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Abstract 

Young children use informal strategies to solve arithmetic 
word problems. The Situation Strategy First (SSF) framework 
claims that these strategies prevail even after instruction. The 
present study was conducted with second grade students in 
order to investigate the persistence of intuitive, situation-
based strategies, on word problems that do not involve 
dynamic temporal changes. This is challenging for the SSF 
framework, since the lack of this dimension might bypass 
intuitive strategies. The results revealed that intuitive 
strategies persist, are valid for these types of problems, and 
impact the problems' difficulty. Indeed problems that require 
the application of arithmetic principles remain hard, even 
though they have been practiced at school. These findings 
provide complementary evidence to how mental calculation 
strategies articulate with arithmetic word problem solving and 
call for the extension of the SSF framework. 
 
Keywords:arithmetic word problems; problem solving; 
informal strategies; solution strategies; education. 

Introduction 

Even before instruction young children can solve 

arithmetic word problems by usinginformal strategies 

(Verschaffel& De Corte, 1997). These informal strategies 

reflect the situation described in the problem and preclude 

the flexible application of mathematical principles like 

commutativity, inversion or distributivity (Verschaffel & De 

Corte, 1997).During the early years of elementary school, 

children improve their numerical competencies and acquire 

certain mathematical principles, which could lead us to 

expect that newly acquired arithmetic competencies would 

take place over the informal strategies. 

Indeed, numerous mental calculation strategies that 

schooled children develop to solve problems when 

presented in their arithmetic expression (e.g.'8 - 5=') have 

been documented (e.g. Carpenter, Ansell, Franke, Fennema, 

& Weisbeck, 1993; Torbeyns, De Smedt, Ghesquière, & 

Verschaffel, 2009). They are mainly determined by the 

arithmetic operation that provides the solution. For 

subtraction problems, the principal distinction bears 

between direct subtraction strategies in which the 

subtrahend is straightforwardly taken away from the 

minuend (e.g. in which '42 - 39 =' is solved by '42 - 39'), and 

indirect addition strategies in which the calculation consists 

in finding how much needs to be added to the minuend to 

reach the subtrahend (e.g. in which '42 - 39 =' is solved by 

'39 + . = 42'). In both of these strategies, the arithmetic 

operation that is used is subtraction, it is just the arithmetic 

format that is different (Campbell, 2008). In order to 

describe how students use the two strategies, Peters, 

DeSmedt, Torbeyns, Ghesquière, and Verschaffel (2013) 

provided empirical support for their Switch model. 

According to this model,students solve two-digit subtraction 

problems by switching between direct subtraction and 

indirect addition depending on the combination of the 

magnitude of the subtrahend and the numerical distance 

between the subtrahend and the minuend. 

Brissiaud and Sander (2010) investigated how these 

mental calculation strategies articulate with the informal 

strategies students use on arithmetic word problem solving. 

They proposed a Situation Strategy First (SSF) framework 

which posits that the initial representation of a problem 

activates asituation-based strategy, both before and after 

instruction. Only when this strategy is not efficientthe 

representation of the problem may be modified and a set of 

arithmetic principles may be applied in order to provide an 

adequate solution in a more efficient way. In their 

experiments, each problem was presented to second and 

third grade students in two versions. The first version could 

be efficiently solved by mentally simulating the actions 

described in the problem - situation strategy problems (Si-

problems). For example: 

I. Luc is playing with his 42 marbles at recess. 

During the recess, he loses 3 marbles. How many 

marbles does Luc have now? [42 - 3 =  .] 

Problem I is an Si-problem because simulating the action 

of losing 3 marbles through mentally counting down from 

42 is easy to perform(41 (1), 40 (2), 39 (3)). Thus, a 

situation-based solving strategy, modeling the described 

situation - the Si-strategy - is efficient. 

For each Si-problem, a Mental Arithmetic counterpart 

was introduced (MA-problem). MA-problems are problems 

for which mental simulation is too costly to attain the result 

– thus for which the Si-strategy is not efficient. On the 

contrary, the  use and application of arithmetic knowledge is 

efficient and makes the problem easy (MA-strategy). For 

example: 

II. Luc is playing with his 42 marbles at recess. During 

the recess, he loses 39 marbles. How many marbles does 

Luc have now? [42 - 39 =  .] 

The solution to problem II cannot be efficiently obtained 

by using the same procedure as for the first one; mentally 

simulating the action by counting down 39 marbles would 

be too costly. However the mental subtraction 42 – 39 is 
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easy when the complement principle is mastered and leads 

to counting up from 39 to 42.  

The findings revealed that even after instruction, the Si-

problems remained systematically and significantly easier 

than the corresponding MA-problems. Furthermore, a 

higher use of informal strategies was observed on Si-

problems, while arithmetic principles were almost 

exclusively used on MA-problems. For instance, when 

students succeeded to solve an Si-problem such as Problem 

I, they exclusively used a direct subtraction strategy, which 

is the Si-strategy in this case. However, when they 

succeeded to solve an MA-problem such as Problem II,even 

though Si-strategies were (scarcely)observed, they were 

solved to a greater extent by MA-strategies, such as looking 

for a missing addend in the previous example (‘39 + . = 

42’). This was never observed for Si-problems: no child 

tried to solve a problem such as Problem I by the missing 

addend'3+ . = 42'. 

Indeed, the arithmetic computations of both Si- and MA-

strategies on subtraction problems are executed by the 

aforementioned mental computation strategies. The Switch 

model could accurately account for how the various 

arithmetic characteristics of the problems tested so far by 

the SSF framework yield a clear computational advantage 

for one strategy over another. However, the Switch model 

does not provide an explanation for why students fail to 

apply arithmetic principles, such as it is observed through 

the significantly lower success rates on MA-problems. 

Indeed, even though the Switch model accurately describes 

the numerical conditions that require a switch between 

direct subtraction and indirect addition, it does not account 

for the mental re-representation needed in order to make this 

switch when a presented strategy cannot be easily 

performed in the same format as the one it is presented in. 

We propose that the attainment of a mental re-

representation would reflect an underlying conceptual 

metaphor that guides the interpretation and application of 

arithmetic principles. Conceptual metaphors are based on 

everyday human experience. The underlying mathematical 

ideas are constructed through cognitive mechanisms called 

fictive motion, which refer to the conception of static 

entities in dynamic terms (Lakoff & Núñez, 2001). One of 

the main representations of arithmetic is object collection 

(Lakoff & Núñez, 2001). The most widespread conceptual 

metaphor of subtraction that can be drawn from itis "taking 

away" (Fischbein, 1989; Lakoff and Núñez, 2001). 

Alternatively, arithmetic can be considered as motion along 

a path (Lakoff & Núñez, 2001). The conceptual metaphor of 

subtraction that can be drawn from this conception is 

subtraction as a measuring stick (Lakoff & Núñez, 2001), or 

as "determining the difference" (Selter, Prediger, 

Nührenbörger & Hußmann, 2012). As Selter and 

collaborators (2012) pointed out, the "taking away" model 

might be more widespread, however seeing subtraction 

solely as "taking away" is too one-sided, and both models 

are required in order to be flexible in mental arithmetic.  

We consider that the failure to apply arithmetic principles 

on MA-problems is due to a restrictive representation of 

arithmetic, an intuitive representation(such as the "taking 

away" model), which entails a limited interpretation of the 

arithmetic situation embedded in the problem statement. 

Such an extension of the SSF framework would also 

challenge the most commonly used classification of 

arithmetic word problems introduced by Riley, Greeno and 

Heller (1983). Their classification determines the difficulty 

of a problem based on the semantic category it belongs to, 

while the SSF framework puts emphasis on situation-based 

strategies and proposes thatthe efficiency of such strategies 

would be also a determining factor of difficulty. 

Yet, all the subtraction problems that were tested by 

Brissiaud and Sander (2010) belonged to one same category 

of subtraction problems from Riley, Greeno and Heller's 

(1983) classification - change problems. These problems are 

dynamic in nature and describe an action with a temporal 

dimension,soliciting a mental simulation. However, the 

other problem categories do not involve this temporal 

dimension. They have been identified as more difficult than 

change problems, especially "compare" problems, in which 

a comparison between two quantities is involved and the 

question bears on the difference or on one of the compared 

quantities. It therefore remains an open issue if the mental 

simulation advocated by the SSF framework is still relevant 

for problems that do not unfold along a temporal dimension. 

Indeed, if the mental simulation of the problem was not 

solicited, then we could expect that the distinction between 

Si- and MA-problems among these categories would lose its 

relevance. It therefore remains an open issue if the mental 

simulation advocated by the SSF framework is still relevant 

for problems that do not unfold along a temporal dimension. 

If it would be demonstrated that the efficiency of the mental 

simulation influences a problem’s difficulty even when it 

does not develop along a temporal timeline, it would 

warrant a broader view of Si-strategies and provide a new 

criterion for the assessment of problem difficulty, not based 

only on the semantic category, but also on the efficiency of 

the Si- strategy. 

Aim of the study 

The purpose of the study was to demonstrate that the 

mental simulation of the arithmetic relations is not a mere 

consequence of a dynamic semantics of the problem, but an 

intrinsic property of arithmetic problem solving. Firstly, we 

conducted a longitudinal study in order to test the 

distinction between Si- and MA-problems in contexts less 

favorable for a mental simulation. Secondly, we conducted 

individual verbal reports in order to gather confirmatory 

evidence of situation-based strategies for Si-problems and a 

switch to non-situation-based strategies for MA-problems. 

 

 

 

2151



Table 1: Example of the problems for the number set (31, 27, 4)presented with different contexts 

 

Problem categories Si problems MA problems 

Comparison 

problems 

D[b+ . =a] 
There are 27 roses and 31 daisies in the 

bouquet. How many daisies are there more 

than roses in the bouquet? 

There are 4 roses and 31 daisies in the 

bouquet. How many daisies are there 

more than roses in the bouquet? 

D[a- . =b] 
There are 31 oranges and 27 pears in the 

basket. How many pears are there less than 

oranges in the basket? 

There are 31 oranges and 4 pears in the 

basket. How many pears are there less 

than oranges in the basket? 

C[b+b'= . ] 
James has 27 marbles. Steve has 4 marbles 

more than James. How many marbles does 

Steve have? 

James has 4 marbles. Steve has 27 

marbles more than James. How many 

marbles does Steve have? 

C[a-b= . ] 
Anna has 31 euros. Susan has 4 euros less 

than Anna. How many euros does Susan 

have? 

Anna has 31 euros. Susan has 27 euros 

less than Anna. How many euros does 

Susan have? 

Equalizingproblem

s 

E[b+ . =a] 
There are 27 oranges and 31 pears in the 

basket. How many oranges should we add 

to have as many oranges as we do pears? 

There are 4 oranges and 31 pears in the 

basket. How many oranges should we add 

to have as many oranges as we do pears? 

E[a- . =b] 

There are 31 roses and 27 daisies in the 

bouquet. How many roses should we take 

away in order to have as many roses as we 

do daisies? 

There are 31 roses and 4 daisies in the 

bouquet. How many roses should we take 

away in order to have as many roses as we 

do daisies? 

Combine problems 

S[b+ . =a] 

Mary has 27 euros in her piggybank and she 

has euros in her pocket. In total, Mary has 

31 euros. How many euros does Mary have 

in her pocket? 

Mary has 4 euros in her piggybank and 

she has euros in her pocket. In total, Mary 

has 31 euros. How many euros does Mary 

have in her pocket? 

S[b+b'= . ] 
There are 27 blue marbles and 4 red 

marbles in Marc's bag. How many marbles 

are there in Marc's bag? 

There are 4 blue marbles and 27 red 

marbles in Marc's bag. How many 

marbles are there in Marc's bag? 

 

Experiment 1 

Method 

Participants 

269 second grade students from 13 classes in 7 schools 

from working-class neighborhoods participated in the study. 

The average age of the children in January, when the first 

test was passed, was 7.62 years (sd = 0.32, 138 girls). 

Material  

There were 8 addition and subtraction problem types 

belonging to 3major categories: 

- compare problems: difference set(D[b+ . =a],  

 D[a- . =b]) and compared set (C[b+b'= . ], C[a-

 b= . ]), 

- equalizing problems(E[b+ . =a], E[a- . =b]), 

- combine problems(S[b+ . =a], S[b+b'= . ]). 

The subtraction problems involved two numbers, a and b 

(a>b). The numerical values for a were either 42, 41, 33 or 

31, while in order to differentiate between Si- and MA-

problems the values for b were either kept small (3 or 4) or 

were close to a (39, 38, 29 or 27). To create Si-problems the 

small value of b was used for the C[a-b= . ], while the b 

value close to a was used for D[b+ . =a], D[a- . =b],  

C[b+b'= . ], E[b+ . =a], E[a- . =b]n S[b+ . =a],  

S[b-b'= . ]. To create MA-problems the opposite b value was 

respectively used for each problem, since it would make the 

Si-strategy costly. 

Addition problems S[b+b'= . ] and C[b+b'= . ] involved 

two numbers, b and b'. Both numbers had the same 

characteristics as b for subtraction problems, while the 

unknown value was equivalent to a. To create Si-problems 

the b value close to a was presented first, while the small b 

value (b') was presented second. To create MA-problems 

they were presented in the opposite order. 

Thus the numbers involved in the data and the solution 

are (31, 27, 4), (33, 29, 4), (41,38, 3), and (42, 39, 3). 

Note that the number size was not the determining factor 

in the Si vs. MA-problem distinction. In the Si- versions one 

problem had the b value close to a, while others had small b 

values
1
. Also the second experiment was conducted to 

support this, by directly investigating students' strategy use. 

                                                           
1 Furthermore, in the princeps study that introduced the SSF 

framework, the small b values, and the ones close to a were 

equally present in the Si- and MA-versions of the problems. 
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Four different contexts were used for the wording of the 

problems: marbles, euros, flowers and fruits.  

Table 1 provides examples of each problem category. 

Design 

Children solved a total of 8 problems created by 

combining the 8 problems categories in either their Si- or 

MA- version. Each student therefore solved 4 Si-problems 

and 4-MA-problems.To control for the impact of position, 

numerical sets and context, 8 different problem sets were 

created. Another 8 problem sets were 'mirror' sets in which 

the Si-version of one problem would be presented in its MA 

counterpart, while the MA-problem would be presented in 

its Si-counterpart. Thus, 16 groups of problem sets were 

created altogether and counterbalanced across classrooms. 

Procedure 

The experiment was composed of two sessions. The first 

conducted in January and the second one, strictly identical 

to the first one, 6 months later, in June. It was administered 

in the students' classrooms. Each child received an 8 pages 

booklet. There was a square in the middle of each page in 

which they wrote their answer. Each problem was read 

aloud twice to the whole classroom and children had one 

minute to write down the number that was the solution. 

Scoring  

The solutions provided by the children were scored with 1 

point when the numerical answer was exact, or within the 

range of plus or minus one of the exact value, in order to 

take into account mistakes in counting procedures. Any 

other answer received 0 points. The average of the sum of 

the scores on Si- and MA-problems was used as the 

dependent variable and analyses on these scores were 

carried out. 

Results 

A first analysis was conducted in order to compare 

children's average success rates on Si- and MA-problems at 

the beginning of the year, followed by a second set of 

analyses in order to compare the success rates on the 

problems at the end of the school year. A third analysis bore 

on the progression over the year. 

Repeated measure ANOVAs, with the 'Si- versus MA-

problems' variable (further referred to as Problem type)as 

within-participant independent variables, were conducted 

for each session. The analyses of the scores obtained in 

January showed a highly significant main effect of Problem 

type on performance (F(1, 268)=98.39, p< 

0.001,ƞ²=0.11).Table2displays the average success rates. 

Indeed the Si-problems had a 19.57% higher success rate 

than MA-problems. 

In June, there was a significant difference in performance 

between the two times of testing on Si-problems  (F(1,268)= 

86.39, p<.001, ƞ²=0.06) and on MA-problems 

(F(1,268)=36.58, p<.001, ƞ²=0.05). Yet, in accordance with 

our hypotheses, the results still revealed a highly significant 

main effect of Problem type on performance in June 

(F(1,268)=119.57, p<.001, ƞ²=0.13).As displayed in Table2, 

the Si-problems had a 24.38% higher success rate than MA-

problems in June (experiment 2). 

Table 2: Average success rates 

 

Averagesuccess rate January June 

Si-problems 47.86% 64.53% 

MA-problems 28.25% 40.15% 

Indeed, after performing a repeated measure ANOVA 

with the Problem type and the times of testing as within-

participant independent variables, the results confirmed that 

there was a significant main effect of Problem type 

(F(1,268)=171.64, p<.001, ƞ²=0.12) and a main effect of the 

Time of testing (F(1,268)=106.19, p<.001, ƞ²=0.05), but 

most importantly there was no interaction between the two 

variables (F(1,268)=3.51, p>.1, ƞ²=0.001). Thus, as 

hypothesized, despite the progress made on each problem 

type throughout the year, the gap in performance persisted 

between Si- and MA-problems. 

In order to test the hypotheses problem per problem, 

univariate ANOVAs, with the Problem type variable, were 

conducted for each of the eight problem categories and 

showed that almost all of the Si-problems were significantly 

easier than the corresponding MA-problems both in January 

and in June: D[a - . =b], C[b + b'= . ], C[a - b= . ], E[b + . 

=a], E[a - . =b] and S[b + . =a] (3.843 <F(1, 267)<72.501, 

p< .01, 0.01<ƞ²<0.20. The D[b+ . =a] seemed to be 

particularly hard in January when no difference was 

observed (F(1,267)=0.23, p>.1,ƞ²=0.001) (27.6% success 

rate on Si- and 25% on MA-problems), but the Si- versus 

MA-distinction was valid at the end of the year 

(F(1,267)=15.63, p<.001, ƞ²=0.06)(47% success rate on Si- 

and 24% on MA-problems). The single exception for which 

no difference was observed on either time of testing was the 

combine superset problem S[b+b'= . ] (January 

F(1,267)=2.69, p>.1, ƞ²=0.01, June F(1,267)=1.223, p>.1, 

ƞ²=0.005), for which a difference was observed in the 

expected direction but not confirmed by the test (75% and 

83% success rate on Si-problems and 66% and 77% on MA-

problems, in January and June respectively). 

Discussion 

The results revealed that the distinction between Si- and 

MA-problems remain relevant for subtraction and addition 

word problems that do not evolve along a temporal time-

line. Our study shows that indeed, problems efficiently 

solved by direct modeling strategies remain easier for 

students even after they acquired more advanced skills in 

mathematics at the end of the year. The progression between 

the two sessions did not obliterate the distinction between 

Si-and MA-problems. The similar progression on Si- and 

MA- problems might be explained by the advances children 

made in computational execution of the calculations, or 

regarding their general comprehension skills. 

A second experiment was conducted in order to provide 

confirmatory evidence that the difference in difficulty 

between Si- and MA-problems actually results from the 

preferential use of Si-strategies when they are efficient and 

for the lack in the application of arithmetic principles when 

this strategy is inefficient. 
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Table 3 : solving strategies for each problem category (with an example of the number set (31, 27, 4)) 

 

Experiment 2 

We collected additional information concerning the 

strategies children actually use when solving Si- and MA-

problems. We asked them to solve problems and then to 

describe their solving strategy aloud. We predicted that the 

solution strategies which directly model the problem would 

be predominant for Si-problems but that alternative 

strategies would emerge for MA-problems. 

Method 

Participants 

42 Grade 2 students from 4 classes in2 different schools 

from working-class neighborhoods participated in the study. 

The test occurred in June and the average age of the children 

on the test was 7.93 years (sd = 0.26, 23 girls). None of the 

participants participated in the previous experiment. 

Material & Design 

The same material and design was used as in the first 

experiment. 

Concerning the evaluated strategies, if we take the D[a- . 

=b] problem as an example, the Si- strategy used to solve it 

is to start from the largest presented quantity (31) and to 

double-count downwards until the second quantity is 

reached: in the Si-problem this would not be costly. The 

students would describe their solving process as starting 

from 31 and counting down30(1), 29(2), 28(3), 27(4), 

bearing the answer 4, and noted by the experimenter as 31- . 

= 27.Yet using the same Si-strategy of double-counting 

downward in the MA-problem to get from 31 to 4 is a costly 

procedure. When students would use this strategy they 

would describe the same solving process: starting at 31 and 

counting down30 (1), 29(2), 28(3), ... 5(26), 4(27), bearing 

the answer 27 and noted by the experimenter as 31- . = 4. 

Nevertheless, when applying arithmetic knowledge we 

can easily know that taking away 4 from 31 provides the 

correct numerical answer to this MA-problem. One of the 

possible descriptions of the students' solving process would 

be to start from 31 and take away 4, with the result no 

longer being the number of times they counted down, but 

the number they reached. This Non-Si-,mental arithmetic 

strategy (MA-strategy) would be noted as '31- 4 = .'. 

Procedure 

The procedure was identical to the first experiment, 

except that the test was conducted individually in the school 

library and that after writing down the numerical answer, 

the student was asked to explain aloud how he or she found 

the solution. The possible strategies were established 

beforehand and there was no ambiguity in their coding. The 

strategies that the students reported were classified 

according to table 3 into Si-strategies when the strategy 

directly modeled the wording of the problem, or into Non-

Problem 

category 

Si-problems MA-problems 

% correct 

responses 

with 

described 

strategy  

Si-strategy Non-SI-strategies % correct 

responses 

with 

described 

strategy  

Si-strategy Non-SI-strategies 

Direct 

modelling 

strategy 

MA-

strategy 
Other 

Direct 

modelling 

strategy 

MA-

strategy 
Other 

D[b + . =a] 

 27+ . =31 31-27= . 31- . =27   4+ . =31 31-4= . 31- . =4 

66.67% 92.86% 0% 7.14% 19.05% 50% 50% 0% 

D[a - . =b] 

 31- . =27 31-27= . 27+ . =31  31- . =4 31-4= . 4+ . =31 

55.56% 50% 0% 50% 33.33% 16.67% 83.33% 0% 

C[a - b= . ] 

 31-4= . 4+.=31 31- . =4  31-27= . 27+ . =31 31- . =27 

47.62% 100% 0% 0% 19.05% 50% 50% 0% 

E[b + . =a] 

 27+ . =31 31-27= . 31-.=27  4+ . =31 31-4= . . +4=31 

47.62% 100% 0% 0% 38.10% 50.00% 25.00% 25.00% 

E[a - . =b] 

 31- . =27 31-27= . 27+ . =31  31- . =4 31-4= . 4+ . =31 

66.67% 71.43% 14.29% 14.29% 38.10% 12.50% 75% 12.50% 

S[b + . =a] 

 27+ . =31 31-27= . 31- . =27  4+ . =31 31-4= . 31- . =4 

47.62% 90% 0% 10% 33.33% 28.57% 71.43% 0% 

S[b + b'= . ] 

 27+4= . 4+27= .   4+27= . 27+4= .  

85.71% 100% 0%  90.48% 5.26% 94.74%  

C[b + b'= . ] 

 27+4= . 4+27= .  23.81% 
4+27= . 27+4= . 

 

61.90% 100% 0%     0% 100%   
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Si-strategies when the strategy that the student described did 

not directly model the problem. 

Scoring  

For both Si- and MA-problems, we computed a score of 

Si-strategies (Si-score) and Non-Si-strategies (Non-Si-

score). If a pupil provided a correct answer and explained a 

strategy, the nature of this strategy was assessed and 

contributed 1 point to either the Si-strategy score or the 

Non-Si-strategy score of the problem type. No points were 

attributed if a student did not provide a correct response 

and/or did not describe any strategy after providing the 

correct answer (only 7.5% of the correct responses were not 

accompanied by a strategy description). Given that children 

solved 4 problems of each type, the scores ranged from 0 to 

4. 

Results  

The experiment replicated the previous findings, 

confirming that Si-problems were easier for children than 

MA-problems. The success rates were 67.2% and 41.5% 

respectively, and the variance analysis revealed that this 

difference was significant (F(1,41)=17.86, p<.001, ƞ²=0.13). 

Table 3 shows strategy use for each problem category and 

the disparities between the two kinds of strategies, among 

students that provided the right numerical solution and 

described a strategy. 

We further performed two variance analyses using the Si-

strategy score and the Non-Si-strategy score as the 

dependent variables, and Problem type as the within factor 

variable. The average scores are presented in table 4.As 

expected, both differences were significant. Si-strategies 

were used significantly more on Si-problems (F(1,38)=79.1, 

p<.001, ƞ²=.5), as well as Non-Si-strategies on MA-

problems (F(1,38)= 20.06, p<.001,ƞ²=.2). 

 

Table 4 : Si- and Non-Si-score for solving strategies 

Discussion  

The variance analyses confirmed that solution strategies 

which directly model the situation were predominant for Si-

problems and that solution strategies which required 

arithmetic knowledge were predominant for MA-problems. 

These findings suggest that the selected strategy drives the 

difference in performance on top of the problem category or 

factors such as mental calculation competences. 

General Discussion and Conclusion 

The experiments conducted in the present study account 

for the spontaneous and intuitive modeling of the situation 

described in arithmetic word problems, which leads to a 

primary use of situation strategies and the application of 

arithmetic principles only when the first one is too costly. 

The significant difference that was observed between Si- 

and MA-problems fits with the previous findings on change 

problems (Brissiaud & Sander, 2010), and confirms that this 

problem distinction is not specific to problems that evolve 

along a temporal timeline. These findings complement the 

traditional classification of arithmetic word problems 

according to which problem difficulty depends mostly on 

the problem category. They also provide evidence that 

situation strategies are not only tied to the semantic wording 

of a problem, but could be a fundamental property solicited 

by arithmetic problems. 
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Problem type Si-score Non-Si-score 

Si-problem 2.05 0.31 

MA-problem 0.26 1.13 
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