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Abstract

Background: The Costa Rica HPV Vaccine Trial has documented cross-protection of the bivalent HPV vaccine against HPV31/
33/45 up to 7 years after vaccination, even with one dose of the vaccine. However, the durability of such protection remains
unknown. Here, we evaluate the efficacy of different schedules of the vaccine against HPV31/33/45 out to 11 years postvacci-
nation, expanding to other nontargeted HPV types. Methods: We compared the rates of HPV infection in vaccinated women
with the rates in a comparable cohort of unvaccinated women. We estimated the average vaccine efficacy (VEavg) against
incident infections and tested for a change in VE over time. Results: Among 3-dose women, we observed statistically
significant cross-protection against HPV31/33/45 (VEavg ¼ 64.4%, 95% confidence interval [CI] ¼ 57.7% to 70.0%). Additionally,
we observed borderline, statistically significant cross-protection against HPV35 (VEavg ¼ 23.2%, 95% CI ¼ 0.3% to 40.8%) and
HPV58 (VEavg ¼ 21.2%, 95% CI ¼ 4.2% to 35.3%). There was no decrease in VE over time (two-sided Ptrend> .05 for HPV31, -33, -
35, -45, and -58). As a benchmark, VEavg against HPV16/18 was 82.0% (95% CI ¼ 77.3% to 85.7%). Among 1-dose women, we ob-
served comparable efficacy against HPV31/33/45 (VEavg ¼ 54.4%, 95% CI ¼ 21.0% to 73.7%). Acquisition of nonprotected HPV
types was similar between vaccinated and unvaccinated women, indicating that the difference in HPV infection rates was
not attributable to differential genital HPV exposure. Conclusions: Substantial cross-protection afforded by the bivalent vac-
cine against HPV31/33/45, and to a lesser extent, HPV35 and HPV58, was sustained and remained stable after 11 years postvac-
cination, reinforcing the notion that the bivalent vaccine is an effective option for protection against HPV-associated cancers.

Cervical cancer affects more than half a million women annu-
ally worldwide, with the highest mortality burden on
low-income countries (1). Persistent infection with carcinogenic
human papillomavirus (HPV) is a necessary cause of cervical
cancer (2). To date, more than 200 HPV types have been identi-
fied, with 13 types confirmed to be potentially oncogenic (3).
Approximately 70% of cervical cancers are attributable to HPV16
or 18 (4). An additional five HPV types (HPV31/33/45/52/58)
account for another 20% of cervical cancer (4).

The prophylactic HPV vaccine is an effective means to pro-
tect against oncogenic HPV infection and risk of HPV-associated
cancers (5). The three licensed vaccines (Cervarix, targeting
HPV16/18; Gardasil, targeting HPV6/11/16/18; and Gardasil-9,
targeting HPV6/11/16/18/31/33/45/52/58) contain virus-like par-
ticles that are composed of the HPV L1 capsid proteins, display-
ing epitopes essential for generating high levels of neutralizing
antibodies (6). In addition to protecting against targeted HPV
types, the vaccine provides cross-protection against
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phylogenetically related types with sufficient similarities in
their epitopes to allow for partial cross-reactive immune
responses (7).

Findings from randomized trials and postimplementation
surveillance have demonstrated cross-protection afforded by
the bivalent vaccine and, to a lesser extent, the quadrivalent
vaccine (8–10). In particular, our previous reports on the Costa
Rica HPV Vaccine Trial (CVT) and the associated long-term fol-
low-up (LTFU) have shown that the bivalent vaccine reduces
the prevalence of HPV31/33/45 at 7 years postvaccination, even
among women who had only one dose of the vaccine (11,12). In
addition, recent observational data from national vaccination
programs implemented in the Netherlands and Scotland using
the bivalent vaccine have shown a decrease in the prevalence of
HPV31/33/45 up to 6–7 years postvaccination (13,14).
Nonetheless, the extent and durability of cross-protection have
been questioned (10,15), and cohorts with large sample sizes
and extensive follow-up time are needed to address these
questions.

Our earlier publications focus on the a priori composite end-
point for HPV31/33/45. However, the PATRICIA trial
(NCT00122681) reported more than 90% efficacy against cervical
intraepithelial neoplasia grade 3 or greater (16), suggesting a
wider extent of cross-protection against other oncogenic HPVs.
A comprehensive analysis on cross-protection in CVT and LTFU
is needed to identify other cross-protected HPV types.

With growing evidence supporting efficacy of a one-dose
regimen, cross-protection afforded by one dose of the bivalent
vaccine is of research importance. Here, we extend our CVT and
LTFU post hoc analysis on HPV31/33/45 and evaluate the effi-
cacy of different schedules of the bivalent vaccine out to
11 years postvaccination, expanding to other nontargeted HPV
types. This efficacy study on the bivalent HPV vaccine has the
longest follow-up time reported to date.

Methods

Study Population

During 2004–2005, CVT (NCT00128661) enrolled 7466 young
women 18–25 years of age in Costa Rica in a 4-year-long ran-
domized clinical trial to evaluate the safety and efficacy of the
bivalent Cervarix vaccine (GlaxoSmithKline Biologicals,
Rixensart, Belgium) to reduce HPV incidence and related neo-
plasia (17). Women were randomized to receive three doses of
either Cervarix or the control hepatitis A virus (HAV) Havrix vac-
cine (GlaxoSmithKline Biologicals). A subset of women received
only one or two doses of the vaccine for reasons that were inde-
pendent of the trial (ie, pregnancy, colposcopic referral, etc.)
(17). At enrollment and annual follow-up visits, serum samples
were collected (17). For sexually experienced women, cervical
cells were collected by a clinician for cytology and HPV DNA
testing. Women with low-grade cytologic abnormalities were
followed up every 6 months, and those with high-grade disease
were referred to colposcopy for evaluation and treatment. After
the initial 4 years, participants were offered cross-over vaccina-
tion. Women in the vaccination arm of the study living in se-
lected areas and all women who received fewer than three
doses of the HPV vaccine were invited to participate in an un-
blinded LTFU study that extended to 11 years, with biennial cer-
vical and serum sample collection (11). Again, women with low-
grade cytologic abnormalities were followed up every 6 months,
and those with high-grade disease were referred to colposcopy.

Concurrently at year 4, a new unvaccinated control group (UCG)
of 2836 women from the same birth cohort and geographical re-
gion were recruited and, after intensive screening to identify
and treat prevalent disease, followed for 7 years at a schedule
comparable with that of the HPV-vaccinated group (see
CONSORT diagrams in Supplemental Figure S1, available online)
(18). Protocols were approved by the US National Cancer
Institute (NCI) Institutional Review Boards and the correspond-
ing Costa Rican Institutional Review Board; all participants
signed informed consent.

Laboratory Methods

We used two methods for HPV genotyping (Supplemental Table
S1, available online). Both validated methods have similar sen-
sitivity and specificity (19). The initial method amplified the L1
region of HPV using the SPF10 polymerase chain reaction (PCR)
primer system and then detected the amplimers using DNA en-
zyme immunoassay (DDL Diagnostic Laboratory, the
Netherlands) (20). The DNA enzyme immunoassay–positive
SPF10 amplimers were then used to identify HPV genotype by re-
verse hybridization with the HPV line probe assay (LiPA25),
allowing detection of carcinogenic (HPV16/18/31/33/35/39/45/51/
52/56/58/59) and noncarcinogenic (HPV6/11/34/40/42/43/44/53/
54/66/68/70/73/74) types (21).

The new NCI-developed in-house method TypeSeq was per-
formed as described previously (22). Briefly, the stage 1 primer
pool contained 127 RNase H2-dependent primers (Integrated
DNA Technologies, Coralville, IA), targeting one human gene
(B2M) and the L1 gene for 51 HPV types. After amplification,
reactions were used as a template for stage 2 universal priming
site recoding PCR. This primer pool contained two nested B2M
primers and 170 nested HPV unmodified primers (Integrated
DNA Technologies). After amplification, reactions were used as
a template for stage 3 sequencing adapter and dual-barcode ad-
dition PCR. All reactions were pooled, purified, then quantitated
using a Qubit2.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA). Ion S5 Sequencing (Thermo Fisher Scientific)
was performed according to the manufacturer’s instructions.
Dual barcode demultiplexing, quality filtering, and HPV geno-
typing were performed using a custom plug-in.

Outcomes

We consider prevalent infections, incident infections, and inci-
dent infections that persisted no less than 6 months. A preva-
lent infection is defined as a type-specific infection that was
detected at the study visit of interest. We report results for the
primary study visits at years 1, 2, 3, 4, 7, 9, and 11. Sensitivity
analyses considering specific time intervals (eg, 301–660 days
postvaccination) instead of specific visits (eg, first scheduled
visit) show similar results (data not shown). An incident infec-
tion is defined as a prevalent infection that was not detected at
the prior study visit. Of note, a recurrent infection could be mis-
classified as an incident infection if viral levels were below the
limit of detection at the prior visit. A 6-month persistent infec-
tion is defined as an infection that is also detected at any visit
more than 150 days later without an intervening negative test
result for that type. This outcome excludes transient HPV depo-
sition that does not result in a true breakthrough infection. The
second visit used to define persistence is often a 6-month
follow-up visit triggered by low-grade abnormalities.
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Statistical Analysis

This article focuses on cross-protection afforded by the bivalent
HPV vaccine; single-dose vaccine-induced protection against
HPV16/18 is the focus of our complementary article by Kreimer
et al. (23).

We report demographic and clinical characteristics of the
five study groups: women receiving one dose of the HPV vaccine
in CVT (1-dose), women receiving two doses (2-dose), women
receiving three doses (3-dose), women receiving the control vac-
cine in CVT (HAV), and the UCG of LTFU. We then tested for dif-
ferences in the characteristics using the Freeman-Halton
method (24).

We report VE against incident infection at each scheduled
visit. We start by reporting the number of women with an inci-
dent infection, the total number of women eligible for an inci-
dent infection, and the rate of infection (number of women with
an infection divided by number of eligible women) for each of
the five groups at the scheduled visits. We then estimate the
VEs by comparing the rates in the vaccinated and unvaccinated
groups (HAV arm for years 1–4 and UCG for years 7–11). We cal-
culate the associated 95% confidence intervals (CI) using a two-
step approach (25). First, we calculate the exact 95% confidence
interval for the proportion of cases who are vaccinated, p, condi-
tioning on the number of cases and using the mid-P correction.
Second, letting (pL, pU) denote this confidence interval and let-
ting NV and NU denote the number of vaccinated and unvacci-
nated participants, respectively, we define the 95% confidence
interval for VE by (1-pUNU /[NV(1- pU)]), 1-pLNU /[NV(1- pL)]).
Because the comparison for years 7–11 was not part of a ran-
domized study, we also performed a sensitivity analysis adjust-
ing for potential confounders, including age, number of sexual
partners, and smoking.

We then report the average VE (VEavg) against incident infec-
tion over 11 years and test whether VE changes over time for
the 3-dose group. We start by reporting the number of incident
infections over 11 years, the number of person-years observed
(ie, total number of annual or biennial visits where the woman
had no infection at the previously scheduled visit), and the rate
of infection (number of incident infections divided by number
of person-years) for each of the four study groups at the sched-
uled visits. We then model the probability of infection using
generalized estimating equations (GEEs), where the dependent
variable is incident infection and the independent variable is
vaccination status. We include visits from years 2, 3, 4, 7, 9, and
11 where the woman was eligible for an incident infection, use
a log-link, and assume an unstructured correlation matrix.
Again, for the unvaccinated group, the HAV arm was used for
years 2–4 and the UCG was used for years 7–11. The VEavg and
95% confidence intervals are estimated by first exponentiating
the coefficient and confidence intervals for vaccination status
in the model and then subtracting those values from 1. We test
for a trend in VE over time by including a vaccination status x
year interaction term in a model that excludes year-1 visits and
report the P value, Ptrend, for the corresponding Wald statistic.
For main composite endpoints such as HPV31/33/45, HPV16/18,
and “other HPV types,” we also performed GEEs with a vaccina-
tion x time period (years 2–4 vs years 7–11) interaction term and
tested for heterogeneity using a Wald test for this interaction
term. VE in year 1 is low because of infections missed at base-
line and inclusion of these data would bias the results to show
an increasing VE over time. When GEEs failed to converge be-
cause of zero or only a small number of events, we calculate
confidence intervals using the two-step approach.

We repeat analyses for prevalent and 6-month persistent
infections and for the 1-dose and 2-dose groups. Finally, to com-
pare VE in 1-dose and 3-dose women, we repeat the GEEs with
both women in the 1-dose and 3-dose groups and consider the P
value, P1vs3, for the effect of treatment dose; similar analyses
compared VE in 2- and 3-dose women to calculate P2vs3. All P
values are two-sided, and a P value of less than .05 was consid-
ered statistically significant. The statistical package used for our
analyses is SAS9.4M4(TS1M4).

Results

Participant Characteristics

The characteristics of the 2-dose, 3-dose, and HAV groups at en-
rollment in CVT are similar (Supplemental Table S2, available
online). However, the 1-dose group had higher percentages of
HPV-positive and HPV-seropositive women. The characteristics
of the 1-dose, 2-dose, 3-dose, and UCG groups at baseline visit
of LTFU and the 11-year visit are presented in Supplemental
Table S2 (available online). We note that the 3-dose group had a
higher OC usage and fewer pregnancies, as compared with the
UCG, and that the 1-dose group had more pregnancies, as com-
pared with either the 3-dose or UCG groups. As expected for an
effective HPV vaccine, vaccinated women had fewer clinically
necessitated follow-up visits during LTFU.

Vaccine Efficacy

We observed cross-protection against incident infection by
HPV31/33/45 in the 3-dose group (VEavg ¼ 64.4%, 95% CI ¼ 57.7%
to 70.0%) (Table 1). We noticed higher vaccine efficacy against
HPV31 (VEavg ¼ 64.1%, 95% CI ¼ 54.9% to 71.3%) and HPV45
(VEavg ¼ 79.6%, 95% CI ¼ 71.3% to 85.5%) compared with HPV33
(VEavg ¼ 31.3%, 95% CI ¼ 4.0% to 50.8%). Moreover, we observed
statistically significant cross-protection against HPV35 (VEavg ¼
23.2%, 95% CI ¼ 0.3% to 40.8%) and HPV58 (VEavg ¼ 21.2%, 95% CI
¼ 4.2% to 35.3%) but “negative” protection against HPV56 (VEavg

¼ -26.7%, 95% CI ¼ -50.6% to -6.7%). For comparison, the VEavg

against HPV16/18 was 82.0% (95% CI ¼ 77.3% to 85.7%).
For the 1-dose group, statistically significant cross-

protection was observed for the composite HPV31/33/45 (VEavg

¼ 54.4%, 95% CI ¼ 21.0% to 73.7%) (Table 1). Statistical signifi-
cance was maintained at individual HPV levels only for HPV45
(VEavg ¼ 74.6%, 95% CI ¼ 20.8% to 91.9%). However, vaccine effi-
cacies for 1-dose women were not statistically different from
those of 3-dose women (P1vs3 > .05) (see Supplemental Table S3,
available online, for year-adjusted infections rates, and
Supplemental Table S4, available online, for by-year VE analy-
ses with the 2-dose group).

For both the 3-dose and 1-dose groups, the composite VEavg

against the other oncogenic and nononcogenic HPV types was
not statistically significantly different from VEavg ¼0%, confirm-
ing that these high VEs observed for cross-protected HPV types
cannot be attributed to differences in genital HPV exposure
(Table 1). Finally, we noted the estimated VE was also similar
for prevalent and 6-month persistent infections (see
Supplemental Tables S5–7, available online, for by-year VE anal-
yses, and Supplemental Table S8, available online, for VEavg

analyses).
To assess the durability of cross-protection in later years of

CVT and LTFU, we compared VEavg of years 2–4 with that of
years 7–11. For the 3-dose group, VEavg for years 2–4 was 65.4%
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(95% CI ¼ 56.4% to 72.6%) and VEavg for years 7–11 was 63.3%
(95% CI ¼ 52.9% to 71.4%) (Table 2). For the 1-dose group, VEavg

for years 2–4 was 33.4% (95% CI ¼ -28.6% to 65.5%) and VEavg for
years 7–11 was 69.3% (95% CI ¼ 26.1% to 87.2%). VEavg estimates
for years 2–4 and for years 7–11 were not statistically signifi-
cantly different from each other (P¼ .73 for the 3-dose group
and P¼ .68 for the 1-dose group). Estimates of VEavg also did not
change in the sensitivity analysis adjusting for potential con-
founders (Supplemental Table S9, available online).

We also assessed VE of the 3-dose group at each study visit
between years 1 and 11. Overall, VE against individual HPV31,
-33, and -45, and the composite endpoint of HPV31/33/45 indi-
cated that VE has been stable and there was no statistically sig-
nificant waning in cross-protection up to approximately
11 years postvaccination (Ptrend > .05 for HPV31, -33, and -45 and
HPV31/33/45) (Figure 1). Although we observed statistically sig-
nificant VEavg for HPV33, -35, and -58, VEs by-year for these
types were not statistically significant (Supplemental Figure S2
and Supplemental Table S4, available online). Over 11 years, the
average infection rate of nononcogenic HPV types were compa-
rable in both HPV-vaccinated and HAV and UCG groups (Ptrend >

.05) (Table 1 and Figure 1; Supplemental Table S4, available on-
line), indicating that HPV exposure remained unchanged over
time.

Discussion

We reported here the efficacy of the bivalent vaccine in protect-
ing against new HPV infections at approximately 11 years post-
vaccination. Our data showed that VE against HPV31/33/45,
particularly HPV31 and HPV45, was stable over 11 years, with no
evidence of waning. Nearly 64% of incident HPV31 infections
and 80% of incident HPV45 infections were prevented in our
study. Using HPV16/18 as a benchmark (approximately 82% VE),
the bivalent vaccine is approximately 78% and 98% as effective
at protecting against HPV31 and HPV45, respectively, as the tar-
geted HPV types, indicating that cross-protection against some
HPV types is only marginally lower than protection against the
targeted types. Significant cross-protection is of clinical impor-
tance because HPV31 and HPV45 account for 3.7% and 5.9% of
global cervical cancer cases, respectively (26). Because protec-
tion against HPV16/18 remained robust after a decade, the biva-
lent vaccine could potentially avert 70% of HPV-related cancers
through direct protection and an additional 9.6% through cross-

protection. Future analyses from CVT and LTFU will continue to
assess the efficacy of the vaccine against histologic outcomes.

Although a meta-analysis of vaccination trials has suggested
possible waning of cross-protection over time (10), we consis-
tently demonstrate the cross-protective effect of the bivalent
vaccine against HPV31/33/45, now more than a decade after vac-
cination. This is in line with the findings from national vaccina-
tion programs in the Netherlands and Scotland, showing
steady, statistically significant effectiveness against HPV31/33/
45 (13,14). Although evaluation of VE by year, by individual HPV
types only showed statistically significant protection against
HPV 31 and 45, we believe this could be explained by our sample
size and limited power. Combined data from CVT and PATRICIA
have shown moderate protection against HPV33 and, to a lesser
degree, HPV35 (27). Although the efficacy estimates for these
HPV types in CVT-only analyses showed no statistical signifi-
cance, there was no heterogeneity between results from CVT
and PATRICIA, suggesting that more accurate vaccine efficacy
estimates could be obtained if the sample size is large enough
to detect these less prevalent HPV types.

The World Health Organization recommends vaccination
with the bivalent, quadrivalent, or the nonavalent HPV vaccines
based on the assessment of their comparable immunogenicity,
efficacy, and effectiveness for the prevention of cervical cancer
(28). Clinical trials comparing the bivalent and quadrivalent vac-
cines show greater immunogenicity for the bivalent vaccine
(29). One major difference is the adjuvant: the bivalent vaccine
uses AS04, and the quadrivalent vaccine uses amorphous alu-
minum hydroxyphosphate sulfate (28). AS04 includes both alu-
minum salt and a toll-like receptor 4 agonist and robustly
activates both cellular and humoral immune responses (30). We
do not yet have a comprehensive understanding of the immune
responses to these vaccines. Future studies detailing the avidity
of neutralizing antibodies will also help understand these vac-
cines. Regarding the bivalent and nonavalent vaccines, ongoing
trials ESCUDDO (NCT03180034) and PRIMAVERA (NCT03728881)
will address the minimum number of doses required to elicit a
serologic response effective at preventing HPV infections.

Our data on the 1-dose regimen showed comparable cross-
protective estimates against HPV31/33/45 as the recommended
3-dose regimen for the age group in CVT and LTFU. Because of
the small sample size for the 1-dose group, the confidence
intervals for efficacy estimates were generally wide, making it
difficult to draw strong conclusions about individual HPV types.
However, our results indicated statistically significant VE for

Table 2. Average vaccine efficacy (VEavg expressed in %) against incident HPV infection by study period

HPV types

HPV-vaccinated (3-dose)

P‡(VE2–4 vs VE7–11)

HPV-vaccinated (1-dose)

P‡(VE2–4 vs VE7–11)VEavg (Years 2–4) VEavg (Years 7–11) VEavg (Years 2–4) VEavg (Years 7–11)

A priori cross-protected HPV types
HPV31/33/45 65.4 (56.4 to 72.6) 63.3 (52.9 to 71.4) .73 33.4 (�28.6 to 65.5) 69.3 (26.1 to 87.2) .68

Vaccine-targeted HPV types
HPV16/18 78.0 (71.0 to 83.4) 87.3 (81.3 to 91.4) .02 86.1 (44.4 to 96.5) 88.0 (52.3 to 97.0) .94

Other HPV types
Other oncogenic HPVs* 2.6 (�7.9 to 12.0) �7.0 (�20.1 to 4.8) .21 8.2 (�31.2 to 35.7) 1.6 (�36.4 to 28.9) .76
HPV6/11 �24.8 (�63.0 to 4.4) 5.3 (�27.8 to 29.9) .20 13.8 (�129.1 to 67.6) 15.8 (�103.1 to 65.1) .98
Other nononcogenic HPVs† �3.2 (�14.1 to 6.6) �6.4 (�17.9 to 4.0) .63 9.5 (�24.8 to 34.3) �7.3 (�40.2 to 17.8) .93

*Other oncogenic HPVs are HPV35, �39, �51, �52, �56, �58, and �59.

†Other nononcogenic HPVs are HPV34, �40, �42, �43, �44, �53, �54, �66, �68, �70, �73, and �74.

‡Generalized estimating equations were performed with a vaccination � time period (years 2–4 vs years 7–11) interaction term and tested for heterogeneity using a

Wald test for this interaction term. P values were two-sided.
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HPV31/33/45 at year 11, suggesting there is no waning in pro-
tection. Future results from ESCUDDO will offer definitive proof
for cross-protection afforded by one dose of the bivalent
vaccine.

We note that participants in CVT attended annual visits,
then biennial visits during LTFU, unless abnormal cytology
prompted 6-month follow-up visits. Although we believe the ef-
ficacy of the vaccine was the reason for the infrequent detection
of 6-month persistent HPV infections and not because the vacci-
nated women had fewer visits, this potential bias could have
been eliminated completely with regular 6-month visits.

With the longest follow-up time reported to date, our results
show substantial cross-protection against HPV31/33/45 and ro-
bust protection against HPV16/18 up to 11 years postvaccina-
tion, with no signs of waning. Evidence for durable cross-
protection afforded by the bivalent vaccine and emerging evi-
dence showing its efficacy with a 1-dose regimen make this an
effective HPV vaccine for protection against HPV-associated
cancers.

Funding
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Figure 1. Vaccine efficacy (VE) against incident HPV infection over time. VE against incident infection with (A) HPV31, (B) HPV33, (C) HPV45, (D) HPV31/33/45, (E) HPV16/

18, (F) other oncogenic HPVs, and (G) other nononcogenic HPVs over time, in the 3-dose group. Ptrend for VE over 11 years (excluding year 1) is presented to demonstrate

stability of protection. All tests were two-sided.
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