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Abstract

Towards RFID-based Cyber-Physical Connection Systems

by

Haofan Cai

With the advances of new technologies such as Radio-frequency identification (RFID)

systems, pervasive sensing, and cyber-physical systems (CPS), the Internet-of-Things

enables inter-connection of small objects (such as tagged items, embedded systems and

mobile devices) and data collection, delivery, as well as processing among them. This

thesis focuses on integrating large-scale and low-cost passive RFID tags into existing

pervasive-sensing applications to enable multi-functional and cost-efficient IoT systems.

We believe the inherent advantages of RFID systems to identify, trace, and track infor-

mation using easily deployable tags provide unique opportunities to enable many novel

IoT applications in new areas of sensing, actuation, and user interaction, which is far

beyond its traditional use in supply chain management. However, the design of these

applications involves challenges, as the limited computation ability and simple function-

ality of passive tags may make them ill-fitted for meeting the diverse requirements. To

tackle these issues, this thesis takes a deep look at exploring the potential of commer-

cial off-the-shelf (COTS) passive tags, and proposes new applications in the following

themes:

• Enabling cyber-physical connection using RFID passive tags, where system can

x



seamlessly detect user-item interaction and gather information from real-world

subjects.

• Fusing the information from computer vision and RFID sensing channel to actively

find/track the mobile object/person with least training efforts.

• Addressing scalability issue and domain shift challenge in human gesture recogni-

tion with RFID via employing domain-adaptive few-shot learning (DA-FSL).
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Chapter 1

Introduction

This chapter introduces Radio-frequency identification (RFID) system and its

applications in the Internet-of-Things (IoT). It highlights the design challenges of adopt-

ing RFID technique in different IoT applications. We give an overview of the research

presented in this thesis and outline the author’s contributions.

1.1 Background

Thanks to the rapid evolution in chip design and wireless communication tech-

nologies, sensors and actuators are currently cheap enough to be embedded in any device

(1). The Internet of Things (IoT) emerged with the objective of providing new intel-

ligent services and commodities to facilitate our daily tasks (1; 2). IoT visualizes a

completely connected world, where things are able to communicate and interact among

each other. In this context, one of the most widely used technologies in the IoT is RFID.

RFID is one of the best technologies to perform identification, which has gained a lot of

1



popularity in applications like access control, payment cards, or logistics (1) in the last

decades. Other fields where RFID has a known implication are health care (3), animal

identification (4), and the supply chain (5).

A typical RFID system includes RFID tags, a RFID reader and back-end sys-

tems (Fig. 1.1,). A tag is a small electronic device made up of antenna, coupling compo-

nent, and microchip. Enclosed in an adhesive sticker, every tag is attached to an object

with a unique identifier (UID). RFID reader, usually connected to antennas, emits radio

waves to detect and interact with the tags, capturing their data. The collected data

is then sent to a backend server, where it is stored and processed for further real-time

monitoring and analysis. In fact, according to the power supply mode, an RFID tag

can be categorized as either a passive or active tag (6). A passive tag with small size

and low cost has no onboard power supply, its operating energy is from the continuous

wave transmitted by the reader. When a reader emits radio frequency signals, nearby

passive RFID tags within its range respond by backscattering the incoming radio waves

to transmit their stored data to the reader. This bidirectional communication is called

backscatter communication. Thus, the transmission distance of passive tags is quite

limited. In contrast, an active tag has an internal battery to provide energy for the mi-

crochip and ensure communication between tag and reader. The potential transmission

range can thus reach several hundred meters. However, the production cost is high,

and the service lifetime is short because the battery needs to be periodically replaced.

In the following parts of this thesis, we only focus on integrating passive RFID tags

into existing pervasive-sensing applications to enable novel IoT systems. The research

2



Figure 1.1: RFID system

of active tags is beyond the scope of this thesis.

In fact, RFID serves as a crucial bridge connecting the realms of cyber-space

and physical-space . By enabling the wireless exchange of data between objects and

computer systems, RFID facilitates seamless communication and integration in these

two domains. By attaching a RFID tag to a physical object, such as a product or living

beings, object-related information can be collected and processed in real-time, creating

a digital representation of the physical world. We refer this convergence between the

virtual and tangible domains as the cyber-physical connection . Moreover, the ability

of RFID to identify, trace, and track information using easily deployable tags is now

enabling innovative applications that bridge the gap between the cyber and physical

space beyond its traditional use in supply chain management or access control: it is now

employed in new areas of sensing, actuation, and even user interaction (6). However, the

design of these applications involves challenges, as the limited computation ability and

3



simple functionality of passive tags may make them ill-fitted for meeting the diverse

requirements. For example, transforming RFID system with identification capability

into human sensing and tracking platform is quite difficult, as the backscattered signal

is sparse and coarse, where the useful feature can hardly be extracted.

1.1.1 Research Challenges

The idea of employing RFID in new applications of sensing, actuation, and user

interaction involves challenges, as the limited computation ability and simple function-

ality of passive tags may make them ill-fitted for meeting the diverse requirements. We

identify 3 main obstacles that prevent RFID sensing from becoming pervasive adoption

in different IoT applications, detailed in the following:

Limited energy harvester and read range: These are considered to be

two of the most important limitations because RFID tags are made of scarce resources

(7). Existing RFID platforms implemented in industrial systems are mostly passive, in-

dicating that tags cannot operate or sense data without being placed inside the reader’s

reading zone. The integrated circuit (IC), the microcontroller unit, and the antenna

module on a passive tag are powered by harvesting the RF energy transmitted by the

reader, and communicate by backscattering the incident signal. This implementation

reduces the manufacturing cost by keeping IC costs low. However, the long-range com-

munication and power hungry sensing capabilities will be limited by the power available

at the tag.

Lack of scalability: The current RFID protocol uses slotted ALOHA as

4



the MAC layer solution. Hence, tags compete with the time slots to reply to the

reader. The commodity RFID readers support a constant number of successful read

operations per second (around 400 on our device) regardless of the number of tags with

the interrogate range. When the number of tags increases, the share of time slots of

every tag decreases. We define individual reading rate (IRR) as the number of readings

obtained from a particular tag per second (8). For RFID-based sensing systems (8; 9),

to achieve high sensing accuracy, the IRR of a tag should be sufficiently high, as the

collected wireless signal not only contains information of the performed gesture but also

carries substantial information of environment. Missing RSS and phase samples will

consequently reduce the accuracy of sensing tasks.

Lack of flexibility: Current RFID tags are small electronic devices made

up of antennas and microchips. Once they are manufactured, they cannot be replaced

or reconfigured without a costly redesign and reproduction. Since the IoT is an open,

dynamic, and versatile global networking and sensing system, the generality, modularity,

and reconfigurability of the sensing nodes/platform are essential for the their adoption

in the future IoT architecture. Furthermore, commercial RFID readers are generally

black box systems that only allow limited configuration (1) and are only capable of

implementing the current UHF RFID communication standard named EPCglobal Class

1 Generation 2 (EPC C1G2) (8).
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1.1.2 Research Contributions

Taking the aforementioned issues into consideration, the major contributions

of this dissertation are outlined in the following contents.

Low-Cost and Convenient Tag Mutual Identification. TagMii (8), a

new approach to enable user–item interactions using passive RFID tags is proposed.

Compared with other solutions that require a user to carry non-trivial hardware, Tag-

Mii requires every user to carry only a passive tag. The reader deployed in the envi-

ronment monitors the interaction events and pairs the user tag and corresponding item

tag. The key advantage of TagMii is that it is cost-efficient and especially convenient for

children, some seniors, people with certain disabilities, and others who do not operate

smartphones. TagMii is evaluated in complex environments with rich multi-path, mo-

bility, wireless signals, and magnetic fields, and it is found to be accurate in recognizing

user–item interactions in various setups.

Accurate and Low-cost Interface to Identify User/Item Interactions.

This work proposes ChopTags (10), which is a novel solution for tag interaction iden-

tification developed with COTS passive RFID tags, that may enable many ubiquitous

computing applications that require the accurate recognition of user/item interactions.

ChopTags is the first to combine the information of both tag ID presence and physical

signal features to infer interactions. ChopTags achieves near 100% accuracy and only

requires every user or item to carry a passive tag. We implement two application pro-

totypes based on ChopTags and evaluate the prototypes in complex environments. The
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results show that ChopTags is highly accurate and reliable with low latency.

Identity Tracking by RFID-Vision Fusion with Small Training Cost.

This work presents RVTrack (11), a vision-RFID fusion system which can enable cam-

eras to recognize the physical IDs of persons in their views and track the targets instantly

when they appear in the video frames. By asking the users to perform a simple authen-

tication, the system will be aware of the targets’ IDs in its FoV. Later by exploiting the

target features extracted from a light-weight Re-ID model, it can handle the PID-switch

problems which often occur in vision tracking systems. Experiments show that RVTrack

can actively identify and track the RFID-tagged target with an accuracy of 90.14%.

Domain-independent Few-Shot Recognition. In (12), we explore the

possibility of employing domain-adaptive few-shot learning (DA-FSL) to address the

scalability issue and domain shift challenge and present RF-HGR, a novel RFID-based

HGR system to recognize unseen gestures in different domain settings. RF- HGR is

a lightweight cross-domain sensing approach in which users only need to collect a few

signal samples (i.e., few shots) for any unseen class, and the model only needs to be

fine-tuned using these samples. Our experiments evaluate RF-HGR with the dataset

collected from real-world experiments. The results show that the system is capable of

producing high accuracy models for the HAR task. As far as we know, this is one of the

first attempts to jointly address the few-shot DA and few-shot recognition problems in

device-free HGR.
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1.1.3 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 provides the details of the proposed TagMii approach. A number

of user-item interactions and user-user interactions applications that can utilize TagMii

to perform simple yet important tasks, which was difficult to achieve in existing RFID

systems, are also presented in this paper.

Chapter 3 presents the design of the ChopTags. The practicability and ro-

bustness of ChopTags are demonstrated by two prototypes called TagChess and TagAr-

ray. The TagChess system can automatically record and take notations of a chess game

by identifying every move, while TagArray can support multiple concurrent readings.

The performances of these ChopTags-based applications are also presented.

Chapter 4 details the system of RV-Track. Two datasets are collected and

manually labeled for detecting user authentication and tracking. RV-Track is also com-

pared with several state-of-the-art Re-ID network to demonstrate its superiority.

Chapter 5 details the design of RF-HGR, and disscuss the future direction

for this work.

Chapter 6 provides the overall summary and conclusions of the dissertation.
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Chapter 2

TagMii

2.1 Introduction

Passive Radio Frequency Identification (RFID) technology, widely considered

as a cheap, energy-efficient, and scalability solution of the Internet of Things (IoT), has

been deployed for ubiquitous applications, such as retailing, warehouse, transportation,

and manufactures. The basic functions of RFID that have been extensively studied

including: 1) Collect the identity information of tagged items or users in a target area

(13); 2) Count or estimate the population of items/users (14; 15; 16); 3) Advanced

sensing tasks that explore the physical signal features of RFID, such as localization

and tracking (17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27), and human activity sensing

(28; 29; 30; 31).

However, current passive RFID applications are mainly restricted to industrial

and logistic areas, due to a fundamental limitation: an individual user is difficult to
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interact with tagged items or other tagged users, if she carries no reader. The interac-

tions with tagged items may include 1) collecting certain information from the digital

profile behind a tag, such as the item name, price (for merchandise), packing location

and time (for packages); 2) requesting the backend system to connect the user profile

with the item profile and conduct certain processing, such as charging this item to the

user account. Hence passive RFID is seldom used in consumer applications.

Recent efforts have been made to improve the consumer-experience of interact-

ing with passive tags, such as small reader (32), smart-phone based RFID scanner (33),

and reading tags through the smartphone WiFi interface (34). Also smartphones may

have NFC interfaces. However these methods still require non-trivial hardware carried

by the users – a smartphone at a minimum. As a result, children, some seniors, people

with certain disabilities, and other people who are not familiar of operating smartphones

cannot utilize these methods. Moreover, having a reader embedded in the mobile device

such as smartphone or reading tags through WiFi interface all require complex hardware

modifications and increase the cost of deploying the system.

This work provides an extremely low-cost and convenient solution for user-tag

interaction by answering this question: Can a user initiate the interaction with tagged

items with nothing but a single passive tag? The proposed solution is called TagMii (Tag

Mutual Identification Interface). TagMii allows two tags ‘read’ each other: If two tags

are placed in a close physical proximity, the reader can identify these interacting tags

among many other tags in the environment. The two tags can be the identifiers of a user

and an item, or two users. Compared with current RFID applications (14; 15; 16) which
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(a) Application 1: artworks display

in the museum

(b) Application 2: shopping in

cashier-free retail store

Figure 2.1: Two applications of TagMii

Figure 2.2: TagMii User tag (attached on cardboard)

require user to carry a cumbersome reader to interact with each tag, TagMii only needs

to deploy one commercial RFID reader in the environment, which significantly lowers

the cost as well as eases the maintenance. One reader with multiple cabled antennas

in a room can serve many users (visitors, customers, etc.) and the cost of adding more

users is minimal: only passive tags. We present a number of IoT applications that can

utilize TagMii to perform simple yet important tasks, which was difficult to achieve in

existing RFID systems:

Application 1. A museum displays a collection of artworks. A tag is placed

11



on the wall next to each artwork. Each user wears a set of wireless headphones. If a

user wants to listen to the commentary of an artwork, she puts her user tag close to the

tag of the artwork. The backend system then sends the recorded commentary to her

headphones, in the preferred language according to the user profile.

Application 2. In a cashier-free retail store, a tag is attached to each type

of items. When a user puts her user tag close to an item tag, she can hear the item

price, decryption, and reviews from her headphones. She may repeat this operation to

request the backend system to put the item in her virtual shopping cart. Warehouse

workers put the items that she interacted into a cart at the checkout for her to pick up

and charges are made to her account.

Application 3. In a conference, two attendees chatting during a coffee break

may put their user tags together. An app running in the backend system will automat-

ically exchange their digital profile (e-business card) and record the time and location.

After the conference, the collected digital profiles will be emailed to the user and she

can easily review the profiles from the attendees who she has chatted to.

Some existing technologies may also be able to accomplish the tasks in the

above applications. For example, a customer can use her smartphone to scan the barcode

(35) or QR code (36) attached to the items to retrieve the item information and/or

request the payment. Some mobile apps support e-business card exchange. Compared

to these solutions, the key advantage of TagMii is that it is smartphone-free

and hence very convenient for children, some seniors, people with certain

disabilities, and others who do not operate smartphones. Other advantages
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of TagMii include: 1) Easy to carry. The user tag can be attached to a conference

badge (or museum badge, shopping badge in a similar design). 2) Fast interaction.

Using smartphones for code scanning or profile exchange usually takes half a minute.

TagMii may only take 10 seconds. Such speed advantage is especially important in busy

situations like conference breaks. 3) TagMii does not require light conditions compared

to code scanning, suitable for museums and warehouses. 4) System manager can easily

obtain the useful information monitored by the backend, such as the popular goods,

shopping habits of users, and preference of artworks by users with different ages and

regions. One might notice that TagMii still requires a reader placed in each room.

However this method is scalable: one reader per room can monitor multiple user tags

and item tags.

The design of TagMii is based on two important ideas: inductive coupling and

phase profile similarity. We observed from experiments that when two tags are placed

in physical proximity (e.g., < 2cm), the backscatter signal from either tag would be

different from the signal by putting the tag alone, called the inductive coupling state.

A sudden change of the backscatter signal strength from both tags will occur at the

beginning of inductive coupling. TagMii tracks such signal strength change to find out

the potential tags that may be in the coupling state, among all tags in the environment.

In addition, to further select the pair of tags that are truly in the coupling state. We

utilize the tags’ phase profiles collected by multiple antennas based on the fact that

nearby RFID tags experience a similar multipath environment and thus exhibit similar

phase profiles. By evaluating and comparing the similarities between phase profile of
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potential coupling tags, TagMii can accurately identify the tags placed together and

therefore recognize the user and the target item that is interacting with her.

One may ask why we do not simply adopt the existing RFID tag localization

protocols (9; 20; 21; 22) to localize all tags, and consider any two tags in very close

positions are interacting tags. The main reason of not using this approach is its false

positives. To identify the interacting tag pair, we need to not only localize the user tag

and item tag accurately, but also be able to identify and differentiate different users

in the space if more than one user exists. Existing tag localization methods, if using

commodity readers, are not able to achieve location errors < 10cm (21; 22). Hence it

is likely that two tags within 10-20cm distance are localized to a same position. These

tags are not necessarily the user tag and item tag that are interacting. Though PinIt(9)

can locate the tagged object with a median accuracy of 11cm, however it requires the

usage of sophisticated SDR device for localization, and the antenna need to be moved

back and forth during the experiment.

In this work, we address and resolve three main challenges in design and im-

plementation of TagMii. 1) We design accurate tag coupling detection algorithm for

complex environments with rich multipath, mobility, wireless signals, elec-

trical devices, and magnetic fields. 2) TagMii should identify the coupling tags in a

short time even though there are a large number of tags in the environment. 3) TagMii

should be able to extract sufficient information from signal dynamics using commodity

RFID readers, which have low measurement resolution.

We implement TagMii using commodity off-the-shelf (COTS) RFID devices
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only. Although we are the first to study mutual identification (interacting a tag with

another tag), we do not conduct our study in a laboratory condition that is free of

multipath reflectors and moving objects. In fact, all implementation and experiments

are conducted in various complex environments with rich multipath, mobility, wireless

signals, electrical devices, and magnetic fields, in order to valid TagMii for practical

applications. Even in these environments, TagMii provides high accuracy. We believe

TagMii serves as an important extension of current RFID applications and tag mutual

identification will attract further research due to its low-cost and convenience to enable

consumer experience of interacting with tagged items.

The remaining paper is organized as follows. Section 2.2 presents the related

work. Section 2.3 introduces the background and models. We present the detailed

design of TagMii in Section 4.3. We show the system implementation and evaluation

results in Section 2.5. We provide some discussion in Section 2.7 and conclude this work

in Section 4.6.
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2.2 Related Work

User-item interaction: Automatic identification and data capture (AIDC)

techniques like barcodes (35) and quick response (QR) codes (37) provide fast, easy and

accurate data collection approaches for inventory control, product management (38).

The barcode (35) is an optical machine-readable representation of data relating to the

object to which it is attached. It systematically represented data by varying the width

and spacing of parallel lines.The Quick response (QR) (39) code is a two-dimensional

barcode developed to improve the reading speed of complex-structured 2D barcodes. It

provides a very convenient way to display information, such as a URL, which can be

easily scanned and processed by mobile devices (37). A barcode or QR code requires to

be read by a scanner or camera. Different from them, RFID does not require such line-

of-sight scanning as RF signals can penetrate through non-metal objects (40). RFID

sensing techniques have been widely used for detecting the gesture-based inputs (41; 42).

IDSense(43) recognizes the physical movements and touch events of everyday objects

using real-time classification of the RSSI and phase angles with only one reader, however,

it requires training and calibration and is insufficiently precise. PaperID (44) is a similar

work that uses supervised machine learning to detect different types of on-tag and free-

air interactions with custom-designed RFID tags. And Pradhan et al. (45) show how

changes in the received signal phase caused by touching on RFID tag can be leveraged

to detect the finger swipe or touch gesture without any pre-training stage. (46) proposes

and designs a passive, thin metal tag called LiveTag that can be printed on paper-like
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substrates and attached on objects. When being touched by fingers, LiveTag will disturb

ambient WiFi channel in a deterministic way, hence making such interaction observable

by the system. However it requires elaborate tag design and implementation. There also

exists a research direction trying to solve the issue that users have to use RFID readers

to query tags, and thus,cannot benefit from the convenience provided by their mobile

devices. However, as mentioned in Section 3.1, individual users who have no reader

are difficult to interact with tagged items. TiFi (34) allows a 2.4 GHz WiFi receiver

to identify 800 MHz UHF RFID tags. This system leverages the underlying harmonic

backscattering of tags to open a second channel and uses it to communicate with WiFi

receivers. Other related techniques include small RFID reader (32) and smart-phone

based RFID scanner (33). However, all of them require the user to carry a smartphone

in minimum. Compared with these works, TagMii only requires each user to carry a

tag and/or other necessary feedback devices of the application (such as headphones in

the museum commentary case).

Recent studies have also proposed to study tag to tag interactions. RFIBricks

(47) is a building-block system which symmetric 2D patterns of RFID contact switches

are deployed on the top and bottom of each block. Such design enables the backend

system to recognize which block is stacked on which, as well as the stacking orientation.

RFIMatch (48) detects finger-touching on a tag based on the correlated state change

between the tag and an RFIMatch fingerstall worn by user. Tip-Tap(49) recognizes

2-dimensional discrete touch events by sensing the intersection between two arrays of

RFID tags. However, these works require physically modifying the tag circuitry and
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detecting the correlated state changes of electromechanical sensors in the tag circuitry

caused by human behaviors. Trio(50) mainly focuses on the refined localization in a

small area using RSS, which is fragile when being applied in large dynamic space.

RFID Localization: Using RFID for Localization is a possible research di-

rection for TagMii, considering any two tags in very close positions are interacting tags.

Prior work can be divided into two categories: absolute localization and relative local-

ization. Early RFID-based localization methods mainly rely on RSSI information to

acquire tag location. They usually rely on densely pre-deploying tags in the area of

monitoring and leverage the pre-collected RSSI values of these tags as references to lo-

cate a specific tag (17; 51; 52). The major limitation of RSSI-based methods is that they

are highly sensitive to multi-path propagation, and thus can not achieve high-accuracy

localization in multi-path environment. Meanwhile, there is a growing interest in using

phase differences (21; 42; 53; 54) or Angle of Arrival(AoA) information (20) to estimate

absolute locations of tags. Localization using advanced electromagnetism and commu-

nication techniques like synthetic aperture radar (SAR) (9) or multiple antennas (22)

have also been studied. However, simply adopting the existing RFID tag localization

protocols (9; 20; 21; 22) to localize all tags in TagMii will not work, as existing tag

localization methods using commodity readers are not able to achieve location errors

< 10cm (21; 22). Hence it is likely that two tags within 10-20cm distance are localized

to a same position. These tags are not necessarily the user tag and item tag that are

interacting.
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2.3 Background and Model

2.3.1 Problem specification

TagMii targets on making convenient user-item interaction using RFID tags.

In TagMii, we employ two types of tags, the first type are called user tags and the

other are item tags. Each user registered to TagMii holds a user tag, and each item (or

each type of items) in the application is labeled by an item tag. When a user wants to

interact an item, she puts her user tag in a close distance (< 2cm) to the corresponding

item tag.

TagMii can be completely implemented with COTS RFID devices. It requires

no modification on current RFID tag or reader hardware. It is implemented as a soft-

ware program on the backend server connected to the reader, which stores the profile

information of all users and tags that could appear in the system. TagMii analyzes the

physical-layer signals collected by the reader antennas from all tags in the environments

and determines the interacting ones.

2.3.2 Basic ideas

TagMii is based on two important facts and observations from practical RFID

communication: inductive coupling and channel similarity. If two tags are put in a phys-

ical proximity, they will interfere with each other and cause changes on their backscatter

signals. This phenomenon is called inductive coupling(50)(55). Our key innovative

idea is to use the occurrence of the coupling phenomenon as an indicator of
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Figure 2.6: Phase profiles and differences captured by multiple antennas

user-tag interaction, which can be detected by analyzing the signals collected by the

reader. One additional challenge is that, when users are moving their bodies to ’scan’

the item tags using their user tags, the body movement may cause signal changes on

other tags in the environments that are not involved in this interaction. By monitoring

the signal variations, we can find out a list of tags called candidate tags that may be

coupling with the user tag. To figure out which candidate tag is indeed the target tag

that is being read by the user, TagMii further uses the channel similarity between the

user tag and those candidate tags. Channel similarity is based on the observation that

two coupling tags will show high similarity on their received phase information. In fact,

the wireless channel is determined by a series of factors, including tags’ locations, out-
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side environment, and moving objects. Only the target tag, which actually has a close

distance with the user tag will experience similar communication channels and shows

high similarity on their received signal phases.

2.3.3 Inductive coupling

In the environment, we may have dozens of or even hundreds of tags that

represent different items and people. Each of them may be the one that the user is

interacting. It is extremely time-consuming and compute-intensive for our system to

compare all the tags’ signals with that of the user tag. Fortunately, we observe that

when the user tag is close to the item tag, there is a sudden decrease on both of their

received signal strength (RSS)(56) . We specify this phenomenon with both theoretical

model and practical experiments.

In theory, a passive RFID tag can be modeled as a circular loop. If there is

no user tag, for each item tag Ti, a steady current Ii will be induced by the electronic

waves send by the RFID reader. After transmitting in the wireless channel, which has

a channel parameter of ht↔R, the received signal strength RSSi of the tag Ti should be:

RSSi = ht↔R · 10 · log10(1000 · Pi), (2.1)

where Pi is the power of tag Ti and U is the voltage only related to the reader’s signals:

Pi = Ii · U. (2.2)

However, when a user tag is placed close enough (Fig. 2.4), i.e., 2cm away from the

item tag, the RSSes of the two tags will significantly change. As shown in Fig. 2.3, the
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user tag and the item tag can be modeled as two circular loops, whose radius vectors are

−→r . Let vector
−→
d denotes the directional vector from the center of item tag’s circular to

that of the user tag. Once the RFID reader sends an electronic signal, it will induce a

steady current of Ii to tag Ti. The steady current will generate a magnetic field around

it. The mutual inductance M between item tag Ti and the user tag Tu can be calculated

by:

M =
µ0

4π

∮
c

1

|d⃗− r⃗|2
. (2.3)

Due to the influence of the magnetic field, the current Iu in tag Tu changes to I ′u:

I ′u = Iu − 1

Ru
· dM
dt

· Ii, (2.4)

where Ru is the resistance of user tag Tu. Observing Eq. 2.4 and 2.3, we find that both

the resistance Ru and mutual inductance M are positive values. In other words, we

have a conclusion that:

I ′u < Iu (2.5)

The situation is similar for the item tag Ti, i.e. I ′i < Ii. In other words, for a stable

channel, the received signal strength RSSi and RSSu for these two tags will decrease

due to the inductive coupling.

We also conduct a set of experiments to verify the modelling results. We first

put one tag Tu in Fig. 2.4 with a distance of 2cm from a static tag Ti. After keeping

the two tags stable for two seconds, we take away tag Tu. The signals of the two

tags are shown in Fig. 2.5. Obviously, due to inductive coupling, both tags experience

significant decreases on their RSSes when they are putting together. During the coupling
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their RSSes keep a lower values than those before and after.

By observing the sharp and simultaneous decreases of their RSSes, TagMii can

find out a few candidate tags, whose population is much smaller than the entire set of

tags. Then finding the actually coupling tags from the candidate tags is much easier

and time-efficient. In Section 4.3, we will specify the detailed algorithm to select the

candidate tags.

2.3.4 Channel similarity

In fact, only observing the decrease of the RSS can help to select the candidate

tags but may not exactly figure out the actual coupling tags. That is because the

RSSes of the other tags will also be influenced by many factors. Among these factors,

environmental dynamics and user body’s movement may be two crucial ones. When a

user is continuously moving around a tag, the received signal will exhibit an amplitude

increasing/decreasing fluctuation. Obviously, when the moving user blocks the line-of-

sight (LOS) propagation path between a tag and the reader antenna, the tag’s RSS

will also experience a decrease, and such fluctuations may eventually increase the false

possibility. In addition, if multiple users are using their user tags to scan different item

tags, all of the involving tags will fall in the coupling state with RSS decrease. To resolve

this problem, we further compare the phase data of the candidate tags. The basic idea

behind this is based on the channel similarity of two tags in a physical proximity

Actually, besides the phase changes over distance, the measured phase θij of

tag Ti at antenna Aj also contains the initial phase of the tag and the antenna, i.e., θTi
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and θAj , respectively. We can represent θij as follows:

θij = (θdij + θmij + θTi + θAj ) mod 2π, (2.6)

where θdij is the phase changes over distance and θmij represents the phase changes

introduced by the multi-path effects. As we know, the tag’s phase changes over distance

can be calculated as :

θdij = 2π(
2dij
λ

) mod (2π), (2.7)

where dij is the line-of-sight (LOS) distance between tag Ti and antenna Aj . Observing

Eq. 3.2, we find that the received phase is not only determined by the distance and the

outside environment, but also impacted by device diversity. Even if two different tags

are very close with each other, i.e., have similar θd and θm, their measured phases are

high likely to be different with each other. To deal with the errors introduced by device

diversities, we employ multiple antennas in our system (Fig.2.6). The main idea is that

even though different tags have ambiguous and diverse initial phases, such difference

can be cancelled using the measurement from two antennas. We calculate difference of

the phases of tag Ti that collected at antennas A1 and A2:

∆θi = θi1 − θi2 = (θdi1 − θdi2) + (θmi1 − θmi2) + (θA1 − θA2). (2.8)

In this way, the tag diversity can be cancelled. Similarly, for the user tag Tu, the phase

differences of two antennas A1 and A2 should be:

∆θu = θu1 − θu2 = (θdu1 − θdu2) + (θmu1 − θmu2) + (θA1 − θA2). (2.9)

For a user tag Tu and an item tag Ti that are very close to each other, their LOS
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path are very similar (the path difference is much less than the LOS propagation path),

i.e., θduj ≈ θdij . Existing work (9; 57) demonstrates that the channel conditions are

extremely similar for two tags in physical proximity. Hence we may use the similarity

among the phase changes to infer the two coupling tags, i.e., θmuj ≈ θmij . The antenna

difference (θA1 −θA2) is a constant for all the tags. As a result, the phase difference ∆θi

of the target item tag should be close to that of the user tag, i.e., ∆θu. On the other

hand, other candidate tags, though have a decrease on their RSSs, are likely to have

different LOS distances and multipath effects with the user tag, and hence their phase

difference ∆θi would have a much larger gap with that of the user tag, namely ∆θu.

By comparing the phase differences, we can further determine the target tag among all

candidate tags. In Section 4.3, we will specify more details of the algorithm to determine

the coupling tags.

2.4 System Design

The TagMii program has four modules, namely tag interaction detection, sig-

nal preprocessing, candidate tag selection and target tag determination, which are illus-

trated in Fig. 2.7. Tag interaction detection determines the begin and end time for an

interaction action performed by user. The signal preprocessing module performs RSS

profile smoothing and phase de-periodicity over the received signal. Then TagMii selects

candidate tags by detecting the RSS decreases and finally determines the interacting

tags among all the candidate tags by comparing the phase profiles.
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Figure 2.7: System Overview

2.4.1 Detect the action of interaction

When a user holds up the user tag to place it together with a target item

tag, the hand movement will result in an abrupt change in the RSS of user tag (shown

in Fig.2.4.2). Hence in TagMii, we request that the user waves the user tag slightly

in purpose to make this signal change more obviously if the user wants to improve

the detection accuracy. TagMii can leverages these time points with RSS discontinuity

to locate the starting and finishing time for tag interaction. TagMii uses a threshold

Rh to detect interaction events:if the RSS difference between current and following

signal points is larger than Rh, then the timestamp of this signal point is considered

as potential starting/finishing time for tag interaction. However, sometimes user may

suddenly move or rotate the tag , which will also lead to the sudden change of RSS. To

resolve this, we can ask the user to wave a tag several times before she starts reading.

By doing so, a series of abrupt changes can be caught and we could use such change
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Figure 2.8: RSS profile of user tag for two interactions

pattern to identify the starting time for tag interaction.

After locating these time points, TagMii can leverage the aforementioned in-

ductive coupling phenomenon to determine whether the current moment is the starting

time for tag interaction. If the user does begin to interact an item tag, then the RSS

will experience a significant decrease.

2.4.2 Signal Preprocessing

Before feeding the received data into the TagMii algorithms, preprocessing is

necessary for a better performance. As shown in Fig. 2.7,there are three steps in the

signal preprocessing module, namely RSS profile smoothing, phase de-periodicity, and

RSS and phase profile interpolation.

RSS profile smoothing: We require TagMii to use commercial RFID devices,

which have low resolution on the RSS measurement compared to advanced devices such

as the software defined radio. The minimum RSS resolution is 0.5dB by using the

ImpinJ R420 reader (33), which is far from sufficient for accurately capturing necessary
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tag signal changes. As shown in Fig. 2.9, the raw RSS profile (blue line) is fluctuate and

noisy, which is error-prone for the following signal processing. To address this problem,

we first smooth the raw RSS profile by employing a low-pass filter. Keep in mind that the

RSS variations introduced by inductive coupling has a much lower frequency compared

to the Gaussian white noise produced by electronic devices, we choose an appropriate

low-pass filter and the performance are shown as the red dot line in Fig. 2.9. Obviously,

it removes a lot of fluctuations and make the signal trend more clear. However, the

low-pass filter may also obscure the exact change time point of the raw RSS profile. So

in the candidate tag selection, we propose to employ a small window to locate the RSS

change point.

Phase de-periodicity: From Eq. 3.2 we can find that the phase data is

correlated with tag’s relative distance from the reader. When a user carries a user tag

and move around, the raw phase data is a periodic value ranging from 0 to 2π, which

will change gradually. However we may observe that the raw phase data show sharp

decreases or increases. We named this phenomenon as ‘faked changes’.

Since the received phases can be easily impacted by outside environments and
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Figure 2.11: Setup of an example

equipments, a sharp fake change between adjacent received phases can be caused by

the 2π phase wrapping, or by insufficient reading. Another reason is that when the

commercial RFID reader processes the received signal, it introduces some radian of

ambiguity such that the reported phase can be either true phase θ or the true phase

plus radians θ+π (58) . Hence, We should tell the difference between the faked changes

from the true phase changes, and only remove the former one. As illustrated in Fig. 2.10,

the received phases are wrapped over cycles and fall into the range of 0 to 2π. We first

unwrap the received phase values and retrieve the consecutive phase profile. In this

work, we adopt two thresholds, th1 = 0.5π and th2 = 1.5π to detect the π and 2π

hops,i.e.:

θ(t+ 1, te) =



θ(t+ 1, te)− 2π, θ(t+ 1)− θ(t) ≥ (2− ϵθ) · π

θ(t+ 1, te)− π, (2− ϵθ) · π > θ(t+ 1)− θ(t) ≥ (1− ϵθ) · π

θ(t+ 1, te) + π, (ϵθ − 2) · π < θ(t+ 1)− θ(t) < (ϵθ − 1) · π

θ(t+ 1, te) + 2π, θ(t+ 1)− θ(t) ≤ (ϵθ − 2) · π

(2.10)

where θ(t+ 1, te) represents the phase values from time point t+ 1 to the end
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Figure 2.12: RSS profiles of item tags and user tag acquired by 2 antennas

time point te. ϵθ is an experimentally-chosen threshold (we set ϵθ = 0.5 ). The latter

phase values will be added or subtracted by π if th1 <| θ(t + 1) − θ(t) |< th2 and by

2π if th1 <| θ(t+ 1)− θ(t) |< th2. Note that for this de-periodicity method, we regard

the first phase reading as the normal phase reading and the following phase values

are unwrapped based on it. The performance of phase de-periodicity can be found in
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Fig. 2.10, which shows that TagMii can successfully remove the fake changes from the

received phase data.

RSS and Phase signal interpolation: According to the ALOHA-based

RFID protocol (59), the sample rate for each tag could be highly different. For simply

comparing their RSS and phase profiles, we adopt a cubic spline interpolation method

to re-sample the RSS and phase sequence with a uniform sampling rate. After this step,

TagMii obtains the same number of samples for the tags that are under comparison in

a given time period.

2.4.3 Candidate Tags Selection

As mentioned in Section 2.3.3, we observe that when the user puts her user tag

close to an item tag, both tags will show a significant decreases on their RSS profiles.

The coupling user tag can be detected using the method presented in Section 2.4.1.

Here to present the method to select the candidate tags that might be coupling with

the user tag. If there are multiple user tags that are detected to have coupling, TagMii

computes a set of candidates for every user tag using the same method.

The main idea of the tag selection algorithm is to locate every change points in

the RSS profile of each item tag and user tag. Since TagMii has obtained the moment

when the user tag starts to be in coupling in Section 2.4.1, if an item tag has experienced

a significant RSS change at a similar time as the user tag, we will add this item tag into

the candidate tag set Su of the user tag Tu.

Due to the poor resolution of RSS measurement collected be a COTS reader,

31



locating the exact change point of the smoothed RSS profile is error-prone. In addition,

the changing time points for the user tag and the item tag may not align perfectly. To

make our algorithm more tolerant to the practical cases, we adopt a sliding window

whose size is T and step is ∆t. If there is a significant change occurs in the sliding

window, we will record the start time of the current window as the changing time point.

However, as aforementioned, many other factors, such as blocking LOS by

moving objects, can also introduce an RSS changes. Only one tag in the candidate

set is the correct coupling tag. To reduce the number of candidate tags we choose in

mistake, we consider the RSS changes of both antennas. That is inspired by a simple but

effective idea, the RSS changes effected by the inductive coupling are simultaneously

captured by the two antennas. While for the tags that blocked by moving objects,

the RSS decreases may not be observed by both antennas – in most cases, the moving

objects will not block the LOS from all antennas. Hence we only consider the tags that

have significant and simultaneous RSS changes in both antennas and select them as the

candidate tags.

Fig. 2.11 shows an example demonstrating the feasibility of multi-antenna

solution. In this example, a 3× 3 tag array (namely tag 01-09) is attached on the wall

in an office. The distance between each tag and its neighbor is 40cm. A volunteer is

asked to browse the tag array and use the user tag Tu to scan the item T2 he’s interested

in at about 4-th second. The scanning behavior will last for about 5s till the user leaves

away. During the whole process, RSS profile of each tag-antenna link is collected to

explore their temporal dynamics. Fig. 2.12 plots the some of the RSS measurements in
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this study. In accordance with our analysis, during the first 10 seconds, the RSS profiles

of some tags (T1, T5) maintain in a relatively stable level, while the RSS trends of T2, T3

changes significantly, indicating that the user appoarches the items and impacts these

tags’s LOS paths sequentially.

2.4.4 Coupling Tag Determination

From Section 2.3.2 we know that for tag i in the TagMii system, its phase

profile at antenna j can be modeled as Eq. 3.2. If we compare the phase profiles for tag

i received at multiple antennas (antennas A1 and A2 in our example), we can eliminate

the phase shift introduced by the tag hardware or environment.

Based on Eq. 3.3, if tag i and j are located in a physical proximity, they

should have similar values between θdi1 − θdi2 and θdj1 − θdj2 , as well as θmi1 − θmi2

and θmj1 − θmj2 . Hence for samples at any time point ∆θi should be a small value. We

define the phase difference profile Di as a vector where each element is ∆θi(T ) at time T .

During the coupling state, Di and Dj for two tags i and j should be similar. We define

an effective distance metric Dist(Di, Du) as the Euclidean distance between Di and Dj

to evaluate their similarity. Euclidean distance metric is adopted here since the coupling

item-user tag pair should experience similar phase change almost synchronically, and

those tags whose phase profiles are similar but locally out of phase with item tag should

not be taken into consideration. While Dynamic Time Warping (DTW) can deal with

the problem of distortion in the time axis and allows a time series to accommodate

sequences that are similar, but locally out of phase.
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The coupling tag determination algorithm first computes the phase difference

profile Di for each tag i. TagMii measures the similarities between profiles over a

time window with fixed size T .The choice of T determines the latency and processing

overhead of computation. Once TagMii has determined the set of candidate tags Sc,

it immediately begins measuring the similarities between phase difference profiles over

these candidate tags and user tag.

TagMii first gets current phase difference profiles D1, D2...Dn for n candidate

tags, where Di is tag i’s phase difference profile in time interval (t, t+ T ). After inter-

polation in Section 2.4.2, these n vectors should have equal length, which we denote as

L.

TagMii then calculates the Euclidean distance between the phase difference

profile vectors of user tag u and each candidate item tag i,

Li =

√√√√ L∑
k=1

(eik − euk)
2 (2.11)

where eik and euk are the k-th elements of the phase difference profile Di and Du, re-

spectively. TagMii performs calculations between user tag u and every candidate tag,

and then finds the item tag i whose Li satisfies |Li − Lu| ≤ Lh and records the top
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Figure 2.15: Signal data volume vs. time duration

M tags that has the least Li values from them, which are most likely in the coupling

state with user tag. Lh is a empirically pre-defined threshold for comparison. After

choosing the top M tags, TagMii uses a Nc × Tl matrix V to records the comparison

result. The one with the smallest Li will be assigned with 1 and the second one with 2

and so on. Hence, each element (i, t) in V represents the tag i’s result in the top M list

at t-th segment (V (i, t) = 0 if i is not in the list).Take the result in Section. 2.4.4 as an

example. As can be seen in Fig.2.14, the element V (3, 2) is 1, which indicates that tag

3’s has the highest similarity with the user tag in 2-th profile segment.

After finding the candidate tag that minimizes the distance, we can obtain an

array V for all Tl segments. Our goal is to determine the tag with the most occurrences

of 1 in V , which is most likely the one coupling with the user tag.

TagMii estimates the similarities after every time interval T . The choice of T

determines the latency and processing overhead of computation. In our final implemen-

tation of TagMii, we use T = 2s as we have empirically determined it to be suitable for

a practical deployment. We have also evaluated the performance of TagMii for other

values of T and the results will be presented in the following section.
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In the example shown in Fig. 2.11, the user is interaction with Tag 2 among

all nine item tags. The RSS profiles of the tags around Tag 2 as well as the user tag

are shown in Fig. 2.12. After candidate tag selection, three tags are selected as the

candidate tags, namely Tags 2, 3, and 5. The phase different profiles of three candidate

tags and the user tag are shown in Fig. 2.13. Although all three candidate tags have

signal changes caused by the user movement, TagMii is still able to select Tag 2 as the

interacting tag by analyzing the phase profile.

2.5 Implementation and Evaluation

2.5.1 Prototype Implementation

We build a TagMii prototype based on COTS UHF RIFD devices: an ImpinJ

Speedway modeled R420 RFID reader, two Laird S9028-PCL directional antennas, and

three models of tags: ALN-9740, ImpinJ E41C/B, and Alien 964X. We observed induc-

tive coupling for all models of tags. Even if two tags are in different models, inductive

coupling still occurs and can be recognized by TagMii. While conducting the experi-

ment, the user tag is attached on a piece of cardboard (as Fig. 2.2 shown) and each user

needs to hold this cardboard to interact with the item tag, in order to eliminate the

phase influence brought by human hand (60) We also requires the user not to cover the

user tag as possible as they can to obtain a relatively comprehensive signal profile of user

tag. In fact, as long as one model of tags work, TagMii can be successfully implemented

and used. We only show the results of using ImpinJ E41C/B. Each item for evaluation
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is attached with an ImpinJ E41C/B tag. We deploy the reader antennas in a distance

about 2m away from the tag array. This distance will be varied in order to be consistent

with the real implementation. Note one reader may connect to multiple antennas and

the antennas are not necessarily at the same location of the reader – depending on the

length of the cable. Hence one reader is sufficient to cover a large indoor area. The

transmission gain and receiving gain are both 25dB. The prototype is compatible to the

standard EPC Class 1 Generation 2 protocols(C1G2). We run the software components

of TagMii at a Dell desktop, equipped with Intel Core i7-7700 CPU at 3.6GHz and 16G

memory.

In TagMii, the RFID reader keeps interrogating tags in the environment, hence

the collected signal measurement data will gradually increase. Fig. 2.15 shows a snap-

shot for the volume of accumulated data when TagMii monitors a tag array containing

9 tags. The total volume increases almost linearly with time and becomes over 1MB

by the end of 40 second. resulting a speed of > 1MB per minute. Thus, in order to

reduce such space consumption, TagMii is designed to run in a real-time manner. It

will periodically delete the outdated data every few minutes to reduce the storage cost.

2.6 Evaluation Methodology

We evaluate the performance of TagMii in two complex environments with

various multipath reflectors, moving objects, wireless signals (WiFi, LTE, and Blue-

tooth), electrical devices (servers, workstations, printers, refrigerator), and magnetic
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fields (whiteboard): (a) an office room and (b) a meeting room as shown in Fig. 2.16.

The office environment simulates a retail store where shelves are densely placed, and the

meeting room simulates the museum application where artworks are placed on the wall.

In office environment we use a tag array that is with 3 rows and 5 columns as illustrated

in Fig.2.16 to simulate the tags attached on a rack of commodities or exhibitions, while

in the meeting room we further exploit TagMii’s performance when tags are attached in

a horizontal line. The location of the tag array is highlighted with red markers shown

in Fig.2.16

To be consistent with the real implementation, the distance between the reader

antennas and the tag array is 1.5m in office room and 3m in meeting room. Note in

practice reader antennas can be hung from the ceiling to reduce the probability of

blocking LOS signals by moving objects. Note although in theory UHF RFID can

operate in 10m distance, practical deployments usually only allow the distance to be
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Figure 2.17: Different environments

around 3m or less. However we are not able to reconstruct the ceiling to hang antennas.

The distance between two adjacent tags is initially set to be 30cm in the office room

and 80cm in meeting room, while the horizontal distance between them are both set

to be 30cm. We will show that longer distance between adjacent tags will result in

more accurate results. Consider the application in retail stores, it will be rather time-

and cost-inefficient if each item is attached with a passive tag. Moreover, a large tag

population will degrade the sampling rate for each tag. We may assign one item tag

for each type of items. Hence 30cm distance is a practical setting. In our experiments,

we invite 4 volunteers with heights varying from 160cm to 180cm. We let volunteer

arbitrarily move in the space and use their tags to interact with the item tags in the

environment. In the worst case, a moving volunteer may block the LOS path of the

signal between tags and the reader antenna as shown in Fig.2.17. Each user is only

trained with 3 minutes on what they should do to interact with item tags.

Every accuracy value shown in this section is the average of 120 production

experiments. Note that all results are analysed offline and there’s no direct communi-

cation between the reader and user devices (headphone/smartphone etc.), meaning that

user is unable to learn the information of the item tag she is interacting with during

39



1 2 3 4 5 6 7 8

Tag ID

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

1st time

2nd time

Figure 2.18: Detection accuracy in 1st and
2nd time

3 3.5 4 4.5 5

R
h
 (dBm)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Figure 2.19: 1st-time accuracy vs. Rh

0.5 1 1.5

 L
h
 (0~ /2)

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Figure 2.20: Impact of threshold Lh
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Figure 2.21: Accuracy with smaller IRR

the experiment.

In the following subsections, we will first show the evaluation results of two

important steps of TagMii respectively, namely interaction event detection and coupling

tag determination.

2.6.1 Interaction Event Detection

Evaluation metrics. The interaction event detection step reports the events

of interactions. We use two metrics to evaluate the accuracy of this step: 1) Among all

interaction events performed by the users, the accuracy is defined as the ratio of events

that are successfully detected by TagMii. 2) We also let a user carry a user tag, walk in

front of the item tag array, but do not perform any tag interaction. The false detection
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rate is the number of interaction events reported, which did not actually happen, during

a given time period.

Fig. 2.18 shows the accuracy for the 1st-time action and the improvement of a

2nd-time action. If an interaction fails to be detected by TagMii for the 1st time, repeat-

ing the interaction for a 2nd time may possible success, similar to the user experience

of most input interfaces. The detection accuracy for all 8 tags in the environment can

be > 95% for two-time actions. As discussed in Sec. 2.4.1, TagMii uses a pre-defined

threshold Rh to detect interaction events. We vary Rh from 3dBm to 5dBm with a

step of 0.2dBm and record the accuracy change of interaction detection. As shown in

Fig. 2.19, TagMii achieves a best 1st-time accuracy when the Rh is 4.2dBm. Using other

setups, the best-case thresholds are similar. Hence we use this threshold value in the

following experiments.

In this set of experiments, we ask four volunteers to carry the user tags and

walk in front of the tag array without interacting with any item tag. The false positive

rate is measured in number of false positives per minute (FPPM). We vary the distance

between the user to the tag array in four different values from 40cm to 100cm. In each

experiment we ask each user to walk for 1.5 minutes. We repeat the experiment for four

users and two different walk speeds. The results are shown in Table 2.1. The values

0.17 and 0.33 are all in FPPM. Hence the chance of false positives is very small.
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Figure 2.23: Impact of window size T

Distance (cm)

Walking Speed (m/s) 40 60 80 100

0.75 0.17 0.17 0 0

1.5 0.33 0 0.17 0

Table 2.1: False positives per minute

2.6.2 Target Tag Determination

Evaluation metric. The accuracy µ of the target tag determination step is

defined as: µ = np/no, where no is the total number of interaction operations performed

by the users, and np is the number of tag pairs that are correctly determined as coupling

tags among them.

Impact of threshold Lh: The comparison threshold Lh plays a important

role in judging whether a tag can be considered as a choice in top list. Intuitively,

if Lh is too large, then the system may probably take many irrelative item tags into

consideration. On the contrary, a small Lh may cause the miss of target item tag. We

vary Lh from 0 to π
2 , and show the accuracy µ of TagMii in Fig. 2.20. TagMii can
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Figure 2.26: Impact of tags’ orien-
tations (office room)
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Figure 2.27: Impact of tags’ orien-
tations (meeting room)

maintain an accuracy of about 88% when Lh = π/4 and this value is consistency across

different setups, hence we set the comparison threshold to be π/4.

Impact of threshold Tc: If the time interval threshold Tc too large, TagMii

will select too many item tags as candidate tags. Also a small Tc might cause not

including the target item tag as a candidate. We vary Tc from 0.1s to 1s, and show the

accuracy µ of TagMii in Fig. 2.22. The accuracy of TagMii is relatively stable by varying

Tc, but it still achieves a relative high value when Tc = 0.4s. We use this threshold value

in the other experiments.

Operation duration T : As mentioned in Section 2.4.4, we use a filter with
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sliding window to process the collected data. Intuitively a longer operation duration T

for user to put its user tag close to the item tag will result in higher accuracy. However,

the user experience will downgrade if the operation lasts very long. We vary the time

window size T from 0.5s to 8s and show the accuracy in Fig. 2.23. It shows that when

T = 4s, the accuracy of TagMii can stay in a high value for all experimental scenarios.

Hence, TagMii requires each user to put the user tag for 4s in the other experiments.

Note that a user may receive feedback earlier than 4s.

2.6.3 Overall Performance of TagMii

We first evaluate the performance of TagMii in the static environments where

there is only one user interacting with the items (Fig. 2.17a). The accuracy of TagMii

is defined as the ratio of correctly recognizing the two tags involved in each interaction

event. In addition, we also show the accuracy of recognizing the tags with up to two

repeated interaction actions, if TagMii reports no result to the 1st-time action. Note

if TagMii reports a wrong result, then this experiment will be considered failed imme-

diately. We denote this as the accuracy in 3 times. Also we are interested in explore
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if the target tag is in the top-3 list of candidates of TagMii, if it is not top 1. Some

human-computer interaction applications support the following function: if the system

is hard to select the most relevant target, it can show the top-3 list and let the user to

select the correct one. We denote this as the accuracy in top-3 list.

Impact of distance between item tags. We conduct the experiments by

varying the distance between the item tags from 30cm to 60cm in the office and from

80cm to 140cm in the meeting room. The results are shown in Fig. 2.24 and Fig. 2.25.

We find that for single user case, the accuracy of top 1 results is higher than 75% even if

dt ≈ 30cm, a very dense placement setup. When we increase the distance, the accuracy

of TagMii significantly increase. For distance > 1m, the accuracy of top 1 and top 3

results are around 90% and 98% respectively.

Impact of orientations of tags. Though tags are all deployed vertically at

first as Fig. 2.16 shown, we randomly rotate these tags while keeping their centroids

unchanged, to check whether different orientations will affect the performance. As

can be learned from Fig. 2.26 and Fig. 2.27, there’s no obvious difference in accuracy

compared to the case when all tags are placed in vertical states.

Accuracy with retrying. From the experiments in Fig. 2.24 we notice that

there are two types of failures in TagMii. One is the that TagMii reports no result

and the other is that TagMii reports a wrong result. In the no-result cases, we further

explore if one or two extra retrying will give a correct result. We ask the volunteer to

interact with the target item tag for three times, with a time duration of 30s between

two consecutive interactions. We show the accuracy in 3 times in Figs. 2.28 and 2.29.
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(a) gesture 1 (b) gesture 2

(c) gesture 3 (d) gesture 4

Figure 2.30: Differen gestures

We find retrying does improves the accuracy though not in a big margin.

Impact of different coupling gestures. We also evaluate the performance

of TagMii when the user tag is not placed correctly. We ask the user to rotate the

tag (Fig.2.30(b)), to move the tag up and down (Fig. 2.30(c)), or to move the tag

around the item tag(Fig.2.30(d)). We show the corresponding accuracy in Fig.2.31. All

incorrect gestures will lower the accuracy, but the accuracy is always > 50%. Hence,

to maintain a relatively reasonable identification accuracy, we require the users to place

the user tag in parallel with the target item tag.
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Figure 2.31: Impact of different
reading gestures
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Figure 2.32: Impact of different
users’ heights
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Figure 2.33: Accuracy with route A
(office room)
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Figure 2.34: Accuracy with route A
(meeting room)
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Figure 2.35: Performance of route B
in meeting room
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Figure 2.36: Accuracy for concur-
rent interactions on different tags

Processing time. We show the processing time of TagMii to determine the

interacting tags in Table 3.2. We vary the distance between two item tags from 40cm

to 120cm. The results show that the processing time of TagMii is very short (< 1sec)
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Figure 2.37: Accuracy for concur-
rent interactions on the same tag

Figure 2.38: Accuracy in unprofes-
sional deployment (single user)

Figure 2.39: Accuracy in unprofessional deployment (average of two users)

for all experiments.

We further evaluate the performance of TagMii in dynamic environments where

moving people exist (Fig.2.17b).

Impact of moving people. While conducting the experiments, we ask

one extra volunteer to walk around the reader antennas with two patterns shown in

Fig. 2.17(b). Route A will block the LOS signals. Route B does not but still makes the

Distance (cm) 40 60 80 100 120

Time (sec) 0.7696 0.7364 0.8189 0.7972 0.7783

Table 2.2: Average processing time
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RFID signal more complicated. Comparing Fig. 2.33 with Fig. 2.28 and Fig. 2.29 with

Fig. 2.34, we find that Route A could possibly lower the accuracy of TagMii by 10% to

15%. Route B provides better results as shown in Fig. 2.35. These results indicate that

the proposed system is robust enough against varying walking events.

Concurrent interactions. We study the case that two users concurrently

interact with different target item tags. TagMii should be able to recognize which user

tag pairs to which item tag. During the trial, we ask the volunteers to perform coupling

with two different item tags almost at the same time. The results in Fig. 2.36 shows the

accuracy of the two users respectively. Compared to the single-user case, the accuracy

is reduced by 10%. However it still maintains in a high level. We further explore the

case when two users concurrently interact with the same target item tag. And the

result is illustrated in Fig. 2.37. In general cases, when multiple users interact with the

same item tag synchronically, their identification results won’t change much. TagMii

automatically find the specific item tag that has the highest similarity with the user tag

from user-tag array. The readings performed by different user tags are independent and

won’t have much impacts on each other.

Unprofessional deployment. To illustrate the practicability and robustness

of our system, we deploy TagMii in a crowded office room filled with furniture and

wireless devices in a more informal way. The distance between reader antennas and the

tag array is increased to 4.5m, with the antennas not directly pointing to the tag array.

We only request volunteer to wave the tag before the interaction and give no extra

interaction guidance before the experiment and let her arbitrarily move in the space
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and interact with any interested item tag. Hence it’s quite possible that the user place

her user tag more than 2cm away from the item tag during the interaction, touch the

antenna while holding the tag, or randomly move/rotate the tag before interactions etc.

The results are shown in Fig. 2.38. Compared with the result Fig. 2.24 in professional

setup, the accuracy is reduced by 10∼15%. This result is expected because with the LOS

distance between tag array and reader antenna increased, the backscattered signals from

tags get weaker, making the receiver hard to extract enough information from them.

And the unprofessional coupling gestures will also degrade the system performance (as

shown in Fig. 2.31). Later we also extend the single-user trial to the multi-user case,

and ask two volunteers to walk around the office room. During the trial, these two

users randomly interact with the interested item tags, and the results can be found in

Fig. 2.39.

2.7 Discussion

Though TagMii provides accurate mutual identification in the aforementioned

evaluations, we acknowledge the following limitations of the current system and propose

the potential solutions.

Limitations on system settings: Although TagMii can achieve relatively

high accuracy in most evaluations, the limitations on experimental setting can not

be overlooked. The performance of TagMii relies on the choices of several thresholds

(Lh, Tc, etc.). To achieve a better system performance,it is recommended for TagMii to
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first learn multiple thresholds through a series of analysis (Sec 2.6.2) before the usage.

Limitations on multi-user cases: Multi-user sensing is a well-known chal-

lenging research problem in wireless sensing, since the signals reflected from multiple

targets will get mixed at the receiver, interfering with each other. As can be seen from

the experiment results, current version of TagMii works well with a single user target.

However, if multiple users read item tags almost at the same time, it is not easy for our

system to distinguish them clearly. We believe it will be a challenging yet interesting

research direction to deal with multi-users case in the future work.

Limitations on number of tags: The current RFID protocol uses slotted

ALOHA as the MAC layer solution. Hence tags competes the time slots to reply to the

reader. The commodity RFID readers support a constant number of successful read

operations per second (around 400 on our device), regardless of the number of tags with

the interrogate range. When the number of tags increases, the share of time slots of

every tag decreases. We define individual reading rate (IRR) as the number of readings

obtained from a particular tag per second(61). In order to achieve high accuracy, the

IRR of a tag should be sufficiently high, such that its state changes can be continuously

and correctly captured. Missing RSS and phase samples will consequently reduce the

accuracy of both candidate tag selection and coupling tag determination.

Fig. 2.29 shows an example in which eight items and four users are tagged.

In this set of experiments we further attach five more tags in the environment without

any other changes on experiment settings. Consequently, the average IRR of each tag

reduces from about 40 reads/sec to fewer than 30 reads/sec.Fig. 2.21 shows that lower
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IRR will result in obvious accuracy decrease.

We leverages several possible methods to improve the IRR, including: (1)

Decrease EPC length. Shorter packet durations can increase the individual reading

rate. One approach is to decrease the Electronic Product Code (EPC) length. Following

the commercial EPC C1G2 standard, the length of EPC code can be set to 8-bit at a

minimum (13). We may adopt this length in our implementation. (2) Adopt FM0 reader

inventory mode. As another approach to decrease packet lengths, the reader may use

faster reader inventory mode (i.e., FM0 mode) to speed up the communication rate

(28). (3) Utilize PHY-layer filtering. The PHY-layer filtering feature is supported by

the RFID Class 1 Generation 2 (C1G2) protocol, which allows the reader to read only

a subsection of the tags(61).

Future Work Different from TagMii which uses an abrupt change in tag’s RSS

caused by user wave as the starting time indicator for coupling interaction, RFTrack

regards the problem of recognizing coupling state from RSS signal stream as a binary

time series classification(TSC) problem, where the objective is to determine whether

current RSS signal is at coupling state.

2.8 Conclusion

TagMii is a new approach to enable user-item interactions using passive RFID

tags. Compared to other solutions that require a user to carry non-trivial hardware,

TagMii only requires every user to carry a passive tag. The reader deployed in the
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environment monitors the interaction events and pair the user tag and the correspond-

ing item tag. The key advantage of TagMii is that it is cost-efficient and especially

convenient for children, some seniors, people with certain disabilities, and others who

do not operate smartphones. We evaluate TagMii in complex environments with rich

multipath, mobility, wireless signals, and magnetic fields and find TagMii to be accurate

in recognizing user-item interactions in various setups. TagMii is the first step of tag

mutual identification and it will attract further research on improving its accuracy and

designing new applications based this idea.
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Chapter 3

ChopTags

3.1 Introduction

Identifying item-item and user-item interactions is an essential requirement of

many ubiquitous computing applications. Here “interaction” is defined as the event

that a user touches an item for a particular purpose or two items touch each other to

represent some relationship. Interaction identification requires the backend system of

this application to recognize both the user and the item or the two items involved in

the event.

Passive Radio Frequency Identification (RFID) technology is a cheap and

energy-efficient solution for the Internet of Things (IoT) and has been deployed for

retailing, warehousing, and transportation applications. However, identifying item-item

and user-item interactions based on passive RFID tags is difficult. Despite of the cur-

rent innovations of RFID sensing and localization based on analysis of physical signal

features (41; 42? ), these methods have inherent limitations to be used for large-scale
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and dense deployment. First, they have large errors especially in dynamic environments

(9? ), which are unacceptable for densely deployed tags. Moreover, the signal collection

process may cost long time and high data volume. Last, fine-grained signal collection

cannot be achieved on commodity off-the-shelf (COTS) RFID readers and need special

devices such as software defined radios.

Recently physically altering tag hardware to achieve interaction identification

has been proposed (47; 62). However, these solutions only consider IDs as the only

sensing source without exploring signal features or optimizations on RFID protocols.

Hence it is unclear whether these methods can deal with concurrent interactions where

multiple IDs are changing their status at the same time. For example, our experiments

shows that if there are more than 200 tags in the environment with possible concurrent

interactions, more than 30% of the interaction events cannot be correctly identified using

physical altering tags.

This paper takes a low-cost and scalable approach called ChopTags, to achieve

user/item interaction identification using COTS passive RFID tags. The method is

the first to combine physical altering of tags and wireless signal feature analysis. We

demonstrate the application of ChopTags by building a prototype called TagChess. We

build a set of chess pieces and squares, each attached with a passive tag. The system

can automatically record and take notations of a chess game by identifying every move

with almost 100% accuracy. It avoids manual chess notations that are known to be

necessary but time-consuming and distracting. In addition to the chess application,

ChopTags can also be used in the following cases:
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(a) Item-item application 1 (b) User-item application 1

Figure 3.1: Applications of ChopTags

Item-item interactions. Suppose each shelf has multiple positions to place

items such as shipping boxes and retail products. We attach a ChopTags module on

each position as well as a module under each item. By putting all items on the shelves

sequentially (Fig. 3.1(a)), the system can automatically record which item is put at

which position. It significantly helps manage logistic, retailing, and manufacturing.

User-item interactions. In a museum or exhibition space, a tag is placed

on the wall next to each exhibit. A visitor wears wireless headphones. She may put

her tagged ticket onto the exhibit tag (Fig. 3.1(b)) Once the reader identifies this

interaction, the backend server will stream the commentary of the exhibit to headphone,

in the preferred language from the user profile. Such user-service matching requires the

server knows both tag IDs. This application can be extended to amusement arcades,

interactive classrooms, hospitals, cashier-free stores, and IKEA-style showrooms.

User-user interactions. Attendees of a conference may chat during a coffee

break but have little time to exchange business cards. Two attendees may put their
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tagged badges together. The backend system will identify the two tags, exchange their

e-business cards, and record the time and location. At the end of day, all related records

will be emailed to each attendee, from which she can easily recall the conversations.

Our vision of such interaction identification is to use cheap passive tags as

ubiquitous cyber-physical connection interfaces, which form transient links be-

tween the physical world and the cyber world. It provides an alternative tool to build

future IoT systems with seamless interactions between users and smart devices.

ChopTags module (Fig.3.2) is implemented by a simple hardware modification

of COTS passive tags motivated by recent proposals of physical altering of tag hardware

(47; 62). Each tag is disassembled into two parts: one includes the chip and the other

includes the antennas. They are put into specific positions of an acrylic plate, which

serves as a ChopTags module. With separation of antenna and chip, the tag cannot be

powered by a reader. When two modules are snapped together, possibly with the help

of neodymium magnets, both tags are connected and can be read. Tag interactions can

thus be accurately identified.

ChopTags offers the following key features that make it ideal for ubiquitous

applications:

• Low-cost hardware and high scalability: ChopTags can be made from cheap

COTS tags and hence is suitable for large-scale deployment. The cost of adding

more users and applications is minimal: only passive tags.

• High accuracy: ChopTags achieve 100% accuracy for single interaction events
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Figure 3.2: A pair of Chop-
Tags modules

Figure 3.3: The chess notation/visual-
ization system

and > 95% accuracy for 4 pairs of concurrent interactions.

• User-friendly: Children, senior citizens, people with medical conditions, and

others who have difficulty of using other smart devices can easily use ChopTags.

ChopTags can be made into badges and bracelets.

We implement two ChopTags applications for case studies: one chess notation

and visualization system for item-item interactions and one exhibition room for user-

item interactions. We address the following main challenges in designing and developing

ChopTags and its applications. 1) We present a detailed study of three different tag-

modification approaches to validate the reliability of ChopTags modules. 2) We design

optimized protocols that are compatible to the current EPC standard for high-accuracy

and low-latency identification in complex indoor environments with many tags. 3) We

present further optimization to allow ChopTags to identify concurrent interactions.

The remaining paper is organized as follows. We introduce the detailed design

of the ChopTags module in Section 3.2 and show the ChopTags-based applications in
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(a) Approach 1 (b) Approach 2 (c) Approach 3

Figure 3.4: Three tag modification approaches

Section 3.3. We present the system implementation and evaluation results in Section

5.3 and discuss some related work in Section 3.5. We conclude this work in Section 4.6.

3.2 TagMii Module Design

3.2.1 Design Requirements and Challenges

As a ubiquitous interface for tag interaction identification, ChopTags should be

able to satisfy the following design requirements: R1) reliability, R2) scalability, R3)

low latency, and R4) ease of making. As ChopTags modules could be densely deployed

in applications such as board games, which requires fine-grained detection accuracy,

tag-tag interactions should be correctly identified with no error or noticeable delays. In

the case of chess, the ChopTags system should be able to track the statuses of at least

96 modules, including those for 64 squares and 32 pieces. The communication and com-

putation latency of ChopTags should be small, especially for large-scale deployments.

The system should be easily deployed with little effort for installation and users should
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be able to easily activate the module for portable uses.

We first argue that existing RFID sensing and localization techniques

are extremely difficult, if not impossible, to be used as a ubiquitous inter-

action identification method. First, signal analysis of COTS passive tags is not

inherently suitable for dense-deployed applications like chess: previous studies have

reported that inductive coupling between closely placed tags (8; 45) has a significant

impact on the backscatter signals. When multiple RFID tags are deployed close together

on the same surface, the backscatter phase and RSS features are both affected by the

physical contact with the RFID antenna, thereby having a substantial negative impact

on the accuracy of interaction identification. Second, existing tag localization methods

have errors of 10cm to 20cm (9? ? ), which are unacceptable for densely deployed tags.

Furthermore, since the system has to keep records of all interactions, a large amount

of data has to be handled. In many existing methods (29? ), detection of each single

event may need to collect a significant amount of physical signal data (e.g., > 100MB).

3.2.2 Modifying passive tags

Different from the physical signal features used by the existing RFID sensing

methods, which are not reliable in complex environments, we choose the most robust

feature – the on/off and ID information of passive tags.

Our idea is to modify RFID tags to create switches that can automatically

trigger on/off state changes during tag interactions. Note that in Fig. 3.4, each tag has

a chip with two antennas. We studied three different approaches proposed by existing
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Figure 3.5: Performance of light switch

works, namely 1) cutting away a small part of a tag’s antenna and replace the cut section

with a phototransistor (Fig. 3.4(a)) (62); 2) cutting a tag from the middle and disassem-

bling it into two parts: an antenna and the chip with the another antenna (Fig. 3.4(b));

3) disassembling a tag into two parts: the chip and the two antennas (Fig. 3.4(c)) (47).

The prior studies (62; 47) only consider a single user-item interaction at a time. Their

design cannot be applied directly to a densely-deployed setting with many tag modules

and possibly many concurrent interations. Such a new setting presents unique chal-

lenges as we will establish in the paper. Building on the prior hardware techniques (47),

we focus on the system issues that arise from multiple desensely-deployed tag modules

and multiple concurrent interactions. Solutions to these challenges will greatly expand

the application scope as we have discussed in the introduction, which cannot be done

by the prior art under a single-interaction design between a pair of tags.

3.2.2.1 Approach 1.

A phototransistor is an electronic switching and current amplification compo-

nent that relies on exposure to light to operate. When light falls on the junction of

a phototransistor, reverse current flows are proportional to the luminance. Therefore,
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phototransistor can be used as a switch or a variable resistor where its value changes

depending on the amount of light they get exposed to as suggested in (62). While the

light changes, the resistance of a phototransistor changes accordingly. This change in

resistance can be used to progressively detune the tag’s antenna.

We build a module in Fig. 3.4(a) to achieve tag interaction identification: when

one ChopTags module is stacked face to face towards another one, the light falls on the

phototransistor will change, which will further affect its resistance. Hence the antenna’s

properties will also be influenced. Such dynamics should be observed by the reader in

terms of a change in the RSS or the phase of received RFID signal, and even make the

tag ‘silent’ to the reader. By monitoring these signal changes, we should be able to tell

which two ChopTags modules are interacting with each other.

We build five modules and conduct 200 interaction events of these modules.

The reader operates in rounds. In each round it queries all tags to reply. We show

the true reply rate (TRR) of each module, defined as the number of replies from this

tag module while it does not interact with another module, over the total number

of queries (rounds) by the reader. We also define the false reply rate (FRR) for each

module, defined as the number of replies from this module while it interacts with another

module, over the total number of interactions involving this module.. We expect TRR

to be 100% and FRR to be 0%. Fig. 3.5 illustrates the evaluation results. Take module

#5 as an example, it has TRR and FRR of 100%, demonstrating that it will reply its

ID to the reader regardless of being covered by another Module A. It can be noted that

most of the modules have high FRR, which is undesirable since we require a module to
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reply only if it is not covered by another module.

The high FRR could be caused by the following reasons: The change in re-

sistance of a phototransistor may not be sufficient to break the tag’s circuit and make

the module completely unreadable. Also the required minimum transmission power of

the reader to activate each modified tag is different. Module #5 may have minimum

response power less than 30 dBm (transmission power in our experiments), which en-

ables them to continuously reply the reader’s queries even if they are covered by another

module.

Hence we do not use this approach in ChopTags.

3.2.2.2 Approaches 2 and 3.

We explore the possibility of transforming a tag into a “contact switch” by

separating the chip from the antennas. We modify a tag in two ways as shown in

Approach 2 (Fig. 3.4(b)) suggested in (44) and Approach 3 (Fig. 3.4(c)) suggested in

(47).

Approach 2 modifies the tag into a half-half structure and disassembles it into

two parts: one with an antenna and the tag chip, and the other with an antenna. Each

part has two terminals affixed by neodymium magnet thereby the two parts can connect

to each other. The part with the chip will act as an ungrounded monopole antenna,

which performs poorly at harvesting RF energy thus making the tag not readable to

the reader. When a module is interrogated by the reader, it will keep silent since the

monopole antenna cannot build up enough energy. However, if another tag module is
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(a) Approach 2 (b) Approach 3

Figure 3.6: Performance of two modification approaches for contact switch

stacking on it, both tags will have complete circuits and can harvest enough power.

Thus a pair of tags will be activated simultaneously.

In Approach 3 the chip and the antennas of each passive tag are completely

separated. Generally, neither components are readable to the reader as the chip is

unable to harvest energy by itself and the antennas will not reply any ID information to

the reader without an IC. When two modules are snapped together and the terminals

of the chip connect with the terminals of the antennas at the proper alignment, the two

tag modules can act as normal RFID tags and reply to the reader.

We first build 5 modules using Approach 2 (Fig.3.4(b)). The experimental

environment and settings are similar to that for light switch in Section 3.2.2.1. In each

trial, a volunteer picks up one of the modules and stacks it on another module. At

the same time the reader keeps querying all tags. We still adopt TRR and FRR for

performance evaluation but with difference in definition. In this experiment TRR is the

probability a tag module replies its ID to reader while it is interacting with another

module, and FRR refers to the possibility a item module replies its ID to reader while
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it is actually not activated by other module. Fig. 3.6(a) shows the collected results for

this design. We fine all modules have TRRs of 100% and FRRs of 0%, meaning that a

module will not reply its ID to the reader unless it is activated by another module. The

results fully satisfy the requirement of this module.

We build 5 modules using Approach 3 (Fig.3.4(c)). The experimental settings

are the same as the previous one. Fig. 3.6(b) shows the collected results from this

study. Similar to those of Approach 2, all modules have TRRs of 100% and FRRs of

0%, indicating that each module will reply its ID to the reader only if it is covered by

another module. Compared to the results in Fig.3.6, the ChopTags modules built with

either Approach 2 or 3 can be used for tag interaction identifications.

3.2.2.3 Stability of Contact Switches.

We conduct an experiment to test the stability of ChopTags modules over a

long time period. We run a 4-day experiment to keep tracking the individual reading rate

(IRR) of each tag module, defined as the number of replies received from this tag per

second. The COTS RFID reader used in our experiments support a relatively constant

number of successful read operations per second (about 400). 4 modules (ID #2 ∼ #5)

built by Approach 2 and 4 modules (ID #6 ∼ #9) built by Approach 3 are used in this

experiment. These 8 ChopTags modules are split into 4 pairs of interacting modules

(#2 with #3, #4 with #5, #6 with #7, and #8 with #9). One un-modified passive tag

(ID #1) serves as the reference object for comparison. All modules are placed on a desk

in an office environment. Other experimental setups are the same as those in Section
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(a) IRR at 1st and 4th day (b) IRR for 9 tags over 4 hour

Figure 3.7: Stability performance of nine modules

3.2.2.1. A one-hour measurement is conducted every 24 hours. During the experiments,

people move and work as usually in the office. The whole measurement lasts for 4 days.

Our first finding is that the IRRs of all tags on day 1 have no noticeable

difference to those on day 4 (Fig. 3.7(a)). Fig. 3.7(b) presents the average IRR results

collected during the four days. The average IRR of the 9 tags is about 32 replies per

second with a deviation of 3.38 replies per second. All nine tags have similar IRRs,

regardless of whether or not the tag has been modified. Another notable finding is that

average IRR of nine tags don’t change much in the four days (as shown in Fig. 3.7(a)).

These result are important as they validate that the modified tag can stably work

without performance degradation.

We eventually choose Approach 3 because we find that a module made by

Approach 2 may occasionally reply ID if a user hand touches the magnet. Approach 3

has no such problem.

66



3.2.3 Remaining challenges.

Simply using the ChopTags modules for user/item interaction applications is

not enough. For example, in our evaluation, if there are more than 100 modules in the

environment, like the case of chess, more than 30% of the interaction events cannot

be correctly identified. Also it is difficult to detect concurrent interactions of multiple

module pairs. These challenges are addressed in the next section.

3.3 Application-specific Designs

In this section we show the designs of two application prototypes based on the

ChopTags modules by resolving the unique challenges that arise when using ChopTags.

One application prototype is a chess notation and visualization system called TagChess

for item-item interactions, and the other application prototype is an on-wall tag array

that can simulate a museum, retailing shelf, library shelf, or smart home control panel.

The challenges that need to be resolved in these two application prototypes are different.

The chess prototype has to deal with a large number of ChopTags modules (256 tags in

this case). Hence reducing the interaction identification latency is essential. The on-wall

tag array prototype must support multiple users. Hence it is necessary to differentiate

multiple pairs of modules that are simultaneously interacted.

3.3.1 TagChess for item-item interactions

Benefits of TagChess. In this TagChess prototype, all chess pieces and

squares on the chessboard are augmented with ChopTags modules, which we refer as
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Figure 3.8: Tag behaviors with different sessions

piece modules and square modules respectively. Using TagChess, all moves will be

recorded in a database and visualized on a computer screen. Hence notations are au-

tomatically taken. It is well-known that manual chess notations by the players are

necessary but time-consuming and distracting. In addition, it provides an interface

that allows one player to use a real chess board to play with an Internet opponent.

In the initial position, 64 modules (32 piece modules and 32 square modules)

are activated and 32 other modules are not. The system needs to monitor their status

changes throughout the game. We define the interaction event of moving a piece module

from one square module to another one as a PieceMove event. Each piece also has

two statuses: ‘on-board’ and ‘off-board’, indicating whether the piece module is being

activated or not. An on-board piece is a piece that is steady on a square, and an off-

board piece can either be a captured piece or one held by the player in the air during a

move.

Intuitively, if a piece module is moved, its status switches from ‘on-board’ to
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Figure 3.9: Tag behaviors of different reader setups

‘off-board’, then back to ‘on-board’. Current RFID protocols uses slotted ALOHA as

the MAC layer solution, which requires tags to compete for time slots to reply to the

reader. The commodity RFID reader used in our experiments support at most 400

read operations per second, regardless of the number of tags and the communication

distance. When the number of tags is 64, the IRR of each on-board piece module is

about 5 ∼ 7 reads/sec. The IRR of an off-board piece module will maintain 0 reads/sec

until this piece module is placed back to a square module. However, if we try to

leverage the IRR change as an indicator to infer the status change of a piece module,

we will receive a detection result with large error, as signal blockage and environmental

dynamics sometimes may cause the decrease in a piece’s IRR. In order to achieve high

accuracy, status changes of a piece module must be continuously and precisely detected.
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3.3.1.1 EPC Protocol-based Method Design.

In TagChess we want a piece module to reply its ID if and only if it has been

moved, and keep silent until the next move. Hence we explore the inventorying features

of passive RFID tags and try to make the tags ‘behave’ as we expect. COTS RFID

readers can be configured using a number of settings to handle different use cases. In our

design, we mainly focus on two important configuration settings: Session and Search

Mode, to improve the identification accuracy.

The EPCglobal C1G2 air protocol specification (13) provides a mechanism

called “Session” to allow multiple readers to communicate with a single tag. According

to the standard, a reader can send out queries to the tags in one of four sessions (denoted

as S0, S1, S2, and S3). Hence at most four readers can queries the same tag in parallel.

For each session, a tag may be in two states represented by an inventoried flag, namely

state A and state B. If a tag’s initial state is A in a session and it is queried and replies

to the reader querying this session, its state switches to B and vice versa. A reader can

select to query only state A tags or state B tags. By allowing the reader to only query

state A tags, we can avoid a tag to reply to the reader for multiple times. However in

practical situations a tag with state B may also switch back to A, and the situations

differ for the four different sessions. For the rest of this paper, we say a tag “in field”

if it is within the interrogation range of the reader and its chip and antennas can be

powered, thus it can receive the signals from the reader. And we say a tag “out of field”

if it cannot receive the reader signal due to either being out of the interrogation range
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or being a single ChopTags module.

The initial value of the inventoried flag depends on the session used by the

reader as well as the previous value of the inventoried flag. Each session has an associated

persistence time, which is the time duration that the inventoried flag is maintained after

the reader stops energizing the tag. Detailed tag behaviors are discussed as followed

(shown in Fig. 3.8):

• S0: When a tag is in field, the inventoried flag of S0 is always set to A. It has zero

time for persistence, indicating that when a tag is out of field and not energized

by the reader, its inventoried flag will immediately return to A.

• S1: S1 inventoried flag can have initial value of either A or B, depending on its

previous state. The inventoried flag is set to previous value (either A or B) if the

tag is energized before the persistence time expires, otherwise the inventoried flag

will default to A. For instance, when it is in state A and is queried by the reader,

the state switches to B. State B will last for a persistence time T1 from 0.5 to 5

seconds. After the persistence time expires, the inventoried flag will revert to A,

no matter whether the tag is in field or out of field.

• S2 and S3: The initial value of S2 or S3 inventoried flag is set in the same way

as session S1. If a tag is in state A, it can be queried by the reader and can reply

to the reader. Then the state switches to B. Its state will keep in B as long as it

is in field. Even if it is out of field, the state will still be B until a persistent time

T2/3 expires. Note T2/3 can be very long(with a minimum of 2 seconds).
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Our design requirement is that if a ChopTags is snapped with another module

and being in field, it should reply once and become silent. When it is separated with

another module (out of field) and snapped with another new module (in field again),

it should be able to reply again. From that requirement, none of the above sessions

is ideal. S0 definitely does not meet the requirement because tags cannot be silent.

S1 will allow the tags to reply again after T1. For S2/S3, it is nice that a tag only

replies once when it is in field. However, when it becomes out of field, we need to wait

a long time T2 to make it able to reply again. We cannot assume a player should wait

that long time until a move is identified. We further investigate other settings of RFID

system.

We share the following experimental observations from our tests with a ImpinJ

Speedway modeled R420 RFID reader, which is one of the most commonly used COTS

RFID reader devices in research(8; 63; 48; 47), as shown in Fig. 3.9. Besides “Session”,

Impinj RFID readers also provide another important mechanism called “Search Mode”

that will also influence a tag’s overall behavior, hence can be configured to handle various

use-cases. Impinj software and libraries allow users to change these settings. There are

five search modes available on the Impinj reader used by us: (1) Dual Target; (2) Single

Target; (3) Single Target with Suppression (TagFocus); (4) Dual Target Select B →

A; (5) Single Target Reset. Note that “Target” refers to whether the reader will only

query tags that are in a single inventoried flag, either A or B (Single Target), or it will

interrogate tags regardless of their inventoried flags (Dual Target). Note that due to

channel hopping in actual implementation, for Single Target with session S0, the tag
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Figure 3.10: Overview of the chess game system

will behave similarly to Dual Target, as shown in Fig. 3.8.

We find that we set TagFocus with session S1, a tag only replies when it is

in field, and the persistence time is T1, which is much shorter than T2 in practical

situation. Hence it satisfies our requirement of ChopTags.

Therefore, we adopt the TagFocus setting in ChopTags, by which the tag

will only reply for one time after being activated, and remain quiet until it has been

unpowered. A piece module and its interacting square module will reply only once

respectively and then keep silent, until the piece is moved. When this piece module is

placed on a new square module, the newly formed piece-square interacting pair will be

activated at the same time, thus again reply their IDs for once and remain silent.

3.3.1.2 Algorithmic optimization

The overview design of TagChess is shown in Fig. 3.10. It uses the data

collected from the RFID reader to generate high-level interaction events (e.g., PieceMove

in a chess game) by querying the backend database, and the final result will be shown

as the graphic output in the computer screen. Further algorithmic optimizations are

proposed to handle the status change detection process.
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Two sets of modules, namely the piece module set (P ) and the square module

set (S), are pre-registered in ChopTags system. P includes all 34 tag IDs of the pieces

– assuming each player has one extra backup queen – and S includes all 64 IDs of the

squares. For each module in S, its corresponding row and column numbers are stored

in the database.

When the RFID reader begins querying, by adopting the aforementioned Tag-

Focus configuration, all the activated squares and pieces will remain quiet after replying

their IDs once. After that, each piece will reply its ID only if a new PieceMove event is

triggered, implying that the piece has been moved from the original square and recon-

nect to another square. The system obtain a list H of moved tag ID, which refers to

the module who has just experienced a state change. Reader is set to report interaction

events once a second. The total number of moved tags is recorded as |Hn|. In TagFocus

configuration, if piece p1 is moved from square s1 to square s2, then only modules of p1

and s2 will report status changes and s1 will be unpowered. A capture move is composed

of two sub-steps: 1) the captured piece module is removed from its square and 2) the

capturer is moved from its original square to the square of the captured piece. Step 1)

will not generate status changes and step 2) will report two status changes. All special

cases, including castling, en passant, and promotion, are properly handled and can be

successfully identified by TagChess. All other updates are regarded as invalid ones and

a warning sign will be shown on the screen.

The |H| > 2 cases are mainly caused by moving multiple pieces and stacking

them on different squares at the same time, which is invalid in the chess game – even
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castling and en passant should be moved in an order. Although this case seldom occurs

in item-item interactions, it may frequently occur in other application scenarios when

users’ synchronous interactions are allowed. We will address this problem and propose

an effective solution in the following section.

3.3.2 Tag array for user-item interactions

In the applications of the museum auto-commentary system discussed in Sec-

tion 3.1, smart retailing shelf, library shelf, and smart home control panel, the inter-

action pattern is that multiple tag modules are placed in the environment to represent

different objects (called the item module) and each user holds a tag module (called the

user module) to interact with the an item module. The backend system should iden-

tify the interacting modules, record these interactions, and provide further feedback

(e.g., sending the museum commentary to the user’s headphones or turning on a certain

appliance.)

The major challenges of this type of applications is that multiple users may

interacting with different item modules at the same time. Hence the system may receive

four (or more) simultaneous status changes from four tags and needs to solve the module

pairing problem, i.e., deciding which module is interacting with which. Intuitively, two

interacting tags should be in close-proximity and hence have similar RF channel fea-

tures.Thus we leverage the channel similarity in RFID communication to resolve the

module pairing problem. Channel similarity is an important observation from practical

RFID communication: If two tags are put in a physical proximity (e.g., 2cm), they will
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show high similarity on their received phase information (9).

3.3.2.1 Channel Similarity

Channel similarity is based on the fact that nearby RFID tags experience a

similar multipath environment (e.g., reflectors in the environment) and hence exhibit

similar multipath profiles. Existing works (9; 57; 8) demonstrate that the channel

conditions are extremely similar for two tags that are in close proximity We propose to

use the received tag phase information to determine the similarity. For simplicity, we

use tag Ti to refer to the ChopTags module built with tag Ti in the following content.

In an RF environment, the tag Ti’s phase changes over the line-of-sight (LOS)

distance can be calculated as:

ϕdij = 2π(
2dij
λ

) mod (2π), (3.1)

where dij is the LOS distance between tag Ti and antenna Aj . Besides the dominated

phase changes over distance, the received phase ϕij of tag Ti at antennaAj also comprises

of the initial phase of the tag and the antenna, i.e., ϕTi and ϕAj , respectively. We can

represent ϕij as follows:

ϕij = (ϕdij + ϕmij + ϕTi + ϕAj ) mod 2π, (3.2)

where ϕmij represents the phase changes introduced by the multi-path effects. However,

it can be noted from Eq. 3.2 that even if two different tags are placed in close physical

proximity, i.e., they have similar ϕd and ϕm, their measured phases at the same antenna

are still highly likely to be different since the received phases are also impacted by the

initial phases ϕTi and ϕAj , which varies by hardware diversity.
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To deal with the phase deviations introduced by device-dependent features, we

use differential sensing in (8), i.e., deploy multiple antennas in our system and mea-

sure the difference between tag’s phase values received by multiple antennas, instead of

measuring a tag’s absolute phase value from a single antenna. The intuition underlying

this design is that even though different tags have ambiguous and diverse initial phases,

such difference can be canceled using the measurement from two antennas.

After adopting 2 antennas in the system, the difference of the phases of tag Ti

and Tj that collected at antennas A1 and A2 can be calculated as:

∆ϕi = ϕi1 − ϕi2 = (ϕdi1 − ϕdi2) + (ϕmi1 − ϕmi2)+

(ϕA1 − ϕA2).

∆ϕj = ϕj1 − ϕj2 = (ϕdj1 − ϕdj2) + (ϕmj1 − ϕmj2)+

(ϕA1 − ϕA2).

(3.3)

where ϕA1 − ϕA2 is a constant. Therefore when tag Tj and tag Ti are close, they

experience quite similar LOS path (as the path difference between them is much less

than the LOS propagation path) as well as multipath changes, implying that they

should have similar values between ϕdi1 − ϕdi2 and ϕdj1 − ϕdj2 , as well as ϕmi1 − ϕmi2

and ϕmj1 − ϕmj2 . Hence ∆ϕi −∆ϕj should always be a small value for samples at any

time point. As a result, the phase difference ∆ϕi of tag Ti should be close to that of tag

Tj , ∆ϕj . While for those tags that are placed far away from tag Ti, they are likely to

have different LOS distances as well as multipath environments with tag Ti, and hence

their phase difference would have a much larger gap with that of ∆ϕi. We define the

phase difference profile Di for tag Ti as a vector where each element is ∆ϕi(t) at
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time t. By leveraging the phase differences, we can further determine the interacting

tag pair among all activated tags.

3.3.2.2 Interaction Pairing Details

If tag Ti and Tj are the pair of modules interacting with each other, Di and

Dj should have similar values, i.e., the Euclidean distance between these two vectors

should be small. We use the distance metric Dist(Di, Du) to refer to the Euclidean

distance between Di and Dj and use this metric to evaluate the similarity between

phase difference profiles.

Suppose n user modules and m item modules are simultaneously activated

(sometimes n ̸= m as the module may not be correctly activated). When the reader has

finished collecting the data for a time duration T , it immediately begins measuring the

similarities between phase difference profiles over these n +m modules. The choice of

T determines the latency and processing overhead of computation. In our final imple-

mentation of ChopTags, T = 2.5s as we have empirically determined it to be suitable

for a practical deployment. We have also evaluated the performance of ChopTags with

other values of T and the results will be presented in Section 3.4.3.

The basic approach is to match the measured phase difference profiles of all

item modules against the profiles of the user modules, aiming to find user-item pairs

that have the smallest Euclidean distance. ChopTags first gets phase difference profiles

D1
U , D

2
U ...D

n
U for n user modules as well as D1

I , D
2
I ...D

m
I for m item modules, These

n+m vectors should have equal length L after interpolation. ChopTags then iteratively
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calculates the Euclidean distance between the phase difference profile vectors of one

specific user module u and m item modules,

Ei
u =

√√√√ L∑
k=1

(dik − duk)
2 (3.4)

where dik and duk are the k-th elements of the phase difference profile Di
I and Du

U , re-

spectively. ChopTags performs calculations between user module u and n item modules,

and then finds the item module i who has the least Ei values that satisfy |Ei
u| ≤ Eh,

which are most likely to be paired with user module u. Eh = λ
√
L where λ is a empiri-

cally pre-defined threshold for comparison. Notice that under some circumstances, for

a specific user tag u, none of the item tags satisfy the |Ei
u| ≤ Eh requirement due to

mis-manipulation. Hence no matching result is provided for user module u. In practice

the user can easily solve this by retrying interacting with the item module.

3.4 implementation and Evaluation

3.4.1 ChopTags Module Implementation

The system prototypes are implemented based on COTS UHF RFID devices:

an ImpinJ Speedway modeled R420 RFID reader, two Laird S9028-PCL directional

antennas, and ChopTags modules built with three types of UHF RFID tags: AZ-9662,

ImpinJ E41C/B, and Alien 964X. The chip and antenna of each tag was disassembled

into two components, as shown in Fig. 3.4(c). All these prototypes are compatible

to the standard EPCglobal Class 1 Generation 2 protocols (C1G2). In fact, even if

two ChopTags modules are built with different model of tags, interaction event can
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still be identified by the reader and the backend system. In the following experiments,

we only present the evaluation results of ChopTags modules built with AZ-9662 tags.

One COTS RFID reader is sufficient to cover a large indoor area as it can connect to

multiple antennas and the antennas do not have to be placed at the same location of the

reader. A wire cable can be used to connect an antenna to a reader. The transmission

and receiving gains are both set to be 32.5dB. We run the software components of the

prototypes at a Dell desktop with Intel Core i7-7700 CPU at 3.6GHz and 16G memory.

This work focuses on the applications in indoor environments such as museums,

schools, and homes. No special considerations aregiven to building materials or furniture

placement. These environments usually contain various multipath reflectors, moving

objects, electrical devices, as well as wireless signals. We evaluate the prototypes of

ChopTags in an typical office room (as shown in Fig. 3.11). Such environment can be

used to simulate a museum where tagged exhibitions are densely deployed or a chess

play room.

For each ChopTags module, the tag components are manually placed on a 70

(W)× 70 (L)× 20 (T) mm3 laser-cut acrylic plate (Fig. 3.13). Two neodymium magnets

with 4 mm radius and 2 mm thick are fixed to the terminals of each component as the

magnetic connectors. Magnets attached on IC component and antenna part have exact

opposite polarity facing upward to ensure snapping connection. The manual installation

of each unit can be fabricated in 3-5 minutes by a graduate student. Note we do not

intend to choose the best material or size of the module, which for sure have a big room

to improve.
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Section Data Collection Signal Processing Graph Processing Message Exchange

between Applications

Method 1 1 sec 5.04 ms 11.20 ms 2.82 ms

Method 2 2 sec 7.43 ms 11.20 ms 2.90 ms

Table 3.1: Latency of TagChess

Chessboard

Reader
Antenna

Piece

Figure 3.11: Prototype environment Figure 3.12: Deployment of the tag array in
an office

3.4.2 TagChess Evaluation

3.4.2.1 Methodology

Fig. 3.11 shows an appearance of the TagChess prototype. The experiments

are conducted on a platform in the aforementioned office room. A 8× 8 grid of square

modules are deployed on the platform as a chess board, while piece modules are stacking

on the chess board that allow users to play with. A reader antenna is hanging above the
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Figure 3.13: A ChopTags module of
rook

Figure 3.14: Accuracy of two
approaches

platform to monitor the interaction events. The distance between the reader antenna

and the chess board is 0.8m. The graphic program of TagChess is developed in Unity3D.

To better evaluate the performance, we compare our EPC protocol-based de-

sign (which is referred as ‘Method 1’) with the vanilla design (‘Method 2’) leveraging

IRR changes as the indicator to infer the status change of a module. By using Method 2,

the system should regard a module (piece/square) as experiencing a PieceMove event if

the IRR increment of this module in two consecutive seconds is larger than a threshold

T , while at the same time its IRR in the first second is close to 0 reads/sec. System

will update and report the ID every 2s. The threshold T is dynamically refreshed to be

half of the average IRR of all piece modules in the last update.

3.4.2.2 Performance.

We first show the latency of TagChess. The response time mainly consists of

four parts, namely time for data (replies) collection, time for signal processing, time for

generating graphic output in Unity3D, and the message exchanging duration between
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reader and server programs. We start by placing 32 piece modules on the chess board,

and then move the these pieces for 50 moves, and obtain the average refresh time for

these four sections. The results are present in Table 3.1. As can be seen from the result,

the latency is mainly contributed by data collection, which is set to 1 second (Method

1) and 2 seconds (Method 2). Method 2 requires significantly long time. Later we

show that even with 2x data collection time, Method 2 still cannot identify all moves

correctly. W

We define three types of identification for each PieceMove event, correct re-

ports, false report, and no result, to evaluate the accuracy of TagChess. Correct reports

are those events identified correctly by TagChess. False report are those events identi-

fied incorrectly by TagChess. Sometimes user may not be able to see the correct move

she just operated due to some mis-manipulation. She can retry connecting the piece

and square modules. However, if no ID is reported after trying for three times, then we

consider this PieceMove event receive a ‘No result’ feedback from the system .

We conduct 250 moves and compute the accuracy of TagChess. As shown in

Fig. 3.14, the protocol-based design (Method 1) is very reliable. All events are correctly

identified. While for method 2, it will produce 30%+ wrong pairing results. One reason

is that the environmental dynamics may also cause the increase of a module’s IRR.
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Figure 3.15: Impact of signal collec-
tion time T

Figure 3.16: Impact of threshold λ

3.4.3 Tag Array Evaluation

3.4.3.1 Methodology

We evaluate the performance of the ChopTags based tag array system in a

complex office environment. We use a module array with 4 rows and 7 columns as

shown Fig. 3.12 to simulate the modules attached on a wall of a museum or items on

a shelf. The distance between the reader antennas and ChopTags’s module array is

1.2m in the office room. Before the experiment, the horizontal distance dh between two

adjacent module is initially set to be 25cm, while the vertical distance dv between them

are set to be 30cm. In our experiments, we invite 4 volunteers with heights varying from

158cm to 177cm. We let the volunteers randomly move in the testing space and use their

ChopTags modules to interact with the item module in the space. Every accuracy value

shown in this section is the average of 100 interaction experiments. We compare the

results with the recently proposed TagMii (8). Note the results of TagMii are directly

got from the original paper (8).
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Figure 3.17: Impact of distance
bewteen tags

Figure 3.18: Impact of distance
bewteen modules

Figure 3.19: Impact of distance be-
tween modules (concurrent case)

Figure 3.20: Impact of more concur-
rent interactions

We first evaluate the performance of ChopTags in the situation where there is

only one user interacting with the an item at a same time, in the dynamic environment

where multiple users move around. Accuracy µ is defined as µ = nc/n0, where n0 is

the total number of interaction events operated by the user, while nc is the number of

events where the IDs of involved pair of ChopTags modules are both correctly identified.

The false report rate ϵ is defined as ϵ = ne/n0, where ne is the number of interaction

events reported, which can be either reporting a wrong user module ID or a wrong item

module ID.

Impact of parameter λ: The comparison threshold Eh = λ
√
L in Section
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3.3.2.2 plays an important role in judging whether an item module can be considered as

an interacting target with the user module. A small λ may cause the miss of target item

module. We vary λ from π
8 to π, and show the accuracy µ of ChopTags in Fig. 3.16.

ChopTags can maintain an accuracy of about 100% when λ = π
4 and this value is

consistent across different setups, hence we set the λ to be π
4 .

Accuracy for non-concurrent interactions: We conduct the experiments

by varying the horizontal distance between adjacent item modules from 10cm to 60cm in

the office. To better evaluate the performance of ChopTags as well as compare with the

previous work, we divide the experiments into two categories, namely dense deployment

where 10cm≤ dh ≤ 30cm, and sparse deployment where 30cm< dh ≤ 60cm. For sparse

deployment we compare the evaluation results with those in TagMii which have similar

deployment settings of Fig. 3.18. TagMii cannot deal with dense deployment with

distance < 30cm. As illustrated in Fig. 3.17 and Fig. 3.18 , for the single user case, even

if the deployment of module array is much denser (dh = 10cm) compared to TagMii,

the accuracy is always 100%.

Latency: The latency of ChopTags to determine the interacting module pair

is shown in Table 3.2. The results show that the processing time of ChopTags is very

short (≤ 10ms) during the experiments.

Section Data Collect. Processing Comm.

Time (ms) 2.5s 9.50ms 1.41ms

Table 3.2: Latency for user-item interactions
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Figure 3.21: Adjusted arrangement
for module array

Figure 3.22: Accuracy of concurrent
interactions

A main contribution of ChopTags is that it can support and resolve multiple

concurrent interactions. We first study the case when two users interact with their

target item modules at the same time, and gradually increase the number of users to

demonstrate how the number of users will influence the system performance.

Signal collection duration T : As mentioned in Section 3.3.2.2, ChopTags

estimates the similarities after every time interval T . Intuitively, a longer data collection

duration will result in higher accuracy. However, the user experience will be greatly

downgraded if the duration lasts for too long. We vary the time duration T from 1.5s

to 3.5s with an interval of 0.5s and evaluate the accuracy in Fig. 3.15. From the results,

when T = 2.5s, ChopTags can achieve an accuracy of 100% of pairing and identification.

Thus, we require each user to put the user tag for at least 2.5s in the experiment before

receiving the feedback.

Impact of distance between item modules: In the experiments, we ask

2 volunteers to interact with 2 adjacent modules (deployed in the same horizontal line)

at the same time. We vary the dh between the adjacent item modules from 10cm to
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60cm in the office and record the evaluation results. As shown in Fig. 3.19, different

from the results in the single user case, the accuracy will decrease as the item modules

are deployed in a denser way. The main reason behind this is that the pairing modules

are determined based on the similarities between their phase difference profiles. As the

dh gets shorter, adjacent item modules are more likely to experience a similar multi-

path environment and hence exhibit similar phase profiles, which leads to ambiguity in

resolving the pairing problem.

Impact of different deployment settings: When the module array is

densely deployed (with dh ≤ 25cm), the performance will degrade due to the coupling

effect between tags. Hence, in order to ensure the accuracy of concurrent interactions

in dense deployment, we explore different deployment settings. Instead of deployment

of Fig. 3.12, we re-arrange the modules in a way shown in Fig. 3.21. We show the

corresponding accuracy in Fig. 3.22. Compared with the previous deployment, the new

arrangement can achieve high accuracy and can still maintain a accuracy around 90%

even if the modules are deployed seamlessly (with horizontal interval dh ≈ 7cm).

Impact of number of concurrent interaction events per antenna: We

further study the case when more than two users concurrently interact with their target

item modules. Note that the dh is still initially set to be 25cm, and the vertical dis-

tance dv is set to be 30cm. During the experiments, we ask the volunteers to arbitrarily

interact with their target modules at the same time without caring about the distance

between two adjacent activated item modules. Fig. 3.20 presents the experiment accu-

racy as we gradually increase the number of concurrent interactions. When less than
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4 users per antenna interact with the item modules at the same time, ChopTags sys-

tem can still maintain a high accuracy above 96% with generating a small fraction of

wrong results, as the number of concurrent events per antenna grows to 6, the accuracy

slightly decreases to around 93%, suggesting that ChopTags is still able to resolve up

to 6-user concurrent interactions in dense deployment. In practical applications, we do

not expect that there would be as many as 6 concurrent interactions per antenna.

3.5 Related Works

RFID sensing uses physical signal features from tags to detect their status,

which is a promising approach for passive tag based applications such as gesture-based

inputs (41; 42). IDSense (43) enables coarse-grained touch events recognition of objects

using real-time classification of PHY-layer signal features. PaperID (44) is a similar

work that uses supervised machine learning to detect different types of on-tag and free-

air interactions with custom-designed RFID tags. Pradhan et al. (45) show how changes

in the received signal phase caused by touching on RFID tag can be leveraged to detect

the finger swipe or touch gesture without any pre-training stage. To our knowledge,

the only work that addresses a similar problem to ChopTags is the recently proposed

TagMii (8). However, TagMii relies on similar signal features to identify tag interactions.

When the number of background tags increases, the identification accuracy might be

lower than 80%. All tags are required to be at least 30cm apart, which significantly

limits the applications. In addition TagMii requires around 10s to collect enough signals
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for each interaction. All these solutions require a considerable time and computation for

signal analysis, while their performance is also affected by the environmental dynamics.

Recent studies have proposed to physically modify the tag circuitry and detect

the correlated state changes of electromechanical sensors in the tag circuitry caused by

human behaviors (47; 48). RFIBricks (47) is a building-block system which symmetric

2D patterns of RFID contact switches are deployed on the top and bottom of each

block. Such design enables the backend system to recognize which block is stacked on

which, as well as the stacking orientation. RFIMatch (48) detects finger-touching on a

tag based on the correlated state change between the tag and an RFIMatch fingerstall

worn by user. Different from ChopTags, these methods are not a generalized approach

to identify tag interactions and they do not solve the problems such as simultaneous

interactions and long query time of large-scale tags.

3.6 Conclusion

ChopTags is a novel solution for tag interaction identification developed with

COTS passive RFID tags, which may enable many ubiquitous computing applications

that require the recognition of user/item interactions. ChopTags is the first to combine

the information of both tag ID presence and physical signal features to infer interac-

tions. ChopTags achieves near 100% accuracy and only requires every user or item

to carry a passive tag. We implement two application prototypes based on ChopTags

and evaluate the prototypes in complex environments.The results how that ChopTags

90



is highly accurate and reliable with low latency.

3.7 Acknowledgement

H. Cai, J. Leyva, I. Phan, and C. Qian were partially supported by National

Science Foundation Grants 1750704, 1932447, and 2114113. G. Wang is supported by

National Natural Science Foundation of China Grant 62002284 and J. Han is supported

by National Natural Science Foundation of China Grants U21A20462, 61872285. We

thank the anonymous reviewers for their suggestions and comments.

91



Chapter 4

RV-Track

4.1 Introduction

With the advent of Internet of Things (IoT), the inexpensive, network-enabled

cameras have being widely deployed in public places like office buildings, shopping

malls, and airports, enabling a wide range of real-world applications such as visual

surveillance, suspicious activity detection, and crowd behavior analysis. These cameras

record every event in their view, making their videos valuable evidence. Identifying

and tracking persons in videos is an essential task. Consider the following problem:

sharing of video evidences, even for the common good, creates some threats to the

privacy of individuals in the footage. Though people are often willing to release their

video evidences to the public, especially when having captured unusual scenes such as

traffic accidents, crime scenes, etc, sometimes they may also want to be blurred in the

surveillance cameras for privacy purposes. Special personals such as law-enforcement
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agents, high-level government officials, administration of a company, and legitimate

employees in an office building should be able to request to hide their trajectories in the

video within their authority regions. For example, as shown in Fig. 4.1, suppose that in

an office building where surveillance cameras are pervasively deployed and one person

wants to remove her trajectory in the video. In such situation, accurately identifying

and tracking the identifies of persons in camera videos is important.

The state-of-the-art face and identify recognition systems (64) all require a

cumbersome appearance-collection process, which consists of photographing and man-

ually annotating each user for training purposes. Hence for scenarios that include a

lot of personal dynamics, such as law-enforcement agents visiting a building or travel-

ers in an airport, this appearance-collection and training process is impractical. Since

the unavailability of connection between persons and cameras, it is challenging for a

vision system to automatically associate the identity of a person with little efforts on

the training process (65).

We raise an interesting research question: is it possible for cameras to recognize

and track the identities of persons in the fields of view (FoV) with least training efforts

on their appearances? In other words, we aim to (i) identify a moving person in a camera

with her ID and (ii) track the movement of this person as long as she appears in the

cameras. We use the term ‘target’ to refer to such person and assume all targets are

legitimate users. We do not consider to identify intruders because 1) intruders will be

captured by cameras and 2) identifying intruders needs the database of the appearance

of all possible intruders which is out of the scope of this work.
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Figure 4.1: Application scenario

Recently, RF-based person identification systems (66; 67) have attracted a lot

of research interests due to the appealing sensor-free and contact-free (non-intrusive)

nature. Specifically, radio-frequency identification (RFID) sensing technique can tell the

identities (IDs) of targets in an area. However connecting these IDs with the persons

in cameras still remains unsolved. Therefore in this paper, we propose RV-Track, a

novel identifying and tracking scheme for targets carrying RFID tags, which fuses RFID

signals and video cameras together using commodity off-the-shelf (COTS) RFID devices

and depth cameras. The extra cost is very small because each tag only costs several

cents. To achieve these objectives, RV-Track needs to resolve the following challenges.

• How to automatically associate the identities of persons with the ob-

jects in videos? To address this challenge, we introduce a simple user authen-

tication (UA) phase: at the entrance of the camera-covered space, a target needs

to perform tags inductive coupling (8) at an authentication platform and get her

tag being recognized by RV-Track. Once an UA action has been observed, the

RFID subsystem of RV-Track then calculates the moving trajectories of all user
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tags based on their phase signal snapshots. Meanwhile for the CV subsystem of

RV-Track, given consecutive recorded video frames, RV-Track will estimate the

moving trajectory of each object in these frames. We apply a pose estimator Al-

phaPose (68) to infer poses of different persons in video frames and then leverage

right and left wrists as anchors to measure the hand moving trajectory of each

object. The object-ID pairing module in RV-Track then calculates the similar-

ity score between RF and visual traces, and tries to match each RF trace to the

target’s visual trajectory.The UA phase is quite necessary to match each user to

their ID in the system. Due to the inaccuracy of recovered RF trajectories, when

multiple users carrying tags with different IDs enter the FoV, it is challenging to

pair the multiple RF trajectories with the vision tracklets. Hence UA allows the

system to be aware of the newly arrived users and improve the accuracy of pairing.

• How to capture persistent features suitable for long-time ID connec-

tions? Essentially, the similarity scoring-based object-ID pairing is to associate

the person id (PID) assigned by CV system with the tag ID (TID), and such

pairing could be unstable in real application when PID-switch problem (69) often

happens, since the CV system will randomly assign a new PID to the objects in

videos, breaking the mapping between old PID and its paired TID. We exploit user

appearance information and use a lightweight Re-Identification (Re-ID) model to

extract the user feature. Such user feature will be associated with its correspond-

ing TID and stored in a dynamic dictionary. If a PID-switch event occurs, we will
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repair the new PID with TID by determining whether new and old PIDs belongs

to the same user.

• How to use limited amount of data to train a learning model for both

UA and person identification? To deal with this challenge, we include a

data augmentation method to expand the size of the training data set, which

dramatically reduces the data collection effort. We further develop a transfer

learning method to adapt the trained network for new user identification.

We implement RV-Track using COTS RFID devices and Microsoft Kinect cam-

eras. All implementation and experiments are conducted in various complex environ-

ments with rich multi-path, mobility, wireless signals, electrical devices, and magnetic

fields, in order to valid RV-Track for practical applications. Even in these environ-

ments, RV-Track provides high accuracy. To summarize, this paper makes two key

contributions:

• It fills the gap for direct communication between persons and cameras by auto-

matically associating the person identities to objects in videos with few training

process on their appearances.

• It proposes a novel model that achieves long-term person Re-ID with the help of

RFID signals, which is robust to occlusion and poor lighting.

Recently TagAttention (? ) also uses RFID-vision fusion to track labeled objects. How-

ever, TagAttention cannot be used for applications discussed in this work, because it
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cannot differentiate objects with similar appearances. The studied objects in TagAt-

tention are with completely difference shapes and colors. It cannot be used to identify

persons especially those with similar clothes.

The remaining paper is organized as follows. Section. 4.2 presents the related

work. We present the detailed design of RV-Track in Section. 3 . We show the sys-

tem implementation and evaluation results in Section. 4 and Section. 4.5. We finally

conclude this work in Section. 4.6.

4.2 Related Work

4.2.1 Vision-based Person Tracking

Person detection and tracking is an important field in the computer vision

research area (70). Recent approaches rely on deep learning and can be divided into

two categories: offline and online. For online framework, main challenges lie in how to

learn robust associating metric of linking the detections to tracks, when to create new

tracks by distinguishing the true detecting results from false positive ones, and when to

terminate the lost tracks (71; 72). DeepSort (73) is a representative work which learns

the appearance features from person re-identification task to associate with detections.

While for the offline approach, the main challenges become how to construct the graph

and network, and how to optimise the global labelling problem of them. SiameseCNN

(74) proposes to leverage detection-to-detection pairwise similarity and those between

short tracks to handle the problems. However, all these aforementioned tracking schemes
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only pay attention to tracking the mobile persons in the frames, without noticing the

real physical identities of persons.

4.2.2 Vision-RF Fusion

Recent studies have exploited the possibilities of fusing RF techniques with

vision for tracking and identifying mobile targets by matching the information from both

channels (75; 76). Mandeljc (75) detects and tracks anonymous human objects from

videos by matching the IDs from RF-channel to the detected human instances based on

the location information, though this work achieves relatively accurate identification,

it requires dedicated and expensive Ultra-Wideband (UWB) devices. ID-Match (67)

is a vision-RFID fusion system for human identification from a group through a depth

camera and an RFID sensor, however, it fails to provide effective solution for PID-switch

problem: the CV system will match the person IDs to tag IDs incorrectly when two

persons are very similar in appearance, because it is based on similarity scoring, and

the performance will also degrade in dynamic environment where persons walk around

in all directions. This problem will be more serious when multiple persons walk in the

area. TagVision(77) and RC6D(78) focus more on estimating the object/human pose,

instead of discussing the possibility of recognizing and tracking the IDs of persons in

the fields of view. Compared with prior work, RV-Track not only fills the gap for direct

communication between persons and cameras by automatically associating the person

identities to objects in videos with few training process on their appearances, but also

proposes a novel model that achieves long-term person Re-ID with the help of RFID
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Figure 4.2: System Overview

signals, which is robust to occlusion and poor lighting

4.3 System Design

4.3.1 System Overview

Consider a scene in a office building where RV-Track nodes are pervasively

deployed and people come and go in all directions. Basically, each RV-Track is proto-

typing with an omnidirectional antenna and a depth camera (e.g., Microsoft Kinect) as

Fig. 4.1 shown. Each person carries a RFID tag with her and once the person enter the

camera’s view, she needs to perform UA at the authentication node. The data collected

from both camera and RFID antenna will be sent to a server, which then pairs a human

object in the video with a tag ID to identify the target. We show the overview of our

CV-RFID fusion system in Fig. 4.2, which mainly goes through the following steps to
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recognize and track the human targets:

• Data Collection and Pre-processing: The depth camera records the image

frames of the scene and in the meantime the reader interrogates all tags and

collects a set of phase/RSS readings. Afterwards, both image data and RF signal

snapshots are sent to the server. The server performs RSS profile smoothing (? )

and phase deperiodicity (8) over the received RF signal to obtain clean phase and

RSS data.

• User Authentication (UA): Similar to TagMii (8), we adopt occurrence of

the inductive coupling phenomenon as an indicator of user-tag interaction. By

monitoring the RSS variations of authenticator tag, we can determine the possi-

bility that authenticator may be coupling with the target’s tag in a specific time

duration, and start ID pairing if a user authentication action has been observed.

• User Identification and Tracking (UIT): The UIT tasks can be divided into

two steps: short-term object-ID pairing and long-term pairing. Short-term pairing

module performs two main tasks: similarity scoring and pairing. The similarity

scoring sub-module calculates a similarity matrix, in which each element is the

similarity between a pair of RF trace and visual trace. According to these simi-

larity scores, the pairing sub-module then leverages some statistical measures to

identify possible pairs. A long-term pairing module is also designed to deal with

the PID-switch issue when short-term pairing result is broken due to either lack of

lighting or object occlusion. Here, we exploit long-term features of human object
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Figure 4.3: RSS signal noise
elimination

Figure 4.4: Phase signal deperiodicity

to enhance pairing reliability.

• Data Augmentation RV-Track also designs a data augmentation method to

reduce the amount of human effort in data collection.

4.3.2 Data Collection and RF Signal Pre-processing

After collecting RF data and visual data, RV-Track performs a set of pre-

processing steps to obtain clean phase and RSS readings. There are three steps in the

signal preprocessing module, namely RSS denosing, phase unwarpping, resampling and

windowing.

Signal Denoising: Corrupted by the environmental noise and hardware im-

perfection, the collected RSS signals are fluctuated and noisy (Fig. 4.3), which is error-

prone for the following signal processing. To address this problem, we first smooth the

raw RSS profile by employing a low-pass filter (8).

Phase Unwrapping: The raw phase data of RFID signal received by reader is

a periodic data stream, gradually changing from 0 to 2π, which is referred as a wrapped
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phase. This ambiguity of wrapped phase will increase the complexity of subsequent

algorithm. Moreover, while commercial RFID reader processes the received signal,it

also introduces an ambiguity of π radian. Therefore, we adopt phase profile smoothing

(? ) and two-threshold based phase de-periodicity method (8) to unwarpped the original

phase data. The unwrapped phase profile is shown in Fig. 4.4.

Resampling: The fusion and pairing of the RFID and visual channels requires

the synchronization of two-channel data readings. However, current RFID protocol uses

slotted ALOHA as the MAC layer solution, i.e., RFID tags randomly respond to the

reader, hence the received RSS/phase sequence is not uniform in the time domain (8).

In order to synchronize the two channels, we calibrate the reader’s and the camera’s

reading timestamps according to the system’s clock before data collection, and choose

to use the camera’s (Kinect) timestamps as the standard timestamps. The denoised

RSS and unwarpped phase sequences are interpolated at a frequency of 30Hz (the same

sampling rate as Kinect) based on the camera’s standard timestamps.

Windowing: We then split the interpolated RSS stream into a set of sub-

sequences using sliding window whose length is m with 2/3 overlapping. In our final

implementation of RV-Track, m is set to 90 as we have empirically determined it to

be suitable for a practical deployment. We use the following three methods, namely

mean subtraction, standardization and normalization (79) to transform the RSS

subsequences into the data form needed by the classification model in Section. 4.3.3 and

make sure the values in each window are then normalized to have zero mean and unit

variance.
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Figure 4.5: Sequences of UAD Results

4.3.3 User Authentication

UA is proposed based on the inductive coupling process, which is explained in

details in TagMii (8). During our experiments, we require all participants to perform

UA (tags inductive coupling) at a pre-deployed authentication platform at the entrance

of the camera-covered space, to get her/his tag being recognized by RVTrack. An

extra RFID tag is fixed at the platform serving as the ‘item tag’ which has the same

functionality as the item tag in TagMii. While a user puts the user tag at a close distance

(≤ 2 cm) to the item tag, the signal from either tag would be different from the signal

when a tag is put alone. A sudden change in the backscattered signal strength from

both tags will occur at the beginning of inductive coupling. The system can track such

signal strength changes to find out the potential user tags that may be in the coupling

state among all user tags in the environment, and further select the pair of tags that

are truly in the coupling state. One of the tags can be mobile and the user puts it close

to the static one for 2 seconds.

However, different from TagMii (8), which uses an abrupt change in tag’s
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RSS caused by a deliberate user hand wave as the starting time indicator for coupling

interaction, RV-Track regards the problem of recognizing coupling state from RSS signal

stream as a binary time series classification (TSC) problem, where the overarching

objective is to determine whether current RSS signal is at coupling state.

Let D = {(x(i),y(i))}|D|
i=1 represent the collection of all labeled RSS signal,

where x(i) is the ith RSS sequence and y(i) indicates its corresponding label. x(i) =

(x
(i)
1 , ..., x

(i)
m ) is a RSS sequence composed of m amplitude values x

(i)
t , and x(i) can be

assigned to either the ‘no-coupling state’ or ‘coupling state’ class. Intuitively, we label

x(i) with y(i) = 0 if it belongs to the no-coupling class, and with y(i) = 1 to the coupling

class.

We propose to learn a mapping from the RSS sequence x(i) to y(i) in a super-

vised way by using Recurrent Neural Networks (RNNs), which explicitly analyze RSS

sequence in temporal domain. Specifically, we use Long Short-Term Memory (LSTM)

(80; 81) based networks, to effectively learn long-term dependencies in the data. It has

been observed that traditional RNN has the problem of handling long-term temporal

dependencies due to gradient vanishing (82). As an extended model of RNN, LSTM can

remember information for long periods of time (83), which makes it a natural choice for

this application.

We choose to use LSTM-based network,i.e. LSTM-FCN (83) for this TSC

task and build the sequence classification model with it. We adopt a similar network

architecture as the one in (83), while remove the dimension shuffle module. The overall

network is a two-stream network that combines a fully convolutional (FCN) stream and
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a LSTM stream. where the FCN stream has three 1D convolutional layers, each with

batch normalization and ReLU. For the LSTM stream, there is one LSTM layer with

128 units and an dropout rate of 0.8. The output of the LSTM is concatenated with

the output of global pooling (GAP) layer from the FCN stream.

In general, the prediction probability vector ỹ(i) of all gestures can be repre-

sented as:

ỹ(i) = LSTM− FCN(X; θ) (4.1)

where θ is a set of all parameters in LSTM-FCN sequence classifier. where LSTM− FCN

is the classifier , and ỹ(i) is the predicted label. We naturally choose to calculate binary

cross-entropy between ỹ(i) and y(i) over all training samples Dtrain = {(x(i),y(i))}Ni=1 as

the loss function, and optimization criterion for the network is to minimize the negative

log-likelihood:

L(ỹ,y) = − 1

N

N∑
i−1

[y(i) log ỹ(i) + (1− y(i)) log(1− ỹ(i))] (4.2)

where N = |Dtrain|, is the training dataset. The training and evaluation details

are illustrated in Section. 4.5.2. The UA action is captured when the authenticator tag as

well as at least one person’s tag are in the ‘coupling state’ at the same time. We regard

these person’s tags as ‘candidate tags’ (8), It is noteworthy that in real experiments,

there will be no more than 2 persons selected as ‘candidate’ in most of time, and we will

detail the matching process for these candidates in the following sections.
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Figure 4.6: Alphapose landmarks

4.3.4 User Identification and Tracking

After a user authentication action is detected, the data collected from both

camera and candidate RFID tags are sent to a server for User Identification and Tracking

(UIT) purpose. Our UIT system has four modules, namely visual trajectory extraction,

RF trajectory extraction, short-term object-ID pairing and long-term feature pairing, as

shown in Fig. 4.2. The visual trajectory extraction module retrieves human objects and

hand moving trajectories from a sequence of video frames, meanwhile, the RF trajectory

extraction module retrieves user tag moving information from received RFID phase data.

The short-term object-ID pairing module first compares the moving trajectories from

both data sources and assigns them similarity scores, and then couples human objects

with tags based on the similarity scores.
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4.3.4.1 Visual trajectory extraction

Consider a time duration [t0, tk], the consecutive video frames Vt0 , Vt1 , ..., Vtk

collected from the depth camera are first fed into AlphaPose (68) to retrieve the skeletons

St
1, S

t
2, .., S

t
J of J persons in video frame Vt. AlphaPose is able to connect skeletons across

consecutive images belonging to the same human object. When estimating the pose of

a single person, it generates n three-element predictions in the format of (xi; yi; ci),

where n is the number of keypoints (landmarks) to be estimated, xi and yi are the pixel

coordinates of the i-th keypoint, and ci is the confidence of the above coordinates. In

this work, landmark and keypoint are used interchangeably and we adopt the COCO

keypoints setting (68) ( N = 17). The outputs of AlphaPose are shown in Fig. 4.6.

Therefore, for each extracted skeleton St
j in a video frame Vt, AlpphaPose generates 17

three-element predictions in the format of (xti, y
t
i , c

t
i), and the perdictions for a specific

landmark over all video frames will also be a time series data. In RV-Track, we retrieve

the positions of both right wrist la W
(R)t
j and left wrist keypoint W

(L)t
j from each

skeleton St
j in a image, and denote the keypoint series over all frames as W

(R)t0,t1,...,tk
j

and W
(L)t0,t1,...,tk
j respectively. There two series will be further analyzed to recover a

human object’s hand movements in 3D real-world space.

Currently, the trajectories of each person’s hands that we get are represented

as pixel values in the camera image plane. To estimate the real-world level trajectory,

we map the coordinates series W
(R)t0,t1,...,tk
j to the original depth images Vt0 , Vt1 , ..., Vtk

frame by frame and obtain the distance trajectory of corresponding voxel in 3D world
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space (? 77). We denote the distance trajectory from the first frame Vt0 to the last frame

Vtk as d
(R)t0,t1,...,tk
j for right wrist. Similarly, we can retrieve the 3D motion trajectory

for left wrist d
(L)t0,t1,...,tk
j . And the visual trajectories set in this time duration will be

Tvisual = {d(R)t0,t1,...,tk
j , d

(L)t0,t1,...,tk
j }Jj=1.

4.3.4.2 RF trajectory extraction

Ideally in an RF environment, the distance L from the reader antenna to the

tag Ti at time t can be calculated as follows:

L(t) =
ϕi(t)× c

4πf
(4.3)

where ϕi(t) refers to the corresponding phase change over the signal travel distance and

c is the speed of light. However in realistic deployment, we can not explicitly calculate

the exact distance L(t), since that except for the phase change ϕi(t) over distance,

the real measured phase ϕr
i (t) at antenna also contains some additional phase changes

introduced by reader and tag’s circuit, i.e., ϕr
i (t) = (ϕi(t) + ϕTi + ϕA) mod (2π), here

ϕA and ϕTi are the additional phases introduced by reader antenna and tag respectively

(8? ). Instead of recovering the accurate location changes, we can only obtain the

relative distance changes of tag Ti in a time duration from tx to ty as followed:

∆L = L(ty)− L(tx) =
(∆nπ + (ϕr

i (ty)− ϕr
i (tx)))× c

4πf
(4.4)

where L(tx) can be used as a reference distance which can be set as the first

calculation. Therefore, by calculating the relative distance changes sample by sample

in time slot [t0, tk],we can recover a relative moving trajectory of the tag Ti, which we
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denote as dt0,...,tkidi
. And the RF trajectories set recovered from all candidate tags will

will be TRF = {dt0,...,tkidi
}Ii=1. As aforementioned in Section. 4.3.3, in most time, I ≤ 2

and the RF trajectories set wouldn’t contain many RF traces waiting for pairing.

4.3.4.3 Short-Term Object-ID pairing

After retrieving I RF trajectories TRF = {dt0,...,tkidi
}Ii=1 and 2J visual trajecto-

ries Tvisual = {d(R)t0,t1,...,tk
j , d

(L)t0,t1,...,tk
j }Jj=1, RV-Track first compares the moving tra-

jectories from both data sources and calculates a similarity matrix Sim, in which each

element simji, j ∈ {1, ..., J} and i ∈ {1, ..., I}, is the similarity score of d
(R)t0,...,tk
j (or

d
(L)t0,...,tk
j ) and dt0,...,tkidi

, and then couples human objects with tags based on the simi-

larity scores.

We propose to use the Dynamic Time Warping (DTW) algorithm (84) to

evaluate the similarity between the two temporal sequences. DTW is an algorithm

designed to deal with different timing or moving speeds among the two time series data,

it captures the similarity by dynamically warping the two sequences and finding the best

matching. A larger DTW value implies a larger difference and hence a lower similarity.

Therefore, we can define the similarity score as follows:

simkey
j,i =

1

1 +DTW (d
(key)t0,...,tk
j , dt0,...,tkidi

)
, key ∈ {L,R} (4.5)

and normalize the score range between 0 and 1. The closer the similarity score simj,i

is to 1, the higher probability that the two trajectories should be paired.

After similarity scoring, we get Sim, which is a two-dimensional array storing

all the similarity scores between 2J visual trajectories and I RF trajectories. Intu-
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itively, we can match the pair that produces the highest similarity score. However, in

real experiment, it is observed that the highest similarity score does not always imply

the highest matching probability, since sometimes for the a RF trajectory dt0,...,tkidi
, its

similarity scores with other visual trajectories may all be small and quite similar, and

it will be meaningless to match the pair with the highest score in this case.

To deal with such matching ambiguity, we further take ‘kurtosis’ (84), the

confidence of the similarity scores into consideration. Kurtosis (85) is a measure of the

‘tailedness’ of the probability distribution of a real-valued random variable. Generally,

data sets with high kurtosis tend to have heavy tails (or outliers) while data sets with

low kurtosis tend to have light tails (or lack of outliers). For a RF trajectory dt0,...,tkidi
,

if it has a similarity score simj,i with a visual trajectory which is much larger than all

the other pairs, we will obtain a higher kurtosis value, which implies a higher confidence

of matching the visual trace with the highest score. To realize this, we calculate the

kurtosis values of each RF trajectory dt0,...,tkidi
as followed:

Kurt(simkey
1:J,i) = E[(

simkey
j,i − µ

σ
)4], key ∈ {L,R} (4.6)

where simkey
1:J,i are dt0,...,tkidi

’s similarity scores with all visual traces, µ is the mean of

simkey
1:J,i and σ is the standard deviation of simkey

1:J,i.

During the pair matching, we first sort the RF trajectories according to their

Kurt(simkey
1:J,i) in a descending order. The RF trajectory with the highest confidence

will determined as the target’s trace, and will first be matched with its most similar

visual trajectory. The matched pair (dt0,...,tkidi
, d

(key)t0,t1,...,tk
j ) is then added to the result
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Figure 4.7: Overview of Re-ID system

set P and excluded from the remaining pairing procedure. The pairing procedure will

keep repeating every time when new UA action occurs until all RF trajectories in FoV

have been paired. The final result is the pairing set P = {(dt0,...,tkidi
, d

(key)t0,t1,...,tk
j )}Ii=1 .

4.3.4.4 Long-Term Feature Pairing

Essentially, object-ID pairing in Section. 4.3.4.3 is to associate the PID assigned

by CV system with the TID, and such pairing could be unstable in dynamic environment.

It is observed in real experiment that when a target walks close to the edge of FoV, PID-

switch problem could happens, a new PID will be randomly assigned to the this target,

breaking the mapping between old PID and its paired TID. Therefore in this section, we

further leverage long-term target feature information to resolve the PID-switch issue.

After we obtain the pairing result P, we first construct a dynamic dictionary

M with the Re-ID features f of all paired targets in P, here M = {idi : fi, }Ii=1. Such

Re-ID feature is extracted at the specific frame when the target first gets matched.

Basically when new PIDs appear in the FoV, the status of TIDs can be classified into
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two different cases:

• When there’s no new TID arriving or leaving the FoV, implying that some TIDs

in P are longer being matched, hence new PIDs should be able to repaired with

these TIDs. If only one new PID has been caught, we directly pair this PID to the

unmatched TID. For the case when more than one PID has changed, we need to

first build a candidate set SC with the features of unmatched TIDs from M , and

then construct a query set SZQ by extracting the features of persons marked with

new PIDs. The similarity score between representative feature in SQ and those

from SC is computed using Euclidean distance measurement. A low score means

that the two features are correlated and vice-versa. We then sort the results from

low to high and determine the matched pairs at the end.

• When new TID arrives, the feature of new person has not been updated in M ,

hence RV-Track will only wait for UA action of this new target.

We extract the long-term target feature f using a lightweight Re-ID network.

Fig. 4.7 shows the simple diagram of our proposed lightweight Re-ID model. This model

consists of two basic branches, namely appearance branch and pose branch, and

an attention-based aggregation module. It receives an image I as an input and

outputs a feature representation f as illustrated.

Two Branches The appearance branch is designed to extract user’s global

feature, using Omni-Scale Network (OSNet) (86) as backbone. OSNet is a lightweight

Re-ID model that is more than one order of magnitude smaller than the popular
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ResNet50-based models, while still achieves state-of-the-art performance on 6 person

Re-ID datasets and beats much larger networks (86). We remove the final classification

layer (linear FC + softmax) mounted on the top of original OSNet which classifies the

class of each input to retain the global feature. Formally, we denote the feature ex-

tracted from appearance backbone as F, F ∈ RH×W×C , where H, W , and C denote

the height, width, and the number of channels of the feature, respectively.

The pose branch is designed for the generation of heatmap using pose extractor

AlphaPose. Based on the predicted landmark coordinate and the coordinate confidence,

Alphapose outputs the heatmap of each landmark. Inspired by (87), we set a confidence

threshold γ to remove the landmark heatmap information if the output confidence is less

than γ, since the landmark with small confidence score is highly likely to be occluded

in original image. Generally, the landmark coordinate can be expressed as follows:

LMi =


(xi, yi) if ci ≥ γ

0 others

(i = 1, ..., N) (4.7)

Where LMi denotes the i-th landmark and (xi, yi) are the corresponding pixel coor-

dinates values, and γ is threshold. N is the number of landmarks (N = 17). These

landmarks are then utilized to generate heatmaps consisting of a 2D Gussian centered

on the ground truth location (87). The value of the corresponding heatmap is set to 0

if LMi = 0. We denote the generated heatmap as mi(i = 1, ..., N).

Later we combine the heatmaps and features F and feed the fused features

into an attention module to improve the distinctiveness of features.
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Attention Module. Given the feature map F from OSNet and heatmap of

the i-th body part mi from AlphaPose model, we first perform multiplication operation

between them to get the fused features which reflect the potential characteristics of

different body parts:

f i = F
⊗

mi(i = 1, 2, ..., N) (4.8)

where f i represents the feature of the i-th body part. The proposed attention mechanism

Amask is comprised of two attention components: 1) channel attention ACh which

emphasizes interdependent channel maps by integrating associated features among all

channel maps, and 2) position attention APosi which selectively aggregates the feature

at each position by a weighted sum of the features from all positions (88).

Channel Attention. Since the fused body part-level feature f i can be for-

mulated as f i = {chij}Mj=1, where chij denotes the feature vector at the j-th position of

the i-th body part whose dimension is R1×1×C , and M = H × W . We can aggregate

the position information as follows:

Chiavg = Relu(
1

M

M∑
i=1

chijwc) (4.9)

and wc are the weight parameters which can be learned during training, and Chiavg ∈

R1×1×C is the average value of the weighted sum from each channel. And the channel

attention mask is the average of these N masks:

ACh =
1

N

N∑
i=1

Chiavg (4.10)

Position Attention. Feature f i can also be expressed as f i = {posiij}Cj=1, in

which we first obtain the i-th part-level feature map set {posiij} represents the feature
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at the j-th channel with size of RH×W×1 (C is the number of channels). Similar to

channel attention, we aggregate the position information as follows

Posiiavg = Relu(
1

C

C∑
i=1

posiijwp) (4.11)

where wp are the weight parameters needed to be learned, and Posiiavg ∈ RH×W×1.

Finally, we directly compute the averaged position attention mask of N parts as:

APosi =
1

N

N∑
a=1

Posiiavg (4.12)

Aggregated Attention. After we learn the two attention masks, we inte-

grate them together to obtain a complementary multi-dimensional attention mask. We

conduct an element-wise product to accomplish the attention feature fusion. The final

attention mask Amask is a matrix with the size of H ×W × C.

Amask = Relu((APosi

⊗
ACh)Wa) (4.13)

where Wa is the weight matrix. Finally, we perform an element-wise multiplication

between the Amask and the global feature from our backbone OSNet and output the

body part-level attention feature map Fmask.

Fmask = F
⊗

Amask (4.14)

Note that feature map Fmask is fed into a FC layer and converted into the user

feature f which has a dimension of ζ. We discuss the choice of ζ in Section. 4.5.3. A

classification layer is adopted at the end to classify the class of each input. We leverage

the widely-used triplet loss function (89) during the training phase, the detailed training

process is described in Section. 4.5.3.
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Figure 4.8: A RFTrack node prototype

4.3.5 Data Augmentation

When training with smaller dataset, deep neural networks tend to overfit. To

avoid overfiting and achieve better training effectiveness, RV-Track conducts the data

augmentation to enrich the training data using two signal transformation approaches,

namely jittering and time-shifting-and-warpping (90). Jittering is a simple yet

effective method to add random noise to the original data without changing the length of

original data. Time-shifting-and-warpping is another useful data augmentation scheme.

It is common that the user walks through RV-Track node with different speeds. Such

differences will cause the collected RSS/phase samples scale various ranges. To mitigate

above impact, we use shifting-and-warping-based augmentation to generate such data.

Note that network in Fig. 4.2 takes the augmented data and the original data together

as inputs for training.
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4.4 System Deployment

4.4.1 Experimental Setup

We utilize a sensor setting similar to (? ) for our experiments. Each RV-Track

node consists of a Kinect depth camera and Laird S9028-PCL directional antenna. The

Kinect camera is deployed on the top of the antenna, which is connected to an ImpinJ

Speedway modeled R420 RFID reader. (Note that we have also tried implementing

the system using dual RGB cameras, and estimating the depth of the moving target to

recover her/his trajectory based on classical stereo matching algorithms such as semi-

global matching, as well as some deep learning-based end-to-end approaches. Compared

with the RGB-D camera, the dual-RGB system tends to have higher calibration over-

head and lower matching accuracy, hence we chose to adopt the RGB-D camera in our

system.) The center of the antenna is chosen as the origin O of 3D localization refer-

ence system, and we measure the coordination [∆X,∆Y,∆Z]T of Kinect depth sensor

in this reference space. Then we could translate the 3D point cloud in Kinect reference

system into the RF reference system. The tags employed are model Alien 964X, which

we have observe inductive coupling in (8). While conducting the experiment, the tag

carried by each person is attached on a piece of cardboard and each person needs to

hold this cardboard to interact with the item tag, in order to eliminate the extra influ-

ence brought by human hand. The transmission and receiving gains are both 32dB. All

experiments are conducted in an office room with various multi-path reflectors, moving

objects, wireless signals (WiFi, LTE, and Bluetooth), electrical devices (servers, work-
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stations, printers, refrigerator), and magnetic fields (whiteboard). The deployed ImpinJ

Speedway modeled R420 RFID reader is sufficient to cover such a large indoor area (6m

× 9m).

Softwares: The RFID reader and Kinect data collection program is imple-

mented with C# code on a Dell desktop, equipped with Intel Core i7-7700 CPU at

3.6GHz and 16G memory. The software is designed using the Low-level Reader Proto-

col (LLRP) and Kinect Toolkit and outputs phase and RSS readings as well as video

streams. The proposed Re-ID model are implemented in Python, based on Pytorch

framework, and are trained and tested at a desktop (served as remote server) with one

NVIDIA RTX 3070.

4.5 Experiments

4.5.1 Datasets

In our default experiments, we conduct two rounds of experiments and collect

two datasets, namely Dau and Dreid. Dau refers to an RFID RSS dataset collected

for detecting the user authentication action in the first round (video frames are also

collected and serve as the ground truth), which we recruit 11 volunteers (5 males and

6 females) for experiments. During the collection, we ask each volunteer to perform

user authentication for 150 times, and collect RFID RSS measurements throughout the

process. We ensure that only one volunteer is in the sensing area and no other person

moves around. The experiments are conduct in two different locations in the same office.
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Model Accuracy(%)

Feature-based 87.07± 0.07

2-layer LSTM 90.25± 0.09

LSTM-FCN 93.27± 0.13

Table 4.1: Prediction accuracy on the collected dataset Dau
Each RSS sequence will late be segmented and manually labeled with ‘no-coupling state’

or ‘coupling state’.

In the second round, we recruit 7 volunteers (3 males and 4 females) and collect

Dreid by asking the volunteers to perform user authentication action one by one and

then randomly walks around the sensing area. Note that Dreid contains RFID RSS,

phase data as well as video frames from Kinect. These experiments are still conduct in

the same locations as those in first round. In total, 700 trials are conduct for 2-person

scenario and 200 trails for 3-person and 4-person case, respectively. The identity of the

users for each experiment are manually labeled as well. Note that this work focuses on

common indoor environments such as home and office with no special considerations

given to building materials, room selection or furniture placement.

4.5.2 User Authentication

While evaluating the performance of LSTM-FCN classifier, the dataset Dau

is randomly split into training Dtrain
au = 0.75Dau and testing Dtest

au = 0.25Dau sets.

Furthermore, 0.8 Dtrain
au of the training set is used to train the model, and the remaining
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Figure 4.9: Backbone
selection

Figure 4.10: Feature di-
mension comparison

Figure 4.11: Effect of
pose branch and attention
module

Dval
au = 0.2Dtrain

au is used as a validation set.

4.5.2.1 Evaluation Metric

We evaluate the performance of UA module using the accuracy measure,

which is defined as the percentage of correctly predicted coupling events. For a set

of test RSS samples X = {x1, x2, ..., xi, ..., xn} with corresponding true labels Y =

{y1, y2, ..., yi, ..., yn}, the accuracy is defined as:

accuracy = 100× 1

n

n∑
i=1

Iyi(ỹi) % (4.15)

where ỹi is the system prediction for input xi, and Iyi(ỹi) = 1 if ỹi = yi and Iyi(ỹi) = 0

otherwise.

4.5.2.2 Implementations & Performance

We compare the results with two different models, namely feature-based clas-

sifier (84) and vanilla LSTM classifier (91), which are both widely used for TSC tasks.

Both two classifiers are trained and evaluated with the dataset Dau. For feature-based
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method, we first extract 7 low-level features, including mean, variance, skewness, kur-

tosis, median, zero crossing rate, max-min difference, from each sequence sample in

dataset. Later the handcrafted features of each sample are feed to a binary classifier

to determine whether this sample belongs to a ‘coupling state’ or not. We adopt sev-

eral different training algorithms, namely K Nearest Neighbor (KNN), Decision Tree,

Random Forest and Support Vector Machine (SVM), and use an ensemble manner to

combine their classification results. And the vanilla LSTM classifier is basically a 2-

layer LSTM classifier, where each layer has the same parameters setting as the LSTM

branch in LSTM-FCN. As can be seen from the result (Table. 4.1), LSTM-FCN classifier

outperforms the rest two in detecting ‘coupling state’.

4.5.3 User Re-ID Model

4.5.3.1 Dataset

To demonstrate the efficacy of the proposed lightweight Re-ID model, we first

evaluate the proposed model on two holistic datasets: Market-1501 (92), DukeMTMC-

reID (93) and one partial dataset: Occluede-DukeMTMC (87).

Market-1501 is a large-scale person re-ID dataset collected from six cameras.

There are 32,668 DPM-detected pedestrian image boxes of 1,501 identities: 750 identi-

ties are utilized for training and the remaining 751 identities are used for testing. There

are 3,368 query images and 19,732 gallery images with 2,793 distractors.

DukeMTMC-reID is a subset of DukeMTMC (94) for person ReID. The

images are cropped by hand-drawn bounding boxes. The data was taken from 8 cameras
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of 1,404 identities with respective 16,522, 2,228 and 17,661 images in the training, query

and gallery sets.

Occluded-DukeMTMC is currently the largest occluded person re-ID dataset

derived from the original DukeMTMC dataset. It has 15,618 pedestrian images in the

training set that contains 702 identities. And its testing set covers 17,661 gallery images

and 2,210 query images including 1,110 identities.

4.5.3.2 Evaluation Metric

We use mean average precision (mAP) to evaluate the the quality of pro-

posed re-identification model. In the following results we will report the mAP scores

for Market-1501, DukeMTMC-reID, and Occluded-DukeMTMC where more than one

ground truth images are in the gallery.

4.5.3.3 Implementation details.

We adopt OSNet as our appearance branch backbone with removing the final

classification layers. The OSNet backbone weights are initialized using weights from the

same OSNet architecture trained on Market-1501 dataset (86). The batch size is set

to 40 and the training process is done for 100 epochs with the learning rate initialize

at 0.015 and is decayed by 0.1 when reaching 40 and 80 epoch. We use AlphaPose

pre-trained on COCO dataset(68) to obtain the landmarks from input images. The

confidence score threshold γ is set to 0.2 (87).
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4.5.3.4 Superiority of Proposed Network

We evaluate the proposed method in the following three aspects and investi-

gate the superiority of two-branch network as well as the attention module on various

datasets. Note that all the models do not use dilation.

Effect of backbone selection. Since the appearance branch leverages CNN-

backbone for extracting features, the selection of CNN-backbone is essential for building

a good feature extraction network. We implant multiple state-of-the-art CNN-based

backbones with various model complexity into our Re-ID model and evaluate the overall

performance, including Inception(95)and 50 layers ResNet (resnet50) (96) . As shown

in Fig. 4.9 , our choice of OSNet achieves the best overall accuracy over three datasets

compared with other backbones.

Effect of feature dimension size. As described in Section. 4.3.4.4, we use

a variable f with size of ζ to represent user feature in Re-ID network. If ζ is too small,

the feature may not be able to capture enough user information, while a feature with a

large dimension will incur high computation overhead. Therefore, we need to determine

a good dimension size. We separately explore three settings ζ = 128, ζ = 256, and ζ =

512, and show their corresponding accuracy in Fig. 4.10. Since ζ =512 outperforms the

other two on three datasets, hence we set ζ to 512 for the overall experiments.

Effect of pose branch and attention module We first compare our model

with a baseline that does not explicitly use any body parts information, by directly

adopting OSNet as the appearance feature extractor, and feeding the outputting 512-
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dimensional image descriptor into a classifier to performance Re-ID task. Then we also

compare with the baseline without any attention module to evaluate the impacts atten-

tion module imposed on the recognition performance. Fig. 4.11 compare the proposed

method with the baseline, As the results illustrate, using part maps consistently im-

proves the accuracy on all the three datasets from the baseline, and the integration of

attention module will also remarkably enhance the effectiveness of our framework in

terms of mAP.

4.5.4 Overall Performance

After demonstrating the efficacy of the proposed Re-ID model, we use samples

in Dreid to evaluate the overall performance of RV-Track.

4.5.4.1 Evaluation Metric.

We still leverage the accuracy measure to evaluate the performance of short-

term pairing module, while with its definition slightly different. For a set of persons with

TID T = {x1, x2, ..., xi, ..., xk} with corresponding true PID P = {y1, y2, ..., yi, ..., yk},

the accuracy is defined as the percentage of correctly pairing events:

accuracy = 100× 1

k

k∑
i=1

Iyi(ỹi) % (4.16)

where ỹi is the system matched PID for person with TID xi, and Iyi(ỹi) = 1 if ỹi = yi

and Iyi(ỹi) = 0 otherwise.

Later, we check the improvement brought by long-term pairing module. 34

pid-switch events have been observed in Dreid (6 in 2-person trails, 12 in 3-person case
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and 16 in 4-person case respectively), and we repair those PIDs using the long-term

pairing method. In the matching process, the features for the retrieval process are

taken from the Re-ID network in Section. 4.5.3. As can be seen in Table. 4.2, RV-Track

achieves an average accuracy of 90.39% in short-term person identification and tracking.

We correct 31 pid-switch events among 34, hence only a slight decrement is observed in

long-term accuracy of 90.14% .

Trial Setting Short-term

Accuracy(%) Long-term

Accuracy(%)

2-person 92.92 92.92

3-person 91.00 91.00

4-person 87.25 86.50

Table 4.2: Overall accuracy

4.6 Conclusion

In this paper, we present RV-Track, a vision-RFID fusion system which can

enable cameras to recognize the physical IDs of persons in their views and track the

targets instantly when they appear in the video frames. By asking the users to perform

a simple authentication, the system will be aware of the targets’ IDs in its FoV. Later by

exploiting the target features extracted from a light-weight Re-ID model, it can handle

the PID-switch problems which often occur in vision tracking systems. Experiments
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show that RV-Track can actively identify and track the RFID-tagged target with a

accuracy of 90.14%.
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Chapter 5

RF-HGR and the future research

5.1 Introduction

Recent wireless sensing techniques such as WiFi (97), RFID (81), and millime-

ter radar (98) have provided promising solutions for human gesture recognition (HGR)

due to their characteristics of privacy-protection, device-free and ubiquity. Among them,

RFID has attracted much attention given its low-cost and light-weight superiorities. A

typical RFID-based HGR system generally contains three steps, namely, gesture class

pre-definition, data collection, as well as recognition model training and testing. Users

first need to pre-define a group of gestures classes (which are termed as base classes)

to recognize, and then collect sufficient signal samples for each base class to build a

training set (base dataset). A recognition model will be trained based on this training

set, which can provide accurate recognition on these base gestures once well trained.

However, most of existing approaches mainly focus on coarse-grained gestures
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Figure 5.1: Experiment setup

like ’pull’ or ’push’, while many gesture based applications need to sense more com-

plicated and fine-grained gestures like finger movements and sign gestures. When it

comes to unseen gesture classes that are not included in the base dataset, the recog-

nition performance will degrade dramatically (99), such limited scalability results in

two kinds of overhead when trying to infer unseen gesture classes. For one thing, suffi-

cient signal samples have to be re-collected for each unseen class to meet the demand

of recognizing novel gestures, causing heavy data collection overhead and bringing

massive inconvenience to users. Meanwhile, the recognition model has to be re-trained

using all training data as long as a single unseen class is introduced. Such training

overhead is non-trivial as it usually involves a complex model structure (such as RNN

or LSTM (81)) to infer gestures information in RFID signals. Moreover, the recognition

model trained with RFID signal samples collected from one specific environment also

suffers from significant performance degradation when applied in a new dataset collected

from a different place, as the collected wireless signal not only contains information of

the performed gesture but also carries substantial information of environment, user,
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location and even the orientation of user (100). We denote the factors uncorrelated to

the gestures can as a domain (100) (e.g., the environment or the user). Consequently,

labor-intensive data collection and labeling efforts as well as model re-training efforts are

required for each new domain, which further impedes the generalization of RFID-based

HGR techniques.

Hence, there is an urgent demand for a lightweight cross-domain sensing ap-

proach in which users only need to collect few signal samples (i.e., few shots) for any

unseen class, and the model only needs to be fine-tuned using these samples. In this

paper, we explore the possibility of employing domain-adaptive few-shot learning (DA-

FSL) to address the scalability issue and domain shift challenge, and present RF-HGR,

a novel RFID-based HGR system to recognize unseen gestures in different domain set-

tings. Our preliminary experiments evaluate RF-HGR with the dataset collected from

real-world experiments and the results show that the system is capable of producing

high accuracy models for the HAR task using As far as we know, this is one of the first

attempts addressing both the few-shot DA and few-shot recognition problems jointly in

device-free HGR.

5.2 Methodology

RF-HGR system consists of three major modules, namely, data collection,

signal preprocessing and deep learning module, as shown in Fig. 5.2. RF-HGR first col-

lects raw phase and RSS data streams of tag array and passes them to the preprocessing

module. Note that a data augmentation submodule is adopted to further improve the
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Figure 5.2: System Overview

expression ability and diversity of data. After preprocessing, the data streams are fed

into the deep learning module for gesture recognition.

We employ metric-based FSL in deep learning module to recognize novel classes

in cross domain scenarios, using only a few samples. Specifically, a two-stage approach

is designed, in which we will first train a feature extractor using the base dataset and

then fine-tuning a feature classifier using few-shot data. We formulate the few-shot clas-

sification problem as an N -way-K-shot classification in which the training set contains

J = K ×N samples from N classes, each with K samples. Note that the training set

and test set are called support set Dsupport and query set Dquery respectively.

Let (xb, yb) denote an input base RFID data vector and its corresponding

ground-truth label. Then, the base dataset Dbase is constructed leveraging the RF data

samples collected for different gesture classes, whereDbase = {(xb1, yb1), (xb2, yb2), ..., (xbN , ybN )}.
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In the first stage, we use a standard supervised learning manner to train a feature ex-

tractor fθ together with a gesture classifier C(·|W, b) using the data in Dbase. The ample

number of classes in the base dataset enables the feature extractor to learn unique la-

tent features from base classes so that the distances between instances of the same

class are closer while instances of different classes are further apart. Specifically, we

design a RFID Transformer as the feature extractor to learn high-level representation

of RFID input. To further deal with domain-independent issues, we adopt two domain

discriminators, namely user discriminator Du, and environment discriminator De, to

discard extraneous features specific to users or environments, while remain all features

related with the classification task. Once the training is completed, the classifier and

discriminators will be removed to obtain the trained feature extractor.

In the second stage, we fine-tune a new classifier. The sample in the query set

Dquery will be classified based on the cosine similarity of the extracted features between

the query sample and the labeled support samples from Dsupport. A classifier with the

trainable weight matrix W ∈ Rd×c is added after the pre-trained feature extractor fθ.

We fine-tune this weight matrix W using support samples while keeping the parameters

of feature extractor fθ fixed. To classify a query sample xq, we first extract an embedded

feature vector fθ(x
q) and then compute its cosine similarity pair-wisely with each weight

vector in W to obtain the similarity scores for all classes. The softmax function σ maps

the scores to a probability distribution, and the query sample will be classified to the

class with the highest probability.
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Figure 5.3: Overall accuracy of RF-HGR

5.3 Evaluation

Evaluation setup The prototype of RF-HGR is built with COTS UHF RFID

devices. We utilize a ImpinJ Speedway modeled R420 RFID reader with a Laird S9028-

PCL directional antenna to capture signals from the 4 × 4 model Alien-9629 RFID

tag array with tags spaced 4cm apart. The proposed FSL model is trained and tested

at a Dell desktop equipped with Intel Core i7-7700 CPU at 3.6GHz and one NVIDIA

RTX 3070. We conduct our preliminary study in a laboratory environment as shown

in Fig. 5.2 and recruit 2 female volunteers to participate in our experiments. The

participants are asked to perform the gestures in the sensing area. In total, more than

2500 signal samples of 25 different gesture classes are collected, in which 5 gestures

(‘push and pull’, ‘sweep’, ‘slide’, ‘clap’, and ‘draw triangle’) are defined as the unseen

gestures while the base dataset involves the same 20 gesture classes as the ones in

training dataset introduced by (99). Note that in the unseen dataset, the support set

and query set of the same gesture class are collected from the same domain.

Preliminary results We leverage accuracy, which shows the probability that
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an unseen signal sample can be correctly recognized, to evaluate the performance of

RF-HGR. We calculate the accuracy to recognize unseen gestures in the three-, five-,

and seven-shot settings and show the results in Fig. 5.3. It can be observed that in these

settings, the recognition accuracy of RF-HGR is 50.6%, 65.7% and 72.8% respectively,

demonstrating that RF-HGR can achieve a relatively high accuracy even if just learning

from a few samples.

5.4 Further Approach

The experiment of RF-HGR is still at the early stage. In the future study, we

will explore RF-HGR in the following directions:

• Expand the system into sequence recognition.

• Extend the system in various environments.

• Explore the possibility of leveraging the tag array and the antenna array to localize

and track the hand movements of the user.
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Chapter 6

Conclusion

In this thesis, we first design and implement TagMii, a noval approach to

enable user-item interactions using passive RFID tags. Compared to other solutions that

require a user to carry non-trivial hardware, TagMii only requires every user to carry

a passive tag. The reader deployed in the environment monitors the interaction events

and pair the user tag and the corresponding item tag. The key advantage of TagMii is

that it is cost-efficient and especially convenient for children, some seniors, people with

certain disabilities, and others who do not operate smartphones. We evaluate TagMii

in complex environments with rich multipath, mobility, wireless signals, and magnetic

fields and and TagMii to be accurate in recognizing user-item interactions in various

setups.

Then we take a step further and propose ChopTags to deal with the inherent

scalability limitation of TagMii. ChopTags achieves near 100% accuracy and the reader

deployed in the environment can simultaneously monitor the interaction events of a large
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number of tag modules. ChopTags provides low cost, high accuracy, high scalability,

user-friendliness, and some level of privacy. We propose to implement two application

prototypes based on ChopTags and evaluate the prototypes in complex environments

to show that ChopTags is highly accurate and reliable with low latency. In future work,

we aim to explore the possibility of enabling cameras in public areas to recognize the

physical-identity(ID) of a person in the fields of view and track the persons with specific

IDs with least or even no training effort.

We also notice that state-of-the-art computer vision methods can effectively

detect and track objects/persons only if their appearances are pre-registered, while the

appearance-collection process is quite time-consuming and cumbersome. Based on this

issue, we present RVTrack, a vision-RFID fusion system which can enable cameras to

recognize the physical IDs of persons in their views and track the targets instantly when

they appear in the video frames. By asking the users to perform a simple authentica-

tion, the system will be aware of the targets’ IDs in its FoV. Later by exploiting the

target features extracted from a light-weight Re-ID model, it can handle the PID-switch

problems which often occur in vision tracking systems. Experiments show that RVTrack

can actively identify and track the RFID-tagged target with an accuracy of 90.14%.

We further explore the possibility of employing domain- adaptive few-shot

learning (DA-FSL) to address the scalability issue and domain shift challenge in RFID-

based human gesture recognition tasks, and present RF-HGR, a novel RFID-based HGR

system to recognize unseen gestures in different domain settings. RF-HGR is one of the

first attempts to jointly address the few-shot DA and few-shot recognition problems in
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device-free HGR, in which users only need to collect a few signal samples for any unseen

class, and the model only needs to be fine-tuned using these samples. Our experiments

evaluate RF-HGR with the dataset collected from real-world experiments. The results

show that the system is capable of producing high accuracy models for the HAR task.

6.1 Contributions

The thesis contributed the following:

• A survey of state-of-the-art identification and sensing applications for UHF RFID

systems.

• Design and implement a novel approach to enable user–item interactions using

passive RFID tags.

• Propose a new solution for high-accuracy and scalable user–item interactions using

passive RFID tags, which is the first work to combine the information of both tag

ID presence and physical signal features to infer interactions.

• Design a vision-RFID fusion system which can enable cameras to recognize the

physical IDs of persons in their views and track the targets instantly when they

appear in the video frames.

• A demonstration of all application prototypes and evaluate the prototypes in com-

plex environments.
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[102] C. Koray, E. Sumer, V. Štruc et al., “A computer vision system for chess game

tracking,” in 21st Computer Vision Winter Workshop Luka Cehovin, 2016.

[103] M. A. Czyzewski, A. Laskowski, and S. Wasik, “Chessboard and chess piece recog-

nition with the support of neural networks,” arXiv preprint arXiv:1708.03898,

2017.

[104] J. Ding, “Chessvision: Chess board and piece recognition,” Technical Report.

Stanford University. URL: https://web. stanford. edu/class, Tech. Rep., 2016.

151



[105] “DGT Projects,” http://www.dgtprojects.com/.

[106] L. Yang, Y. Qi, J. Fang, X. Ding, T. Liu, and M. Li, “Frogeye: Perception of the

Slightest Tag Motion,” in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp.

2670–2678.

[107] L. Shangguan, Z. Zhou, and K. Jamieson, “Enabling Gesture-based Interactions

with Objects,” in Proceedings of the ACM MobiSys. ACM, 2017, pp. 239–251.

[108] H. Ding, C. Qian, J. Han, G. Wang, Z. Jiang, J. Zhao, and W. Xi, “Device-free

Detection of Approach and Departure Behaviors using Backscatter Communica-

tion,” in Proceedings of ACM UbiComp, 2016.

[109] G. Wang, C. Qian, L. Shangguan, H. Ding, J. Han, N. Yang, W. Xi, and J. Zhao,

“HMRL: Relative Localization of RFID Tags with Static Devices,” in Sensing,

Communication, and Networking (SECON), 2017 14th Annual IEEE Interna-

tional Conference on. IEEE, 2017, pp. 1–9.

[110] J. Han, H. Ding, C. Qian, W. Xi, Z. Wang, Z. Jiang, L. Shangguan, and

J. Zhao, “Cbid: A Customer Behavior Identification System Using Passive Tags,”

IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2885–2898, 2016.

[111] J. Wang, D. Vasisht, and D. Katabi, “RF-IDraw: Virtual Touch Screen in the Air

Using RF Signals,” in Proceedings of ACM SIGCOMM, 2014.

[112] X. Chen, F. Lu, and T. Y. Terry, “The “weak spots” in stacked UHF RFID tags

152



in NFC applications,” in RFID, 2010 IEEE International Conference on. IEEE,

2010, pp. 181–186.

[113] R. K. Wangsness, “Electromagnetic Fields,” Electromagnetic Fields, 2nd Edition,

by Roald K. Wangsness, pp. 608. ISBN 0-471-81186-6. Wiley-VCH, July 1986.,

p. 608, 1986.

[114] D. Vasisht, J. Wang, and D. Katabi, “Rf-idraw: Virtual Touch Screen in the Air

Using RF Signals,” in Proceedings of the 6th Annual Workshop on Wireless of the

Students, by the Students, for the Students. ACM, 2014, pp. 1–4.

[115] M. Meeker, “Internet Trends 2014-Code Conference,” Retrieved May, vol. 28, p.

2014, 2014.

[116] S. Hong-Ying, “The Application of Barcode Technology in Logistics and Ware-

house Management,” in 2009 First International Workshop on Education Tech-

nology and Computer Science, vol. 3. IEEE, 2009, pp. 732–735.

[117] S. Hinske and M. Langheinrich, “An rfid-based infrastructure for automatically

determining the position and orientation of game objects in tabletop games.”

[118] J. Tan and P.-L. P. Rau, “A design of augmented tabletop game based on rfid

technology,” Procedia Manufacturing, vol. 3, pp. 2142–2148, 2015.

[119] C. Floerkemeier and F. Mattern, “Smart playing cards–enhancing the gaming

experience with rfid.”

153



[120] C. Magerkurth, A. D. Cheok, R. L. Mandryk, and T. Nilsen, “Pervasive games:

bringing computer entertainment back to the real world,” Computers in Enter-

tainment (CIE), vol. 3, no. 3, pp. 4–4, 2005.

[121] “Separation of Multiple Passive RFID Signals Using Software Defined Radio, au-

thor=Shen, Dawei and Woo, Grace and Reed, David P and Lippman, Andrew

B and Wang, Junyu, booktitle=2009 IEEE International Conference on RFID,

pages=139–146, year=2009, organization=IEEE.”

[122] J. Yu, K. Liu, and G. Yan, “A novel rfid anti-collision algorithm based on sdma,”

in 2008 4th International Conference on Wireless Communications, Networking

and Mobile Computing. IEEE, 2008, pp. 1–4.

[123] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance
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