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In this work we present a detailed analysis of variational quantum phase estimation (VQPE), a method
based on real-time evolution for ground- and excited-state estimation on near-term hardware. We derive
the theoretical ground on which the approach stands, and demonstrate that it provides one of the most
compact variational expansions to date for solving strongly correlated Hamiltonians, when starting from
an appropriate reference state. At the center of VQPE lies a set of equations, with a simple geometrical
interpretation, which provides conditions for the time evolution grid in order to decouple eigenstates out
of the set of time-evolved expansion states, and connects the method to the classical filter-diagonalization
algorithm. Furthermore, we introduce what we call the unitary formulation of VQPE, in which the number
of matrix elements that need to be measured scales linearly with the number of expansion states, and we
provide an analysis of the effects of noise that substantially improves previous considerations. The unitary
formulation allows for a direct comparison to iterative phase estimation. Our results mark VQPE as both a
natural and highly efficient quantum algorithm for ground- and excited-state calculations of general many-
body systems. We demonstrate a hardware implementation of VQPE for the transverse field Ising model.
Furthermore, we illustrate its power on a paradigmatic example of strong correlation (Cr2 in the def2-SVP
basis set), and show that it is possible to reach chemical accuracy with as few as approximately 50 time
steps.

DOI: 10.1103/PRXQuantum.3.020323

I. INTRODUCTION

In fulfilling the promise of quantum computation
[1–3] and enabling the exact solution of many-body
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author(s) and the published article’s title, journal citation, and
DOI.

quantum systems, numerous algorithms of different
resource requirements have been proposed [4–7], which
require quantum and classical resources of different com-
plexity. Many of these algorithms are focused on efficient
eigenvalue extraction, important for solving problems in
chemistry [8], physics [9], and materials science [10] and
limited classically by the exponential scaling of Hilbert
space with system size. Though immense progress has
been made in the development of quantum algorithms for
eigenvalue estimation, the resource requirements remain
prohibitively high with regards to noisy intermediate-scale
quantum (NISQ) hardware [10,11].

For example, quantum phase estimation (QPE)
[12–14] is considered an algorithm that will need
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considerable quantum resources to run, but will ultimately
be a highly accurate approach to quantum simulation. Adi-
abatic state preparation [15,16] allows the ground state of a
particular Hamiltonian to be reached by preparing an initial
ground state of a simpler system and slowly changing the
Hamiltonian to the desired system, requiring long coher-
ence times and low gate errors. Particularly in the current
era of NISQ quantum computers, the variational quantum
eigensolver (VQE) framework [17], and its nonorthogo-
nal variant NOVQE [18], are promising approaches for
the exact solution of many-body quantum systems. How-
ever, the common formulation of this family of methods
relies on the solution of a highly complex variational opti-
mization problem on classical computers, which remains
an open challenge [19,20].

The methods described above are generally used to
solve the time-independent Schrödinger equation to deter-
mine the Hamiltonian eigenvalues and eigenstates. How-
ever, time evolution is a more natural operation on a quan-
tum computer and thus simulation of the time-dependent
Schrödinger equation is a more ideal framework to imple-
ment. Given the intrinsically quantum-mechanical relation
between the time and energy domains [21], a different
family of quantum algorithms focuses on using a time-
dependent perspective to solve time-independent problems
[22,23]. These methods propose a linear wave function
ansatz expanded in time-evolved states and solve the
thereby defined generalized eigenvalue equation classi-
cally, while the Hamiltonian and overlap matrix elements
are measured on quantum hardware. Exploiting this, quan-
tum computers hold unique potential to outperform their
classical counterparts with algorithms based on real-time
evolution. In this work we focus on that advantage and use
real-time evolution to generate a basis of states to extract
Hamiltonian eigenvalues.

Using real-time evolution to generate a basis of states
to solve a Hamiltonian is not a new idea [24–26], but
it is not widely used in classical simulation due to the
computational limitations of simulating real-time evolu-
tion. Approximate imaginary-time evolution [27,28] and
Krylov diagonalization methods [29] are far more widely
used in classical simulation, and the intuition behind such
approaches is simple to understand: each new state gener-
ated in these approaches has a larger overlap with the true
ground state. This of course is not how real-time evolu-
tion works, as the expectation value of the energy remains
constant, and one never gets closer to the ground state
during the evolution. However, the states that can be gen-
erated through real-time evolution in fact do provide a
basis from which one can extract ground and excited states.
This is not only highly efficient, but in some cases may
be faster than other quantum methods that use time evo-
lution, such as QPE. Thus, the main goal in this work is
to develop an approach for computing ground and excited

states, using states generated by real-time evolution, that
is, as fast and efficient as possible. With this in mind,
we analyze the theoretical underpinnings of a class of
algorithms we term variational quantum phase estima-
tion (VQPE) that is based on real-time expansion methods
[22,23]. We use the term VQPE because of its relationship
to both QPE and VQE, as we detail below (see Secs. II A
and II G).

Our VQPE algorithm and analysis go beyond previous
proposals in the following ways. We reduce the number
of quantum measurements needed to be linear instead of
quadratic in the number of expansion states. We introduce
the phase cancelation conditions, providing the underlying
theory for why this approach works and deriving a direct
link between time steps and band gaps in the spectrum.
We also analyze the effects of noise on our convergence
properties, providing significantly improved intuition for
ill-conditioning of VQPE methods. We also provide ana-
lytical and numerical comparisons to phase estimation,
providing evidence that VQPE could be a useful algorithm
beyond the NISQ era of quantum computing. Furthermore,
we demonstrate the method classically for several weakly
and moderately correlated molecules as well as a strongly
correlated transition metal dimer, Cr2. We show that, for
all the systems, regardless of the level of electronic corre-
lation, less than 50 real-time-evolved expansion states are
needed to reach agreement within chemical accuracy for
ground-state energies obtained with state-of-the-art classi-
cal methods requiring O(106) variational parameters [30].
Additionally, we implement the algorithm on quantum
hardware for the transverse field Ising model, providing
the first hardware demonstration of a VQPE method. Since
real-time evolution is natural to implement on quantum
hardware, this approach holds immense promise for NISQ
implementation.

The paper is structured as follows. In Sec. II, we ana-
lyze the theoretical structure of VQPE. This starts with
a brief overview and intuition of existing methods cor-
responding to the VQPE family (Secs. II A, II B). Subse-
quently, we present a novel examination of the theoretical
underpinnings of the method based on the phase cance-
lation picture in Sec. II C and we propose a procedure
for choosing optimal time step sizes. With the practical
implementation of VQPE on NISQ devices in mind, we
present the details of our unitary formulation of VQPE
in Secs. II D and II E. We conclude the theory section
with a careful analysis of the effects of noise (Sec. II F),
a comparison between VQPE and QPE (Sec. II G), and
a discussion of the inclusion of other time-evolved states
into VQPE (Sec. II H). Section III provides details of the
systems studied as well as the classical and quantum sim-
ulation methods. Section IV summarizes and discusses the
results of the simulations. Concluding remarks are found
in Sec. V.
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II. THEORY

A. Landscape of existing variational algorithms

VQE approaches are highly relevant for the NISQ
era of quantum computation [4]. They comprise fairly
simple quantum circuit implementations at the price of
relying on the solution of a high-dimensional, clas-
sical optimization problem in the presence of noise.
Despite the optimization challenge, many of the cur-
rently existing examples of actual quantum simulations
for many-body physics correspond to implementations of
this algorithm. The basic premise of VQE relies on the
variational approximation: a parametrized wave function
ansatz |�(�αj )〉, where �αj are the variational parameters,
is chosen such that it can be efficiently implemented on a
quantum computer. The energy expectation value E(�α) =
〈�(�αj )|H |�(�αj )〉/〈�(�αj )|�(�αj )〉 of this ansatz is eval-
uated on quantum hardware, and then the optimization
problem �∇E(�α) = 0 is solved on a classical computer. As
in any variational approach, the efficacy of the approxi-
mation depends on the flexibility of the ansatz. A way to
increase this flexibility is to choose a more general ground-
state estimate, namely as a linear combination of several
parametrized expansion states |�j (�αj )〉. The total wave
function ansatz thus becomes

|�(�c, {�α})〉 =
∑

j

cj |�j (�αj )〉 , (1)

where the cj are the expansion coefficients and �αj the opti-
mization parameters of the j th expansion states. Applying
the variational principle to the coefficients �c alone leads to
the secular equations [31]

∑

j

Hi,j cI
j = εI

∑

j

Si,j cI
j , (2)

where εI is an estimate for the I th Hamiltonian eigen-
value EI . Equation (2) is a standard generalized eigenvalue
equation, which can be solved classically. The Hamilto-
nian, which we assume to be time independent, and overlap
matrix elements are measured on quantum hardware in the
“basis” of expansion states following

Hi,j = 〈�i(�αi)|H |�j (�αj )〉 ,

Si,j = 〈�i(�αi)|�j (�αj )〉 .
(3)

Thus, the expansion coefficients �c can be determined
by classically solving the noisy, generalized eigenvalue
problem in Eq. (2). The expansion states |�j (�αj )〉 them-
selves can be then optimized with a classical minimiza-
tion method, further improving the energy estimates. One
example in which this has been used recently is with chem-
ically motivated ansatz, such as unitary coupled cluster

expansions [32], which had nonetheless some difficulties
related to the optimization of parameters.

The optimization of the �αj parameters is an open field
due to (i) the high-dimensional nature of the optimiza-
tion problem and (ii) the presence of noise, which is
necessarily part of any approach on quantum hardware.
To alleviate these problems, an alternative framework has
recently been explored [5,22,23,33–37], which completely
bypasses the need for optimization routines. In this fam-
ily of methods, one does not employ a set of parametrized
expansion states |�j (�αj )〉, but instead generates a set of
expansion states |�j 〉 systematically from one or several
reference states |�I 〉. The only variational parameters left
are thus the expansion coefficient �c, and consequently
the only task to be performed by a classical computer
is solving the (noisy) generalized eigenvalue problem in
Eq. (2).

The way of generating these expansion states should
balance ease of implementation on quantum hardware with
creating a flexible expansion set, in a variational sense, to
obtain accurate energies. While a priori, by changing from
parametrized |�j (�αj )〉 to systematically generated |�j 〉,
we are reducing the variational flexibility of our ansatz,
the expansion state generation can still be performed in
such a way that it is natural to both the description of
ground and excited states, as well as to the implementa-
tion on a quantum computer. One such approach is the
quantum subspace expansion method [33,35,36], which,
after optimizing a ground-state estimate with regular VQE,
generates expansion states by applying single excitation
operators on top of this VQE reference. A recent variation
introduced a more general multireference ansatz, targeting
ground and exited states simultaneously at the optimization
step [34].

Alternatively, the expansion states can be formed by
applying the time evolution operator U(t) = e−iHt to the
reference states. This is the approach followed in the
QLanczos method [5,37], where the time evolution is per-
formed along imaginary time (i.e., t → iτ ), and the quan-
tum filter-diagonalization and quantum Krylov approaches
[22,23], where the time evolution is performed along real
time. In the case of the QLanczos method, it is clear that
evolving to large enough imaginary times will provide an
expansion set that is well suited to describe the ground
state, provided that the reference state is not orthogonal to
it. In the next subsections, we discuss the formalism behind
using a set of the real-time states in the expansion, which
we refer to as VQPE. We also analyze VQPE’s robustness
to noise, which is critical to assess its applicability in NISQ
devices.

B. VQPE—basic intuition

In the VQPE approach [22,23], the expansion states
|�j ,I 〉 are generated from the reference states |�I 〉 through
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time evolution as

|�j ,I 〉 = e−iHtj |�I 〉 . (4)

If there are NR reference states, and NT time steps are con-
sidered, this produces a “basis” of NR(NT + 1) expansion
states, where |�0,I 〉 = |�I 〉. For simplicity, we consider a
single reference state |�0〉 for now, and discuss the use of
multiple reference states below. Throughout the paper, we
set the reduced Planck constant � = 1.

On a first glance, it seems counterintuitive that the set of
expansion states in Eq. (4) would improve the ground-state
estimate given by the reference state |�0〉. After all, the
|�j ,0〉 states all have the same energy expectation value.
Stair et al. [23] suggested an interpretation based on short
time evolution, in which Taylor expanding Eq. (4) shows
that the expansion states span the same space as the Krylov
vectors H j |�0〉, making it equivalent to power methods
such as the Lanczos algorithm [29]. This justifies why a
set of expansion states concentrated in a time grid over a
short time scale should produce a good variational ansatz
for the ground state. Including multiple reference states
should then provide for good and stable approximates for
the first few excited states as well, in the spirit of the band
Lanczos method [38]. This interpretation suggests that the
VQPE method should work best for short time evolution.
We want to complement this interpretation with a more
general one, not limited to short time steps, although this
still remains the most interesting regime from an imple-
mentation perspective. In particular, the VQPE approach is
reminiscent of the computation of the autocorrelation func-
tion g(t) = 〈�0|e−iHt|�0〉, which contains the full spectral
information of H [21]. In g(t), the ground-state informa-
tion is encoded in the long time limit, rather than the short
time one, since the ground state evolves with the slow-
est frequency ω0 = E0 in units where � = 1. Thus, there
should be nothing particular about the short time evolution
limit. Instead, we articulate the precise requirements for the
implementation that will lead to accurate energy estimates.
This is related to the linear independence of the expansion
states that poses a lower bound to the optimal time step
size. We also note that VQPE is closely related to the clas-
sical filter-diagonalization method [24–26,39], as pointed
out by Parrish and McMahon [22].

We thus want to depart from the Krylov intuition,
and provide a different, hopefully more general heuris-
tic, which we then rigorously formalize, to understand
why VQPE approaches should provide good ground- and
excited-state approximations. We begin by writing out the
decomposition of the reference state |�0〉 into Hamilto-
nian eigenstates |N 〉, such that H |N 〉 = EN |N 〉. This can
be written out explicitly as

|�0〉 =
∑

N

ψ0
N |N 〉 , (5)

where ψ0
N = 〈N |�0〉 are the coefficients of the reference

state |�0〉 in the eigenbasis of H . We refer to those Hamil-
tonian eigenstates |N 〉 for which ψ0

N is beyond some non-
negligible threshold as the support space of state |�0〉 with
respect to H . This decomposition gives, for the expansion
states,

|�j ,0〉 = e−iHtj |�0〉 =
∑

N

ψ0
N e−iEN tj |N 〉 . (6)

The equation above just states the obvious: each compo-
nent of |�0〉 in the support space with respect to H evolves
with its own frequency. This, however, makes transpar-
ent why the VQPE method can work: choosing the time
grid

{
tj
}

accordingly, it is possible to make linear combi-
nations of the expansion states |�j ,0〉 such that the different
phases e−iEN tj cancel out targeted components of |�0〉
along the support space state |N 〉. In this way it is possi-
ble to “extract” eigenstates in the support space of |�0〉
by including enough expansion states |�j ,0〉. Note that this
is not exclusive to the ground state, nor is this limited to
short time scales tj . The only requirement is given by the
number of eigenstates of H in the support space of |�0〉,
defining how many time steps are needed for perfect state
extraction, and by the energy gaps (i.e., relative frequen-
cies) of those states, which govern the phase cancelation
conditions.

In essence, VQPE allows one to extract “the most out of
the reference state,” in the sense that if there are Q states in
its support space, it should be possible to produce Q time-
evolved states from which to reconstruct the corresponding
Q Hamiltonian eigenstates, by solving secular equation
(2). Of course, this presumes that it is possible to pro-
duce Q linearly independent time-evolved states, and that
our time evolution is noiseless and performed at arbitrary
numerical precision. For general reference states, the size
of the support space will be too large in general to recover
all eigenstates, but a modest amount of these should be
enough to approximate the lowest-lying energy eigenstates
in it.

C. Phase cancelation conditions and relation to filter
diagonalization

We now formalize the phase cancelation heuristic on a
more solid mathematical footing. To this end, we derive a
set of equations, the phase cancelation conditions, which
set sufficient conditions to exactly extract the Hamilto-
nian eigenstates from the support space. These conditions
embody the intuition in terms of autocorrelation func-
tions described before, and are effectively discrete ver-
sions of the main relations at the heart of the classical
filter-diagonalization approach [24–26]. When the refer-
ence state |�0〉 is exactly confined to a support space of
size Q with nondegenerate eigenstates, the necessary and
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sufficient condition for exact eigenstate recovery is sim-
ply NT + 1 ≥ Q for the expansion states |�j ,0〉 to span the
support space. However, this condition can be numerically
unstable to small contributions to |�0〉 from outside the
support space because Si,j in Eq. (2) can be ill-conditioned,
and more robust conditions such as the phase cancelation
conditions are needed in practice.

We consider the overlap matrix Sj ,k in Eq. (3) for the
expansion states in Eq. (6). It is convenient to consider a
spanning operator W that is contained within the subspace
of the expansion states,

W =
NT∑

j =0

|�j ,0〉 〈�j ,0| , (7)

and encodes the overlap matrix in its action on individual
expansion states,

W |�j ,0〉 =
NT∑

k=0

Sk,j |�k,0〉 . (8)

We analyze W to identify the eigenstates that are accessible
to VQPE.

Substituting Eq. (6) into the spanning operator gives,
after some minor reordering of terms,

W =
Q∑

N ,M

ψ0
Nψ

0,∗
M

[ NT∑

j =0

e−itj (EN −EM )

]
|N 〉 〈M | . (9)

In the equation above, Q is the number of Hamiltonian
eigenstates in the support of |�0〉, and we can ignore
Hamiltonian eigenstates outside the support space due to
their small coefficients ψ0

N . Now, we can define the phase
cancelation conditions (PCCs) as

1
NT + 1

NT∑

j =0

e−itj (EN −EM ) = δN ,M . (10)

The nontrivial off-diagonal PCCs (N 	= M ) are the Q(Q −
1)/2 conditions for the NT + 1 time steps in the time grid.
Given that the support space is spanned by just Q vectors, it
seems that the PCCs impose stricter conditions on the time
grid than absolutely necessary to recover the full support
space. Still, they mathematically embody the phase can-
celation heuristic that we have discussed above. Indeed,
the condition in Eq. (10) enforces the cancelation of the
time-evolved phase between all Hamiltonian eigenstates
in the support of |�0〉, and can be represented graphically
as a sum of phases in the unit circle. When the phase
cancelation conditions are fulfilled, the spanning operator

simplifies into a weighted projector into the support of |�0〉
with respect to H , namely,

W PCC=
Q∑

N

(NT + 1)|ψ0
N |2 |N 〉 〈N | , (11)

weighted by the coefficients of the reference state |�0〉
on the support space; cf. Eq. (5). In this case, the expan-
sion states span exactly the same space as the Hamilto-
nian eigenstates in the support space, and solving secular
equation (2) returns the exact eigenstates and eigenval-
ues of H . The PCCs in Eq. (10) can be understood as the
discrete limit of the eigenstate extraction through Fourier
transform of a time-evolved state exploited in the classical
filter-diagonalization literature [24].

Furthermore, in the limit where long time evolutions
are used the phase cancelation conditions will also be
approximately satisfied with high probability as NT tends
to infinity. To see this, let tj = (j + 1)/ω, where ω−1 is
a uniform random variable on [0, 1/min(EN − EM )] :=
[0,
E−1

min] (where M 	= N ). First, we have

∣∣∣∣E
NT+1∑

j =1

e−ij (EN −EM )/ω

∣∣∣∣

=
∣∣∣∣

NT∑

j =0


Emin

∫ 
E−1
min

0
e−ijω−1(EN −EM )dω−1

∣∣∣∣

=
∣∣∣∣

NT+1∑

j =1


Emin(1 − e−ij
E−1
min(EN −EM ))

ij (EN − EM )

∣∣∣∣

∈ O
(


Emin

|EN − EM |
NT∑

j =1

1
j

)

⊆ O
(

Emin log(NT)

|EN − EM |
)

. (12)

Intuitively, it is reasonable to expect that if the mean is
small then, with high probability, the PCCs should hold
approximately. In order to demonstrate such a concentra-
tion for the oscillating functions that we use here, however,
we need to also bound the variance:

∣∣∣∣V
NT+1∑

j =1

e−ij (EN −EM )/ω

∣∣∣∣

≤ E

( ∑

j 	=k

e−i(j −k)(EN −EM )ω
−1

)
+ (NT + 1)

020323-5



KATHERINE KLYMKO et al. PRX QUANTUM 3, 020323 (2022)

∈ O
(

NT + 
Emin

|EN − EM |
∑

j 	=k

1
|j − k|

)

∈ O
(

EminNT log(NT)

|EN − EM |
)

. (13)

Thus, from Chebyshev’s inequality, it follows that, with
high probability,

∑
j e−ij (EN −EM )ω

−1
will be within

O
(√

NT log(NT)
Emin

|EN − EM |
)

(14)

of the expectation value. Thus, the phase cancelation
condition’s error for the N , M component is in

O
(√

log(NT)
Emin

NT|EN − EM |
)

. (15)

Thus, the value of NT needed to ensure that the PCC holds
within an error of at most ε (with high probability) obeys

NT ∈ Õ
(


Emin

|EN − EM |ε2

)
. (16)

Here Õ(·) denotes an asymptotic upper bound with mul-
tiplicative polylogarithmic factors neglected. Thus, an
approximate solution to the phase cancelation conditions
will generically hold for a gapped system.

We exemplify the previous theory on the example of
a Hamiltonian of linear spectrum EN = N
E, akin to a
harmonic oscillator, in Fig. 1. In this case, the PCCs in
Eq. (10) can be fulfilled exactly by a linear time grid
tj = j
tP with the perfect time step size 
tP defined as


tP = 2π
(NT + 1)
E

. (17)

Indeed, it is easy to check that in the case of a linear
spectrum, a linear time grid with time step size given by
Eq. (17) fulfills the PCCs exactly after NT = Q − 1 time
steps. This can be accomplished with a single time step
size since in the case of a linear spectrum the PCCs effec-
tively reduce to a single condition. This can be seen in
the rightmost panel of Fig. 1, where after exactly 15 time
steps the first four eigenvalues of the secular equation
match the exact eigenvalues to the maximal precision.
This precision is determined by the singular value thresh-
old, sSV, introduced into the general eigenvalue problem,
which truncates the singular values of the overlap matrix.
In Fig. 1 this precision corresponds to sSV = 10−12, i.e.,
midway between double and single machine precision.
This threshold also determines the support space size Q.
The reference state in all examples in Fig. 1 is defined

as |�0〉 ∝ ∑
N e−EN |N 〉, excited states being exponen-

tially suppressed. The support space is then defined as the
Hamiltonian eigenstates with squared coefficients in |�0〉
above sSV. The inset in this panel represents the PCCs
graphically, as the phases of all eigenstates in the support
space perfectly span the unit circle, thus canceling each
other.

The smaller panels on the left of Fig. 1 show the out-
come of choosing a time step size differing from 
tp .
Small time step sizes are shown in the upper two subfig-
ures, and would be the natural choice from the Krylov
interpretation of VQPE [23]. These clearly show a sig-
nificantly slower convergence than the perfect time step
derived from the PCCs, which is easy to explain from the
phase distribution on the unit circle in the insets. Only
once we cover the unit circle close to homogeneously, thus
approximately fulfilling the PCCs, can we extract all eigen-
states essentially exactly after the minimal number of time
steps (see the lower left panel in Fig. 1). Because of the
periodic nature of the complex phases in Eq. (10), large
time steps can result in as poor approximations as short
ones, as shown in the lower right panel in Fig. 1. The worst
such longer time step sizes correspond to particular integer
multiples of
tP, namely zQ
tP, where z is an integer. For
these time step sizes, the PCCs in Eq. (10) cannot be ful-
filled, even approximately. These are very particular time
steps, and thus, for the linear spectrum, a randomly chosen
time step 
t ≥ 
tp is still likely to provide good results
for the Hamiltonian eigenstates.

For general spectra, a single time step size 
t in a lin-
ear grid is unlikely to fulfill all Q(Q − 1)/2 PCCs exactly.
From the above analysis, a valid strategy would be to
choose a time step size 
t and number of time steps NT
such that we sample a full period of the slowest oscillation
in the support space. This is given, e.g., by the mini-
mal energy gap 
Emin if we are interested in all excited
states contained in the support space, and the ground-state
gap 
E1,2 = E2 − E1 if we only need an estimate of the
ground state. However, in practical implementations it is
advantageous, and sometimes necessary, to limit the total
simulation time in order to minimize the error. At the same
time, we have to choose a time step size large enough such
that each new state is linearly independent from the pre-
vious ones. Otherwise, no new information is added and
the variational ansatz is not improved (see Fig. 1, upper
left-hand panel, where the energy decreases in a steplike
fashion). Reconciling these two notions, we propose the
following systematic approach.

1. Choose a small enough time step size such that
the energy convergence is steplike. Steplike conver-
gence refers to the situation in which adding a new
expansion state, i.e., propagating for an additional
time step, does not improve the variational ansatz,
resulting in the same (or slightly worse) energy
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FIG. 1. Relative error of the first four eigenvalues from the real-time NOVQE secular equation for a Hamiltonian of linear spectrum
EN = N
E (
E = 0.75 here) and different time steps
t as a function of the number of time steps. The reference state follows |�0〉 ∝∑

N e−EN |N 〉, such that only the 16 Hamiltonian eigenstates of lowest energy are part of the support space, choosing a coefficient
threshold of 10−12. When solving the secular equation, we choose the same threshold for the SVD decomposition of the overlap
matrix. The vertical dashed line marks the 15th time step, after which we have as many expansion states as vectors in the support
space. The large subplot corresponds to the smallest time step that fulfills the phase cancelation condition, Eq. (10), which reduces to
a single condition for this Hamiltonian. The insets in each subfigure correspond to a geometric representation of the phase cancelation
condition, with each phase e−itj
E a point in the unit circle on the complex plane. See the text for details.

estimates as before, including the new step (cf.
upper left panel in Fig. 1). This happens when the
inclusion of the new expansion state produces an
overlap matrix that has no additional singular value
over the threshold sSV.

2. Perform the VQPE algorithm using the previously
identified small time step size, until the first expan-
sion state resulting in an improvement of the energy
estimates is produced.

3. Plotting the lowest eigenvalue of the previous
VQPE simulation as a function of the propagation
time will result in a nearly horizontal line. This
plateau ends after the addition of the final expansion
state, which does improve the energies. The length
of this plateau defines a new, larger time step size,
which can be used in a new VQPE simulation.

4. Repeat the simulation with the new time step size. If
there is still steplike convergence, go back to step 3.
Otherwise, use this as your simulation time step.

This procedure underlies the fact that, for devising prac-
tical implementations of VQPE, the guiding principle
should be to generate linearly independent expansion states

rather than to exactly fulfill the PCCs, which nonethe-
less are a useful perspective for the theoretical analysis of
the algorithm. This is the strategy we adopt in the results
section below.

D. Towards an optimal implementation—Toeplitz
structure of S

Besides being natural to implement on quantum hard-
ware, and presenting the interesting phase cancelation
structure described above, VQPE approaches show a fur-
ther theoretical advantage: when using a linear time grid
tj = j
t, the Hamiltonian and overlap matrices in Eq. (3)
have a restrictive structure, which formally reduces the
number of measurements that should be needed to solve
the generalized eigenvalue problem. Indeed, as pointed out
by Parrish and McMahon [22], using the real-time expan-
sion set, these matrices become Toeplitz, meaning that,
e.g., Sj ,k = Sj +1,k+1. In particular, the concrete expressions
read

Hj ,k = 〈�j ,0|H |�k,0〉 = 〈�0|He−iH
t(k−j )|�0〉 ,

Sj ,k = 〈�j ,0|�k,0〉 = 〈�0|e−iH
t(k−j )|�0〉 ,
(18)
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where we have only used the fact that a time-independent
Hamiltonian commutes with itself at all times, thus relying
exclusively on time translational symmetry. From Eq. (18),
it follows that we can reconstruct the two (NT + 1)×
(NT + 1) matrices by measuring only 2(NT + 1) overlaps
in total.

Unfortunately, as pointed out in Ref. [22], the Toeplitz
property of the Hamiltonian matrix is lost in actual quan-
tum hardware implementations, if the time evolution oper-
ator is Trotterized. In those cases, the commutativity of
U(tj ) with H is lost, and thus we either need to evalu-
ate all (NT + 1)2 Hamiltonian matrix elements separately
or transition to a higher-order Trotter formula that better
approximates the commutation relations. Nevertheless, the
same is not the case for the overlap matrix. As long as the
expansion states |�j ,0〉 are constructed using a linear grid
with a unitary time evolution approximation

U(
t) = e−iH
t ≈ Ua(
t), (19)

the Toeplitz condition will prevail. Here, Ua(
t) is the
Trotterized time evolution operator and 
t is the com-
mon time step size of the linear time grid, such that the
approximate expansion states obey

|�a
j ,0〉 = [Ua(
t)]j |�0〉 , (20)

which in the limit of an exact time evolution operator
recovers Eq. (6). Now, if Ua(
t) is unitary, the overlap
matrix of the approximated expansion states |�a(
t)〉 will
clearly be Toeplitz, since

Sa
j ,k = 〈�a

0,j |�a
0,k〉 = 〈�0|[Ua(
t)]k−j |�0〉 . (21)

Given that gate operations in quantum hardware are nat-
urally unitary, this means that it is always possible to
guarantee the Toeplitz condition of the overlap matrix,
simply by choosing a linear time grid. This is true of course
for the often invoked first-order Trotterization [8] approx-
imation to the time step evolution U(
t), which is indeed
unitary.

E. Towards an optimal implementation—unitary
formulation

It is possible to rewrite this generalized eigenvalue
problem in a simpler form, exploiting the particular rela-
tionship between the Hamiltonian and overlap matrices
in Eq. (18), essentially formulating it equivalently to the
classical filter-diagonalization problem found in signal
processing [26]. This proves to be the ideal formulation
of VQPE for quantum computation.

The main insight relies on substituting the Hamilto-
nian in secular equation (2) by the time evolution operator
U(
t) = e−iH
t. This operator is effectively isospectral

with the Hamiltonian; indeed the eigenstates |N 〉 of H
fulfill

U(
t) |N 〉 = e−iEN
t |N 〉 . (22)

It is important to note that, unlike the Hamiltonian, the
time evolution operator is not Hermitian, but unitary, thus
having complex eigenvalues of unit modulus. We can
therefore write a secular equation for the time evolution
operator U(
t) as

∑

k

U(
t)j ,kcI
k = e−iεI
t

∑

k

Sj ,kcI
k, (23)

where the overlap matrix, eigenvalues εI , and expansion
coefficients cI

j are the same as in Eq. (2), and the time
evolution matrix elements follow, in the single reference
implementation,

U(
t)j ,k = 〈�j ,0|U(
t)|�k,0〉 = 〈�0|e−iH(
t+tk−tj )|�0〉 .
(24)

To transform from eigenvalues of Eq. (22) to Eq. (2),

t must also be small enough that we can distinguish
a physical EN value from its unphysical periodic images
EN ± 2π/
t.

From Eq. (2) to Eq. (23), we have simply reformu-
lated the VQPE problem into an equivalent generalized
eigenvalue problem with a unitary matrix. The key sim-
plification for the implementation on quantum hardware
relies on the realization that the time evolution matrix ele-
ments in Eq. (24) have the same structure as the overlap
matrix elements in Eq. (18). Thus, again choosing the time
grid {tj } to be linear, i.e., tj = j
t, the time evolution
matrix elements coincide with the overlap matrix elements
as

U(
t)j ,k = 〈�0|e−iH
t(1+k−j )|�0〉 = Sj ,k+1 = Sj −1,k.
(25)

The last equality is a manifestation of the Toeplitz struc-
ture. Thus, according to Eq. (25), for linear time grids,
there is no need to measure the time evolution matrix
explicitly, since it can be recovered from the measurements
for the overlap matrix plus an additional measurement
involving an extra expansion state |�NT+1,0〉. In this way,
exploiting Eq. (25) and the Toeplitz structure of the over-
lap matrix, the number of measurements reduces from
2(NT + 1)2 to just NT + 2. Furthermore, as shown in the
previous subsection, the Toeplitz structure prevails when
implementing the time evolution operators with a unitary
approximation, such as first-order Trotterization, making
the reduction in the number of measurements applicable
for real implementation on quantum hardware.
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Intuitively, the unitary formulation of VQPE is the
quantum algorithm equivalent to measuring the auto-
correlation function g(t) = 〈�0|e−iHt|�0〉 and analyzing
its Fourier spectrum. The overlap matrix elements are
essentially sampling g(t) at different points, and one can
approximate the underlying spectrum once enough sam-
ples are obtained. Thus, we are fundamentally expressing
the VQPE algorithm in its most natural language, that
of autocorrelation functions. In this work, we implement
both the traditional and unitary formulations of the VQPE
secular equation.

F. Diminishing the effect of noise through singular
value decomposition

In the previous subsections, we briefly reviewed the the-
oretical formalism of VQPE approaches, in the new light
of the phase cancelation interpretation, but without con-
sidering the effects of noise. We turn our attention now to
how the presence of noise, comprising both finite numer-
ical precision on the classical computer and measure-
ment uncertainty from the quantum hardware, limits the
final accuracy of the VQPE results. We consider system-
atic noise, due to a priori uncontrollable or unavoidable
sources, plus any remaining statistical uncertainty after
repeated measurements. To this end, the phase cancelation
formalism will simplify the analysis. We restrict ourselves
for simplicity to the single reference implementation, but
generalizing our conclusions to the multireference case is
straightforward.

As shown in Eq. (4), VQPE generates a series of NT
states from a reference |�0〉 defined by a time grid {tj }.
In a noiseless simulation, any given time grid is more
likely than not to produce a set of NT linearly indepen-
dent vectors. For them to be linearly dependent requires
the following determinant to vanish exactly:

∣∣∣∣∣∣∣∣∣∣∣

c0 c0e−iE0t1 c0e−iE0t2 · · ·
c1 c1e−iE1t1 c1e−iE1t2 · · ·
c2 c2e−iE2t1 c2e−iE2t2 · · ·
...

...
...

...
cNT cNT e−iENT t1 cNT e−iENT t2 · · ·

∣∣∣∣∣∣∣∣∣∣∣

= 0. (26)

This equation is one constraint on NT unknowns {tj }, which
is generically satisfied by an (NT − 1)-dimensional mani-
fold of {tj } embedded in RNT . For a linear grid tj = j
t,
the choice of time step size 
t will generically cause lin-
ear dependencies on a subset of R with measure zero. For
example,
t = 2πn/(E2 − E1) causes a linear dependency
in the case of NT = 2. Thus, with the exception of Hamil-
tonians with a restricted spectrum such as Ej = j
E, it
seems safe to assume that in almost any time grid chosen,
a noiseless simulation will generate NT linearly indepen-
dent vectors. Since all the expansion states share the same
support space [40], a noiseless simulation with Q steps,

Q being the size of the support space, should recover all
eigenstates exactly. We henceforth assume a linear time
grid with time step size 
t.

This ideal notion stops holding the moment we con-
sider noise, both from numerical and measurement origins.
Noise can for example make states close to linearly depen-
dent, and thus introduce errors in the eigenvalues εI of
the secular equation. We quantify noise by introducing the
parameter ε. Two measured or computed values α,β are
only distinguishable if |α − β| > ε. Noise becomes impor-
tant, for example, in the small time step size limit. When

t
Emin is small, where
Emin is the minimal spectral gap
in the support space, the first expansion steps will produce
states that are only marginally different to the reference
|�0〉. These will not improve the variational ansatz if


Tε
�

Emin < ε, (27)

where we have recovered Planck’s constant to make the
units clear. If Eq. (27) is fulfilled, the magnitude of the dif-
ference between the expansion state and the reference will
fall below the noise threshold, making the new expansion
state U(
Tε) |�0〉 useless from a variational perspective.
This is the reason behind the steplike decreasing behav-
ior in the small time step panels of Fig. 1. A finite ε thus
determines a minimal time step 
Tε > �ε/
Emin.

There will be cases where it is hard to generate pre-
cise expansion states with the minimal time step size 
Tε
required to offset a given noise level. It thus becomes
important to prune the Hamiltonian and overlap matrices
of numerical and measurement noise. This can be done
by means of a singular value decomposition (SVD) of the
overlap matrix: neglecting all singular values below some
threshold, which should be larger than the magnitude of the
noise. In the case of measurement error, this noise scales as
1/

√
M , where M is the number of samples. In the majority

of this work, we have thus conservatively chosen a thresh-
old of 10−1, corresponding to > 100 samples. We already
used such a truncation in the results shown in Fig. 1. This
singular value truncation effectively produces a new but
smaller expansion basis of NSVD elements. As a conse-
quence, the number NT is not the significant measure of
how much information is collected in the expansion set,
and instead NSVD ≤ NT becomes the measure to follow.
Only when NSVD = Q will the secular equations recover
the exact support space spectrum.

We exemplify this on the harmonic spectrum in Fig. 2,
where in the upper panels we show the relative noise
error for the first four eigenstates as a function of number
of expansion states, introducing Gaussian noise N (0, ε)
of standard deviation ε on the Hamiltonian and overlap
matrix elements. We choose the singular value trunca-
tion threshold sSV to be between 10−1 and 1, and in the
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FIG. 2. Relative error and corresponding singular values of
the overlap matrix for a Hamiltonian of linear spectrum with
different noise values. Upper panels: relative error of the first
four eigenvalues from the VQPE secular equation for a Hamil-
tonian of linear spectrum EN = N
E (
E = 0.75 here) and
perfect time step 
tP, including Gaussian noise N (0, ε) to the
Hamiltonian and overlap matrix elements. We choose the sin-
gular value truncation threshold sSV to be at least 2 orders of
magnitude larger than the noise standard deviation ε. The ref-
erence state follows |�0〉 ∝ ∑

N e−EN |N 〉, the effective support
space size determined using the singular value truncation thresh-
old N max

SVD = − ln(sSV)/(2
E)− 1. Lower panels: corresponding
singular values of the overlap matrix as a function of time. The
horizontal dashed line represents the threshold sSV. Note that,
until a given singular value is larger than sSV, we cannot extract
the corresponding eigenvalue from the generalized eigenvalue
problem. This is represented by the horizontal lines in the upper
panels. See the text for details.

lower panels we plot the singular values of Sj ,k as a func-
tion of the number of expansion states, marking sSV as a
dashed line. In each simulation, we choose as time step
size 
t the optimal time step in Eq. (17), considering a
possible support space of 16 elements, regardless of sSV
[41]. In a noiseless simulation, this choice of time step
would result in an optimally compact number of effective
expansion vectors NSVD, which equals the number of actual
expansion vectors until the maximal number N max

SVD = Q
is reached, after which all eigenstates would be resolved
accurately. The presence of statistical noise has two con-
sequences. On the one hand, the asymptotic accuracy
decreases with increasing noise variance. As mentioned
above, this type of statistical noise can be reduced by
sampling.

As a second effect of statistical noise, not all Q eigen-
states in the support space are resolved after exactly Q
steps, since the corresponding singular values of the over-
lap matrix fall below the truncation threshold sSV (see the
lower panels of Fig. 2). As long as a given singular value
falls below sSV, the corresponding eigenvalue cannot be
extracted from the generalized eigenvalue equation, which

is represented in the upper panels of Fig. 2 by horizon-
tal straight lines. Thus, the noise limits what states can
be extracted from the reference state |�0〉, by setting the
minimal singular value truncation threshold sSV. Those
Hamiltonian eigenstates with smaller absolute coefficient
squared than sSV cannot be resolved. However, examining
Eq. (11), we observe that the singular values of the overlap
matrix are enhanced linearly with an increasing number of
expansion states NT, i.e., with an increased number of time
steps in the VQPE approach, once the PCCs are reasonably
fulfilled. Thus, it should be possible to extract eigenstates
with reference state components below the error thresh-
old by increasing the number of time steps. We exemplify
this in Fig. 3, again on the harmonic spectrum example
with exponentially suppressed initial state. Because of this
choice of starting state, it takes an exponentially large
number of extra time steps to resolve every new eigen-
state, but it is in principle possible. The ideal strategy is
of course to propose a reference state with large overlap
with the eigenstate of interest, but this discussion shows
that it is possible to extract states beyond the dominant one
accurately. Once enough time steps have been produced,
any singular value of the overlap matrix can be made to
increase above sSV, the horizontal dashed line in the lower

FIG. 3. Relative error and corresponding singular values of
the overlap matrix for a Hamiltonian of linear spectrum for a
large enough number of time steps to extract eigenstates below
the error threshold. Upper panel: relative error of the first five
eigenstates from the VQPE secular equation for a Hamiltonian of
linear spectrum EN = N
E (
E = 0.75 here) and perfect time
step 
tP, including Gaussian noise N (0, 10−2) to the Hamilto-
nian and overlap matrix elements. We choose the singular value
truncation threshold sSV = 9 × 10−1. The reference state follows
|�0〉 ∝ ∑

N e−EN |N 〉. Lower panel: corresponding singular val-
ues of the overlap matrix as a function of time. The horizontal
dashed line represents the singular value threshold sSV. The time
step at which each singular value becomes larger than sSV is
marked with a vertical dashed line, connecting upper and lower
panels. See the text for details.
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panel of the figure. Of course, this is not unexpected, since
the initial starting signal on each excited state is exponen-
tially small by construction. When a uniform overlap is
used as a starting state, then all the SVD values are the
same.

We want to address another notion that has been brought
up with regards to the effect of noise in VQPE simula-
tions: the overlap matrix condition number n(S) [23]. As
shown in Ref. [23], typical eigenvalue problems arising
in VQPE have extremely large condition numbers, which
may suggest high sensitivity to noise. This is expected for
Hartree-Fock starting states, which ideally have exponen-
tially small overlap with most of the Hilbert space, leading
to very large condition numbers. Still, this can be dealt
with by performing a SVD of the overlap matrix and trun-
cating the singular values below sSV. For our application,
this reduces the number of linearly independent states we
can resolve within our error threshold, thus reducing the
best possible accuracy of the results. This can be remedied
by including additional time-evolved states, as discussed
above.

In the Supplemental Material [42], we investigate the
role of n(S) for the eigenvalue accuracy in the VQPE
approach. Our results show that, upon pruning the expan-
sion space from the singular values of the overlap matrix
below the threshold sSV, we consistently obtain accurate
eigenvalues in the presence of noise even with matrices
of large condition number. This is in itself not surprising,
since the singular value truncation is effectively proposing
an auxiliary generalized eigenvalue problem with smaller
condition number.

At this point, we can return our attention to the notion of
multireference implementations of the VQPE, such as the
multireference quantum Krylov method of Stair et al. [23].
In this work the use of several reference states is proposed
in order to reduce the condition number of the Hamiltonian
and overlap matrices in the expansion space, at the cost
of requiring a larger number of expansion states for the
same ground-state accuracy. Using the phase cancelation
picture, we argue that the worsened ground-state energy
convergence is due to two distinct, cooperating factors: the
increased size of the total support space, and the smaller
number of expansion vectors in each individual support
space. In the multireference formulation of VQPE, each
state |�I 〉 has its own support space with respect to H ,
which we refer to as individual support spaces, the union
of these forming the total support space of the implemen-
tation. The individual support spaces will in general be
distinct from each other. Clearly, the larger total support
space allows for a more flexible variational ansatz, from
which it is possible to extract more Hamiltonian eigen-
states than in the single reference case. However, this
comes at the price of requiring more expansion states to
perform the phase cancelation procedure to purify individ-
ual eigenstates. From our results, performed in classical

simulations with noise, and on actual noisy quantum hard-
ware, the larger condition numbers do not result in large
errors in the eigenvalue estimates εI , and thus we conclude
that the condition number alone should not be a reason
to employ multireference VQPE implementations. How-
ever, in some excited state simulations a multireference
approach might accelerate convergence, in the same way
that band Lanczos improves normal Lanczos in this regard
[29,38].

The previous considerations hold for statistical errors,
but a more careful analysis needs to be performed for sys-
tematic errors in the implementation of the Hamiltonian
dynamics. For example, in the case of a Trotterized Hamil-
tonian, the reference states are created under the evolution
of a Hamiltonian different than the one of interest, which
will result in errors in the eigenvalue estimation that cannot
be reduced through sampling.

G. Comparison between unitary VQPE and QPE

Here we compare the unitary formulation of VQPE in
Eq. (22) to conventional QPE in the general case of a
multidimensional support space. For the special case of a
one-dimensional support space, there are adaptive variants
of QPE that use one ancilla qubit and achieve Heisenberg-
limit measurement [43]. Recently, developed methods [44,
45] devise QPE variants that use one ancilla qubit and are
suitable for larger support spaces (which is also the case for
VQPE). In an adaptive approach where |�0〉 is the ground
state, a different t would be chosen for each measurement
to maximize the extraction of information about E0 rather
than performing multiple measurements to estimate the
expectation value of g(t) = 〈�0|e−iHt|�0〉 = e−iE0t for a
single choice of t.

QPE is a natural algorithm to compare VQPE against;
however, there are a wealth of different phase estimation
algorithms known in the literature and further some appli-
cations of phase estimation can even be used in concert
with VQPE. Our aim in this section is to compare and
contrast different flavors of phase estimation to VQPE and
also show how QPE can be used to accelerate learning the
expectation values of the VQPE circuit through amplitude
estimation.

There are broadly two categories of phase estimation
algorithms, iterative phase estimation and Fourier-based
phase estimation. Fourier-based phase estimation is per-
haps the best understood approach to performing phase
estimation. An advantage of this approach is that it is
known to precisely achieve optimal scaling of the uncer-
tainty with the number of applications of the underlying
unitary (i.e., it saturates the Heisenberg limit [46,47]).
The optimal approach to Fourier-based phase estimation
deviates slightly from traditional approaches by using an
optimized initial state that deviates from the Fourier state
typically used in older approaches. Specifically, the input
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state is taken to be an m-qubit state of the form

χ |0〉 =
√

2
2m + 1

2m−1∑

n=0

sin
(
π(n + 1)
2m + 1

)
|n〉 . (28)

This state is chosen to minimize an estimate of the circular
variance, known as the Holevo variance, of the eigen-
phases of the unitary e−iHt that results from the phase esti-
mation protocol. Next let us define the following notation
for a controlled directional evolution:

† •
=

U U .U†

This notation is useful here because in quantum phase esti-
mation for the simulation of electronic structure, the cost
of performing a controlled-directional evolution as seen
above is approximately the same as performing an ordi-
nary controlled evolution. Applying phase estimation with
a circuit of this form (see Figure 4) provides twice as much
phase per application of the unitary as a controlled-U appli-
cation would experience. The uncertainty from this phase
estimation circuit, as quantified by the Holevo variance,
is approximately εPE = π/2m+1, where m is the number
of qubits used in the QPE register. This is precisely the
Heisenberg limit.

Of course, error in the simulation dynamics needs to
be considered in any such simulation. For simplicity, we
consider using the lowest-order Trotter-Suzuki formula
within the phase estimation protocol. In the limit where
the uncertainty in the eigenphase is small relative to π , the
Holevo variance approximately corresponds to the vari-
ance. Then, since the Trotter-Suzuki error is uncorrelated
with the phase estimation error, the total error in the phase

0

χ

†

QFT−1
0 †

0 †

0 †
ψ e−iHt e−i2Ht e−i4Ht e−i8Ht

FIG. 4. Four-qubit version of the asymptotically optimal phase
estimation circuit.

estimate that arises from using a time step of duration t is

ε ≤
√
ε2

PE + π2ε2
TS(t)

t

≈
π

√
1/22m+2 + ε2

TS(t)

t
. (29)

This suggests that if we choose both error sources to be
εt/(2

√
2π) then the overall error will be ε. This corre-

sponds to

m = ⌈ − 1
2 + log2(2π/εt)

⌉ ≤ log2(2
√

2π/εt). (30)

The error in the Trotter-Suzuki formula is difficult to esti-
mate a priori and, for the purposes of simplifying the
comparison, we choose the symmetric Trotter formula.
Using the results of Proposition 16 of Ref. [48], if H =∑

j αj Hj then the error in the symmetric Trotter formula is
upper bounded by

εTS(t) ≤ t3

12

∑

j

∑

p>j

∑

q>j

αpαqαj ‖[Hq, [Hp , Hj ]‖

+ t3

24

∑

j

∑

p>j

αpα
2
j ‖[Hj , [Hj , Hp ]‖. (31)

This bound can be further simplified using the fact that
each of the Hamiltonian terms Hj in quantum chemistry
is of norm 1. Therefore, let us denote S to be the set of all
tuples (p , q, j ) such that [Hq, [Hp , Hj ]] 	= 0. Then we can
further bound

εTS(t) ≤ 2t3

3

∑

j

∑

p>j

∑

q>j

|αpαqαj |δ(q,p ,j )∈S

+ t3

3

∑

j

∑

p>j

|αpα
2
j |δ(j ,p ,j )∈S

:= �3t3. (32)

Under the assumption that the error from QPE is equal to
the Trotter error, we then find that a sufficient choice for
the Trotter step is

t = �−3/2
√

ε

2
√

2π
. (33)

Therefore, the value of m needed in the phase estimation
step is

m ≤ 3
2

log2

(
2
√

2π�
ε

)
. (34)

Thus, if M is the number of terms in the Hamiltonian then
the maximum number of operator exponentials that need

020323-12



REAL-TIME EVOLUTION FOR ULTRACOMPACT. . . PRX QUANTUM 3, 020323 (2022)

to be simulated in the circuit to achieve Holevo variance ε
is

Nexp ≤ 2M
(

2
√

2π�
ε

)3/2

. (35)

This process needs to be repeated a number of times to
find an eigenstate j that occurs with a probability of |ψ0

j |2.
This implies that the total number of repetitions needed to
reconstruct the entire spectrum with high probability is in
Õ(1/minj |ψj |2) and, thus,

Nexp,QPE ∈ Õ
[

M
minj |ψ0

j |2
(
�

ε

)3/2]
. (36)

Note that the performance of this algorithm can be
improved using optimized simulation methods and the use
of amplitude amplification, but we forgo these optimiza-
tions here since they are less appropriate for experiments
in the NISQ era.

Now let us consider the analogous problem for estimat-
ing the corresponding eigenvalue using VQPE. The first
step involves learning the matrices Hj ,k and Sj ,k. In order
to do so, we need to apply e−iHtj for all j considered. There
are of course a host of quantum simulation algorithms that
can be employed to perform this simulation. For simplic-
ity, we consider the second-order Trotter-Suzuki formula.
Consider Eq. (32). From this expression, we can perform
e−iHtj using O[M (�tmax)

3/2/
√
εTS] operator exponentials,

where |tj | ≤ tmax for all tj . Thus we can use this circuit
and the Hadamard test to compute the real and imaginary
components of 〈φj |φk〉 within an error of at most ε with
high probability (using the Chernoff bound to justify the
high-probability statement) using

Nexp,Sij ∈ Õ
(

M (�tmax)
3/2

ε5/2

)
. (37)

Similarly, using the arguments of [49] we have that the
number of operator exponentials needed to approximate
the mean energy within the same error requirements is in

Nexp,Hij ∈ Õ
(M (

∑
j |αj |)2(�tmax)

3/2

ε5/2

)
. (38)

Next, using the fact that the induced 2-norm is at most
NT times the max-norm, then if S̃ and H̃ are the approx-
imated matrices, we need to take ε → ε/NT in order to
ensure that the total error in the reconstructed matrix (as
measured by the operator norm) is at most ε. This implies
that the number of exponentials needed to reconstruct both

matrices within the required error budget is in

Nexp,S ∈ Õ
(

N 9/2
T M (�tmax)

3/2

ε5/2

)
, (39)

Nexp,H ∈ Õ
(N 9/2

T M (
∑

j |αj |)2(�tmax)
3/2

ε5/2

)
. (40)

Then, from the Hellman-Feynman theorem, it follows that
the eigenvalues of both matrices lie within an ε neigh-
borhood of the original eigenvalues. Next, using standard
matrix inequalities for the error in the matrix inverse [50]
(under the assumption that ε is less than the minimum
eigenvalue gap), it follows that the error in any eigenvalue
reconstructed from Eq. (2) has error in O(‖H‖‖S−1‖2ε).
Thus, if we wish the error in the reconstructed eigenval-
ues to be at most ε then we finally need to take ε �→
ε/‖H‖‖S−1‖2. This, combined with the bound that ‖H‖ ≤∑

j |αj |, leads to a final complexity scaling for the num-
ber of exponentials needed to reconstruct the eigenvalues
within an error of at most ε with high probability:

Nexp ∈ Õ
(M (NT

∑
j |αj |)9/2‖S−1‖5(�tmax)

3/2

ε5/2

)
. (41)

Asymptotically, this analysis suggests that VQPE may be
favorable in cases where

min
j

|ψ0
j |2 � ε

(NT
∑

j |αj |)9/2‖S−1‖5 , (42)

due to the potential benefits that could arise from infer-
ring having to sample low probability events using phase
estimation. However, such asymptotic analysis does not
conclusively show which method will be superior as both
are upper bounds that are potentially loose. For this reason,
numerical studies such as the one undertaken in this paper
are essential for gauging the actual performance of these
algorithms.

For Toeplitz matrices such as in Eqs. (18) and (25) to
be diagonal in a Fourier basis, they must have additional
circulant matrix structure satisfying

Sj ,NT = Sj +1,0, (43)

which corresponds to an aliasing condition whereby all
energy eigenvalues EN are an integer multiple of a base
energy,

EN/ω1 ∈ Z. (44)

An accurate approximation of this condition requires a
very small value of 
t and thus a large number of ancilla
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qubits in the QPE circuit and large NT. There is a for-
mal equivalence between QPE and unitary VQPE when
this condition is exactly satisfied, although this occurs
beyond the intended small-NT operating regime of any
VQPE variant. Practically, VQPE and QPE remain distinct
in that VQPE uses measurements of one ancilla qubit to
statistically estimate overlap matrix elements, while QPE
uses measurements of many ancilla qubits to sample from
approximate eigenpairs.

Besides requiring fewer ancilla qubits, the main ben-
efit of VQPE over QPE in the small-NT regime is its
exact diagonalization of a generalized eigenvalue prob-
lem rather than relying on approximate diagonalization
within a Fourier basis. The overlap matrix of this eigen-
value problem has a numerical rank corresponding to the
size of the support space, and this reduced rank is not
reliably exposed by the diagonal elements of the overlap
matrix in the Fourier basis. As a result, VQPE achieves a
higher effective energy resolution than QPE for small NT
values and an even smaller support space by exploiting
a SVD-based projection of the eigenvalue problem into a
numerically relevant subspace.

In Fig. 5, we plot two different resource (for LiH dis-
cussed further in Sec. III) estimates that exemplify the
near-term benefits of VQPE and the long-term benefits of
QPE, here shown as the Heisenberg limit. VQPE is able to
achieve substantially higher accuracy than idealized QPE
for the same number of time steps per circuit; thus, it is
better suited for utilizing near-term hardware with shorter
circuit depths and fewer qubits available for use as ancil-
lae. However, QPE utilizes its deeper circuits to achieve
Heisenberg-limited energy resolution, which is more effi-
cient in overall run time for achieving high accuracy. But,
as with modern parallel algorithms, it is clear that each
matrix element can be calculated independently and can
thus be run as a parallel algorithm over multiple quantum
computers. The expected QPE run time is also amplified
by |〈�0|0〉|−2 ≈ 1.02 to account for the probability of col-
lapsing into a state other than the ground state, which is
a negligible overhead in this example. Other than finite-
sampling costs and errors, this example does not consider
other sources of error such as Trotterization or quantum
circuit noise, which can further degrade the accuracy of
both QPE and VQPE. For example, Fig. 6 depicts a 
t-
dependent error floor induced by Trotterization errors (for
the transverse field Ising model defined in Eq. (45) and
discussed further in Sec. III) that remains overwhelmed by
sampling errors in VQPE. With shorter circuit depths and
fewer ancilla qubits, VQPE is less susceptible than QPE to
these extrinsic sources of error.

H. Inclusion of other time-evolved states

In this work we focus on real-time evolution. How-
ever, in practice any time-evolved state shown in Fig. 7,

FIG. 5. Accuracy comparison between VQPE and the Heisen-
berg limit for the ground-state energy of LiH. Varying numbers
of samples per expectation value are shown for VQPE alongside
the idealization of VQPE without finite-sampling errors. We use
SVD cutoffs of 2, 0.9, and 0.3 respectively corresponding to 103,
104, and 105 samples and 10−6 for the ideal case. All methods use

t = 0.5. The top and bottom plots show the maximal evolution
time (i.e., how many time steps need to be included for energy
convergence), related to the circuit depth, and the total evolution
time, i.e., the sum of all time segments needed.

real or imaginary, could be included in the expansion set
for solving the generalized eigenvalue equation. Moreover,
any unitaries f (H ; j ) that commute with the Hamiltonian
would be viable candidates to produce an expansion set
with the following important property: all the states in
the expansion set share an identical support space with
respect to the Hamiltonian. Thus, any expansion |�j ,I 〉 =
f (H ; j ) |�I 〉 formed by any such unitary will eventu-
ally cover the whole support space without introducing
more eigenstates. Recent algorithms such as QLanczos [5,
37], quantum filter diagonalization [22], quantum Krylov
approaches [23], and quantum power methods [52,53]
have all proposed using real- or imaginary-time evolution
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FIG. 6. Accuracy comparison between VQPE and QPE for the
ground-state energy of the ten-qubit transverse field Ising model
with first-order Trotterization and 
t = 0.05. We use SVD cut-
offs of 1, 0.6, and 0.2 respectively corresponding to 103, 104,
and 105 samples and 10−5 for the ideal case. Dotted lines show
QPE and idealized VQPE results without Trotter errors. The
reference state, |�〉 = |φ〉⊗10, is a product state the maximizes
overlap with the exact ground state, |〈�0|�〉|2 ≈ 0.014 for |φ〉 ≈
0.979|0〉 + 0.205|1〉.

in various ways to generate states for creating a wave func-
tion ansatz. The real- or imaginary-time evolution plane is
illustrated in Fig. 7, along with the states used in these var-
ious algorithms. As long as the support space is retained
in the time evolution and the states are linearly indepen-
dent, efficient eigenvalue extraction will be possible. There
are several benefits derived from using only the real-time
axis that include only a linear number of measurements
for setting up the generalized eigenvalue problem, almost
no optimization of parameters for determining the time
evolution, and a well-conditioned problem for extracting
information about the ground and low-lying excited states.

III. METHODOLOGICAL DETAILS

We turn now to presenting concrete numerical data for
Hamiltonians from condensed matter physics and quantum
chemistry. For practical applications, the most important
quality of the VQPE approach is doubtlessly its com-
pactness. By this, we refer to the number of variational
parameters required to obtain accurate eigenvalues. The
number of variational parameters is (NT + 1)NR, where NR

|Φj,I〉 = f(H; j)|ΨI〉, [f(H; j), H] = 0

Ground State

Phase Cancelation

Filter Diagonalization

QITE/QLanczos

Short Time Krylov

Eigenstate Projection

f(H; tj) = e−iHtj

Initial State

FIG. 7. A schematic picture of recent eigenvalue algorithms
relying on time evolution proposed for quantum computers. The
plane corresponds to the complex time plane, with the horizon-
tal axis being real time and the vertical axis imaginary time.
The colored dots denote expansion states |φj ,I 〉. The operator
f (H ; j ) denotes any unitary that commutes with the Hamiltonian,
and thus the expansion states formed by applying this unitary
will remain in the support space and can be used to extract
eigenstates. The real-time axis is where the phase cancelation
picture applies. On the imaginary-time axis, the coefficients of
the excited states are suppressed as time increases, leading to the
ground state. The dotted lines indicate that short time imaginary-
and real-time states will be very similar, as argued in the short
time Krylov method [51]. We emphasize that combinations of
states generated on the entire real- or imaginary-time plane have
essentially the same support space and can be used as a basis to
solve the generalized eigenvalue problem.

is the number of reference states (for all examples shown
below, we use a single reference NR = 1), and we choose
chemical accuracy (approximately 1.6 mHa) as our tar-
get accuracy. Thus, we apply VQPE to several many-body
systems of different complexity, taken from the fields of
quantum chemistry and condensed matter physics: several
small molecules, including weakly correlated ones, LiH
(3-21g basis set [54], 11 orbitals, and 4 electrons), H2O
(cc-pVDZ basis set [55], 24 orbitals, and 10 electrons),
N2 (cc-pVDZ basis set [55], 28 orbitals, and 14 elec-
trons), two moderately correlated, linear H6 (STO-6g basis
[56], bond length 1.5 Å, six orbitals, and six electrons)
and C2 (cc-pVDZ basis set [55], 28 orbitals, and 12 elec-
trons), and one strongly correlated Cr2 (def2-SVP basis
set [57], 30 orbitals, and 24 electrons), and the transverse
field Ising model (two site on hardware, ten site on simula-
tor). We simulate the VQPE calculation for the molecular
systems classically, while running the Ising model calcula-
tions on IBM’s quantum hardware and simulator. Further
details, such as molecular geometries, can be found in the
Supplemental Material [42].

For the classical simulations, we perform time evolu-
tion using exact diagonalization dynamics based on the
Lanczos algorithm [58–60]. In the case of all molecular
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systems except for Cr2, the small basis sets allow us to
perform the time evolution including all electrons and all
orbitals explicitly, while for Cr2 we restrict the simulation
to the widely studied 30 orbital active space. Still, only
for LiH and H6 is it computationally feasible to perform
exact dynamics. For all other systems, we must truncate the
Hilbert space, considering only a subset of all Slater deter-
minants in the corresponding active spaces. This presents
an approximation, and we perform a finite-size effect
study by comparing the dynamics of progressively larger
truncations, from one thousand to one million determi-
nants, which we show for Cr2, the most complicated of
the systems considered. The determinants of each trunca-
tion are chosen using the adaptive sampling configuration
interaction (ASCI) algorithm [30,61,62]. This is an iter-
ative selected configuration interaction approach, which
explores the Hilbert space and identifies the most impor-
tant determinants for a ground-state approximation, pro-
viding highly accurate yet moderately sized truncations.
Thus, by optimizing the truncated spaces with respect to
the ground-state description, we can reliably infer the full
Hilbert space limit from our finite size calculations. In
practice, we determined a one million determinant Hilbert
space truncation with ASCI for Cr2 (105 determinants for
H2O, C2, and N2), and built all smaller truncations of size
N from this one, by picking the N determinants with the
largest coefficients in the one million (105 for H2O, C2,
and N2) determinant ground-state wave function. For all
molecular systems, we determined the optimal time step
size 
t using the strategy described in the theory section
(see Fig. 9), and use the Hartree-Fock state as reference
state |�0〉. For these classical simulations, we did not
exploit the unitary formulation of VQPE, instead solving
the generalized eigenvalue equation (2).

For the simulations on IBM’s quantum hardware and
simulator, we consider the transverse field Ising model
(TFIM) with open boundary conditions, defined by the
Hamiltonian

H = −J
(∑

i

ZiZi+1 + h
∑

i

Xi

)
, (45)

where X , Y, and Z above and henceforth denote the Pauli
operators, J = 1 corresponds to the spin coupling and h =
2 the external field. In these simulations, we choose a time
step size 
t = 0.05 and approximate the time evolution
operator via first-order Trotterization [8]. Each run is per-
formed with 8192 shots. For all hardware data shown, |�0〉
readout error mitigation is performed. We emphasize that
other time evolution methods could be substituted for Trot-
terization, such as variational approaches with constant
or adaptive circuits [63–66], without changing the nature
of the algorithm, and may result in substantially reduced
circuit depth.

H •
U

X/Y|0〉
|Ω〉

FIG. 8. Hadamard test circuit, which computes the real and
imaginary parts of the overlap matrix, where |�〉 denotes the
system and the top qubit is the ancilla. Here U = e−itH .

As discussed in the theory section, the Toeplitz property
of the overlap matrix means that the number of measure-
ments is linear with the number of time steps NT + 2.
Furthermore, we take advantage of the unitary formula-
tion of VQPE to measure only the real and imaginary
components of the overlap matrix explicitly, not the Hamil-
tonian matrix elements. To measure the overlap matrix on
quantum hardware, we follow the Hadamard test approach
described in Ref. [22], where one additional ancilla qubit
is required, as shown in Fig. 8. The price of this simplicity
is the requirement for an efficient construction of a con-
trolled time evolution operator. The general construction
of controlled unitaries is challenging. Other methods have
been developed to measure the required overlap matrix ele-
ments in potentially more NISQ-appropriate ways, such
as the use of direct measurement [67], shadow tomogra-
phy [68–71], as well as machine learning approaches [72].
For our small demonstrations, we use the Hadamard test
and are able to generate short depth controlled unitary cir-
cuits with the use of QSearch [73] for circuit synthesis,
where a unitary, U, is read in and a circuit with minimal
controlled-NOT (CNOT) depth is constructed while keep-
ing the similarity with the synthesized unitary (Us) below
some threshold σ (here σ = 10−10 is the Hilbert-Schmidt
inner product between the conjugate transpose of U and
Us). For the two-qubit transverse field Ising model with
one ancilla, a total of six CNOT gates are needed, and for the
three-qubit system, between 14–16 CNOT gates are needed,
regardless of the time step [74]. The overlap matrix ele-
ments are obtained by measuring S0j = 〈X 〉j + i〈Y〉j on
the ancilla qubit for each time step, where j denotes the
number of time steps after which we make the measure-
ment. As noted in the theory section, because this has the
structure of a time correlation function, the other rows of
the matrix can be filled out accordingly, with one extra
measurement needed for the unitary formulation of the
generalized eigenvalue equation.

IV. RESULTS AND DISCUSSION

A. Finding the optimal time step size

Here we exemplify the strategy for finding optimal time
step sizes on LiH. Figure 9 shows the convergence of the
ground state (solid lines) and first excited state included
in the support space (dashed lines) for several time step
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FIG. 9. Ground- (solid) and excited-state (dashed) energies of LiH as a function of the time step (left) and total simulation time
(middle). The initial reference vector is the Hartree-Fock state. We use the 3-21g basis set that has 4 electrons and 11 orbitals. The
SVD cutoff is 10−1 for both the left and middle plots and the legend is the same for both. The right figure shows the total time to reach
chemical accuracy as a function of SVD.

sizes 
t, as a function of the number of expansion states
(left) and the total simulation time (middle). The left panel
in Fig. 9 shows how the steplike behavior appearing for
the smallest time step size (
t = 0.05) decreases with
increasing 
t. The convergence as a function of simula-
tion time (middle) clearly shows the implicit balance to
be made between simulations with short total time and a
small number of expansion states. The 
t = 2.0 simula-
tion (green curves) achieves chemical accuracy with the
smallest number of expansion states, i.e., with the most
compact variational ansatz. However, this comes at the

cost of a significantly larger total simulation time, at least
twice as large as the simulations with smaller time step
sizes. For practical implementations on NISQ devices, the
marginal decrease in the number of expansion states is not
worth the drastic increase in total simulation time. This
underlies the importance of finding a time step size that
is long enough, but not too long.

We further note that the excited-state convergence is
worse than the ground state in general, requiring for LiH
about twice as many expansion states and total simula-
tion time. This is likely related to the magnitude of the
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FIG. 10. (a) Number of variational parameters to reach chemical accuracy using ASCI (a classical selected configuration interaction
approach), and the VQPE algorithm with different sSV values. These parameters correspond to determinants in ASCI, and to expansion
states in VQPE. (b) Comparison of convergence for all different Hilbert space sizes of Cr2. (c) Convergence for all the molecules as
a function of total time (sSV = 10−1) with the inset showing convergence of the first excited state that has nonzero overlap with the
reference state (sSV = 10−6).
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expansion coefficients of the Hartree-Fock reference vector
in the basis of Hamiltonian eigenstates.

The rightmost plot of Fig. 9 shows the total simulation
time for ground-state convergence to chemical accuracy
using 
t = 0.2 for different singular value cutoffs sSV.
Clearly, the larger the value of sSV, the longer the simula-
tion time becomes, which relates to the notions of linear
independence, which we elaborated upon in the theory
section [see Eq. (27)].

B. Classical simulation of molecular systems

Figure 10 shows the power of the VQPE method on
molecular systems with varying degrees of electronic cor-
relation, using a singular value cutoff of 10−1. As dis-
cussed in Sec. III, for all systems except for H6 and LiH,
we use a truncated Hamiltonian obtained with ASCI. In
panel (b) we show that this approximation has no effect
on our conclusions, since vastly different truncation sizes
present the same convergence even though the actual
ground-state energies are very different. Panel (a) in this
figure shows the number of variational parameters to reach
chemical accuracy using ASCI (a classical selected con-
figuration interaction approach), and the VQPE algorithm
with different sSV values. These parameters correspond to
determinants in ASCI, and to expansion states in VQPE.
Given the differences in complexity with respect to the
classical algorithm, it is remarkable how many of these
systems converge to chemical accuracy at essentially iden-
tical rates, as shown in panel (c). Note that the differences
in convergence times are likely connected to the different
levels of correlation in these systems: the existence of low-
lying excited states (i.e., more strongly correlated) means
longer convergence time because of a smaller energy gap.
Even with these differences, for all systems studied, we
reach chemical accuracy with as little as 50 variational
parameters and about 30 a.u. of total simulation time. This
exceptionally low number of variational parameters is par-
ticularly striking when considering that classically, e.g.,
with ASCI, it is necessary to include 105–106 parameters
(determinants) to reach the same energies. We emphasize
that part of the dramatic efficiency of VQPE demonstrated
here comes from having a good reference state (for all
molecular systems, the Hartree-Fock state) that has small
overlap with the majority of Hilbert space.

The inset in panel (c) shows the convergence of the
first excited state in the support space. Here it is necessary
to use a significantly smaller SVD cutoff (sSV = 10−6) to
converge in reasonable simulation times. Even with this
drastic restriction in the allowable noise, the excited-state
energies converge significantly slower than the ground-
state energies. Still, they should be possible to access
efficiently with reference states tailored to describe excited
states [75–79].
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FIG. 11. The top figure shows the ground-state energy as a
function of time step for the ten-qubit transverse field Ising
model run on IBM’s qasm simulator with sSV = 10−1. The mid-
dle figure shows results for hardware runs (IBM’s Paris machine)
for a two-qubit transverse field Ising model. For both the top
and middle plots, VQPE and the Trotter step size are the same,

t = 0.05. Classical processing in the middle plot (for both QPU
and simulator data) used SVD cutoff sSV = 2. The bottom figure
shows results for hardware runs (IBM’s Montreal machine) for a
three-qubit transverse field Ising model, VQPE
t = 0.1, Trotter
step size 
t = 0.05, and sSV = 1.

C. Quantum simulation of the transverse field Ising
model

Finally, Fig. 11 shows our results using IBM’s QPUs
(two- and three-qubit TFIM) and qasm simulator (ten-
qubit TFIM), compared to the exact ground-state energy.
Our initial state corresponds to a ferromagnetically ordered
chain where all spins point down in the Z direction, which
corresponds to the |000 · · · 〉 state in the computational
basis. For processing the hardware data, we use a larger sSV
cutoff (sSV = 2 and sSV = 1 for the two- and three-qubit
systems, respectively) to account for larger noise. Error
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bars on the hardware data correspond to the variance of
the average ground-state energy at each time point over ten
individual hardware runs on IBM’s Paris machine, using
qubits 0, 1, and 2 for the 2 + 1 (system + ancilla) exper-
iment and using qubits 0, 1, 2, and 3 on IBM’s Montreal
machine for the 3 + 1 experiment. Each hardware run used
8192 shots per matrix element. Figure 11 shows conver-
gence to the exact ground-state energy for both simulator
and hardware data. The saw-tooth behavior is indicative of
linear dependence in the expansion states, as discussed and
shown in Secs. II C and IV A.

V. CONCLUSIONS

Here we analyze the theoretical underpinnings of VQPE
algorithms as well as the effects of statistical noise on its
performance. We have presented evidence for VQPE as a
particularly compact and natural algorithm for the NISQ
era, showing that with the unitary formulation of the gen-
eralized eigenvalue equation and the prevailing Toeplitz
structure of the overlap matrix, only a linear number of
measurements are needed. We provided a heuristic for
choosing an optimal time step size, which balances two
opposing factors: on the one hand, generating linearly
independent expansion states with each new time evolu-
tion, such that the variational ansatz becomes compact,
which sets a lower bound to the time step size, and on
the other hand, minimizing the total simulation time, as
required by NISQ hardware. We have also demonstrated
the effect of statistical noise on the optimal time step and
final accuracy of the energies, showing that simple reg-
ularization techniques suffice to mitigate the effects of
noise.

We have exemplified the power of the VQPE approach
on a wide range of molecules of different complexities,
simulating the algorithm classically, as well as the trans-
verse field Ising model on IBM’s quantum simulator and
hardware. On a traditional example of strong correlation,
Cr2, our results suggest that VQPE achieves compara-
ble accuracy to state-of-the-art classical simulations with
orders of magnitude fewer variational parameters (approx-
imately 50 versus 106). This compactness, together with
their NISQ compatibility (with respect to total simula-
tion time, number of measurements, and noise resilience),
marks VQPE approaches as some of the most promising
platforms to realize the long sought quantum computa-
tion goal of performing many-body simulations beyond the
reach of classical computations.
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