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Abstract 

Biolo gical dinitro gen (N 2 ) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bac- 
teria and ar c haea r eferr ed to as diazotr ophs. Cyanobacteria ar e conv entionall y consider ed to be the major contributors to marine N 2 

fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the 
biogeochemical significance of marine NCDs has not been demonstrated. This re vie w synthesizes multiple datasets, drawing from 

culti v ation-inde pendent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into 
the di v ersity, bio geo graph y, ecoph ysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences 
from both PCR-based and PCR-free methods, identifying taxa for futur e studies. NCD a bundances fr om a nov el data base of NCD nifH - 
based a bundances wer e colocalized with envir onmental data, unv eiling distinct distributions and environmental drivers of individual 
taxa. Mechanisms that NCDs may use to fuel and regulate N 2 fixation in response to oxygen and fixed nitrogen availability are dis- 
cussed, based on a meta bolic anal ysis of r ecentl y av aila b le Tara Oceans expedition data. The inte gr ation of multiple datasets provides 
a new perspecti v e that enhances understanding of the biolo gy, ecolo gy, and bio geo graphy of marine NCDs and provides tools and 

directions for future resear c h. 

Ke yw ords: diazotrophs; marine nitrogen cycle; nitrogen fixation; non-cyanobacterial diazotrophs 
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Introduction 

Biological dinitrogen (N 2 ) fixation is the microbial process,
whereby otherwise inert N 2 gas is reduced to biologically avail- 
able nitrogen (N) in the form of ammonia (NH 3 ). In the oceans, the 
N supplied through this process can support primary productiv- 
ity, especially in N-limited surface waters and, consequently, the 
v ertical tr ansport (export) of carbon (C) to the deep ocean (Karl et 
al. 1997 , Knapp et al. 2018 , Zehr and Capone 2021 ). More broadly,
the balance between N inputs from N 2 fixation and losses from 

denitrification and anaerobic ammonium (NH 4 
+ ) oxidation set the 

oceanic inventory of reactive N, impacting the global C cycle and 

Earth’s climate system (Gruber and Gallo w ay 2008 ). Rates of N 2 

fixation in the oceans have strong biogeographical patterns, with 

the highest rates measured in surface open-ocean and coastal wa- 
ters of the tr opics, subtr opics, and temper ate zones (e.g. Ca pone 
et al. 2005 , Berthelot et al. 2017 , Tang et al. 2019b ), and lo w er rates 
in polar regions (Blais et al. 2012 , Sipler et al. 2017 , Shiozaki et 
al. 2020 ) and the deep sea (r e vie w ed b y Moisander et al. 2017 , Be-
navides et al. 2018a ). Marine N 2 fixation has been best described 

in epipelagic en vironments , where rates are generally limited by 
temper atur e, nutrient [phosphorus (P) and iron (Fe)] concentra- 
Recei v ed 1 June 2022; revised 15 September 2022; accepted 17 November 2022 
© The Author(s) 2022. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution-NonCommercial License ( https://cr eati v ecommons.org/licen
r e pr oduction in any medium, provided the original work is properly cited. For com
ions , and N:P and/or N:F e ratios (Mills et al. 2004 , Moore et al.
009 , Letelier et al. 2019 , Tang et al. 2019a ). 

While the importance of N 2 fixation to marine biogeochemi- 
al cycling is indisputable, there is still uncertainty concerning 
hic h N 2 -fixing micr oor ganisms (diazotr ophs) contribute to this
rocess in marine euphotic waters. Earl y micr oscopy-based anal-
ses established the importance of filamentous c y anobacterial di-
zotr ophs ( Tric hodesmium and heter ocyst-forming symbionts of di-
toms) in tropical and subtropical surface waters (e.g. Dugdale et
l. 1961 , Mague et al. 1974 , Venrick 1974 , Carpenter and Price 1977 ,
aino and Hatori 1980 ). More recently, marine diazotrophic diver-
ity has been investigated using molecular a ppr oac hes tar geting
he nifH gene, which encodes the two identical subunits of the Fe
rotein of the nitrogenase enzyme complex and serves as a phy-

ogenetic marker (Zehr and McReynolds 1989 , Gaby and Buckley
011 ). These a ppr oac hes led to the discovery of diverse c y anobac-
erial diazotrophs in the open ocean, as well as diazotrophs from

an y linea ges not within the phylum Cy anobacteria, which w e
efer to as non-c y anobacterial diazotrophs (NCDs; see Box 1; Zehr
t al. 1998 ). Subsequent ocean surveys sho w ed that nifH genes
rom NCDs are ubiquitous in marine waters and can r eac h higher
 is an Open Access article distributed under the terms of the Cr eati v e 
ses/by-nc/4.0/ ), which permits non-commercial re-use, distribution, and 

mercial re-use, please contact journals.permissions@oup.com 
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 elativ e abundances than their c y anobacterial counterparts (Rie-
ann et al. 2010 , Farnelid et al. 2011 ). Ho w e v er, v ery fe w marine
CDs have been cultivated and the few isolates that exist have not
r ovided unequivocal e vidence of N 2 fixation in situ (Bostr om et
l. 2007 , Farnelid et al. 2014 , Bentzon-Tilia et al. 2015a , Martinez-
erez et al. 2018 ). To date, direct demonstrations of NCD N 2 fix-
tion in situ using culti vation-inde pendent approaches are ex-
r emel y limited. T hus , the biogeochemical significance of NCDs
emains unknown. 

Box 1. The case for using the term ‘non-c y anobacterial 
diazotroph’ 

This r e vie w focuses on micr oor ganisms r eferr ed to collectiv el y 
as non-c y anobacterial diazotrophs , or NCDs . T his term was 
pr e viousl y defined by Moisander et al. ( 2017 ) and includes 
all diazotrophic bacteria and archaea not part of the phylum 

Cyanobacteria. We argue that the term NCD is more accu- 
rate than other terms used in the marine liter atur e, suc h as 
‘heter otr ophic diazotr ophs’ and ‘heter otr ophic bacterial dia- 
zotrophs.’ 
Diazotr ophic div ersity is typicall y c har acterized by sequencing 
the nifH gene, which largely has congruence with 16S rRNA 

gene-based phylogeny (Zehr et al. 2003 ). This congruence is 
strong for c y anobacteria, such that if unknown sequences group 
within nifH Cluster 1B, they are phylogenetically distinguished 
as c y anobacteria. Most of these organisms are photoautotrophs, 
capable of using light as a source of energy and carbon diox- 
ide as a C source, though there are some notable exceptions 
found among unicellular c y anobacterial symbionts of hapto- 
phytes and diatoms (Tripp et al. 2010 , Nakayama and Inagaki 
2017 ). 
Unfortunately, nifH gene sequences are not easily used to pre- 
dict the metabolic strategy a particular NCD may use to acquire 
energy and C. Although there is some congruence between nifH - 
and 16S rRNA gene-based phylogenies for non-c y anobacteria, 
ther e ar e exceptions for important marine phyla, including the 
pr oteobacteria, whic h ar e spr ead acr oss m ultiple nifH clusters 
(Table S1, Supporting Information). More broadly, it can be chal- 
lenging to infer metabolic potential from a single gene. Even 

well-established phylogenetic markers like the 16S rRNA gene 
are difficult to use for resolving species- and strain-level iden- 
tities (Johnson et al. 2019 ), whic h ar e needed to infer metabolic 
str ategies fr om gener a containing high metabolic div ersity, suc h 

as the γ -proteobacterial genus Pseudomonas (Jun et al. 2016 ). 
Since nifH gene sequences cannot be used to accur atel y infer 
the metabolic potential of all NCDs, the terms ‘heter otr ophic 
bacterial diazotrophs (HBDs)’ (Delmont et al. 2018 ) or ‘het- 
er otr ophic diazotr ophs’ (Gr adoville et al. 2017a ) could poten- 
tiall y be inaccur ate . For example , γ -pr oteobacterial diazotr ophs 
within Cluster 1G include cultiv ated micr oor ganisms with di- 
v er gent metabolic str ategies , e .g. M. purpuratum , which uses 
light as a source of energy and organic C as the source of cell C 

(photoheter otr ophy), some str ains of P. stutzeri , whic h ar e facul- 
tativ e anaer obes that oxidize inor ganic compounds as a source 
of energy for growth (chemolithotrophy), and A. vinelandii which 

ar e aer obes that use or ganic C as their major source of en- 
er gy and C (c hemoheter otr ophy). Furthermor e, NCDs include 
arc haea, and ar e thus not all bacterial. 
Ideally, NCDs should be subclassified according to their poten- 
tial metabolic traits . T his will become more feasible with ad- 
vances the isolation and genome sequencing of marine NCDs 
(see ‘Diversity and ecophysiological features inferred from 

MAGs’). Here, we decided to use the term NCD as an accurate 
and inclusive way to refer to this group without implying a par- 
ticular metabolic strategy. 
uch of the ambiguity concerning the significance of marine
CDs stems from uncertainties about their ecophysiology, par-

icularly in well-lit, oxygenated marine habitats . T here are sev-
r al major c hallenges that marine NCDs m ust ov ercome (r e-
iew ed b y Bombar et al. 2016 ). N 2 fixation is ener geticall y expen-
ive, with high ATP and reductant requirements (Postgate 1982 ).
yanobacterial diazotrophs can produce organic C and acquire
ner gy thr ough oxygenic photosynthesis, although ther e ar e some
xceptions such as the photoheterotrophic symbiont UCYN-A
Tripp et al. 2010 ). In contrast, marine NCDs are thought to uti-
ize or ganic substr ates and/or alternativ e ener gy sources (includ-
ng possibly light) to meet energy and C r equir ements. Similar to

odel NCDs from terrestrial systems (Dixon and Kahn 2004 ), var-
ous energy acquisition pathwa ys ha ve been observed in marine
CD genomes, whic h ar e speculated to be important strategies

o fuel growth and N 2 fixation activity (Bentzon-Tilia et al. 2015a ,
artinez-Perez et al. 2018 , Acinas et al. 2021 ). Many marine NCDs

r e pr esumed to be c hemoheter otr ophic , thus ma y ha ve diffi-
ulty acquiring sufficient energy for N 2 fixation in euphotic open-
cean waters, which are often depleted in labile organic C. Indeed,
mendment experiments suggest that the abundances and/or N 2 

xation activity of NCDs are limited by the availability of dissolved
rganic C (DOC) in man y pela gic marine envir onments (Moisander
t al. 2012 , Dekaezemacker et al. 2013 , Rahav et al. 2016 ). 

A major challenge facing NCDs (and all diazotrophs) is the
rr e v ersible inactiv ation of the nitr ogenase enzyme by oxygen
O 2 ; Gallon 1992 ). The ecological adv anta ge of N 2 fixation is hin-
ered by the costs of cellular strategies needed to protect nitroge-
ase from O 2 . Cyanobacterial diazotrophs have evolved numerous
echanisms to separate N 2 fixation from O 2 either in space or in

ime (or both), including cellular differentiation, symbiosis, mem-
ranes to restrict O 2 diffusion, and increased rates of cellular res-
ir ation (r e vie w ed b y Zehr and Ca pone 2020 ). These mec hanisms
av e ener getic costs that would further exacerbate the C r equir e-
ents for NCDs. Particles have been proposed as habitats for NCD
 2 fixation, since they can provide both a C source and the poten-

ial for low O 2 microzones (Paerl and Prufert 1987 , Riemann et al.
010 , 2022 , Bombar et al. 2016 ). Ho w e v er, activ e tr anscription of
CD nifH genes is also found in free-living size fractions (Salazar
t al. 2019 ) and on particles too small to theor eticall y support low
 2 conditions (Farnelid et al. 2019 ). In the terrestrial environment,

ree-living Azotobacter vinelandii fixes N 2 under aerobic conditions
hr ough incr eased r espir ation to consume intr acellular O 2 and by
nv esting in c hemical barriers (like exopol ysacc harides) and lar ger
ell sizes to reduce O 2 intrusion into the cell (Post et al. 1982 , Poole
nd Hill 1997 , Sabra et al. 2000 ). It is likely that marine NCDs in-
abiting oxic environments may use similar strategies. 

The presence of nitrate (NO 3 
−) and NH 4 

+ is gener all y thought
o inhibit N 2 fixation, either by supporting the growth of fast-
rowing phytoplankton that outcompete diazotrophs for other
imiting nutrients (Ward et al. 2013 ), or by providing fixed N that
ome diazotrophs can utilize instead of investing in N 2 fixation
although inhibition is variable, see Knapp 2012 ). Ho w ever, fixed
norganic N is abundant in subeuphotic zone waters and coastal
r upwelling ecosystems where N 2 fixation by NCDs has been im-
licated (r e vie w ed b y Moisander et al. 2017 ), as well as in sedi-
ent systems where N 2 fixation occurs (Capone 1983 ), underscor-

ng that the sensitivity of NCDs to fixed N is not well-understood.
urthermore, in low O 2 environments, N 2 fixation in the presence
f high NH 4 

+ has been speculated to drive the balance of internal
ellular redox states in Rhodopseudomonas palustris (isolate BAL398)
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a model NCD from the Baltic Sea (r e vie w ed b y Bombar et al. 2016 ).
Ho w e v er, it is unknown whether some marine NCDs may use N 2 

fixation as a redox balancing strategy in low O 2 environments 
(such as on particles). 

Despite these challenges, NCDs appear to be widely distributed 

and occasionall y tr anscriptionall y activ e in marine euphotic wa- 
ters. Measuring the activity of NCDs and quantifying their impor- 
tance to marine N 2 fixation is an activ e ar ea of r esearc h. Fortu- 
nately, the past decade has seen a significant impr ov ement in the 
tools and data available to study marine NCDs. High through- 
put sequencing (HTS) technologies and increased sampling ef- 
forts hav e exponentiall y incr eased the amount of nifH ampli- 
con sequence data available for marine diazotrophs (e.g. Farnelid 

et al. 2011 , Turk-Kubo et al. 2015 , Shiozaki et al. 2017 , Raes et 
al. 2020 ). Dozens of individual NCD nifH gene sequence types 
hav e been enumer ated using quantitativ e PCR (qPCR), r esulting 
in large datasets showing regional and seasonal abundance pat- 
terns (e.g. Langlois et al. 2015 , Shiozaki et al. 2017 , Cheung et 
al. 2021 , Shao and Luo 2022 ). Furthermor e, adv ances in sequenc- 
ing tec hnologies hav e enabled the detection of nifH genes fr om 

global ocean metagenomes and metatranscriptomes (Delmont et 
al. 2018 , 2022 , Salazar et al. 2019 , Acinas et al. 2021 , Pierella Kar- 
lusich et al. 2021 , Poff et al. 2021 ), allowing for the validation of 
NCD distribution patterns without r el ying on the use of primers 
for the PCR-based amplification of NCD nifH gene sequences, and 

for the construction of metagenome-assembled genomes (MAGs) 
to e v aluate the metabolic potential of uncultiv ated NCDs. Finall y,
advances in single-cell techniques are beginning to enable visu- 
alization and in situ single-cell N 2 fixation r ate measur ements of 
NCDs (e.g. Martinez-Perez et al. 2018 , Geisler et al. 2019 ). 

This r e vie w synthesizes these new data to better understand 

the role of NCDs in marine waters. In ‘NCD diversity: nifH gene cat- 
alog,’ we introduce a novel catalog of marine NCD gene diversity 
that compiles available nifH sequence data from the NCBI Gen- 
bank non-redundant (nr) database and selected nifH HTS studies,
qPCR targets, and global ocean metagenomes. ‘Habitats and en- 
vironments of NCDs in marine systems’ r e vie ws the known envi- 
ronments and habitats for NCDs in marine systems. In ‘Environ- 
mental drivers of NCD biogeography , activity , and presumed N 2 

fixation,’ we discuss known environmental controls on their abun- 
dances and activity, introduce a novel database of available NCD 

nifH gene abundances, and discuss the global distributions and 

envir onmental driv ers of individual phylotypes. ‘NCD biogeogra- 
ph y and ecoph ysiology fr om meta genomes and metatr anscrip- 
tomes’ explores the potential ecophysiological features of marine 
NCDs using ne wl y av ailable MAGs fr om the global ocean (Delmont 
et al. 2022 ). In ‘Moving fr om genes to r ates: ar e NCDs fixing N 2 in 

the pelagic oceans?,’ we consider the current state of knowledge 
on NCD N 2 fixation activity and in ‘Future perspectives’ we discuss 
r emaining knowledge ga ps and futur e perspectiv es for assessing 
the contribution of NCDs to N 2 fixation in marine waters. 

NCD diversity: nifH gene catalog 

Knowledge of NCD diversity is based on the nucleic acid se- 
quences of the genes that encode the nitrogenase enzyme. Ni- 
trogenase is composed of dinitrogenase reductase and dinitroge- 
nase, whic h ar e the Fe and molybdenum (Mo)-Fe (MoFe) contain- 
ing metallopr oteins, r espectiv el y, in the most common form. The 
MoFe pr otein-containing nitr ogenase is encoded by the nifHDK 

operon; nifDK encodes the dinitrogenase alpha and beta subunits 
(containing MoFe) and nifH encodes dinitrogenase reductase (con- 
taining Fe). Less common nitrogenases substitute Fe or vanadium 
or Mo and are encoded by the vnfHDGK and anfHDGK genes, re-
pectiv el y (Seefeldt et al. 2009 , Newton 2015 ). N 2 fixation r equir es
he involvement of many proteins and factors beyond nitroge- 
ase, thus is a highly regulated and complex process ultimately
et by intracellular N status and O 2 , Mo, and Fe concentrations, as
ell as available energy sources (Dixon and Kahn 2004 , Leigh and
odsworth 2007 , Masepohl 2017 ). 
The nifH gene is the most widely used proxy for N 2 fixation

otential in the marine envir onment. While later al gene transfer
as been observed in some taxa (Bolhuis et al. 2010 ), nifH gene-
ased phylogeny is broadly congruent with 16S rRNA gene-based 

hylogeny and four major nifH gene clusters have been defined
Zehr et al. 2003 ; Table S1, Supporting Information). Early appli-
ation of ‘universal’ nifH PCR assays using pelagic marine sam-
les by Zehr et al. ( 1998 ) established that there were multiple lin-
ages of marine unicellular c y anobacteria along with ɑ -, β-, and γ -
r oteobacteria, sulfate r educers ( δ-pr oteobacteria), and Clostridia
mong the picoplankton population. Over the past quarter- 
entury, additional diazotr ophic linea ges hav e been identified,
ncluding marine r epr esentativ es fr om eac h of the four major
ifH clusters. Applications of new molecular techniques, including 
TS of nifH amplicons and meta genomic-/tr anscriptomic-based 

 ppr oac hes , ha v e gr eatl y incr eased the known nifH -based div er-
ity of marine diazotrophs; ho w ever, most individual studies have
ocused on c y anobacterial diazotr ophs, and no compr ehensiv e
ompilations of the curr entl y known NCD diversity exist. 

We compiled a catalog of marine NCD nifH gene sequences
Table S2, Supporting Information; dataset doi: 10.5281/zen- 
do.6537451). This catalog is a new community resource that 
nables analysis of nifH datasets in the context of prior stud-
es and identifies NCD sequences that have been recovered us-
ng differ ent a ppr oac hes . T he NCD nifH gene catalog includes se-
uences r ecov er ed fr om: (1) studies using nifH PCR and cloning-
ased a ppr oac hes (arc hiv ed in the NCBI nr database); (2) se-
ect studies employing HTS of nifH PCR amplicons; (3) metage- 
omic/transcriptomic datasets from recent large-scale ocean sur- 
eys; and (4) targets for qPCR and digital droplet PCR (ddPCR)
uantitative methods. 

Briefly, marine-derived sequences from the NCBI nr database 
ere selected from a curated nifH database (Heller et al. 2014
pdated in June 2017) using available metadata. All marine nr-
erived sequences ( n = 23 848) were clustered at 97% amino acid

dentity using CD-HIT (Huang et al. 2010 ), and NCD operational
axonomic units (OTUs) with < 100 sequences were remo ved. T his
esulted in 34 OTUs (r epr esenting 9360/23 848 of the total marine-
eri ved sequences). Ad ditionally, sequences re presenting the top
hree most abundant NCD OTUs (or amplicon sequence variants,
SVs) from nifH HTS gene studies that sampled the North Pa-
ific (Shiozaki et al. 2017 , Farnelid et al. 2019 , Cabello et al. 2020 ,
radoville et al. 2020 , Sato et al. 2021 , Turk-Kubo et al. 2021 ),
outh Pacific (Turk-Kubo et al. 2015 ), South Atlantic (Ribeiro et al.
018 ), Indian Ocean (Wu et al. 2021 ), and polar regions (Shiozaki
t al. 2018b , 2020 ) were also included. These studies were selected
ased on the accessibility of r efer ence sequences for reported
CDs; sequences have been renamed according to the region, au-

hor, and specified name from the original publication (e.g. ‘Npac-
hio-otu00004’ for otu00004 from the North Pacific in Shiozaki et
l. 2017 ; Table S1, Supporting Information). The catalog also in-
ludes NCD nifH sequences obtained using PCR-fr ee a ppr oac hes
r om Tar a Oceans meta genomes, metatr anscriptomes, and MAGs
Delmont et al. 2018 , 2022 , Salazar et al. 2019 , Cornejo-Castillo and
ehr 2021 , Pierella Karlusich et al. 2021 ) and the Polar Microbe R
ene Catalog (PM-RGC; Cao et al. 2020 ). PM-RGC nifH sequences
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ere identified via blastp against a curated database containing
enome-derived nifH sequences (jzehrlab.com/nifh). Finally, the
atalog includes 55 r efer ence sequences fr om NCDs tar geted by
ublished nifH qPCR/ddPCR assa ys , since these were identified as
 ecurr entl y pr esent diazotr ophs fr om independent studies. 

Together, the NCD nifH gene catalog contains 204 total
equences (Table S2, Supporting Information; dataset doi:
0.5281/zenodo.6537451). OTUs comprised of sequences
ith > 99% amino acid identity were identified using CD-HIT

Huang et al. 2010 ) to explore which sequence types have been
 ecov er ed using different methodological approaches . O TUs
ontaining sequence types detected using both nifH PCR-based
nd PCR-fr ee (deriv ed fr om meta genomics/metatr anscriptomics)
ethods are of particular interest, some of whic h ar e discussed

elow. 
The Gamma A and Gamma 4 OTUs (1G) contain sequences

rom both PCR and non-PCR-based a ppr oac hes (Fig. 1 ) and are
r guabl y the best-studied marine NCD groups . T he widespread
istribution of Gamma A thr oughout tr opical and subtropical
urface waters has been demonstrated in qPCR-based studies
see ‘Envir onmental driv ers of NCD biogeogr a phy , activity , and
resumed N 2 fixation’), nifH gene HTS studies (e.g. Npac-Shio-
tu00004 from Shiozaki et al. 2017 , SAtl_Ribe_otu006 from Ribeiro
t al. 2018 ), and in a metagenome-based study (Cornejo-Castillo
nd Zehr 2021 ). Gamma A nifH tr anscripts hav e been detected
n the environment (e.g. Bird et al. 2005 , Moisander et al. 2014 ,
ornejo-Castillo and Zehr 2021 ) and this organism is hypothe-
ized to be associated with small particles or picophytoplankton
Benavides et al. 2016b , Cornejo-Castillo and Zehr 2021 ; Fig. 2 a).
amma 4 is another γ -pr oteobacterium emer ging as a potentially

mportant marine NCD. Originally described as a qPCR target by
alm et al. ( 2012 ), and later observed in the Eastern Tropical
outh Pacific (P8; Löscher et al. 2014 ), this group now includes
 MAG assembled from North Pacific samples collected during
he Tara Oceans expedition (TARA_PON_109_MAG_00010, also re-
erred to as HBD-06; Delmont et al. 2018 , 2022 ) and can reach high
bundances (5.8 × 10 6 nifH gene copies l −1 ) in the North Pacific
Cheung et al. 2021 ). 

Other potentially important γ -proteobacterial OTUs emerged
r om this meta-anal ysis. γ -ETSP1 was first described as a qPCR
arget in the South Pacific (Turk-Kubo et al. 2014 ), but also in-
ludes a MA G (TARA_A OS_82_MA G_00008), which was detected
ainly in the Atlantic Ocean in < 5 μm size fractions (Delmont et

l. 2022 ). In total, three additional γ -proteobacterial OTUs con-
ained both MAGs and abundant sequence types from nifH gene
TS studies: TARA_PON_109_MAG_00047 included a sequence

rom Shiozaki et al. ( 2017 ), and TARA_PSE_93_MAG_00126 and
M-RGC.v2.009033127 included sequences from Gradoville et al.

 2020 ; Table S2, Supporting Information). The r ecov ery of numer-
us γ -proteobacterial sequences from PCR-based studies is no-
able, giv en r ecent assertions that primer mismatc hes could r e-
ult in lack of amplification of this group (Delmont et al. 2018 ,
022 ). Our anal ysis r einforces that γ -pr oteobacteria ar e r ecov er ed
y both a ppr oac hes and are among the most diverse NCD groups

n the marine pelagic environment. 
Se v er al OTUs affiliated with nifH cluster 1J/1K were also found

n both PCR-based and PCR-free studies (Fig. 1 ). The α-24809A06
TU contains sequences related to putative ɑ -proteobacteria re-
orted in the South China Sea (SCS; ɑ -24809A06; Moisander et al.
007 ) and mesopelagic waters (Azosp_1; Hewson et al. 2007 ), and
lso includes a MA G (TARA_PSW_86_MA G_00238; Delmont et al.
022 ) detected pr edominantl y in the Pacific. A second putative α-
roteobacterial OTU, Alpha 2, contained a sequence type targeted
y qPCR in the Northern SCS (Alpha 2; Chen et al. 2019 ) and a
A G (TARA_A ON_82_MA G_00070; Delmont et al. 2022 ) observed

n the < 20 μm size fraction in several ocean basins including the
tlantic, Indian, and Pacific. 
Unlike the proteobacteria, no putative δ-proteobacterial OTUs

cluster 3 or 1A) were found using both PCR-based and PCR-free
 ppr oac hes. Cluster 3 contains sequences from PCR-based stud-
es and from MAGs including Planctomycetes lineages speculated
o be important NCDs (Delmont et al. 2018 , 2022 ). Ho w e v er, se-
uences affiliated with cluster 1A wer e r ecov er ed onl y by PCR-
ased techniques. In this dataset, cluster 1A sequences are pre-
ominant in coastal ecosystems (e.g. Short and Zehr 2007 , Sh-

ozaki et al. 2018b ) that were not heavily sampled in the Tara
ceans expedition, which may partially explain this discrepancy. 

aveats and considerations for nifH sequence 

nalysis 

lthough PCR-based a ppr oac hes hav e been foundational in the
tudy of marine diazotr ophs, ther e ar e se v er al c hallenges and
aveats associated with using nifH sequences to explore the di-
ersity of diazotrophs. Numerous sets of primers have been de-
eloped to amplify nifH genes, many of which have a high de-
ree of degeneracy and are biased to w ar ds certain taxa (Gaby
nd Buckley 2011 ). The most widely applied assay in the ma-
ine environment (nifH1-4; Zehr and McReynolds 1989 , Zani et al.
000 ) has known biases, especially within the c y anobacteria (Ca-
uto et al. 2018 ). Ho w e v er, r ecent assertions that nifH1-4 primers
ay not amplify some of the NCDs r ecov er ed using ‘omics-based
 ppr oac hes , e .g. nifH genes from Planctomycetes (Delmont et al.
018 , 2022 ), ar e primaril y based on a single mismatch against the
ifH4 primer located at the 5 ′ end of the priming site (Table S2,
upporting Information), which does not impact PCR amplifica-
ion (Bru et al. 2008 ). Our NCD gene catalog shows that se v er al
AG-derived sequences asserted to have incompatibilities with

he nifH1-4 primers have been recovered from PCR-based surveys,
nderscoring that the 5 ′ mismatch does not pr e v ent PCR amplifi-
ation (Table S3, Supporting Information). Ther efor e, the nifH1-4
rimers do not appear to be br oadl y incompatible with pelagic
arine NCD taxa. 
Ther e ar e se v er al additional tec hnical limitations of PCR-based

 ppr oac hes. Due to the gener all y low abundances of diazotrophs,
mplification typicall y r equir es a nested PCR a ppr oac h and man y
ounds of amplification, which introduces bias in relative abun-
ances (Turk et al. 2011 ). Recovery of nifH gene fr a gments can also
e influenced by contamination from numerous sources; differ-
ntiating between marine- and contaminant-sourced nifH genes
an be c hallenging, particularl y for NCDs (Zehr et al. 2003 ). This
as occasionally been addressed in individual studies by process-

ng r ea gent blanks or comparing data to known contaminant se-
uences (Bostrom et al. 2007 , Farnelid et al. 2011 , Blais et al. 2012 ,
oisander et al. 2014 , Langlois et al. 2015 , Fernandez-Mendez et al.

016 , Cheung et al. 2021 ), so that putative contaminant sequences
an be r emov ed during analysis. 

Detection of nifH transcripts in environmental samples is
ometimes used as a proxy for active N 2 fixation, and in early stud-
es was the standard for choosing targets for qPCR assa ys . How-
 v er, detection of nifH transcripts may be heavily dependent on
he time of sampling due to the diel pattern in nifH gene expres-
ion (observed in diazotrophs including marine c y anobacteria and
errestrial NCDs; Wyman et al. 1996 , You et al. 2005 ), size frac-
ion (which can reflect lifestyle , e .g. symbiont, particle-attached),
nd envir onmental contr ols (e.g. O 2 concentr ation, pr esence of r e-
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Figure 1. NCD diversity includes taxa found using PCR-based and PCR-free approaches. Phylogenetic tree represents the NCD nifH gene catalog based 
on amino acid sequences from OTU re presentati ves. Sequences were aligned to the NifH/frxC family (Fer4_NifH; PF00142) using HMMalign in HMMER 
software v2.4 (Finn et al. 2011 ). Tree topology was calculated using FastTree 2.1.11 (Price et al. 2010 ) using maximum-likelihood rearrangements and 
the JTT model for nucleotide e volution. Br anc h support was determined using the Shimodaira–Hasegawa test ( > 50% support indicated with small gray 
squares on branches). iTOL 6.5.2 (Letunic and Bork 2021 ) was used to visualize the tree and display the source(s) of sequences in each cluster. nifH 

clusters are defined according to the convention established in Zehr et al. ( 2003 ) and are indicated in gray text in the center of the tree. Re presentati ve 
sequences affiliated with NCD qPCR/ddPCR assays are in bold. OTUs that contain sequences derived from both PCR-based and PCR-free approaches 
are in shaded boxes. Branches with multiple names indicate OTUs that contain sequences targeted by more than one qPCR assa y. T hick outer color 
bars show if the sequences were acquired through PCR-based (teal) or PCR-free (y ello w) methods, while the thinner color bars correspond to the 
specific method (PCR-based) or sampling campaign (PCR-fr ee). Inter activ e tr ee publicl y av ailable at https:// itol.embl.de/ shared/ 1HrZrblPr7p4s . See 
Table S2 (Supporting Information) for supporting data. 

l  

f  

g  

(  

t  
duced N, and availability of organic C and F e). Furthermore , while 
the detection of nifH transcripts may reflect active transcription of 
the nif oper on, activ e N 2 fixation is also under post-transcriptional 
contr ol. Ther efor e, nifH tr anscript detection (or lack thereof) as ev- 
idence of acti ve/inacti ve N 2 fixation should be interpreted with 

caution. 
Recovering nifH gene sequences from the environment, regard- 
ess of the a ppr oac h, does not guarantee that they are sourced
r om or ganisms ca pable of fixing N 2 as some taxa contain nifH
enes but lack other genes r equir ed for a functional nitrogenase
Dos Santos et al. 2012 , Mise et al. 2021 ). Furthermore, alterna-
iv e nitr ogenases in marine diazotr ophs ar e not well-understood,

https://itol.embl.de/shared/1HrZrblPr7p4s
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F igure 2. NCDs occup y diverse marine habitats. NCDs in marine w aters may be fr ee-living and motile or nonmotile (a) , associated with v arious 
particles including self-a ggr egates (b) , suspended or sinking particles (c) , plankton holobionts (d) , or live in symbiosis with copepods (e) or other 
pr otists (f) . Pr esumed habitats of some NCD taxa whic h ar e discussed thr oughout this r e vie w ar e indicated using symbols described in the legend. 
Created with BioRender.com. 
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ut also signify the potential to fix N 2 (McRose et al. 2017 , Reeder
nd Lösc her 2022 ), whic h is not ca ptur ed in envir onmental nifH
ene surv eys. Ne v ertheless, a ppr oac hes tar geting partial nifH gene
equences have generated the majority of available marine NCD
ata and have enabled numerous insights into their diversity, dis-
ribution, and environmental drivers. 

abitats and environments of NCDs in 

arine systems 

arine euphotic waters are heterogeneous environments foster-
ng free-living NCDs, NCDs attached to living or detrital partic-
late material, and NCDs likely living in symbiosis with protists

Fig. 2 ). These contrasting habitats can be found in close proxim-
ty, thus the scale of standard oceanogr a phic sampling (typically

illiliters–liters) can conceal complex life strategies and interac-
ions . For example , some NCD taxa likely cycle through free-living
Fig. 2 a) and particle-associated lifestyles (Fig. 2 b-d), evidenced
y their occurrence across size fractions (Pierella Karlusich et al.
021 ) as well as thier potential for motility (Hallstrøm et al. 2022c )
nd the formation of self-a ggr egates (Bentzon-Tilia et al. 2015a ).
ther taxa may form facultative or obligate symbioses with other
lanktonic taxa (Fig. 2 f and e). Rates and magnitudes of NCD N 2 

xation in oxygenated euphotic waters ar e likel y influenced by
hese different lifestyles. For example, N 2 fixation by free-living or
article-associated NCDs would be dependent on a given taxa’s
etabolic potential and ability to respond to a changing envi-

onment, while N 2 fixation by NCDs living in symbiosis may be
nder host control like in other marine and terrestrial symbioses

Smercina et al. 2019 , Landa et al. 2021 , Mohr et al. 2021 ). Teasing
part the habitats and lifestyles of NCDs in specific environments
 emains a c hallenge but is k e y to linking di versity to acti ve N 2 

xation. 
NCDs are also present in many marine environments beyond

he euphotic zone (Table 1 ). Since the first reports of NCDs in
he surface ocean (Paulsen et al. 1991 , Co y er et al. 1996 , Zehr et
l. 1998 ), tec hnological adv ances and ambitious sampling cam-
aigns have highlighted a diversity of water column environments
arboring NCDs, including coastal waters and estuaries, polar
eas , aphotic en vironments , and O 2 minimum zones (OMZs). Di-
erse benthic ecosystems also harbor NCDs and may seed them
nto the water column, where they become part of the r ar e bio-
pher e (Pedr os-Alio 2012 , Tr oussellier et al. 2017 ). Her e, we r e vie w
no wn w ater column NCD habitats and environments (‘Habitats
nd environments of NCDs in marine systems’) before discussing
lobal NCD distributions and envir onmental driv ers (‘Envir on-
ental drivers of NCD biogeography , activity , and presumed N 2 

xation’). 

arine particles 

lthough little is known about the physiology of NCDs and how
hey fix N 2 in oxygenated surface waters, for over two decades it
as been theorized that NCDs residing in sunlit surface waters
ave a particle- or aggregate-associated lifestyle (Fig. 2 b-d; Paerl
nd Prufert 1987 , Church et al. 2005a , Riemann et al. 2010 , Bombar
t al. 2013 , Rahav et al. 2016 , Pedersen et al. 2018 ). Marine parti-
les are an amalgamation of living and detrital material formed
hroughout the water column, with highest concentrations in the
uphotic zone, especially in areas of high productivity, such as
oastal and upwelling regions (Simon et al. 2002 , Azam and Mal-
atti 2007 ). Particles provide substrates for attachment as well as
ccess to organic C that could fuel c hemoheter otr ophic N 2 fixa-
ion, while promoting the formation of low O 2 microenvironments
hat pr ovide pr otection for the O 2 sensitiv e nitr ogenase enzyme
Paerl 1985 , Ploug et al. 1997 , Ploug 2001 , Ploug and Bergkvist 2015 ).
yanobacterial a ggr egates (Klawonn et al. 2015 ) or self-pr oduced
CD a ggr egates bound together by O 2 -impermeable exopolysac-

harides may likewise form anoxic microniches for NCDs as ex-
mplified by a Pseudomonas stutzeri strain (BAL361) isolated from
he Baltic Sea (Fig. 2 b; Bentzon-Tilia et al. 2015a , Paerl et al. 2018 ).
 recent cellular model of A. vinelandii sho w ed that the energetic
osts to maintain low intracellular O 2 for a free-living chemo-
eter otr ophic diazotr oph thr ough incr eased r espir ation, synthe-
is of thicker cell membranes, or polysaccharide production sur-
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Table 1. Marine NCD environments 

Environment 
Known or theorized NCD 

habitat/lifestyle a Representati v e references 

Water 
column 

Open ocean: 
euphotic 

Free-living; suspended and 
sinking particles; plankton 
holobionts 

Proctor ( 1997 ), Zehr et al . ( 1998 ), Langlois et al . ( 2005 , 2008 , 2015 ), Church et 
al . ( 2005a , b ), Fong et al. ( 2008 ), Moisander et al. ( 2008 , 2014 ), Farnelid et al. 
( 2010 , 2011 ) Bombar et al. ( 2011 ), Kong et al. ( 2011 ), Zhang et al. ( 2011 , 2016 ), 
Halm et al. ( 2012 ), Shiozaki et al. ( 2014 , 2017 ) Sunagawa et al. ( 2015 ), 
Azimuddin et al. ( 2016 ), Benavides et al. ( 2016b ), Gradoville et al. ( 2017a ), 
Delmont et al. ( 2018 ), Chen et al. ( 2019 ), Wu et al. ( 2019 ), Yang et al. ( 2019 ), 
Cheung et al. ( 2020 , 2021 ), Raes et al. ( 2020 ), Pier ella Karlusic h et al. ( 2021 ), 
Hallstrøm et al. ( 2022a ) 

Open ocean: aphotic Free-living; suspended and 
sinking particles 

Hewson et al. ( 2007 ), Bonnet et al. ( 2013 ), Benavides et al. ( 2015 , 2018c ), 
Selden et al. ( 2019 ), Acinas et al. ( 2021 ) 

Oxygen minimum 

zones 
Free-living; suspended and 
sinking particles 

Fernandez et al. ( 2011 ), Hamersley et al. ( 2011 ), Löscher et al. ( 2014 ), 
J ay akumar et al. ( 2017 ), Chang et al. ( 2019 ), Reeder and Löscher ( 2022 ) 

Temperate coastal 
ecosystems 

Free-living; suspended and 
sinking particles; plankton 
holobionts; resuspended 
sediments; terrestrial 
particles 

Short et al. ( 2004 ), Moisander et al. ( 2007 ), Rees et al. ( 2009 ), Mulholland et al. 
( 2012 ), Messer et al. ( 2015 , 2021 ), Scavotto et al. ( 2015 ), Shiozaki et al. ( 2015 ), 
Bentzon-Tilia et al. ( 2015b ), Gradoville et al. ( 2017a ), Pedersen et al. ( 2018 ), 
Cabello et al. ( 2020 ), Turk-Kubo et al. ( 2021 ), Hallstrøm et al. ( 2022b ) 

Inland seas Free-living; suspended and 
sinking particles 

Bostrom et al. ( 2007 ), Man-Aharonovich et al. ( 2007 ), Farnelid et al. ( 2013 ), 
Rahav et al. ( 2013 , 2016 ), Benavides et al. ( 2016a ), Kirkpatrick et al. ( 2018 ), 
Geisler et al. ( 2020 ), Ridame et al. ( 2022 ) 

Polar seas Free-living; suspended and 
sinking particles; sediment 
r esuspension; terr estrial 
input 

Blais et al. ( 2012 ), Fernandez-Mendez et al. ( 2016 ), Shiozaki et al. ( 2018b , 2020 ) 

Benthic Cor al r eefs and 
sponges 

Associated with released 
m ucus, cor al tissues, cor al 
skeletons, associated 
macr oalgae, and micr obial 
mats , surrounding sea water 

Mohamed et al. ( 2008 ), Olson et al. ( 2009 ), Lema et al. ( 2012 , 2014 ), Ribes et al. 
( 2015 ), Yang et al. ( 2016 ), Liang et al. ( 2020 ), Moynihan et al. ( 2022 ) 

Macroalgae Living and decomposing 
tissue , surrounding sea water 

Hamersley et al. ( 2015 ), Zhang et al. ( 2015 ), Raut et al. ( 2018 ), Raut and 
Capone ( 2021 ) 

Coastal and 
continental shelf 
sediments 

Sediment-associated Fulweiler et al. ( 2013 ), Brown and Jenkins ( 2014 ), Newell et al. ( 2016 ), Jabir et 
al. ( 2018 ) 

Oxygen-deficient 
zone sediments 

Sediment-associated Gier et al. ( 2016 , 2017 ) 

Abyssal pelagic Associated with methane 
seeps, hydr othermal v ents, 
whale falls 

Mehta et al. ( 2003 ), Mehta and Baross ( 2006 ), Pernthaler et al. ( 2008 ), Dang et 
al. ( 2009 ), Dekas et al. ( 2009 , 2014 , 2016 , 2018 ), Miyazaki et al. ( 2009 ), Kapili et 
al. ( 2020 ) 

Microbial mats Microbial mat associated, 
surrounding water 

Zehr et al. ( 1995 ), Steppe et al. ( 1996 ), Olson et al. ( 1999 ) 

Sea gr ass 
rhizosphere 

Sediments, roots McGlathery et al. ( 1998 ), Mohr et al. ( 2021 ) 

a Allocation of NCDs between free-living and particle-association is not well-r esolv ed. 
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passed the cost of N 2 fixation (Inom ur a et al. 2017 ), underscor- 
ing the potential importance of particle- or a ggr egate-associated 

lifestyles. 
To better understand the potential for particles as N 2 fixa- 

tion hot spots, Chakraborty et al. ( 2021 ) designed a mathemati- 
cal model to investigate N 2 fixation by NCDs bound to large (ca.
250 mm) sinking marine particles (r e vie w ed b y Riemann et al.
2022 ). Cells were modeled as facultative diazotrophs that acquire 
C and N from particle-supplied polysaccharides and polypeptides 
and only supplement cellular N r equir ements with N 2 fixation 

once other N sources are exhausted, producing high C:N ratios fa- 
vor able for heter otr ophic N 2 -fixers. Micr obial r espir ation depletes 
O 2 , ho w e v er, the anoxic or microanoxic conditions created in the 
particle interior is temporary. Cells eventually become C-limited 

and O 2 diffusion into the particle again exceeds microbial respi- 
r ation, whic h in turn inhibits N 2 fixation. NCD N 2 fixation in the 
odeled particle interior thus depends on the surrounding water 
 2 concentration, initial composition and ratio of C to N in the
article, particle size (minimum of 0.6 mm diameter), and sink-

ng speed. Based on this simulation, the amount of time a particle
ay harbor an anoxic or low O 2 microzone and support N 2 fix-

tion can be short-lived ( < 1 da y), which ma y make this process
hallenging to validate with experimental data. 

A fe w r ecent studies show the most direct evidence to date of
 2 fixation by NCDs bound to particles. In eutrophic waters of the
ishon estuary (Isr ael), whic h flow into the Mediterranean Sea,

mmunolabeling of the nitrogenase protein was used to demon- 
trate that NCDs colonized a ggr egates (Geisler et al. 2020 ). Fur-
hermor e, activ e N 2 fixation by NCDs was implicated based on the
etection of N 2 fixation in particle-enrichment incubations where 
 y anobacterial photosynthesis was inhibited. This immunolabel- 
ng a ppr oac h r equir es intact nitr ogenase pr oteins but pr ovides no
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hylogenetic information making inter pr etation c hallenging. An-
ther recent study surveyed well-lit oxygenated pelagic waters of
he North Pacific and measured the incorporation of 15 N 2 into pu-
ative NCDs (defined as cells with 

15 N enrichment, but not 13 C en-
ichment after 24h 

15 N 2 / 13 C-bicarbonate incubations) residing on
mall particles ( < 210 μm, smaller than those predictied to host
naer obic micr ozones by Chakr aborty et al. 2021 ) using particle-
argeted nanoSIMS (Harding et al. 2022 ). Single cell N 2 fixation
 ates r anged fr om low to quite high (0.02 to 8.61 fmol N cell -1 d 

-1 )
nd in some cells could entir el y fulfill cellular N r equir ements.
omplementary nifH gene HTS indicated γ -proteobacterial NCDs,

ncluding Gamma A, were prevalent in the w ater column. Ho w-
 v er, particle-tar geted nanoSIMS does not provide phylogenetic
nformation needed to identify taxonomic affiliations of the ac-
ive NCDs. 

Despite this r ecent pr ogr ess, most curr ent knowledge of
article-associated NCDs is based on molecular surveys. Accounts
f NCDs from large size fractions or marine particles, based on
oth PCR-based and PCR-free approaches (Turk-Kubo et al. 2014 ,
ena vides et al. 2016b , Grado ville et al. 2020 , Pierella Karlusich et
l. 2021 ), collectiv el y suggest div erse NCD comm unities attac hed
o suspended particles, sinking particles (marine snow), and fecal
ellets (Riemann et al. 2010 ), as well as forming self-produced ag-
regates (Bentzon-Tilia et al. 2015a ). Notably, NCDs hypothesized
o be associated with larger organisms either as symbionts or as
rey items (Farnelid et al. 2009 , Scavotto et al. 2015 , Pierella Karlu-
ich et al. 2021 ) could also be recovered from large size fractions.
echniques linking specific taxa to active N 2 fixation are needed
o assess the biogeochemical importance of these diverse particle-
ssociated NCDs in the euphotic zone. 

NCDs are also found on particles sinking out of the euphotic
one (Farnelid et al. 2019 ) and in the deep ocean (Rahav et al.
013 , Acinas et al. 2021 , Poff et al. 2021 ). Particles (20–500 μm)
ampled from floating net traps deplo y ed at a depth of 150 m in
he North Pacific often contained NCD sequences from Cluster
 (including Part-Farn-OTU1012 and Part-Farn-OTU1107, which
re Gamma 3 and Gamma A, r espectiv el y; Fig. 2 c) and Cluster 3
Farnelid et al. 2019 ; Table S2, Supporting Information). Notably,
ome sequences from individual particles ( > 20 μm) were not well-
 epr esented in the whole water column diazotrophic community
n this study, suggesting that pr efer ence for particle attachment

ay be taxa-specific. Additionall y, thr ee nov el NCD MAGs hav e
 ecentl y been described fr om mesopela gic particles including a
ember of the Micavibrionaceae family (Poff et al. 2021 ), a puta-

i ve sulfur-o xidizing lithotroph ( α-proteobacteria MAG0509), and
 Gamma 4 MA G (MA G0081; Acinas et al. 2021 ). It remains un-
lear whether these sinking particle-associated NCDs are active
 2 -fixers, but collectiv el y these studies suggest that particles de-

iv er ed to the deep ocean harbor both distinct NCD lineages and
hose known to also reside in the surface ocean. 

Ther e r emain lar ge knowledge ga ps about the r ole of marine
articles in N 2 fixation by NCDs. Most critically, although NCDs
r e clearl y pr esent on marine particles and there is some evi-
ence of NCDs fixing N 2 , no studies have demonstrated N 2 fixation
y a taxonomically defined, particle-bound NCD. Further work is
eeded to determine the magnitude of potential fixed N inputs
rom particle-bound NCDs given the high concentration of parti-
les in marine systems (Riemann et al. 2022 ). 

lankton holobionts 

CDs are often found associated with planktonic organisms,
lthough the exact nature of these interactions is not well-
escribed. NCDs affiliated with ɑ -, β-, and γ -proteobacteria, Clus-
ers 2 and 3 have been found in association with heter otr ophic
inoflagellate–c y anobacteria consortia (Farnelid et al. 2010 ). Che-
ng et al. ( 2021 ) noted that one of the pr e v alent γ -pr oteobacterial
equences found with se v er al dinofla gellate gener a described in
arnelid et al. ( 2010 ) was Gamma 4 (Fig. 2 f); the lack of host
pecificity suggests a facultative symbiotic interaction, or possibly
razing on Gamma 4. Trichodesmium colonies also contain diverse
ssemblages of Cluster 3 and ɑ -, β-, and γ -proteobacteria, no-
ably including ClusterIII-C (Fig. 2 d; Gradoville et al. 2014 , 2017b ).
or e gener all y, δ-pr oteobacterial (1A) and γ -proteobacterial taxa

1G) have been found actively transcribing nifH in net tow sam-
les ( > 100 μm) (defined as ‘plankton associated diazotrophs’; Yang
t al. 2019 ), including a putative Marichromatium -like sequence
ype closel y r elated to Gamma 3 (KY774962.1, 98.4% nucleotide
dentity). NCDs are also associated with small photosynthetic pi-
oeukaryotes, but these observations are sparse (Bombar et al.
013 ). 

Pelagic copepods have long been suspected to form symbiotic
ssociations with N 2 -fixing bacteria, originally based on the vis-
ble growth of purple sulfur bacteria from copepod enrichment
ultures allo w ed to de v elop anoxia, after which N 2 fixation could
e detected (Proctor 1997 ). Subsequent studies have described di-
 erse NCD taxa pr esumed to be affiliated with copepods (Br aun
t al. 1999 , Scavotto et al. 2015 , Azimuddin et al. 2016 ). In addi-
ion, Scavotto et al. ( 2015 ) r eported distinct NCD comm unity com-
ositions between full-gut and starved copepods that suggest δ-
r oteobacteria diazotr ophs may be gr azed fr om particles, while γ -
roteobacteria may form more permanent symbioses with cope-
ods. 

Beyond the presence of NCD nifH genes, very little is known
bout these associations. Unique challenges exist in sampling
lankton holobionts. For example, plankton nets collect (and con-
entr ate) v arious types of a ggr egates in addition to plankton, thus
o not allow for confident differentiation between plankton- and
article-associated lifestyles . Nonetheless , holobionts are under-
tudied habitats for marine NCDs and more research is needed to
etter c har acterize these associations, and to elucidate the role a
ost or partner may have in regulating N 2 fixation in plankton-
CD symbioses. 

oastal ecosystems 

 he a v ailability of fixed inor ganic N in coastal waters has been
rgued to select against N 2 fixation, as diazotrophs are generally
onsidered to be poor competitors for acquiring P and Fe com-
ared to faster growing photoautotrophs such as diatoms (Ward
t al. 2013 , Landolfi et al. 2015 ). Ho w e v er, some c y anobacterial di-
zotrophs (most notably the UCYN-A symbiosis , e .g. Short and
ehr 2007 , Mulholland et al. 2012 , Turk-Kubo et al. 2021 ) and
CDs are now recognized as components of coastal microbial
ommunities (Table 1 ). NCDs are often found in n utrient-re plete
oastal waters and can r eac h high r elativ e abundances, particu-
arly in regions with terrestrial input, e.g. from riverine or estuar-
ne sources (Moisander et al. 2008 , Bombar et al. 2011 , Kong et al.
011 , Hashimoto et al. 2012 , Shiozaki et al. 2015 , Rahav et al. 2016 ,
eisler et al. 2020 , Selden et al. 2021 , Hallstrøm et al. 2022b ). It

s important to note, ho w e v er, that v ery little is known about the
hysiology or activity of NCDs in coastal ar eas; their pr esence sug-
ests that coastal NCDs may be insensitive to dissolved inorganic
 availability and/or ‘facultative’ diazotrophs capable of utilizing
lternate N sources (discussed in ‘Diversity and ecophysiological
eatur es inferr ed fr om MAGs’). 
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NCDs reported in euphotic coastal waters often reflect the typ- 
ical diversity of marine sediments, which suggests that sediment 
resuspension may be an important mechanism for introducing 
NCDs into the water column in coastal ecosystems. Periodic re- 
suspension e v ents ar e pr e v alent in shallo w w aters and areas with 

high wind or wave activity (Zouch et al. 2018 ). In particular, Cluster 
3 nifH sequences have been widely reported in coastal regions, oc- 
casionall y tr anscribing nifH (Short et al. 2004 , Bentzon-Tilia et al.
2015b , Shiozaki et al. 2020 , Hallstrøm et al. 2022b ), suggesting NCD 

N 2 fixation in the oxygenated water column. In Western North At- 
lantic coastal waters, NCD nifH genes and transcripts dominate 
over those from c y anobacteria where salinity decreases due to 
freshwater input and turbidity increases through the resuspen- 
sion of terrestrial and coastal sediments (Mulholland et al. 2019 ,
Geisler et al. 2020 , Selden et al. 2021 , Hallstrøm et al. 2022b ). 

In the eutrophic Roskilde Fjord (Denmark), N 2 fixation rates 
were higher in sediment-amended seawater than in the surround- 
ing seawater (217 nmol N l −1 d 

−1 vs. 1.7 nmol N l −1 d 

−1 , respec- 
tiv el y), supporting the idea that NCDs resuspended from sediment 
fix N 2 in the water column (Pedersen et al. 2018 ). This same study 
demonstrated that NCDs were secondary colonizers of artificial 
particles in natural seawater, indicating their capability for motil- 
ity and particle attachment. This successional attachment to par- 
ticles may be indicative of a preference for sufficiently large par- 
ticles that support low O 2 zones due to high activity of microbial 
r espir ation (see ‘Marine particles’). 

Surface pelagic ocean waters 

Open ocean gyres are typically N-limited and are known habi- 
tats for diazotrophs. Although the biogeography and environmen- 
tal determinants are better understood for c y anobacterial dia- 
zotroph taxa, NCDs have been commonly recovered in nifH gene 
surveys dating back to early clone library-based studies in the 
North and South Pacific Oceans and the Mediterranean Sea (Zehr 
et al. 1998 , 2003 , Church et al. 2005b , Man-Ahar onovic h et al. 2007 ,
Fong et al. 2008 ). Farnelid et al. ( 2011 ) were the first to a ppl y nifH 

gene HTS in the global surface ocean, establishing that NCDs 
wer e br oadl y distributed and co-occur with c y anobacterial dia- 
zotr ophs in tr opical and subtr opical waters. Farnelid et al. ( 2011 ) 
also r e v ealed global taxa-specific NCD distribution patterns and 

confirmed that many NCDs were actively transcribing nifH , in- 
cluding those in small ( < 10 μm) size fractions. Since this founda- 
tional work, studies le v er a ging nifH gene HTS have significantly 
expanded the known habitats for NCDs in the ocean, most no- 
tably in pelagic ecosystems (Table 1 ). 

Se v er al studies hav e demonstr ated that distinct NCD commu- 
nities may be found in different regions of the global ocean (Far- 
nelid et al. 2011 , Shiozaki et al. 2017 , Raes et al. 2020 ), but there 
ar e also se v er al NCDs that a ppear to hav e mor e cosmopolitan dis- 
tributions . T his includes ar guabl y the best-studied NCD Gamma 
A (Langlois et al. 2005 ), also r eferr ed to as AO15 (Zehr et al. 1998 ),
UMB (Bird et al. 2005 ), and γ -24774A11 (Moisander et al. 2008 ). 

Gamma A is br oadl y distributed thr oughout the tr opical and 

subtropical North Atlantic and Pacific (reviewed by Langlois et 
al. 2015 ) and is theorized to be an oligotrophic specialist. Evi- 
dence of Gamma A as a potential contributor to N 2 fixation in 

oligotr ophic gyr es has been demonstr ated in m ultiple surv eys of 
nifH transcripts showing that Gamma A can account for a ma- 
jority of the total transcript pool (Bird et al. 2005 , Langlois et al.
2005 , Church et al. 2005b , Bombar et al. 2011 , Farnelid et al. 2011 ,
Moisander et al. 2014 , Messer et al. 2015 , Shiozaki et al. 2017 ,
Gradoville et al. 2020 , Selden et al. 2021 ). Additionally, in the West- 
rn South Pacific, Gamma A nifH genes and transcripts positively
orrelate with c y anobacterial diazotroph abundances, tempera- 
ure and DOC, and negatively with depth, chlorophyll a , and nutri-
nts, suggesting similar physiological constraints as Trichodesmium 

nd Crocosphaera (Moisander et al. 2014 ). The presence and nifH ex-
ression of Gamma A in well-lit surface waters suggests it bene-
ts dir ectl y or indir ectl y fr om light. It has been speculated that
amma A may have a photoheterotrophic lifestyle and utilize 

hodopsin or bacterioc hlor ophyll-based ener gy gener ation or may
 el y on photosynthate from a photoautotroph (Langlois et al. 2015 ,
enavides et al. 2016b , Cornejo-Castillo and Zehr 2021 ). It is also
ound in association with larger size fractions ( > 3 μm), which has
aised speculation of a symbiotic- or particle-bound lifestyle (Be- 
avides et al. 2016b , Cornejo-Castillo and Zehr 2021 ; Fig. 2 a). 

Many other NCD taxa are routinely recovered in nifH gene sur-
 eys and, mor e r ecentl y, in meta genomic surv eys (see ‘Global
cean surveys using ‘omics provide insights into NCD abundance 
nd diversity’) of the pelagic oceans. Several recent studies have
emonstrated latitudinal shifts in NCD communities across the 
acific (Shiozaki et al. 2017 , Gradoville et al. 2020 , Raes et al. 2020 ).
or example, cold, nutrient-rich sub-Antar ctic w aters support 
CDs affiliated with α-, δ-, and ε-proteobacteria, along with Acti-
obacteria, while diverse γ -proteobacteria were seen in warmer,

ow latitude Pacific waters (Raes et al. 2020 ). Curr entl y, the biolog-
cal (e.g. nutrient limitation, grazing) or physical (e.g. advection on
urr ents) mec hanisms behind these observ ed latitudinal shifts in
CD community composition are not well-understood. 

photic waters and O 2 -deficient zones 

ctive N 2 fixation attributed to NCDs has been reported in aphotic
aters in the Pacific (Fernandez et al. 2011 , Hamersley et al. 2011 ,
onnet et al. 2013 , Löscher et al. 2014 , Benavides et al. 2015 , 2018c ,
 ay akumar et al. 2017 , Selden et al. 2019 ), Mediterranean Sea (Ra-
av et al. 2013 , Benavides et al. 2016a ), Baltic Sea (Farnelid et al.
013 ), and Black Sea (Kirkpatrick et al. 2018 ). Aphotic N 2 fixation
 ates ar e typicall y low ( < 1 nmol N l −1 d 

−1 ) making them difficult
o measure with accuracy and precision, especially given method- 
logical challenges associated with the low biomass often recov- 
red and the different 15 N 2 techniques (see ‘Moving from genes to
 ates: ar e NCDs fixing N 2 in the pelagic oceans?’). Ho w ever, consid-
ring the vastness of the marine aphotic zone, low but persistent
ates of N 2 fixation could significantly affect the global marine N
udget (Bonnet et al. 2013 , Benavides et al. 2016a ). Se v er al earl y
tudies r eported a photic N 2 fixation r ates in OMZs and suboxic
aters (e .g. F ernandez et al. 2011 , Hamersley et al. 2011 , Farnelid

t al. 2013 ), where NCDs are thought to be favored by O 2 -deplete
nd Fe-replete conditions where denitrification creates low N:P ra- 
ios (Deutsch et al. 2007 , Löscher et al. 2014 ). Ho w ever, in more
ecent studies, N 2 fixation was largely undetectable in the OMZs
nd suboxic waters in the Pacific and Indian Oceans (Chang et al.
019 , Selden et al. 2019 , Löscher et al. 2020 ), implying spatial or
empor al v ariability of a photic N 2 fixation and/or c hanges to the
alculation and reporting of detection limits (White et al. 2020 ). 

NCDs present in aphotic waters are mostly Cluster 1 α-
roteobacteria and γ -proteobacteria and Cluster 3 anaerobes af- 
liated with δ-proteobacteria and Clostridia (Fernandez et al. 2011 ,
amersley et al. 2011 , Bonnet et al. 2013 , Farnelid et al. 2013 ,
öscher et al. 2014 , Benavides et al. 2015 ). Clusters 2 and 4 nifH
equences have also been associated with OMZs (Löscher et al.
014 , J ay akumar et al. 2017 ). Although NCDs are well-established
s the dominant diazotrophs in aphotic waters and low rates of N 2 

xation have been measured, little is known about which NCDs
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r e activ e and the factors controlling their activity (see discus-
ion in ‘Environmental drivers of NCD biogeography , activity , and
resumed N 2 fixation’). 

olar seas 

 olar waters ha ve long been assumed to be devoid of N 2 fixation.
o w e v er, r ecent efforts to measure N 2 fixation in polar waters

uggest it is an activ e pr ocess in both the Arctic and Antarctic
ceans, particularly in coastal and continental shelf regions (Blais
t al. 2012 , Sipler et al. 2017 , Harding et al. 2018 , Shiozaki et al.
018b , 2020 ). While N 2 fixation by the UCYN-A/haptophyte sym-
iosis has been confirmed in polar waters (Harding et al. 2018 ),
CDs are also prevalent (Farnelid et al. 2011 , Blais et al. 2012 ,
ernandez-Mendez et al. 2016 , Shiozaki et al. 2018b ) and are sus-
ected to account for some portion of the N 2 fixation (Blais et al.
012 , Harding et al. 2018 ). In the Arctic, nifH gene surveys suggest
hat the NCD community in polar waters is primarily composed of
-proteobacterial sequence types affiliating with Clusters 1A and
 that are not closely related to sequence types r ecov er ed fr om
ther regions of the ocean (Blais et al. 2012 , Fernandez-Mendez
t al. 2016 , Shiozaki et al. 2018b ). Cluster 3 sequence types that
ppear endemic to the coastal Antarctic Ocean have also been
escribed by Shiozaki et al. ( 2020 ). Collectiv el y, the pr e v alence of
utativ e anaer obes suggest that sediment resuspension plays an

mportant role in shaping the pelagic diazotrophic community in
hese regions. Ho w ever, several γ -proteobacterial NCDs have also
een reported in the Antarctic with high nifH sequence similarity
o oligotrophic taxa [including Gamma A, identified as SV009 in
hiozaki et al. ( 2020 )]. 

Inter estingl y, a r ecent study r eported the pr esence of ‘ultr a-
mall’ ( < 0.22 μm) NCDs (Pierella Karlusich et al. 2021 ) compris-
ng up to 10% of the ultrasmall bacterioplankton in Arctic Ocean
aters based on meta genome-deriv ed abundances (described in

Global ocean surveys using ‘omics provide insights into NCD
bundance and diversity’). An ε-proteobacterium, Arcobacter ni-
rofigilis , dominated bacterioplankton populations at the surface
nd deep c hlor ophyll maxim um, while a γ -pr oteobacterium dom-
nated in the mesopela gic. Both ultr asmall diazotr ophs wer e also
resent in larger size fractions, suggesting they may have particle-
r symbiont-associated lifestyles. At present, the ecological and
iogeochemical importance of ultrasmall NCDs is unknown in the
lobal oceans. 

n vironmental dri vers of NCD 

iogeography , activity , and presumed N 2 
xation 

utrient perturbation experiments 

e are still in the early stages of understanding the environ-
ental controls on marine NCD biogeogr a phy and activity. Since

ew marine NCDs are available in culture , en vironmental con-
r ols m ust be inferr ed fr om biogeogr a phical surv eys coupled to
nvironmental data (discussed in ‘Meta-analysis of nifH gene
bundance data’) and from in situ experiments involving nutri-
nt and/or environmental manipulations. Such experiments have
ielded important insights but can be challenging to inter pr et
iv en the r egular co-occurr ence of c y anobacterial diazotrophs
nd NCDs, the complexity of microbial interactions among the
r oader comm unity, and the lac k of standardized a ppr oac hes
cross experiments. For example, some studies employ nifH am-
licon libraries, while others quantitatively target specific NCDs
ith qPCR/d dPCR. Ad ditionally, some studies note enhanced N 2 
xation rates without observed changes in NCD abundances/ nifH
ranscription, while other studies characterize the diazotroph
ommunity composition in the region, but not in the experiments
hemselves making interpretation challenging. Table 2 summa-
izes some environmental drivers of NCD abundance, nifH tran-
cription or putative N 2 fixation based on re presentati ve studies
sing a variety of approaches. 

Together these experiments indicate that NCD abundances and
ifH tr anscription ar e sometimes limited by the availability of F e ,
 (or both), and/or DOC in oligotrophic euphotic waters (Table 2 ).
amma A abundances appear to be influenced (at least in part) by

he availability of Fe in the Western South Pacific (Moisander et al.
012 ). Regional differ ences ar e seen in the r esponse of Gamma A
o N availability; N additions resulted in decreased abundances
f Gamma A in the Western South Pacific (Moisander et al. 2012 ),
hereas in the North Atlantic, abundances increased in experi-
ents with fixed N additions (Langlois et al. 2012 ). Aeolian dust

nput is an important source of Fe to surface oceans and has
een shown to influence NCD abundances in the North Atlantic
cean (Langlois et al. 2012 ) and the Mediterranean Sea (Ridame
t al. 2022 ). T he a v ailability of labile DOC is also a contr ol on
 2 fixation in regions where NCDs are thought to be the most
r e v alent diazotr ophs, like in the Eastern Tr opical South P acific

Dekaezemacker et al. 2013 , Turk-Kubo et al. 2014 , Knapp et al.
016 ). 

DOC a vailability ma y also be a particularl y important contr ol
n aphotic N 2 fixation (Table 2 ). For example, aphotic N 2 fixation
as positiv el y corr elated with tr anspar ent exopol ymeric particles

TEPs) in the oxygenated waters of the South Pacific Ocean and
he Mediterranean Sea (Rahav et al. 2013 , Benavides et al. 2015 ),
uggesting that TEPs could provide C-rich and/or O 2 -depleted mi-
r oenvir onments that favor NCD N 2 fixation. Mor eov er, additions
f glucose and amino acids occasionally enhance aphotic N 2 fix-
tion (Bonnet et al. 2013 , Rahav et al. 2013 , Löscher et al. 2014 ,
enavides et al. 2015 , Gradoville et al. 2017a ). 

Although these studies illustrate that perturbations in nutri-
nt a vailability (e .g. nutrient, trace metal, and labile organic C)
r environmental conditions (e.g. availability of light) can lead to
hanges in the abundance and nifH transcription of NCDs, data
rom these experiments are relatively sparse and spatially het-
r ogeneous. Fortunatel y, v aluable insights into the environmental
rivers behind diazotroph biogeography can also be inferred from
iogeogr a phical surv eys coupled to envir onmental data (‘Meta-
nalysis of nifH gene abundance data’). 

eta-analysis of nifH gene abundance data 

n the absence of direct cell counts, quantifying nifH gene abun-
ances (via qPCR or ddPCR) is ar guabl y the best method for enu-
erating NCDs and determining the biogeographical patterns

nd envir onmental driv ers of specific taxa. Unfortunatel y, oceano-
r a phic sample collection, DNA extraction, and nifH gene quantifi-
ation are laborious compared to more high-throughput methods
e.g. automated flow cytometry) and the cov er a ge of qPCR/ddPCR
ifH gene abundance datasets are often sparse in space , time , and
CD targets . T hus , it can be difficult to discern the global distribu-

ion patterns and envir onmental pr edictors of diverse NCD taxa
rom a single dataset. 

A global nifH qPCR database has been compiled for marine
 y anobacterial diazotrophs (Luo et al. 2012 , Tang et al. 2019a ),
 e v ealing taxon-specific biogeogr a phical patterns. Linking these
PCR abundances to environmental data has revealed both com-
on and distinct envir onmental driv ers among taxa. For ex-
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mple, abundances of UCYN-A, Crocosphaera , Trichodesmium , and
ichelia all correlate positively with temperature and negatively
ith depth, but UCYN-A is distributed across a larger tempera-

ur e r ange, specificall y being pr esent in lo w er temper atur e waters
Tang et al. 2019a ). 

To our knowledge, pr e vious compilations of global NCD nifH
ene abundance data have only targeted Gamma A (Langlois
t al. 2015 , Shao and Luo 2022 ). To increase understanding of
he distribution of NCDs beyond this phylotype, we compiled
PCR/ddPCR data from 59 published studies of the 55 targets

ncluded in our NCD nifH catalog (Fig. 1 ; Table S2, Supporting
nformation), yielding a total of 7385 water column observa-
ions (dataset doi: 10.5281/zenodo.6537451). This database shows
hat while NCD taxa have been quantified from many ocean re-
ions, there has been a strong sampling bias, with the most sam-
les collected from the North Pacific and few samples collected
rom the southern hemisphere (Figure S1, Supporting Informa-
ion). Data is sparse for some NCD taxa (e.g. n = 34 observations
f β-proteobacteria) but is particularly rich for γ -proteobacteria
 n = 4138 observ ations). Her e, we discuss the global distribu-
ions and environmental predictors of the three phylotypes for
hich the most data are available: Gamma A, Gamma 4, and a
-proteobacterium of the order Oceanospirilalles isolated by Rat-
en ( 2017 ) (‘Gamma OcSpi’), as well as the most data-rich Clus-
er 3 phylotype (‘ClusterIII-C’; Church et al. 2005a , Langlois et
l. 2008 ). nifH gene transcripts of these groups have all been ob-
erved, except for Gamma OcSpi, for which no nifH RT-qPCR data
either presence or absence) have been reported (Figure S2, Sup-
orting Information). There were eight additional NCD phylotypes
ith > 100 nifH gene abundance observations; ho w ever, in most

ases data for these phylotypes are only available from a single
cean region (Figure S3, Supporting Information). 

The four most data-ric h NCD phylotypes a ppear to hav e dif-
erent global and depth distributions (Fig. 3 ). Abundances of the
hr ee γ -pr oteobacterial phylotypes ar e all highest at the surface
nd decrease with depth. Gamma A has the best sampling cov-
r a ge of an y NCD phylotype ( n = 2339 samples), with nifH genes
etected in 63% of samples . T he highest Gamma A abundances
 > 10 6 nifH gene copies l –1 ) have been observed in the North Pa-
ific Ocean (Cheung et al. 2020 ), Indian Ocean (Wu et al. 2019 ),
CS (Liu et al. 2020 ), and New Caledonia Lagoon (Benavides et al.
018b ); Gamma A has not been detected in any samples collected
rom the Eastern South Pacific (Halm et al. 2012 , Turk-Kubo et al.
014 , Shiozaki et al. 2018a ; Fig. 3 A). Gamma 4 has only been quan-
ified in the P acific Ocean, wher e its nifH gene sequence has been
etected in 81% of samples ( n = 943). The highest abundances
 > 10 6 nifH gene copies l –1 ) have been observed in the North Pa-
ific and Eastern Tropical South Pacific. Gamma 4 values below
etection limits have been observed in the North P acific, Centr al
outh Pacific, Eastern Tropical South Pacific, and SCS (Halm et al.
012 , Löscher et al. 2014 , Chen et al. 2019 , Cheung et al. 2021 ).
amma OcSpi has only been explored in the upper 300 m of the
orth Atlantic, where nifH genes were detected in 98% of sam-
les ( n = 440; Ratten 2017 ). Maximum abundances of Gamma Oc-
pi wer e gener all y lo w er ( < 10 5 nifH gene copies l –1 ) compared to
amma A and Gamma 4 and the only observations of Gamma
cSpi below detection limits occurred in the western North At-

antic. Finally, ClusterIII-C nifH genes have been detected in 51% of
amples ( n = 147) and though a smaller number of samples have
een collected than for the γ -proteobacterial phylotypes , co verage
as been distributed over many ocean basins (Fig. 3 ). The highest
lusterIII-C abundances ( > 10 5 nifH gene copies l –1 ) have been ob-
erved in the North Pacific Subtropical Gyre (Church et al. 2005a ),
hile r elativ el y high abundances ( > 10 4 nifH gene copies l –1 ) have
een detected in the North Atlantic and the Bay of Bengal (Lan-
lois et al. 2008 , Löscher et al. 2020 ). Measurements of ClusterIII-C
elow detection limits have been reported in the Atlantic (Langlois
t al. 2008 ). Notably, abundances of ClusterIII-C do not decrease
ith de pth (Fig. 3 ), unlik e the γ -proteobacterial phylotypes, and

nstead have a positive depth trend. 
Comparing the distribution of these four NCD phylotypes is

omplicated by differences in sampling efforts and cov er a ge
Fig. 3 ). For instance, samples for Gamma 4 and Gamma OcSpi
av e onl y been collected in the P acific and Atlantic Oceans, r e-
pectiv el y, and the three γ -proteobacterial phylotypes are heavily
iased to w ar d surface samples. Sampling strategies designed to
arget NCDs in undersampled ocean regions may be particularly
seful for helping to constrain NCD biogeography. Reporting non-
etects is also useful for efforts to model diazotroph distributions

Meiler et al. 2022 ) and we encour a ge r esearc hers to do so in futur e
tudies. 

To investigate the potential environmental determinants of
CD phylotypes, we colocalized qPCR abundance data with
vailable World Ocean Atlas climatology, satellite observations,
rgo float data, and PICES model products using the Si-
ons Collabor ativ e Marine Atlas Project (Simons C-MAP, https:

/simonscmap.com , Ashkezari et al. 2021 ). Details on variables
nd space/time/depth tolerances used for colocalization are pro-
ided in Table S4 (Supporting Information). All sampling depths
ere included in this analysis, and while many environmental
 ariables cov aried with depth, their r elationships with nifH gene
bundances were generally consistent when restricting analyses
o surface samples (Figure S4, Supporting Information). 

Envir onmental driv ers of NCDs a ppear to differ among the
our phylotypes investigated and diverge from those described for
 y anobacterial diazotrophs (Fig. 4 ). Abundances of the three γ -
r oteobacteria corr elated positiv el y with temper atur e and neg-
tiv el y with NO 3 

− and phosphate (PO 4 
3 −) concentrations; these

ame tr ends hav e been observ ed for c y anobacterial diazotrophs
Tang et al. 2019a ). In contrast, abundances of ClusterIII-C corre-
ated negativ el y with temper atur e and positiv el y with NO 3 

− and
O 4 

3 − concentr ations (Fig. 4 ), r eflecting the positiv e depth tr end
or this phylotype (Figure S4, Supporting Information). Gamma
 and Gamma 4 abundances correlated negatively with the
O 3 

−:PO 4 
3 − (N:P) r atio, a tr end also observ ed for most c y anobac-

erial diazotrophs (Tang et al. 2019a ), while Gamma OcSpi and
lusterIII-C had weakl y positiv e but nonsignificant corr elations

o N:P. The highest abundances of the γ -proteobacterial phylo-
ypes were associated with moderate O 2 concentrations ( ∼4.5–
.5 ml l –1 ), while their abundances w ere lo w er at lo w O 2 concen-
rations (deep samples) and at high O 2 concentrations (supersatu-
ated and/or cold surface ocean waters). Cluster III-C abundances
 ppear negativ el y r elated to O 2 (although this trend was not statis-
ically significant), with some of the highest abundances observed
n deep, lo w-O 2 w aters ( < 1ml l –1 ). This is consistent with a poten-
iall y anaer obic or facultativ e anaer obic lifestyle , i.e . a c har acter-
stic of many Cluster 3 diazotrophs. Relationships between NCD
bundance and additional environmental variables are presented
n Figure S4 (Supporting Information). 

Ov er all, our anal ysis suggests gr eater v ariability in the bio-
eogr a phy and envir onmental pr edictors among NCD taxa than
mong c y anobacterial diazotr oph taxa. This likel y r eflects the tax-
nomic and metabolic diversity of NCDs, whic h ar e distributed
v er br oad bacterial and arc haeal linea ges (Fig. 1 ) and hav e div erse
ner gy gener ation and nutrient tr ansport mec hanisms (see ‘Di-
ersity and ecophysiological features inferred from MAGs’). While

https://simonscmap.com
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Figure 3. NCD taxa have distinct global and depth distribution patterns. Maps (A) , (C) , (E) , and (G) show the global nifH gene abundances of four NCD 

taxa at all sampling depths (0–4000 m) while depth plots (B) , (D) , (F) , and (H) show the upper 300 m onl y. Observ ations of no detect are represented by 
gr ay squar es; observ ations of detect but not quantifiable (DNQ) wer e giv en a nominal v alue of 1 nifH gene l –1 in the database and ar e r epr esented by 
gra y triangles . Dataset doi: 10.5281/zenodo.6537451. 
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Figur e 4. En vir onmental pr edictors v ary among NCD taxa. NCD nifH gene abundances ar e plotted a gainst envir onmental metadata fr om World Ocean 
Atlas monthly climatology (temperature , nitrate , phosphate , N:P, and O 2 concentration) and Pisces model output of phytoplankton biomass in units of 
carbon (modeled phytoplankton C). Tolerances for colocalization are presented in Table S4 (Supporting Information). Each point represents an 
individual nifH gene abundance sample, with sample depth shown in color. Note that a small fraction of data with outlying x -axis values were 
excluded from plots. Black lines and gray shading represent the smoothed conditional mean and 95% confidence intervals. Symbols ( + /-) reflect 
positive and negative correlations (Spearman rank with Bonferroni correction for 28 comparisons). 
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genome comparisons among the four NCD taxa examined here 
are not yet possible, we presume that they have divergent eco- 
physiological features that may explain their different environ- 
mental drivers and distributions. 

NCD biogeography and ecophysiology from 

metagenomes and meta tr anscriptomes 

Global ocean surveys using ‘omics provide 

insights into NCD abundance and diversity 

Investigations of the global diversity and distribution of NCDs 
from an ‘omics perspective are now possible due to recent im- 
pr ov ements in HTS tec hniques, decr eases in sequencing costs,
and global ocean surveys focused on primer independent se- 
quencing including Tara Oceans (Karsenti et al. 2011 ) and the 
Malaspina (Duarte 2015 ) expeditions . T he Tara Oceans expedi- 
tion has provided the most samples and deepest metagenomic se- 
quencing effort to date for the open ocean (Sunagawa et al. 2015 ,
Carradec et al. 2018 , Salazar et al. 2019 ), with sampling cov er a ge 
including all major ocean regions from the euphotic layer to the 
mesopelagic sea. The first version of the Ocean Microbiome Refer- 
ence Gene Catalog (OM-RGC; Sunagawa et al. 2015 ) focused on the 
free-living size faction ( < 3 μm) and provided a total of 28 nifH gene 
sequence v ariants, onl y two of whic h belonged to c y anobacteria 
(Cornejo-Castillo 2017 ). In recent years, increased metagenomic 
data available from undersampled en vironments , including polar 
regions and the deep ocean, has r e v ealed ne w NCD nifH sequence 
variants, altogether showing that NCDs are globally distributed in 

surface and mesopelagic layers (Cornejo-Castillo 2017 , Salazar et 
al. 2019 , Acinas et al. 2021 , Pierella Karlusich et al. 2021 , Delmont 
et al. 2022 ). Some NCD nifH gene sequences are different from se- 
quences identified with primer-based a ppr oac hes, suggesting they 
may r epr esent nov el diazotr ophic div ersity not found in pr e vious 
studies (Fig. 1 ; Cornejo-Castillo 2017 , Delmont et al. 2018 , 2022 ).
In addition, the reconstruction of MAGs has provided vital insight 
into the genomic content of some marine NCDs, which is crucial 
to gain a better understanding of their physiology and ecology (see 
‘Diversity and ecophysiological features inferred from MAGs’). 

One adv anta ge of meta genomic a ppr oac hes is that normal- 
ization of nitrogenase genes to other genetic markers can pro- 
vide an estimate of the r elativ e abundance of NCDs to the to- 
tal bacterioplankton community. Using this method, NCDs have 
been estimated to be more abundant than some previous reports 
( ∼10 6 cells l −1 ; Delmont et al. 2018 ); NCDs were also among the 
top contributors to the nifH transcript pool in Tara Ocean sam- 
ples (Salazar et al. 2019 ). The r elativ e contributions of NCDs to 
total bacterioplankton were higher in large (5–20 μm) size frac- 
tions than in small (0.2–3 μm) size fr actions (Pier ella Karlusic h 

et al. 2021 ) and r elativ e abundances were significantly higher in 

the mesopelagic than in surface waters (Cornejo-Castillo 2017 ,
Salazar et al. 2019 , Pierella Karlusich et al. 2021 ). Ho w ever, these 
estimations should be inter pr eted with caution since they have 
yet to be corr obor ated using other quantitative approaches. 

Di v ersity and ecophysiological features inferred 

from MAGs 

Acquiring NCD genomes from cultivated isolates and the assem- 
bly and binning of MAGs from the metagenomic datasets de- 
scribed above enables the prediction of metabolic pathwa ys , and 

hence ecophysiological features, of marine NCDs from the surface 
ocean, estuaries, OMZs, and the bathypelagic (Bentzon-Tilia et al.
2015b , Martinez-Perez et al. 2018 , Acinas et al. 2021 , Cheung et 
l. 2021 , Poff et al. 2021 , Delmont et al. 2022 ). Recently, 40 puta-
ive NCD MAGs with a high percent of completion were recon-
tructed from the Tara Oceans expedition (termed Heter otr ophic
acterial Diazotrophs, see Box 1) providing the largest dataset of
he genomic potential of marine NCDs to date (Delmont et al.
022 ). These MAGs r epr esent div erse NCDs affiliated to Proteobac-
eria, Planctomycetes, and Verrucomicrobia ( nifH Clusters 1 and 

). NCD MAGs contributed nearly half of the total nifH gene se-
uences detected in the Tara Oceans metagenomic dataset, al- 
hough their nifH gene transcripts were greatly outnumbered by 
hose of c y anobacterial diazotr ophs (Figur e S5A, Supporting Infor-

ation). Among the NCD MAGs, γ -proteobacteria contributed the 
ajority of the nifH sequences in both the metagenomic (55%) and
etatranscriptomic (78%) datasets, follo w ed b y δ-proteobacteria 

 ∼15% of both nifH genes and transcripts). In contrast, Plancto-
ycetes and ɑ -proteobacteria contributed 2%–3% of the nifH tran-

cripts, while their r elativ e abundances at DNA le v el wer e simi-
ar to δ-proteobacteria. The remaining NCD MAGs were affiliated 

ith β-pr oteobacteria, ε-pr oteobacteria, and Verrucomicr obiota,
hich contributed < 3% to the total nifH genes and transcripts (Fig-
re S5B, Supporting Information). These findings suggest that γ - 
roteobacteria and δ-proteobacteria may be the dominant NCDs 

n the pelagic oceans. 
We examined the ecophysiological features of NCD MAGs, fo- 

using specifically on pathwa ys in volv ed in ener gy gener ation
ther than aer obic r espir ation and in the transport of fixed N,
hich can inhibit c y anobacterial N 2 fixation (Knapp 2012 ). In ad-
ition, we inferred potential regulatory mechanisms of N 2 fixation 

ased on our understanding of similar pathways from terrestrial 
odel NCDs, described in detail below. All MAGs with > 90% com-

leteness (as estimated by Anvi’o; Eren et al. 2015 ) containing all
he nitr ogenase structur al genes ( nifHDK ) wer e included in this
nalysis (30 MAGs) and potential pathways in these MAGs were 
econstructed using KEGGMAPPER (Kanehisa et al. 2012 ). 

Although ther e hav e been r eports of photoheter otr ophic and
 hemolithoautotr ophic NCDs in estuarine and bathypelagic wa- 
ers (Bentzon-Tilia et al. 2015a , Acinas et al. 2021 ), all Tara Ocean
CD MAGs were originally identified as chemoheterotrophs (Del- 
ont et al. 2022 ). Ne v ertheless, se v er al ener gy gener ating path-
ays other than aerobic respiration were detected in the NCD
AGs , including e .g. anoxygenic photosystem II (APII), dissimi-

atory sulfate reduction (DSR), the SO X pathw a y (i.e . sulfur oxi-
ation), dissimilatory NO 3 

− reduction to NH 4 
+ (DNRA), and den- 

trification (Fig. 5 A; Hu et al. 2002 , Kraft et al. 2011 , Santos et
l. 2015 , Grabarczyk and Berks 2017 ). APII was only detected
n an α-proteobacterial MAG and DSR was constrained to δ-
r oteobacteria. In contr ast, the SO X pathw ay and DNRA w ere de-
ected across MAGs of various groups. Denitrification was found 

n an α-proteobacterial MAG and two γ -proteobacterial MAGs. Ap- 
r oximatel y, half of the NCD MAGs contained at least one of these
ner gy gener ating pathwa ys , and one-third of them contained
ultiple pathwa ys . 
The NCD MAGs contained the genes for ABC transporters 

f various chemical forms of N, P, and Fe (Fig. 5 B; Figure S6,
upporting Information). The genes encoding NH 4 

+ transporters 
ere detected in all NCD MAGs but only in some c y anobacte-

ial diazotrophic MAGs. Additionally, the γ -proteobacterial and 

-proteobacterial NCDs were genetically capable of transporting 
O 3 

−, NO 2 
−, c y anate , urea, and amino acids , while the other NCDs

nd c y anobacterial diazotr ophs gener all y lac ked some or all genes
n these pathwa ys . T he genetic capacity for uptake/transport of

ore forms of fixed N in NCDs than in c y anobacterial diazotrophs
uggests that some NCDs may be facultativ e diazotr ophs and
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Figure 5. Ecophysiological features of NCDs include pathways involved in energy generation and transport of fixed N not present in c y anobacterial 
diazotr ophs. Color r epr esents pr esence/absence of metabolic pathways (blac k: all genes; gr ay: one missing gene; and white: no genes) related to energy 
acquisition (A) , N uptake (B) , and regulation of nitrogenase synthesis and activity (C) of NCDs and c y anobacterial diazotrophs as inferred from 

r econstructed Tar a Oceans MAGs (Delmont et al. 2022 ). Alpha = ɑ -pr oteobacteria; Beta = β-pr oteobacteria; Delta = δ-pr oteobacteria; Epsilon = 

ε-proteobacteria; Gamma = γ -proteobacteria; Plancto = Planctomycetes; and Verruco = Verrucomicrobiota. See Fig. 6 for more details about these 
regulatory pathways and the proteins involved. 
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witch to alternative fixed N forms when available under certain
onditions. Most NCD MAGs also contained diverse P and Fe up-
ake pathways (Figure S6, Supporting Information). 

N 2 fixation is a highly regulated process, due both to the en-
rgetic demands (high ATP and reductant requirements) and O 2 

ensitivity of nitrogenase. As such, there are multiple complex
athways for the sensing of alternative N sources and intracellu-

ar O 2 conditions. Many potential N/O 2 sensing regulatory mecha-
isms of N 2 fixation were found in the NCD MAGs (Figs 5 C and 6 ).
ll NCD MAGs contained the nifA gene, which is the major reg-
lator that interacts with the upstream environmental sensing
athways and controls the transcription of the nif operon in ter-
estrial NCDs (Dixon and Kahn 2004 ). In terms of known N-sensing
 egulatory mec hanisms, onl y the pr oteobacterial MAGs contained
he genes encoding the N sensing protein (GlnD) and PII proteins
GlnB or GlnK). Additionally, within that group, nearly all the α-
r oteobacterial and γ -pr oteobacterial MAGs contained the genes
or the two-component system (NtrB-NtrC) that regulates the ex-
ression of nifA gene. Briefly, when alternative N forms are in ex-
ess, activ ation of nifA tr anscription is inhibited by the r emov al of
ridyl yl gr oups fr om PII by GlnD, whic h then inter acts with NtrB
nd inhibits NtrC (Bueno Batista and Dixon 2019 ). When N is lim-
ting, the PII proteins are uridylylated by GlnD, which cannot in-
eract with NtrB-NtrC; uridylylated PII proteins can also directly
ctivate the NifA protein, and thus allow the expression of the nif
peron (Dixon and Kahn 2004 ). Another regulatory protein (NifL),
nown to interact with non-uridylylated PII and inhibit NifA under
xcess N conditions in the terrestrial γ -proteobacterial diazotroph
. vinelandii (Little et al. 2000 ) was also detected, but mostly in γ -
roteobacterial MAGs (Fig 5 C). 

Some NCD MAGs also contained genes for O 2 (FixL-FixJ) and
edox (RegB-RegA) sensing two-component regulatory systems
Figs 5 C and 6 ). When the intracellular conditions favor the ac-
ivity of the O 2 -sensitiv e nitr ogenases, these systems can activate
he transcription of the nifA gene and allow the synthesis of nitro-
enase (Dixon and Kahn 2004 ). The Fnr pr otein, whic h was mostly
etected in γ -proteobacterial MAGs, can also sense O 2 le v els and

s important in maintaining the non-inhibitory form of NifL and
he functioning of NifA in the terrestrial γ -proteobacterial dia-
otroph Klebsiella pneumoniae (Grabbe et al. 2001 ). Moreover, the
ifA in some NifL-lacking terrestrial NCDs can also dir ectl y sense
 2 le v el (Dixon and Kahn 2004 ), which could theoretically be the
ase for some of the marine NCDs that appear to lack known O 2

ensing systems. 
In addition to these regulatory processes, genes coding for cy-

oc hr ome bd (CydABX) were found in most γ -proteobacterial and
-proteobacterial MAGs (Figs 5 C and 6 ). The cytoc hr ome bd con-
umes large amounts of O 2 during ATP gener ation, whic h was
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Figure 6. NCDs use diverse regulatory pathways for N 2 fixation. Circular dia gr ams next to each regulatory pathway represent the presence or absence 
of the corresponding genes in at least one MAG from each NCD group (Alpha = ɑ -proteobacteria; Beta = β-proteobacteria; Delta = δ-proteobacteria; 
Epsilon = ε-proteobacteria; Gamma = γ -proteobacteria; Plancto = Planctomycetes; and Verruco = Verrucomicrobiota) as indicated by color (presence) 
or white (absence). 
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found to be important in reducing intracellular O 2 levels through 

r espir ation for aerobic N 2 fixation in A. vinelandii (Poole and Hill 
1997 ). Additionall y, of r ele v ance to intr acellular O 2 r egulation,
a recent study has proposed that hopanoids can act as an O 2 - 
diffusion barrier that protects the O 2 -sensitive nitrogenase in ma- 
rine c y anobacteria (Cornejo-Castillo and Zehr 2019 ); ho w e v er, the 
gene for hopanoid synthesis [squalene-hopene cyclase ( shc )] was 
absent in most NCD MAGs, except Planctomycetes (Fig. 5 C). Inter- 
estingl y, man y of these regulatory pathways were not detected in 

the MAGs of c y anobacterial diazotrophs (Fig. 5 ). 
Acquisition and analysis of these MAGs provides unprece- 

dented insight into the genomic potential of marine NCDs . T he 
emerging pattern suggests that collectively this group may rely 
on alternative N sources in place of N 2 fixation under oxygenated 

conditions, as evidenced by the di verse N uptak e proteins de- 
tected, along with the presence of N/O 2 -sensing regulatory path- 
wa ys . Futur e studies le v er a ging in situ whole genome transcription 

fr om NCDs ar e needed to link metabolic status (e.g. fixing N 2 vs.
r el ying on N-uptake) with environmental conditions. 

Mo ving fr om genes to r a tes: are NCDs fixing 

N 2 in the pelagic oceans? 

The high diversity and wide distribution of NCDs and the occa- 
sional detection of nifH transcripts in PCR-based and metatran- 
scriptomic datasets are often referenced as indicators of the sig- 
nificance of NCDs to marine N 2 fixation. Numerous attempts have 
been made to link NCD presence and/or active transcription of 
nifH to whole community N 2 fixation. This is challenging in the 
well-lit surface ocean given the generally low abundance of NCDs 
 elativ e to co-occurring c y anobacterial diazotrophs (Moisander et
l. 2017 ). Ho w e v er, ther e ar e some r eports of N 2 fixation r ates
her e NCDs ar e abundant and c y anobacterial diazotr ophs ar e ab-

ent (Yogev et al. 2011 , Großkopf et al. 2012 , Halm et al. 2012 ,
öscher et al. 2014 , Shiozaki et al. 2014 , 2017 , Bentzon-Tilia et
l. 2015b , Rahav et al. 2016 ), occasionally at high rates (e.g.
4.8 ± 8.4 nmol N l -1 d 

-1 ; Löscher et al. 2014 ). But even when
uc h dir ect comparisons ar e possible (e.g. NCD cell abundances
nd N 2 fixation rates are both re ported), discre pancies often exist
etween NCD abundances and potential N 2 fixation rates (Turk- 
ubo et al. 2014 ), suggesting underestimates of NCD abundances
nd/or cell-specific rates or overestimates of whole community 
 2 fixation rates. 
Proving that NCDs fix N 2 in aphotic waters is also challenging.

he low rates reported for many aphotic samples ( < 1nmol N l −1 

 

−1 ) are near detection limits for the 15 N 2 uptake assay, which
ave not historically been reported throughout the literature 

Gradoville et al. 2017a ). Reports of commercial 15 N 2 gas stocks
ontaminated with 

15 NH 4 
+ and/or 15 NO 3 

−/ 15 N-nitrite (NO 2 
−) raise

 concern that some a ppar ent r ates could be artifacts driv en by
xed N uptake (Dabundo et al. 2014 ). Additionally, measuring ac-
urate N 2 fixation rates from the mesopelagic, where particulate 
 concentr ations ar e low, can be logisticall y c hallenging due to the

ar ge filtr ation volumes needed to produce sufficient N content for
ass spectrometry (White et al. 2020 ). Fortunately, the scientific

ommunity is now coming to a consensus regarding best practices
or measuring and r eporting N 2 fixation r ates in the face of these
hallenges (White et al. 2020 ). Ho w ever, more data validating ac-
ive N 2 fixation by NCDs in aphotic waters is needed and linking
ates to a particular NCD taxon remains a challenge. 



18 | FEMS Microbiology Reviews , 2023, Vol. 47, No. 6 

Figure 7. Pr edicated featur es of euphotic marine NCD comm unities ar e likel y influenced by habitats . P otential str ategies used by NCDs to acquir e 
energy and C needed to support N 2 fixation with energetic constraints and O 2 inactivation of nitrogenase. Question marks emphasize where many 
open questions r emain. Notabl y, ther e is recent evidence that NCDs may be fixing N 2 on particles, as discussed in this r e vie w (Geisler et al. 2019 ). 
EPS—extr acellular pol ymeric substances. Cr eated with BioRender.com. 
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Measur ements of taxonomicall y-r esolv ed single-cell NCD N 2 

xation rates in marine waters ar e extr emel y sparse. Farnelid et
l. ( 2014 ) isolated more than 60 strains of putative NCDs from
altic Sea surface waters, more than half of which fixed N 2 under
ulture conditions. Single-cell N 2 fixation rates (up to 0.17 fmol
 cell −1 h 

−1 ) of Baltic Sea isolates indicated that NCDs could be
 locally-important N source if they fix N 2 at these rates in the
nvir onment giv en in situ abundances (10 4 cells L -1 ; Bentzon-Tilia
t al. 2015a ). Additionall y, Martinez-Per ez et al. ( 2018 ) isolated an
-proteobacterial NCD, Sagittula castanea (targeted by the qPCR as-
ay CE1_45m_12_ ɑ , Zhang et al. 2011 ), from sulfidic waters in the
pwelling region off the coast of Peru and successfully measured
ingle-cell rates of 0.0008–0.060 fmol N cell −1 d 

−1 under culture
onditions. N 2 fixation was only detected under anoxic conditions
despite being isolated from oxic waters) and was stimulated by
O 2 

− and inhibited by NH 4 
+ . Importantly, in situ single-cell N 2 fix-

tion rates by S. castanea were undetectable, despite measurable
ulk rates during the time of isolation, suggesting that in situ N 2 

xation by S. castanea may be transient and dependent on the de-
elopment of anoxia. 

Single-cell N 2 fixation rates from marine NCDs, both in situ and
rom nutrient perturbation experiments, are critically needed to
alidate their role in marine N 2 fixation and better understand
nvir onmental contr ols on their acti vity. Ad vances in single cell
isualization techniques including CARD-gene-FISH (Moraru et
l. 2010 ), mRNA-FISH (Pilhofer et al. 2009 , McInnes et al. 2014 ),
ISH-TAMB (Harris et al. 2021 ), and nitr ogenase imm unolabeling
Geisler et al. 2019 , 2020 ), hold pr omise for measuring tar geted
CD single-cell N 2 fixation rates if they could be successfully cou-
led to 15 N 2 incubations and nanoscale secondary ion mass spec-
rometry (nanoSIMS). Ho w ever, technical challenges arising from
ow cell concentrations in complex environmental samples and
ample pr epar ation steps that dilute the 15 N signal (Meyer et al.
021 ) r equir e innov ativ e solutions. Furthermor e, giv en that NCD
 2 fixation may be a tr ansient pr ocess, especiall y in particle mi-
r oenvir onments (Riemann et al. 2022 ), capturing active NCD N 2 

xation may curr entl y be hamper ed by insufficient tempor al and
patial sampling resolution (Benavides and Robidart 2020 ). 

uture perspectives 

he past two decades of r esearc h hav e gr eatl y incr eased our un-
erstanding of marine NCDs and a fr ame work for understand-
ng these organisms is now emerging (Fig. 7 ). Diverse NCD se-
uences have been detected from many ocean environments and
abitats using both primer-based and primer-free approaches, un-
erscoring their pr e v alence in the marine system. Insights from
ultivation-based studies and marine NCD MAGs have revealed
otential physiolog ical strateg ies that marine NCDs may use to
ounter the inhibition of nitrogenase by O 2 and acquire enough
nergy to fuel N 2 fixation, such as forming self-aggregates in mi-
r oaer ophilic conditions and the ability to use alternative en-
rgy sources (Bentzon-Tilia et al. 2015a , Martinez-Perez et al.
018 , Acinas et al. 2021 ; Fig. 5 A). Furthermor e, r econstructing the
etabolic potential of NCDs from MAGs shows that the phylo-

enetic diversity of this group is mirrored by diverse ecophysi-
log ical strateg ies . Marine NCDs ha ve complex genetic systems
o sense O 2 and N-availability and are able to use many alter-
ative N sources, suggesting that some NCDs may be function-

ng as facultative diazotrophs. Collectively, these findings help ex-
lain why NCDs appear to inhabit such disparate habitats, from
unlit surface waters to the bathypelagic and to diverse benthic
ystems. 

Despite these adv ances, man y open questions r emain (empha-
ized in Fig. 7 ). In addition to the critical need to demonstrate ac-
ive N 2 fixation in marine NCDs (discussed in ‘Moving from genes
o r ates: ar e NCDs fixing N 2 in the pela gic oceans?’), better c har-
cterizing habitats and lifestyles of NCDs will be k e y to under-
tanding the factors promoting active N 2 fixation. This includes
etermining whether NCD N 2 fixation is r estricted onl y to low O 2

icrohabitats (e.g. particle- or aggregate-associated), or if NCDs
an fix N 2 aer obicall y (like some terr estrial counter parts) and if so,
ow they mitigate O 2 inactivation of nitrogenase. Another inter-
sting question to r esolv e is whether some NCD taxa have formed
bligate symbioses with other planktonic species, an evolution-
ry strategy that has led to many symbioses between cyanobac-
erial diazotrophs and algae (Villareal 1992 , Thompson et al. 2012 ,
c hv arcz et al. 2022 ). 

At this time, the substantial knowledge gaps discussed
hroughout this review impede obtaining reasonable estimates of
CD contributions to the global marine N cycle, and the biogeo-

hemical significance of NCDs remains uncertain. Ultimately, de-
ermining the importance of marine NCDs will r equir e measur e-

ents of single cell N 2 fixation rates as well as advances in tech-
iques to collect, enric h, c har acterize, and manipulate a ggr egates
nd particles, cultivate rare marine microbes, and increase tem-
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poral and spatial resolution of N 2 fixation rates coupled to PCR- 
based and PCR-free surveys. 
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