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ABSTRACT

Fourier analysis has been extremely useful in many areas of
mathematics. In the last several decades, it has been used
extensively in theoretical computer science. Higher-order
Fourier analysis is an extension of the classical Fourier anal-
ysis, where one allows to generalize the “linear phases” to
higher degree polynomials. It has emerged from the semi-
nal proof of Gowers of Szemerédi’s theorem with improved
quantitative bounds, and has been developed since, chiefly
by the number theory community. In parallel, it has found
applications also in theoretical computer science, mostly in
algebraic property testing, coding theory and complexity
theory.

The purpose of this book is to lay the foundations of higher-
order Fourier analysis, aimed towards applications in theo-
retical computer science with a focus on algebraic property
testing.

Hamed Hatami, Pooya Hatami and Shachar Lovett (2019), “Higher-order Fourier 
Analysis and Applications”, Foundations and Trends©R in Theoretical Computer 
Science: Vol. 13, No. 4, pp 247–448. DOI: 10.1561/0400000064.
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1
Introduction

The purpose of this text is to provide an introduction to the field
of higher-order Fourier analysis with an emphasis on its applications
to theoretical computer science. Higher-order Fourier analysis is an
extension of the classical Fourier analysis. It was initiated by a seminal
paper of Gowers [37] on a new proof for Szemerédi’s theorem, and has
been developed by several mathematicians over the past few decades
in order to study problems in an area of mathematics called additive
combinatorics, which is primarily concerned with linear patterns such
as arithmetic progressions in subsets of integers. While most of the
developments in additive combinatorics were focused on the group Z,
it was quickly noticed that the analogous questions and results for the
group Fn2 are of great importance to theoretical computer scientists as
they are related to basic concepts in areas such as property testing and
coding theory.

Classical Fourier analysis is a powerful tool that studies functions
by expanding them in terms of the Fourier characters, which are “linear
phase functions” such as n 7→ e−

2πi
N
n for the group ZN , or (x1, . . . , xn) 7→

(−1)
∑

ajxj for the group Fn2 . Note that n and
∑
ajxj are both linear

functions. Fourier analysis has been extremely successful in the study
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of certain linear patterns such as three-term arithmetic progressions.
For example, if the number of three-term arithmetic progressions in
a subset A ⊆ ZN deviates from the expected number of them in a
random subset of ZN with the same cardinality as A, then A must have
significant correlation with a linear phase function. In other words, the
characteristic function of A must have a large non-principal Fourier
coefficient. Roth [66] used these ideas to show that every subset of
integers of positive upper density contains an arithmetic progression
of length 3. However, classical Fourier analysis seems to be inadequate
in detecting more complex linear patterns such as four-term or longer
arithmetic progressions. Indeed, one can easily construct dense sets
A ⊆ ZN that do not have significant correlation with any linear phase
function, and nevertheless do not contain the number of four-term
arithmetic progressions that one expects by considering random subsets
of the same cardinality. Hence in order to generalize Roth’s theorem to
arithmetic progressions of arbitrary length, Szemerédi [76, 77] departed
from the Fourier analytic approach and appealed to purely combinatorial
ideas. However, his proof of this major result, originally conjectured by
Erdös and Turán [27], provided poor quantitative bounds on the minimal
density that guarantees the existence of the arithmetic progressions of
the desired length. Later Furstenberg [31] developed an ergodic-theoretic
framework and gave a new proof for Szemerédi’s theorem, but his proof
was still qualitative. His theory is further developed by - to name a few
- Host, Kra, Ziegler, Bergelson, Tao (See e.g. [51], [88], and [10, 82]),
and there are important parallels between this theory and higher-order
Fourier analysis. Indeed some of the terms that are commonly used in
higher-order Fourier analysis such as “phase functions” or “factors” are
ergodic theoretic terms.

Generalizing Roth’s original proof and obtaining good quantitative
bounds for Szemerédi’s theorem remained a challenge until finally Gow-
ers [37] discovered that the essential idea to overcome the obstacles
described above is to consider higher-order phase functions. His proof
laid the foundation for the area of higher-order Fourier analysis, where
one studies a function by approximating it by a linear combination of
few higher-order phase functions. Although the idea of using higher-
order phase functions already appears in Gowers’s work [37], it was not
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250 Introduction

until more than fifteen years later that some of the major technical diffi-
culties in achieving a satisfactory theory of higher-order Fourier analysis
have been resolved. By now, due to great contributions by prominent
mathematicians such as Gowers, Green, Tao, Szegedy, Host, Kra and
Ziegler (See [75] and [80] and the references there), there is a deep
understanding of qualitative aspects of this theory. However, despite
these major breakthroughs, still very little is known from a quantitative
perspective as many of the proofs are based on soft analytic techniques,
and obtaining efficient bounds is one of the major challenges in this
area.

This survey will emphasize the applications of the theory of higher-
order Fourier analysis to theoretical computer science, and to this end,
we will present the foundations of this theory through such applications,
in particular to the area of property testing. In the early nineties, it was
noticed by Blum et al. [20] and Babai et al. [6] that Fourier analysis
can be used to design a very efficient algorithm that distinguishes linear
functions f : Fn2 → F2 from functions that are far from being linear.
This initiated the area of property testing, the study of algorithms that
query their input a very small number of times and with high probability
decide correctly whether their input satisfies a given property or is “far”
from satisfying that property. It was soon noticed that generalizing
the linearity test of Blum et al. [20] and Babai et al. [6] to other
properties such as the property of being a quadratic polynomial requires
overcoming the same obstacles that one faces in an attempt to generalize
Fourier analytic study of three-term arithmetic progressions to four-term
arithmetic progressions. Hence in parallel to additive combinatorics,
theoretical computer scientists have also been working on developing
tools in higher-order Fourier analysis to tackle such problems. In fact
some of the most basic results, such as the inverse theorem for the
Gowers U3 norm for the group Fn2 , were first proved by Samorodnitsky
[70] in the context of property testing for quadratic polynomials.

In Part I we discuss the linearity test due to Blum et al. [20]
and its generalization to higher degree polynomials. We will see how
this naturally necessitates the development of a theory of higher-order
Fourier analysis. In Part II we present the fundamental results of the
theory of higher-order Fourier analysis. Since we are interested in the
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applications to theoretical computer science, we will only consider the
group Fnp where p is a fixed prime, and asymptotics are as n tends to
infinity. Higher-order Fourier analysis for the group ZN , which is of more
interest for number theoretic applications, shares the same basic ideas
but differs on some technical aspects. For this group, the higher order
phase functions, rather than being exponentials of polynomials, are the
so called nilsequences. We refer the interested reader to Tao [80] for
more details. In Part III we use the tools developed in Part II to prove
some general results about property testing for algebraic properties.

Throughout most of the text, we will consider fields of constant
prime order, namely F = Fp where p is a constant, and study functions
from Fnp to R, C, or Fp when n is growing. Our choice is mainly for
simplicity of exposition, as there have been recent research that extend
several of the tools from higher-order Fourier analysis to large or non-
prime fields. We refer the interested reader to a paper by Bhattacharyya
et al. [12] for treatment of non-prime fields. In Chapter 8 we will discuss
a paper by Bhowmick and Lovett [19] considering the case Fnp when p
is allowed to grow as a function of n.
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We start Part I by presenting the Fourier analytic linearity test
of Blum et al. [20] in Chapter 2. In Chapter 3, we show how this
test can be generalized from linear functions to polynomials of higher
degree. The focus will be on the so-called “99% regime”, where the
test is designed to distinguish polynomials of a given degree d from the
functions that are somewhat far from them, i.e. functions that do not
match with any polynomial of degree d on more than 1− ε fraction of
the points for a small ε > 0. In Chapter 4, we turn our attention to the
more challenging case of the so-called “1% regime”, where the test is
supposed to distinguish functions that have some noticeable correlation
with polynomials of degree d (i.e. more than a small constant ε > 0) from
functions that, similar to a typical random function, have essentially no
correlation with any polynomial of degree d. Chapter 4 is focused on
the case of quadratic polynomials. Polynomials of higher degrees are
more complex and are discussed in Part II of the survey.
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2
Fourier Analytic Property Testing

The field of property testing is the study of algorithms that query their
input a very small number of times and with high probability decide
correctly whether their input satisfies a given property or is “far” from
satisfying that property. In this chapter we survey some of the earliest
yet important results in the area of property testing that use classical
Fourier analysis to design efficient tests for certain algebraic properties.
In particular, we analyze the linearity test of Blum et al. [20] which
together with a paper by Babai et al. [6] are often considered as the
earliest explicit examples of property testing. These results inspired
Rubinfeld and Sudan [69] and Goldreich et al. [32] to formally define this
field and initiate a systematic study of testable properties. A property
is called testable, or sometimes strongly testable or locally testable, if the
number of queries can be made independent of the size of the object
without affecting the correctness probability. Perhaps surprisingly, it has
been found that many natural properties satisfy this strong requirement.
In this survey we will only discuss algebraic properties, however we refer
the reader to [29, 68, 65, 74] for a general overview of this field.

254
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Let [R] denote the set {1, . . . , R}. Let F denote a finite field, and
Fn denote an n-dimensional vector space over F. Given two functions
f, g : Fn → [R], their distance is the fraction of points on which they
disagree,

dist(f, g) := Pr
x∈Fn

[f(x) 6= g(x)],

where here and throughout Prx∈Fn [·] means the probability of an event
given a uniform choice of x ∈ Fn.

A property is a subset of functions, P ⊂ {f : Fn → [R] : n ∈ Z≥0}.
The distance of f : Fn → [R] is ε-far from P is its minimal distance to
a function in P,

dist(f,P) := min
g∈P

dist(f, g),

where the minimum is taken over all functions g ∈ P defined over the
same domain as f (namely, g : Fn → [R]). If dist(f,P) ≤ ε then we say
that f is ε-close to P, and otherwise we say that it is ε-far from P.

Definition 2.1 (Testability with one-sided error). A property P is said to
be testable with one-sided error if there are functions q : (0, 1)→ Z>0,
δ : (0, 1)→ (0, 1), and an algorithm T that, given as input a parameter
ε > 0 and oracle access to a function f : Fn → [R], makes at most
q(ε) queries to the oracle for f , always accepts if f ∈ P and rejects
with probability at least δ(ε) if f is ε-far from P. If, furthermore, q is
a constant function, then P is said to be proximity-obliviously testable
(PO testable).

In the above definition we only allow one-sided error. These are
algorithms that do not err when the function satisfies the property.
However, it is also natural to study tests with two-sided error, and
indeed in Chapter 17 we will see examples of such tests.

The term proximity-oblivious testing was coined by Goldreich and
Ron [35]. Indeed as we will see in Section 2.1, the famous linearity test
of Blum et al. [20] is an example of a proximity oblivious test. It shows
that the linearity of a function f : Fn → F is testable using only 3
queries. This test accepts if f is linear and rejects with probability Ω(ε)
if f is ε-far from linear.
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256 Fourier Analytic Property Testing

2.1 Linearity testing

Linearity testing is a cornerstone of property testing, and in particular
the birthplace of algebraic property testing. There are two equivalent
definitions for linear functions. A function f : Fn2 → F2 is linear if

(1) Global definition. f(x) =
∑n
i=1 aixi for some ai ∈ F2.

(2) Local definition. For all x, y ∈ Fn2 , f(x+ y) = f(x) + f(y).

Our goal will to be determine whether a given function f is linear,
or whether it is far from it. The distance of a function f to the family
of linear functions is given by

min
g:Fn2→F2 linear

Pr[f(x) 6= g(x)],

where the probability is over a uniform choice of x ∈ Fn2 . The BLR
tester of Blum et al. [20] uses the local definition of linearity: it chooses
random x and y accepts the function if f(x+ y) = f(x) + f(y).

BLR test. With query access to f : Fn2 → F2:

1. Choose x, y ∈ Fn2 independently and uniformly at random.

2. Query f(x), f(y), f(x+ y).

3. Accept if f(x) + f(y) = f(x+ y) and Reject otherwise.

It is clear that the tester always accepts linear functions. It turns out
that the probability that the above tester rejects is directly related to
the distance of f from linearity. We follow the proof of Bellare et al. [9],
which simplifies and improves the original analysis of Blum et al. [20].
The proof relies on classical Fourier analysis. As there are a number of
good books on the topic, for example an excellent book of O’Donnell [63],
we assume basic familiarity with classical Fourier analysis (concretely:
the definition of Fourier coefficients, the Fourier inversion formula and
Parseval’s identity).

Theorem 2.2 (Bellare et al. [9]). Let f : Fn2 → F2 be a function whose
distance to linear functions is ε. Then the BLR test rejects f with
probability between ε and 5ε.
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2.1. Linearity testing 257

Proof. Let F (x) = (−1)f(x). We can express the acceptance probability
of the test in terms of the Fourier coefficients of F , which to recall
are given by the Fourier decomposition F (x) =

∑
α∈Fn2

F̂ (α)(−1)〈α,x〉.
Below, all probabilities and expectations are taken over uniformly chosen
x, y ∈ Fn2 .

Pr
x,y

[f(x) + f(y) = f(x+ y)]

= 1
2 + 1

2 E
x,y

[F (x)F (y)F (x+ y)]

= 1
2 + 1

2
∑

α,β,γ∈Fn2

F̂ (α)F̂ (β)F̂ (γ) E
x,y

[
(−1)〈α,x〉+〈β,y〉+〈γ,x+y〉

]
= 1

2 + 1
2
∑
α∈Fn2

F̂ (α)3.

Here, we used the fact that

E
x,y

[
(−1)〈α,x〉+〈β,y〉+〈γ,x+y〉

]
= E

x

[
(−1)〈α+γ,x〉

]
E
y

[
(−1)〈β+γ,x〉

]
is equal to 1 if α = β = γ, and equal to 0 otherwise.

To prove the upper bound on the acceptance probability, we can
bound

Pr
x,y

[f(x) + f(y) = f(x+ y)] ≤ 1
2

(
1 + max

α∈Fn2
F̂ (α)

)
,

where we applied Parseval’s identity
∑
F̂ (α)2 = E

[
F (x)2] = 1. If

f has distance ε from linear functions, then for any linear function
g(x) = 〈x, α〉 it holds that Pr[f(x) 6= g(x)] ≥ ε. Then for any α ∈ Fn2 ,

F̂ (α) = E
x

[
F (x)(−1)〈x,α〉

]
= Pr[f(x) = g(x)]−Pr[f(x) 6= g(x)] ≤ 1−2ε.

We thus obtain that

Pr
x,y

[f(x) + f(y) = f(x+ y)] ≤ 1− ε.

For the lower bound, if the distance of f to linear functions is ε, then
there exists α∗ ∈ Fn2 such that F̂ (α∗) = 1− 2ε. Thus F̂ (α∗)3 ≥ 1− 6ε
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258 Fourier Analytic Property Testing

and the contribution of all other terms is bounded by
∑
α6=α∗ |F̂ (α)|3 ≤∑

α6=α∗ |F̂ (α)|2 = 1− F̂ (α∗)2 ≤ 4ε. So

Pr
x,y

[f(x) + f(y) = f(x+ y)] = 1
2

1 + F̂ (α∗)3 +
∑
α6=α∗

F̂ (α)3


≥ 1− 5ε.

2.2 Testing for affine linearity

A very related notion to linear functions is that of being an affine
linear function. Again, there are two equivalent definitions. A function
f : Fn2 → F2 is affine linear if

(1) Global definition. f(x) = a0 +
∑n
i=1 aixi for some ai ∈ F2.

(2) Local definition. For all x, y, z ∈ Fn2 , f(x) + f(y) + f(z) =
f(x+ y + z).

Let P1 denote the family of affine linear functions (equivalently,
functions whose degree as an F2-polynomial is at most 1). A very
similar test to the BLR test can detect if a function is affine linear or
far from it.

BLR test for affine linearity. With query access to f : Fn2 → F2:

1. Choose x, y, z ∈ Fn2 independently and uniformly at random.

2. Query f(x), f(y), f(z), f(x+ y + z).

3. Accept if f(x)+f(y)+f(x) = f(x+y+z) and Reject otherwise.

Theorem 2.3. Let f : Fn2 → F2 be a function whose distance to affine
linear functions is ε. Then the BLR test for affine linearity rejects f
with probability between ε and 6ε.
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2.2. Testing for affine linearity 259

Proof. Let F (x) = (−1)f(x). We can express the acceptance probability
of the test in terms of the Fourier coefficients of F as

Pr
x,y,z

[f(x) + f(y) + f(z) = f(x+ y + z)]

= 1
2 + 1

2 E
x,y,z

[F (x)F (y)F (z)F (x+ y + z)]

= 1
2 + 1

2
∑
α∈Fn2

F̂ (α)4.

For the upper bound, we can apply Parseval’s identity and bound

Pr
x,y,z

[f(x) + f(y) + f(z) = f(x+ y + z)] ≤ 1
2

(
1 + max

α∈Fn2
|F̂ (α)|2

)

≤ 1
2

(
1 + max

α∈Fn2
|F̂ (α)|

)
.

If f has distance ε from affine linear functions, then for any linear
function g(x) = 〈x, α〉 it holds that Pr[f(x) 6= g(x)] ≥ ε and Pr[f(x) 6=
g(x) + 1] ≥ ε. Then for any α ∈ Fn2 ,∣∣∣F̂ (α)

∣∣∣ =
∣∣∣∣Ex [F (x)(−1)〈x,α〉

]∣∣∣∣ ≤ 1− 2ε.

Thus
Pr
x,y,z

[f(x) + f(y) + f(z) = f(x+ y + z)] ≤ 1− ε.

For the lower bound, if the distance of f to affine linear functions is
ε, then there exists α∗ ∈ Fn2 such that |F̂ (α∗)| = 1− 2ε. By the same
analysis as that of linearity testing, F̂ (α∗)4 ≥ 1−8ε and

∑
α6=α∗ F̂ (α)4 ≤

4ε. So

Pr
x,y,z

[f(x) + f(y) + f(z) = f(x+ y + z)]

= 1
2

1 + F̂ (α∗)4 +
∑
α6=α∗

F̂ (α)4


≥ 1− 6ε.
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260 Fourier Analytic Property Testing

2.3 Limitations of Fourier analysis

The analysis of linearity testing makes use of the fact that functions
that are close to linear, must have a large Fourier coefficient; and those
that are close to affine linear, must have a large Fourier coefficient in
absolute value. Unfortunately, this property does not carry over if we
are interested in testing for higher-degree behavior, such as quadratic
polynomials. As the following example shows, there are quadratic poly-
nomials which have negligible Fourier coefficients. This will necessitate
the introduction of higher-order analogs of Fourier analysis.

Claim 2.4. Assume n is even and consider the quadratic polynomial
f : Fn2 → F2 defined as

f(x) = x1x2 + x3x4 + · · ·+ xn−1xn.

Let F (x) = (−1)f(x). Then |F̂ (α)| = 2−n/2 for all α ∈ Fn2 .

Proof. Fix α ∈ Fn2 . Then

F̂ (α) = E
x

[
(−1)f(x)+〈x,α〉

]
=

n/2∏
i=1

E
x2i−1,x2i

[
(−1)x2i−1x2i+α2i−1x2i−1+α2ix2i

]
.

The proof follows as for any a, b ∈ F2,

E
x,y∈F2

[
(−1)xy+ax+by

]
= (−1)ab E

x,y∈F2

[
(−1)(x+a)(y+b)

]
= (−1)ab E

x,y∈F2
[(−1)xy] = (−1)ab

2 .

Thus,
F̂ (α) = 2−n/2 · (−1)α1α2+...+αn−1αn .
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3
Low-degree Tests, the 99% Regime

In Section 2.1 we showed that linearity can be tested by a very simple
test: sample a random pair x, y ∈ Fn2 and check if f(x+y) = f(x)+f(y).
This tempts one to suspect that similar tests would perform well even
for more complex properties which similarly have a local definition. One
such property is that of being a low-degree polynomial. Given query
access to a function, we are interested in testing whether the function
is a low-degree polynomial or far from any low-degree polynomial. The
testability of low-degree polynomials was first proved by Alon et al.
[3], where they showed that the local characterization of low-degree
polynomials can be used to design a natural test for this task. The
analysis was sharpened by Bhattacharyya et al. [18]. In this chapter, we
focus on the “99% regime”, where the goal is to distinguish functions
very close to low-degree polynomials, from functions which are somewhat
far from low-degree polynomials.

3.1 Basic properties of low-degree polynomials

Let f : Fn2 → F2, and d ≥ 1 be an integer. A function f : Fn2 → F2 is a
polynomial of degree (at most) d if one of the following two equivalent
conditions hold:

261
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262 Low-degree Tests, the 99% Regime

(1) Global definition. f(x) =
∑
S⊂[n],|S|≤d aS

∏
i∈S xi for some aS ∈

F2.

(2) Local definition. For all x, y1, · · · , yd+1 ∈ Fn2 , it holds that∑
S⊆[d+1] f (x+

∑
i∈S yi) = 0.

We denote by Pd the family of all polynomials of degree at most
d. In order to prove that the two definitions for degree d polynomials
agree, we need to first prove a few basic facts about polynomials.

A very useful notion is that of directional derivatives. For f : Fn2 →
F2 and y ∈ Fn2 , the directional derivative of f in direction y, denoted
Dyf : Fn2 → F2, is defined as

Dyf(x) := f(x+ y) + f(x).

Note that Dy is a linear operator, that is Dy(f + g) = Dyf + Dyg.
Iterated derivatives are defined as Dy1,...,ykf := Dy1 . . . Dykf . It is
straightforward to verify that

Dy1,...,ykf(x) =
∑
S⊆[k]

f

(
x+

∑
i∈S

yi

)
.

Then, the local definition of f being a degree d polynomial is equivalent
to Dy1,...,yd+1f = 0 for all y1, . . . , yd+1 ∈ Fn2 . We next prove some facts
about derivatives.

Claim 3.1. Let f : Fn2 → F2 be a polynomial of degree d (according to
the global definition). Then Dyf is a polynomial of degree at most d− 1
(according to the global definition).

Proof. It suffices to prove the claim for monomials of degree d. Let
m(x) =

∏d
i=1 xi. Then

Dym(x) = m(x+ y) +m(x)

=
d∏
i=1

(xi + yi) +
d∏
i=1

xi

=
∑
S([d]

∏
i∈S

xi
∏
i/∈S

yi.

All the x-monomials in Dym have degree at most d−1, and hence Dym

is a polynomial of degree at most d− 1.
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3.1. Basic properties of low-degree polynomials 263

Claim 3.2. Let m(x) =
∏d
i=1 xi. Then for any y1, . . . , yd+1 ∈ Fn2 ,

1. Dy1,...,ydm(x) =
∑
π

∏d
i=1 yi,π(i), where π ranges over all permuta-

tions of {1, . . . , d}. In particular, it is independent of x.

2. Dy1,...,yd+1m = 0.

Proof. The second claim follows immediately from the first, as any
derivative of a constant function is zero. We prove the first claim by
induction on d. We have that

Dy1,...,ydm(x) = Dy1,...,yd−1Dydm(x)

= Dy1,...,yd−1

∑
S([d]

∏
i∈S

xi
∏
i/∈S

yd,i

 .
All the monomials inDydm(x) of degree less than d−1 will be annihilated
by taking d− 1 derivatives. Hence

Dy1,...,ydm(x) = Dy1,...,yd−1

∑
j∈d

yd,j
∏

i∈[d]\{j}
xi

 .
By induction, we have for any j ∈ [d] that

Dy1,...,yd−1

 ∏
i∈[d]\{j}

xi

 =
∑
σ

∏
i∈[d]\{j}

yi,σ(i),

where σ enumerates all one-to-one functions from [d − 1] to [d] \ {j}.
The claim follows by linearity.

We now prove that the global and local definitions for being a
polynomial of degree at most d are equivalent.

Lemma 3.3. The global and local definitions of being a degree d poly-
nomial are equivalent.

Proof. Let f(x) be a polynomial which has degree exactly d according
to the global definition. We need to show that its degree according to
the local definition is also exactly d. That is, we need to show that
Dy1,...,yd+1f = 0 for all y1, . . . , yd+1 ∈ Fn2 , but that Dy1,...,ydf 6= 0 for
some y1, . . . , yd ∈ Fn2 .
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The first claim follows immediately from Claim 3.1. For the latter
claim, let f(x) =

∑
S⊂[n],|S|≤d aS

∏
i∈S xi where aS 6= 0 for some S with

|S| = d. By Claim 3.2,

Dy1,...,ydf(x) =
∑

S⊂[n],|S|=d
aS
∑
π

d∏
i=1

yi,π(i).

This is a nonzero polynomial (according to the global definition) in
the variables {yi,j : i ∈ [d], j ∈ [n]}, as all the monomials

∏d
i=1 yi,π(i)

are distinct and some have nonzero coefficient. Hence, there must exist
a value for y1, . . . , yd which makes it nonzero. For example, if S =
{j1, . . . , jd} satisfies aS 6= 0, then we can choose yi,ji = 1 and yi,j = 0
for all j 6= ji.

We will also need the basic fact that the minimal distance of Pd is
2−d. For a proof see e.g. [62].

Claim 3.4. Let f, g ∈ Pd be distinct polynomials of degree d. Then
Pr[f(x) 6= g(x)] ≥ 2−d.

3.2 Low-degree testing

The question of testing low-degree polynomials was first studied by
Alon et al. [3], where they showed that an appropriate extension of
the linearity test also works for low-degree polynomials. The original
test defined in [3] is specific to polynomials of degree at most d with
f(0) = 0, but with minor changes it extends to the more natural family
of all polynomials of degree at most d, which is the test presented below.

AKKLR(d) test. With query access to f : Fn2 → F2:

1. Choose x, y1, . . . , yd+1 ∈ Fn2 independently and uniformly at ran-
dom.

2. Query f(x+
∑
i∈S yi) for all S ⊆ [d+ 1].

3. Accept if
∑
S⊆[d+1] f(x+

∑
i∈S yi) = 0 and Reject otherwise.
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The reader can verify that this is indeed an extension of the BLR test
for affine linear functions, which correspond to d = 1. There, we tested
if f(x) + f(y) + f(z) = f(x+ y + z) for uniformly chosen x, y, z ∈ Fn2 .
Here, we test that f(x) + f(x+ y1) + f(x+ y2) + f(x+ y1 + y2) = 0 for
uniformly chosen x, y1, y2 ∈ Fn2 . The tests are identical as can be seen
by setting y1 = x+ y, y2 = x+ z. We denote by δd(f) the distance of a
function f from degree d polynomials,

δd(f) := dist(f,Pd).

Theorem 3.5 (Alon et al. [3]). The AKKLR(d) test rejects every func-
tion f : Fn2 → F2 with probability at least Ω

(
δd(f)
d·2d

)
.

If we want to reject functions which are ε-far from Pd with constant
probability, then we can simply repeat the basic AKKLR(d) test O(dε ·2

d)
times. This gives a tester with query complexity O(dε · 4

d). It was shown
in [3] that any tester for Pd must make at least Ω(2d + 1

ε ) queries,
leaving a quadratic gap between their upper and lower-bounds. More
recently, Bhattacharyya et al. [18] gave a tighter analysis of this tester
and closed this gap.

Theorem 3.6 (Bhattacharyya et al. [18]). Fix 1 ≤ d ≤ n. For all functions
f : Fn2 → F2,

Pr [AKKLR(d) test rejects f ] ≥ c ·min{2dδd(f), 1},

where c > 0 is an absolute constant.

Given the improved analysis, if one wishes to reject functions which
are ε-far from Pd with constant probability, a tester can repeat the
AKKLR(d) test only O(1 + 1

ε2d ) times, obtaining an asymptotically
optimal query complexity of O(2d + 1

ε ). We present the analysis of
Bhattacharyya et al. [18] in the next section.

3.3 Analysis of the AKKLR test

In this section we present a proof of Theorem 3.6. First, we describe a
variant of the test which is easier to analyze, and is essentially equivalent
to the AKKLR(d) test.
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(d + 1)-flat test. With query access to f : Fn2 → F2:

1. Pick A, a random affine (d+ 1)-dimensional subspace of Fn2 .

2. Query f |A, the restriction of f to A.

3. Reject if f |A is not a degree d polynomial, or equivalently if∑
x∈A f(x) 6= 0.

Theorem 3.6 follows from the following theorem analyzing the (d+1)-flat
test.

Theorem 3.7. Fix 1 ≤ d ≤ n. For all functions f : Fn2 → F2,

Pr [(d+ 1)-flat test rejects f ] ≥ cmin{2dδd(f), 1},

where c > 0 is an absolute constant.

First we show how Theorem 3.6 follows from Theorem 3.7.

Proof of Theorem 3.6 given Theorem 3.7. We may assume that n >

d+ 1. Let y1, . . . , yd+1 ∈ Fn2 be uniformly chosen. The probability that
y1, . . . , yd+1 are linearly independent is at least 1−2d+1−n. Conditioned
on this event, they span a uniform (d+ 1)-flat. Hence,

Pr[AKKLR(d) test rejects f ]
≥ Pr[(d+ 1)-flat test rejects f ](1− 2d+1−n)
≥ (c/2) min(2dδd(f), 1).

The proof of Theorem 3.7 is split into two parts, based on proximity
of f to degree d polynomials. We first analyze the case where δd(f) is
small.

Lemma 3.8 (Small proximity to degree d polynomials). For any function
f : Fn2 → F2,

Pr [(d+ 1)-flat test rejects f ] ≥ 2d+1δd(f)(1− 2d+1δd(f)).

In particular, if δd(f) ≤ 2−(d+2), then

Pr [(d+ 1)-flat test rejects f ] ≥ 2dδd(f).
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Proof. The main idea is to lower-bound the probability that in the (d+1)-
flat A, there is exactly one point where f and the closest polynomial of
degree d differ. Note that in this case, the tester rejects f . Let g ∈ Pd be
a polynomial of degree d such that Pr[f(x) = g(x)] = δd(f). Consider
a random (d+ 1)-dimensional affine subspace A, generated by picking
a random x ∈ Fn2 and a full-rank matrix M ∈ Fn×(d+1)

2 and letting
A = x+MFd+1

2 = {x+My | y ∈ Fd+1
2 }.

For a ∈ Fd+1
2 , let Ea be the event that f(x + Ma) 6= g(x + Ma),

and let Fa be the event that f(x + Ma) 6= g(x + Ma) and for every
b 6= a, f(x+Mb) = g(x+Mb). Note that if Fa occurs then the tester
rejects f , and that the events Fa are pairwise disjoint. Hence

Pr [(d+ 1)-flat test rejects f ] ≥ Pr[∪Fa] =
∑

a∈Fd+1
2

Pr[Fa].

Next, for a ∈ Fd+1
2 we have that

Pr[Fa] ≥ Pr[Ea]−
∑
b6=a

Pr[Ea ∩ Eb].

Moreover Pr[Ea] = δd(f) and Pr[Ea ∩Eb] = Pr[Ea] Pr[Eb] = δd(f)2, as
the events Ea, Eb are pairwise independent (since M has full rank). So

Pr [(d+ 1)-flat test rejects f ] ≥ 2d+1δd(f)(1− 2d+1δd(f)).

So, from now on we consider the case where f is at least 2−(d+2)-far
from Pd, and show that in such a case, the (d+1)-flat test rejects f with
constant probability (independent of d, n). It will be useful to introduce
yet another variant of the tester, called the k-flat test, for k ≥ d + 1,
where the tester first samples a k-flat and then tests if f is a degree d
polynomial when restricted to A.
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k-flat test. With query access to f : Fn2 → F2:

1. Pick A, a random affine k-dimensional subspace of Fn2 .

2. Query f |A, the restriction of f to A.

3. Reject if f |A is not a degree d polynomial.

The following lemma allows us to analyze the rejection probability
of the k-flat test for k = d+ c where c = O(1).

Lemma 3.9. For every n and k ≥ k′ ≥ d + 1, and every f : Fn2 → F2,
we have

Pr
[
k′-flat test rejects f

]
≥ Pr [k-flat test rejects f ] · 2−(k−k′).

Proof. It suffices to prove the lemma for k′ = k − 1, as the general
case follows by an iterative application. Let A be a random k-flat and
let A′ be a random k − 1 flat inside A. We will show that if the k-flat
tester rejects f , namely if f |A has degree > d, then with probability at
least 1/2 it holds that f |A′ also has degree > d, and hence reject by the
(k − 1)-flat tester.

So, fix A and assume towards contradiction that f |A has degree
> d, but that for a strict majority of (k− 1)-flats (namely, hyperplanes)
H ⊂ A it holds that f |H has degree ≤ d. First, this implies that there
must exist two disjoint hyperplanes H ′, H ′′ such that f |H′ , f |H′′ have
degree d. By interpolation, this implies that f |A has degree at most
d + 1. Decompose f |A(x) = fd+1(x) + f≤d(x) where fd+1(x) is the
homogeneous part of f of degree d+1. On any hyperplane H where f |H
has degree ≤ d it then holds that fd+1|H has degree ≤ d. The number
of such hyperplanes is by assumption more than half of all hyperplanes,
namely > 1

22(2k − 1), which is at least 2k. Hence, there must exist k
linearly independent hyperplanes H1, . . . ,Hk on which f |Hi has degree
≤ d. We will show that this implies that fd+1 has degree ≤ d, which
implies that f |A has degree ≤ d, contradicting our assumption. To see
that, apply an affine linear transformation mapping Hi to {x : xi = 0}.
Then fd+1 has degree ≤ d whenever we set some variable xi = 0. As
k ≥ d+ 2, this can only happen if fd+1 has degree ≤ d.

The version of record is available at: http://dx.doi.org/10.1561/0400000064



3.3. Analysis of the AKKLR test 269

So, it suffices to prove that if δd(f) ≥ 2−(d+2) then the k-flat tester
rejects it with constant probability for some k = d + O(1). This is
exactly what the next lemma shows.

Lemma 3.10. For any 0 < β < 1/24 there exist absolute constants
γ, ε, c > 0 such that the following holds for any n ≥ k ≥ d + c. Let
f : Fn2 → F2 be a function with δd(f) ≥ β2−d. Then

Pr [k-flat test rejects f ] ≥ ε+ γ · 2d−n.

Proof. The proof will require choices of β < 1/24, ε < 1/8, γ ≥ 72 and
2c ≥ max{ 4γ

1−8ε ,
γ

1−ε ,
2
β}. Fix k ≥ d+ c. We apply induction on n ≥ k.

For the base case of n = k, the k-flat test rejects f with probability 1.
By our choice of parameters, 1 > ε+ γ · 2d−n.

Let H denote the set of all hyperplanes of Fn2 and let N := |H| =
2(2n − 1). Also, let H∗ be the set of all hyperplanes A ∈ H such that
δd(f |A) < β2−d, and let K := |H∗|. We have

Pr [k-flat test rejects f ] = E
A∈H

[Pr [k-flat test rejects f |A]] .

By the induction hypothesis for every A ∈ H\H∗, the k-flat test rejects
f |A with probability at least ε+ γ · 2d

2n−1 , and thus

Pr [k-flat test rejects f |A] ≥
(

1− K

N

)(
ε+ γ · 2d

2n−1

)

≥ ε+ γ · 2d

2n−1 −
K

N
.

If K ≤ γ2d then we are done. So, assume from now on that K > γ2d.
We show below in Lemma 3.11 that as long as β < 1/4, this implies
that

δd(f) ≤ 3
2β2−d + 9

γ2d ≤ 2−(d+2),

where the second inequality uses β < 1/24 and γ ≥ 72. At this point
Lemma 3.8 asserts that the k-flat test (in fact, even the (d + 1)-flat
test), will reject f with probability at least

2dδd(f) ≥ β ≥ ε+ γ2−c ≥ ε+ γ · 2d−n.
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Lemma 3.11. Let f : Fn2 → F2. Assume that there exist distinct
hyperplanes A1, · · · , AK such that δd(f |Ai) ≤ α. If K > 2d+1 and
α < 2−(d+2), then

δd(f) ≤ 3
2α+ 9

K
.

Proof. For each Ai, let Pi be a degree d polynomial α-close to f |Ai .

Claim 3.12. If 4α < 2−d, then for every i, j, Pi|Ai∩Aj = Pj |Ai∩Aj .

Proof. The claim is vacuously true if Ai = Aj . Otherwise, |Ai ∩Aj | =
|Ai|/2 = |Aj |/2 and

dist(f |Ai∩Aj , Pi|Ai∩Aj ) ≤ 2α

and similarly for Pj , and thus dist(Pi|Ai∩Aj , Pj |Ai∩Aj ) ≤ 4α < 2−d. The
claim now follows because Pi|Ai∩Aj , Pj |Ai∩Aj are degree≤ d polynomials,
and by Claim 3.4 the minimum distance of distinct degree d polynomials
is 2−d.

Observe that there are at least ` = blog2(K + 1)c > d linearly
independent hyperplanes among A1, · · · , AK . Without loss of generality
assume that A1, · · · , A` are linearly independent, and that Ai = {x ∈
Fn2 | xi = 0}, by applying an appropriate affine transformation on Fn2 .
This way, for i ∈ [`], Pi naturally corresponds to a polynomial over
Fn2 which does not depend on xi. The idea of the proof now is to glue
P1, · · · , P` together to get a polynomial P close to f .

To this end, decompose x = (x1, . . . , x`, y) where xi ∈ F2 and
y ∈ Fn−`2 . For every i, Pi can be decomposed as

Pi(x1, · · · , x`, y) =
∑
S⊆[`]

Pi,S(y)
∏
j∈S

xj ,

where Pi,S is a polynomial of degree at most d − |S| which depends
only on y. In particular Pi,S = 0 if |S| > d. Note that, if Pi does not
depend on xj and j ∈ S, then Pi,S = 0. The following claim follows
immediately from Claim 3.12.

Claim 3.13. For every S ⊆ [`] and i, j ∈ [`] \ S, Pi,S(y) = Pj,S(y).
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We can now formally glue together the polynomials Pi. For S ( [`],
define PS to be Pi,S for some i ∈ [`] \ S. The above claim asserts that
PS is unique. Now define the degree d polynomial P over Fn2 as follows

P (x1, . . . , x`, y) =
∑
S([`]

PS(y)
∏
i∈S

xi.

Claim 3.14. For every i ∈ [K], P |Ai = Pi|Ai .

Proof. The claim is easy to see for i ∈ [`], since the coefficients of
the two polynomials P and Pi are identically the same when xi = 0.
Now assume that i ∈ K \ [`]. First note that for any j ∈ [`] and
x ∈ Ai ∩ Aj , it follows from Claim 3.12 that Pi(x) = Pj(x) = P (x).
Thus Pi|(∪j∈[`]Aj)∩Ai = P |(∪j∈[`]Aj)∩Ai . Now, note that since ` > d then∣∣∣Ai ∩ (⋃j∈[`]Aj

)∣∣∣
|Ai|

≥ 1− 2−` > 1− 2−d.

The claim now follows from the minimum distance between degree d
polynomials (Claim 3.4).

Next, we will show that P is close to f . Since A1, · · · , AK do not
necessarily cover Fn2 uniformly, we show that they do so approximately
uniformly. Let

BAD := {z ∈ Fn2 | z is contained in less than K/3
of the hyperplanes A1, · · · , AK}.

Claim 3.15. |BAD| ≤ 2n 9
K .

Proof. Let z ∈ Fn2 be uniformly chosen. The random variables 1z∈Ai
each have probability 1/2, and they are pairwise independent. Let
S =

∑k
i=1 1z∈Ai . Then E[S] = K/2 and Var[S] = K/4. By Chebyshev’s

inequality,

Pr[z ∈ BAD] = Pr[S ≤ K/3] ≤ Pr[|S − E[S]| ≤ K/6]

≤ K/4
(K/6)2 = 9

K
.

The version of record is available at: http://dx.doi.org/10.1561/0400000064



272 Low-degree Tests, the 99% Regime

The following claim now finishes the proof of the lemma.

Claim 3.16. dist(f, P ) ≤ 3
2α+ |BAD|

2n ≤ 3
2 + 9

K .

Proof. Pick z ∈ Fn2 and i ∈ [K] uniformly at random. Then

Pr
i,z

[z ∈ Ai ∧ f(z) 6= Pi(z)] = 1
2 E
i

[
Pr
z∈Ai

[f(z) 6= Pi(z)]
]
≤ α

2 .

On the other hand, since P |Ai = Pi|Ai , we have that

Pr
i,z

[z ∈ Ai ∧ f(z) 6= Pi(z)] = Pr
i,z

[z ∈ Ai ∧ f(z) 6= P (z)]

≥ Pr
i,z

[z ∈ Ai ∧ f(z) 6= P (z) ∧ z 6∈ BAD]

= Pr
z

[f(z) 6= P (z) ∧ z 6∈ BAD]

· Pr
i,z

[z ∈ Ai|f(z) 6= P (z) ∧ z 6∈ BAD]

≥ Pr
z

[f(z) 6= P (z) ∧ z 6∈ BAD] · 1
3

≥ 1
3

(
dist(f, P )− |BAD|

2n
)
.

Theorem 3.6 now directly follows from Lemma 3.8, Lemma 3.9, and
Lemma 3.10.

3.4 Implications for the Gowers norms

We will introduce the Gowers uniformity norm in later chapters. For
now, it suffices to know that for f : Fn2 → F2, its (d + 1)-th Gowers
norm is defined as

‖(−1)f‖Ud+1

=
(

Pr [AKKLR(d) accepts f ]− Pr [AKKLR(d) rejects f ]
)1/2d+1

.

It is easy to see that this expression is bounded between 0 and 1, and
is equal to 1 if and only if f is a polynomial of degree d. Theorem 3.6
shows that if the Gowers norm is close to 1, then f is close to a degree
d polynomial.
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Theorem 3.17. Let f : Fn2 → F2. Then for any 1 ≤ d ≤ n, if ‖f‖Ud+1 ≥
1− ε then δd(f) ≤ cε, where c > 0 is an absolute constant.

Proof. If ‖f‖Ud+1 ≥ 1− ε then by definition,

2 Pr [AKKLR(d) rejects f ] ≤ 1− (1− ε)2d+1 ≤ 2d+1ε.

Hence by Theorem 3.6, we have δd(f) ≤ cε.

Theorem 3.17 becomes trivial when ε > 1/c. In particular it says
nothing about the case where ‖(−1)f‖Ud+1 is bounded away from zero,
e.g. ‖(−1)f‖Ud+1 > 1/3. One expects such functions to have some
structure as a typical random function will satisfy ‖(−1)f‖Ud+1 = o(1)
with high probability. In the next section we will see a result due to
Samorodnitsky [70] and independently Green and Tao [42] relating the
Gowers U3 norm to proximity to quadratic polynomials even in the
regime where the distance is close to 1/2. More precisely, they prove
that if ‖(−1)f‖U3 is bounded away from 0, then f must have significant
correlation with a quadratic polynomial. This immediately gives a tester
for proximity to quadratics in the 1% regime.
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Low-degree Tests, the 1% Regime

In Chapter 3 we presented the AKKLR test for proximity to degree-d
polynomials. The analysis in Theorem 3.6 shows that the test is effective
in the 99% regime: it can distinguish functions which are very close to
degree-d polynomials from those which are somewhat far. Concretely,
its rejection probability is c ·min(δd(f)2d, 1) for some absolute constant
c > 0. In this chapter, we will focus on the 1% regime, where we have
the more ambitious goal of detecting any non-trivial agreement with
degree-d polynomials. Concretely, we would like to distinguish between
functions with δd(f) ≤ 1

2 − ε from functions with δd(f) = 1
2 − o(1).

Compare to the 99% regime, the 1% regime is much more complex.
In the 99% regime, we are interested in functions which are close to
polynomials of degree d. Hence so much of the polynomial structure is
remained in these functions that by taking only few samples, we can
obtain a good understanding of the global structure of the function.
Indeed, as we saw in Chapter 3, the proof of the AKKLR test in the
99% regime was based on such ideas. However in the 1% regime, we
are concerned with functions with very little structure. For example,
consider a degree d polynomial (think of it as a completely structured
function), and obtain a new function from it by retaining the values of

274
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1% of the points and assigning random values to the rest. Thus, this
function is likely to agree with the polynomial on about 50.5% fraction
of the inputs, only slightly more than a random function, which is likely
to agree with the polynomial on about 50% of the inputs. While in
this blurry picture much of the structure of the original polynomial
is lost, some of it is still maintained since a typical random function
cannot agree with any polynomial of degree d on 50.5% of the points.
However, detecting this structure seems to be much harder as now if
we sample the function, we will typically receive random values that
are not related to the original polynomial.

It was conjectured independently by Samorodnitsky [70] and Green
and Tao [42] that the AKKLR test can be used to detect such weak
structures, and thus distinguish between functions with δd(f) ≤ 1

2 − ε
from functions with δd(f) = 1

2 − o(1).

Conjecture 4.1 (AKKLR test, 1% regime). Fix d ≥ 1. For f : Fn2 → F2
let pd(f) = Pr[AKKLR(d) accepts f ]. Then

• (Completeness) If δd(f) ≤ 1
2 − ε then pd(f) ≥ 1

2 + α(ε), where
α(ε) > 0.

• (Soundness) If pd(f) ≥ 1
2 + ε then δd(f) ≤ 1

2 − β(ε), where
β(ε) > 0.

We will see that completeness holds for any d ≥ 1 with α(ε) =
Ω(ε2d+1). However, soundness turns out to be more intricate. For d = 1
it follows by a relatively simple extension of linearity testing. For d = 2
it also holds, but the proof is much more involved. It was accomplished
independently by Samorodnitsky [70] and Green and Tao [42], where the
analysis relies on tools from additive combinatorics. For d = 3 it turns
out to be false! The counter-example was discovered independently by
Lovett et al. [60] and Green and Tao [43], and will be presented in
Chapter 5.
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4.1 Completeness

We prove that any function at a distance noticeably smaller than 1
2 from

degree d polynomials, is accepted by the AKKLR test with probability
noticeably larger that 1

2 .

Theorem 4.2. Fix d ≥ 1. Let f : Fn2 → F2 with δd(f) = 1
2 − ε. Then

Pr[AKKLR(d) accepts f ] ≥ 1
2
(
1 + (2ε)2d

)
.

Proof. Let P (x) be a polynomial of degree d so that dist(f, P ) = 1
2 − ε

and hence E[(−1)(f+P )(x)] = 2ε. To recall, the AKKLR test samples
x, y1, . . . , yd+1 ∈ Fn2 independently and accepts f if

∑
S⊆[d+1]

f

(
x+

∑
i∈S

yi

)
= 0.

The test always accepts degree-d polynomials, as it holds that

∑
S⊆[d+1]

P

(
x+

∑
i∈S

yi

)
≡ 0.

Thus, we can reformulate the acceptance probability of the test as

Pr[AKKLR(d) accepts f ]

= Pr
x,y1,...,yd+1∈Fn2

 ∑
S⊆[d+1]

f

(
x+

∑
i∈S

yi

)
= 0


= Pr

x,y1,...,yd+1∈Fn2

 ∑
S⊆[d+1]

(f + P )
(
x+

∑
i∈S

yi

)
= 0


= 1

2

(
1 + E

x,y1,...,yd+1∈Fn2

[
(−1)Dy1,...,yd+1 (f+P )(x)

])
.

The lemma then follows from the following claim: for any function
g : Fn2 → F2 and any k ≥ 1, it holds that

E
x,y1,...,yk∈Fn2

[
(−1)Dy1,...,ykg(x)

]
≥
(

E
x∈Fn2

[
(−1)g(x)

])2k

.
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The claim holds for k = 1 as

E
x,y∈Fn2

[
(−1)Dyg(x)

]
= E

x,y∈Fn2

[
(−1)g(x)+g(x+y)

]

= E
x,y

[
(−1)g(x)+g(y)

]
=
(

E
x∈Fn2

[
(−1)g(x)

])2

,

and for k > 1 by induction:

E
x,y1,...,yk

[
(−1)Dy1,...,ykg(x)

]
= E

y1,...,yk−1

[
E
x,yk

[
(−1)DykDy1,...,yk−1g(x)

]]
= E

y1,...,yk−1

(
E
x

[
(−1)Dy1,...,yk−1g(x)

])2

≥
(

E
x,y1,...,yk−1

[
(−1)Dy1,...,yk−1g(x)

])2

≥
(
E
x

[
(−1)g(x)

])2k

,

where the first inequality follows by the Cauchy-Schwartz inequality,
and the second by induction.

4.2 Soundness for d = 1

We show that if the AKKLR(1) test accepts a function with probability
noticeably larger than 1

2 , then the function has a non-trivial correlation
with some linear polynomial. Equivalently, it has a noticeable Fourier
coefficient.

Theorem 4.3. Let f : Fn2 → F2. Assume that Pr[AKKLR(1) accepts f ] ≥
1
2 + ε. Then δ1(f) ≤ 1

2 −
√
ε/2.

Proof. As in the proof of Theorem 2.3, let F (x) = (−1)f(x), where we
expand the acceptance probability of the test in terms of the Fourier
coefficients of F ,

Pr[AKKLR(1) accepts f ] = Pr
x,y,z∈Fn2

[f(x) + f(y) + f(z) = f(x+ y + z)]

= 1
2 + 1

2
∑
α∈Fn2

F̂ (α)4.
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Then
2ε ≤

∑
α∈Fn2

F̂ (α)4 ≤ ‖F̂‖2∞
∑
α∈Fn2

F̂ (α)2 = ‖F̂‖2∞.

Thus ‖F̂‖∞ ≥
√

2ε. To conclude observe that δ1(f) = 1
2(1−‖F̂‖∞).

Corollary 4.4. For any ε > 0 there is a test which makes O(1/ε8)
queries to a function f and distinguishes, with high probability, between
functions with δ1(f) ≤ 1

2 + ε and functions with δ1(f) ≥ 1
2 − o(1).

Proof. Consider the AKKLR(1) test. If δ1(f) ≤ 1
2 + ε, then by Theo-

rem 4.2 it accepts f with probability at least 1
2(1 + (2ε)4). If, on the

other hand, δ1(f) ≥ 1
2 − o(1), then by Theorem 4.3 it accepts f with

probability at most 1
2(1 + o(1)). Thus, if we repeat the test Ω(1/ε8)

times, then with high probability we can distinguish the two cases.

4.3 Soundness for d = 2

We show that if the AKKLR(2) test accepts a function with probability
noticeably larger than 1

2 , then the function has a non-trivial correlation
with some quadratic polynomial. We follow [70] below.

Theorem 4.5. Let f : Fn2 → F2. Assume that AKKLR(2) accepts f
with probability at least 1

2 + ε. Then δ2(f) ≤ 1
2 − β(ε), where β(ε) ≥

exp(−c · log(1/ε)4) for an absolute constant c > 0.

Fix a function f : Fn2 → F2 for the remainder of this section,
which we assume is accepted by the AKKLR(2) test with probability
at least 1

2 + ε. We may assume that n ≥ c · log(1/ε)4, as otherwise
the conclusion of Theorem 4.5 is trivial. Let F (x) = (−1)f(x) and
Fy(x) = (−1)Dyf(x) = F (x)F (x+ y).

In order to build intuition, consider first the case that f(x) = xtDx

is a quadratic polynomial. Then Fy(x) = (−1)〈x,(D+Dt)y〉 and hence Fy
has only one nonzero Fourier coefficient, which is at (D +Dt)y. Note
that D +Dt is a symmetric matrix with a zero diagonal. We will show
that obtaining this, even approximately, implies that f is correlated
with a quadratic polynomial.
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Lemma 4.6. Assume there exists an n× n symmetric matrix A with a
zero diagonal such that

E
y

[
F̂y(Ay)2

]
≥ γ.

Then there exists a quadratic polynomial q(x) such that

dist(f, q) ≤ 1
2 −

1
2
√
γ.

In order to prove Lemma 4.6 we need a few technical claims. For
functions G,H : Fn2 → R define GH(x) = G(x)H(x) and (G ∗H)(x) =
Ey∈Fn2 [G(y)H(x+ y)]. It is a standard fact in classical Fourier analysis
that Ĝ ∗H(α) = Ĝ(α)Ĥ(α).

Claim 4.7. Let G : Fn2 → R. Let Gy(x) = G(x)G(x + y). Then (Gy ∗
Gy)(x) = (Gx ∗Gx)(y).

Proof. We have

(Gy ∗Gy)(x) = E
s∈Fn2

[Gy(s)Gy(x+ s)]

= E
s∈Fn2

[G(s)G(s+ y)G(x+ s)G(x+ s+ y)] .

The claim follows as the RHS is symmetric to swapping x and y.

Claim 4.8. Let G,H : Fn2 → R. Let Gy(x) = G(x)G(x+y) and Hy(x) =
H(x)H(x+ y). Then

E
y∈Fn2

( E
x∈Fn2

[Gy(x)Hy(x)]
)2
 =

∑
α

ĜH(α)4.
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Proof.

E
y

[(
E
x

[Gy(x)Hy(x)]
)2
]

= E
y,x,x′

[
Gy(x)Hy(x)Gy(x′)Hy(x′)

]
= E

y,x,x′

[
G(x)G(x+ y)H(x)H(x+ y)G(x′)G(x′ + y)H(x′)H(x′ + y)

]
= E

y,x,x′

[
GH(x)GH(x+ y)GH(x′)GH(x′ + y)

]
= E

y

[(
E
x

[GH(x)GH(x+ y)]
)2
]

= E
y

[
(GH ∗GH)(y)2

]
=
∑
α

̂GH ∗GH(α)2 =
∑
α

ĜH(α)4.

Proof of Lemma 4.6. Decompose A = D +Dt where D is upper trian-
gular and let G(x) = (−1)xtDx. Note that Gy(x) = G(x)G(x + y) =
(−1)〈x,Ay〉. We will show that FG has a noticeable Fourier coefficient.
By Claim 4.8 and our assumption,

∑
α

F̂G(α)4 = E
y

[(
E
x

[Fy(x)Gy(x)]
)2
]

= E
y

[(
E
x

[
Fy(x)(−1)〈x,Ay〉

])2
]

= E
y

[
F̂y(Ay)2

]
≥ γ.

This implies that FG has a large Fourier coefficient, as∑
α

F̂G(α)4 ≤ ‖F̂G‖2∞
∑
α

F̂G(α)2 = ‖F̂G‖2∞.

So, there exists α ∈ Fn2 and c ∈ F2 such that

E
x

[
F (x)G(x)(−1)〈x,α〉+c

]
= |F̂G(α)| ≥ √γ.

So, the quadratic polynomial q(x) = xtDx+〈x, α〉+c satisfies dist(f, q) ≤
1
2 −

1
2
√
γ.
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So, our goal from now on is to show the existence of such a matrix
A for which F̂y(Ay) is noticeable for a typical y. As a first step, we
show that for a typical y, Fy has some noticeable Fourier coefficients.
Formally, we show that the 4th moments of F̂y are noticeable.

Claim 4.9. Ey∈Fn2
[∑

α∈Fn2
F̂y(α)4

]
≥ 2ε.

Proof. Let fy = Dyf . We can express

Pr[AKKLR(2) accepts f ] = Pr
x,y1,y2,y3∈Fn2

 ∑
S⊆[3]

f

(
x+

∑
i∈S

yi

)
= 0


= E

y∈Fn2
Pr

x,y1,y2
∈Fn2

[fy(x) + fy(x+ y1) + fy(x+ y2) + fy(x+ y1 + y2) = 0] .

As in the proof of Theorem 4.3, we can express the inner probability as

Pr
x,y1,y2∈Fn2

[fy(x) + fy(x+ y1) + fy(x+ y2) + fy(x+ y1 + y2) = 0]

= 1
2 + 1

2
∑
α∈Fn2

F̂y(α)4.

Thus

Pr[AKKLR(2) accepts f ] = 1
2

1 + E
y∈Fn2

 ∑
α∈Fn2

F̂y(α)4

 .
The claim follows from our assumption that Pr[AKKLR(2) accepts f ] ≥
1
2 + ε.

The next step is to show that the noticeable Fourier coefficients of
F̂y have an approximate linear structure. The following lemma plays an
important role in this.

Lemma 4.10.

E
y,z∈Fn2

 ∑
α,β∈Fn2

F̂y(α)2F̂z(β)2F̂y+z(α+ β)2

 = E
y∈Fn2

 ∑
α∈Fn2

F̂y(α)6

 .
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Proof. Note that F̂y(α)2 = Eu,u′∈Fn2 Fy(u)Fy(u′)(−1)〈u+u′,α〉. Using this,
we can expand the LHS in the lemma statement as

LHS = E
y,z

∑
α,β

F̂y(α)2F̂z(β)2F̂y+z(α+ β)2


= E

y,z

∑
α,β

[
E
u,u′

Fy(u)Fy(u′)(−1)〈u+u′,α〉 · E
v,v′

Fz(v)Fz(v′)(−1)〈v+v′,β〉·

E
w,w′

Fy+z(w)Fy+z(w′) · (−1)〈w+w′,α+β〉
]
.

Next, note that∑
α,β

(−1)〈u+u′,α〉(−1)〈v+v′,β〉(−1)〈w+w′,α+β〉

=
∑
α

(−1)〈u+u′+w+w′,α〉∑
β

(−1)〈v+v′+w+w′,β〉

= 22n · 1[u+u′=v+v′=w+w′].

We can thus restrict our attention to the case that u+ u′ = v + v′ =
w + w′ = s for some s ∈ Fn2 , and obtain a simplified expression for the
LHS as

LHS = E
y,z,s

[
E
u
Fy(u)Fy(u+ s) · E

v
Fz(v)Fz(v + s)

· E
w
Fy+z(w)Fy+z(w + s)

]
= E

y,z,s
[(Fy ∗ Fy)(s)(Fz ∗ Fz)(s)(Fy+z ∗ Fy+z)(s)]

= E
y,z,s

[(Fs ∗ Fs)(y)(Fs ∗ Fs)(z)(Fs ∗ Fs)(y + z)]

= E
s

[∑
α

F̂s ∗ Fs(α)3
]

= E
s

[∑
α

F̂s(α)6
]
.

As a corollary, we obtain that the noticeable Fourier coefficients of
F̂y have an approximate linear structure, at least locally.
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Corollary 4.11. Ey,z∈Fn2
[∑

α,β∈Fn2
F̂y(α)2F̂z(β)2F̂y+z(α+ β)2

]
≥ 4ε2.

Proof. By Claim 4.9 we have Ey
∑
α F̂y(α)4 ≥ 2ε. By the Cauchy-

Schwartz inequality∑
α

F̂y(α)4 =
∑
α

F̂y(α) · F̂y(α)3

≤
√∑

α

F̂y(α)2 ·
∑
α

F̂y(α)6 =
√∑

α

F̂y(α)6.

Thus we have

E
y

∑
α

F̂y(α)6 ≥ E
y

(∑
α

F̂y(α)4
)2

≥
(
E
y

∑
α

F̂y(α)4
)2

≥ 4ε2.

The corollary now follows by Lemma 4.10.

The next step is to show that a typical F̂x has a noticeable Fourier
coefficient at φ(x), where φ is approximately linear. This will be the
starting point for finding an actual linear map for which this holds.

Lemma 4.12. There exists X ⊂ Fn2 and a map φ : X → Fn2 such that

(i) F̂x(φ(x))2 ≥ ε2 for all x ∈ X.

(ii) Prx,y∈Fn2 [x, y, x+ y ∈ X ∧ φ(x) + φ(y) = φ(x+ y)] ≥ ε2/2.

Proof. Define a random function φ : Fn2 → Fn2 by picking, independently
for each y ∈ Fn2 , φ(y) = α with probability F̂y(α)2. Note that this is
indeed a probability distribution as by Parseval’s identity

∑
α F̂y(α)2 = 1

for each y. For δ = ε2 define

L(φ) := Pr
x,y∈Fn2

[
φ(x+ y) = φ(x) + φ(y), F̂x(φ(x))2 ≥ δ,

F̂y(φ(y))2 ≥ δ, F̂x+y(φ(x+ y))2 ≥ δ
]
.

It suffices to show that Eφ L(φ) ≥ ε2/2. Indeed for a choice of φ which
attains the bound, by taking

X =
{
x ∈ Fn2 : F̂x(φ(x))2 ≥ δ

}
,
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the desired items (i),(ii) will follow by definition. In order to compute
Eφ L(φ), it will be useful to define

Λ :=
{

(α, β) ∈ F2n
2 : F̂x(α)2 ≥ δ, F̂y(β)2 ≥ δ, F̂x+y(α+ β)2 ≥ δ

}
.

Then,

E
φ

[L(φ)] = E
x,y

 ∑
(α,β)∈Λ

Pr
φ

[φ(x) = α, φ(y) = β, φ(x+ y) = α+ β]


Next, by definition of φ, if x, y, x+ y are all distinct then

Pr
φ

[φ(x) = α, φ(y) = β, φ(x+ y) = α+ β]

= Pr
φ

[φ(x) = α] Pr
φ

[φ(y) = β] Pr
φ

[φ(x+ y) = α+ β]

= F̂x(α)2F̂y(β)2F̂x+y(α+ β)2.

The probability that x, y, x+ y are not all distinct is O(2−n). Thus,

E
φ

[L(φ)] ≥ E
x,y

 ∑
(α,β)∈Λ

F̂x(α)2F̂y(β)2F̂x+y(α+ β)2

−O(2−n).

We would like to extend the sum to include all choices of α, β, so that
we can then apply Corollary 4.11. The sum over α for which F̂x(α)2 < δ

can be bounded by

E
x,y

 ∑
α,β:F̂x(α)2<δ

F̂x(α)2F̂y(β)2F̂x+y(α+ β)2


≤ δ · E

x,y

∑
α,β

F̂y(β)2F̂x+y(α+ β)2


= δ · E

x,y

∑
α,β

F̂y(β)2F̂x+y(α)2


= δ,
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where we used Parseval’s identity. We can bound the sum over α, β for
which F̂y(β)2 < δ or F̂x+y(α + β)2 < δ in a similar manner. We thus
have

E
φ

[L(φ)] ≥ E
x,y

 ∑
α,β∈Fn2

F̂x(α)2F̂y(β)2F̂x+y(α+ β)2

− 3δ −O(2−n)

≥ 4ε2 − 3δ −O(2−n) ≥ ε2 −O(2−n) ≥ ε2/2,

where in the last inequality we used our assumption that n is large
enough.

Next, we show that φ can be approximated by a linear map. To that
end, we will need several results in additive combinatorics. For a set
S ⊆ Fn2 its sumset is S + S = {s+ s′ : s, s′ ∈ S}. The first result is the
Balog-Szemerédi-Gowers theorem (abbreviated BSG theorem) [8, 37]. It
states that if many pairs in S have their sum in a small set, then there
is a large subset of S with a small sumset. The proof can be found in
the original paper of [37]. See also [81]. A simplified proof for the case
of G = Fn2 can be found in an exposition of Viola [84].

Theorem 4.13 (BSG theorem [8, 37]). Let G be an Abelian group and
let S ⊆ G. If

Pr
s,s′∈S

[s+ s′ ∈ S] ≥ ε,

then there exists S′ ⊂ S of size |S′| ≥ cε2|S| such that |S′ + S′| ≤
c−1ε−5|A|. Here, c > 0 is an absolute constant.

The other ingredient required is the structure of sets S for which
S + S is not much larger than S. Here, the best result to date is by
Sanders [71]. See also the survey by Sanders [72] for more details, and
the exposition by Lovett [59] giving a simplified proof for G = Fn2 .
Below, we present the result specialized to the case of G = Fn2 .

Theorem 4.14 (Sanders [71]). Let S ⊂ Fn2 be a set such that |S + S| ≤
K|S|. Then there exists an affine linear subspace V ⊂ Fn2 of size |V | ≤ |S|
such that

|S ∩ V | ≥ exp(−c log4K)|S|,
where c > 0 is an absolute constant.
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With these theorems at our disposal, let S = {(x, φ(x)) : x ∈ X} ⊂
F2n

2 be the graph of φ. By Lemma 4.12 we have that Prs1,s2∈S [s1 + s2 ∈
S] ≥ ε2/2. By Theorem 4.13, there exists a subset S′ ⊂ S of size
|S′| ≥ c′ε4 such that |S′ + S′| ≤ c′′ε−10|S′|. By Theorem 4.14, there
exists an affine linear subspace V ⊂ F2n

2 such that S′ ∩ V is large
and |V | ≤ |S′|. We will only use the fact that |V | ≤ 2n and that
|S ∩ V | ≥ η2n where η = exp(−c′′′ log4(1/ε)) (here, c′, c′′, c′′′ > 0 are
unspecified absolute constants). Next, we show that this implies the
existence of a linear map which approximates φ.

Lemma 4.15. There exist an n× n matrix A and a vector b ∈ Fn2 such
that

Pr
x∈S

[φ(x) = Ax+ b] ≥ η2.

Proof. Let U = {x : (x, y) ∈ V } be the projection of V to the first n
coordinates. As |S∩V | ≥ η2n and S contains at most one element (x, y)
for each x ∈ Fn2 , it must be that |U | ≥ η2n. Thus, we can decompose V
as the disjoint union of subspaces of the form Vi = {(x, `i(x)) : x ∈ U},
where `i : U → Fn2 are affine linear maps, and 1 ≤ i ≤ |V/U |. Choose
` = `i which maximizes |S ∩ Vi|. For this choice, we get |S ∩ Vi| ≥
η|S ∩V | ≥ η22n. If |U | < Fn2 then complete ` arbitrarily to a linear map
from Fn2 . The lemma follows as the fact that ` is an affine linear map
implies `(x) = Ax+ b.

Corollary 4.16. ν := Ey∈Fn2
[
F̂y(Ay + b)2

]
≥ η3ε2.

Proof. For any y ∈ S we have F̂y(φ(y))2 ≥ ε2. There are η2|S| elements
y ∈ S for which φ(y) = Ay + b. Finally, |S| ≥ |S ∩ V | ≥ η2n.

To conclude, we would want to apply Lemma 4.6. To do so, we need
to show that we can take (i) A to be symmetric with zero diagonal; and
(ii) b = 0. The following claim will be useful for both. For M ∈ {A,At},
define RM : Fn2 → R as

RM (z) :=
∑
y∈Fn2

F̂y(My + z)2.

First, we prove a general claim on the Fourier coefficients of RM .
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Claim 4.17. R̂M (α) = F̂α(M tα)2.

Proof.

R̂M (α) = E
z∈Fn2

[∑
y

F̂y(My + z)2(−1)〈α,z〉
]

= E
z∈Fn2

[∑
y

E
u,u′∈Fn2

[
Fy(u)Fy(u′)(−1)〈u+u′,My+z〉+〈α,z〉

]]

=
∑
y

E
u,u′∈Fn2

[
Fy(u)Fy(u′)(−1)〈u+u′,My〉 · E

z∈Fn2

[
(−1)〈u+u′+α,z〉

]]
The last term is 2−n if u′ = u+ α, and is zero otherwise. Thus, we may
restrict to the case that u′ = u+ α and get

R̂M (α) = 2−n
∑
y

E
u∈Fn2

[
Fy(u)Fy(u+ α)(−1)〈α,My〉

]

= E
y∈Fn2

[
E

u∈Fn2

[
Fy(u)Fy(u+ α)(−1)〈α,My〉

]]
= E

y∈Fn2

[
(Fy ∗ Fy)(α)(−1)〈α,My〉

]
= E

y∈Fn2

[
(Fα ∗ Fα)(y)(−1)〈α,My〉

]
= F̂α ∗ Fα(M tα) =

(
F̂α(M tα)

)2
.

Next, we show that we may assume b = 0.

Claim 4.18. Ey∈Fn2
[
F̂y(Ay)2

]
≥ ν.

Proof. Let R = RA. Since the Fourier coefficients of R are all non-
negative, we have that R(0) ≥ R(z) for all z ∈ Fn2 , as

R(0) =
∑
α

R̂(α) ≥
∑
α

R̂(α)(−1)〈α,z〉 = R(z).

In particular,

E
y∈Fn2

[
F̂y(Ay)2

]
= R(0) ≥ R(b) = E

y∈Fn2

[
F̂y(Ay + b)2

]
= ν.
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We continue with showing that A may be taken to be symmetric
with zero diagonal. The following claim will be useful.

Claim 4.19. Let y, α ∈ Fn2 with 〈α, y〉 = 1. Then F̂y(α) = 0.

Proof.

F̂y(α) = E
x∈Fn2

[
F (x)F (x+ y)(−1)〈α,x〉

]
= − E

x∈Fn2

[
F (x)F (x+ y)(−1)〈α,x+y〉

]
= −F̂y(α).

We next show that many large Fourier coefficients are supported on
y for which Ay = Aty.

Claim 4.20. Ey∈Fn2
[
F̂y(Ay)2 · 1Ay=Aty

]
≥ ν2.

Proof. Let G(x) = (−1)xtAx and R = RAt . By Claim 4.17, R̂(y) =
F̂y(Ay)2. By Claim 4.19, if F̂y(Ay) 6= 0 then necessarily 〈Ay, y〉 = 0,
which is equivalent to G(y) = 1. Thus

G(y)R̂(y) = R̂(y).

This implies that

ν = E
y∈Fn2

[
R̂(y)

]
= E

y∈Fn2
G(y)R̂(y) = E

z∈Fn2

[
Ĝ(z)R(z)

]
.

Recall that by definition R(z) ≥ 0. Moreover, by Parseval’s identity

E
z∈Fn2

[R(z)] = 2−n
∑

y,z∈Fn2

F̂y(My + z)2 = 1.

Thus by Jensen inequality,

E
z∈Fn2

[
Ĝ(z)2R(z)

]
≥
(
E
z

[
Ĝ(z)R(z)

])2
= ν2.

On the other hand,

E
z∈Fn2

[
Ĝ(z)2R(z)

]
= E

y∈Fn2

[
(G ∗G)(y)R̂(y)

]
.
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Now,

(G ∗G)(y) = E
z∈Fn2

[
(−1)ztAz+(z+y)tA(z+y)

]
= E

z∈Fn2

[
(−1)〈z,(A+At)y〉+ytAy

]
= 1Ay=AtyG(y).

We thus obtained

E
y∈Fn2

[
1Ay=AtyF̂y(Ay)2

]
= E

y∈Fn2

[
1Ay=AtyR̂(y)

]
= E

y∈Fn2

[
1Ay=AtyG(y)R̂(y)

]
= E

y∈Fn2

[
(G ∗G)(y)R̂(y) ≥ ν2

]
.

Let W := {x : Ax = Atx} be a linear subspace of Fn2 . Restricted to
W , A is symmetric. Thus, we can find a symmetric matrix A′ such that
A′x = Ax for all x ∈W . We have that

E
y∈Fn2

[
F̂y(A′y)2

]
≥ E

y∈Fn2

[
F̂y(Ay)2 · 1y∈W

]
≥ ν2.

It remains to deal with the diagonal of A′. Let v ∈ Fn2 be the diagonal
of A′, and define

A′′ = A′ + vvt.

Clearly, A′′ is symmetric with zero diagonal. The follow claim is the
last step in the proof.

Claim 4.21. Ey∈Fn2
[
F̂y(A′′y)2

]
≥ Ey∈Fn2

[
F̂y(A′y)2

]
.

Proof. We have A′′y = A′y + 〈y, v〉vvt. If 〈y, v〉 = 0 then A′′y = A′y. If
〈y, v〉 = 1 then ytA′y = 〈y, v〉 = 1 and hence by Claim 4.19, F̂y(A′y) =
0.

So, we have constructed a symmetric matrix with zero diagonal A′′
for which

E
y∈Fn2

[
F̂y(A′′y)2

]
≥ ν2.
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By Lemma 4.6 this implies the existence of a quadratic polynomial q
whose distance from f is noticeably less than 1/2. Concretely,

dist(f, q) ≤ 1
2 −

ν

2 .
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5
Gowers Norms, the Inverse Gowers Conjecture

and its Failure

To recall, the probability that the AKKLR(d) test accepts a function
f : Fn2 → F2 is given by

Pr[AKKLR(d) accepts f ] = Pr
x,y1,...,yd+1∈Fn2

 ∑
S⊆[d+1]

f

(
x+

∑
i∈S

yi

)
= 0

 .
The AKKLR test is intimately related to Gowers norms, which we now
define.

5.1 Gowers norms

In its most general form, the Gowers norms are defined for functions
F : G→ C, where G is a finite Abelian group (as a motivating example,
consider the case of G = Fn2 and F (x) = (−1)f(x)). The (multiplicative)
derivative of F in direction y ∈ G is given by ∆yF (x) = F (x+ y)F (x).
Note that if F (x) = (−1)f(x) then ∆yF = (−1)f(x+y)+f(x) = (−1)Dyf .
Iterative derivatives are defined as ∆y1,...,ydF = ∆y1 . . .∆ydF . The Gow-
ers norm of order d for F is defined as the expected d-th multiplicative
derivative of F in d random directions at a random point.

291
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Definition 5.1 (Gowers norm). Let G be a finite Abelian group, d ≥ 1.
Given a function F : G→ C, the Gowers norm of order d for F is given
by

‖F‖Ud =
∣∣∣∣∣ E
y1,...,yd,x∈G

[(∆y1∆y2 · · ·∆ydF )(x)]
∣∣∣∣∣
1/2d

=

∣∣∣∣∣∣ E
y1,...,yd,x∈G

 ∏
S⊆[d]

Cd−|S|F (x+
∑
i∈S

yi)

∣∣∣∣∣∣
1/2d

,

where C is the conjugation operator C(z) = z.

Note that as ‖F‖U1 = |E [F ] | the Gowers norm of order 1 is only
a semi-norm. However, for d > 1 it turns out that ‖ · ‖Ud is indeed a
norm [37]. It satisfies the following inequality, known as the Gowers
Cauchy-Schwarz inequality.

Lemma 5.2 (Gowers Cauchy-Schwarz [37]). Consider a family of func-
tions FS : G→ C, where S ⊆ [d]. Then∣∣∣∣∣∣ E

x,y1,...,yd∈Fn

 ∏
S⊆[d]

FS(x+
∑
i∈S

yi)

∣∣∣∣∣∣ ≤
∏
S⊆[d]
‖FS‖Ud .

In this survey, we will only consider the case of G = Fn where F
is a finite field. Gowers norms are directly related to the acceptance
probability of the AKKLR test. If f : Fn2 → F2 then

‖(−1)f‖2dUd = Pr[AKKLR(d) accepts f ]− Pr[AKKLR(d) rejects f ]

In particular, if f : Fn2 → F2 is a polynomial of degree ≤ d, then
‖(−1)f‖Ud+1 = 1. We can rephrase Theorem 4.2, Theorem 4.3 and
Theorem 4.5 as a direct theorem and inverse theorems for the Gowers
norm for functions F : Fn2 → {−1, 1}. The results and proofs generalize
to bounded functions F : Fnp → C, where p ≥ 2 is a fixed prime. For a
polynomial P : Fnp → Fp let e(P ) = exp(2πi/p ·P (x)). For two functions
F,G : Fnp → C define their inner product as 〈F,G〉 = Ex F (x)G(x).

Theorem 5.3. Let p ≥ 2 be a fixed prime. Let F : Fnp → C with
‖F‖∞ ≤ 1. Then
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• (Direct theorem) For any polynomial P : Fnp → Fp of degree
≤ d− 1, it holds that |〈F, e(P )〉| ≤ ‖F‖Ud .

• (Inverse theorem, d = 1) If ‖F‖U2 ≥ ε, then there exists a
polynomial P : Fnp → Fp of degree d = 1 such that |〈F, e(P )〉| ≥ ε2.

• (Inverse theorem, d = 2) If ‖F‖U3 ≥ ε, then there exists a
polynomial P : Fnp → Fp of degree d = 2 such that |〈F, e(P )〉| ≥ δ
where δ = δ(p, ε) > 0.

The (original) inverse Gowers conjecture, independently due to
Samorodnitsky [70] and Green and Tao [42], states that the inverse
theorem should hold for any d ≥ 1.

Conjecture 5.4. Let p ≥ 2 be a fixed prime, and let d ≥ 1. Let F :
Fnp → C with ‖F‖∞ ≤ 1. If ‖F‖Ud+1 ≥ ε then there exists a polynomial
P : Fnp → Fp of degree ≤ d such that |〈F, e(P )〉| ≥ δ where δ = δ(p, d, ε).

As we will shortly see, Conjecture 5.4 is false, even for p = 2, d =
3. To salvage the conjecture, we will need to revise our notion of
polynomials. These are the so-called nonclassical polynomials, which
will be introduced in Chapter 6.

5.2 The counter-example

We give a counter example to Conjecture 5.4 for p = 2, d = 3. It
combines the bounds obtained in Lovett et al. [60] and Green and Tao
[43]. The example is the degree 4 symmetric polynomial S4. In this
section, all of the functions are defined on Fn2 .

Definition 5.5 (Symmetric polynomials). Let k ≥ 1 be an integer. The
elementary symmetric polynomial of degree k over n variables is denoted
by Sk and is defined as

Sk(x1, . . . , xn) =
∑

S⊆[n],|S|=k

∏
i∈S

xi.

Theorem 5.6 (Lovett et al. [60], Green and Tao [43]). Let n ≥ 1 be
sufficiently large. Then

‖(−1)S4‖16
U4 = 1

8 + O(2−n/2),
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but for any polynomial Q : Fn2 → F2 of degree ≤ 3 it holds that∣∣∣∣Pr
x

[S4(x) = Q(x)]− 1
2

∣∣∣∣ ≤ exp(−cn),

for some absolute constant c > 0.

5.2.1 U4-norm of S4

Our goal is to prove

‖(−1)S4‖16
U4 = 1

8 + O(2−n/2).

Define the symmetric bilinear form B : Fn2 × Fn2 → F2 by

B(a, b) =
∑

i,j∈[n]:i6=j
aibj ,

for a = (a1, . . . , an), b = (b1, . . . , bn) in Fn2 . It is easy to verify the
following identity regarding the fourth additive derivatives of S4.

DaDbDcDdS4(x) = B(a, b)B(c, d) +B(a, c)B(b, d) +B(a, d)B(b, c).

Consequently

‖(−1)S4‖16
U4 = E

a,b,c,d∈Fn2
(−1)B(a,b)B(c,d)+B(a,c)B(b,d)+B(a,d)B(b,c). (5.1)

In order to understand the above quantity, we need to understand the
distribution of

B6(a, b, c, d) := (B(a, b), B(a, c), B(a, d), B(b, c), B(b, d), B(c, d))

over F6
2, when a, b, c, d ∈ Fn2 are chosen uniformly and independently at

random. The next lemma shows that for large n, they are essentially
independently and uniformly chosen.

Lemma 5.7. For every τ ∈ F6
2,

Pr
a,b,c,d∈Fn2

[B6(a, b, c, d) = τ ] = 1
26 ±O(2−n/2).
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Proof. By standard Fourier analysis, it is sufficient to show that for
every collection of λab, λac, λad, λbc, λbd, λcd ∈ F2, not all zero,

E
a,b,c,d∈Fn2

[
(−1)λabB(a,b)+λacB(a,c)+λadB(a,d)+λbcB(b,c)+λbdB(b,d)+λcdB(c,d)

]
= O(2−n/2).

We may assume λab = 1 by symmetry. It suffices to show that for every
c, d ∈ Fn2 ,

E
a,b∈Fn2

[
(−1)B(a,b)+λacB(a,c)+λadB(a,d)+λbcB(b,c)+λbdB(b,d)+λcdB(c,d)

]
= O(2−n/2).

Since B is a bilinear form, B(·, c) and B(·, d) are linear forms and we
can rewrite the above quantity as

E
a,b∈Fn2

[
(−1)B(a,b)+L1(a)+L2(b)

]
,

where L1 := λacB(·, c) +λadB(·, d) and L2 := λbcB(·, c) +λbdB(·, d) are
two linear forms. The term L2(b) can be removed by an application of
the Cauchy-Schwarz inequality on a, and we obtain∣∣∣∣∣ E

a,b∈Fn2

[
(−1)B(a,b)+L1(a)+L2(b)

]∣∣∣∣∣
2

≤ E
a,a′,b∈Fn2

[
(−1)B(a+a′,b)+L1(a+a′)

]
.

Now observe that by the definition of B, Eb
[
(−1)B(a+a′,b)+L1(a+a′)

]
= 0

whenever a 6= a′. Giving

E
a,a′,b∈Fn2

[
(−1)B(a+a′,b)+L1(a+a′)

]
= Pr

a,a′∈Fn2
[a = a′] = 2−n,

as was desired.
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Lemma 5.7 implies that the joint distribution of B6(a, b, c, d) is
O(2−n/2)-close in statistical distance to uniform over F6

2. Thus, for a
uniformly random τ = (τab, τac, τad, τbc, τbd, τcd) ∈ F6

2, we have

‖(−1)S4‖16
U4 = E

a,b,c,d∈Fn2

[
(−1)B(a,b)B(c,d)+B(a,c)B(b,d)+B(a,d)B(b,c)

]
= E

τ∈F6
2

[
(−1)τabτcd+τacτbd+τadτbc + O(2−n/2)

]

=
(

E
u,v∈F2

[(−1)uv]
)3

+ O(2−n/2) = 1
8 + O(2−n/2).

5.2.2 Bounds on correlation with cubic polynomials

The exponential bound on the correlation with cubic polynomials was
obtained by Lovett et al. [60], the proof of which is involved. We instead
present the proof of a weaker bound due to Green and Tao [43] which
is still sufficient to refute Conjecture 5.4. Green and Tao [43] obtain
the following bound using a modification of a clever Ramsey-theoretic
argument by Alon and Beigel [1].

Theorem 5.8 (Green and Tao [43]). Let n ≥ 1 be large enough. Then
for any polynomial Q : Fn2 → F2 of degree at most 3,∣∣∣∣Pr

x
[S4(x) = Q(x)]− 1

2

∣∣∣∣ ≤ exp(−c log log logn),

for some absolute constant c > 0.

We first show that S4 has small correlation with symmetric cubic
polynomials.

Lemma 5.9. For any c0, c1, c2, c3 ∈ F2,

E
x∈Fn2

[
(−1)S4(x)+c3S3(x)+c2S2(x)+c1S1(x)+c0

]
≤ exp(−cn)

for some absolute constant c > 0.

Proof. Let |x| denote the hamming weight of x, that is the number of
nonzero coordinates in x. Let |x| =

∑
i bi(x)2i be its binary representa-

tion with bi(x) ∈ {0, 1}. By Lucas’ theorem on binomial coefficients [61],
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S1(x) = b0(x), S2(x) = b1(x), S3(x) = b0(x)b1(x), and S4(x) = b2(x).
Thus,

E
x∈Fn2

[
(−1)S4(x)+c3S3(x)+c2S2(x)+c1S1(x)+c0

]
= E

x∈Fn2

[
(−1)b2(x)+c3b0b1(x)+c2b1(x)+c1b0(x)+c0

]
.

Note that if b0(x), b1(x), b2(x) were uniformly distributed in {0, 1}3,
then the average would be zero. To conclude, we need to show that
they are close to uniformly distributed. Equivalently, we will show that
|x| mod 8 =

∑2
i=0 bi(x)2i is close to uniformly distributed in Z8. For

any a ∈ Z8 we have

Pr
x∈Fn2

[|x| mod 8 = a] = 2−n
n∑
k=0

(
n

k

)
1k mod 8=a

= 2−n
n∑
k=0

(
n

k

)∑7
r=0 e

2πir(k−a)/8

8

= 1
8

7∑
r=0

e−2πira/8
(

1 + e−2πir/8

2

)n
.

The term corresponding for r = 0 is equal to 1/8. For any r 6= 0, we
can bound its corresponding term contribution by |(1 + e−2πir/8)/2|n ≤
exp(−cn), for some c > 0. Thus,∣∣∣∣∣ Pr

x∈Fn2
[|x| mod 8 = a]− 1

8

∣∣∣∣∣ ≤ exp(−cn).

The proof of Theorem 5.8 follows from a Ramsey-type argument,
which allows to reduce any polynomial to a symmetric polynomial with
fewer variables.

Lemma 5.10. Let Q : Fn2 → F2 be a polynomial of degree ≤ 3. Then
there exists a symmetric polynomial Q′ : Fn′2 → F2 of degree ≤ 3, with
n′ = Ω(log log logn), such that

Pr
x∈Fn′2

[Q′(x) = S4(x)] ≥ Pr
x∈Fn2

[Q(x) = S4(x)].
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Proof. Let Q be a degree 3 polynomial. Decompose

Q(x) =
∑

qi,j,kxixjxk +Q2(x),

where Q2 is a quadratic polynomial. Let H be a 3-uniform hypergraph
with V (H) = [n] and E(H) = {(i, j, k) : qi,j,k = 1}. By the hypergraph
Ramsey theorem [25, 24] there exists a set A ⊂ [n] of size |A| ≥
Ω(log logn) such that A is either a clique or an independent set for
H. For x ∈ FA2 , a ∈ F[n]\A

2 let S4(x, a) and Q(x, a) be the polynomials
with the appropriate inputs. By an averaging argument, there exists an
assignment a ∈ F[n]\A

2 such that

Pr
x∈FA2

[S4(x, a) = Q(x, a)] ≥ Pr
x∈Fn2

[S4(x) = Q(x)].

Note that S4(x, a) is a symmetric polynomial in x of degree 4, whose
homogenous degree 4 part is S4(x); and Q(x, a) is a polynomial of
degree ≤ 3, whose homogeneous degree 3 part is symmetric, equal either
to 0 or to S3(x). Next, we make the quadratic part symmetric. Let

Q2(x, a) =
∑
i,j∈A

q′i,jxixj +Q1(x),

where Q1(x) is a linear polynomial. Applying a similar argument, let
G be a graph with V (G) = A and E(G) = {(i, j) ∈ A : q′i,j = 1}. By
Ramsey’s theorem for graphs [26], there exists a subset B ⊂ A of size
|B| ≥ Ω(log |A|) which is either a clique or an independent set. Thus,
there exists an assignment b ∈ FA\B2 for which

Pr
x∈FB2

[S4(x, a, b) = Q(x, a, b)] ≥ Pr
x∈FA2

[S4(x, a) = Q(x, a)]

≥ Pr
x∈Fn2

[S4(x) = Q(x)].

Note that Q(x, a, b) has homogeneous parts of degrees 3 and 2 both
being symmetric. To conclude, let

Q1(x, a, b) =
∑
i∈B

q′′i xi + q′′′.

Let C ⊂ B be a set for which q′′i for i ∈ B are all equal, where
|C| ≥ |B|/2. There exists an assignment c ∈ FB\C2 such that

Pr
x∈FC2

[S4(x, a, b, c) = Q(x, a, b)] ≥ Pr
x∈Fn2

[S4(x) = Q(x)].
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The lemma follows as S4(x, a, b, c)+Q(x, a, b) is a symmetric polynomial
of degree 4 in |C| = Ω(log log logn) variables, whose homogeneous part
of degree 4 is equal to S4(x).

Proof of Theorem 5.8. LetQ(x) be a cubic polynomial which maximizes
|Pr[Q(x) = S4(x)]− 1/2|. By possibly replacing Q with Q+ 1, we may
assume that Pr[Q(x) = S4(x)] ≥ 1/2. By Lemma 5.10, there exists
a symmetric cubic polynomial Q′ on n′ = Ω(log log logn) variables
such that Pr[Q(x) = S4(x)] ≤ Pr[Q′(x) = S4(x)]. By Lemma 5.9,
Pr[Q′(x) = S4(x)] ≤ 1/2 + exp(−cn′).
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In Part II of the survey we will introduce the foundations of higher-
order Fourier analysis in detail. In classical Fourier analysis characters
are the exponentials of linear functions. Since a typical random func-
tion f : Fnp → [−1, 1] has very small correlation with all the Fourier
characters, it is natural to consider the characters as highly structured
functions. This leads to a “structure” versus “pseudorandomness” di-
chotomy in which functions that have small correlation with all the
Fourier characters are regarded as pseudorandom functions, and the ones
that have noticeable correlation with a Fourier character are considered
to be somewhat structured.

Consequently, the large Fourier coefficients of f : Fnp → [−1, 1]
constitute the structured part of f , while the small Fourier coefficients
correspond to its pseudorandom part. This can be formulated as an
“approximate structure theorem” that says that, we can decompose
any function f as f = f1 + f2, where f1 is structured as it is a linear
combination of few Fourier characters, and f2 is pseudorandom in that
all of the Fourier coefficients of f2 are small. Such approximate structure
theorems are very useful as for many problems such as estimating the
probability of the success of linearity test, or estimating the density of
3-term arithmetic progressions in a set. The reason is that it is possible
to treat f2 as a small random noise, and extract the desired information
about f from the highly structured part, namely f1.

In order to be able to discard f2 safely, we need to deduce from the
fact that f2 does not have a noticeable correlation with any Fourier
character that it does not contribute significantly to the estimated
parameter. In other words, we need an inverse theorem which would
state that significant contribution implies significant correlation with a
character. Although, at first glance, it might appear that one needs to
establish a separate inverse theorem for every problem that one wishes
to study via this theory, fortunately, this is not the case. It suffices to
prove an inverse theorem for the Gowers U2 norm. It turns out that
for many problems, a few applications of the classical Cauchy-Schwarz
inequality show that f2 can be discarded if ‖f2‖U2 is small.

The structure versus pseudorandomness dichotomy discussed above
is not sufficiently strong to be applicable to more complex linear struc-
tures. In other words discarding f2, even when ‖f2‖U2 is very small, can
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have a significant effect on certain parameters such as the probability of
success of AKKLR(d) test for d > 1, or the density of four-term arith-
metic progressions in a set. To resolve this issue, Gowers [37] defined
higher uniformity norms Ud, and found a new proof for Szemerédi’s
theorem by partially extending the above program for these norms.
Indeed, as we shall see in Chapter 11, for every linear pattern, there
exists a d such that if ‖f2‖Ud is sufficiently small, then for the purpose
of estimating the density of that pattern, the pseudorandom f2 can be
discarded without having a significant effect on the estimate. However,
this fact by itself is not very useful without an inverse theorem for Ud
norm as one needs an inverse theorem to extract a structured part from
every function with noticeable Ud norm.

In Theorem 5.3 we established an inverse theorem for the U3 norm.
This theorem lays the foundation of quadratic Fourier analysis as it
implies that every function f : Fnp → [−1, 1] can be decomposed into a
structured part that is a linear combination of the exponentials of a few
quadratic characters and a pseudorandom part that has small U3 norm.
Unfortunately, as we saw in Theorem 5.6 its most natural generalization
Conjecture 5.4 to higher uniformity norms is false. In other words,
classical polynomials are not the right structure for higher uniformity
norms. Tao and Ziegler [83] proved that Conjecture 5.4 can be fixed
by replacing classical polynomials with a generalization of classical
polynomials, which we will refer to as non-classical polynomials.

We introduce non-classical polynomials and state Tao and Ziegler’s
inverse theorem in Chapter 6. We then proceed to develop the theory
of higher order Fourier analysis in the remainder of this part. Con-
cretely, in Chapter 7 we introduce the notions of rank, regularity and
uniformity for polynomials, which are the basis for the structure vs pseu-
dorandomness dichotomy discussed above. In Chapter 9 we develop the
decomposition theorems. In Chapter 10 we develop a notion of homoge-
neous non-classical polynomials, which is useful in certain applications.
In Chapter 11 we apply these to the study of linear patterns in sets. A
few technical proofs from these chapters are deferred to Chapter 12.
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6
Nonclassical Polynomials, and the Inverse

Gowers Theorem

In Theorem 5.6 we saw that the most natural generalization of the U2

and U3 inverse theorem to higher uniformity norms is false. That is for
d ≥ 4, there exist bounded functions that have large Ud norm but do
not have significant correlation with the exponential of any polynomial
of degree d − 1. In this chapter, we address this issue by introducing
an extension of classical polynomials, called nonclassical polynomials.
We will show that an inverse theorem for Gowers uniformity norms
of any order holds for nonclassical polynomials. Below we will give
some intuition on how we can arrive to the definition of nonclassical
polynomials.

Let d ≥ 0 be an integer. Similar to the situation over finite fields,
there are both a global and a local definition for a low degree real-valued
polynomial A real-valued function P : Rn → R being a polynomial of
(total) degree ≤ d can be defined in two equivalent ways:
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(1) Global definition. P is a polynomial of degree ≤ d if it can be
written as

P (x1, · · · , xn) =
∑

i1,··· ,in≥0
i1+···+in≤d

ci1,··· ,inx
i1
1 · · ·x

in
n ,

with coefficients ci1,··· ,in ∈ R.

(2) Local definition. P is a polynomial of degree ≤ d if it is d+ 1
times differentiable and its (d+ 1)-th derivative vanishes every-
where.

It is easy to see by linearity of the derivative operator that (i) implies
(ii). For the other direction, one can use the Taylor series expansion
to go from the local to the global condition, and show that the two
definitions above are equivalent. Both these definitions can be extended
to the finite characteristic setting, i.e. when P : Fn → G for a finite
field F and an Abelian group G. The global definition extends in a
straightforward manner, and the local definition uses the notion of
additive directional derivatives.

Definition 6.1 (Polynomials over finite fields (local definition)). For an
integer d ≥ 0, a function P : Fn → G is said to be a polynomial of
degree ≤ d if for all y1, . . . , yd+1, x ∈ Fn, it holds that

(Dy1 · · ·Dyd+1P )(x) = 0,

where DyP (x) = P (x+ y)− P (x) is the additive derivative of P with
direction y evaluated at x. The degree of P is the smallest d for which
the above holds.

It follows simply from the definition that for any direction y ∈ Fn,
deg(DyP ) < deg(P ). In the “classical” case of polynomials P : Fn → F,
it is a well-known fact that the global and local definitions coincide.
However, the situation is different in more general groups. One can
already suspect this from the fact that division by d! may not be possible
in G, and hence one cannot make use of the Taylor expansion to go
from the local definition to the global one.
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When the range of P is the torus R/Z, it turns out that the global
definition must be refined to the “nonclassical polynomials”, which
may have monomials that are different from the classical case. This
phenomenon was first noted by Tao and Ziegler [83] in the study of
Gowers norms, where it was also proved that Conjecture 5.4 can be
modified to hold by replacing classical polynomials with nonclassical
polynomials.

6.1 Nonclassical polynomials

Let T = R/Z denote the torus (namely, the group of addition modulo
1). Let e : T → C be given by e(x) = exp(2πix). Fix a prime finite
field F = Fp for the remainder of this chapter. Nonclassical polynomials
arise when studying functions P : Fn → T and their phase functions
f = e(P ) : Fn → C.

Definition 6.2 (Nonclassical polynomials). For an integer d ≥ 0, a func-
tion P : Fn → T is said to be a nonclassical polynomial of degree ≤ d

(or simply a polynomial of degree ≤ d) if for all y1, . . . , yd+1, x ∈ Fn, it
holds that

(Dy1 · · ·Dyd+1P )(x) = 0. (6.1)

The degree of P is the smallest d for which the above holds. A function
P : Fn → T is said to be a classical polynomial of degree ≤ d if it is
a nonclassical polynomial of degree ≤ d whose image is contained in
1
pZ/Z.

Denote by Poly(Fn → T), Polyd(Fn → T) and Poly≤d(Fn → T), the
set of all nonclassical polynomials over Fn, all nonclassical polynomials
of degree d and all nonclassical polynomials of degree ≤ d, respectively.

The following lemma of Tao and Ziegler [83] shows that a classical
polynomial P of degree d must always be of the form x 7→ |Q(x)|

p , where
Q : Fn → F is a polynomial (in the usual sense) of degree d, and |·| is the
canonical map from F = Fp to {0, 1, . . . , p− 1}. Moreover, it provides a
global characterization of the structure of nonclassical polynomials.
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Lemma 6.3 (Tao and Ziegler [83], Lemma 1.7). A function P : Fn → T
is a polynomial of degree ≤ d if and only if P can be represented as

P (x1, . . . , xn) = α+
∑

0≤d1,...,dn<p; k≥0:
0<
∑n

i=1 di≤d−k(p−1)

cd1,...,dn,k|x1|d1 · · · |xn|dn
pk+1 mod 1,

for a unique choice of cd1,...,dn,k ∈ {0, 1, . . . , p− 1} and α ∈ T. The
element α is called the shift of P , and the largest integer k such that
there exist d1, . . . , dn for which cd1,...,dn,k 6= 0 is called the depth of
P . A depth-k polynomial P takes values in a coset of the subgroup
Uk+1 := 1

pk+1Z/Z. Classical polynomials correspond to polynomials
with 0 shift and 0 depth.

In many cases, for the sake of brevity, we will omit writing “mod 1”
in the description of the defined nonclassical polynomials. We do not
include the proof of Lemma 6.3 in this text. For a proof we refer the
reader to either the paper of Tao and Ziegler [83] or to a blog post of
Tao [79] describing the proof.

Example 6.4. Consider the univariate function f : F2 → T given by
f(x) = |x|

4 mod 1. Is is a nonclassical polynomial of degree 2. To see
this, we compute its derivatives Dyf for y ∈ F2. Clearly D0f = 0 for
any univariate function, so it suffices to compute D1f . One can verify
that

D1f(x) = f(x⊕ 1)− f(x) =

1/4 x = 0
−1/4 x = 1

= 1
4 + |x|2 mod 1.

Moreover,
D1D1f(x) = 1

2 , D1D1D1f(x) = 0.

Thus, taking 3 derivatives annihilates f , but not 2 derivatives. So by
definition f is a degree 2 polynomial. Similarly, one can show that |x|2k
is a nonclassical polynomial of degree k.

Remark 6.5. An equivalent definition of nonclassical polynomials is via
functions which map Fnp to the ring Zpk+1 . Concretely, if f : Fnp → T is
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a nonclassical polynomial of degree d and depth k, then its takes values
in 1

pk+1Z/Z. Thus, we can write f as

f(x) = F (x)
pk+1 mod 1,

where F : Fnp → Zpk+1 . One can verify that F is a polynomial. However,
note that the classical definition of degree for F (based on monomials)
does not coincide with our definition of degree for f (based on deriva-
tives). For example, in the univariate case F (x) = x corresponds to
f(x) = x

pk+1 which has degree 1+(p−1)k, while F (x) = px corresponds
to f(x) = x

pk
which has degree 1 + (p− 1)(k − 1).

Note that Lemma 6.3 immediately implies the following important
corollary. Below we use the following standard shorthand, which follows
as T is an Abelian group. For n ∈ Z and x ∈ T, nx stands for x+ · · ·+x

if n ≥ 0 and −x− · · · − x otherwise, where there are |n| terms in both
expressions.

Corollary 6.6. Let Q : Fnp → T be a polynomial of degree d and depth
k. Then

(1) If λ ∈ Z is co-prime to p then λQ also has degree d and depth k.

(2) pQ has degree max(d−p+1, 0) and depth k−1. In other words, if
Q is classical, then pQ vanishes, and otherwise, its degree decreases
by p− 1 and its depth by 1.

(3) pk+1Q = 0. This implies that if λ ≡ λ′ mod pk+1 then λQ = λ′Q.

For convenience of exposition, henceforth we will assume that the
shifts of all polynomials are zero. This can be done without affecting
any of the results presented in this text. Under this assumption, all
polynomials of depth k take values in Uk+1.

6.2 The inverse theorem for Gowers norms

Gowers norms, which were introduced by Gowers [37], play an impor-
tant role in additive combinatorics, more specifically in the study of
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polynomials of bounded degree. We have seen in the direct theorem
for Gowers norms (Theorem 4.2; see also Theorem 5.3, direct theorem)
that correlation with polynomials implies large Gowers norm. The proof
generalizes directly to include nonclassical polynomials.

Theorem 6.7 (Direct theorem for Gowers norm). Let f : Fn → C be a
function and d ≥ 1 an integer. Then for every degree-d nonclassical
polynomial P : Fn → T,

|〈f, e(P )〉| ≤ ‖f‖Ud+1 .

The theorem follows from the monotonicity of the Gowers norms.

Claim 6.8. Let f : Fn → C and d ≥ 1. Then ‖f‖Ud+1 ≥ ‖f‖Ud .

Proof. Recall that for a function g : Fn → C and y ∈ Fn, ∆yg(x) =
g(x + y)g(x) denotes the multiplicative derivative of g at direction y.
We have

‖f‖2d+1

Ud+1 = E
x,y1,...,yd+1

[
∆y1,...,yd+1f(x)

]
= E

y1,...,yd

[
E

x,yd+1

[
∆y1,...,ydf(x+ yd+1) ·∆y1,...,ydf(x)

]]
= E

y1,...,yd

[∣∣∣∣Ex [∆y1,...,ydf(x)]
∣∣∣∣2
]

≥
∣∣∣∣ E
x,y1,...,yd

[∆y1,...,ydf(x)]
∣∣∣∣2

= ‖f‖2d+1

Ud .

Proof of Theorem 6.7. Let g(x) = f(x)e(P (x)). Then

|〈f, e(P )〉| = ‖g‖U1 ≤ ‖g‖Ud+1 .

Now, for any y1, . . . , yd+1 ∈ Fn it holds that

∆y1,...,yd+1g(x) = ∆y1,...,yd+1f(x) · e(Dy1,...,yd+1P (x)) = ∆y1,...,yd+1f(x),
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and hence,

‖g‖2d+1

Ud+1 = E
y1,...,yd+1

[
∆y1,...,yd+1g(x)

]
= E

y1,...,yd+1

[
∆y1,...,yd+1f(x)

]
= ‖f‖2d+1

Ud+1 .

As we showed in Section 5.2, the inverse direction is false, when we
restrict ourselves to classical polynomials. However, Tao and Ziegler [83]
proved that it is true if we include nonclassical polynomials. The inverse
theorem only applies to bounded functions. Let D := {z ∈ C : |z| ≤ 1}
be the unit disk in the complex plane.

Theorem 6.9 (Inverse theorem for Gowers norm ([83], Theorem 1.11)).
Fix d ≥ 1 an integer and ε > 0. There exists an δ = δ6.9(F, d, ε) such that
the following holds. For every function f : Fn → D with ‖f‖Ud+1 ≥ ε,
there exists a polynomial P ∈ Poly≤d(Fn → T) that is δ-correlated with
f , that is

|〈f, e(P )〉| ≥ δ.

A comment about notation. We use the following notation through-
out the survey: unspecified constants (such as δ6.9(F, d, ε) in Section 6.2)
are labeled by the number of the lemma / theorem where they are
referenced.

It is easy to see that for every degree d nonclassical polynomial P ,
‖e(P )‖Ud+1 = 1. Theorem 6.7 and Theorem 6.9 provide a robust version
of this statement, showing that the Gowers norm of a function f is large if
and only if it contains some low degree structure, namely if f correlates
with a low degree polynomial. We also note that Theorem 6.9 only
shows existence of a constant δ > 0 for every ε and finding reasonable
quantitative bounds or limitations to such bounds is a fascinating
problem which to this day remains unsolved. In the case of quadratics
d = 1, we have ‖f‖U2 = ‖f̂‖4 which gives δ = Ω(ε2). The case of
d = 2 is already nontrivial and the best known lower-bound for δ is
quasi-polynomial in ε, which follows from a result of Sanders on the
Bogolyubov-Ruzsa conjecture (Sanders [71], see also Lovett [58, 59]).
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7
Rank, Regularity, and Other Notions of

Uniformity

Consider a function f : Fnp → [−1, 1] and a positive integer d. As we shall
see in Chapter 9 the inverse theorems (Theorem 5.3 and Theorem 6.9)
allow us to approximate f in the Ud+1 norm by a linear combination of a
few higher-order phase functions, which are exponentials of nonclassical
polynomials of degree d. We will think of this as an order-d Fourier
expansion of f , and regard it as the structured part of f . Unlike classical
Fourier expansion, higher-order Fourier expansions are not unique by any
means. This is simply because there are too many polynomials of degree
d, (there are asymptotically 2O(nd) classical degree ≤ d polynomials),
and thus they cannot form a linear basis for the space of functions
whose dimension is pn. However, this might be disappointing as one
of the most important and useful properties of the classical Fourier
characters is that they form an orthonormal basis. While it is not
possible to achieve this orthogonality in an exact way, we can still hope
to obtain an approximate version of it by approximating f with a linear
combination of a few higher-order phase functions which are pairwise
almost orthogonal. We will see how to accomplish this through the
notions of rank and regularity, which are the topic of this chapter. We
will present these topics for the general case of an arbitrary fixed value
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of d, and unfortunately this leads to many technicalities that might be
overwhelming for the readers who see these materials for the first time.
Some of these technicalities are unnecessary for the case of the quadratic
Fourier analysis, i.e. d = 2, and many definitions and statements are
more intuitive and familiar in this case, and for example the definition
of rank coincides with the familiar notion of rank from linear algebra.
Thus we recommend those readers who find this chapter too technical
and unintuitive to first consult the excellent lecture notes of Ben Green
on quadratic Fourier analysis [41].

A property of Fourier characters is that they behave like a random
function, for example their value is uniformly distributed when the input
is drawn uniformly at random. Having this in mind, we can demand
several such random-like behaviors from higher-degree polynomials.
We refer to such properties as regularity. One property of random
functions is that they cannot be expressed as a function of few low-
degree polynomials. We will capture this property by defining the notion
of rank of a polynomial, intended to capture its complexity according
to lower degree polynomials.

Definition 7.1 (Rank of a polynomial). Given a polynomial P : Fn → T
and an integer d ≥ 1, the d-rank of P , denoted rankd(P ), is defined to
be the smallest integer r such that there exist polynomials Q1, . . . , Qr :
Fn → T of degree ≤ d − 1 and a function Γ : Tr → T satisfying
P (x) = Γ(Q1(x), . . . , Qr(x)). If d = 1, then 1-rank is defined to be ∞ if
P is non-constant, and 0 otherwise.

The rank of a polynomial P : Fn → T is its deg(P )-rank. We say
that P is r-regular if rank(P ) ≥ r.

Note that for an integer 1 ≤ λ ≤ p − 1, rank(P ) = rank(λP ). A
high-rank polynomial of degree d is, intuitively, a “generic” degree-
d polynomial; there are no unexpected ways to decompose it into
lower degree polynomials. For future use, we record here a simple
lemma stating that restrictions of high rank polynomials to hyperplanes
generally preserve degree and high rank.
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Lemma 7.2. Suppose P : Fn → T is a polynomial of degree d and rank
≥ r, where r > p+ 1. Let A be a hyperplane in Fn, and denote by P ′
the restriction of P to A. Then, P ′ is a polynomial of degree d and rank
≥ r − p, unless d = 1 and P is constant on A.

Proof. For the case d = 1, we can check directly that either P ′ is
constant or else, P ′ is a non-constant degree-1 polynomial and so has
rank infinity.

So, assume d > 1. By applying an affine transformation, we can
assume without loss of generality that A is the hyperplane {x : x1 = 0}.
Let π : Fn → Fn−1 be the projection to A given by π(x1, x2, . . . , xn) =
(0, x2, . . . , xn). Let P ′′ = P − P ′ ◦ π. Clearly, P ′′ is zero on A. For
a ∈ F \ {0}, let ha = (a, 0, . . . , 0) ∈ Fn. Note that DhaP

′′ is of degree
≤ d − 1 and that (DhaP

′′)(y) = P ′′(y + ha) for all y ∈ A. Hence,
for every a ∈ F \ {0}, P ′′ on A + ha agrees with a polynomial Qa of
degree ≤ d− 1. So, for a function Γ : Tp+1 → T, we can write P (x) =
Γ(|x1|/p, P ′(x), Q1(x), Q2(x), . . . , Qp−1(x)), where |x1|/p,Q1, . . . , Qp−1
are of degree ≤ d− 1.

Now, if P ′ itself is of degree d− 1, then P is of rank ≤ p+ 1 < r,
a contradiction. If P ′ is of rank < r − p, then again P is of rank
< r − p+ p = r, a contradiction.

7.1 Polynomial factors

Next, we will formalize the notion of a generic collection of polynomials.
Intuitively, it should mean that there are no unexpected algebraic
dependencies among the polynomials. First, we need to set up some
notation.

Definition 7.3 (Factors). If X is a finite set, then by a factor B we
simply mean a partition of X into finitely many parts called atoms.

A finite collection of functions φ1, . . . , φC from X to some other
space Y naturally define a factor B = Bφ1,...,φC whose atoms are sets
of the form {x ∈ X : (φ1(x), . . . , φC(x)) = (y1, . . . , yC)} for some
(y1, . . . , yC) ∈ Y C . By an abuse of notation we also use B to denote the
map x 7→ (φ1(x), . . . , φC(x)), thus also identifying the atom containing
x with (φ1(x), . . . , φC(x)).
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Definition 7.4 (Polynomial factors). If P1, . . . , PC : Fn → T is a sequence
of polynomials, then the factor BP1,...,PC is called a polynomial factor.

The complexity of B, denoted |B| := C, is the number of defining
polynomials. The degree of B is the maximum degree among its defining
polynomials P1, . . . , PC . If P1, . . . , PC are of depths k1, . . . , kC , respec-
tively, then the number of atoms of B is at most ‖B‖ :=

∏C
i=1 p

ki+1.

Note that it makes a difference whether we define atoms according
to the ordered set of evaluations (P1(x), . . . , PC(x)) rather than the
multiset {P1(x), . . . , PC(x)}, and we choose the former in our definition.

We say that a function f : Fn → T is measurable in a polynomial
factor BP1,...,PC (or B-measurable in short) if there exists a Γ : TC → T
such that

f = Γ(P1, . . . , PC),

or in other words the value of f(x) can be determined by knowing only
the values of P1(x), . . . , PC(x). Note that, here Γ is an arbitrary map
with no restriction on its degree or complexity. Equivalently, we say
that f is B-measurable if f is constant over each atom of B.

Example 7.5. The function f(x) := x1x2+x1x3
2 + x3

4 is measurable in
the factor defined by P1 = x1

2 , P2 = x2+x3
2 and P3 = x3

4 .

Next we define conditional expectation over a factor, which results
in a function that is constant on each atom of the factor.

Definition 7.6 (Conditional expectation over factors). Let B be a poly-
nomial factor defined by P1, . . . , PC : Fn → T. For f : Fn → C, the
conditional expectation of f with respect to B, denoted E[f |B] : Fn → C,
is

E[f |B](x) := E
y∈Fn

[
f(y)

∣∣P1(y) = P1(x), . . . , PC(y) = PC(x)
]
.

Namely, E[f |B] is constant on every atom of B, and takes the average
value of f over this atom.

Note that E[f |B] is B-measurable. The following is a simple ob-
servation stating that E[f |B] has the same correlation as f with any
B-measurable function.
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Remark 7.7. Let f : Fn → C. Let B be a polynomial factor defined by
polynomials P1, . . . , PC : Fn → T, and let g : Fn → C be a B-measurable
function. Then

〈f, g〉 = 〈E(f |B), g〉.

Finally, we define the rank of a polynomial factor. We require that
every nonzero linear combination of the polynomials which define the
factor has high rank. Recall that by Corollary 6.6, if P : Fnp → T is a
polynomial of depth k then for λ ∈ Z, the depth of λP depends only
on λ mod pk+1.

Definition 7.8 (Rank of a factor). Let B be a polynomial factor defined
by a sequence of polynomials P1, . . . , PC : Fn → T with respective
depths k1, . . . , kC . The rank of B is the least integer r, for which there
exists (λ1, . . . , λC) ∈ ZC , with (λ1 mod pk1+1, . . . , λC mod pkC+1) 6=
0C , such that rankd(

∑C
i=1 λiPi) ≤ r, where d = maxi deg(λiPi).

Given a polynomial factor B and a function r : N→ N, we say that
B is r-regular if the rank of B is larger than r(|B|).

Notice that by the definition of rank, for a degree-d polynomial P
of depth k we have

rank({P}) = min
{

rankd(P ), rankd−(p−1)(pP ), . . . , rankd−k(p−1)(pkP )
}
,

where {P} is a polynomial factor consisting of one polynomial P .
Regular factors indeed do behave like a generic collection of polyno-

mials, and we will establish this in a precise sense in Section 7.4. Thus,
given any factor B that is not regular, it is often useful to regularize
B, that is to find a refinement B′ of B that is regular up to our de-
sires. Various regularity lemmas for polynomials will be discussed in
Section 7.5

7.2 Analytic measures of uniformity

Regularity defined by the notion of rank is an algebraic/combinatorial
notion of pseudorandomness. There are several cases where an analytic
notion would be much more useful. In many cases, what is needed
from the notion of regularity is that the polynomials defining the
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factor, when evaluated jointly on a uniform input, would behave as
independent random variables. This can be equivalently expressed as
the condition that any nonzero linear combination of the polynomials
is almost uniformly distributed. We will accomplish this through the
analytic notion of bias.

Definition 7.9 (Bias). The bias of a function f : Fn → T is defined to
be

bias(f) := E
x∈Fn

[e (f(x))] .

Note that a function f that takes every value from Uk equally likely,
will satisfy bias(f) = 0, and that a random polynomial will have bias
very close to 0, and thus having small bias can be potentially used as
an analytic notion of regularity.

It turns out that the bias and the rank of a polynomial are closely
related. The following theorem was first proven for the case of d < |F| by
Green and Tao [43], and then extended to the general case by Kaufman
and Lovett [54].

Theorem 7.10 (Green and Tao [43] and Kaufman and Lovett [54]). Fix
a prime finite field F, an integer d ≥ 1 and a real ε > 0. There exists
r = r7.10(F, d, ε) such that the following is true. If P : Fn → T is a
degree-d polynomial with rank greater than r, then |Ex[e (P (x))]| < ε.

Kaufman and Lovett originally proved Theorem 7.10 for classical
polynomials. However, their proof extends to nonclassical ones without
modification. Note that r7.10(F, d, ε) does not depend on the dimension
n of Fn, but depends in an unspecified way to F, d, ε. The original proof
had terrible dependency on all three parameters (Ackerman-type), and
hence only applies for constant-size prime finite fields, constant degree
and constant bias.

Remark 7.11. Theorem 7.10 was extended in two ways by subsequent
papers. Bhattacharyya et al. [12] extended it to constant-size non-prime
finite fields. Bhowmick and Lovett [19] refined the dependency on the
field size and bias to be polynomial. This allows the theorem to be
applicable for large finite fields, of size possibly growing with n. We
present this in Chapter 8. In this section, we restrict our attention to
constant-size prime finite fields.
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Next, motivated by Theorem 7.10 we define unbiasedness for poly-
nomial factors.

Definition 7.12 (Unbiased factor). Let ε : N → R+ be a decreas-
ing function. A polynomial factor B defined by a sequence of poly-
nomials P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is
said to be ε-unbiased if for every collection (λ1, . . . , λC) ∈ ZC , with
(λ1 mod pk1+1, . . . , λC mod pkC+1) 6= 0C , it holds that∣∣∣∣∣Ex

[
e

(∑
i

λiPi(x)
)]∣∣∣∣∣ < ε(|B|).

Using Gowers norms, one can define the following analytic notion
of uniformity for polynomials which is stronger than unbiasedness.

Definition 7.13 (Uniformity). Let ε > 0 be a real. A degree-d polynomial
P : Fn → T is said to be ε-uniform if

‖e (P )‖Ud < ε.

Tao and Ziegler [83] used Theorem 7.10 to show that high rank
polynomials have small Gowers norm.

Theorem 7.14 (Tao and Ziegler [83], Theorem 1.20). Fix a prime finite
field F, an integer d ≥ 1 and ε > 0. There exists r = r7.14(F, d, ε) such
that the following is true. For every nonclassical polynomial P : Fn → T
of degree ≤ d, if ‖e (P )‖Ud ≥ ε, then rankd(P ) ≤ r.

This immediately implies that a high-rank polynomial is also uniform
in the sense of Definition 7.13.

Corollary 7.15. Let F, d, ε and r(F, d, ε) be as in Theorem 7.14. Every
r-regular polynomial P of degree d is also ε-uniform.

The next claim, which is a standard application of Fourier analysis,
shows that the converse of this is true at least qualitatively.

Claim 7.16. Fix a prime finite field F, and integers d, r ≥ 1. There exists
ε = ε7.16(F, d, r) such that the following is true. For every P : Fn → T,
if rankd(P ) ≤ r then ‖e (P )‖Ud ≥ ε.
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Proof. We will show that low rank functions cannot be very uniform.
Let F = Fp. Assume that P (x) = Γ(Q1(x), . . . , Qr(x)), where each
Qi : Fnp → T is a polynomial of degree ≤ d−1 and depth ki, and where Γ :∏r
i=1 Uki+1 → T. Shorthand G :=

∏r
i=1 Uki+1 and let G′ :=

∏r
i=1 Zpki+1

be the dual group. The Fourier decomposition of e(Γ) : G→ C is given
by

e(Γ(z)) =
∑
α∈G′

Γ̂(α)e(〈α, z〉),

where |Γ̂(α)| ≤ 1 for all α. Let Qα :=
∑
αiQi(x) for α ∈ G′, which is a

polynomial of degree ≤ d− 1. Then

e(P (x)) =
∑
α∈G′

Γ̂(α)e(Qα(x)). (7.1)

Thus

1 = |〈e(P (x)), e(P (x))〉| ≤
∑
α∈G′

|〈e(P (x)), e(Qα(x))〉|,

which shows that for some α∗ ∈ G′,

|〈e(P ), e(Qα∗)〉| ≥
1
|G|

.

Next, observe that by the direct theorem for the Gowers norm (Theo-
rem 6.7), as Qα∗ has degree ≤ d− 1 we have

‖e(P )‖Ud ≥ |〈e(P ), e(Qα∗)〉| ≥ |G|−1.

To conclude, a simple calculation gives that

|G| = p(k1+1)+...+(kr+1) ≤ p(1+d(d−1)/(p−1)e)r

as ki(p− 1) ≤ d− 1. Thus we conclude that

‖e(P )‖Ud ≥ ε(Fp, d, r) := p−(1+d(d−1)/(p−1)e)r.

Remark 7.17. The expansion in Equation (7.1) is referred to as the
higher-order Fourier expansion of e(P ), and will be discussed further in
Section 9.2. Throughout this text we will repeatedly use the higher-order
Fourier expansion of a function g to argue that g must be correlated
with some low-degree polynomial.
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It is straightforward to extend the notion of uniformity from a single
polynomial (Definition 7.13) to a polynomial factor.

Definition 7.18 (Uniform factor). Let ε : N → R+ be a decreasing
function. A polynomial factor B defined by a sequence of polynomials
P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is said to be ε-
uniform if for every collection (λ1, . . . , λC) ∈ ZC , with (λ1 mod pk1+1, . . . , λC mod pkC+1) 6=
0C , it holds that ∥∥∥∥∥e

(∑
i

λiPi

)∥∥∥∥∥
Ud

< ε(|B|),

where d = maxi deg(λiPi).

Remark 7.19 (Equivalence between regularity and uniformity). Similar
to Corollary 7.15 it also follows from Theorem 7.14 that an r-regular
degree-d factor B is also ε-uniform when r = r7.14(F, d, ε) is as in
Theorem 7.14. By Claim 7.16 the converse of this also holds and we
have an approximate equivalence between regularity and uniformity.

7.3 The derivative polynomial

Let P : Fn → T be a nonclassical polynomial of degree d. The order-d
Gowers norm of e(P ), which we have seen to control its correlation with
lower degree polynomials, can be expressed as the bias of the derivative
polynomial of P .

Definition 7.20 (Derivative polynomial). Let P : Fn → T be a degree-d
polynomial. The derivative polynomial ∂P : (Fn)d → T of P is defined
as

∂P (h1, . . . , hd) := Dh1 · · ·DhdP (0),
where h1, . . . , hd ∈ Fn.

Remark 7.21. Note that we could equivalently define ∂P (h1, . . . , hd) :=
Dh1 · · ·DhdP (y) for an arbitrary y ∈ Fn. This is due to the fact that
Dh1 · · ·DhdP is a degree 0 function, which is a constant function.

A closed form for ∂P , applying the derivatives iteratively, is

∂P (h1, . . . , hd) =
∑
S⊆[d]

(−1)d−|S|P
(∑
i∈S

hi

)
.
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The following lemma shows some useful properties of the derivative
polynomial.

Lemma 7.22. Let P : Fn → T be a degree-d polynomial. Then

(i) ∂P (h1, . . . , hd) is a classical homogeneous polynomial of degree d.

(ii) ∂P (h1, . . . , hd) is invariant under permutations of h1, . . . , hd.

(iii) ∂P (h1, . . . , hd) is linear in each of h1, . . . , hd.

(iv) For any x ∈ Fn, Dh1 · · ·DhdP (x) = ∂P (h1, . . . , hd).

Proof. The proof follows by the properties of the additive derivative Dh.
By definition, ∂P (h1, . . . , hd) is a (possibly nonclassical) polynomial of
degree d. Item (i) follows since ∂P is annihilated by multiplication by
p, since

p∂P (h1, h2, . . . , hd) = pDh1 · · ·Dhd(P )(0) = Dh1 · · ·Dhd(pP )(0) = 0,

as we have deg(pP ) = max(d− (p− 1), 0) < d (see Corollary 6.6). Item
(ii) holds since DhDh′Q = Dh′DhQ for every function Q : Fn → T
and every h, h′ ∈ Fn. Item (iii) holds as every monomial of ∂P must
depend on each of the variable sets hi, as for example if we set h1 = 0
then ∂P (0, h2, . . . , hd) = 0 since D0Q = 0 for any function Q. As
deg(∂P ) ≤ d, each monomial must contain exactly one variable from
each hi. Hence ∂P is linear in each hi and has the form

∂P (h1, . . . , hd) =
n∑

i1,...,id=1
ci1,...,id

d∏
j=1

(hj)ij ,

where ci1,...,id depends only on the multiset {i1, . . . , id}. Item (iv) follows
as

Dh1 · · ·DhdP (x+ h)−Dh1 · · ·DhdP (x) = Dh1 · · ·DhdDhP (x) = 0.

Corollary 7.23. Let P : Fn → T be a polynomial of degree ≤ d. Then P
has low rank if and only if its derivative polynomial is biased. Formally,
there exists functions ε1(F, d, r1) and r2(F, d, ε2) such that rankd(P ) ≤
r1 implies bias(∂P ) ≥ ε1 and bias(∂P ) > ε2 implies rankd(P ) ≤ r2.
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Proof. The corollary follows from Theorem 7.14 and Claim 7.16, since

‖e(P )‖2dUd = E
h1,...,hd,x

[e(Dh1 · · ·DhdP (x))]

= E
h1,...,hd

[e(Dh1 · · ·DhdP (0))]

= bias(∂P ).

7.4 Equidistribution of regular factors

In this section, we make precise the intuition that a high-rank collection
of polynomials, evaluated on a joint input, behaves close to a collection of
independent random variables. The key technical tool is the connection
between the combinatorial notion of rank and the analytic notion of
bias (Theorem 7.10).

Using a standard observation that relates the bias of a function to
its distribution on its range, Theorem 7.10 implies the following.

Lemma 7.24 (Size of atoms). Given ε > 0, let B be a polynomial factor
of degree d ≥ 1, complexity C, and rank r7.10(F, d, ε), defined by a tuple
of polynomials P1, . . . , PC : Fn → T having respective depths k1, . . . , kC .
Suppose b = (b1, . . . , bC) ∈ Uk1+1 × · · · × UkC+1. Then

Pr
x∈Fn

[B(x) = b] = 1
‖B‖

± ε.

In particular, for ε < 1
‖B‖ , B(x) attains every possible value in its range

and thus has ‖B‖ atoms.
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Proof. We can express the fraction of inputs in an atom b as

Pr
x∈Fn

[B(x) = b]

= E
x

[
C∏
i=1

1[Pi(x)=bi]

]

= E
x

 C∏
i=1

1
pki+1

pki+1−1∑
λi=0

e (λi(Pi(x)− bi))


=
∏
i

p−(ki+1) ·
∑

(λ1,...,λC)∈
∏C

i=1[0,pki+1−1]

E
x

[
e

(
C∑
i=1

λi(Pi(x)− bi)
)]

.

The second equality uses the fact that Pi(x)− bi is in Uki+1 and that for
every nonzero x ∈ Uki+1,

∑pk+1−1
λ=0 e (λx) = 0. By our assumption that

B is r-regular, for every (λ1, . . . , λC) 6= ~0 we have that
∑C
i=1 λiPi(x)

has rank at least r, which by Theorem 7.10 implies that its bias is at
most ε. Thus

Pr
x∈Fn

[B(x) = b] =
C∏
i=1

p−(ki+1) ·
(

1± ε
C∏
i=1

pki+1
)

= 1
‖B‖

± ε.

An almost identical proof implies a similar statement for unbiased
factors instead of regular factors.

Lemma 7.25 (Equidistribution for unbiased factors). Suppose that ε :
N → R+ is a decreasing function. Let B be an ε-unbiased factor of
degree d ≥ 1, defined by a tuple of polynomials P1, . . . , PC : Fn → T
having respective depths k1, . . . , kC . Suppose b = (b1, . . . , bC) ∈ Uk1+1×
· · · × UkC+1. Then

Pr
x∈Fn

[B(x) = b] = 1
‖B‖

± ε(|B|).

7.5 Regularization of factors

Due to the generic properties of regular factors, it is often useful to
refine a given polynomial factor to a regular one. We will first formally
define what we mean by refining a polynomial factor.
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Definition 7.26 (Refinement). A factor B′ is called a refinement of B,
and denoted B′ � B, if the induced partition by B′ is a combinatorial
refinement of the partition induced by B. In other words, if for every
x, y ∈ Fn, B′(x) = B′(y) implies B(x) = B(y).

One needs to be careful about distinguishing between two types of
refinements.

Definition 7.27 (Semantic and syntactic refinements). B′ is called a
syntactic refinement of B, and denoted B′ �syn B, if the sequence of
polynomials defining B′ extends that of B. It is called a semantic refine-
ment, and denoted B′ �sem B if the induced partition is a combinatorial
refinement of the partition induced by B. In other words, if for every
x, y ∈ Fn, B′(x) = B′(y) implies B(x) = B(y).

Remark 7.28. Clearly, being a syntactic refinement is stronger than
being a semantic refinement. But observe that if B′ is a semantic
refinement of B, then there exists a syntactic refinement B′′ of B that
induces the same partition of Fn as B′, and for which |B′′| ≤ |B′|+ |B|.
To construct B′′, simply add the defining polynomials of B to those of
B′.

The following lemma by Green and Tao [43] shows that every classical
polynomial factor can be refined to a regular factor. The basic idea
is simple: if some polynomial has low rank, decompose it to a few
lower degree polynomials, and repeat. Formally, it follows by transfinite
induction on the number of polynomials of each degree that define the
polynomial factor.

Lemma 7.29 (Regularity lemma for classical polynomials [43]). Fix a
prime finite field F, an integer d ≥ 1 and a non-decreasing function
r : N → N. There exists a function CF,d,r

7.29 : N → N for which the
following holds.

Suppose B is a polynomial factor of degree ≤ d and complexity C,
defined by classical polynomials P1, . . . , PC : Fn → F. Then there exists
an r-regular factor B′ that semantically refines B, where B′ has degree
≤ d and complexity C ′ ≤ C(F,d,r)

7.29 (C).
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Furthermore, if B is itself a syntactic refinement of some B0 that
has rank > r(C ′), then B′ can be taken to be a syntactic refinement of
B0.

Proof. Let B be a polynomial factor defined by classical polynomials
P1, . . . , PC : Fn → F of degree at most d. DefineM(B) := (Md, . . . ,M1) ∈
Nd whereMi is the number of polynomials of degree i among P1, . . . , PC .
Note that M1 + . . .+Md = C = |B|. We define the lexicographic order
on Nd, where M > M ′ if Mi > M ′i for some 1 ≤ i ≤ d and Mj = M ′j
for all j > i. The proof will be by transfinite induction on M under the
lexicographic order. Namely, we will apply the fact that Nd under the
lexicographic order is Noetherian, that is, it does not contain an infinite
decreasing sequence.

Let B be a polynomial factor, and assume that B is not r-regular.
Then by definition, some linear combination of the polynomials that
define B has rank less than r(C). Let P (x) =

∑
λiPi(x) with λi ∈ F,

not all zero, such that rank(P ) ≤ r(C). By definition of rank, we can
decompose P as a function of r(C) lower degree polynomials. That is,

P (x) = Γ
(
Q1(x), . . . , Qr(C)(x)

)
where deg(Qi) ≤ deg(P ) − 1 and where Γ : Fr(C) → F is some func-
tion. Let i∗ ∈ [C] be chosen so that λi∗ 6= 0 and e = deg(Pi∗) is
maximal. In particular, deg(Pi∗) ≥ deg(P ). We can express Pi∗ as
a linear combination of {Pi : i 6= i∗} and Γ(Q1, . . . , Qr(C)). Define
B1 = B \ {Pi∗} ∪ {Q1, . . . , Qr(C)}. We claim that:

(i) B1 is a semantic refinement of B.

(ii) M(B1) < M(B).

The first item follows by definition, and the second since in order to
construct B1, we removed one polynomial of degree e from B and added
r(|B|) many lower degree polynomials. If B1 is still not r-regular, we
can repeat this process and obtain B2 which is a semantic refinement of
B1, and so on. By transfinite induction, this process must halt after a
finite number of steps. More formally, the number of steps depends only
on M(B) as in the argument above, we can provide an upper bound

The version of record is available at: http://dx.doi.org/10.1561/0400000064



324 Rank, Regularity, and Other Notions of Uniformity

M ′ which depends only on M(B) such that M(B1) ≤M ′ < M(B), by
taking M ′ = (Md, . . . ,Me+1,Me − 1,Me−1 + r(|B|), . . . ,M1 + r(|B|)).

For the final part, assume that B is a syntactic refinement of a
polynomial factor B0, defined without loss of generality by the C0 = |B0|
polynomials P1, . . . , PC0 : Fn → F. In the regularization process, we will
attempt to choose Pi∗ /∈ {P1, . . . , PC0} if possible. If we can achieve this
at every step, then at the end we retain all the original polynomials
that define B0, and hence we obtain a syntactic refinement of B0. If we
fail, then at some stage we obtained a polynomial factor B′′ for which
some linear combination of polynomials from P1, . . . , PC0 has rank at
most r(|B′′|) ≤ r(C ′). This contradicts our assumption that B0 has high
rank.

The bounds obtained on CF,d,r
7.29 have Ackermann-type dependence

on the degree d, even when r(·) is a “reasonable” function. As such,
it gives nontrivial results only for constant degrees. The extension of
Lemma 7.29 to nonclassical polynomials is more involved, and was
proved by Tao and Ziegler [83] as part of their proof of the inverse
Gowers theorem (Theorem 6.9).

Theorem 7.30 (Regularity lemma for nonclassical polynomials [83]). Fix
a prime finite field F, an integer d ≥ 1 and a non-decreasing function
r : N → N. There exists a function CF,d,r

7.30 : N → N for which the
following holds.

Suppose B is a polynomial factor of degree ≤ d and complexity C,
defined by nonclassical polynomials P1, . . . , PC : Fn → T. Then there
exists an r-regular factor B′ that semantically refines B, where B′ has
degree ≤ d and complexity C ′ ≤ C(F,d,r)

7.29 (C).
Furthermore, if B is itself a syntactic refinement of some B0 that

has rank > r(C ′), then B′ can be taken to be a syntactic refinement of
B0.

We sketch the proof of Theorem 7.30. The basic approach is the
same as that of Lemma 7.29. Let B be a polynomial factor defined by
nonclassical polynomials of degree ≤ d. It is said to be extended if when-
ever P ∈ B, then either pP = 0 or pP ∈ B. Clearly, every polynomial
factor can be made extended by adding the appropriate polynomials to
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it. If B is extended and defined by polynomials P1, . . . , PC , then for it
to have rank r, it suffices if rank(

∑
λiPi) ≥ r for all λi ∈ {0, . . . , p− 1},

not all zero. The main idea in the proof of Theorem 7.30 is to apply
the same inductive argument as in the proof of Lemma 7.29, while
maintaining an extended factor throughout the proof. However, this
raises the following challenge: assume that Pi has low rank, and we wish
to replace it with a few lower degree polynomials. However, assume
that also Pi = pPj , for some other polynomial Pj defining the factor.
Then, we must remove Pj from the factor as well. If Pj also had low
rank, that would suffice. However, this need not be true. What is true
is that Pj can be decomposed as a function of a few polynomials, each
of which either has lower degree or the same degree and lower depth as
that of Pj . We summarize this in a lemma below, for which we omit
the proof. With that lemma in hand, the proof goes through as before,
except that now we need to keep track of the number of polynomials of
a given depth and a given degree.

Lemma 7.31 (Tao and Ziegler [83]). Let P : Fn → T be a polynomial
of degree d and rank r. Assume that P = pQ, where Q is a polynomial
of degree d + (p − 1). Then Q(x) = Γ(Q1(x), . . . , Qc(x)), where for
each i, either deg(Qi) < deg(Q) or deg(Qi) = deg(Q) and depth(Qi) <
depth(Q). Furthermore, c ≤ C7.31(F, d, r).

7.6 Strong equidistribution of regular factors

One of the important and useful properties of the classical Fourier charac-
ters is that they form an orthonormal basis. Theorem 7.10, Lemma 7.24
and Lemma 7.25 provide an approximate version of this phenomenon
that is useful for several applications. However, for certain applications
we need a stronger notion of orthogonality, one where each polynomial
of the factor is evaluated not just on a single input, but on a collection
of inputs given by linear forms.

A linear form in k variables is a vector L = (λ1, . . . , λk) ∈ Fk.
It defines a map L : (Fn)k → Fn by L(x1, . . . , xk) =

∑
λixi. Often,

we would need to analyze averages of f evaluated on several linear
forms with joint variables. Consider for example the BLR linearity
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test, explored in Chapter 2. Given a function P : Fn2 → F2, let f(x) =
(−1)P (x). The acceptance probability of the BLR linearity test on P is
equal to

1
2 + 1

2 E
x,y∈Fn

[
f(x)f(y)f(x+ y)

]
.

Thus, in order to analyze it, we needed to evaluate f on three related
inputs: x, y, x+ y.

The general form is as follows. Let L1, . . . , Lm ∈ Fk be linear forms,
where to recall Li : (Fn)k → Fn. The goal is to analyze, for f : Fn → C,
averages of the form

E
X∈(Fn)k

[
f(L1(X)) · · · f(Lm(X))

]
.

The first step in such an analysis will be to find a suitable polyno-
mial factor B, such that we can replace f with E[f |B] without affect-
ing the average by much. Let us assume that we have already done
so. Then we can specialize our treatment to functions of the form
f(x) = Γ(P1(x), . . . , PC(x)), where Pi : Fn → T are bounded degree
polynomials. This in turn would require to analyze the joint distribution
of P1, . . . , PC on the linear forms L1(X), . . . , Lm(X). That is, we would
need to understand the distribution of the random variable

AB,L(X) :=


P1(L1(X)) P2(L1(X)) . . . PC(L1(X))
P1(L2(X)) P2(L2(X)) . . . PC(L2(X))

...
...

P1(Lm(X)) P2(Lm(X)) . . . PC(Lm(X))

 ,
where X ∈ (Fn)k is uniformly distributed, B = {P1, . . . , PC} is a family
of nonclassical polynomials and L = {L1, . . . , Lm} ⊂ Fk is a system of
linear forms.

Our analysis so far (see Lemma 7.24) have shown that if we restrict
our attention to a single linear form, namely a single row of AB,L(X),
then if we assume that B is regular enough, then its values are distributed
close to uniform in their range

∏C
j=1 Ukj+1. Thus, a first guess might be

that if B is regular enough, then AB,L should be uniformly distributed
over all the m× C matrices A ∈

∏m
i=1

∏C
j=1 Ukj+1.

However, this is false. The reason is that nonclassical polynomials of
a given degree satisfy various linear identities, governed by the fact that
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they are annihilated by taking enough derivatives. For example, if P1 is
a linear polynomial then P1(x1 +x2 +x3)−P1(x1 +x2)−P1(x1 +x3) +
P1(x1) = 0 holds, and hence the four random variables (P1(x1 + x2 +
x3), P1(x1 + x2), P1(x1 + x3), P1(x1)) are far from independent. Thus,
the rows of AB,L(X) satisfy certain linear constraints. As we will shortly
see, strong equidistribution implies that AB,L(X) is close to uniform on
all values that satisfy the necessary linear constraints. In particular, the
columns of AB,L(X) are nearly independent, with each column being
uniform modulo the required linear dependencies.

The development of the strong equidistribution theorem occurred
in several steps. Hatami and Lovett [48] established a strong near-
equidistribution for factors of classical polynomials, when the char-
acteristic of the field F is greater than the degree of the polynomial
factor. Bhattacharyya et al. [14] later extended the result to the general
characteristic case and nonclassical polynomials, but under an extra as-
sumption that the system of linear forms is affine, i.e. there is a variable
that appears with coefficient 1 in all the linear forms. Bhattacharyya
et al. [17] used the same proof technique to replace the condition that
each Li is affine, with the condition that all the coefficients of Li are in
{0, 1}. Finally, in the work of Hatami et al. [46] the joint distribution
of the matrix AB,L was fully characterized for nonclassical polynomials
without any extra assumptions on the linear forms. Instead, it requires
that the polynomials are homogeneous.

We formally define and analyze homogeneous nonclassical polynomi-
als in Chapter 10. For the time being, it is sufficient to note that each
nonclassical polynomial P (x) of degree d can be decomposed as a sum
of homogeneous nonclassical polynomials of degrees 1, . . . , d; and that
in the regularization process (as in Theorem 7.30) one can require that
the resulting polynomials are all homogeneous. Thus, one can always
assume that a polynomial factor is defined by homogeneous nonclassical
polynomials, and these can be made high rank by regularization.

Theorem 7.32 (Near orthogonality over linear forms). Let F be a prime
field, d ≥ 1, ε > 0. Let {L1, . . . , Lm} be a system of linear forms.
Let B = {P1, . . . , PC} be a polynomial factor of degree at most d
and rank(B) > r7.32(F, d, ε). Assume furthermore that each Pi is a
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nonclassical homogeneous polynomial (defined in Chapter 10). For
every set of coefficients Λ = {λi,j ∈ Z : i ∈ [C], j ∈ [m]}, let

PΛ(x) :=
C∑
i=1

m∑
j=1

λi,jPi(Lj(x)).

Then one of the following two cases holds:
• PΛ ≡ 0. In this case, for every i ∈ [C] and any nonclassical
homogeneous polynomials Qi : Fn → T with deg(Qi) = deg(Pi)
and depth(Qi) ≤ depth(Pi) it holds that

∑
j∈[m] λi,jQi(Lj(·)) ≡ 0.

• PΛ 6≡ 0. In this case, |E [e(PΛ)] | < ε.
We defer the proof of Theorem 7.32 to Section 12.1, after we cover

some more necessary background material.
Next, we state a special version of Theorem 7.32 useful in some

applications. A system of linear forms L1, . . . , Lm is said to be an affine
constraint if Li,1 = 1 for all i ∈ [m]. Such systems arise naturally in
the study of affine invariant properties, which we discuss in Chapter 14.
Here, we state a special case of Theorem 7.32 for affine constraints,
where the polynomials are not required to be homogeneous. For the
proof see [14].
Theorem 7.33 (Near orthogonality over affine constraints). Let F be a
prime field, d ≥ 1, ε > 0. Let {L1, . . . , Lm} be an affine constraint.
Let B = {P1, . . . , Pc} be a polynomial factor of degree at most d and
rank(B) > r7.33(F, d, ε). For every set of coefficients Λ = {λi,j ∈ Z : i ∈
[c], j ∈ [m]}, let

PΛ(x) :=
c∑
i=1

m∑
j=1

λi,jPi(Lj(x)).

Then one of the following two cases holds:
• PΛ ≡ 0. In this case, for every i ∈ [C] and any nonclassi-
cal polynomials Qi : Fn → T with deg(Qi) ≤ deg(Pi) and
depth(Qi) ≤ depth(Pi), it holds that

∑
j∈[m] λi,jQi(Lj(·)) ≡ 0.

• PΛ 6≡ 0. In this case, |E [e(PΛ)] | < ε.
In the next section, as a corollary of Theorem 7.32, we determine

the distribution of AB,L when B is of sufficiently high rank.
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7.7 Joint distribution of high-rank polynomials over linear forms

In order to understand the joint distribution of polynomials over linear
forms, we first need to understand the necessary linear constraints. The
following definition formalizes this.

Definition 7.34. Let F = Fp be a prime field. Given a system of linear
forms L1, . . . , Lm over F in ` variables. and integers d, k > 0, the
(d, k)-dependency set of L1, . . . , Lm is the set of tuples (λ1, . . . , λm) ∈
Zm
pk+1 such that

∑m
i=1 λiP (Li(x1, . . . , x`)) ≡ 0 for every homogeneous

polynomial P : Fn → T of degree d and depth k.

Observe that the (d, k)-dependency set of L1, . . . , Lm is closed under
addition, and hence is a subgroup of Zm

pk+1 . We do not currently have
an explicit description of it, except for the implicit definition given in
Definition 7.34.

Theorem 7.32 characterizes exactly when for a regular factor B it
holds that PΛ ≡ 0. We record this in the language of dependency sets.

Corollary 7.35. Let L1, . . . , Lm be a system of linear forms over F = Fp
in ` variables. Fix an integer c > 0, tuples (d1, . . . , dc) ∈ Zc>0 and
(k1, . . . , kc) ∈ Zc≥0. For i ∈ [c], let Λi be the (di, ki)-dependency set of
L1, . . . , Lm.

Then, for every polynomial factor B defined by homogeneous polyno-
mials P1, . . . , Pc : Fn → T, where Pi has degree di and depth ki, and B
has rank > r7.14

(
F,maxi di, 1

2

)
, it is the case that a tuple (λi,j)i∈[c],j∈[m]

satisfies
c∑
i=1

m∑
j=1

λi,jPi(Lj(x1, . . . , x`)) ≡ 0

if and only if for every i ∈ [c],

(λi,1 mod pki+1, . . . , λi,m mod pki+1) ∈ Λi.

Proof. The “if” direction is obvious. For the “only if” direction, we
use Theorem 7.32 to conclude that if

∑
i,j λi,jPi(Lj(·)) ≡ 0, it must

be that for every i ∈ [c],
∑
j λi,jQi(Lj(·)) ≡ 0 for every homogeneous

polynomial Qi with degree di and depth ki. This is equivalent to saying
(λi,1 mod pki+1, . . . , λi,m mod pki+1) ∈ Λi.
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Remark 7.36. For large characteristic fields, Hatami and Lovett [48]
showed that the analog of Corollary 7.35 is true even without the rank
condition.

The joint distribution of (Pi(Lj(x1, . . . , x`)) : i ∈ [c], j ∈ [m]) is only
going to be supported on atoms which respect the constraints imposed
by dependency sets. This is obvious: if P is a polynomial of degree d and
depth k, such that P (Lj(x1, . . . , x`)) = bj , then for every (λ1, . . . , λm)
in the (d, k)-dependency set of (L1, . . . , Lm) it must be the case that∑
j λjbj = 0. We call atoms which respect this constraint for all Pi in a

factor, consistent.

Definition 7.37 (Consistency). Let F be a prime field. Let L1, . . . , Lm
be a system of linear forms over F in ` variables. A sequence of ele-
ments b1, . . . , bm ∈ T are said to be (d, k)-consistent with L1, . . . , Lm
if b1, . . . , bm ∈ Uk+1 and for every tuple (λ1, . . . , λm) in the (d, k)-
dependency set of L1, . . . , Lm, it holds that

∑m
i=1 λibi = 0.

Given vectors d = (d1, . . . , dc) ∈ Zc>0 and k = (k1, . . . , kc) ∈ Zc≥0, a
sequence of vectors b1, . . . , bm ∈ Tc are said to be (d,k)-consistent with
L1, . . . , Lm if for every i ∈ [c], the elements b1,i, . . . , bm,i are (di, ki)-
consistent with L1, . . . , Lm.

If B is a polynomial factor, the term B-consistent with L1, . . . , Lm is
a synonym for (d,k)-consistent with L1, . . . , Lm where d = (d1, . . . , dc)
and k = (k1, . . . , kc) are respectively the degree and depth sequences of
polynomials defining B.

Theorem 7.32 implies that for a polynomial factor of large enough
rank, the joint distribution (Pi(Lj(x1, . . . , x`)) is equi-distributed on all
consistent values.

Theorem 7.38. Given ε > 0, let B be a polynomial factor of degree d >
0 and rank at least r7.10(F, d, ε). Assume that B is defined by a sequence
of homogeneous polynomials P1, . . . , Pc : Fn → T having respective
degrees d1, . . . , dc and respective depths k1, . . . , kc. Let L1, . . . , Lm be
a system of linear forms over F in ` variables, and let Λi be the (di, ki)-
dependency set of L1, . . . , Lm.
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Suppose b1, . . . , bm ∈ Tc are atoms of B that are B-consistent with
L1, . . . , Lm. We denote bi = (bi,1, . . . , bi,c). Then

Pr
x1,...,x`∈Fn

[Pi(Lj(x1, . . . , x`)) = bj,i ∀i ∈ [c], j ∈ [m]] =
∏c
i=1 |Λi|
‖B‖m

± ε.

Proof. The proof is similar to that of Lemma 7.24. Let x = (x1, . . . , x`).

Pr
x

[Pi(Lj(x)) = bj,i ∀i ∈ [c],∀j ∈ [m]]

= E
x

 ∏
i∈[c],j∈[m]

1
pki+1

pki+1−1∑
λi,j=0

e (λi,j(Pi(Lj(x))− bj,i))


= p−m

∑c

i=1(ki+1)·

∑
(λi,j)∈

∏
i,j

[0,pki+1−1]

e

−∑
i,j

λi,jbj,i

E

e
∑

i,j

λi,jPi(Lj(x)


= p−m

∑c

i=1(ki+1) ·
(

c∏
i=1
|Λi| ± εpm

∑c

i=1(ki+1)
)
.

To see the last equality, observe that by Corollary 7.35,
∑
i,j λi,jPi(Lj(·))

is identically zero for
∏
i |Λi| many tuples (λi,j) and, in that case,∑

i,j λi,jbj,i = 0 because of the consistency requirement. For any other
tuple (λi,j), the expectation in the third line is bounded by ε in absolute
value.
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Theorem 7.10 exhibited the “bias implies low rank” phenomena: every
biased polynomial has low rank. Concretely, if P : Fn → F is a degree
d polynomial, and |Ex[e (P (x))]| ≥ ε, then rank(P ) ≤ r7.10(F, d, ε). In
this section, we describe an improved theorem due to Bhowmick and
Lovett [19] which allows for large fields (of size growing with n) as well
as for errors which are polynomially small in the field order.

Theorem 8.1. Let d, s ∈ N. Let F be a finite field of characteristic
char(F) > d. Let P : Fn → F be a polynomial of degree d. Suppose that
|Ex∈Fn [e (P (x))]| ≥ |F|−s. Then, rank(P ) ≤ r8.1(d, s).

Observe that here r8.1(d, s) does not depend on the field. Also,
the error is allowed to be polynomially small in the field size. For
concreteness, we focus on the proof where F is a prime field, where
we assume throughout that |F| > d. For the proof for non-prime fields
we refer the interested reader to the original paper by Bhowmick and
Lovett [19].

332
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8.1 Bias implies low rank approximation

We start by showing that biased polynomials can be approximated by
a few lower degree polynomials.

Lemma 8.2. Let d, s, t ∈ N. Let P : Fn → F be a polynomial of
degree d. Suppose that |Ex∈Fn [e (P (x))]| ≥ |F|−s. Then, there exist
polynomials Q1, · · · , Qc : Fn → F of degree at most d − 1, where
c = c(d, s, t) =

(d+t+2s+3
d

)
, and a function Γ : Fc → F, such that

Pr
x∈Fn

[P (x) 6= Γ (Q1(x), · · · , Qc(x))] ≤ |F|−t.

We prove Lemma 8.2 in this section. Fix a polynomial P : Fn → F
of degree d, and let µ := Ex∈Fn [e (P (x))] be its bias, where we assume
|µ| ≥ |F|−s. We begin with the following claim.

Claim 8.3. For all x ∈ Fn,

µ · e (−P (x)) = E
y∈Fn

[e (DyP (x))].

Proof. We have

E
y∈Fn

[e (DyP (x))] = E
y∈Fn

[e (P (x+ y))e (−P (x))]

= E
y∈Fn

[e (P (y))] · e (−P (x))

= µ · e (−P (x)).

Fix x ∈ Fn. Pick z = (z1, . . . zk) ∈ (Fn)k uniformly for some k to be
specified later. For a ∈ Fk, z ∈ (Fn)k, we shorthand a · z =

∑k
i=1 aizi ∈

Fn. For a ∈ Fk \{0}, letWx,a(z) be the random variable (over the choice
of z) defined as

Wx,a(z) := e (Da·zP (x)).
For a 6= 0k, we have

E
z∈(Fn)k

[Wx,a(z)] = E
y∈Fn

[e (DyP (x))] .

Also, observe that for distinct α, β ∈ F,

|e (α)− e (β)| ≥ |F|−1.

We have the following.
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Claim 8.4. Fix x ∈ Fn. If for z ∈ (Fn)k it holds that∣∣∣∣∣∣ 1
|F|k − 1

∑
a∈Fk\{0k}

Wx,a(z)− E
y

[e (DyP (x))]

∣∣∣∣∣∣ < 1
2|F|s+1 ,

then
P (x) = Γ0

(
Da·zP (x) : a ∈ Fk \ {0}

)
where Γ0 : F|F|k−1 → F is defined as

Γ0(v1, . . . v|F|k−1) = arg min
α∈F

∣∣∣∣∣∣ 1
|F|k − 1

|F|k−1∑
i=1

e (vi)− e (−α)µ

∣∣∣∣∣∣ .
Proof. By Claim 8.3, we have µ · e (−P (x)) = Ey [e (DyP (x))]. Observe
that for any β ∈ F \ {−P (x)},

|µ · e (−P (x))− µ · e (β)| ≥ µ · |F|−1 ≥ |F|−(s+1).

Thus by the assumption of the claim, the value of −P (x) (and hence
P (x)) is determined by finding α for which, µ · e (α) is closest to

1
|F|k−1

∑
a∈Fk\{0k}Wx,a(z). It is easy to check that this is captured by

Γ0, namely
Γ0
(
Da·zP (x) : a ∈ Fk \ {0}

)
= P (x).

Observe that the random variables {Wx,a(z) : a ∈ Fk \ {0}} are
pairwise independent. That is, for any distinct a, a′ the random variable
(Wx,a(z),Wx,a′(z)) is uniformly distributed in F2, when z ∈ Fk is uni-
formly chosen. Thus, we can apply Chebychev’s inequality and obtain
that, for k = t+ 2s+ 3, it holds that

Pr
z∈(Fn)k

∣∣∣∣∣∣ 1
|F|k − 1

∑
a6=0

Wx,a(z)− E
y

[e (DyP (x))]

∣∣∣∣∣∣ ≥ 1
2|F|s+1


≤ 4|F|2s+2

|F|k − 1 ≤
1
|F|t

. (8.1)

Thus, for all x ∈ Fn,

Pr
z∈(Fn)k

[Γ0
(
Da·zP (x) : a ∈ Fk \ {0}

)
= P (x)] ≥ 1− |F|−t.
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Therefore, by an averaging argument, there exists a choice of z ∈ (Fn)k
for which

Pr
x∈Fn

[Γ0
(
Da·zP (x) : a ∈ Fk \ {0}

)
= P (x)] ≥ 1− |F|−t. (8.2)

We now prove that we only need a constant number of derivatives in
order to approximate P , instead of a number which is polynomial in |F|.
Let | · | : F→ N be the canonical map |x| = x for x = {0, 1, . . . , |F| − 1}.

Claim 8.5. Let B := {b ∈ Fk :
∑k
j=1 |bj | ≤ d}. Then for any a ∈ Fk,

Da·zP (x) =
∑
b∈B

λa,bDb·zP (x)

for some λa,b ∈ F.

Proof. Let |a| =
∑k
i=1 |ai|. We prove the claim by induction on |a|. If

|a| ≤ d, the claim is straightforward, so assume |a| > d. As P is a degree
d polynomial, we have for any m > d and y1, . . . , ym ∈ Fn that

Dy1 . . . DymP ≡ 0.

This translates to ∑
c∈{0,1}m

(−1)
∑

ciP
(
x+

∑
ciyi

)
= 0.

As the sum of the coefficients is zero, this implies∑
c∈{0,1}m

(−1)
∑

ci
(
P
(
x+

∑
ciyi

)
− P (x)

)
=

∑
c∈{0,1}m

(−1)
∑

ciDc·yP (x) = 0,

for y = (y1, . . . , ym). Apply this for m = |a| and y1, . . . , ym set to z1
repeated a1 times, z2 repeated a2 times, up to zk repeated ak times.
Then we obtain that ∑

a′≤a
νa′Da′·zP (x) = 0,

where the sum is over all a′ ∈ Fk such that |a′i| ≤ |ai| for all 1 ≤ i ≤ k,
and νa′ = (−1)|a′|

∏k
i=1

(ai
a′i

)
. In particular, νa ∈ {−1,+1}. This implies

thatDa·zP (x) is a linear combination ofDa′·zP (x) for a′ ∈ Fk with |a′| <
|a|. The claim now follows by applying the induction hypothesis.
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This concludes the proof of Lemma 8.2. By Claim 8.5 we may rewrite

Γ0
(
Da·zP (x) : a ∈ Fk \ {0}

)
= Γ (Da·zP (x) : a ∈ B) ,

where c = |B| and Γ : Fc → F is defined as Γ(vb : b ∈ B) =
Γ0
(
(
∑
b∈B λa,bvb) : a ∈ Fk \ {0}

)
. Let Q1, . . . , Qc in the statement of

Lemma 8.2 be {Da·zP (x) : a ∈ B}. Clearly, these are polynomials of
degree ≤ d− 1. To conclude, we need to bound c = |B|. We have

|B| =
d∑
i=1

(
k

d

)
≤
(
d+ k

d

)
.

Lemma 8.2 follows as we set k = t+ 2s+ 3.

8.2 Bias implies low rank exact computation

We prove Theorem 8.1 in this section. The proof is by induction on the
degree d and follows along the lines of Theorem 1.7 of [43]. We sketch
the proof below.

We first show that Theorem 8.1 implies a similar theorem, where
instead of assuming that a polynomial is biased, we assume that it has
a noticeable Gowers uniformity norm.

Lemma 8.6 (Large Gowers norm implies low rank). Suppose Theorem 8.1
is true up to degree d. Let P : Fn → F be a polynomial of degree d.
Suppose that ||e (P )||Ud ≥ |F|−s. Then rank(P ) ≤ r(8.6)(d, s).

Proof. We have∣∣∣∣∣ E
x,y1,...,yd∈Fn

[e (Dy1,...,ydP (x))]
∣∣∣∣∣ = ||e (P )||2dUd ≥ |F|

−2ds.

Define Q : Fn(d+1) → F as

Q(x, y1, . . . , yd) := Dy1,...,ydP (x).

By Theorem 8.1,
rank(Q) ≤ r(8.1)(d, 2ds).
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Applying the Taylor approximation theorem to P , as we assume d < |F|,
we have

P (x) = 1
d!Dx,...,xP (0) +R(x) = 1

d!Q(0, x, . . . , x) +R(x),

where R is a polynomial of degree ≤ d−1. We conclude that rank(P ) ≤
rank(Q) + 1. This concludes the lemma by setting

r(8.6)(d, s) = r(8.1)(d, 2ds) + 1.

The next lemma shows that a regular factor has atoms of roughly
equal size. We shorthand α± δ to denote any element in the interval
[α− δ, α+ δ].

Lemma 8.7 (Size of atoms). Suppose Theorem 8.1 is true up to degree
d. Let B = {Q1, . . . , Qc} be a polynomial factor of degree at most d.
Given s ∈ N, assume that B has rank at least r(8.1)(d, s). Then for every
b ∈ Fc,

Pr
x∈Fn

[B(x) = b] = 1
|F|c
± 1
|F|s

.

Proof. For any b ∈ Fc,

Pr[B(x) = b] = 1
|F|c

∑
a∈Fc

E
x

[
e

(∑
i

ai(Qi(x)− bi)
)]

= 1
|F|c
± 1
|F|c

∑
06=a∈Fc

∣∣∣∣∣Ex
[
e

(∑
i

aiQi(x)
)]∣∣∣∣∣

= 1
|F|c
± 1
|F|s

The last line follows because of the following argument. Suppose
for some a 6= 0, |Ex [e (

∑
i aiQi(x))]| > 1

|F|s . Then by Theorem 8.1,
rank(

∑
i aiQi) ≤ r(8.1)(d, s). This contradicts the assumption on the

rank of B.

Recall that a linear form L = (`1, . . . , `k) ∈ Fk is said to be affine if
`1 = 1. Next, we argue that a high rank factor evaluated on a system
of affine linear forms is near orthogonal.
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Lemma 8.8 (Near orthogonality of affine linear forms). Suppose Theo-
rem 8.1 is true up to degree d. Let c, d, k, s,m ∈ N. Let B = {Q1, . . . , Qc}
be a polynomial factor of degree at most d. Assume B has rank at least
r(8.8)(d, k, s). Let (L1, . . . , Lm) be a system of affine linear forms on k
variables. Let Λ = (λij)i∈[c],j∈[m] be a tuple of integers. Define

QΛ(x1, . . . , xk) =
∑

i∈[c],j∈[m]
λijQi(Lj(x1, . . . , xk)).

Then, one of the following is true.

1. QΛ ≡ 0. Moreover, for every i ∈ [c], and Qi of degree at most d,
it holds that

∑m
j=1 λijQi(Lj(·)) ≡ 0.

2. QΛ 6≡ 0. Moreover, |E[e (QΛ(x1, . . . , xk))]| ≤ |F|−s.

The proof is identical to the proof of Theorem 7.33, specialized
to only allow classical polynomials, and taking care of the improved
dependence on |F| guaranteed by Lemma 8.6. As a corollary, we state
the above result for the case of parallelepipeds, which will be needed
for the inductive proof of Theorem 8.1. We first set up some notations,
following Section 4 of [43].

Let B = {Q1, . . . , Qc} be a polynomial factor of degree at most d.
We assume B has rank at least r(8.6)(d, s). For i ∈ [d], let Mi denote
the number of polynomials in B of degree exactly equal to i.

Definition 8.9 (Faces and lower faces). Let k ∈ N and 0 ≤ k′ ≤ k. A set
F ⊆ {0, 1}k is called a face of dimension k′ if

F = {b ∈ {0, 1}k : bi = δi, i ∈ I},

where I ⊆ [k], |I| = k − k′ and δi ∈ {0, 1}. If δi = 0 for all i ∈ I, then
F is called a lower face.

Let Σ := ⊗i∈[d]FMi , so that Σ{0,1}k ∼= |F|2
k
∑

i∈[d] |Mi|. We will con-
sider vectors v ∈ Σ{0,1}k indexed as v(i, j, w) for i ∈ [d], j ∈ [Mi], w ∈
{0, 1}k.

Definition 8.10 (Face vectors and parallelepiped constraints). Let i0 ∈ [d],
j0 ∈ [Mi0 ] and F ⊆ {0, 1}k. Let v[i0, j0, F ] ∈ Σ{0,1}k be given by
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v(i, j, ω) = (−1)|ω| if i = i0, j = j0 and ω ∈ F and zero otherwise. This
is called a face vector. If F is a lower face, then it corresponds to a
lower face vector. If dim(F ) ≥ i0 + 1, then it is a relevant (lower) face
vector. A vector t ∈ Σ{0,1}k satisfies the parallelepiped constraints if it
is orthogonal to all the relevant lower face vectors.

Let Σ0 ⊆ Σ{0,1}k be the subspace of vectors satisfying the paral-
lelepiped constraints. Below we use the following shorthand:

( k
≤i
)

:=∑i
j=0

(k
j

)
.

Claim 8.11 (Dimension of Σ0 (Green and Tao [43], Lemma 4.4)). Let
d < k. Then,

dim(Σ0) =
d∑
i=1

Mi

(
k

≤ i

)
.

Lemma 8.12 (Equidistribution of parallelepipeds). Suppose Theorem 8.1
is true up to degree d. Given s, d < k ∈ N, let B be a polynomial factor
of rank at least r(8.12)(k, s) defined by polynomials Q1, . . . , Qc : Fn → F
of degree at most d. Then for every t ∈ Σ0 and every x ∈ Fn such that
B(x) = t(0), it holds that

Pr
y∈(Fn)k

[
B(x+ ω · y) = t(ω) ∀ω ∈ {0, 1}k

]
= 1

|F|
∑d

i=1Mi( k≤i)
± 1
|F|s

.

Proof. This immediately follows from the dimension of Σ0 (Claim 8.11)
and Lemma 8.8 applied to the parallelepiped.

We are now ready to prove Theorem 8.1, but before doing so, let us
explain the high-level approach. Given a biased degree-d polynomial P ,
we use Lemma 8.2 to approximate P by a function that is measurable
in a degree-(d− 1) polynomial factor B. We then regularize this factor
to a sufficiently regular polynomial factor B′ of degree d− 1. The final
step of the proof is to show that P itself is measurable in B′. To show
this, we divide atoms of B′ into two categories: we call an atom A of B′
“good” if P is almost a constant over A, and otherwise we call it “bad”.
We first argue that P is in fact constant in each good atom. Let A be
a good atom and let cA be P ’s most popular value over A. We argue
that for every x ∈ A, there are directions y1, ..., yd+1 such that for any
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nonempty S ⊆ [d+ 1], P (x+
∑
i∈S yi) = cA. As a result, observing that

Dy1,...,yd+1P (x) ≡ 0, and all terms but P (x) in Dy1,...,yd+1P (x) are equal
to cA, we get that P (x) = cA. If A is a bad atom, we first find a collection
of good atoms Aw for w ∈ {0, 1}d+1 \ {0}d+1, such that the evaluation
vector of B′ over this collection of atoms satisfies the parallelepiped
constraints. Let cw be the constant value that P takes on the good atom
Aw. Having found such a collection of atoms, given an arbitrary x ∈ A,
we may invoke Lemma 8.12 to show that there exists y1, ..., yd+1 such
that for all nonempty S ⊆ [d+ 1], x+

∑
i∈S yi ∈ Aw. Finally, similar to

the good atom case, we use the d+ 1-th derivative of P to argue that
P (x) a fixed value determined by cw for w ∈ {0, 1}d+1 \ {0}d+1

Proof of Theorem 8.1. The base case of d = 1 is trivial. Indeed, if a
linear polynomial P : Fn → F satisfies |E[e (P (x))]| ≥ |F|−s, then by
orthogonality of linear polynomials, we have P (x) is a constant and
hence has rank 0.

So, suppose that the hypothesis is true for degrees up to d− 1, and
we will prove it for d. Let t ∈ N depending on d be specified later. Recall
that we assume that |E[e (P (x))]| ≥ |F|−s. By Lemma 8.2, there exists
a polynomial factor B = {Q1, . . . Qc} of degree d−1 where c = c(d, s, t),
and Γ : Fc → F, such that

Pr
x∈Fn

[P (x) 6= Γ(Q1(x), · · · , Qc(x))] ≤ |F|−t.

Let r : N → N be a growth function that depends on d and will be
specified later. Regularize B to an r-regular polynomial factor B′ =
{Q′1, . . . , Q′c′}, c′ ≤ C

(7.29)
r,d (c). Thus, we have for an appropriate Γ′ :

Fc′ → F that

Pr
x∈Fn

[P (x) 6= Γ′(Q′1(x), · · · , Q′c′(x))] ≤ |F|−t.

We will now prove that P is B′-measurable, namely, P is constant on
each atom of B′. This will conclude the proof of Theorem 8.1.

We will assume that r(j) ≥ r(8.1)(d, 2t+ j) for all j ∈ N. Say that
an atom A of B′ is good if

Pr
x∈A

[P (x) 6= Γ′(Q′1(x), · · · , Q′c′(x))] ≤ |F|−t/4.
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By Markov’s inequality and Lemma 8.7, at least 1− |F|−t/4 fraction of
the atoms A of B′ are good. The first step is to prove that on such atoms,
P is constant. Fix a good atom A and let A′ ⊆ A be the set where
P (x) = Γ′(Q′1(x), · · · , Q′c′(x)). Observe that Γ′(Q′1(x), · · · , Q′c′(x)) is
constant on A, and hence P (x) = cA for some constant cA for all x ∈ A′.

Lemma 8.13. Let t be large enough depending on d. Let x ∈ A be
arbitrary. Then there exists h ∈ (Fn)d+1 such that x+ ω · h ∈ A′ for all
ω ∈ {0, 1}d+1 \ 0d+1.

We omit the proof of Lemma 8.13, and note for the interested reader
that it is identical to the proof of Lemma 5.2 of [43]. Continuing, since
P is a degree d polynomial, we have∑

ω∈{0,1}d+1

(−1)|ω|P (x+ ω · h) = 0.

Now, Lemma 8.13 has guaranteed that P (x+ ω · h) = cA for all ω 6= 0.
Plugging in cA for all the terms except P (x) in the above equation
implies P (x) = cA. Since x was an arbitrary point in A, we have proved
that P is constant on the entire atom A. This finishes the first step.

We have shown for 1 − |F|−t/4 fraction of the atoms A of B′, i.e
the good atoms, that P (x) = cA for all x ∈ A. The final step shows
that for any arbitrary atom A, there exist good atoms Aω, for ω ∈
{0, 1}d+1 \ {0}d+1, such that the vector t = B′(Aω) ∈ Σ{0,1}d+1 satisfies
the parallelepiped constraints. To achieve this, it is enough to find
one parallelepiped for which x+ ω · h lie in good atoms for all ω 6= 0.
Indeed, let x ∈ A be arbitrary. Pick h1, . . . , hd+1 ∈ Fn randomly. The
probability that for a fixed ω 6= 0, x + ω · h lies in a good atom is at
least 1− |F|−t/4 > 1− 2−2d for t large enough. The result now follows
by a union bound over ω ∈ {0, 1}d+1. Let t ∈ Σ{0,1}d+1 be defined by
this parallelepiped. By Lemma 8.12, there is a choice of r such that, for
every x ∈ A,

Pr
y1,...,yk

[
x+ w · y ∈ Aw ∀w ∈ {0, 1}k

]
> 0.

Now as all Aw but A are chosen to be good atoms, the value of P (x)
for x ∈ A is a fixed value determined by cw for w ∈ {0, 1}d+1 \ {0}d+1,
concretely P (x) =

∑
w∈{0,1}d+1\{0}d+1(−1)|w|+1cw.
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9
Decomposition Theorems

“Decomposition theorems” [38, 78, 43] are important consequences of
inverse theorems. They allow one to decompose an arbitrary function
into a “structured” part and a “pseudorandom” part. The structured
part is simple enough to be analyzed directly (often when assuming
regularity and equidistribution as a result of regularization lemmas),
and the pseudorandomness requirements are usually set up so that the
pseudorandom part has little effect on the analysis and can often be
ignored as small noise. We refer the interested reader to the papers
by Gowers [38] and Reingold et al. [64] for a detailed discussion of
decomposition theorems of this type and how the finite-dimensional
Hahn-Banach theorem can be used to give short and transparent proofs
of many results of these kinds.

9.1 Basic decomposition theorem

The following decomposition theorem is a direct consequence of the
inverse theorem for Gowers norms, Theorem 6.9. Recall that D = {z ∈
C : |z| ≤ 1} denotes the unit disk in the complex plane.
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9.1. Basic decomposition theorem 343

Theorem 9.1 (Basic decomposition theorem). Let F be a prime finite
field, d ≥ 1, ε > 0 and let r : N → N be an arbitrary function. Every
function f : Fn → D can be decomposed as

f = g + h,

where

(i) g = E[f |B], where B is an r-regular polynomial factor of degree
at most d and complexity C ≤ C9.1(F, d, r, ε).

(ii) ‖h‖Ud+1 < ε.

Furthermore, if we are given an initial polynomial factor B1 of degree
at most d, then we may assume that B is a refinement of B1, and in
which case we have that C = |B| ≤ C9.1(F, d, r, ε, |B1|).

Proof. We define a sequence B1,B2, . . . of r-regular polynomial factors
of degree at most d, where if B1 is not given then we take B1 = ∅. Let
gi = E[f |Bi] and hi = f − gi. We will show that for a bounded value
of i we have ‖hi‖Ud+1 < ε in which case we are done, as we can take
g = gi, h = hi.

So, consider i ≥ 1 with ‖hi‖Ud+1 ≥ ε. By Theorem 6.9, there exists a
polynomial Pi : Fn → T of degree ≤ d such that |〈hi, e(Pi)〉| ≥ δ, where
δ = δ6.9(F, d, ε). In this case, let B′i = Bi ∪ {Pi} and let Bi+1 be an r-
regular factor refining B′i, as given by Theorem 7.30. Note that |Bi+1| is
bounded by a function of |Bi|, d, r. Concretely, |Bi+1| ≤ CF,d,r

7.30 (|Bi|+ 1).
In order to show that this process terminates after a bounded number
of steps, we will show that ‖gi+1‖22 ≥ ‖gi‖22 + δ2, and hence the process
must terminate after at most 1/δ2 steps.

To see that, first note that 〈gi, hi〉 = 0, as the average of hi =
f − E[f |Bi] in any atom of Bi is zero, while gi is Bi-measurable, and
hence is constant on any atom of Bi. In particular, this implies that
‖gi‖22 + ‖hi‖22 = ‖f‖22 ≤ 1. Next, let g′i = E[f |B′i] and h′i = f − g′i. As B′i
is a refinement of Bi we also have that 〈gi, g′i − gi〉 = 0. Thus

‖g′i‖22 = ‖gi‖22 + ‖g′i − gi‖22 = ‖gi‖22 + ‖h′i − hi‖22.
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Next, note that |〈hi, e(Pi)〉| ≥ δ but 〈h′i, e(Pi)〉 = 0, since in any atom
of B′i we have that Pi is constant and the average of h′i is zero. Thus

‖h′i − hi‖22 = E
x
|h′i(x)− hi(x)|2

= E
x
|(h′i(x)− hi(x))e(Pi(x))|2

≥ |E
x

[
(h′i(x)− hi(x))e(Pi(x))

]
|2

≥ δ2.

To conclude the proof, note that as Bi+1 is a refinement of B′i we have
that ‖gi+1‖22 = ‖g′i‖22 + ‖gi+1 − g′i‖22 ≥ ‖g′i‖22.

In Section 12.2 we will use a multifunction version of Theorem 9.1,
namely decomposing a collection of functions using a single regular
polynomial factor. This can be achieved by a proof almost identical to
the above.

9.2 Higher-order Fourier expansion

Let f : Fn → D be a function, B a polynomial factor and let g = E[f |B].
It is possible to express g as a function of the polynomials which define
B. Assume that B is defined by polynomials {P1, . . . , PC}. Then as g is
constant on the atoms of B, we can express

g(x) = Γ(P1(x), . . . , PC(x)),

for some function Γ : Tc → T. More concretely, assume that Pi has
depth ki, and hence takes values in Uki+1. Let G =

∏C
i=1 Uki+1 and

let G′ =
∏C
i=1 Zpki+1 be the dual group. Applying standard Fourier

decomposition to Γ : G→ C gives

Γ(z) =
∑
α∈G′

Γ̂(α)e(〈α, z〉).

As ‖g‖∞ ≤ ‖f‖∞ ≤ 1 we have ‖Γ‖∞ ≤ 1. Hence by Parseval’s identity,∑
|Γ̂(α)|2 ≤ 1. We can apply the same decomposition to g. Define

polynomials Pα(x) =
∑
αiPi(x) for α ∈ G′. Then the higher-order

Fourier expansion of g is given by

g(x) =
∑
α∈G′

Γ̂(α)e(Pα(x)).
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Note that the polynomials Pα play the role of characters in standard
Fourier analysis. In standard Fourier analysis, characters are orthogonal,
which plays an important role. If we assume that the polynomial factor
B has a high enough rank, then the same approximately holds for
higher-order Fourier expansions.

Claim 9.2 (claim). Assume that rank(B) ≥ r9.2(F, d, ε, |B|). Then∣∣∣〈g, e(Pα)〉 − Γ̂(α)
∣∣∣ ≤ ε.

Proof. Assume that B is r-regular for r = r7.10(F, d, ε/|G|), where note
that |G| ≤ pd(d−1)/(p−1)e|B|. By the regularity assumption, bias(Pα′) ≤
ε/|G| for all α′ 6= 0. Thus

〈g, e(Pα)〉 = E
x

[g(x)e(−Pα(x))]

=
∑
α′

Γ̂(α′)E
x

[e(Pα′(x)− Pα(x))]

=
∑
α′

Γ̂(α′)bias(Pα′−α)

and ∣∣∣〈g, e(Pα)〉 − Γ̂(α)
∣∣∣ ≤ ∑

α′ 6=α
|Γ̂(α′)||bias(Pα′−α)| ≤ ε.

Via a similar analysis one can obtain an approximate version of
Plancheral’s theorem when the expansion has high rank.

9.3 Strong decomposition theorems

In many applications, once we decompose f = g + h where g = E[f |B]
and ‖h‖Ud+1 < ε, then it is necessary to make ε small in terms of the
complexity of B. It turns out that this is possible, if we allow another
L2 error term.

Theorem 9.3 (Strong decomposition theorem). Let F be a prime finite
field, d ≥ 1, δ > 0, and let ε : N → R+ and r : N → N be arbitrary
functions. Any function f : Fn → D can be decomposed as

f = f1 + f2 + f3,
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where

(i) f1 = E[f |B], where B is an r-regular polynomial factor of degree
at most d and complexity C ≤ C9.1(F, d, r, ε, δ).

(ii) ‖f2‖Ud+1 < ε(|B|) and ‖f2‖∞ ≤ 2.

(iii) ‖f3‖2 ≤ δ.

Furthermore, if we are given an initial polynomial factor B1 of degree
at most d, then we may assume that B is a refinement of B1, in which
case we have that C = |B| ≤ C9.1(F, d, r, ε, δ, |B1|).

Proof. Define a sequence B1,B2, . . . of polynomial factors as follows.
The first factor B1 is given as input, and otherwise let B1 = ∅. To
obtain Bi+1, apply Theorem 9.1 with initial factor Bi and error εi =
ε(|Bi|). Define as before gi = E[f |Bi] and hi = f − gi. Note that as
Bi+1 is a refinement of Bi we have that 〈gi, gi+1 − gi〉 = 0 and hence
‖gi+1‖22 = ‖gi‖22 + ‖gi+1 − gi‖22. Let i ≤ 1/δ2 be minimal such that
‖gi+1‖22 ≤ ‖gi‖22 + δ2. We then take

B = Bi, f1 = gi, f2 = hi+1, f3 = hi − hi+1.

Note that by definition, f1 = E[f |B] and ‖f2‖Ud+1 ≤ ε(|B|). It is also
simple to verify that ‖f2‖∞ ≤ ‖f‖∞ + ‖gi+1‖∞ ≤ 2. Finally by our
construction we have that ‖f3‖22 = ‖hi − hi+1‖22 = ‖gi − gi+1‖22 =
‖gi+1‖22 − ‖gi‖22 ≤ δ2.

If we specialize Theorem 9.4 to Boolean functions, we can have more
control on the ranges of f1, f2, f3.

Theorem 9.4 (Strong decomposition theorem, Boolean functions). Let
f : Fn → {0, 1}. Under the same conditions as that of Theorem 9.3, we
obtain the same decomposition f = f1 + f2 + f3, which furthermore
satisfies that f1 and f1 + f3 take values in [0, 1]; and f2 and f3 take
values in [−1, 1].

Proof. We have f1 = gi = E[f |Bi] and f1+f3 = gi+1 = E[f |Bi+1], which
guarantees that they take values in [0, 1]. We have f2 = f − E[f |Bi]
and f3 = E[f |Bi]− E[f |Bi+1], which guarantees that they take values
in [−1, 1].
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Theorem 9.3 can also be extended to decompose multiple functions
with a single polynomial factor, which is useful in certain applications.
The proof is identical and is omitted.

Theorem 9.5 (Strong decomposition theorem, multiple functions). Let F
be a prime finite field, d ≥ 1,m ≥ 1, δ > 0 and let ε : N→ R+ and r :
N→ N be arbitrary functions. Any m functions f (1), . . . , f (m) : Fn → D
can be decomposed as

f (i) = f
(i)
1 + f

(i)
2 + f

(i)
3

where

• f (i)
1 = E[f (i)|B], where B is an r-regular polynomial factor of
degree at most d and complexity C ≤ C9.5(F, d,m, r, ε, δ).

• ‖f (i)
2 ‖Ud+1 < ε(|B|) and ‖f (i)

2 ‖∞ ≤ 2.

• ‖f (i)
3 ‖2 ≤ δ.

Furthermore, if we are given an initial polynomial factor B1 of degree
at most d, then we may assume that B is a refinement of B1, and in
which case we have that C = |B| ≤ C9.5(F, d,m, r, ε, δ, |B1|).

9.4 Sub-atom selection

It turns out that the strong decomposition theorems are not sufficiently
strong for certain applications in algebraic property testing. These
require to control all the error terms, including the L2 error term, by a
function of the complexity of the polynomial factor. This is impossible if
we have just one polynomial factor, but becomes possible when working
in parallel with two factors: a polynomial factor and a refinement of it.

First, we need to define the notion of a polynomial factor representing
another polynomial factor for a function. As all the applications of these
tools apply to Boolean functions, we specialize the treatment below for
Boolean functions, and note that it can be easily extended to bounded
complex functions.
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Definition 9.6 (Polynomial factor represents another factor). Let f :
Fn → {0, 1}, B a polynomial factor and B′ a refinement of it. For
0 < ζ < 1, we say that B′ ζ-represents B with respect to f , if for at
most ζ fraction of atoms c of B, more than ζ fraction of the atoms c′ of
B′ lying inside c satisfy |E[f |c]− E[f |c′]| > ζ.

We now state the following “Two-level decomposition theorem”
proved by Bhattacharyya et al. [15] (it is referred to as “super de-
composition theorem” in [15]).

Theorem 9.7 (Two-level decomposition theorem (Bhattacharyya et al. [15],
Theorem 4.9)). Let d ≥ 1, ζ > 0 and let ε, δ : N → R+ and r : N → N
be arbitrary functions. Given any function f : Fn → {0, 1} there exists
a polynomial factor B of degree d, and a refinement of it B′ of degree d,
both r-regular and of complexity at most C9.7(F, d, r, ε, δ, ζ), such that
the following holds. We can decompose

f = f1 + f2 + f3

where

(i) f1 = E[f |B′].

(ii) ‖f2‖Ud+1 < ε(|B′|).

(iii) ‖f3‖2 ≤ δ(|B|).

(iv) f1 and f1 +f3 take values in [0, 1]; and f2, f3 take values in [−1, 1].

(v) B′ ζ-represents B with respect to f .

Proof. Define a sequence B1,B2, . . . of polynomial factors as follows,
where initially B1 is empty, and Bi+1 is obtained by applying Theo-
rem 9.4 with the parameters d, r, ε and δi = δ(|Bi|). If Bi+1 ζ-represents
Bi with respect to f , then the theorem follows with B = Bi,B′ = Bi+1,
and f1, f2, f3 as given in the decomposition with Bi+1. If not, then one
can verify that

E[f |Bi+1]2 ≥ E[f |Bi]2 + ζ3.

Hence, for some i ≤ 1/ζ3, the condition will hold.
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Although the above two-level decomposition theorem may be useful
by itself for some applications, certain algebraic property testing appli-
cations require the ability to choose a sub-atom in B′ inside each atom
of B, such that the error of f3 on all sub-atoms is bounded, and most
sub-atoms represent their atoms. Moreover, we would need this choice
to be algebraically consistent.

To define this latter condition formally, assume that B′ is a syn-
tactic refinement of B, and thus is defined by adding new polynomials
Q1, . . . , Q|B′|−|B| to the polynomials defining B. Thus, we can describe
atoms of B′ as (c, s), where c ∈ T|B| describes an atom of B and
s ∈ T|B′|−|B|. The choice of s allows to choose a sub-atom (c, s) of the
finer factor within an atom c of the coarser partition.

We require that there exists a fixed s ∈ T|B′|−|B|, such that

• For all atoms c in B, the L2 error term f3 within the corresponding
sub-atom is small.

• For most atoms c in B, the sub-atom (c, s) represents the atom c,
in the sense that E[f |c] ≈ E[f |(c, s)].

The following theorem formalizes this. It is presented for one function,
but can be easily extended to allow multiple functions, in the same way
that Theorem 9.5 extends Theorem 9.3 to multiple functions.

Theorem 9.8 (Subatom selection (Bhattacharyya et al. [15], Theorem
4.12)). Let f : Fn → {0, 1}. Under the same conditions as in Theo-
rem 9.7, there exists a polynomial factor B and a syntactic refinement
of it B′, whose atoms are indexed by (c, s) with c ∈ T|B|, s ∈ T|B′|−|B|,
such that in addition to the guarantees of Theorem 9.7, there exists a
choice of s ∈ T|B′|−|B| for which the following is true:

(vi) For every atom c of B, the sub-atom (c, s) of B′ satisfies that

E
[
|f3(x)|2 | B′(x) = (c, s)

]
≤ δ(|B|)2.

(vii) For at most a ζ fraction of atoms c in B it holds that

|E[f |c]− E[f |(c, s)]| > ζ.
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Proof sketch. The proof is very similar to the proof of Theorem 9.7.
The fact that B′ is a syntactic refinement of B can be guaranteed by
making sure that B has high enough rank. Choose s uniformly among
the possible set of values. Condition (vi) holds with high probability by
a union bound on all the |B| possible atoms, by choosing δ(|B|)� 1/|B|
small enough. Condition (vii) follows by condition (v) and Markov
inequality.
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Homogeneous Nonclassical Polynomials

The main difficulty in dealing with fields of low characteristic is that
in the higher-order Fourier expansions, instead of the exponentials of
classical polynomials, one has to work with exponentials of nonclassical
polynomials. These do not share many of the convenient properties of
classical polynomials. To overcome these difficulties, we develop a theory
of nonclassical homogeneous polynomials which will enable us to confine
to this simpler class of nonclassical polynomials. Recall that the need
for homogeneous nonclassical polynomials arises in Theorem 7.32, which
characterizes the joint distribution of multiple high-rank polynomials
evaluated in parallel on multiple linear forms.

A classical degree d polynomial P : Fn → F is called homogeneous if
all of its monomials are of degree d. A simple consequence of homogeneity
is that every homogeneous classical polynomial P (x) satisfies P (cx) =
cdP (x) for every c ∈ F. It turns out that this consequence is the “right”
way to generalize homogeneity for nonclassical polynomials.

Definition 10.1 (Homogeneity). A (nonclassical) polynomial P : Fn →
T is called homogeneous if, for every c ∈ F, there exists σc ∈ Z such
that P (cx) = σcP (x) for all x ∈ Fn.

We start with a simple yet useful constraint on σc.

351
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Claim 10.2. Let P : Fn → T be a degree d polynomial. Assume that
P (cx) = σcP (x) for some σc ∈ Z. Then

σc = |c|deg(P ) mod p.

Proof. Recall that ∂P is the derivative polynomial of P (see Defini-
tion 7.20). Define Q(x) = P (cx)− σcP (x), where by assumption Q = 0.
Then

0 = ∂Q(h1, . . . , hd) = ∂P (ch1, . . . , chd)− σc∂P (h1, . . . , hd).

By Lemma 7.22 ∂P is a classical homogeneous polynomial of de-
gree d which is linear in each of h1, . . . , hd. Thus ∂P (ch1, . . . , chd) =
|c|d∂P (h1, . . . , hd). So we obtained that

0 = (|c|d − σc)∂P (h1, . . . , hd).

As ∂P is a nonzero classical polynomial this implies that |c|d − σc =
0 mod p.

Notice that for a polynomial P to be homogeneous, it suffices that for
some generator ζ of F ∗ (the multiplicative group of the field F) it holds
that P (ζx) = σP (x). This is since any nonzero c ∈ F can be represented
as c = ζm for some 0 ≤ m ≤ p− 1, and hence P (cx) = σmP (x).

If P has depth k, then we can assume that σ ∈ {0, . . . , pk+1 − 1}
since pk+1P ≡ 0. Obviously, the value of σ depends on the choice of ζ.
However, the following lemma shows that for a fixed ζ, the value of σ is
uniquely determined for all homogeneous polynomials of degree d and
depth k. Henceforth, we will denote this unique value by σ(d, k).

Let Zp denote the p-adic integers. We will show that there exists
a choice of σ(d) ∈ Zp such that σ(d, k) = σ(d) mod pk+1 for all k ≥ 0.
This is related to the so-called Teichmüller characters (see e.g. Section
4.3 of [23]). However, in order to keep the presentation elementary, we
avoid exploiting this connection.

Lemma 10.3. Fix a prime finite field F = Fp and a generator ζ ∈ F∗. For
every d ≥ 1, k ≥ 0 there exists a unique σ = σ(d, k) ∈ {0, . . . , pk+1− 1},
such that for every homogeneous polynomial P : Fn → T of degree d
and depth k, it holds that P (ζx) = σP (x). Furthermore, there exists
σ(d) ∈ Zp such that σ(d, k) = σ(d) mod pk+1.
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Proof. Let P be a homogeneous polynomial of degree d and depth k, and
let σ ∈ {0, . . . , pk+1 − 1} be such that P (ζx) = σP (x). By Claim 10.2
we know that σ = |ζ|d mod p. Observe that as ζp−1 = 1 it holds that
P (x) = P (ζp−1x) = σp−1P (x), from which and the assumption that P
has depth k it follows that σp−1 ≡ 1 mod pk+1.

We claim that σ ∈ {0, . . . , pk+1−1} is uniquely determined by these
two properties:

(i) σ = |ζ|d mod p;

(ii) σp−1 = 1 mod pk+1.

Suppose to the contrary that there exist two nonzero values σ1, σ2 ∈
Zpk+1 that satisfy the above two properties, and choose t ∈ Zpk+1 such
that σ1 = tσ2. It follows from (i) that t = 1 mod p and from (ii) that
tp−1 = 1. We will show that t = 1 is the only possible such value in
Zpk+1 .

Let a1, . . . , apk ∈ Zpk+1 be all the possible solutions to x = 1 mod p
in Zpk+1 . Note that ta1, . . . , tapk is a permutation of the first sequence
and thus

tp
k∏

ai =
∏

ai.

Consequently tpk = 1 mod pk+1, which combined with tp = t implies
t = 1 mod pk+1.

For the last assertion, note that σ(d, k)p−1 = 1 mod pk+1 implies
σ(d, k)p−1 = 1 mod p`+1 for every ` < k. By the uniqueness of σ(d, `),
this implies that σ(d, k) = σ(d, `) mod p`+1. We can thus take σ(d) ∈ Zp
given by the equations σ(d) mod pk+1 = σ(d, k).

Lemma 6.3 allows us to express every nonclassical polynomial as a
linear span of monomials of the form |x1|d1 ···|xn|dn

pk+1 . Unfortunately, unlike
in the classical case, these monomials are not necessarily homogeneous,
and for some applications it is important to express a polynomial as a
linear span of homogeneous polynomials. We show that this is possible
as homogeneous nonclassical polynomials form a basis for the space of
nonclassical polynomials.
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10.1 A homogeneous basis for nonclassical polynomials

In this section we will prove that homogeneous polynomials span the
space of all nonclassical polynomials.

Theorem 10.4. There is a basis for Poly(Fn → T) consisting only of
homogeneous multivariate polynomials.

This theorem allows us to make the extra assumption in decompo-
sition theorems, that the resulting polynomial factor B consists only
of homogeneous polynomials. In order to achieve that, we decompose
each polynomial of degree d and depth k as a sum of homogeneous
polynomials of degree d and depths 1, . . . , k. If one of these polynomials
has low rank, we decompose it to a few lower degree polynomials, and
repeat the process.

We start by proving the following simple observation.

Claim 10.5. Let P : F → T be a univariate polynomial of degree d.
Then for every c ∈ F\{0},

deg
(
P (cx)− |c|dP (x)

)
< d.

Proof. By Lemma 6.3 it suffices to prove the claim for a monomial
m(x) = |x|s

pk+1 with k(p− 1) + s = d. Note that m(cx)− |c|dm(x) takes
values in 1

pk
Z/Z as by Fermat’s little theorem

|cx|s − |c|d|x|s ≡ |x|s|c|s(1− |c|k(p−1)) ≡ 0 mod p.

It follows then from Lemma 6.3 that m(cx)− |c|dm(x) is of depth at
most k − 1, and hence

deg
(
m(cx)− |c|dm(x)

)
≤ (p− 1)(k − 1) + (p− 1) < d. (10.1)

It is not difficult to show that the above claim holds also for any
multivariate polynomial P : Fn → T. We provide a proof of this fact,
although the univariate case suffices for our purposes in this section.
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Claim 10.6. Let P : Fn → T be a multivariate polynomial of degree d.
Then for every c ∈ F\{0},

deg
(
P (cx)− |c|dP (x)

)
< d.

Proof. Notice that the claim is trivial for classical polynomials, since in
this case, if R denotes the homogeneous degree-d part of P , then R(cx)−
|c|dR(x) = 0. We prove the statement for nonclassical polynomials. Let
Q(x) := P (cx), and note deg(Q) = d. We will inspect the derivative
polynomial of Q. Recall from Definition 7.20 and Lemma 7.22 that the
derivative polynomial of Q,

∂Q(y1, . . . , yd) = Dy1 · · ·DydQ(0),

is a degree-d classical homogeneous multi-linear polynomial which is
invariant under permutations of (y1, . . . , yd). In particular

|c|−d∂Q(y1, . . . , yd) = ∂Q(c−1y1, . . . , c
−1yd)

= Dc−1y1Dc−1y2 · · ·Dc−1ydQ(0)

=
∑
S⊆[d]

(−1)d−|S|Q
(
c−1∑

i∈S
yi

)

=
∑
S⊆[d]

(−1)d−|S|P
(∑
i∈S

yi

)

= ∂P (y1, . . . , yd).

This implies that ∂(Q− |c|dP ) ≡ 0 and thus deg(Q− |c|dP ) < d.

10.1.1 A homogeneous basis, the univariate case

First, we prove Theorem 10.4 for univariate polynomials.

Lemma 10.7. There is a basis of homogeneous univariate polynomials
for Poly(F→ T).

Proof. We will prove by induction on d that there is a basis {h1, . . . , hd}
of homogeneous univariate polynomials for Poly≤d(F → T) for every
d. Let ζ be a fixed generator of F∗. For any degree d > 0, we will
build a degree-d homogeneous polynomial hd(x) such that hd(ζx) =
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σdhd(x) for some integer σd. The base case of d ≤ p − 1 is trivial as
Poly≤p−1(F→ T) consists of only classical polynomials, and those are
spanned by h0(x) := 1

p , h1(x) := |x|
p , . . . , hp−1(x) := |x|p−1

p . Now suppose
that d = s+ (p− 1)(k − 1) with 0 < s ≤ p− 1, and k > 1. It suffices
to show that the degree-d monomial |x|

s

pk
can be expressed as a linear

combination of homogeneous polynomials. Consider the function

f(x) := |ζx|
s

pk
− |ζ|

d|x|s

pk
.

Claim 10.5 implies that deg(f) < d. Using the induction hypothesis,
we can express f(x) as a linear combination of |x|

s

p`
for ` = 0, . . . , k − 1,

and he for e < d with e 6= s mod (p− 1):

f(x) =
k−1∑
`=1

a`
|x|s

p`
+

∑
e<d,

e6=d mod (p−1)

behe(x).

Set A := |ζ|d +
∑k−1
`=1 a`p

k−`, so that
|ζx|s

pk
−A |x|

s

pk
=

∑
e<d,

e6=d mod (p−1)

behe(x). (10.2)

By the induction hypothesis, for e < d, he(ζx) = σeh(x) where σe =
|ζ|e mod p, and thus as A = |ζ|d mod p, we have σe 6= A mod p when
e 6= d mod (p− 1). Consequently,∑

e<d,
e6=d mod (p−1)

behe(x) =
∑
e<d,

e6=d mod (p−1)

be
σe −A

(σe −A)he(x)

=
∑
e<d,

e6=d mod (p−1)

be
σe −A

(he(ζx)−Ahe(x)).

Combining this with (10.2) we conclude that

hd(x) := |x|
s

pk
−

∑
e<d,

e6=d mod (p−1)

be
σe −A

he(x),

satisfies
hd(ζx) = Ahd(x).
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10.1.2 A homogeneous basis, the multivariate case

We are now ready to prove the main result of this section.

Theorem 10.4 (restated). There is a basis for Poly(Fn → T) consist-
ing only of homogeneous multivariate polynomials.

Proof. We will show by induction on the degree d and k, that every
degree d monomial of depth k can be written as a linear combination of
homogeneous polynomials. The base case of d < p, k = 0 is trivial as such
monomials are classical and thus homogeneous themselves. Consider
a nonclassical monomial m(x1, . . . , xn) = |x1|s1 ···|xn|sn

pk+1 of degree d =
s1+· · ·+sn+(p−1)k. For every i ∈ [n] let gi(xi) := hsi+(p−1)k(xi) where
hsi+(p−1)k is the homogeneous univariate polynomial from Lemma 10.7.

Every gi takes values in 1
pk+1Z/Z, and thus corresponds to a poly-

nomial Gi : F→ Zpk+1 . That is,

gi(x) = Gi(x)
pk+1 mod 1.

Define H : Fn → Zpk+1 as

H(x1, . . . , xn) := G1(x1) · · ·Gn(xn),

and h : Fn → T as

h(x1, . . . , xn) := H(x1, . . . , xn)
pk+1 .

We claim that

(i) h is a homogeneous polynomial.

(ii) deg(h) = d.

(iii) deg(h−m) ≤ d− 1.

Thus by induction m can be written as a sum of homogeneous polyno-
mials. To conclude the proof we verify (i)-(iii).

To verify (i) note that as gi is a homogeneous univariate polynomial
it holds that gi(ζxi) = σigi(xi) mod 1 for some σi ∈ Z. Thus Gi(ζxi) =
σigi(xi) mod pk+1. This implies that H(ζx) = (

∏
σi)H(x) mod pk+1,
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and hence h(ζx) = (
∏
σi)h(x) mod 1. To verify (ii) and (iii) note that

by construction, Gi(xi) = xsii +Pi(xi)+pQi(xi) where deg(Pi) < si. One
can then verify that H(x) contains the monomial

∏
xsii , and all other

monomials are of the form pe
∏
xtii , where

∑
ti ≤ d− 1 + (p− 1)e. Thus

h(x) contains a single monomial of degree d, which is m(x), and all the
remaining monomials have degree ≤ d−1. Thus deg(h−m) ≤ d−1.

The version of record is available at: http://dx.doi.org/10.1561/0400000064



11
Complexity of Systems of Linear Forms

Gowers norms control the density of linear patterns in subsets of an
Abelian group. For example, given a linear pattern, for a sufficiently
large d, if the characteristic function of two sets are close in the Ud norm,
then they contain almost the same number of copies of this pattern.
For example, if A,B ⊂ Fn are two subsets whose indicator functions
1A, 1B : Fn → {0, 1} satisfy that ‖1A − 1B‖Ud is negligible, then the
number of (d+1)-term arithmetic progressions x, x+y, x+2y, . . . , x+dy
that fall in A is approximately the same as the number that falls in B
(see Corollary 11.3 below).

More generally, in order to study the density of linear patterns in
a set, one can use a decomposition theorem to first decompose the
function into a structured part and and a pseudorandom part, and then
use this property of Gowers norms to discard the pseudorandom part
and restrict the analysis to the simpler structured part. Since for smaller
values of d, decomposition theorems provide a simpler structured part,
a natural question arises:

Given a linear pattern, what is the smallest value of d for
which the above statements hold?

359
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Investigating such questions lead to various notions of complexity
associated with a collection of linear forms. In this chapter we study
such notions.

11.1 Cauchy-Schwarz complexity

Let A be a subset of Fn with the indicator function 1A : Fn → {0, 1}.
Let L1, . . . , Lm be linear forms over F in ` variables. Let X ∈ (Fn)` be
chosen uniformly at random. The probability that L1(X), . . . , Lm(X)
all fall in A, can be expressed as

E
X

[1A(L1(X)) · · ·1A(Lm(X))] .

Roughly speaking, we say A ⊆ Fn is pseudorandom with regards to
L = (L1, . . . , Lm) if

E
X

[
m∏
i=1

1A(Li(X))
]
≈
( |A|
pn

)m
;

That is if the probability that all L1(X), . . . , Lm(X) fall in A is close
to what we would expect if A was a random subset of Fn of cardinality
|A|. Let α := |A|/|F|n be the density of A, and define f := 1A − α. We
have

E
X

[
m∏
i=1

1A(Li(X))
]

= E
X

[
m∏
i=1

(α+ f(Li(X)))
]

= αm +
∑

S⊆[m],S 6=∅
αm−|S| E

X

[∏
i∈S

f(Li(X))
]
.

Therefore, a sufficient condition for A to be pseudorandom with regards
to L is that EX [

∏
i∈S f(Li(X))] is negligible for all nonempty subsets

S ⊆ [m]. Green and Tao [45] showed that a sufficient condition for this
to occur is that ‖f‖Us+1 is small enough, where s is the Cauchy-Schwarz
complexity of the system of linear forms, defined below.

Definition 11.1 (Cauchy-Schwarz complexity [45]). Let L = {L1, . . . , Lm}
be a system of linear forms over a field F in ` variables. The Cauchy-
Schwarz complexity of L is the minimal s such that the following holds.
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11.1. Cauchy-Schwarz complexity 361

For every 1 ≤ i ≤ m, we can partition {Lj}j∈[m]\{i} into s+ 1 subsets,
such that Li does not belong to the linear span of any of the subsets.

The reason for the term Cauchy-Schwarz complexity is the following
lemma due to Green and Tao [45] whose proof is based on carefully
chosen iterative applications of the Cauchy-Schwarz inequality.

Lemma 11.2 (Green and Tao [45], see also Gowers and Wolf [39], Theorem
2.3). Let f1, . . . , fm : Fn → D. Let L = {L1, . . . , Lm} be a system of
linear forms in ` variables of Cauchy-Schwarz complexity s. Then∣∣∣∣∣ E

X∈(Fn)`

[
m∏
i=1

fi(Li(X))
]∣∣∣∣∣ ≤ min

1≤i≤m
‖fi‖Us+1 .

Note that the Cauchy-Schwarz complexity of any system of m linear
forms in which every two linear forms are linearly independent (i.e. one
is not a multiple of the other) is at most m − 2, since we can always
partition {Lj}j∈[m]\{i} into the m− 1 singleton subsets.

As an example, we prove the statement made in the beginning of
the chapter regarding arithmetic progressions.

Corollary 11.3. Fix a prime finite field F, d ≥ 2, ε > 0. Let A ⊂ Fn of
density α = |A|/|F|n. Assume that ‖1A − α‖Ud ≤ ε. Then the number
of (d+ 1)-term arithmetic progressions in A is∣∣∣∣ Pr

x,y∈Fn
[x, x+ y, . . . , x+ dy ∈ A]− αd+1

∣∣∣∣ ≤ ε(1 + α)d+1.

Proof. Let f = 1A − α. Consider the system of m = d+ 1 linear forms
Li(x, y) = x + iy for i = 0, . . . , d. Its Cauchy-Schwarz complexity is
s = d− 1. Lemma 11.2 gives that for every nonempty S ⊆ [d+ 1],

E
x,y∈Fn

[∏
i∈S

f(x+ iy)
]
≤ ‖f‖Us+1 ≤ ε.
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Thus,

Pr
x,y∈Fn

[x, x+ y, . . . , x+ dy ∈ A]

= E
x,y∈Fn

[
d∏
i=0

1A(Li(x, y))
]

= αd+1 +
∑

S⊆[d+1],S 6=∅
αd+1−|S| E

x,y∈Fn

[∏
i∈S

f(x+ iy)
]
.

And,∣∣∣∣ Pr
x,y∈Fn

[x, x+ y, . . . , x+ dy ∈ A]− αd+1
∣∣∣∣

≤ ε
∑

S⊆[d+1],S 6=∅
αd+1−|S| ≤ ε(1 + α)d+1.

11.2 The True Complexity

The Cauchy-Schwarz complexity of L gives an upper bound on s, such
that if ‖f‖Us+1 is small enough for some function f : Fn → D, then f
is pseudorandom with regards to L. Gowers and Wolf [39] defined the
true complexity of a system of linear forms as the minimal s such that
the above condition holds for all f : Fn → D.

Definition 11.4 (True complexity [39]). Let L = {L1, . . . , Lm} be a
system of linear forms over F in ` variables. The true complexity of L
is the smallest d ∈ N with the following property. For every ε > 0 and
α ≥ 0, there exists δ > 0 such that if f : Fn → D is any function with
‖f − α‖Ud+1 ≤ δ, then∣∣∣∣∣ E

X∈(Fn)`

[
m∏
i=1

f(Li(X))
]
− αm

∣∣∣∣∣ ≤ ε.
An obvious upper bound on the true complexity is the Cauchy-

Schwarz complexity of the system. However, there are cases where this
is not tight. Gowers and Wolf conjectured that the true complexity
of a system of linear forms can be characterized by a simple linear
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algebraic condition: the smallest d ≥ 1 such that Ld+1
1 , . . . , Ld+1

m are
linearly independent, where the d-th tensor power of a linear form
L = (λ1, . . . , λ`) is defined as

Ld =

 d∏
j=1

λij : i1, . . . , id ∈ [`]

 ∈ F`
d
.

Remark 11.5. Note that if Ld+1
1 , . . . , Ld+1

m are linearly independent,
then for every e ≥ d, the vectors Le+1

1 , . . . , Le+1
m are also linearly inde-

pendent. Thus, for a system of linear forms L1, . . . , Lm, it is natural to
consider the smallest d for which Ld+1

1 , . . . , Ld+1
m are linearly indepen-

dent.

Conjecture 11.6 (True complexity characterization [39]. Resolved below
in Theorem 11.8). The true complexity of a system of linear forms
L = {L1, . . . , Lm} is the smallest d such that {Ld+1

1 , . . . , Ld+1
m } are

linearly independent.

Example 11.7. Consider the collection of linear forms L1 = (1, 0, 0),
L2 = (1, 1, 0), L3 = (1, 0, 1), L4 = (1, 1, 1), L5 = (1, 1,−1), L6 =
(1,−1, 1). It is easy to check that here the Cauchy-Schwarz complexity
is 2, while as observed by Gowers and Wolf, the true complexity of this
system of linear forms is 1.

Gowers and Wolf [40] verified their conjecture in the case where
|F| is sufficiently large; more precisely when |F| is at least the Cauchy-
Schwarz complexity of the system of linear form. Conjecture 11.6 in its
full generality was settled by Hatami et al. [47] through the following
theorem.

Theorem 11.8 (Hatami et al. [47]). Let L = {L1, . . . , Lm} be a sys-
tem of linear forms over F in ` variables. Assume that Ld+1

1 , . . . , Ld+1
m

are linearly independent. Then for every ε > 0, there exists δ > 0
such that for any collection of functions f1, . . . , fm : Fn → D with
mini∈[m] ‖fi‖Ud+1 ≤ δ, we have∣∣∣∣∣ E

X∈(Fn)`

[
m∏
i=1

fi(Li(X))
]∣∣∣∣∣ ≤ ε.
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We defer the proof of Theorem 11.8 to Section 12.2. Remark 11.5
and Theorem 11.8 imply that the smallest d for which Ld+1

1 , . . . , Ld+1
m

are linearly independent equals the true complexity of the system.
To see the usefulness of Theorem 11.8, let L = {L1, . . . , Lm} be a

system of linear forms of true complexity d. Assume that we are given
bounded functions f1, . . . , fm. A version of Theorem 9.1 for multiple
functions (a simpler version of Theorem 9.5), allows us to find a high
rank polynomial factor B of degree d, such that we can decompose
fi = gi + hi with gi = E[f |B] and ‖hi‖Ud+1 ≤ δ. The following corollary
to Theorem 11.8 shows that we may simply replace fi with gi when
counting linear patterns. In particular, choosing f1 = · · · = fm = f and
g1 = · · · = gm = α proves the Gowers-Wolf conjecture (Conjecture 11.6)
in its full generality.

Corollary 11.9. Let L = {L1, . . . , Lm} be a system of linear forms over
F in ` variables. Assume that Ld+1

1 , . . . , Ld+1
m are linearly independent.

Then for every ε > 0, there exists δ > 0 such that for any functions
f1, . . . , fm, g1, . . . , gm : Fn → D with ‖fi − gi‖Ud+1 ≤ δ, we have∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))
]
− E
X

[
m∏
i=1

gi(Li(X))
]∣∣∣∣∣ ≤ ε.

Proof. Choosing δ = δ(ε′) as in Theorem 11.8 for ε′ := ε/m, we have∣∣∣∣∣EX
[
m∏
i=1

fi(Li(X))
]
− E
X

[
m∏
i=1

gi(Li(X))
]∣∣∣∣∣

=

∣∣∣∣∣∣
m∑
i=1

E
X

(fi − gi)(Li(X)) ·
i−1∏
j=1

gj(Lj(X)) ·
m∏

j=i+1
fj(Lj(X))

∣∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣∣∣EX
(fi − gi)(Li(X)) ·

i−1∏
j=1

gj(Lj(X)) ·
m∏

j=i+1
fj(Lj(X))

∣∣∣∣∣∣
≤ m · ε′ ≤ ε,

where the second inequality follows from Theorem 11.8 since ‖fi −
gi‖Ud+1 ≤ δ.
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Deferred Technical Proofs

In this chapter we prove Theorem 7.32 and Theorem 11.8. The proofs are
somewhat technical, but they demonstrate the power of the techniques
that we have developed so far.

12.1 Near-orthogonality: Proof of Theorem 7.32

Theorem 7.32 (restated). Let F be a prime field, d ≥ 1, ε > 0. Let
{L1, . . . , Lm} be a system of linear forms, and B = {P1, . . . , PC} be
a polynomial factor of degree at most d and rank(B) > r7.32(F, d, ε).
Assume that each Pi is a nonclassical homogeneous polynomial. For
every set of coefficients Λ = {λi,j ∈ Z : i ∈ [C], j ∈ [m]}, define

PΛ(x) :=
C∑
i=1

m∑
j=1

λi,jPi(Lj(x)).

Then, one of the following two cases holds:

365
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• PΛ ≡ 0. In this case, for every i ∈ [C], and any nonclassical
homogeneous polynomials Qi : Fn → T with deg(Qi) = deg(Pi)
and depth(Qi) ≤ depth(Pi), we have

∑
j∈[m] λi,jQi(Lj(·)) ≡ 0.

• PΛ 6≡ 0. In this case, |E [e(PΛ)] | < ε.

We present the proof given by Hatami et al. [47]. By a linear form
we will always mean L ∈ F`, i.e. a linear form over a prime field F = Fp
in ` variables. For a linear form L = (λ1, . . . , λ`) define |L| =

∑`
i=1 |λi|.

Claim 12.1. Let d > 0 be an integer, and L = (λ1, . . . , λ`) ∈ F` be a
linear form. Then there exist linear forms Li = (λi,1, . . . , λi,`) ∈ F` for
i = 1, . . . ,m, and integer coefficients a1, . . . , am ∈ Z with m ≤ |F|` such
that

• P (L(X)) =
∑m
i=1 aiP (Li(X)) for every degree-d polynomial P :

Fn → T;

• |Li| ≤ d for every i ∈ [m];

• |λi,j | ≤ |λj | for every i ∈ [m] and j ∈ [`].

Proof. The proof proceeds by simplifying P (L(X)) using identities that
are valid for every polynomial P : Fn → T of degree d.

We prove the statement by induction on |L|. For the base case
|L| ≤ d there is nothing to prove. Consider |L| > d. Since P is of
degree d then deriving it d + 1 times yields the zero polynomial. As
|L| > d, the same holds if we derive it |L| times. So, for every choice of
y1, . . . , y|L| ∈ Fn, we have

∑
S⊆[|L|]

(−1)|L|−|S|P
(∑
i∈S

yi

)
= (Dy1 . . . Dy|L|P )(0) ≡ 0. (12.1)

Let X = (x1, . . . , x`) ∈ (Fn)`. Setting |λi| of the vectors y1, . . . , y|L|
to be equal to xi for every i ∈ [`], Equation (12.1) gives linear forms
Mi = (τi,1, . . . , τi,`) for which

P (L(X)) =
∑
i

αiP (Mi(X)), (12.2)
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for all i, |Mi| ≤ |L| − 1, and for every j ∈ [`], |τi,j | ≤ |λj |. Since
|Mi| ≤ |L| − 1, we can apply the induction hypothesis to obtain the
identities

P (Mi(X)) =
mj∑
j=1

aijP (Mij(X))

where the linear forms Mij = (ρij1, . . . , ρij`) satisfy |Mij | ≤ d, and
|ρijk| ≤ |τij | ≤ |λj | for every i, j, k. Substituting these identities in
Equation (12.2) yields the desired result.

The next claim shows that we can further simplify the expression
given in Claim 12.1. Let Ld ⊆ F` denote the set of nonzero linear forms
L with |L| ≤ d and with the first (left-most) nonzero coefficient equal
to 1, e.g. (0, 1, 0, 2) ∈ L3 but (2, 1, 0, 0) 6∈ L3.

Claim 12.2. For any linear form L ∈ F` and integer d > 0, there exists
a collection of integer coefficients {aM,c ∈ Z}M∈Ld,c∈F∗ such that for
every degree-d polynomial P : Fn → T,

P (L(X)) =
∑

M∈Ld,c∈F∗
aM,cP (cM(X)). (12.3)

Proof. Similar to the proof of Claim 12.1 we simplify P (L(X)) using
identities that are valid for every polynomial P : Fn → T of degree d.

We use induction on the number of nonzero entries of L. The case
when L has only one nonzero entry is trivial. For the induction step,
choose c ∈ F so that the leading nonzero coefficient of L′ = c · L is
equal to 1. Assume that L′ = (λ1, . . . , λ`). If |L′| ≤ d we are done.
Assume otherwise that |L′| > d. Applying Claim 12.1 for the degree-d
polynomial R(x) := P (c−1x) and the linear form L′ we can write

P (L(X)) = P (c−1L′(X)) = R(L′(X))

=
∑
i

βiR(Mi(X)) =
∑
i

βiP (c−1Mi(X)), (12.4)

where for every i, βi ∈ Z and Mi = (λi,1, . . . , λi,`) satisfies |Mi| ≤ d;
and |λi,j | ≤ |λj | for every j ∈ [`]. Let I = {i : Mi ∈ Ld}. Then

P (L(x)) =
∑
i∈I

αiP (c−1Mi(X)) +
∑
i/∈I

αiP (c−1Mi(X)). (12.5)
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In order to conclude the proof, we need to handle the sum over i /∈ I.
Observe that if i /∈ I, then as the leading coefficient of L′ is 1, then
Claim 12.1 implies in particular that Mi has smaller support than L.
Thus, we may apply our induction hypothesis for c−1Mi for all i /∈ I,
which concludes the proof.

Claim 12.2 applies to all polynomials of degree d. If we also specify
the depth, then we can obtain a stronger statement. However, in this
statement we shall need to assume that the polynomials are homoge-
neous.

Claim 12.3. Let d ≥ 1, k ≥ 0, L1, . . . , Lm ∈ F` be linear forms, and let
{λi ∈ Z}i∈[m] be integer coefficients. Then there exist integer coefficients
{aM ∈ Z}M∈Ld such that the following is true. For every homogeneous
polynomial P : Fn → T of degree d and depth ≤ k,

•
∑m
i=1 λiP (Li(X)) ≡

∑
M∈Ld aMP (M(X));

• For every M with aM 6= 0, we have |M | ≤ deg(aMP ).

Proof. The proof is similar to that of Claim 12.2, except that now
we repeatedly apply Claim 12.2 to every term of the form λP (L(X))
to express it as an integer linear combination of P (cM(X)) for M ∈
Ldeg(λP ) and c ∈ F∗. We use the assumption that P is homogeneous of
degree d to replace P (cM(X)) with σcP (M(X)), where if c = ζi for the
fixed generator ζ ∈ F∗ then σc = σ(d, k)i. Observe that the condition
aMP 6= 0 depends only on the depth of P (that is, if it is zero for some
polynomial P of depth k, then it is also zero for all polynomials of depth
≤ k). Thus, the above process depends only on the assumption that P
is homogeneous, its degree d, and a bound on its depth k. By repeating
this procedure we arrive at the desired expansion.

We are now ready for the proof of Theorem 7.32. For a linear form
L = (λ1, . . . , λ`), let lc(L) denote the index of its first nonzero entry,
namely lc(L) := mini:λi 6=0 i.
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Proof of Theorem 7.32. Let d be the degree of the factor. For every
i ∈ [C], by Claim 12.3 we have

m∑
j=1

λi,jPi(Lj(X)) =
∑
M∈Ld

λ′i,MPi(M(X)) (12.6)

for some integers λ′i,M such that if λ′i,M 6= 0 then |M | ≤ deg(λ′i,MPi).
The simplifications of Claim 12.3 depend only on the degrees and
depths of the polynomials. Hence, if λ′i,MPi ≡ 0 for all M ∈ Ld, then
(λi,1, . . . , λi,m) is in the (di, k′i)-dependency set for all k′i ≤ ki (see
Definition 7.34 for the definition). This implies that

∑m
j=1 λi,jQi(Lj(X))

for all homogeneous polynomials Qi of degree di and depth ≤ ki.
So to prove the theorem, it suffices to show that PΛ has small bias

if λ′i,MPi 6≡ 0 for some i ∈ [C] and M ∈ Ld. Suppose this is true, and
thus there exists a nonempty setM⊆ Ld such that

PΛ(X) =
∑

i∈[C],M∈M
λ′i,MPi(M(X)),

and for every M ∈ M, there is at least one index i ∈ [C] for which
λ′i,MPi 6≡ 0. Choose i∗ ∈ [C] and M∗ ∈M in the following manner.

• First, let M∗ ∈ M be such that lc(M∗) = minM∈M lc(M), and
among these, |M∗| is maximal.

• Then, let i∗ ∈ [C] be such that deg(λ′i∗,M∗Pi∗) is maximized.

Without loss of generality assume that i∗ = 1, lc(M∗) = 1, and let
d∗ := deg(λ′1,M∗P1) ≤ d. We claim that if

∑
j∈[m] λ1,jP1(Lj(X)) is not

the zero polynomial, then deg(PΛ) ≥ d∗, and moreover, PΛ has small
bias. We prove this by deriving PΛ in specific directions in a manner
that all the terms but λ′1,M∗P1(M∗(X)) vanish.

The following definition will be useful to that affect.

Definition 12.4 (Derivative according to pair). Let P : (Fn)` → T. For
a vector α ∈ F` and an element y ∈ Fn, the derivative of P according
to the pair (α, y) is defined as

D(α,y)P (x1, . . . , x`) := P (x1 + α1y, · · · , x` + α`y)− P (x1, . . . , x`).
(12.7)
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For Pi : Fn → T and a linear formM ∈ F`, define Pi◦M : (Fn)` → T
as

(Pi ◦M)(x1, . . . , x`) := Pi(M(x1, . . . , x`)).
Note that for every M ∈M,

D(α,y)(Pi ◦M)(x1, · · · , x`)
= Pi(M(x1, . . . , x`) +M(α1, . . . , α`)y)− Pi(M(x1, . . . , x`))
= (D〈M,α〉yPi)(M(x1, . . . , x`)).

Thus if α is chosen such that 〈M,α〉 = 0 then D(α,y)(Pi ◦M) ≡ 0. Thus,
our goal is to carefully choose a set of directions that will annihilate all
linear forms but M∗, which will greatly simplify the analysis.

Assume that M∗ = (w∗1, . . . , w∗` ), where w∗1 = 1. Let t := |M∗|. By
Claim 12.3 we have t ≤ d∗, since if λ′i,M∗ 6= 0 then necessarily |M∗| ≤
deg(λ′i,M∗Pi) = d∗. As a first step, take α1 := e1 = (1, 0, 0, . . . , 0) ∈ F`.
Choose additional t−1 vectors as follows: for each j = 2, . . . , `, and each
w = 1, . . . , w∗j − 1, pick αj,w := −we1 + ej = (−w, 0, . . . , 0, 1, 0, . . . , 0) ∈
F`, where the 1 is in the j-th coordinate. Observe that there are are
indeed |M∗| − 1 = t− 1 such vectors, and for convenience number them
as α2, . . . , αt ∈ F`.

The following claim shows that deriving PΛ iteratively according to
the pairs (α1, y1), . . . , (αt, yt) annihilates all linear forms except M∗.

Claim 12.5.

D(α1,y1) · · ·D(αt,yt)PΛ(X)

=
(
D〈M∗,α1〉y1 · · ·D〈M∗,αt〉yt

(
C∑
i=1

λ′i,M∗Pi

))
(M∗(X)). (12.8)

Proof. We need to show that for every M = M\ {M∗}, there exists
i ∈ [t] such that 〈M,αi〉 = 0. Assume that M = (w1, . . . , w`). If w1 = 0
then 〈M,α1〉 = 0. Otherwise by our assumption w1 = 1. As |M∗| was
chosen to be maximal among all M with lc(M) = lc(M∗), there must
exist some j = 2, . . . , ` for which wj < w∗j . But then the appropriate
αi = αj,wj satisfies 〈M,αi〉 = 0.

Next, we choose additional d∗ − t vectors αt+1, . . . , αd∗ ∈ F` to
only keep polynomials Pi in the sum for which λ′i,M∗Pi has maximal
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degree, namely d∗. To do so, simply choose αt+1 = · · · = αd∗ :=
e1 ∈ F`. The next claim shows that deriving PΛ according to the
pairs (α1, y1), . . . , (αd∗ , yd∗) annihilates all linear forms but M∗, and
furthermore keeps only polynomials Pi where λ′i,M∗Pi has degree d.

Claim 12.6.

D(α1,y1) · · ·D(αd∗ ,yd∗ )PΛ(X)

=
(
D〈M∗,α1〉y1 · · ·D〈M∗,αd∗ 〉yd∗

∑
i∈[C]:

deg(λ′
i,M∗Pi)=d

∗

λ′i,M∗Pi

)
(M∗(X)).

(12.9)

Proof. We already know by Claim 12.5 that

D(α1,y1) · · ·D(αt,yt)PΛ(X)

=
(
D〈M∗,α1〉y1 · · ·D〈M∗,αt〉yt

(
C∑
i=1

λ′i,M∗Pi

))
(M∗(X)).

Thus, we just need to additionally derive this expression according to
the pairs (αt+1, yt+1), . . . , (αd∗ , yd∗). We have

D(α1,y1) · · ·D(αd∗ ,yd∗ )PΛ(X)

=
(
D〈M∗,α1〉y1 · · ·D〈M∗,αd∗ 〉yt

(
C∑
i=1

λ′i,M∗Pi

))
(M∗(X)).

The claim follows as by the choice of d∗ we have deg(λ′i,M∗Pi) ≤ d∗ for all
i. If deg(λ′i,M∗Pi) < d∗ then the d∗ derivatives D〈M∗,α1〉y1 · · ·D〈M∗,αd∗ 〉yt
annihilate λ′i,M∗Pi. Thus, we only retain the polynomials Pi for which
λ′i,M∗Pi has maximal degree, namely d∗.

Let Q(x) :=
∑
i∈[C]:deg(λ′

i,M∗Pi)=d
∗ λ′i,M∗Pi(x). Claim 12.6 implies

that

E
y1,...,yd∗∈Fn,X∈(Fn)`

[
e
(
D(α1,y1) · · ·D(αd∗ ,yd∗ )PΛ)(X)

)]
= E

y1,...,yd∗∈Fn,X∈(Fn)`

[
e
((
D〈M∗,α1〉y1 · · ·D〈M∗,αd∗ 〉yd∗Q

)
(M∗(X))

)]
.
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Next, define x = M∗(X) ∈ Fn and zj = 〈M∗, αj〉yj ∈ Fn. It is simple
to verify from our construction that 〈M∗, αj〉 6= 0 for all j. Thus, the
joint distribution of x, z1, . . . , zd∗ ∈ Fn is uniform and independent, and
hence

E
y1,...,yd∗∈Fn,
X∈(Fn)`

[
e
(
D(α1,y1) · · ·D(αd∗ ,yd∗ )PΛ)(X)

)]
= E

x,z1,...,zd∗∈Fn

[
e
((
Dz1 · · ·Dzd∗Q

)
(x)
)]

= ‖Q‖2d
∗

Ud
∗ .

Recall that B is assumed to be of high rank. Concretely, we require
B to have rank at least r7.32(F, d, ε) := r7.14(F, d, ε). By definition,
any linear combination of the polynomials defining B has such rank.
In particular, this holds for Q, which by Theorem 7.14 implies that
‖Q‖Ud∗ ≤ ε. Thus

E
y1,...,yd∗ ,X

[
e
(
D(α1,y1) · · ·D(αd∗ ,yd∗ )PΛ)(x1, . . . , x`)

)]
≤ ε2d ,

In order to conclude the proof, we need to relate the LHS of the above
expression to the bias of PΛ. This can be achieved via a repeated appli-
cation of the Cauchy-Schwarz inequality. The following claim appeared
first in [14].

Claim 12.7 (Bhattacharyya et al. [14], Claim 3.4). For any nonzero
α1, . . . , αd∗ ∈ F`,

E
y1,...,yd∗∈Fn,X∈(Fn)`

[
e
(
(D(α1,y1) · · ·D(αd∗ ,yd∗ )PΛ)(X)

)]

≥
∣∣∣∣∣ E
X∈(Fn)`

[e (PΛ(X))]
∣∣∣∣∣
2d

.

Proof. It suffices to show that for any function P : (Fn)` → T and
nonzero α = (a1, . . . , a`) ∈ F`,∣∣∣∣∣ E

y∈Fn,X∈(Fn)`

[
e
(
(D〈α,y〉P )(X)

)]∣∣∣∣∣ ≥
∣∣∣∣∣ E
X∈(Fn)`

[e (P (X))]
∣∣∣∣∣
2

.
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Recall that (D(α,y)P )(x1, . . . , x`) = P (x1+a1y, . . . , x`+a`y)−P (x1, . . . ,

x`). Without loss of generality, suppose a1 6= 0. We make a change of
coordinates so that α can be assumed to be (1, 0, . . . , 0). More precisely,
define P ′ : (Fn)` → T as

P ′(x1, . . . , x`) := P

(
x1,

x2 + a2x1
a1

,
x3 + a3x1

a1
, . . . ,

x` + a`x1
a1

)
.

Observe that with this definition,

P (x1, . . . , x`) = P ′(x1, a1x2 − a2x1, a1x3 − a3x1, . . . , a1x` − a`x1)

and

(D(α,y)P )(x1, . . . , x`)
= P ′(x1 + a1y, a1x2 − a2x1, . . . , a1x` − a`x1)

− P ′(x1, a1x2 − a2x1, . . . , a1x` − a`x1).

Therefore

E
y,x1,...,x`∈F

[
e
(
(D(α,y)P )(x1, . . . , x`)

)]
= E

y,x1,...,x`∈F

[
e
(
P ′(x1 + a1y, a1x2 − a2x1, . . . , a1x` − a`x1)

− P ′(x1, a1x2 − a2x1, . . . , a1x` − a`x1)
)]

= E
y,x1,...,x`∈F

[
e
(
P ′(x1 + a1y, x2, . . . , x`)− P ′(x1, x2, . . . , x`)

)]
= E

x2,...,x`∈F

∣∣∣∣ E
x1∈F

[
e
(
P ′(x1, x2, . . . , x`)

)]∣∣∣∣2

We can thus conclude the proof as, by the Cauchy-Schwartz inequality,
it holds that∣∣∣∣∣ E

y,x1,...,x`∈F

[
e
(
(D(α,y)P )(x1, . . . , x`)

)]∣∣∣∣∣
≤
∣∣∣∣∣ E
x1,x2,...,x`∈F

[
e
(
P ′(x1, x2, . . . , x`)

)]∣∣∣∣∣
2

=
∣∣∣∣∣ E
x1,x2,...,x`∈F

[e (P (x1, x2, . . . , x`))]
∣∣∣∣∣
2

.
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Remark 12.8. The proof of Theorem 7.32 also shows the following.
Suppose, under the same conditions of Theorem 7.32, that for every
polynomial Pi for i ∈ [C] and any linear form Lj for j ∈ [m], one the
following two conditions holds:

• |Lj | ≤ deg(λi,jPi); or

• λi,jPi = 0.

Now, if λi,j ≡ 0 mod pdepth(Pi)+1 for all i ∈ [C], j ∈ [m], then clearly
λi,jPi = 0 for all i, j and hence PΛ = 0. In all other cases, we obtain
that Pλ 6= 0 and hence bias(PΛ) < ε. The proof is identical to the proof
of Theorem 7.32, except that there is no need to transform λi,j to λ′i,j
in the beginning of the proof.

12.2 Proof of Theorem 11.8

Theorem 11.8 (restated). Let L = {L1, . . . , Lm} be a system of
linear forms in ` variables, such that Ld+1

1 , . . . , Ld+1
m are linearly inde-

pendent. For every ε > 0, there exists δ > 0 such that for any collection
of functions f1, . . . , fm : Fn → D with mini∈[m] ‖fi‖Ud+1 ≤ δ, we have∣∣∣∣∣ E

X∈(Fn)k

[
m∏
i=1

fi(Li(X))
]∣∣∣∣∣ ≤ ε. (12.10)

We present the proof due to Hatami et al. [47]. First, note that
since Ld+1

1 , . . . , Ld+1
m are linearly independent, it must be the case that

L1, . . . , Lm are pairwise linearly independent. That is, it is not the case
that Li = cLj for some distinct i, j ∈ [m] and c ∈ F. Consequently,
L = {L1, . . . , Lm} is of finite Cauchy-Schwarz complexity s for some
s ≤ m− 2 <∞, because as pointed out earlier, for every i ∈ [m], the
partition of {Lj}j∈[m]\{i} into m− 1 singletons satisfies the requirement
of Definition 11.1. The case when s ≤ d follows from Lemma 11.2. Thus
we are left with the case when s > d. We will prove that ‖f1‖Ud+1 ≤ δ
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where δ is sufficiently small, implies Equation (12.10). The theorem
then follows by symmetry in the choice of f1.

As a first step, we decompose the functions as fi = gi + hi, where
gi = E[f |B] for a suitably chosen polynomial factor B of sufficiently
high rank, and where hi has negligible (s+ 1)-th Gowers norm. In order
to do so, let r : N→ N be a large enough rank bound to be chosen later.
Apply a multifunction version of Theorem 9.1 along with Theorem 10.4
and Theorem 7.30, to obtain a simultaneous decomposition fi = gi + hi
for all i ∈ [m] where

1. gi = E[fi|B], where B is an r-regular polynomial factor, defined
by homogeneous polynomials, of degree at most s and complexity
C ≤ Cmax(|F|, s,m, ε, r(·)).

2. ‖hi‖Us+1 ≤ ε
2m .

We will assume that the rank r(C) is chosen large enough, so that
B is ν(C)-uniform for ν(C) > 0 to be chosen later (See Remark 7.19).
We first show that we may replace fi’s in Equation (12.10) with gi’s,
using the same proof as Corollary 11.9.

Claim 12.9.
∣∣∣EX∈(Fn)` [

∏m
i=1 fi(Li(X))]− EX∈(Fn)` [

∏m
i=1 gi(Li(X))]

∣∣∣ ≤
ε
2 .

Proof. We have∣∣∣∣∣EX
[
m∏
i=1

fi(Li(X))
]
− E
X

[
m∏
i=1

gi(Li(X))
]∣∣∣∣∣

=

∣∣∣∣∣∣
m∑
i=1

E
X

hi(Li(X)) ·
i−1∏
j=1

gj(Lj(X)) ·
m∏

j=i+1
fj(Lj(X))

∣∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣∣∣EX
hi(Li(X)) ·

i−1∏
j=1

gj(Lj(X)) ·
m∏

j=i+1
fj(Lj(X))

∣∣∣∣∣∣
≤

m∑
i=1
‖hi‖Us+1 ≤

ε

2 ,

where the second inequality follows from Lemma 11.2 as the Cauchy-
Schwarz complexity of L is s.
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Thus it is sufficient to bound
∣∣∣EX∈(Fn)`

[∏m
i=1 gi(Li(X))

]∣∣∣ ≤ ε/2.
For each i, gi = E[fi|B] and thus

gi(x) = Γi(P1(x), . . . , PC(x)),

where P1, . . . , PC are the nonclassical homogeneous polynomials of
degree ≤ s defining B and Γi : TC → D is a function. Let ki = depth(Pi)
so that by Lemma 6.3, each Pi takes values in Uki+1 = 1

pki+1Z/Z. Let
Σ := Zpk1+1 × · · · × ZpkC+1 .

Using the Fourier transform on Uk1+1 × . . .× UkC+1 ∼= Σ, for every
τ = (τ1, . . . , τC) ∈ Σ we have

Γi(τ) =
∑

Λ=(λ1,...,λC)∈Σ
Γ̂i(Λ) · e

 C∑
j=1

λjτj

, (12.11)

where

Γ̂i(Λ) := E
τ

Γi(τ)e

 C∑
j=1

λjτj


is the Fourier coefficient of Γi corresponding to Λ. Observe that |Γ̂i(Λ)| ≤
1. Consequently,

gi(x) =
∑

Λ=(λ1,...,λC)∈Σ
Γ̂i(Λ) · e

 C∑
j=1

λjPj(x)

. (12.12)

Let PΛ :=
∑C
j=1 λjPj(x) for the sake of brevity so that we may write

E
X

[
m∏
i=1

gi(Li(X))
]

=
∑

Λ1,...,Λm∈Σ

(
m∏
i=1

Γ̂i(Λi)
)
· E
X

[
e

(
m∑
i=1

PΛi(Li(X))
)]

.

(12.13)
We will show that each term in Equation (12.13) can be bounded by
ε

2|Σ|m , thus concluding the proof by the triangle inequality.
We first show that the terms for which deg(PΛ1) ≤ d are small.

Recall that by our assumption ‖f1‖Ud+1 ≤ δ, where δ is small enough
to be determined later.
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Claim 12.10. Let Λ1 ∈ Σ be such that deg(PΛ1) ≤ d. Then∣∣∣Γ̂1(Λ1)
∣∣∣ ≤ δ + |Σ|ν(C).

Proof. It follows from Equation (12.12) that

Γ̂1(Λ1) = E
x∈Fn

[g1(x)e (−PΛ1(x))]−
∑

Λ6=Λ1

Γ̂1(Λ)· E
x∈Fn

[e (PΛ(x)− PΛ1(x))] .

We bound the first term.∣∣∣∣Ex [g1(x)e (−PΛ1(x))]
∣∣∣∣ =

∣∣∣∣Ex [f1(x)e (−PΛ1(x))]
∣∣∣∣

≤ ‖f1e (−PΛ1)‖Ud+1

= ‖f1‖Ud+1 ≤ δ.

The first equality follows as g1 = E[f1|B] and PΛ1 is B-measurable.
Next, we bound each summand in the second term. Fix Λ 6= Λ1.

Recall that the polynomial factor B is ν(C)-uniform by our construction.
In particular the bias of PΛ − PΛ1 = PΛ−Λ1 is at most ν(C). That
is, |Ex∈Fn [e (PΛ(x)− PΛ1(x))] | ≤ ν(C). As also |Γ̂1(Λ)| ≤ 1, each
summand in the sum in the second term is bounded by ν(C).

Claim 12.10 allows us to bound the contribution of the terms in
Equation (12.13) corresponding to tuples (Λ1, . . . ,Λm) ∈ Σm with
deg(PΛ1) ≤ d.

∑
Λ1,...,Λm∈Σ:
deg(PΛ1 )≤d

(
m∏
i=1

Γ̂i(Λi)
)
E
X

[
e

(
m∑
i=1

PΛi(Li(X))
)]
≤ |Σ|m (δ + |Σ|ν(C)) .

(12.14)
Next, we bound the terms for which deg(PΛ1) > d. We will need the

following lemma.

Lemma 12.11. Assume that Ld+1
1 , . . . , Ld+1

m are linearly independent,
and let (Λ1, . . . ,Λm) ∈ Σm be such that deg(PΛ1) ≥ d+ 1. Then

m∑
i=1

PΛi(Li(X)) 6≡ 0.
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Before proving Lemma 12.11 let us first describe why it suffices to
complete the proof of Theorem 11.8. Theorem 7.32 gives that, if we
that the rank r(·) is chosen so that r(C) ≥ r7.32(F, s, δ), then under the
conclusion of Lemma 12.11, we in fact have that∣∣∣∣∣ E

X∈(Fn)`

[
e

(
m∑
i=1

PΛi(Li(X))
)]∣∣∣∣∣ ≤ δ.

We may thus conclude that∑
Λ1,...,Λm∈Σ:

deg(PΛ1 )≥d+1

(
m∏
i=1

Γ̂i(Λi)
)
· E
X

[
e

(
m∑
i=1

PΛi(Li(X))
)]
≤ δ|Σ|m. (12.15)

Combining (12.14) and (12.15) allows us to conclude that∑
Λ1,...,Λm∈Σ

(
m∏
i=1

Γ̂i(Λi)
)
· E
X

[
e

(
m∑
i=1

PΛi(Li(X))
)]
≤ (δ + |Σ|ν(C))|Σ|m.

To conclude we set parameters. Observe that |Σ| = |F|
∑

i∈[C] depth(Pi)+1 ≤
|F|
∑

i∈[C] deg(Pi) ≤ |F|Cs. Thus, we may choose r(·) so that ν(C)|Σ|m+1 ≤
ε/4. To conclude, after choosing r(·) we have an upper bound on the
complexity of B, namely C ≤ Cmax = Cmax(|F|, s,m, ε, r(·)). We set
δ := (ε/4)|F|Cmaxsm and conclude the proof.

Thus, we are left with proving Lemma 12.11. This is the only place
in the proof where we actually use the assumption that Ld+1

1 , . . . , Ld+1
m

are linearly independent.

Proof of Lemma 12.11. Assume to the contrary that
∑m
i=1 PΛi(Li(X))

is identically zero. Denoting the coordinates of Λi by (λi,1, . . . , λi,C) ∈
ΣC we have

m∑
i=1

PΛi(Li(X)) =
∑

i∈[m],j∈[C]
λi,jPj(Li(X)) ≡ 0.

We apply Theorem 7.32. This requires assuming that the polynomial
factor B has high enough rank, which we can achieve by requiring that
r(C) ≥ r7.32(F, s, 1/2), say. Thus, for every j ∈ [C] we must have

m∑
i=1

λi,jPj(Li(X)) ≡ 0. (12.16)
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In fact, we know more: for any nonclassical homogeneous polynomials
Qj with deg(Qj) = deg(Pj) and depth(Qj) ≤ depth(Pj) it holds that

m∑
i=1

λi,jQj(Li(X)) ≡ 0.

Next, as we assume that deg(PΛ1) ≥ d + 1, there must exist j ∈
[C] such that deg(λ1,jPj) ≥ d + 1. Let j∗ ∈ [C] be such that d∗ :=
deg(λ1,j∗Pj∗) is maximized. By our assumptions, d∗ ≥ d+ 1. Let t ≥ 0
be the largest integer such that pt = |F|t divides λi,j∗ for all i ∈ [m].
Define µi := λi,j∗/p

t ∈ Z and P (x) = ptPj∗(x). Then
m∑
i=1

µiP (Li(X)) =
m∑
i=1

λi,j
pt
ptPj∗(Li(X)) ≡ 0.

The polynomial P belongs to B. As such, {P} has rank at least
r(C) as well. Thus by another application of Theorem 7.32, for any
homogeneous polynomial Q of degree deg(Q) = deg(P ) and depth(Q) ≤
depth(P ) it holds that

m∑
i=1

µiQ(Li(X)) ≡ 0. (12.17)

In particular, this holds for any homogeneous classical polynomial
Q of degree D := deg(P ) ≥ deg(λ1,jPj) = d∗ ≥ d + 1. That is, if
R : Fn → F is a homogeneous classical polynomial of degree D then, by
setting Q(x) = R(x)

p we get
m∑
i=1

µiR(Li(X)) ≡ 0 mod p. (12.18)

We apply it to the homogeneous classical monomialR(z) = z1z2 . . . zD.
In order to compute R(Li(X)), let X = (x1, . . . , x`) ∈ (Fn)` where
xi = (xi,1, . . . , xi,n) ∈ Fn. Let Li = (λi,1, . . . , λi,`) ∈ F`. Then

R(Li(X)) =
D∏
a=1

(∑̀
b=1

λi,bxb,a

)
.

In particular, for b1, . . . , bD ∈ [`], the coefficient of the monomial∏D
a=1 xba,a in R(Li(X)) is

∏D
a=1 λi,ba , which is the (b1, . . . , bD) coef-
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ficient of LDi . Thus (12.18) implies that
m∑
i=1

µiL
D
i ≡ 0 mod p.

However, by our choice of t, there must exist i∗ ∈ [m] for which ptλi∗,j∗
does not divide by p. That is, µi 6= 0 mod p. But then we get that
LD1 , . . . , L

D
m are linearly dependent. This contradicts the assumption

that the assumption that Ld+1
1 , . . . , Ld+1

m are linearly independent.
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13
Algorithmic Regularity

This chapter is concerned with the algorithmic versions of regularity
lemmas for polynomials over finite fields. The regularity lemmas proved
by Green and Tao [43] and Kaufman and Lovett [54] as discussed in
Section 7.5 show that one can modify a given collection of polynomials
B = {P1, . . . , Pc} into a regular collection B′ = {P1, . . . , Pc′} of polyno-
mials of same or lower degree. Here, we mean regularity in the sense
of Definition 7.8. These lemmas are central to higher-order Fourier
analysis and have various applications. Bhattacharyya et al. [17] studied
algorithmic versions of these theorems and showed that analytic notions
of regularity such as the ones defined in Section 7.2 allow for efficient
algorithms.

13.1 A lemma of Bogdanov and Viola

A key first step in proofs of inverse theorems for Gowers norms and
that biased polynomials have small rank is an elegant argument due to
Bogdanov and Viola [21], proving that if a polynomial of degree d is
biased, then it can be approximated by a bounded set of polynomials of
lower degree. In Chapter 8 we saw a more efficient version of this lemma
due to Bhowmick and Lovett [19]. It was observed by Bhattacharyya

381
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382 Algorithmic Regularity

et al. [17] that the Bogdanov-Viola lemma can be made algorithmic due
to its probabilistic proof.

Lemma 13.1 (Algorithmic Bogdanov-Viola lemma [17]). Let d ≥ 0 be an
integer, and δ, σ, β ∈ (0, 1] be parameters. There exists a randomized
algorithm, that given a polynomial P : Fn → F of degree d with

bias(P ) ≥ δ,

runs in time Oδ,β,σ(nd), and with probability 1− β returns functions
P̃ : Fn → F and Γ : FC → F, and a set of polynomials P1, · · · , PC ,
where C ≤ |F|5

δ2σβ and deg(Pi) < d for all i ∈ [C], for which

• Prx(P (x) 6= P̃ (x)) ≤ σ, and

• P̃ (x) = Γ(P1(x), · · · , PC(x)).

The idea is to use derivatives of P at a few randomly chosen direc-
tions in order to approximate the value of P .

Proof. The proof will be an adaptation of the proof from the paper
by Green and Tao [43]. Given query access to the polynomial P , we can
compute the explicit description of P in O(nd) queries. For every a ∈ F
define the measure µa(t) := Pr(P (x) = a+ t). It is easy to see that if
bias(P (x)) ≥ δ then, for every a 6= b,

‖µa − µb‖∞ ≥
4δ
|F|
. (13.1)

We will try to estimate each of these distributions. Let

µ̃a(t) := 1
C

∑
1≤i≤C

1P (xi)=a+t,

where C > |F|5
δ·β1

, and x1, x2, · · · , xC ∈ Fn are chosen uniformly at
random. Therefore by an application of Chebyshev’s inequality

Pr
(
|µ̃a(t)− µa(t)| >

δ

2|F|2
)
<
β1
|F|
,

for all t ∈ F and therefore

Pr
(
‖µ̃a − µa‖∞ >

δ

2|F|2
)
< β1. (13.2)
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Now we will focus on approximating P (x). Remember thatDhP (x) =
P (x+ h)− P (x) is the additive derivative of P (x) in direction h. We
have

Pr
h

(DhP (x) = r) = Pr
h

(P (x+ h)− P (x) = r) = µP (x)(r),

where h ∈ Fn is chosen uniformly at random. Let h = (h1, · · · , hC) ∈
(Fn)C be chosen uniformly at random, where C is a sufficiently large
constant to be chosen later. Define the corresponding “observed” distri-
bution as

µ
(x)
obs(t) := 1

C

∑
1≤i≤C

1DhjP (x)=t,

and let
P̃h(x) := arg min

r∈F
‖µ̃r − µ(x)

obs‖∞.

Now choosing C ≥ |F|5
δ2σβ2

, another application of Chebyshev’s inequality
gives

Pr
h

(P̃h(x) 6= P (x)) ≤ Pr
h

(
‖µ(x)

obs − µP (x)‖∞ ≥
δ

|F|

)
≤ σβ2, (13.3)

where the first inequality follows from (13.1) and (13.2). Therefore

Pr
x,h

(P̃h(x) 6= P (x)) = E
x
E
h
1
P̃h(x)6=P (x) ≤ σβ2,

and thus
Pr
h

[
Pr
x

(
P̃h(x) 6= P (x)

)
≥ σ

]
≤ β2.

Let Pi := DhiP , so that Pi is of degree ≤ d and P̃h is a function of
P1, · · · , PC . Now setting β1 := β

2|F|2 and β2 := β
2 finishes the proof.

13.2 Algorithmic regularity lemmas

Lemma 13.1 implies an algorithmic analogue of the Lemma 7.29, with
the caveat that the refinement is approximate. The proof is by an
induction similar to that of Lemma 7.29 with the difference that at each
step one has to control the errors that are introduced through the use
of Lemma 13.1 and the probability of correctness.
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Definition 13.2. Let F = {P1, . . . , Pm} be a polynomial factor of degree
d. We say that a polynomial factor F ′ = {Q1, . . . , QM} is σ-close to
being a refinement of F , if there exists a map Γ for which Prx∈Fn [F(x) 6=
Γ(F ′(x))] ≤ σ.

Lemma 13.3 (Unbiased almost refinement). Let d ≥ 1 be an integer.
Suppose γ : N→ R+ is a decreasing function and σ, ρ ∈ (0, 1]. There is
a randomized algorithm that given a factor F of degree d, runs in time
Oγ,ρ,σ,dim(F)(nd) and with probability 1− ρ returns a γ-unbiased factor
F ′ with dim(F ′) = Oγ,ρ,σ,dim(F)(1), such that F ′ is σ-close to being a
refinement of F .

Proof. The proof idea is similar to that of Lemma 7.29 in the sense that
we use the same type of induction. The difference is that at each step
we will have to control the errors that we introduce and the probability
of correctness. At all steps in the proof without loss of generality we
will assume that the polynomials in the factor are linearly independent,
because otherwise we can always detect such a linear combination in
Oγ,ρ,σ,dim(F)(nd) time and remove a polynomial that can be written as
a linear combination of the rest of the polynomials in the factor.

The base case for d = 1 is simple, a linearly independent set of
non-constant linear polynomials is not biased at all, namely it is 0-
unbiased. If F is γ-biased, then there exists a set of coefficients {ci,j ∈
F}1≤i≤d,1≤j≤Mi

such that

bias(
∑
i,j

ci,jPi,j) ≥ γ(dim(F)).

To detect this, we will use the following algorithm:
We will estimate bias of each of the |F|dim(F) linear combinations

and check whether it is greater than 3γ(dim(F))
4 . To do so, for each

linear combination
∑
i,j ci,jPi,j independently select a set of vectors

x1, · · · , xC uniformly at random from Fn, and let b̃ias(
∑
i,j ci,jPi,j) :=∣∣∣ 1

C

∑
`∈[C] eF(y`)

∣∣∣, where y` =
∑
i,j ci,j · Pi,j(x`). Choosing

C = Odim(F)

( 1
γ(dim(F))2 log(1

ρ
)
)
,

we can distinguish bias ≥ γ from bias ≤ γ
2 , with probability 1 − ρ′,

where ρ′ := ρ
4|F|dim(F) . Let

∑
i,j ci,jPi,j be such that the estimated bias
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was above 3γ(dim(F))
4 and k be its degree. We will stop if there is no

such linear combination or if the factor is of degree 1. Since by a union
bound with probability at least 1− ρ

4 , bias(
∑
i,j ci,jPi,j) ≥

γ(dim(F))
2 , by

Lemma 13.1 we can find, with probability 1− ρ
4 , a set of polynomials

Q1, · · · , Qr of degree k − 1 such that

•
∑
i,j ci,jPi,j is σ

2 -close to a function of Q1, · · · , Qr,

• r ≤ 16|F|5
γ(dim(F))2·σ·ρ .

We replace one polynomial of highest degree that appears in
∑
i,j ci,jPi,j

with polynomials Q1, · · · , Qr.
We will prove by the induction that our algorithm satisfies the

statement of the lemma. For the base case, if F is of degree 1, our
algorithm does not refine F by design. Again, since we have removed
all linear dependencies, F is in fact 0-unbiased in this case.

Now given a factor F , if F is γ-biased, then with probability 1−ρ′ our
algorithm will refine F . With probability 1− ρ

4 the linear combination
used for the refinement is γ(dim(F))

2 -biased. Let F̃ be the outcome of one
step of our algorithm. With probability 1− ρ

4 , F̃ is σ
2 -close to being a

refinement of F . Using the induction hypothesis with parameters γ, σ2 ,
ρ
4

we can find, with probability 1 − ρ
4 , a γ-unbiased factor F ′ which is

σ
2 -close to being a refinement of F̃ and therefore, with probability at
least 1− (ρ4 + ρ

4 + ρ
4 + ρ′) > 1− ρ, is σ-close to being a refinement of F .

When the field order is large, this approximate refinement can be
made exact if we work with uniform factors (see Definition 7.18).

Lemma 13.4 (Uniform refinement [17]). Suppose d < |F| is a positive
integer and ρ ∈ (0, 1] is a parameter. There is a randomized algorithm
that, takes as input a factor F of degree d over Fn, and a decreasing
function γ : N → R+, runs in time Oρ,γ,|F|(nd), and with probability
1− ρ outputs a γ-uniform factor F̃ , such that F̃ is a refinement of F of
the same degree d, and |F̃ | �σ,γ,|F| 1.

We only sketch the proof of Lemma 13.4, which is by induction on
the dimension vector of F . For the induction step, one checks whether
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there is a linear combination of polynomials in F that has large Gowers
norm. One then uses this to replace a polynomial P from F with a set of
lower degree polynomials. To do this, we first approximate P with a few
lower degree polynomials Q1, · · · , Qr, then use the induction hypothesis
to refine {Q1, · · · , Qr} to a uniform factor {Q̃1, · · · , Q̃r′} and use an
argument similar to that seen in Section 8.2 that approximation by a
sufficiently uniform factor implies exact computation to conclude that
P is measurable in {Q̃1, · · · , Q̃r′}.

A similar argument combined with Lemma 13.1 gives the following.

Lemma 13.5. Suppose that an integer d satisfies 0 ≤ d < |F|. Let
δ, β ∈ (0, 1]. There is a randomized algorithm that given a polynomial P :
Fn → F of degree d such that bias(P ) ≥ δ > 0, runs in Oδ,β(nd) and with
probability 1−β, returns a polynomial factor F = {Pi,j}1≤i≤d−1,1≤j≤Mi

of degree d− 1 and |F| = Oδ,β(1) such that P is measurable in F .

Algorithmic regularity in low characteristic. Unfortunately, Gowers
uniformity for polynomial factors fails to address “bias implies low rank”
phenomena in the case when F has small characteristic. Kaufman and
Lovett [54] introduce a stronger notion of regularity in order to handle
the general case. This notion is rather technical and we omit introducing
it here.

Algorithmic versions of the results of Kaufman and Lovett [54] were
proved by Bhattacharyya et al. [17] by using a similar but stronger
notion of regular factors referred to as “strong unbiased factors”. The
reason for the need of this new notion is likewise that uniform factors
(Definition 7.18) fail to address fields of low characteristic, for the reason
that previously in order to refine a factor to a uniform factor we made
use of division by d! which is not possible in fields with |F| ≤ d.

The main result of Bhattacharyya et al. [17] in the low-characteristic
setting is an algorithm for regularization of factors in low characteristic.

Lemma 13.6 (Strongly unbiased refinement (informal)). Suppose that
γ : N→ R+ is a regularity parameter. There is a deterministic algorithm
that given a factor F = {P1, · · · , Pm} of degree d, runs in Oγ(nO(d)),
returns a strongly γ-unbiased degree ≤ d factor F ′ � F .
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13.3 Algorithmic inverse theorem for polynomials

From Lemma 13.5 one can deduce an algorithmic version of an inverse
theorem for Gowers norm (Theorem 6.9) for polynomials in the high
characteristic setting.

Theorem 13.7 (Algorithmic inverse theorem in high characteristic). Sup-
pose that |F| > d ≥ 2 and that ε, β ∈ (0, 1]. There is an ηε,β,d ∈ (0, 1],
and a randomized algorithm that given a polynomial P : Fn → F of
degree d with ‖eF(P (x))‖Uk+1 ≥ ε, runs in Oδ,β(nd) and with probability
1− β, returns a polynomial Q of degree ≤ k such that

|〈eF(P ), eF(Q)〉| ≥ η.

This theorem follows from the following proposition via a basic
Fourier analytic argument, along with a theorem of Goldreich and Levin
[34].

Proposition 13.1 (Computing polynomials with high Gowers norm). Sup-
pose that |F| > d ≥ 2 and that δ, β ∈ (0, 1]. There is a random-
ized algorithm that given a polynomial P : Fn → F of degree d with
‖eF(P (x))‖Ud ≥ δ, runs in Oδ,β(nd) and with probability 1− β, returns
a polynomial factor F of degree d− 1 such that

• There is a function Γ : F|F| → F such that P = Γ(F).

• |F| = Od,δ,β(1).

Proof. Write ∂dP (h1, · · · , hd) := Dh1 · · ·DhdP (x). Since P has degree
d, ∂dP does not depend on x. From the definition of the Ud norm, we
have

bias(∂dP ) = ‖e(P )‖2dUd ≥ δ
2d .

Applying Lemma 13.5 to ∂dP , with probability 1− β
2 , we can find a

factor F̃ of degree d−1, such that |F̃ | = Oδ,β,d(1) and ∂dP is measurable
in F̃ . It is easy to check that since |F| > d, we have the following Taylor
expansion

P (x) = 1
d!∂

dP (x, · · · , x) +Q(x),
where Q is a polynomial of degree ≤ d − 1. We can find an explicit
description of P , and therefore one of Q in O(nd). Thus letting F ′ :=
F̃ ∪ {Q} finishes the proof.
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We are now ready to see the proof of Theorem 13.7.

Proof of Theorem 13.7. By Proposition 13.1, with probability
1 − β

3 we can find a polynomial factor F̃ of degree d − 1 such that
P is measurable in F̃ . Let γ : N → R+ be a decreasing function to
be specified later. By Lemma 13.4, with probability 1 − β

3 , we can
refine F̃ to a γ-uniform factor F = {P1, · · · , Pm} of the same degree
d− 1, with dim(F) = Oγ,β(1). Since P is measurable in F , there exists
Γ : Fdim(F) → F such that P = Γ(F). Using the Fourier decomposition
of eF(Γ) we can write

f(x) := eF
(
P (x)

)
=

L∑
i=1

ci eF
(
〈α(i),F〉(x)

)
, (13.4)

where L = |F|dim(F) = Oγ,β(1), α(i) ∈ Fdim(F), and

〈α(i),F〉(x) :=
m∑
j=1

α
(i)
j · Pj(x).

Notice that the terms in (13.4), unlike Fourier characters, are not
orthogonal. But since the factor is γ-uniform, Theorem 7.33 ensures
approximate orthogonality. Let Qi := 〈α(i),F〉. Choose γ(u) ≤ σ

|F|2u ,

so that γ(dim(F)) ≤ σ
L2 , where σ := ε2

k+1

4 . It follows from the near
orthogonality of the terms in (13.4) by Theorem 7.33 that

|ci − 〈f, eF(Qi)〉| ≤
σ

L
, (13.5)

and ∣∣∣∣‖f‖22 − L∑
i=1

c2
i

∣∣∣∣ ≤ σ. (13.6)

Claim 13.8. There exists δ′(ε, |F|) ∈ (0, 1] such that the following holds.
Assume that f and F are as above. Then there is i ∈ [L], for which
deg(Qi) ≤ k and

∣∣〈f, eF(Qi)〉
∣∣ ≥ δ′.

Proof. We will induct on the degree of F . Assume for the base case
that F is of degree k, i.e. d = k + 1. The following Cauchy-Schwarz
inequality

ε2
k+1 ≤ ‖f‖2k+1

Uk+1 ≤ ‖f‖22‖f‖2
k+1−2
∞ , (13.7)
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and (13.6) imply that there exists i ∈ [L] such that c2
i ≥ ε2

k+1−σ
L =

3ε2k+1

4L , which combined with (13.5) implies that |〈f, eF(Qi)〉| ≥ ε2
k+1

2L .
Now for the induction step, assume that d > k+1. We will decompose

(13.4) into two parts, first part consisting of the terms of degree ≤ k

and the second part consisting of the terms of degree strictly higher
than k. Namely, letting S := {i ∈ [L] : deg(Qi) ≤ k} we write f = g+h

where g :=
∑
i∈S cieF(Qi) and h :=

∑
i∈[L]\S cieF(Qi). Notice that by

the triangle inequality of Gowers norm, our choice of γ, and the fact
that F is γ-uniform

‖h‖Uk+1 ≤
∑

i∈[L]\S
|ci| · ‖eF(Qi)‖Uk+1 ≤ L ·

ε2
k+1

4L2 = ε2
k+1

4L ,

and thus
‖g‖Uk+1 ≥

ε

2 .

Now the claim follows by the base case.

Let δ′(ε, |F|) be as in the above claim. We will use the following
theorem of [34] which gives an algorithm to find all the large Fourier
coefficients of eF(Γ).

Theorem 13.9 (Goldreich-Levin theorem [34]). Let ζ, ρ ∈ (0, 1]. There
is a randomized algorithm, which given oracle access to a function
Γ : Fm → F, runs in time O

(
m2 logm · poly(1

ζ , log(1
ρ))
)
and outputs a

decomposition

Γ =
∑̀
i=1

bi · eF(〈ηi, x〉) + Γ′,

with the following guarantee:

• ` = O( 1
ζ2 ).

• Pr
[
∃i : |bi − Γ̂(ηi)| > ζ/2

]
≤ ρ.

• Pr
[
∀α such that |f̂(α)| ≥ ζ,∃i ηi = α

]
≥ 1− ρ.
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We will use the above theorem with parameters ζ := δ′

2 and ρ := β
3 .

By Claim 13.8 there is i ∈ [L] such that Γ̂(α) = ci ≥ 3δ′
4 . With

probability 1− β
6 there is j such that ηj = αi and with probability at

least 1− β
6 , |bj − ci| ≤

ζ
2 ≤

δ′

4 , and therefore ci ≥ δ′

2 .
By a union bound, adding up the probabilities of the errors, with

probability at least 1− β, we find Qi such that∣∣〈f, eF(Qi)〉
∣∣ ≥ δ′

4 .

13.4 Derandomization via PRGs for polynomials

In this section we will discuss how all the algorithms that we have dis-
cussed above can be derandomized to efficient deterministic algorithms.

The key point here is that our only uses of randomness above have
been in evaluating a collection of polynomials on set of inputs that
are chosen uniformly at random from Fn. We will use known efficient
constructions of pseudorandom generators for polynomials [85, 57].

Definition 13.10. A distribution D on Fn is said to ε-fool degree d
polynomials in n variables over Fn if for every degree d polynomial
P : Fn → F,

|E
D

[e(P (D))]− E
U

[e(P (U))]| ≤ ε,

where U ∈ Fn is uniformly distributed.

The following lemma shows that a distribution that fools a single
polynomial can be used to fool a collection of polynomials with a slightly
worse error term.

Lemma 13.11. If D ε-fools degree d polynomials, then for every collec-
tion of C degree d polynomials P1, · · · , PC ,∑

b1,··· ,bC∈Fn

∣∣∣Pr
D

[P1(D) = b1 ∧ · · · ∧ PC(D) = bC ]

− Pr
U

[P1(U) = b1 ∧ · · · ∧ PC(U) = bC ]
∣∣∣ ≤ pCε,

where p = |F|.
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13.4. Derandomization via PRGs for polynomials 391

We will use Viola’s explicit construction of pseudorandom generators
for degree d polynomials.

Theorem 13.12 (Viola [85]). There is an explicit generator g : Fs → Fn

with s = d logp n + O(d · 2d · log(1/ε)), such that for uniform Z ∈ Fs,
g(Z) ε-fools degree d polynomials.

Derandomized Bogdanov-Viola lemma. In the proof of Lemma 13.1
we have used randomness in two steps.

First, we estimated µa in the statistical distance by sampling P on
a constant number of randomly selected inputs. This step can be simply
derandomized using Theorem 13.12, by evaluating P on g(z) for z ∈ Fs.
This requires 2s = O(nd) queries to P .

Second, we chose h = (h1, · · · , hC) ∈ (Fn)C uniformly at random,
and obtained a distribution µobs and P̃h such that for every x

Pr
h1,··· ,hC

(P̃h(x) 6= P (x)) ≤ Pr
h

(
‖µ(x)

obs − µP (x)‖ ≥
δ

|F|

)
≤ σβ2.

Suppose x is fixed, and consider polynomials Qi(h1, · · · , hC) :=
P (x + hi). By Lemma 13.11 and Theorem 13.12, there is a map g :
Fs → (Fn)C such that

Pr
Z∈Fs

(P̃g(Z)(x) 6= P (x)) ≤ Pr
Z∈Fs

(
‖µ(x)

obs − µP (x)‖ ≥
δ

|F|

)
≤ σβ2 + pC · ε.

Therefore, choosing ε sufficiently small, there exists Z ∈ Fs such that

Pr
x

(P̃g(Z)(x) 6= P (x)) ≤ σβ2 + pC · ε ≤ σ. (13.8)

Thus we can iterate through all the ps = Poly(n) choices of Z, and
check whether Equation (13.8) holds for that value of Z. Note that
Equation (13.8) can itself be deterministically decided in Poly(n) time
using pseudorandom generators for low-degree polynomials.

Derandomized regularity lemmas. Having access to a determinis-
tic Bogdanov-Viola lemma, consequently Lemma 13.3, Lemma 13.4,
Lemma 13.5, Lemma 13.6, Theorem 13.7 and Proposition 13.1 can also
be made deterministic. The key observation is that all these results use
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their randomness only in the application of Bogdanov-Viola lemma and
towards estimating bias or Gowers norm of a given polynomial. Theo-
rem 13.12 can be used to derandomize any step that requires estimating
bias of a low-degree polynomial, and Theorem 13.12 combined with
Lemma 13.11 can be used in order to estimate the Gowers norm of a
low-degree polynomial.

13.5 Algorithmic Decomposition Theorems

Given a positive integer k, a vector of positive integers ∆ = (∆1, ∆2,

. . . , ∆k) and a function Γ : Fk → F, we say that a function P : Fn → F is
(k,∆,Γ)-structured if there exist polynomials P1, P2, . . . , Pk : Fn → F
with each deg(Pi) ≤ ∆i such that for all x ∈ Fn,

P (x) = Γ(P1(x), P2(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk are said to form a (k,∆,Γ)-decomposition
(or simply, a polynomial decomposition). For instance, an n-variate
polynomial over the field F of total degree d factors non-trivially exactly
when it is (2, (d−1, d−1), prod)-structured where prod(a, b) = a·b. Later
in Chapter 16 we will see that the property of being (k,∆,Γ)-structured
is constant query testable with one-sided error even when P does not
necessarily have bounded degree. However, the problem is harder if we
ask for finding a decomposition realizing the (k,∆,Γ)-structure.

Somewhat surprisingly, using the algorithmic regularity lemmas it
can be shown that every degree-structural property can be decided in
polynomial time.

Theorem 13.13 (Bhattacharyya [11]). For every finite field F of prime
order, positive integers d < |F|, k, every vector of positive integers ∆ =
(∆1,∆2, . . . ,∆k) and every function Γ : Fk → F, there is a deterministic
algorithm Ak,∆,Γ that takes as input a polynomial P : Fn → F of degree
d, runs in time polynomial in n, and outputs a (k,∆,Γ)-decomposition
of P if one exists while otherwise returning NO.

The algorithm is quite simple. Given a polynomial P : Fn → F,
we first use a corollary of Lemma 13.4 and Lemma 13.5 to write P as
a function of a uniform polynomial factor {Q1, . . . , Qm}, i.e. P (x) =
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G(Q1(x), . . . , Qm(x)) where m = O(1) and G : Fm → F. Now, the proof
technique of Bhattacharyya [11]1 shows that the only way P can have a
(k,∆,Γ)-decomposition is if there are functions G1, . . . , Gk : Tm → T
such that G(z1, . . . , zm) = Γ(G1(z1, . . . , zm), . . . , Gk(z1, . . . , zm)) and
also, for every i ∈ [k], Gi(Q1(x), . . . , Qm(x)) is a polynomial of degree
at most ∆i. Since m = O(1), there are only a constant number of
possible G1, . . . , Gk, and so the whole algorithm runs in polynomial
time.

We will use the following corollary of Lemma 13.4 and Remark 7.19.

Theorem 13.14. Suppose d < |F|, ρ ∈ (0, 1) and R : Z+ → Z+ is
a non-decreasing function. There is a function C : Z+ → Z+ and
an efficient algorithm that takes as input a polynomial factor B of
degree ≤ d outputs an R-regular factor B̃ where B̃ is a refinement of
B, is of degree d, and ‖B̃‖ ≤ C(|B|). Additionally, if B is defined by
polynomials P1, · · · , Pm, then we can find functions Γ1, · · · ,Γm such
that Pi(x) = Γi(B̃(x)) for every i ∈ [m].

Moreover, if B itself is a syntactic refinement of some polynomial
factor B′ of rank at least R(|B|) + 1, then B̃ will also be a syntactic
refinement of B′.

Proof of Theorem 13.13. Let R : Z+ → Z+ be chosen so that
R(m) = r(C(m+k)) +C(m+k) + |F| for a function r : Z+ → Z+ to be
fixed later, where C is as in Theorem 13.14. Applying Theorem 13.14
to the factor defined by the single polynomial P , we find an R-regular
polynomial factor B of degree d defined by polynomials P1, · · · , PC :
Fn → F such that P (x) = G(B(x)) for some G : FC → F. Note that
here C = O(1). Note that for small n ≤ Cd, we can decide whether f is
(k,∆,Γ)-structured by brute force in O(1) time, and further find such
a decomposition if it exists.

Suppose n > Cd. From each Pi, pick a monomial mi with degree
equal to deg(Pi). Since n > Cd, there exists i0 ∈ [n] such that xi0 does
not appear in any of the mi’s. Let B′ be the polynomial factor defined
by polynomials P ′1, · · · , P ′C , which are respectively the restrictions of
P1, · · · , PC to xi0 = 0. Moreover, by Lemma 7.2, B′ is (R− |F|)-regular.

1Bhattacharyya et al. [14] used a similar reasoning in their proof of testability of
degree structural properties.
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Recursively, decide (k,∆,Γ)-structure for the polynomial P ′ :=
P |xi0=0 on n− 1 variables. Note that

P ′(x) = G(P ′1(x), · · · , P ′C(x)).

It is easy to see that if P ′ does not admit (k,∆,Γ)-structure, then the
same is true for P . So, in this case we will safely output NO. Assume
otherwise that we have found

P ′(x) = Γ(S1(x), · · · , Sk(x)),

where deg(Si) ≤ ∆i. We will show how in this case P is (k,∆,Γ)-
structured, and in fact we can find such a decomposition efficiently. We
will use Theorem 13.14 on the factor defined by P ′1, · · · , P ′C , S1, · · · , Sk
to find a refinement B′ of rank at least r(B′). Note that the setting of our
parameters and Theorem 13.14 guarantee that B′ is a syntactic refine-
ment of P ′1, · · · , P ′C . That is B′ is defined by P ′1, · · · , P ′C and S′1, · · · , S′D
where for each i ∈ [k], Si(x) = Gi(P ′1(x), · · · , P ′C(x), S′1(x), · · · , S′D(x))
for some function Gi. Thus we have for all x

G(P ′1(x), · · · , P ′C(x)) =

Γ
(
G1
(
P ′1(x), · · · , P ′C(x), S′1(x), · · · , S′D(x)

)
,

· · · , Gk
(
P ′1(x), · · · , P ′C(x), S′1(x), · · · , S′D(x)

) )
Suppose r is set large enough so that by Lemma 7.24 all the atoms

of B′ are nonempty. This means that B′(x) acquires all possible values
in its range FC+D. This allows us to deduce from the above equation
that

G(a1, · · · , aC)
= Γ(G1(a1, · · · , aC , b1, · · · , bD), · · · , Gk(a1, · · · , aC , b1, · · · , bD)),

for all a1, · · · , aC , b1, · · · , bD ∈ F. Define

Qi(x) := Gi(P1(x), · · · , PC(x), 0, · · · , 0)

for i ∈ [k]. We will use Corollary 16.6 which will be proved in Chapter 16,
to show that for each i ∈ [k], deg(Qi) ≤ deg(Si) ≤ ∆i. Thus we have

P (x) = Γ(Q1(x), · · · , Qk(x)),
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is a (k,∆,Γ) decomposition of P .
The final algorithm is by recursively applying the above process

until n is a constant, and building back the decomposition step by
step.

The version of record is available at: http://dx.doi.org/10.1561/0400000064



Part III

Algebraic Property Testing

The version of record is available at: http://dx.doi.org/10.1561/0400000064



397

In Part I of this text we discussed linearity testing and more generally
tests for being a polynomial of a given degree. These are all instances
of “algebraic properties”, a general class that we are going to define
shortly. It includes more complex properties such as being a product
of two low-degree polynomials, or having sparse Fourier representation.
In this part of the survey, we will use the tools developed in Part II
to establish a general result showing that all algebraic properties that
have local definitions are testable. We will focus on one-sided testable
properties and for the treatment of the two-sided testable properties
we refer the reader to Yoshida [87, 86], where nonstandard analysis is
used to give a characterization.
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Algebraic Properties

The study of property testing originated from the linearity test of Blum,
Luby, and Rubinfeld [20] and was formally coined by Rubinfeld and
Sudan [69] and Goldreich et al. [32]. A substantial treatment of testable
combinatorial properties due to Goldreich et al. [32] was later followed
by seminal subsequent work that lead to an in-depth understanding of
testable graph properties [2, 4, 22, 5, 30]. There has also been a great
deal of success in testing algebraic properties including testing Reed-
Muller codes (in other words, bounded degree polynomials) [6, 7, 28,
69, 3], testing Fourier sparsity [36], testing BCH codes [53], and testing
of functions satisfying functional equations [67]. Kaufman and Sudan
[56] noted affine-invariance as a common characteristic of majority of
the studied algebraic properties, and initiated the fruitful study of
testability of affine-invariant properties [13, 73, 16, 15, 14].

14.1 Affine and linear invariance

Recall that F = Fp for a fixed prime p. Let [R] = {1, . . . , R} be a
constant sized set. A property of functions f : Fn → [R] is simply a
subset of all such functions, namely P ⊆ {Fn → [R]}. Typically, we
assume that such a property is defined for all n ≥ 1.

398
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Note that a generic property can completely ignore the algebraic
structure of Fn and treat it as an arbitrary set of size |F|n. Hence, any
notion of “algebraic property” must require some assumptions on P that
take the algebraic structure of the set Fn into account. This is typically
done by requiring that the property P is invariant under certain algebraic
transformations. Indeed this is analogous to other combinatorial settings
such as graph properties, or hypergraph properties, where the properties
are assumed to be invariant under permutation of the vertices.

We say that a property P ⊆ {Fn → [R]} is linear-invariant if
it is the case that for any f ∈ P and for any linear transformation
L : Fn → Fn, it holds that f ◦ L ∈ P, where (f ◦ L)(x) = f(L(x)).
Similarly, an affine-invariant property is closed under composition with
affine transformation A : Fn → Fn (an affine transformation A is of the
form A(x) = Lx+ c where L is linear and c is a constant). Both linear
invariance and affine invariance are very natural candidates for defining
algebraic properties.

The property of a function f : Fn → F being affine is testable
by a simple reduction to linearity testing [20], and is itself affine-
invariant. Other well-studied examples of affine-invariant (and hence,
linear-invariant) properties include Reed-Muller codes (in other words,
bounded degree polynomials) [6, 7, 28, 69, 3] and Fourier sparsity [36]. In
fact, affine invariance seems to be a common feature of most interesting
properties that one would classify as algebraic. Kaufman and Sudan [56]
made explicit note of this phenomenon and initiated a general study of
the testability of affine-invariant properties. See also [33]. In particular,
they asked for necessary and sufficient conditions for the testability of
affine-invariant properties.

14.2 Locally characterized properties

Let P ⊆ {Fn → [R]}. Let us first assume that P is testable in the
strongest possible way, and see what this entails. To recall, we say that
P is one-sided proximity-oblivious q-query testable if there is a local
test which makes q queries to a function f : Fn → [R], always accepts if
f ∈ P and otherwise rejects f with probability related to the distance
of f from P. See Definition 2.1 for a more formal definition.
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So, assume P is one-sided proximity-oblivious q-query testable. Every
such test has the following structure:

• Step 1: Randomly pick points (x1, . . . , xq) ∈ (Fn)q according to
some joint distribution µ.

• Step 2: Query the values of f(x1), . . . , f(xq) and accordingly out-
put “f ∈ P” or “f 6∈ P”.

Suppose that the queries result in (f(x1), . . . , f(xq)) = σ ∈ [R]q.
Since the algorithm is only allowed to make a one-sided error, if there
is a function g ∈ P with (g(x1), . . . , g(xq)) = σ, then the algorithm
must return “f ∈ P”. On the other hand, if there is no such function
g ∈ P, then it can safely return “f 6∈ P”. In such a case we say that
C = (x1, x2, . . . , xq;σ) forms a q-local constraint for P (equivalently, a
q-local witness for non-membership in P), as if f ∈ P then necessarily
(f(x1), . . . , f(xq)) 6= σ.

Definition 14.1 (Local constraint). A q-local constraint for a property
P ⊂ {Fn → [R]} is C = (x1, . . . , xq;σ), where x1, . . . , xq ∈ Fn, σ ∈ [R]q
such that for all g ∈ P it holds that (g(x1), . . . , g(xq)) 6= σ.

Let C = (x1, . . . , xq;σ) be a local constraint for P. If f : Fn → [R]
satisfies that (f(x1), . . . , f(xq)) = σ, then we say that f violates the
constraint C. In particular, we know that f /∈ P. Let C1, . . . , Cm be the
set of all the q-local constraints for the above test. One can rewrite the
above test as in the following:

• Step 1: Randomly pick points (x1, . . . , xq) ∈ (Fn)q according to
some joint distribution µ.

• Step 2: If (x1, . . . , xq; f(x1), . . . , f(xq)) equals some Ci then output
“f 6∈ P”. Otherwise output “f ∈ P”.

Note that if f /∈ P , then according to Definition 2.1, the tester must
reject f with positive probability. Consequently, there must exist at
least one q-local constraint among C1, . . . , Cm that is violated by f . This
provides a “local characterization” for P. Namely,

P = {f : Fn → [R] that do not violate any of C1, . . . , Cm}.
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The following definition formalizes this notion.

Definition 14.2 (Locally characterized property). A property P ⊂ {Fn →
[R]} is q-locally characterized if there exist q-local constraints C1, . . . , Cm
such that

P = {f : Fn → [R] that do not violate any of C1, . . . , Cm}.

We say P is locally characterized if it is q-locally characterized
for some constant q. It follows from the above discussion that if P is
one-sided proximity-oblivious q-query testable then it is also q-locally
characterized.

We now give some examples of locally characterized affine-invariant
properties. Consider the property of f : Fn → F being an affine function
(namely, a degree 1 polynomial). It is 4-locally characterized because a
function f is affine if and only if f(x)−f(x+y)−f(x+z)+f(x+y+z) = 0
for every x, y, z ∈ Fn. Note that this characterization naturally suggests
a 4-query test: pick random x, y, z ∈ Fn and check whether the identity
holds or not for that choice of x, y, z. As we saw in Chapter 2, this is
indeed a local test for the property of affine functions (we proved it for
F = F2 in Theorem 2.3, and the proof can be extended to any finite
field).

More generally, consider the property of being a polynomial of de-
gree at most d, for some fixed integer d > 0. If f : Fn → F has degree
≤ d, then it is annihilated by taking d+ 1 directional derivatives (See
Section 3.1). This implies that this property is also locally characteriz-
able. Independent papers by Kaufman and Ron [55] and Jutla et al. [52]
has obtained the optimal value of q for general fields Fp: the property of
being a degree ≤ d polynomial is q-locally characterized for q = p

d d+1
p−1 e.

These papers also showed that the property is testable. Again, the test
is simply to pick a random constraint and check if it is violated.

Indeed, for any q-locally characterized property P defined by con-
straints C1, . . . , Cm, one can design the following q-query test: choose a
constraint Ci uniformly at random and reject only if the input function
violates Ci. Clearly, if the input function f is in P, the test always
accepts. The main challenge is in showing that if f is ε-far from P , then
this test rejects f with some probability δ = δ(ε) > 0. Equivalently
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put, f is ε-far from P then at least δm of the local constraints are
violated. This was conjectured by Kaufman and Sudan [56] and proved
in a sequence of papers [13, 73, 16, 15, 14].

Theorem 14.3 (Bhattacharyya et al. [14]). Every q-locally characterized
affine-invariant property is proximity obliviously testable with q queries.

The proof of Theorem 14.3 is presented in Chapter 15.

14.3 Locality of affine invariant properties via linear forms

In the context of linear-invariant and affine-invariant properties, we can
define the notion of local characterization in a more algebraic way. As
most of the research has focused on affine invariant properties we also
limit our discussion to such properties. Many of the observations below
naturally extend to linear invariant properties.

Consider an affine-invariant property P ⊂ {Fn → [R]} that is locally
characterized by a collection C = {C1, . . . , Cm} of q-local constraints. As
P is affine-invariant, one can assume that C is also invariant under affine
transformations. In other words, if (a1, a2, . . . , aq;σ) ∈ C, then also
(Aa1, Aa2, . . . , Aaq;σ) ∈ C for every affine transformation A : Fn → Fn.

This can be rephrased using linear forms. Assume that a1, . . . , aq ∈
Fn span a linear space of dimension r ≤ q, and let b1, . . . , br ∈ Fn be
a basis for this subspace. Let {λi,j ∈ F : i ∈ [q], j ∈ [r]} be such that
ai =

∑r
j=1 λi,jbj . The assumption that P is affine invariant means that

for every linear map L : Fn → Fn and every c ∈ Fn, we also have that
(La1 +c, . . . , Laq+c;σ) ∈ C. Let L1, . . . , Lq ∈ Fr+1 be linear forms given
by Li = (1, λi,1, . . . , λi,r). Then the following are also q-local constraints
for P:

(L1(x0, x1, . . . , xr), . . . , Lq(x0, . . . , xr);σ) ∀x0, . . . , xr ∈ Fn.

The linear forms L1, . . . , Lq are affine forms, where we recall the defini-
tion that a linear form is affine if its first coordinate is 1.

Next, we formalize this notion of affine local constraints.

Definition 14.4 (Affine local constraints). An affine constraint of size
q on k variables is a tuple A = (L1, . . . , Lq;σ) of q affine forms
L1, . . . , Lq ∈ Fk and σ ∈ [R]q.
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An affine constraint can be used to define affine invariant properties
in the following way.

Definition 14.5 (Properties defined by affine constraints). Consider an
affine constraint (A, σ) of size q on k variables. A function f : Fn → [R]
is said to be (A, σ)-free if there exist no x1, . . . , xk ∈ Fn such that

(f(L1(x1, . . . , xk)), . . . , f(Lq(x1, . . . , xk))) = σ.

On the other hand, if such x1, . . . , x` exist, we say that f induces (A, σ)
at x1, . . . , xk.

Given a (possibly infinite) collection A = {(A1, σ1), (A2, σ2), . . . } of
affine constraints, a function f : Fn → [R] is said to be A-free if it is
(Ai, σi)-free for every i ≥ 1.

The above discussion shows that an affine-invariant property is q-
locally characterized if and only if it can be described using a bounded
number of affine constraints of size q.

14.4 Subspace hereditary properties

Just as a necessary condition for proximity oblivious testability with
one-sided error is local characterization, one can formulate a natural
condition that is (almost) necessary for testability in general. In the
context of affine-invariant properties, the condition can be succinctly
stated as follows. We will assume throughout that P is a property of
functions f : Fn → [R] for all n ≥ 1.

Definition 14.6 (Subspace hereditary properties). An affine-invariant
property P is said to be affine-subspace hereditary if for any f : Fn → [R]
satisfying P , the restriction of f to any affine subspace of Fn also satisfies
P.

Bhattacharyya et al. [16] showed that every affine-invariant property
testable by a “natural” tester is very “close” to a subspace hereditary
property1. Thus, if we gloss over some technicalities, subspace heredi-

1We omit the technical definitions of “natural” and “close”, since they are
unimportant here. Informally, the behavior of a “natural” tester is independent of
the size of the domain and “close” means that the property deviates from an actual
affine subspace hereditary property on functions over a finite domain. See [16] for
details, or [4] for the analogous definitions in a graph-theoretic context.
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tariness is a necessary condition for testability. In the opposite direction,
Bhattacharyya et al. [16] conjecture the following:

Conjecture 14.7 (Bhattacharyya et al. [16]). Every affine-subspace hered-
itary property is testable with one-sided error.

Resolving Conjecture 14.7 would yield a combinatorial character-
ization of the (natural) one-sided testable affine-invariant properties,
similar to the characterization for testable dense graph properties [4].

Affine subspace hereditariness and affine constraints are related
through the following simple observation.

Observation 14.8. An affine-invariant property P is subspace heredi-
tary if and only if it is equivalent to the property of A-freeness for some
fixed collection A of affine constraints (possibly infinite).

Proof. Given an affine invariant subspace hereditary property P, a
simple (though inefficient) way to obtain the set A is the following.
For every m ≥ 1, every function g : Fm → [R] that is not in P, and
an m-dimensional subspace V of Fn, include the constraint that the
restriction of f : Fn → [R] to V is not equal to g.

This can be expressed as an affine constraint. For every a ∈ Fm let
La ∈ Fm+1 be an affine form given by La = (1, a1, . . . , am). The affine
constraint we add is is

Cg := ((La : a ∈ Fm); (g(a) : a ∈ Fm)) .

In particular, g is not Cg-free, as g induces Cg at x1 = e1, . . . , xm =
em, where ei is the i-th unit vector. Hence the property defined by A is
contained in P. The containment in the other direction follows from P
being affine-invariant and hereditary.

The other direction of the observation is trivial.

Conjecture 14.7 is not yet confirmed or refuted, however Bhat-
tacharyya et al. [14] prove testability under an additional assumption
of “bounded complexity”. Define the Cauchy-Schwarz complexity (see
Definition 11.1) of an affine constraint (A, σ) to be simply the Cauchy-
Schwarz complexity of A. Let the Cauchy-Schwarz complexity of a
collection A = {(A1, σ1), (A2, σ2), . . . } of affine constraints to be the
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maximum of Cauchy-Schwarz complexity of the constrains (Ai, σi). We
will see a proof of the following theorem in Chapter 15.

Theorem 14.9 (Bhattacharyya et al. [14]). Every subspace hereditary
property of bounded Cauchy-Schwarz complexity is testable with one-
sided error.

All natural affine-invariant properties that we know of have bounded
complexity (in fact, most are locally characterized). However, testing
the subspace hereditary properties not covered by Theorem 14.9 is of
theoretical interest.

14.5 Locality dimension

The notion of q-local characterization uses the number of queries to
measure the complexity of the characterization. In the algebraic setting
of affine-invariant properties it is as natural to consider the dimension
of the affine subspace containing those queries.

Definition 14.10 (Locality dimension). The locality dimension of an
affine-invariant property P ⊆ {Fn → [R]} is the smallest K such that
the following holds. There exists a collection F ⊂ {FK → [R]} such that
for f : Fn → [R], f ∈ P if and only if f |V 6∈ F for all K-dimensional
affine subspaces V ⊆ Fn.

As discussed above, every q-locally characterized P is equivalent
to A-freeness, where A is a collection of affine constraints with each
constraint on at most q + 1 variables. Obviously one can extend this to
include all the affine linear forms on these variables, or equivalent query
f on the q-dimensional affine subspace containing these q + 1 variables.
Thus every q-locally characterized property has locality dimension of
at most q. In the other direction, if P is of locality dimension K, then
it is equivalent to A-freeness, where A is a finite collection of affine
constraints, with each constraint of size |F|K on K + 1 variables.
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The notion of locality dimension is even more natural for affine-
subspace hereditary properties.

Observation 14.11 (Locality dimension for hereditary properties). The
locality dimension of a hereditary affine-invariant property P ⊆ {Fn →
[R]} is the smallest K such that for f : Fn → [R], f ∈ P if and only if
f |V ∈ P for all K-dimensional affine subspaces V ⊆ Fn.
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15
One-Sided Algebraic Property Testing

In this Chapter we establish Theorem 14.3 and Theorem 14.9. That is,
we show that every q-locally characterized affine-invariant property is
proximity obliviously testable with one-sided error using q queries, and
more generally we show that every affine invariant subspace hereditary
property of bounded Cauchy-Schwarz complexity is testable with one-
sided error.

15.1 Proof overview

Before delving into the technical details let us first present an overview
of the proof. For simplicity, assume for now that A consists only of
a single affine constraint (A, σ) where A is the tuple of affine linear
forms (L1, . . . , Lm), each over ` variables, and σ ∈ [R]m. Our goal is to
show that, when f is ε-far from being (A, σ)-free, then f contains many
instances of violation of (A, σ)-freeness. The decomposition theorems
presented in Chapter 9 allow us to find a polynomial factor partition of
the domain Fn such that, for the purpose of counting the number of
violations of (A, σ) freeness, f looks uniform in most of the parts. If
the notion of ε-farness would have allowed to remove points from the
domain of f , then the proof would have become much simpler.

407
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Let us first consider this simpler case. Suppose that if remove any
given ε-fraction of points from Fn, there are still copies of (A, σ) in f .
Now we look at the polynomial factor decomposition of f and remove
all the points that are not in the uniform cells. We also remove all the
points that have unpopular values in the uniform cells. That is for every
cell, if there is a value that appears on very few points in that cell, then
we remove all the points from that cell with that value. Now since the
number of non-uniform cells is small, and also the number of unpopular
points is small (by their definition), we have removed only few points
from the domain. Hence according the modified notion of ε-farness,
there are still copies of (A, σ) remaining in f . Now every point in any
such copy must belong to a uniform cell and its value is not unpopular
in that cell. It follows from these two properties that there are many
such copies of (A, σ) in f .

Unfortunately, the natural notion of ε-farness does not allow remov-
ing points from the domain of f , and instead one is only allowed to
change the value of f on at most ε-faction of the points. This makes
proving the theorem considerably more difficult. Now one has to appeal
to the more technical decomposition theorems such as Theorem 9.8.
This decomposition theorem, roughly speaking, shows the existence
of a polynomial factor partition B of the domain such that for every
atom c of B, there is a sub-atom c′ that comes from a finer partition
B′ such that most sub-atoms provide good statistical samples of the
demography of the atom that contains them. Now the most popular
values inside sub-atoms will play an important role, and instead of
removing points from the domain we will change the value of f to such
values. In other words, unpopular values and mis-represented values
inside every atom are changed to the most popular value inside the
corresponding sub-atom.

Again, the number of changes will be small (less than ε-fraction of
points). So the new function will still contain at least one copy of (A, σ).
Note that the values in this copy are abundant in the corresponding
sub-atoms as we changed the unpopular values to the most popular
values in the sub-atoms. Then, a key property of sub-atoms (i.e. the fact
that s is fixed in Theorem 9.8) and the uniformity of sub-atoms allows
us to find many copies of (A, σ) inside the corresponding sub-atoms.
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15.2 Big picture functions

Suppose we have a function f : Fn → [R], and we want to find out
whether it induces a particular affine constraint (A, σ), where A =
(L1, . . . , Lm) is a sequence of affine forms on ` variables and σ ∈ [R]m.
Now, suppose Fn is partitioned by a polynomial factor B defined by
nonclassical polynomials P1, . . . , PC of degrees d1, . . . , dC and depths
k1, . . . , kC , respectively. Then, observe that if b1, . . . , bm ∈ TC denote the
atoms of B containing L1(x1, . . . , x`), . . . , Lm(x1, . . . , x`) respectively,
it must be the case that b1, . . . , bm are B-consistent with A (as defined
in Definition 7.37). Thus, to locate where f might induce (A, σ), we
should restrict our search to sequences of atoms consistent with A.

It will be convenient to “blur” the given function f so as to retain
only atom-level information about it. That is, for every atom c of B,
we will define fB(c) ⊆ [R] to be the set of all values that f takes within
c. We denote by P([R]) the power set of [R].

Definition 15.1. Given a function f : Fn → [R] and a polynomial
factor B, the big picture function of f is the function fB : T|B| → P([R]),
defined by fB(c) = {f(x) : B(x) = c}.

On the other hand, given any function g : TC → P([R]), and a vector
of degrees d = (d1, . . . , dC) and depths k = (k1, . . . , kC) (which we think
of as corresponding to the degrees and depths of some polynomial factor
of complexity C), we will define what it means for such a function to
“induce” a copy of a given constraint.

Definition 15.2 (Partially induce). Suppose we are given d = (d1, . . . ,

dC) ∈ ZC>0 , k = (k1, . . . , kC) ∈ ZC≥0, g :
∏
i∈[C] Uki+1 → P([R]), and an

affine constraint (A, σ) of size m. We say that g partially (d,k)-induces
(A, σ) if there exist a sequence b1, . . . , bm ∈ TC such that

(i) (b1, . . . , bm) is (d,k)-consistent with A (see Definition 7.37).

(ii) σj ∈ g(bj) for each j ∈ [m].

Definition 15.2 is justified by the following trivial observation.
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Observation 15.3. If f : Fn → [R] induces a constraint (A, σ), then for
a factor B defined by polynomials of respective degrees (d1, . . . , d|B|) = d
and respective depths (k1, . . . , k|B|) = k, the big picture function fB
partially (d,k)-induces (A, σ).

To handle a possibly infinite collection A of affine constraints (in
order to prove Theorem 14.9), we will employ a compactness argument,
analogous to one used by Alon and Shapira [5] in the context of graph
properties, to bound the size of the constraint partially induced by the
big picture function. Let us make the following definition:

Definition 15.4 (The compactness function). Suppose we are given
positive integers C and d, and a possibly infinite collection of affine
constraints A = {(A1, σ1), (A2, σ2), . . . }, where (Ai, σi) is of size mi.
For fixed d = (d1, . . . , dC) ∈ [d]C and k = (k1, . . . , kC) ∈

[
0,
⌊
d−1
p−1

⌋]C
,

denote by G(d,k) the set of functions g :
∏C
i=1 Uki+1 → P([R]) that

partially (d,k)-induce some (Ai, σi) ∈ A. The compactness function is
defined as

ΨA(C, d) = max
d,k

max
g∈G(d,k)

min
(Ai,σi) partially

(d,k)-induced by g

mi

where the outer max is over vectors d = (d1, . . . , dC) ∈ [d]C and
k = (k1, . . . , kC) ∈

[
0,
⌊
d−1
p−1

⌋]C
. Whenever G(d,k) is empty, we set the

corresponding maximum to 0.

Note that ΨA(C, d) is indeed finite, as the number of possible degree
and depth sequences are bounded by d2C , and the size of G(d,k) is
bounded by 2RpdC .

Remark 15.5. Note that if a function g : TC → P([R]) partially (d,k)-
induces some constraint from A where d ∈ [d]C , then g must belong
to G(d,k), and consequently it will necessarily partially induce some
(Ai, σi) ∈ A whose size is at most ΨA(C, d).

15.3 Proof of testability

In this section we establish our main result Theorem 14.9 which in turn
implies Theorem 14.3. It suffices to prove the following.
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Theorem 15.6. Let d > 0 be an integer. Suppose we are given a possibly
infinite collection of affine constraints A = {(A1, σ1), (A2, σ2), . . . }
where each (Ai, σi) is an affine constraint of Cauchy-Schwarz complexity
≤ d, and of sizemi on `i variables. Then, there are functions `A : (0, 1)→
Z>0 and δA : (0, 1)→ (0, 1) such that the following is true. For every
ε ∈ (0, 1), if a function f : Fn → [R] is ε-far from being A-free, then f
induces at least δA(ε)|F|n`i many copies of some (Ai, σi) with `i < `A(ε)
.

Moreover, if A is q-locally characterized, then `A(ε) ≤ q and hence
is bounded by a constant independent of ε.

Theorem 14.9 follow immediately. Given A as in the statement of
the theorems, let f : Fn → [R] which is ε-far from A. Let A0 ⊂ A be
the subset of all (Ai, σi) ∈ A with `i ≤ `A(ε). Observe that A0 is a
finite set, as we may assume that mi ≤ p`i .

Consider the following test. Pick a uniform (Ai, σi) ∈ A0, pick uni-
formlyX = (x1, . . . , x`i) ∈ Fn`i and test if (f(L1(X)), . . . , f(Lmi(X))) =
σi. By Theorem 15.6, if f is ε-far from A-freeness, this test rejects with
probability at least |A0|−1δA(ε). For Theorem 14.3, note that if A is
q-locally characterized, then the test is a one-sided proximity oblivious
q-local test. Below, we prove Theorem 15.6.

Fix a function f : Fn → [R] that is ε-far from being A-free. For
i ∈ [R], define f (i) : Fn → {0, 1} so that f (i)(x) equals 1 when f(x) = i

and equals 0 otherwise. Additionally, set the following parameters, where
ΨA is the compactness function from Definition 15.4:

ζ = ε
8R ,

α(C) = p−2dCΨA(C,d), r(C) = r7.14(F, d, α(C))
∆(C) = 1

16ζ
ΨA(C,d), η(C) = 1

8pdCΨA(C,d)

(
ε

24R
)ΨA(C,d)

.

Intuitively, think of ζ as a small enough constant (depending only on
ε,R), of r(·) as a large enough rank, and of α(·),∆(·), η(·) as taking
small enough positive values.

Decomposing by regular factors. As a first step, we apply (the multi-
function generalization) of Theorem 9.8 to the functions f (1), f (2), . . . , f (R).
By the theorem, there exists a polynomial factor B of degree d, and a

The version of record is available at: http://dx.doi.org/10.1561/0400000064
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refinement of it B′ of degree d, both r-regular of complexity at most
C9.8(F, d, r, η,∆, ζ), such that the following holds. We can decompose
each f (i) as

f (i) = f
(i)
1 + f

(i)
2 + f

(i)
3

where

(i) f (i)
1 = E[f |B′].

(ii) ‖f (i)
2 ‖Ud+1 < η(|B′|).

(iii) ‖f (i)
3 ‖2 ≤ ∆(|B|).

(iv) f1 and f1 +f3 take values in [0, 1]; and f2, f3 take values in [−1, 1].

(v) B′ ζ-represents B with respect to f .

Moreover, assume that the atoms of B′ are indexed by (c, s) with
c ∈ T|B|, s ∈ T|B′|−|B|. Then exists a choice of s ∈ T|B′|−|B| for which the
following is true:

(vi) For every atom c of B, the sub-atom (c, s) of B′ satisfies that

E
[
|f (i)

3 (x)|2 | B′(x) = (c, s)
]
≤ ∆(|B|)2.

(vii) For at most a ζ fraction of atoms c in B it holds that∣∣∣E[f (i)|c]− E[f (i)|(c, s)]
∣∣∣ > ζ.

We denote the sequence of polynomials defining B′ by P1, . . . , P|B′|.
Denote the degree of Pi by di and the depth of Pi by ki. Since B′ is
a syntactic refinement of B, we may assume B is generated by the
polynomials P1, . . . , P|B|. We denote C = |B| and C ′ = |B′|.

Note that ‖B‖ < p(kmax+1)C ≤ pdC , where kmax ≤ b(d− 1)/(p− 1)c
is the maximum depth of a polynomial in B.

Cleanup. Based on B′ and B, we construct a function F : Fn → [R]
that is ε

2 -close to f and hence, still violates A-freeness. The “cleaner”
structure of F will help us locate the induced constraint violated by f .

The function F is the same as f except for the following. For every
atom c of B, let tc = arg maxj∈[R] Pr[f(x) = j | B′(x) = (c, s)] be the
most popular value inside the corresponding subatom (c, s).
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• Poorly-represented atoms: If there exists i ∈ [R] such that
|Pr[f(x) = i | B(x) = c]− Pr[f(x) = i | B′(x) = (c, s)]| > ζ, then
set F (z) = tc for every z in the atom c.

• Unpopular values: For any i ∈ [R] such that Prx[f(x) =
i | B′(x) = (c, s)] < ζ, if z in the atom c satisfies f(z) = i,
then set F (z) = tc.

• For all other z in the atom c, set F (z) = f(z).

A key property of the cleanup function F is that it supports a value
inside an atom c of B only if the original function f acquires the value
on at least an ζ fraction of the subatom (c, s). Furthermore as the
following lemma shows it is ε/2-close to f , and therefore as f is ε-far
from A-freeness, we have that F is not A-free.

Lemma 15.7. The cleanup function F is ε/2-close to f , and therefore,
it is not A-free.

Proof. The first step (fixing poorly represented atoms) applies to at most
ζR‖B‖ atoms, since B′ ζ-represents B with respect to each f (1), . . . , f (R).
By Lemma 7.24, each atom of B occupies at most 1

‖B‖ + α(C) fraction
of the entire domain. So, the fraction of points whose values are set in
the first step is at most ζR‖B‖( 1

‖B‖ + α(C)) < 2ζR = ε/4.
In the second step (changing unpopular values), if Pr[f(x) = i | B′(x)

= (c, s)] < ζ, then Pr[f(x) = i | B(x) = c] < Pr[f(x) = i | B′(x) =
(c, s)] + ζ < 2ζ. Hence, the fraction of the points z whose values are set
in the second step is at most 2ζR = ε/4.

Thus, the distance of F from f is bounded by ε/2.

Locating a violated constraint. We now want to use F to “locate” a
popular affine constraint induced in f . Setting d = (d1, . . . , dC) and
k = (k1, . . . , kC), we have by Observation 15.3 that the big picture
function FB of F will partially (d,k)-induce some constraint from
A, and hence by Remark 15.5, it will partially (d,k)-induce some
(A, σ) ∈ A of size m ≤ ΨA(C, d) on ` variables. We will show that the
original function f violates many instances of this constraint.
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Denote the affine forms in A by (L1, . . . , Lm) and the vector σ by
(σ1, . . . , σm). Since we can assume ` ≤ m (without loss of generality by
making a change of variables), we can now define

`A(ε) = ΨA(C9.8(F, d, r, η,∆, ζ), d). (15.1)

Let b1, . . . , bm ∈
∏C
i=1 Uki+1 correspond to the atoms of B where

(A, σ) is partially (d,k)-induced by FB. That is, b1, . . . , bm are consistent
with A, and σi ∈ FB(bi) for every i ∈ [m]. Also, let b′1, . . . , b′m ∈∏C′
i=1 Uki+1 index the associated subatoms in B′, obtained by letting

b′j = (bj , s) for every j ∈ [m].

Lemma 15.8. The subatoms b′1, . . . , b′m are consistent with A.

Proof. Since b1, . . . , bm are already consistent with A, we only need
to show that for every i ∈ [C + 1, C ′], the sequence (b′1,i, . . . , b′m,i) =
(si−C , si−C , . . . , si−C) is (di, ki)-consistent. That is, we need to show that
there exists a homogeneous nonclassical polynomial P of degree d and
depth k, and a choice of x1, . . . , x` ∈ Fn, such that P (Lj(x1, . . . , x`)) =
si−C for all j ∈ [m]. This is where we use the assumption that the linear
forms are affine. Take x2 = . . . = x` = 0. Then Lj(x1, 0, . . . , 0) = x1. So
we only need to show the existence of P as above and of x1 ∈ Fn for
which P (x1) = si−C . But this clearly holds, say by taking P = Pi and
x1 any value in the (c, s) subatom.

The main analysis. Let X = (x1, . . . , x`) where x1, . . . , x` ∈ Fn are
independently and uniformly chosen. Our goal is to prove a lower bound
on

Pr
X

[f(L1(X)) = σ1 ∧ · · · ∧ f(Lm(X)) = σm]

= E
X

[
f (σ1)(L1(X)) · · · f (σm)(Lm(X))

]
. (15.2)

Theorem 15.6 follows if the above expectation is larger than the respec-
tive δA(ε). We rewrite the expectation as

(15.2) = E
X

[
(f (σ1)

1 + f
(σ1)
2 + f

(σ1)
3 )(L1(X))

· · · (f (σm)
1 + f

(σm)
2 + f

(σm)
3 )(Lm(X))

]
. (15.3)
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We can expand the expression inside the expectation as a sum of
3m terms. The expectation of any term involving f (σj)

2 for any j ∈ [m]
is bounded in magnitude by ‖f (σj)

2 ‖Ud+1 ≤ η(|B′|), by Lemma 11.2 and
the assumption that the Cauchy-Schwarz complexity of A is bounded
by d. Hence, the expression (15.3) is at least

(15.3) ≥ E
X

[
(f (σ1)

1 + f
(σ1)
3 )(L1(X))

· · · (f (σm)
1 + f

(σm)
3 )(Lm(X))

]
− 3mη(|B′|).

Next, because of the non-negativity of f (σj)
1 + f

(σj)
3 for every j ∈ [m],

we may further require that any event holds. We will require that
B′(Lj(X)) = b′j for all j. So

(15.3) ≥ E
X

[ (
f

(σ1)
1 + f

(σ1)
3

)
(L1(X)) · · ·

(
f

(σm)
1 + f

(σm)
3

)
(Lm(X))

·
∏
j∈[m]

1[B′(Lj(X))=b′j ]

]
− 3mη(|B′|), (15.4)

where 1[B′(Lj(X))=b′j ] is the indicator function of the event B′(Lj(X)) =
b′j . In other words, now we are only counting patterns that arise from
the selected subatoms b′1, . . . , b′m.

Next, expand the product inside the expectation into 2m terms. We
will show that the contribution from each of the 2m − 1 terms involving
f

(σk)
3 for any k ∈ [m] is small. Each such term is trivially bounded from
above by

E
X

∣∣∣f (σk)
3 (Lk(X))

∣∣∣ ∏
j∈[m]

1[B′(Lj(X))=b′j ]

 . (15.5)

Here, we used fact that |f (i)
1 (x)| ≤ 1 for all i ∈ [R], which follows from

(i) in our construction. The next lemma bounds the expression in (15.5).
Let Λi denote the (di, ki)-dependency set of L1, . . . , Lm for i ∈ [C ′].

Lemma 15.9.

E
X

∣∣∣f (σk)
3 (Lk(X))

∣∣∣ ∏
j∈[m]

1[B′(Lj(X))=b′j ]

 ≤ 2∆(C)
∏
i∈[C′] |Λi|
‖B′‖m

.
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Proof. In order to simplify the proof, apply a change of basis on
L1, . . . , Lm so that Lk = e1. Namely, Lk(X) = x1. To simplify no-
tation let us also denote x = x1 and x = (x2, . . . , x`).

As a first step, we apply the Cauchy-Schwartz inequality and obtain E
X∈(Fn)`

∣∣∣f (σk)
3 (x1)

∣∣∣ ∏
j∈[m]

1[B′(Lj(X))=b′j ]

2

=

 E
x∈Fn,x∈(Fn)`−1

∣∣∣f (σk)
3 (x)

∣∣∣ 1[B′(x)=b′
k
]
∏
j∈[m]

1[B′(Lj(x,x))=b′j ]

2

≤ E
x

[
|f (σk)

3 (x)|21[B′(x)=b′
k
]
]
E
x

E
x

∏
j∈[m]

1[B′(Lj(x,x))=b′j ]

2

. (15.6)

We first bound the first term in the right hand side. By (vi) in our
construction and Lemma 7.24, we have

E
x

[
|f (σk)

3 (x)|21[B′(x)=b′
k
]
]

= E
x

[
|f (σk)

3 (x)|2 | B′(x) = b′k

]
Pr
x

[B′(x) = b′k]

≤ ∆2(C) Pr
x

[B′(x) = b′k] ≤ ∆2(C)
( 1
‖B′‖

+ α(C ′)
)
≤ 2∆2(C)
‖B′‖

.

(15.7)

The second term in the right hand side of (15.6) is equal to

E
x

E
x

∏
j∈[m]

1[B′(Lj(x,x))=b′j ]

2

= 1
‖B′‖2m E

x


Ex ∏

i∈[C′]
j∈[m]

1
pki+1

pki+1−1∑
λi,j=0

e
(
λi,j · (Pi(Lj(x,x))− b′i,j)

)
2

= 1
‖B′‖2m E

x


 ∑

(λi,j)∈
∏
i,j

[0,pki+1−1]

e

− ∑
i∈[C′]
j∈[m]

λi,jb
′
i,j


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· E
x
e

 ∑
i∈[C′]
j∈[m]

λi,jPi(Lj(x,x))




2

≤ 1
‖B′‖2m

∑
(λi,j),(τi,j)∈∏
i,j

[0,pki+1−1]

∣∣∣∣∣∣∣∣ E
x,x,y

e
 ∑

i∈[C′]
j∈[m]

λi,jPi(Lj(x,x))



· e

− ∑
i∈[C′]
j∈[m]

τi,jPi(Lj(x,y))



∣∣∣∣∣∣∣∣ .

(15.8)

Here, y = (y2, . . . , y`) where y2, . . . , y` ∈ Fn are new independent
uniform random variables.

We can bound the above using Theorem 7.32. Let A′ denote the set
of 2m linear forms: {Lj(x1, x2, . . . , x`) | j ∈ [m]} ∪ {Lj(x1, y2, . . . , y`)
|j ∈ [m]} in variables x1, . . . , x`, y2, . . . , y`. Let Λ′i denote the (di, ki)-
dependency set of A′.

Applying Theorem 7.32 (just as in the proof of Theorem 7.38), we
get that

(15.8) ≤
∏
i∈[C′] |Λ′i|
‖B′‖2m

+ α(C ′) ≤
2
∏
i∈[C′] |Λ′i|
‖B′‖2m

. (15.9)

Thus, the next step is to compute |Λ′i|.

Claim 15.10. For each i ∈ [C ′] it holds that |Λ′i| = |Λi|2 · pki+1.

Proof. Recall that by our initial change of basis, Lk(x,x) = Lk(x,y) =
x. For any λ, τ ∈ Λi and any α ∈ Zpki+1 , note that (λ1+α, λ2, . . . , λm, τ1−
α, τ2, . . . , τm) ∈ Λ′i. Hence, |Λ′i| ≥ |Λi|2·pki+1. To show |Λ′i| ≤ |Λi|2·pki+1,
we give a map from Λ′i to Λi × Λi that is pki+1-to-1.

Suppose that
m∑
j=1

λjQ(Lj(x1, x2, . . . , x`)) +
m∑
j=1

τjQ(Lj(x1, y2, . . . , y`)) ≡ 0
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for every nonclassical homogeneous polynomial Q of degree di and depth
ki. Setting x2 = . . . = x` = 0 shows that

m∑
j=1

τjQ(Lj(x1, y2, . . . , y`)) = −

 m∑
j=1

λj

Q(x1),

which implies that − m∑
j=2

λj , λ2, . . . , λm

 ∈ Λi.

Similarly, setting y2 = . . . = y` = 0 shows that
m∑
j=1

λjQ(Lj(x1, x2, . . . , x`)) = −

 m∑
j=1

τj

Q(x1),

which implies that − m∑
j=2

τj , τ2, . . . , τm

 ∈ Λi.

Consequently,

(λ, τ) 7→

− m∑
j=2

λj , λ2, . . . , λm

 ,
− m∑

j=2
τj , τ2, . . . , τm


is a map from Λ′i to Λi × Λi. To see that it is pki+1-to-1, note that if
(λ1, . . . , λm, τ1, . . . , τm) ∈ Λ′i then also

(λ1 + γ, λ2, . . . , λm, τ1 − γ, τ2, . . . , τm) ∈ Λ′i
for every γ ∈ Zpki+1 , and that these pki+1 elements are all mapped to
the same element in Λi × Λi by our map.

Thus

(15.9) ≤
2
∏
i∈[C′] |Λi|2pki+1

‖B′‖2m
=

2
∏
i∈[C′] |Λi|2

‖B′‖2m−1 .

Combining this with Equation (15.7) and Equation (15.6), we obtain

(15.6) ≤ 4∆2(C)
∏
i∈[C′] |Λi|2

‖B′‖2m
. (15.10)

This concludes the proof of the lemma.
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Finally, we turn to the main term in the expansion of Equation (15.4).
We know from Lemma 15.8 that the subatoms b′1, . . . , b′m are consistent
with A. Thus

E
X

f (σ1)
1 (L1(X)) · · · f (σm)

1 (Lm(X)) ·
∏
j∈[m]

1[B′(Lj(X))=b′j ]


= Pr

X
[B′(L1(X)) = b′1 ∧ · · · ∧ B′(Lm(X)) = b′m]·

E
X

[
f

(σ1)
1 (L1(X)) · · · f (σm)

1 (Lm(X)) | ∀j ∈ [m], B′(Lj(X)) = b′j

]
≥
(∏C′

i=1 |Λi|
‖B′‖m

− α(C ′)
)
ζm. (15.11)

Let us justify the last line. The first term is due to the lower bound
on the probability from Theorem 7.38. The second term in (15.11)
follows since each f (σj)

1 is constant on the atoms of B′, and because by
construction, the big picture function FB of the cleanup function F , on
which (A, σ) was partially induced, supports a value inside an atom b

of B only if the original function f acquires the value on at least an ζ
fraction of the subatom (c, s). By our choice of α(C ′), we can further
deduce that

E
X

f (σ1)
1 (L1(X)) · · · f (σm)

1 (Lm(X)) ·
∏
j∈[m]

1[B′(Lj(X))=b′j ]

 ≥ ∏C′
i=1 |Λi|

2‖B′‖m .

(15.12)

Setting β = ‖B′‖−m ·
∏C′
i=1 |Λi| and combining the bounds from

(15.4), Lemma 15.9 and (15.12), we conclude

(15.2) ≥ β
(1

2

(
ε

8R

)m
− 2m+1∆(C)

)
− 3m · η(C ′).

To complete the proof, we need to specify our choices of parameters.
We have ‖B′‖ ≤ pdC′ , and m ≤ ΨA(C, d). Thus, β ≥ ‖B′‖−ΨA(C,d). We
choose ∆(C) = 1

16( ε
8R)ΨA(d,C), η(C ′) < 1

8‖B′‖ΨA(C,d)

(
ε

24R
)ΨA(C,d), and

both C and C ′ are upper-bounded by C9.8(F, d, r, η,∆, ζ). Finally, we
conclude by setting

δA(ε) = 1
4p
−dΨA(C9.8(∆,η,ρ,ζ,R))C9.8(∆,η,ρ,ζ,R) ·

(
ε

8R

)ΨA(C9.8(∆,η,ρ,ζ,R),d)
.
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Degree Structural Properties

Theorem 14.3 shows that every locally characterizable property is
proximity-oblivious testable with one-sided error. The condition of
being locally characterizable is quite general, and as a result, we ex-
pect that there are many such interesting algebraic properties. This, in
fact, turns out to be the case. We show that a class of properties that
we call degree-structural are all locally characterized and are, hence,
proximity-obliviously testable by Theorem 14.3.

Before giving the formal definition, let us first list some examples of
degree-structural properties. Let d be a fixed positive integer, F = Fp
a fixed prime finite field. Each of the following definitions defines a
degree-structural property.

• Degree ≤ d: All polynomials F : Fn → F of degree ≤ d;

• Product of linear forms: Polynomials F : Fn → F of degree
≤ d which are the product of at most d linear functions;

• Composite polynomials: Polynomials F : Fn → F of degree
≤ d which factor as F = GH where G,H are polynomials of
degree 1 ≤ deg(G),deg(H) ≤ d− 1;

420
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• Having square root: Polynomials F : Fn → F of degree ≤ d

which can be factored as F = G2 for a polynomial G of degree
≤ d/2;

• Sum of two products: Polynomials F : Fn → F of degree
≤ d which can be decomposed as F = G1G2 + G3G4, where
1 ≤ deg(Gi) ≤ d− 1 for all i ∈ {1, 2, 3, 4};

• Low d-rank: For fixed integers r ≥ 1, R ≥ 2, a function F :
Fn → [R] has d-rank at most r if there exist classical polynomials
G1, . . . , Gr : Fn → F of degree ≤ d−1 and a function Γ : Fr → [R]
such that F = Γ(G1, . . . , Gr).

In fact, roughly speaking, any property that can be described as the
property of being decomposable into a known structure of low-degree
polynomials is degree-structural. The following definition formalizes
this notion.

Definition 16.1 (Degree-structural property). Let F = Fp be a prime
finite field and let R ≥ 2. Given an integer c ≥ 1, a vector of non-
negative integers d = (d1, . . . , dc) ∈ Zc≥0, and a function Γ : Fc → [R],
define the (c,d,Γ)-structured property to be the collection of functions
F : Fn → [R] for which there exist polynomials P1, . . . , Pc : Fn → F of
degrees deg(Pi) ≤ di for all i ∈ [c], such that F (x) = Γ(P1(x), . . . , Pc(x))
for all x ∈ Fn.

We say a property P ⊆ {F : Fn → [R]} is degree-structural if there
exist integers c, d ≥ 1 and a set of tuples

S ⊂ {(c,d,Γ) | d ∈ [0, d]c,Γ : Fc → [R]} ,

such that a function F ∈ P if and only if F is (c,d,Γ)-structured for
some (c,d,Γ) ∈ S. We call R the range, c the scope and d the max-degree
of the degree-structural property P.

Remark 16.2. We could allow for an even more general definition of
degree-structural properties, by allowing the polynomials Pi above to
be nonclassical with some bound on the depth. Everything below can
be extended to this setting as well.
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422 Degree Structural Properties

It is straightforward to see that the examples described above all
satisfy this definition. By definition, any degree structural property is
affine invariant. In this section, we present a result of Bhattacharyya
et al. [14] that shows that any degree-structural property with bounded
scope and max-degree has a local characterization.

Theorem 16.3. Fix a prime finite field F. Every degree-structural prop-
erty P with range R, scope c and max-degree d is q-locally characterized
for some q = q(F, R, c, d).

An immediate corollary of Theorem 16.3 and Theorem 14.3 is that
any degree-structural property is proximity-oblivious locally testable.

Corollary 16.4. Fix a prime finite field F. Every degree-structural prop-
erty P with range R, scope c and max-degree d is q-locally testable for
some q = q(F, R, c, d).

The proof of Theorem 16.3 will rely on Theorem 7.32. In the original
paper, Bhattacharyya et al. [14], the proof utilized a special version of
Theorem 7.32 for affine constraints, as these are the systems of linear
forms which arise in affine invariant property testing. Here, we present
a slightly different version, which avoids the need to introduce this
specialized form of Theorem 7.32.

16.1 Proof of Theorem 16.3

We proceed to give the proof of Theorem 16.3. The proof would utilize
the following lemma due to Bhattacharyya et al. [12], which shows that
locally characterized properties cannot distinguish between polynomials
of high rank, as long as they have the same degree and depth.

Lemma 16.5. Let F = Fp be a prime finite field, and fix d, c, q ≥ 1. Let
P be a q-locally characterized property of functions Fn → [R]. Let B be
a polynomial factor of rank > r16.5(F, d, c, q) defined by homogeneous
nonclassical polynomials P1, . . . , Pc : Fn → T of degrees ≤ d, and define
F (x) = Γ(P1(x), . . . , Pc(x)) for some function Γ : Tc → [R].

Assume that F ∈ P. Then, for any homogeneous polynomials
Q1, . . . , Qc : Fn → T for which deg(Qi) = deg(Pi) and depth(Qi) =
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16.1. Proof of Theorem 16.3 423

depth(Pi), it holds that the function G(x) = Γ(Q1(x), . . . , Qc(x)) is also
in P.

Proof. Assume that G /∈ P . As P is q-locally characterized, there must
be q points x1, . . . , xq ∈ Fn such that the values of G(x1), . . . , G(xq)
witness the fact that G /∈ P. We will show that there exists points
x′1, . . . , x

′
q ∈ Fn which witness the fact that F /∈ P, a contradiction.

Let e denote the dimension of the linear subspace spanned by
x1, . . . , xq, and assume without loss of generality that x1, . . . , xe are
linearly independent. Let L1, . . . , Lq : Fe → F be linear forms such that
xi = Li(x1, . . . , xe). For every Qi, we have that Qi(L1(x1, . . . , xe)),. . . ,
Qi(Lq(x1, . . . , xe)) are (di, ki)-consistent with L1, . . . , Lm, where di =
deg(Pi) = deg(Qi) and ki = depth(Pi) = depth(Qi) (see Definition 7.37).
Theorem 7.38 then implies that, as long as B has high enough rank (con-
cretely, rank at least r7.10(F, d, ε) for ε = 1/2|B|m) then

(
(Pi(Lj(X))) :

X ∈ (Fn)e
)
attain all values in Tmc which are (d,k)-consistent with

L1, . . . , Lm, where d = (d1, . . . , dc) and k = (k1, . . . , kc). In partic-
ular, there are some x′1, . . . , x′e ∈ Fn such that Pi(Lj(x′1, . . . , x′e)) =
Qi(Lj(x1, . . . , xe)) for all i ∈ [c], j ∈ [m]. This implies F (xi) = G(xi)
for all i ∈ [q], which in turn shows F /∈ P.

As a specific corollary, we obtain that under the definitions of
Lemma 16.5, if F : Fn → F is a polynomial of degree D then deg(G) ≤
D.

Corollary 16.6. Let F = Fp be a prime finite field, and fix c, d ≥ 1. Let
B be a polynomial factor of rank > r16.6(F, d, c) defined by homogeneous
nonclassical polynomials P1, . . . , Pc : Fn → T of degrees ≤ d, and define
F (x) = Γ(P1(x), . . . , Pc(x)) for some function Γ : Tc → F.

Assume that deg(F ) = D. Then, for any homogeneous polynomials
Q1, . . . , Qc : Fn → T for which deg(Qi) = deg(Pi) and depth(Qi) =
depth(Pi), it holds that the function G(x) = Γ(Q1(x), . . . , Qc(x)) has
deg(G) ≤ D.

Proof. The corollary follows as the property of being a polynomial
of degree ≤ D is q-locally characterized for q ≤ 2D. Moreover, if
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deg(F ) = D and F is a function of c nonclassical polynomials of degree
≤ d, then D ≤ dcpdd/(p−1)e.

Proof of Theorem 16.3. Let P be a degree-structural property with
range R, scope c and max-degree d. Denote by S the set of tuples
(c,d,Γ) such that P is the union over all (c,d,Γ) ∈ S of (c,d,Γ)-
structured functions. It is clear that P is affine-invariant, as having
degree bounded by some di is an affine-invariant property. It is also
immediate that P is closed under taking restrictions to subspaces, since
if F is (c,d,Γ)-structured, then F restricted to any hyperplane is also
(c,d,Γ)-structured. The non-trivial part of the theorem is to show that
the locality dimension is bounded. In other words, we need to show
that there is a constant K = K(F, R, c, d), such that for n ≥ K, if
F : Fn → [R] is a function with F |H ∈ P for every K-dimensional
subspace H ≤ Fn, then this implies that F ∈ P. To do that, it suffices
(by induction) to prove a weaker statement: for n ≥ K, if F : Fn → [R]
is a function with F |H ∈ P for every hyperplane (namely, an (n− 1)-
dimensional subspace) H ≤ Fn, then this implies that F ∈ P.

For each t ∈ [R] let Ft : Fn → {0, 1} ⊂ F be given by Ft(x) = 1F (x)=t.
The first step will be bound the degrees of Ft. Recall that we assume
that F |H ∈ P for every hyperplane H. Thus

F |H(x) = ΓH(PH,1(x), . . . , PH,c(x))

for some polynomials PH,i of degrees deg(PH,i) ≤ di ≤ d and some
ΓH : Fc → [R]. This implies that (Ft)|H(x) = ΓH,t(PH,1(x), . . . , PHc(x))
where ΓH,t(z) = 1ΓH(z)=t. In particular, deg((Ft)|H) ≤ D := |F|cd for
all t ∈ [R]. As the property of being low degree is locally characterized,
by making sure that K > D we obtain that also deg(Ft) ≤ D.

Let r1 : Z>0 → Z>0 be a function to be determined later. Define
r2 : Z>0 → Z>0 so that r2(·) > r1(C(F,r,D)

7.30 (·+ c)) +C
(F,r,D)
7.30 (·+ c) + |F|.

Apply Theorem 7.30 to the polynomial factor {F1, . . . , FR} to obtain an
r2-regular polynomial factor B of degree ≤ D, defined by homogeneous
nonclassical polynomials R1, . . . , RC : Fn → T, where C ≤ CF,r2,d

7.30 (R).
Since each Ft is measurable with respect to B, so is F . So, there exists
a function Σ : TC → [R] such that

F (x) = Σ(R1(x), . . . , RC(x)).
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From each Ri pick a monomial with degree equal to deg(Ri) and a
monomial (possibly the same one) with depth equal to depth(Ri). By
taking K to be sufficiently large, and as we assume that n > K, we can
guarantee the existence of an i0 ∈ [n] such that xi0 is not involved in any
of these monomials. Let R′1, . . . , R′C be the restrictions of R1, . . . , RC ,
respectively, to the hyperplane H = {xi0 = 0}. By the choice of i0
we have that deg(R′i) = deg(Ri) and depth(R′i) = depth(Ri) for all
i ∈ [C], Also, by Lemma 7.2, R′1, . . . , R′C have rank > r2(C)− p. Since
F |xi0=0 ∈ P by our assumption, by definition of P, there must exist
(c,d,Γ) ∈ S such that

Σ(R′1(x), . . . , R′C(x)) = Γ(P1(x), . . . , Pc(x)),

where deg(Pi) ≤ di for all i ∈ [c].
Next, apply Theorem 7.30 again to find an r1-regular refinement of

the factor defined by the tuple of polynomials (R′1, . . . , R′C , P1, . . . , Pc).
Because of our choice of r2 and the last part of Theorem 7.30, we
obtain a syntactic refinement of {R′1, . . . , R′C}. That is, we obtain a
polynomial factor B′ defined by homogeneous nonclassical polynomials
R′1, . . . , R

′
C , S1, . . . , SE : Fn → T such that it has degree ≤ D, rank

> r1(C + E) where C + E ≤ CF,d,r1
7.30 (C + σ). In particular, for each

i ∈ [c] we have

Pi(x) = Γi(R′1(x), . . . , R′C(x), S1(x), . . . , SE(x))

for some function Γi : TC+E → T. So for all x ∈ Fn,

Σ(R′1(x), . . . , R′C(x)) =

Γ
(
Γ1
(
R′1(x), . . . , R′C(x), S1(x), . . . , SE(x)

)
,

. . . ,Γc
(
R′1(x), . . . , R′C(x), S1(x), . . . , SE(x)

))
.

Applying Lemma 7.24, we see that if the rank of B′ is > r7.24 (F, D, ε)
where ε > 0 is sufficiently small (say ε = 1

2‖B′‖), then (R′1(x), . . . , R′C(x),
S1(x), . . . , SE(x)) acquires every value in its range. Thus, we have the
identity

Σ(a1, . . . , aC)

= Γ
(
Γ1
(
a1, . . . , aC , b1, . . . , bE

)
, . . . ,Γc

(
a1, . . . , aC , b1, . . . , bE

))
,
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for every ai ∈ Udepth(R′i)+1 and bi ∈ Udepth(Si)+1. Hence, we can substi-
tute Ri for R′i and 0 for Si in the above equation and still retain the
identity

F (x) = Σ(R1(x), . . . , RC(x))

= Γ
(
Γ1
(
R1(x), . . . , RC(x), 0, . . . , 0

)
,

. . . ,Γc
(
R1(x), . . . , RC(x), 0, . . . , 0

))
= Γ

(
Q1(x), . . . , Qc(x)

)
whereQi : Fn → T are defined asQi(x) = Γi(R1(x), . . . , RC(x), 0, . . . , 0).
Since for every i, deg(Ri) = deg(R′i) and depth(Ri) = depth(R′i), we
apply Corollary 16.6 to conclude that deg(Qi) ≤ deg(Pi) ≤ di for every
i ∈ [c], as long as the rank of B′ is > r16.6(F, d, C).

Finally, we argue that Q1, . . . , Qc are classical polynomials. Indeed,
since P1, . . . , Pc are classical polynomials, Γ1, . . . ,Γc must map to U1 on
all of

∏C
i=1 Udepth(R′i)+1×

∏E
i=1 Udepth(Si)+1 ⊇

∏C
i=1 Udepth(Ri)+1×{0}E .

Hence, Q1, . . . , Qc take values in U1, and hence are classical polynomials.
We conclude that F ∈ P.
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17
Estimating the Distance from Algebraic

Properties

In Chapter 15 and Chapter 16 we discussed one-sided error testable
affine-invariant properties. In this section we discuss two different set-
tings, testability with two-sided error and parameter estimation. First
let us define the notion of testability with two-sided error.

Definition 17.1 (Testability with two-sided error). A property P ⊂
{Fn → [R]} is said to be testable with two-sided error if there is a
function q : (0, 1) → N and a randomized algorithm T that, given as
input a parameter ε > 0 and oracle access to a function f : Fn → [R],
makes at most q(ε) queries to the oracle for f , accepts with probability
at least 2/3 if f ∈ P and rejects with probability at least 2/3 if f is
ε-far from P.

Parameter estimation. A function parameter is any map π which
maps a function f : Fn → [R] to π(f) ∈ [0, 1]. A function parameter
is affine invariant if for any f : Fn → [R] and any invertible affine
map A : Fn → Fn it holds that π(f) = π(f ◦ A). An example of a
function parameter is the distance from an affine invariant property.
That is, if P ⊂ {f : Fn → [R]} is an affine invariant property, then
π(f) = dist(f,P) is an affine-invariant function parameter.

427
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Definition 17.2 (Parameter estimation). A function parameter π of
functions f : Fn → [R] is said to be estimable if there is a function
q : (0, 1) → N and a randomized algorithm T that, given as input a
parameter ε > 0 and oracle access to a function f : Fn → [R], makes
at most q(ε) queries to the oracle for f , and outputs a value which is
within ε of π(f) with probability at least 2/3.

Hatami and Lovett [49] showed that the distance to any constant-
query testable (with two-sided error) hereditary affine-invariant property
is constant-query estimable.

Theorem 17.3 (Hatami and Lovett [49]). For every two-sided error
testable hereditary affine-invariant property P the parameter dist(f,P)
is estimable.

We will present a sketch of the proof of Theorem 17.3. We would
like to prove that given an oracle access to a function f : Fn → [R]
and an error parameter ε > 0, one can query the function f on q(ε)
points, and output an estimate of dist(f,P) that is, with probability
≥ 2/3 (say), within ε of the correct value. The test we study is very
natural. We show that there exists a constant m = m(P, ε) such that
for a random affine subspace H of dimension m it holds that

Pr
H

[|dist(f,P)− dist(f |H ,P)| ≤ ε] ≥ 2/3.

Note that crucially, m is independent of n.
The proof of Theorem 17.3 combines higher-order Fourier analysis

with the framework of Fischer and Newman [30] which obtained similar
results for graph properties. At a high level, the approach for the graph
case and the affine-invariant case are similar. One applies a regularization
process, which allows one to represent a graph (or a function) by a small
structure. Then, one argues that a large enough random sample of the
graph or function should have a similar small structure representing it.
Hence, properties of the main object can be approximated by properties
of a large enough sample of it. Fischer and Newman [30] implemented
this idea in the graph case. Adapting this to the algebraic case inevitably
introduces some new challenges.
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To simplify the presentation, we focus on the case R = 2 from now
on. That is, we assume that all functions are f : Fn → {0, 1}. Also, we
fix the required success probability at 2/3 (any other constant strictly
less than 1 would also work). The following theorem formalizes the
discussion above.

Theorem 17.4. Let P ⊂ {f : Fn → {0, 1} : n ∈ N} be an affine-
invariant hereditary property which is two-sided testable. Then, for any
ε > 0, there exists a constant m = m(P, ε) such that the following
holds. Let H ⊂ Fn be a uniformly chosen m-dimensional affine subspace.
Then for any f : Fn → {0, 1},

Pr
H

[|dist(f,P)− dist(f |H ,P)| ≤ ε] ≥ 2/3.

17.1 Proof sketch of Theorem 17.4

Let P ⊂ {f : Fn → {0, 1} : n ∈ N} be an affine-invariant hereditary
property which is two-sided testable. Let f : Fn → {0, 1} be a function,
and let f̃ be the restriction of the function to a random m-dimensional
affine subspace H ⊂ Fn. We show that, if m = m(P, ε) is chosen large
enough, then

• Completeness: If dist(f,P) ≤ δ, then with high probability,
dist(f̃ ,P) ≤ δ + ε.

• Soundness: If dist(f,P) ≥ δ + ε, then with high probability,
dist(f̃ ,P) ≥ δ.

Let us first fix notations. Let A : Fm → Fn be a random full
rank affine transformation. Note that Af : Fm → {0, 1} defined as
Af(x) = f(Ax) is the restriction of f to the affine subspace which is
the image of A. Thus in the above discussion f̃ = Af .

The proof of the completeness is simple. If δ(f,P) ≤ δ then there
exists g ∈ P for which δ(f, g) ≤ δ. With high probability over a random
restriction, the distance of Af and Ag is at most δ + om(1). This is
because (i) EA dist(Af,Ag) = dist(f, g), as each point in Fn has equal
probability to be in the image of A, and (ii) a random affine subspace is
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pairwise independent with regards to whether an element is contained
in it. Thus, by Chebychev’s inequality,

Pr
A

[|dist(Af,Ag)− dist(f, g)| ≥ ε] ≤ 1
ε2|F|m

.

Clearly, choosing m large enough guarantees that the probability is
bounded by 1/10 (say).

The main challenge (as in nearly all results in property testing) is
to establish soundness. That is, we wish to show that if a function f
is far from P then, with high probability, a random restriction of it is
also far from P as well. The main idea is to show that if for a typical
restriction Af is δ-close to a function h : Fm → {0, 1} which is in P,
then h can be “pulled back” to a function g : Fn → {0, 1} which is both
roughly δ-close to f and also very close to P. This will contradict our
initial assumption that f is (δ + ε)-far from P. In order to do so we
apply the machinery of higher order Fourier analysis. Our description
in this overview subsection will hide various “cheats” but will present
the correct general outline. For the full details we refer to the original
paper [49].

First, we apply two-sided testability to deduce that a restriction to
a low-dimensional subspace can distinguish between f ∈ P and f which
is ε-far from P.

Claim 17.5. For any ε > 0, there is k = k(P, ε) and a partition of the
set of functions {Fk → {0, 1}} to two disjoint sets F+, F− such that
the following holds. Let B : Fk → Fn be a random full rank affine
transformation. Then for any f : Fn → {0, 1}:

• If f ∈ P then Pr[Bf ∈ F+] ≥ 0.9.

• If dist(f,P) ≥ ε then Pr[Bf ∈ F−] ≥ 0.9.

Proof. The assumption that P is two-sided locally testable means that
for some q = q(ε), there is a local test which uses q queries, that
can distinguish with probability 0.9 between f ∈ P and f for which
dist(f,P) ≥ ε. As the property if affine-invariant, we may assume that
the queries come from affine forms in some k ≤ q variables. In particular,
all the queries are contained in an affine subspace of dimension k. The
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sets F+, F− are determined by which restrictions make the tester accept
and which ones make it reject.

Next, we apply the decomposition theorems discussed in Chapter 9.
These allow us to decompose f to “structured” parts which we will
study, and “pseudo-random” parts which do not affect the distribution
of restrictions to k-dimensional subspaces. In order to do so, for a
function f : Fn → {0, 1} define by µf,k the distribution of its restriction
to k-dimensional subspaces. That is, for any v : Fk → {0, 1} let

µf,k[v] = Pr
B

[Bf = v],

where to recall B : Fk → Fn is a random full rank affine transformation.
We will need to slightly generalize this definition to randomized

functions. In our context, these can be modeled as f : Fn → [0, 1].
Such a function describes a distribution over (deterministic) functions
f ′ : Fn → {0, 1} as follows: for each x ∈ Fn independently, sample
f ′(x) ∈ {0, 1} so that E[f ′(x)] = f(x). We extend the definition of µf,k
to functions f : Fn → [0, 1] by setting

µf,k[v] = E
f ′

[
µf ′,k[v]

]
.

Our definition implies that if two functions f, g : Fn → [0, 1] have
distributions µf,k and µg,k close in statistical distance, then random
restrictions to k-dimensional affine subspaces cannot distinguish f from
g. This will be useful in the analysis of the soundness.

We next decompose our function f : Fn → {0, 1} based on the
above intuition. Let d to be determined later. Theorem 9.1 gives a
decomposition

f = f1 + f2

where f1 = Γ(P1(x), . . . , PC(x)) : Fn → [0, 1] for a high-rank polynomial
factor {P1, . . . , PC} and where ‖f2‖Ud is small enough. In the actual
proof one has to use the strong decomposition theorem (Theorem 9.3)
into three parts f = f1 + f2 + f3. However for the sake of sketching the
proof one can ignore this technicality. For an appropriately chosen d
(d > |F|k suffices) we can then replace f with f1 for the purposes of
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analyzing its restrictions to k-dimensional subspaces. That is,

µf,k ≈ µf1,k

where f1 : Fn → [0, 1] and where closeness is in statistical distance. Thus,
from now on we restrict our attention to f1, namely the “structured
part” of f .

The next step is to show that the same type of decomposition can
be applied to the restriction Af of f , recalling that A : Fm → Fn is a
random full rank affine transformation. We will later choose m � k

for the proof to work. Clearly, Af = Af1 +Af2. We next analyze the
typical behavior of Af1 and Af2.

First, note that Af1 = Γ(Q1(x), . . . , QC(x)) where Qi = APi are
the restrictions of P1, . . . , PC . One can show (and we omit the details in
this proof sketch) that as P1, . . . , PC is a high-rank polynomial factor,
then Q1, . . . , QC is also a high-rank polynomial factor. Thus f1 and Af1
have the same “high level” factorization Γ to high-rank polynomials.

Next, we analyze Af2. We claim that with high probability over the
choice of A, if m is chosen large enough, then ‖Af2‖Ud ≈ ‖f2‖Ud . This
holds since

E
A
‖Af2‖2

d

Ud = ‖f2‖2
d

Ud ±O(2d|F|−m).

So, Af and Af1 also have similar distribution of their restrictions to
random k-dimensional subspaces. That is,

µAf,k ≈ µAf1,k.

Next, assume that dist(Af,P) ≤ ε. By definition, there exists h :
Fm → {0, 1}, where h ∈ P, such that dist(Af, h) ≤ ε. We apply the
same decomposition process to h. Thus, we decompose

h = h1 + h2,

where h1 is structured and ‖h2‖Ud is very small. Thus as before, µh,k ≈
µh1,k.

By choosing the exact parameters of “high rank” for h1 to be lower
than those for Af1, but still high enough (for exact details, see the
original paper [49]), we may assume that the polynomials that appear
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in the decomposition of h1 extend Q1, . . . , QC which appear in the
decomposition of Af1. That is, we have

h1(x) = Γ′(Q1(x), . . . , QC′(x))

for some C ′ > C, such that the entire set of polynomialsQ1, . . . , QC′ is of
high rank. The important aspect here is that the polynomialsQ1, . . . , QC
which comprise Af1 are part of the description of h1 (however, it may be
the case that Γ′ ignores them; we will see soon that this is impossible).
To summarize: both Af1 and h1 can be defined in terms of the same
basic “building blocks”, namely high rank polynomials Q1, . . . , QC′ .

The next step is to “pull back” h to a function φ : Fn → {0, 1}, such
that φ is very close to P, and such that dist(f, φ) ≈ dist(Af, h). This
will show that

dist(f,P) ≤ dist(f, φ) + om(1) = dist(Af, h) + om(1) ≤ δ + om(1).

Setting m = m(k, ε) large enough would show that dist(f,P) ≤ δ + ε,
which is our goal.

The first step is to pull back h1. To recall, h1(x) = Γ′(Q1(x), . . . ,
QC′(x)), and moreover Qi = APi for 1 ≤ i ≤ C. So, for C < i ≤ C ′

we need to define pull-back polynomials Pi : Fn → {0, 1} such that (i)
Qi = APi; and (ii) P1, . . . , PC′ are of high rank. This can be done for
example by letting Pi = DQi for any affine map D : Fn → Fm for which
AD is the identity map on Fm. So, define φ1 : Fn → [0, 1] given by

φ1(x) = Γ′(P1(x), . . . , PC′(x)).

Note that Aφ1 = h1; that is, φ1 is the pull-back of the “structured part”
h1 of h. However, it does not in general generate a function close to f .
This makes sense, as we still have not used the finer “pseudo-random”
structure of h2.

However, we can already show something about φ1: it is very close
to P. More concretely, as P1, . . . , PC′ are high rank polynomials, and
also Q1, . . . , QC′ are high rank polynomials, we have

µφ1,k ≈ µh1,k.

Recall that we have shown µh1,k ≈ µh,k, and that h ∈ P. Thus, the
tester which distinguishes functions in P from those ε-far from P cannot
distinguish φ1 from functions in P. Hence, φ1 must be ε-close to P.
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The final step is to define the more refined pull-back φ of h. Define
an atom as a subset {x ∈ Fn : P1(x) = a1, . . . , PC′(x) = aC′} for values
a1, . . . , aC′ . Note that the functions f1, h1 are constant over atoms. We
next define φ : Fn → [0, 1] by redefining φ1 inside each atom, so that
the average over each atom of φ and φ1 is the same, but such that φ
is as close as possible to f given this constraint. Concretely, we can
consider three cases:

• An atom where the average of f over the atom equals the value
φ1 assigns to this atom. In this atom, we simply set φ(x) = f(x)
for all points x in this atom.

• An atom where the average of f over the atom is larger than the
value φ1 assigns to this atom. In this atom, for any x, if f(x) = 0
then we set φ(x) = 0, and if f(x) = 1 then we set φ(x) = α where
the value α is chosen so that the average of φ and φ1 over the
atom is the same.

• An atom where the average of f over the atom is lower than the
value φ1 assigns to this atom. This is analogous to the previous
case.

One can show that under this choice, φ is indeed a proper pull-back
of h, in the sense that

dist(f, φ) = dist(f1, φ1) ≈ dist(Af, h1) ≈ dist(Af, h).

Moreover,
dist(φ,P) ≈ dist(φ1,P) = om(1).

We thus conclude that dist(f,P) ≤ dist(Af, h) + om(1) ≤ δ + om(1).
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18
Open Problems

We conclude this survey with a quick overview of the main open problems
in this area. Several of these have already been mentioned in the text,
and we repeat them here for completeness.

18.1 Testability of hereditary properties

A beautiful and fundamental result of Alon and Shapira [4] says that
every hereditary graph property is testable. In [16] the analogue of Alon
and Shapira’s result is conjectured for algebraic properties.

Conjecture 14.7 (restated). Every affine invariant subspace heredi-
tary property is testable with one-sided error.

Resolving Conjecture 14.7 would yield a combinatorial characteriza-
tion of the one-sided testable affine-invariant properties, similar to the
characterization for testable dense graph properties [4]. In Theorem 14.9,
we made major progress towards resolving Conjecture 14.7 by proving
the testability under an additional assumption of “bounded complexity”.
The authors of the survey believe that it is likely that Conjecture 14.7
is in fact false, and some assumption on the complexity of the property
is necessary.

436
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18.2 Testing correlation with classical polynomials

As we saw in Section 6.2, estimating the Gowers norm ‖f‖Ud+1 can
be used as a test for whether a function f has significant or negligible
correlation with degree d nonclassical polynomials. We also saw in
Chapter 5 that d = 3 is the first case where the Gowers norm is not a
test for correlation with classical polynomials. The d = 3 still remains a
fascinating open problem.

Problem 18.1. Does there exist a tester which queries a function f :
Fn2 → F2 on a constant number of positions, and which can distinguish
whether f has noticeable or negligible correlation with classical cubic
polynomials?

More precisely, we would like a universal test with a constant number
of queries for which the following holds. For every ε > 0, there exists
a constant 0 < δ(ε) < ε, such that with probability at least 2/3 the
test correctly distinguishes between functions that have correlation at
most δ(ε) with all classical cubic polynomials, and the ones that have
correlation at least ε with some classical cubic polynomial.

As we saw in Chapter 17, a tester for which the number of queries
depends on the error parameter exists and was given in [49], however
the above problem is left open. See [50] for more results and discussion
on the subject.

18.3 Quantitative bounds for inverse theorems

Recall that the inverse theorem for Gowers norms, Theorem 6.9, shows
existence of ε(δ, d,F) such that the following holds. For every function
f : Fn → C with ‖f‖∞ ≤ 1 and ‖f‖Ud+1 ≥ δ, there exists a polynomial
P ∈ Poly≤d(Fn → T) of degree ≤ d that is ε-correlated with f , meaning∣∣∣∣ E

x∈Fn
f(x)e(−P (x))

∣∣∣∣ ≥ ε.
The asymptotics of the required dependence of ε on δ are not well under-
stood and in fact it is a major open problem whether this dependence
can be made polynomial, even in the special case of d = 3 and |F| = 2.
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Conjecture 18.2 (Polynomial inverse Gowers conjecture for U3). Let
f : Fn2 → F2. If

∥∥∥(−1)f
∥∥∥
U3
≥ ε, then there exists a quadratic classical

polynomial q such that Pr[f(x) = q(x)] ≥ 1
2 + δ, where δ = cεc for some

absolute constant c > 0.

As evidence for the importance of understanding quantitative bounds
for the inverse theorem, Green and Tao [44] and Lovett [58] proved that
the above conjecture is equivalent to a very important conjecture in
additive combinatorics, namely the well-known polynomial Freiman-
Ruzsa conjecture. The best known lower-bound for δ is quasi-polynomial
in ε which follows from the paper of Sanders on the Bogolyubov-Ruzsa
conjecture [71].

18.4 Complexity of linear forms

In Theorem 11.8 we proved that if L = {L1, . . . , Lm} is a system of
linear forms for which Ld+1

1 , Ld+1
2 , . . . , Ld+1

m are linearly independent,
then for every ε > 0, there exists δ > 0 such that for any collection of
functions f1, . . . , fm : Fn → D with ‖f1‖Ud+1 ≤ δ, we have∣∣∣∣∣ E

X∈(Fn)k

[
m∏
i=1

fi(Li(X))
]∣∣∣∣∣ ≤ ε.

Our proof of this fact goes through inverse theorem for Gowers norms
and regularity lemmas for polynomials and as a result the dependence
of δ on ε is really bad. It is left open whether this theorem can be
proved with reasonable bounds on δ. We state an open problem due to
Gowers and Wolf [40] that focuses on the polynomial regime.

Problem 18.3 (Gowers and Wolf [40], Problem 7.6 reformulated). Does
there exist an integer d ≥ 1 and a system of linear forms L1, . . . , Lm
with Ld+1

1 , . . . , Ld+1
m linearly independent, such that the following holds:

For every positive real number r, there exists ε > 0 and functions
fi : Fn → C such that ‖fi‖Ud ≤ εr for every i, and yet∣∣∣∣∣ E

X∈(Fn)d

m∏
i=1

fi(Li(X))
∣∣∣∣∣ > ε.
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18.5 Norms defined by linear forms.

A possibly challenging open problem is to give a full characterization of
collections of linear forms L1, . . . , Lm for which∣∣∣∣∣ E

X∈Fk

m∏
i=1

f(Li(X))
∣∣∣∣∣
1/m

,

defines a norm on the space {f : Fn → R}. Note that both the Gowers
norm as well as the Lp norms for even values of p are of this type. In
fact, one can show a characterization when F has characteristic larger
than the true complexity of the linear forms. It turns out that in this
case, all such norms are essentially either equivalent to an Lp norm for
some p > 0 or equivalent to the Gowers norm of some order d. However,
the techniques do not seem to extend to the general question which is
the interesting regime.
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