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A language model beats alphafold2 on orphans

Jennifer M. Michaud1, Ali Madani2, James S. Fraser1

1Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 
San Francisco, CA

2Profluent Bio, Oakland, CA

Abstract

Protein structure prediction with a language model improves accuracy for orphan and designed 

proteins.

Last year, decades of research on protein structure prediction culminated in the publication 

of two deep-learning methods, AlphaFold21 and RoseTTAFold2, that were nearly as 

accurate as experimental methods for protein structure determination. But both algorithms 

consume large computing resources, and because they depend on multiple sequence 

alignments as input, they are less successful in predicting the structure of so-called ‘orphan’ 

proteins — proteins with few or no homologs. Writing in Nature Biotechnology, Chowdhury 

et al.3 report substantial progress on both of these challenges. Their recurrent geometric 

network 2 (RGN2) method, which relies on a protein language algorithm, uses orders-of-

magnitude less computing time than AlphaFold2 and RoseTTAFold while outperforming 

them on average in predicting the structures of orphan proteins. These results highlight the 

breakneck pace of the field and suggest that further leaps in computational speed lie ahead.

Although orphan proteins may seem rare, they are common in the vast and ever-expanding 

protein universe that is emerging from large-scale genome sequencing. Approximately 20% 

of all metagenomic protein sequences4 and 11% of eukaryotic and viral protein sequences5 

are orphans. Moreover, de novo designed proteins are, by definition, without homologs, 

and an orthogonal method to predict the structures of proteins designed using traditional 

knowledge or physics-based forcefields would provide a very useful test of their potential to 

fold correctly.

AlphaFold2 and RoseTTAFold work less well on orphan proteins because they rely 

on multiple sequence alignments. Large and diverse alignments are important because 

correlations in amino acid co-occurrences between positions in multiple sequence 

alignments are a strong indicator that those positions are near each other in the three-

dimensional space of a folded protein. An earlier generation of computational models 

(AlphaFold1, trRosetta) used these inter-residue distance constraints as input for restrained 

energy minimization, in a manner similar to how nuclear Overhauser effect restraints are 

used in NMR spectroscopy for protein structure determination (Figure 1a,b). The most 
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recent deep learning models (AlphaFold2, RoseTTAFold) go a step further and generate a 

denser network of constraints that is used directly for structure prediction (Figure 1c).

The new RGN2 algorithm of Chowdhury et al. foregoes multiple sequence alignments 

completely, and it outperforms AlphaFold2 and RoseTTAFold on a set of orphan and 

designed proteins as measured by the root mean square deviation between predicted and 

experimental structures. How did the authors achieve such impressive results? The key 

advance was to employ a deep-learning language model, which is explicitly alignment-free. 

These models were pioneered for tasks that involve understanding natural language. They 

are trained to ‘fill-in-the-blank’ by predicting the most probable word for a given blank 

(or ‘masked token’) in a sentence. For example, a language model might complete the 

sentence “The most exciting language model research is published in ___” with “journals” 

or “conferences” or “Twitter” and assign a lower probability to the words “space” or 

“restaurants”.

The use of language models is a somewhat recent emergence in the fast-developing space 

of protein structure prediction. Their utility also exemplifies the theme of how increasing 

scale has enabled discovery. The ever-expanding protein sequence database provides a large 

training set for language models and recent advances in GPU computing have made it 

tractable to train such models with increasing complexity. As the models have grown in size, 

they have demonstrated increasing power for function prediction6, evolutionary analyses7,8, 

and now structural inference.

A similar task can be formulated to train a language model for protein structure 

prediction. In this case, the model must ‘fill-in-the-blank’ by predicting amino-acid-residue 

probabilities for a masked protein sequence in training. In the natural language example, 

the model learns a representation in which words that are similar to each other are also 

close in the embedding space. For protein space, the language model learns a representation 

that contains information about not only pairwise interactions between residues, but also 

three-residue, four-residue, and even higher order, interactions between residues. These 

interactions are the embodiment of the machine learning concepts of local and distant 

attention, which are also exploited in the analysis of multiple sequence alignments by 

AlphaFold2 and RoseTTAFold.

Similarly, RGN2 makes use of the concept of local and distant attention, which allows it 

to learn relationships over a wide range of distances in the one-dimensional input. Attention-

based methods infer structure based on many restraints across almost every position in the 

sequence (Figure 1c). Using the language model, RGN2 goes a step further by learning 

aspects of these restraints from all proteins, not just those contained in a specific alignment 

(Figure 1d).

Alongside using language models for guiding which parts of a linear sequence might be near 

to each other in space, RGN2 also explicitly learns geometric relationships to generate the 

backbone structure of a protein. It uses a mathematical representation of the polypeptide 

backbone based on Frenet-Serret formulas that is translationally and rotationally invariant. 

Although the need for translational and rotational invariance seems obvious — a structure 
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remains the same no matter how it is positioned in a coordinate system — finding a 

representation with these properties that is compatible with machine learning is far from 

trivial.

While RGN2 succeeds in the case of orphan proteins, it does not perform as well 

as AlphaFold2 or RosettaFold on proteins where multiple sequence alignments can be 

leveraged as inputs. It is also potentially less useful in iterative protein “hallucination” 

design applications, where a sequence is selected to converge on a desired structure9.

Given the sophisticated nature of the approaches implemented in RGN2, it should be useful 

in helping to unpack what makes the deep-learning ‘black box’ work. The substantial 

reduction of compute time and the ability to iterate quickly could have an invigorating effect 

on the field by allowing a wider range of model ablations to tease out the contribution of 

different parts of RGN2. The contributions of Chowdhury et al. to geometric representations 

are likely to impact other deep-learning structure prediction approaches as well. The direct 

incorporation of language models in a framework for generating 3D structure predictions is 

particularly exciting because these models have the ability to extrapolate beyond the training 

data, even generating novel, functional proteins10. Another notable aspect of this study is a 

new curated set of orphan and designed proteins that can be used as a benchmark for future 

structure prediction efforts.

Finally, the publication of RGN2 highlights how fast the field is moving. Each day brings 

new activity in this space, on biorxiv and twitter, where open implementations of alphafold 

and new interleaved language model/alphafold-type protocols have been announced recently. 

This sea change was catalyzed in part by Mohammed AlQuraishi, the senior author of 

Chowdhury et al., who wrote an in-depth blog post on the first AlphaFold breakthrough11 

and another on AlphaFold212, months before those works were eventually published in a 

journal. Even if the speed of advances in protein structure prediction slows, application of 

the lessons learned to other domains, including protein design and protein-small molecule 

interactions, has plenty of room to grow. A major lesson of RGN2 is that the most innovative 

contributions may come from focusing on areas where leading methods fall short and by not 

abandoning orphan problems.
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Figure 1: Distance restraints from experiment or language models in protein structure 
calculations.
a) Protein structure determined by NMR spectroscopy uses nuclear Overhauser effects 

(shown here as purple lines) to infer residues that are close together in 3D space. 

b) Similarly, early co-evolution-based methods used high correlations from sequence 

alignments (green) to infer residues that are close together in 3D space. c) AlphaFold2 and 

deep learning models further leverage attention to identify very weak preferences (orange) 

in sequence alignments to generate a denser network of restraints. d) A breakthrough of 

RGN2 is to learn these preferences (blue) from language models, which are intrinsically 

alignment-free, improving protein structure prediction for orphan proteins.
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