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Abstract

A computational tool is presented for maintaining and accessing knowledge of certain types of
constraint in data: when data samples in an n-dimensional feature space are all constrained to
lie on an m-dimensional surface, m < n, they can be encoded more concisely and economically in
terms of location on the m-dimensional surface than in terms of the n feature coordinates. The
recoding of data in this way is called dimensionality-reduction. Dimensionality-reduction may prove
a useful computational tool relevant to later visual processing. Examples are presented from shape
analysis.

1 Introduction

It is commonly understood that vision involves the interaction of incoming data with a priori
knowledge about the world. In Early Vision, constraint due to the physics of image formation,
rules of imaging geometry, and statistical properties of the world can be analyzed mathematically
to support inferences about primitive scene properties based on image measurements. Problems
of later vision, however, involving the interpretation of image data in terms of task goals, object
models, and meaningful world events, do not offer straightforward mathematical characterizations
of the more abstract constraints that give rise to comprehensible images. For example, it is difficult
to characterize the constraints on a shape profile that might qualify it to be called a “scissors”
shape.

One type of constraint that arises in shape analysis can be cast in terms of surfaces embedded in
high-dimensional feature spaces. This paper suggests that the computational tool of dimensionality-
reduction can be used to maintain and access knowledge of complex constraints of this form.

2 Dimensionality-Reduction

An idealized view of early visual processing is that certain image features are extracted from raw
images. For example, figure 1 shows primitive features extracted from an image of a pair of scissors,
making explicit the z-location, y-location, and orientations of edges and corners. Slightly more
complex features may be constructed by combining primitives, say, by measuring the distances
and relative orientations between pairs of corners. We might imagine that one aspect of early
visual processing involves the delivery of image descriptions in terms of data points in a huge
multidimensional feature space whose coordinate axes are defined by the features measured. The
job of later visual processing is to make sense out of the feature descriptions delivered it.

Image feature data can only be meaningfully interpreted by appeal to knowledge of constraints
governing the world giving rise to images. These constraints are reflected in the behavior of ex-
tracted features for given classes of shapes. For example, features associated with a pair of scissors

908



Figure 1. Hypothetical corner primitives extracted from the image of a pair of
scissors. These can be combined into more complex features such as the distances
between pairs of corners.
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Figure 2. Slice of feature space plotting values of features f; and f; from figure
1. A scissors shape generates a one-dimensional constraint curve in feature space as

the blades open and close. Different objects, such as wire cutters, generate different
constraint curves.
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generate not a single point, but a path through feature space as the blades rotate about the pivot.
The shape class, “pair of scissors,” exhibits one degree of freedom in the feature space, and every
feature space description of the scissors must be a data point lying somewhere on the constraint
curve, just where depending upon how open the blades are (see figure 2). Dimensionality-reduction
(Krishnaiah and Kanal, 1982; Kohonen, 1984] is the computational mapping between the descrip-
tion of data expressed in terms of its location in a high-dimensional feature space, and in terms of
its location on a lower-dimensional constraint surface. Figure 3 illustrates. This mapping employs
knowledge of the lower-dimensional constraint surface, embedded in the high-dimensional feature
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Figure 3. Dimensionality-reduction is a mapping between points described in a
high-dimensional feature space, and points described in terms of location on a lower-
dimensional constraint surface.

space, that is generated by a physical process or class of data. Different objects generate different
constraint surfaces in the feature space, as seen in figure 2.

The purpose served by dimensionality-reduction is abstraction and simplification in the descrip-
tion of data. A description consisting of a symbolic token indicating that an input datum lies on
the “scissors” constraint surface in the feature space, plus one parameter indicating where it lies on
the surface (how open the scissors are), is certainly preferable to a listing of the input’s coordinate
location along each of the n feature dimensions. In general, a dimensionality-reduced represen-
tation can be expected to make explicit descriptive parameters capturing the natural degrees of
variability inherent to a class of data, while it factors out redundancy latent among the original
measured features.

3 Achieving Dimensionality-Reduction

A black box depiction of a dimensionality-reducer is presented in figure 4. Each such box contains
knowledge of one constraint surface, such as, for example, might characterize one class of object
shapes. At the bottom of the box enters the description of an image in terms of an n-dimensional
feature vector. Out the top emerge n lines, and out the side, m more, where m is the dimensionality
of the constraint surface. Each line can represent a bounded real number; for convenience suppose
that the feature coordinates are normalized so that all features take values between 0 and 1.

The dimensionality-reducer operates as follows. If the numbers coming out the top of the black
box match those coming in the bottom, then it is determined that the data point whose feature
vector is given does in fact lie on the constraint surface, and its location on the constraint surface
may be read on the m lines coming out the side (the dimensionality-reducer implicitly creates a
coordinate system for the constraint surface). If the numbers coming out the top do not match the
input feature vector, then it is determined that the data point specified at the input does not lie
on the constraint surface.

This black-box dimensionality-reducer may also be used in the opposite direction. That is, an
m-dimensional vector specifying a location on the constraint surface may be placed on the side lines
as input, and the dimensionality-reducer will then compute, and output at the top, the coordinates
of this data point in the n-dimensional feature space.

Several alternative implementations of such a black box dimensionality-reducer are possible.
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Figure 4. Black box dimensionality-reducer.
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Figure 5. A connectionist network is composed of simple computing elements con-
nected by weighted links, w; ;. a. “Activity” in a unit is computed to be the weighted
sum of activities in units of the previous layer, passed through a semilinear function
mapping the activity to a number between 0 and 1. b. Three layer network.

When it is assumed that the constraint surface is always linear, then dimensionality-reduction
amounts to principle components analysis, or factor analysis, and the computation may be expressed
as a matrix multiplication [Watanabe, 1965; Tou and Heydorn, 1967; Fukunaga and Koontz, 1970;
Kittler and Young, 1973].

A more general implementation, in which the constraint surface may curve to a considerable
degree, uses a connectionist network of simple computing elements. Figure 5 illustrates a three-
layer network. Each unit takes an activity between 0 and 1. Activity is fixed at the bottom layer
as input, then activity for each unit in the middle layer (called the “hidden” layer) is computed as
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Figure 6. Scalar values between O and 1 are represented in sets of units, called scalar
sets, whose activity takes a characteristic unimodal pattern. Activity of a unit is

represented as size of circle. The activity pattern shown in this 12-unit scalar-set
represents the number, .4.

input

Figure 7. Connectionist dimensionality-reducer. In this case, two scalar-sets are
provided at the input and output layers, and the hidden layer is a one-dimensional
scalar set, therefore, this network can represent one-dimensional constraint curve
in a two-dimensional feature-space. During training period, errors from desired
activity are used to train network to reproduce input activity pattern at output.

a semilinear function of the weighted sum of activities on the input units. Output layer activity is
computed from the hidden layer activity in a similar way.

Each scalar feature value is represented as the pattern of activity over a set of units, called a
scalar-set, as illustrated in figure 6. A one-dimensional scalar-set is provided at the input layer and
at the output layer for each dimension of the higher-dimensional feature space. The hidden layer is
configured as a scalar-set whose dimensionality matches that of the embedded constraint surface.
The input, hidden, and output layers of the network correspond to the bottom, side, and top of
the black box dimensionality-reducer (see figure 7).

Dimensionality-reducing behavior is achieved by virtue of the link weights between successive
layers of the network. These weights are established using the backpropagation training procedure
[Rumemlart, Hinton and Williams, 1985; Rumelhart and McClelland, 1986], which furnishes crucial
self-organizing properties during the training phase. Training consists of repeated presentation of
input activity/desired output activity pairs, where the desired output is defined to be identical
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to the input activity. At each training trial, activity at the input layer is fixed according to the
coordinates of a data sample expressed terms of the high-dimensional feature space. For example,
each image of a pair of scissors, with blades open to some degree, generates one training sample,
or data point in feature space. Activity propagates through the network, and the output layer
activity is compared with that of the input, to create an output error vector. This error is used to
incrementally update link weights between the hidden and output layers in such a way as to reduce
the error. In addition, the output activity error is backpropagated through the hidden layer/output
layer link weights to arrive at an equivalent error in activity at the hidden layer. This essentially
amounts to analyzing how each unit at the hidden layer contributed to the error observed at the
output layer. The hidden layer error is in turn used to update link weights between the input and
hidden layers. In order to achieve patterns of activity at the hidden layer that are interpretable in
terms of a location on the lower-dimensional constraint surface, an auxiliary error is introduced at
the hidden layer to be added to the backpropagated error. This auxiliary error serves to pressure
the input/hidden links into creating patterns of activity at the hidden layer scalar-set taking a
characteristic unimodal form representing a location on the constraint surface. A more detailed
discussion of the connectionist dimensionality-reducer is presented in [Saund, 1986] and [Saund,
1987].

4 Dimensionality-Reduction in Shape Description

The practical matter of using a dimensionality-reducer involves measuring feature parameters on
images and plugging them into appropriate slots in the “black box” input. Each dimensionality-
reducer possesses knowledge of legal configurations of features for a given class of data, such as a
shape category. Tasks such as object recognition are in principle accomplished by testing feature
vectors delivered by early vision against various objects’ dimensionality-reducers, amounting to a
sort of generalized template matching. Some means must be provided for determining just what
measured features to pair with each input line; as the number of measured features increases there
occurs a combinatoric explosion of possible feature/input matchings. Therefore, to be utilized by a
visual system the dimensionality-reduction tool must be used within a computational shell control-
ling the mechanics of measuring features, selecting candidate object models, assigning measured
feature values to appropriate input lines, evaluating the dimensionality-reducer’s applicability to
the feature vector, and reading the reduced description off the side output lines.

The choice of features defining a higher-dimensional feature space is important to achieving
useful data abstraction through dimensionality-reduction. The example above illustrates that a
pair of scissors generates a one-dimensional constraint surface in a feature space derived from simple
edge and corner primitives. However, differently shaped scissors give rise to different constraint
curves in the feature space because they all create somewhat different configurations of edge and
corner features, and a separate dimensionality-reducer would be required for each constraint curve.
Where dimensionality-reduction might more realistically come into play is in interpreting feature
descriptions at a more abstract level, say, once edge and corner primitives have been grouped into
parts. Then, a single dimensionality-reducer might suffice to capture the blade pivoting constraint
inherent to all pairs of scissors.

Prior to training a dimensionality-reducer, it is important to select a dimensionality for the con-
straint surface to match the inherent dimensionality of the data. The connectionist dimensionality-
reducer described above provides no means for doing this automatically. However, it is easy to
detect whether the constraint surface is of inadequate dimensionality, because under this condition,
during training, a network will converge to a state in which it does not correctly map activity at
the input layer to (nearly) identical activity at the output layer in terms a unimodal pattern of
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Figure 8. a. Banana shapes arranged according to their locations on a two-
dimensional constraint surface found by a connectionist dimensionality-reducer.
These were originally described in terms of six simple features such as distances
between the ends and lengths and curvatures of various contour segments. The
parameters of variability found to pertain among these bananas are roughly the
curvature of the lower part of the banana (left/right), and the overall size of the
banana (up/down). b. Activity of the dimensionality-reduction network for one

banana. Note that output activity matches input activity, and that hidden layer
activity is centered around one location in the two-dimensional scalar-set.

activity at the hidden layer.

It is desirable to seek constraint surfaces of low dimensionality for two reasons. First, limits may
exist on the tractability of discovering many-dimensional constraint surfaces. The amount of data
that must be analyzed in order to establish a constraint surface increases as the power of the sur-
face’s dimensionality. In the current computer implementation of the connectionist dimensionality-
reducer, the cost in terms of network links and nodes appears to become prohibitive after m becomes
three or four. Second, the data simplification afforded by dimensionality-reduction may lose some
value when the underlying constraint surface is yet of high dimensionality. For example, it is not
certain that much is gained by describing data in terms of a ten-dimensional coordinate system in-
stead of a twenty-dimensional coordinate system. Dimensionality-reduction is perhaps most useful
when the constraints operating in a given problem can be decomposed into systems of just a few
inherent degrees of freedom each.

Constraint surfaces in multidimensional feature spaces arise in several different ways. The
scissors example illustrates a situation in which a single object generates a one-dimensional pa-
rameterized class of shapes by virtue of physically constrained motion between parts. Constraint
surfaces may also originate in classes of shape objects in which each individual object has a fixed
shape, but one that can vary in only certain ways from the shapes of other objects in the class.

Figure 8 shows a set of bananas that were originally described in terms of six properties crudely
measured on the banana shapes, such as the distance between the ends and average curvature of
various contour segments. By training a connectionist dimensionality-reducer on these data sam-
ples, the bananas were found to lie on a two-dimensional constraint surface in the six-dimensional
feature space. The organization of this constraint surface is illustrated in the figure; bananas are
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placed on a plane according to their respective two-dimensional coordinates. Note that banana
shapes are organized on the basis of very subtle differences in their geometrical properties.

Although the reduced dimensionality representation concisely encodes the essential parameters
of variability among members of the data class falling on a constraint surface, the lower-dimensional
coordinate axes do not necessarily align with interpretations of these parameters preferred by human
observers. For example, the horizontal and vertical axes of figure 8 roughly correspond to curvature
of the lower part of a banana, and banana size, respectively, however, the dimensionality-reduction
training procedure run again on the same banana data might rotate these axes an arbitrary amount
in the plane.

5 Conclusion

Dimensionality-reduction is a computational tool for exploiting knowledge of constraint latent in
a collection of data in order to achieve simpler and more perspicuous descriptions. It is applicable
when data samples lie on a lower-dimensional constraint surface embedded in an initial, higher-
dimensional, descriptive feature space. Unlike mathematical and physical model based procedures
for capturing constraint in early vision, dimensionality-reduction is a quite general concept which
holds the possibility for capturing the rather more complex and non-analytic nature of regularities
inherent to later visual analysis. The ultimate utility of this tool in computational vision and
Cognitive Science rests with the degree to which the visual world exhibits the appropriate type of
constraint. This paper presents two rather simple examples of dimensionality-reduction at work in
the analysis of visual shape.
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