y f3

− 1
2λ 2

f

[
λ 2

f +ω2 λ 2
f

]yssh
f1 + yin

f1

yssh
f3 + yin

f3

+ yssh
f2 + yin

f2, (D.1)

where the steady state response of the higher order terms yssh
f j

and the transient response of the

filter state yin
f =

[
yin

f1 · · · yin
fp

]
are defined by

yssh
f j

=
∞

∑
k=2

 λ f√
(λ 2

f + k2ω2)

p− j+1

(kω)
[
−ak sin(kωt + jϕk)+bk cos(kωt + jϕk)

]
, (D.2)

ẏin
f = Aλ yin

f (D.3)

for j = 1, . . . , p with ϕk = arctan(kω/λ ).

Proof The filter state y f j(t) can be written as summation of the steady state yss
f j

and transient
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responses yin
f j

,

y f j(t) = yss
f j
+ yin

f j
. (D.4)

The transient response obeys the dynamics (D.3). The transfer function for the steady state

response is obtained from the filter (6.21)–(6.22) as follows

Y ss
f j
(s) =

λ
j
f s

(λ f + s) j ∆(s). (D.5)

Let us write (D.5) in the time domain using (6.18) as follows

yss
f j
(t) =

∞

∑
k=1

 λ f√
(λ 2

f + k2ω2)

p− j+1

(kω)
[
−ak sin(kωt + jϕk)+bk cos(kωt + jϕk)

]
,

= yssf
f j
(t)+ yssh

f j
(t), (D.6)

where ϕk = arctan(kω/λ ) and yssh
f j

is defined in (D.2) and

yssf
f j
=

 λ f√
(λ 2

f +ω2)

p− j+1

ω ā1 cos(ωt + ϕ̄ + jϕ1) (D.7)

with ā1, ϕ̄ defined after (6.19). Our next step is to prove the following equality

yssf
f2 =

λ 2
f +ω2

2λ 2
f

yssf
f1 +

1
2

yssf
f3 . (D.8)

Let us write the third state of (D.2) as follows

yssf
f3 =

 λ f√
(λ 2

f +ω2)

p−2

ω ā1 cos(ωt + ϕ̄ +3ϕ1) (D.9)
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in which we can represent the sinusoidal term using the following trigonometric identity

cos(ωt + ϕ̄ +3ϕ1) =cos(ωt + ϕ̄ +ϕ1)cos(2ϕ1)− sin(ωt + ϕ̄ +ϕ1)sin(2ϕ1). (D.10)

By substituting (D.10) into (D.9) and considering (D.7) for j = 1, the right hand side of (D.8)

can be computed as follows

λ 2
f +ω2

2λ 2
f

yssf
f1 +

1
2

yssf
f3 =

 λ f√
(λ 2

f +ω2)

p−1

ω ā1

[
cos(ωt + ϕ̄ +ϕ1)

√
λ 2

f +ω2

2λ f
(1+ cos(2ϕ1))

− sin(ωt + ϕ̄ +ϕ1)sin(2ϕ1)

√
λ 2

f +ω2

2λ f

]

= yssf
f2 (D.11)

where we use the relations cos(ϕ1) =
λ f√

λ 2
f +ω2

, sin(ϕ1) =
ω√

λ 2
f +ω2

and the following trigonomet-

ric identities: 2cos2(ϕ1) = 1+ cos(2ϕ1),sin(2ϕ1) = 2sin(ϕ1)cos(ϕ1). The expression (D.1) is

obtained in view of (D.4), (D.6) and (D.8). ■

D.2 Proof of Theorem 6.1

Upon substituting the controller (6.10) to (6.9) in view of W ∗
i = W̃i +Ŵi for i = 1, . . . ,n,

we obtain

ė =−Ke+


Ψ1(u)TW̃1

...

Ψn(u)TW̃n

 u̇+ δ̇ + ε. (D.12)

Consider the following Lyapunov function

Vi =
1
2

e2
i +

1
2

trace
(
W̃iΓ

−1
wi

W̃ T
i
)
. (D.13)
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Let us take the time derivative of (D.13) in view of (D.12) as follows

V̇i =− kie2
i + trace

(
W̃iu̇Ψi(u)T ei

)
+ eiδ̇i + εiei − trace

(
W̃iΓ

−1
wi

˙̂W T
i

)
,

≤− 1
2

kie2
i −

γwi

2
trace

(
W̃iW̃ T

i
)
+

1
ki

ε̄
2
i +

1
ki
(δ̄ max

i )2 +
γwi

2
trace

(
W ∗

i (W
∗
i )

T) ,
≤− ciVi +

1
ki

ε̄
2
i +

1
ki
(δ̄ max

i )2 +
γwi

2
trace

(
W ∗

i (W
∗
i )

T) , (D.14)

where we define ci in (6.14), use the following trace identity

Ψi(u)TW̃iu̇ei = trace(W̃iu̇Ψi(u)T ei) (D.15)

and the following Young’s inequalities

γwitrace
(
W̃iŴ T

i
)
= − γwitrace

(
W̃iW̃ T

i
)
+ γwitrace

(
W̃i(W ∗

i )
T) ,

≤ − γwi

2
trace

(
W̃iW̃ T

i
)
+

γwi

2
trace

(
W ∗

i (W
∗
i )

T) . (D.16)

The solution of the differential inequality (D.14) is given by

Vi(t)≤Vi(0)exp−cit +
Di

ci
, (D.17)

where Di is defined in (6.15). We establish the uniform ultimate boundedness of ei,W̃i for

i = 1, . . . ,n from (D.17). It also follows from (D.13) and (D.17) that

ei(t)2 ≤ 2Vi(t)≤ 2
(

Vi(0)exp−cit +
Di

ci

)
, (D.18)

from which we conclude (6.13). ■
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D.3 Proof of Lemma 6.1

Substituting (D.1) into (6.25) and noting (6.24), we get the following error system

˙̃
Ω = −ρyy2

f1Ω̃−ρyy f1Ωh, (D.19)

where

Ωh =−(λ 2
f +Ω)(yssh

f1 + yin
f1)−λ

2
f (y

ssh
f3 + yin

f3)+2λ
2
f (y

ssh
f2 + yin

f2). (D.20)

Using some trigonometric identities, we can express the steady state response defined in (D.2) as

follows

yssh
f j

=

[
sin(ωt + jϕ1 + ϕ̄1) sin(2ωt + jϕ2 + ϕ̄2) · · ·

]
×block diag

[
λ f√

(λ 2
f +4ω2)

λ f√
(λ 2

f +9ω2)
· · ·

]p− j+1[
ā1ω 2ā2ω · · ·

]T

, (D.21)

where āi =
√

a2
i +b2

i , ϕ̄i = arctan(ai/bi) for i = 1, . . . ,q. Considering the maximum eigenvalue

of the block diagonal matrix in (D.21), we can compute the upper bound of yssh
f j

as follows

|yssh
f j
| ≤

 λ f√
(λ 2

f +4ω2)

p− j+1

|δ̇1,h|,

≤

 λ f√
(λ 2

f +4ω2)

p− j+1

δ̄
max
h ,

≜ ȳssh
f j
, (D.22)
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where δ̇1,h is the derivative of (6.20) and |δ̇1,h| ≤ δ̄ max
h for some δ̄ max

h > 0 for all t ∈ [0,∞). Let

us consider the Lyapunov function

V =
1

2ρy
Ω̃

2 +
1
2
(yin

f )
T Py f y

in
f , (D.23)

where

Py f Aλ +AT
λ

Py f =−((λ 2
f +Ω)2 +5λ

4
f +ρλ )I, (D.24)

for any ρλ > 0. The time derivative of (D.23) along with (6.26), (D.3) and (D.19) is given by

V̇ ≤−
βy

2ρy
Ω̃

2 − 1
8

y2
f1Ω̃

2 −
(
λmin(Qy)− (λ 2

f +Ω)2 −5λ
4
f
)
(yin

f )
T yin

f + εω

≤− cvV + εω (D.25)

with

cv = min

{
βy,

2ρλ

λmin(Py f )

}
, (D.26)

εω = 6(λ 2
f +Ω)2(ȳssh

f1 )
2 +6λ

4
f Ω

2(ȳssh
f2 )

2 +24λ
4
f (ȳ

ssh
f3 )

2, (D.27)

where we define ȳssh
f j

in (D.22), apply the Young’s inequalities for cross terms and use the property

of (a+b+ c)2 ≤ 3(a2 +b2 + c2). The solution of (D.25) is given by

V (t)≤V (0)exp−cvt +
εω

cv
. (D.28)

Then, we get from (6.27), (6.28) and (D.25) that

Ω̃(t)2 ≤ 2ρy(t)V (t)≤ 2ρyu

(
V (0)exp−cvt +

εω

cv

)
, (D.29)

which concludes (6.29). ■
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D.4 Proof of Theorem 6.2

Recalling the error system (6.9), the exosystem (6.31), (6.32) and the observers (6.37)–

(6.38), the observer error system can be written in the following cascade form

 ˙̃ei

˙̃W

=

−ci hT

L̂ S


 ẽi

W̃

+
(Ψi(u)TW̃i)u̇+ δ̇1,hq + εi

S̃ W − S̃ W̃

 . (D.30)

Let us consider the following Lyapunov function

V =
1
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The time derivative of (D.31) yields

V̇ ≤ −κλ
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(ā j jω)2,

≤ − ciVi +Di, (D.32)

where ci,Di,κλ are defined in (6.41), (6.42), (6.43), respectively, by noting that

W̃ T S̃ W ≤ κλ

2
||W̃ ||2 + 1

2κλ

λmax(S̃
T S̃ )||W ||2,

≤ κλ

2
||W̃ ||2 + 1

2κλ

(qω̃)2
q

∑
j=1

(ā j jω)2, (D.33)
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W̃ T S̃ W̃ = 0 (D.34)

as well as (D.16). The solution of the differential inequality (D.32) is given by

Vi(t)≤Vi(0)exp−cit +
Di

ci
. (D.35)

We establish the uniform ultimate boundedness of ei,W ,W̃i for i = 1, . . . ,n from (D.35). It also

follows from (D.31) and (D.35) that

ẽi(t)2 ≤ 2Vi(t)≤ 2
(

Vi(0)exp−cit +
Di

ci

)
. (D.36)

Note that the closed-loop state observer system after substitution of the controller (6.34) to (6.37)

is written as

˙̂ei =−kiêi. (D.37)

Considering the solution of (D.37) as well as the bound (D.36), we conclude (6.40). ■

D.5 Proof of Theorem 6.3

By substituting (6.47) into (6.46) in view of W ∗
i = W̃i +Ŵi for i = 1, . . . ,n, we get

ż =−Kµaz+µa


Ψ1(u)TW̃1

...

Ψn(u)TW̃n

 u̇+µaδ̇ +µaε. (D.38)

Consider the following Lyapunov function

Vi =
1
2

z2
i +

1
2

trace
(
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−1
wi

W̃ T
i
)
, i = 1, . . . ,n. (D.39)
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By taking the time derivative of (D.39) along with (D.38), we get

V̇i =− kiµaz2
i +µatrace
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where ci is defined in (6.51) and we perform Young’s inequalities for the following term

µaγwitrace
(
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= −µaγwitrace
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Let us multiply the both sides of (D.40) by exp
∫ t

0 ciµa(τ)dτ , then we get

d
dt
(Vi(t)exp

∫ t
0 ciµa(τ)dτ)≤ exp

∫ t
0 ciµa(τ)dτ

µa(t)

[
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trace
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T)] .
(D.42)

Integrating (D.42) from 0 to t and multiplying the both sides of the resulting expression by

exp−
∫ t

0 ciµa(τ)dτ , we obtain

Vi(t)≤ exp−ci(t+β t2/2)Vi(0)+
Di

ci
, (D.43)

where Di is defined in (6.52). Then, we conclude the uniform ultimate boundedness of zi,W̃i.

Hence, considering the transformation (6.45), we write

e2
i (t) =

1
µ2

a
z2

i (t)≤
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µ2
a

2Vi(t),

≤ 2
µ2
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Di

ci

)
, (D.44)
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from which we conclude (6.50). Considering the boundedness of z,e, ẏr and noting the transfor-

mation z = µae, we prove, from (6.47), the boundedness of the controller u̇. ■
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[22] J. Feiling, S. Koga, M. Krstić, and T. R. Oliveira. Gradient extremum seeking for static
maps with actuation dynamics governed by diffusion pdes. Automatica, 95:197–206,
2018.

[23] M. L. Galvão, T. R. Oliveira, and M. Krstić. Extremum seeking for stefan pde with
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