Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

Permalink
https://escholarship.org/uc/item/7859m360

Author
Tycko, R.

Publication Date
1984-10-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7859m36p
https://escholarship.org
http://www.cdlib.org/

e oo a0

LBL-18475

ﬁ

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular
Research Division

BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

R. Tycko
(Ph.D. Thesis)

October 1984

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098



LEGAL NOTICE

This book was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their
employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency
thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect
those of the United States Government or any
agency thereof.

Lawrence Berkeley Laboratory is an equal opportunity employer.

-




LBL 18475

BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

Robert Tycko

This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Materials Sciences Division of the
U. S. Department of Energy under Contract Number DE-AC03-76SF00098.

{1IE






BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

"M'-‘ s

;:]W:‘p R R

Robert Tycko

- ABSTRACT

Theoretical methods for designing sequences of radio frequency (rf)
radiation pulses for broadband excitation of spin systems in nuc]ear
magnetic resonance (NMR) are described. The sequences excite spins
uniformly over large ranges of resonant frequencies arising from static
magnetic fie]d inhomogeneity, chemical shift differences, or spin
couplings, or over large ranges of rf field amplitudes. Specific
sequences for creating a population inversion or transverse
magnetization are derived and demonstrated experimentally in liquid and
solid state NMR.

One approach to broadband excitation is based on principles of
coherent averaging theory. A general formalism for deriving pulse
sequences is given, along with computational methods for specific cases.
This approach leads to sequences that produce strictly constant
transformations of a spin system. The importance of this feature in NMR
applications is discussed.

A second approach to broadband excitation makes use of iterative
schemes, i.e. sets of operations that are applied repetitively to a
given initial pulse sequences, generating a series of increasingly
complex sequences with increasingly desirable properties. A general

mathematical framework for analyzing iterative schemes is developed. An
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iterative scheme is treated as a function that acts on a space of

oy

operators corresponding to the transformations produced by all possible

El prwq‘nu‘l‘m o

pulse sequences. The fixed points of the function and the stability of

-

A

the fixed points are shown to determine the essential behavior of the
scheme. Iterative schemes for broadband population inversion are
treated in detail. Algebraic and numerical methods for performing the
mathematical analysis are presented.

Two additional topics are treated. The first is the construction
of sequences for uniform excitation of double-quantum coherence and for
uniform polarization transfer over a range of spin couplings. Doubie-
quantum excitation sequences are demonstrated in a liquid crystal
system. The second additional topic is the construction of iterative
schemes for narrowband population inversion. The use of sequences that
invert spin populations only over a narrow range of rf field amplitudes

to spatially localize NMR signals in an rf field gradient is discussed.
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Chapter I: Introduction

This dissertation describes theoretical approaches to the problem

of broadband excitation in nuclear magnetic resonance (NMR), and gives
experimental results that verify the theoretical work.

In most pulsed NMR experiments, a sequence of radio frequency (rf)
radiation pulses is applied to a sample containing magnetic nuclei
initially at equilibrium in a large, static magnetic field. The typical
experimental arrangement is shown in Figure I.1. The rf pulses excite
the nuclei to a non-equilibrium spin state, from which much weaker rf
signals are emitted and recorded. That state may be specified in detail
by a density operator. However, there is often one property of the spin
state that is of particular interest. That property may then be
considered to be the response of the spin system to the applied rf
pulses. Figure [.2 gives a schematic representation of the excitation
process.

The response is determined not only by the specific sequence of rf
pulses, i.e. the individual pulse lengths and rf phases, but also by a
set of experimental parameters. Thus, for a given pulse sequence, the
response of the spin system can be plotted as a function of one of the
experimental parameters, with the other parameters fixed at some nominal
values. An example of the form of such a plot is given in Figure I.3.
When the parameter X takes on its nominal value Ag» the response R())
has the desired value Rge In some small range of values of A around A,
R(r) is approximately Ro. The range of A for which R(A) = R0 defines

the bandwidth of excitation with respect to aA.
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‘Figure 1.1: Experimental set up for pulsed NMR. A sample is placed in
the coil of a tuned circuit in a large static magnetic field Bp- Rf

pulses create an oscillating field B1 perpendicular to the static field.
Oscillating rf signals emitted by the sample are detected.
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Figure 1.2: An NMR experiment can be viewed as a measurement of the
response of a sample to a given excitation. The excitation is typically

a sequence of rf pulses with well defined lengths and phases, possibly
separated by delays.
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Figure 1.3: The measured response is a function of experimental
parameters that are properties of the sample or imperfections in the
excitation sequence. Sequences are designed so that the desired
response R0 is obtained when the parameter A has its nominal value Age
A broadband excitation sequence produces the response R0 over a large

range of A around Ao
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Specifically, there are two responses that are the focus of much of
this dissertation. The first is the inversion of spin populations,
which corresponds to rotating nuclear magnetization from its equilibrium
direction parallel to the static field to the direction antiparallel to
the field. The second is the creation of a coherence between spin
states that corresponds to rotating the magnetization so that it lies in
a plane transverse to the static field. The experimental parameters
considered are the difference between the rf frequency and the spins'
resonant frequency, called the resonance offset, the rf amplitude, and
the strengths of spin couplings.

Certain standard excitation sequences for which R(AO) = R0 are used
in NMR experiments. These are usually the simplest possible sequences,
consisting of a single pulse or a small number of pulses. There are
many applications in which the bandwidths of the standard excitation
sequences are inadequate, however. Thus, there is a need for pulse
sequences that produce the desired response over larger ranges of the
experimental parameters. The derivation of such sequences is the
problem of broadband excitation in NMR.

The work described in this dissertation was motivated mainly by the
intrinsic interest of the problem. The emphasis has been on the
development and demonstration of general theoretical methods, rather
than on the specific pulse sequences. No particular chemical or
physical system has been investigated in detail. However, many uses for
broadband excitation exist. These typically take the form of
improvements on existing NMR techniques or extensions of the range of
applications of those techniques. For example, broadband excitation

makes relaxation studies possible in strongly coupled spin systems such

Hp
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as occur in solids. Various applications for broadband excitation are
discussed at the appropriate points in the text.

In addition to the NMR applications, many of the results are
directly transferrable to other forms of coherent Spectroscopy, i.e.
spectroscopy that employs pulses of radiation with a well-defined phase,
including pulsed electron spin resonance and coherent optics.

The chapters that follow are intended to be written at a level that
is comprehensible to anyone with experience in quantum mechanics. An
effort has been made to avoid unnecessary NMR jargon and to provide.at
least a brief explanation of the jargon when it is necessary. This is
meant to be in keeping with the overall presentation of broadband
excitation as a problem with intrinsic interest. However, there are
sections in which lapses into jargon are unavoidable, particularly in
discussions of applications. On the other hand, certain elementary
facts may seem to be treated in excessive detail. This has been done
where it is felt that a detailed treatment is lacking in textbooks and
other dissertations.

The chapters fall into three groups. Chapters II and III are
introductory. Chapter II gives the necessary quantum mechanical
formalism, including the requisite, but brief list of Hamiltonian terms.
The specific broadband excitation problems that are treated in detail
are defined, along with the experimental parameters that are éonsidered.
Chapter III reviews earlier work in the area of broadband excitation,
emphasizing the theoretical approaches used and the need for new
approaches.

Chapters IV and V present one approach to broadband excitation,

based on a formalism that is widely used in coherent averaging theory in

H;pcmnm'wqm.ym'nm [
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NMR. The application of the formalism to broadband excitation,
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including computational methods, is described in Chapter IV; the
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results, including experimental verifications, are described in Chapter
V. Chapter VI shows how certain results from Chapter V can be extended :;
to apparently unrelated broadband excitation problems by means of a
formal analogy. The examples of broadband excitation of double-quantum
coherence and broadband polarization transfer are treated in detail.
Experimental results for broadband double-quantum excitation are given.

The third group of chapters describes a different approach to -
generating pulse sequences, namely the use of iterative schemes. In
Chapter VII, iterative schemes for broadband population inversion are
developed and demonstrated. They serve as an example that illustrates a
theoretical framework for analyzing iterative schemes in general. That
framework depends on treating an iterative scheme as a function on a
space of operators. The performance of an iterative scheme is shown to
be dictated largely by fixed points of the function. Algebraic and
numerical methods for carrying out the fixed point analysis are
described. Chapter VIII extends the iterative schemes to the
construction of pulse sequences for narrowband population inversion.
Finally, Chapter IX contains fixed point analyses of iterative schemes
derived by other authors.

Much of the work presented in this dissertation has been published
elsewhere, although sometimes in less detail. The publications are

listed as references 1 through 9.



CHAPTER II: Quantum Mechanical Background
A. The rotating frame
1. Laboratory frame Hamiltonian

The interactions of nuclear spin systems that occur in many NMR
experiments can be described by a laboratory frame Hamiltonian of the

following general form [10,11]:

I, = -0

L (11.1)

0IZ + 2m1(t)1xcos(wt + ¢) +J(int
ﬂl has the units of radians per second, or energy divided by h.
—molz is the Zeeman interaction of a spin system, with total spin
angular momentum vector operator I, with a static magnetic field along
Zo wys the Larmor frequency, is equal to yBo, where B0 is the magnitude
of the static field and y is the gyromagnetic ratio. y is a
characteristic property of each nuclear isotope. Eq. (II.1) assumes
that all nuclei are the same isotopes, for example all 1H nuclei, so
that they share a common y. In common NMR language,J('L is said to be the
‘Hamiltonian for a homonuclear system.

2w1(t)lxcos(wt + ¢) is the term that describes the interaction with
a linearly oscillating rf field perpendicular to the static field.
ul(t) equals -yBl(t)/Z, where Bl(t) is the rf magnetic field amplitude.
w and ¢ are the frequency and phase of the rf. Typically, the rf field

is applied in pulses that are ideally square, so that wl(t) is

T

i xy::r’v W



piecewise-constant, taking on the values 0 and w? only. m? will be
referred to as the nominal rf amplitude. Also typically, w is constant
and ¢ is piecewise-constant.

Hint stands for all other interactions. These include internal
couplings between pairs of spins and between spins and internal fields.

The dominant term in Eq.(II.1) is the interaction with the static
field. w0/2w generally ranges from about 10 MHz to about 500 MHz,
depending on the isotope and the static field strength. w?/?n and all
the contributions to ¥, are usually at least 100 times smaller. Thus,
to a good approximation the eigenstates ofJ(L when the rf is turned off
are eigenstates of Iz. They occur in Zeeman manifolds characterized by
the eigenvalue m of Iz and separated in energy by increments of roughly

w When the rf is turned on, it induces a coherent mixing of the

0.
eigenstates if w is about equal to weye

2. Rotating frame transformation

The well-characterized, and therefore uninformative, interaction
with the static field can be largely removed, the oscillatory time
dependence of the rf can be made to vanish, and the important parts of
Jcintcan be made apparent by a transformation to a new frame of reference
called the rotating frame [10-12]. Rather than dealing with the
rotating frame transformation specifically, it is useful for the
development in later chapters to describe the general quantum mechanical
procedure for a change of reference frames [13].

A change of reference frames is defined by a unitary transformation

A(t), which may be time-dependent. If |y(t)> is the state of a system
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at time t in the original frame, the state at time t in the new frame

is Je(t)>:

[o(t)> = A(t) Ju(t)> : (11.2)

Given that ¥ is the Hamiltonian in the original frame, the Hamiltonian

¥' in the new frame may be found by the following argument. In their

respective frames, Jy(t)> and J¢(t)> evolve according to the Schrodinger

equation:
21u(t)> = Hpu(t)> (11.3)
i ie(t)> = 1'fe(t)> (11.4)

Substituting Eq.(I1.2) into Eq.(I1.4):

1(3—?):¢> + iAa%u» =¥ o> : (11.5)
Using Eq.(II1.3):

LG + Al =3 > (11.6)
Eq.(11.6) implies that:

' = 1(%%)A'1 + po! (11.7)

This expression for X' holds even if ¥ is time-dependent.

The specific example of the rotating frame transformation employs
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a unitary transformation given by:
A(t) = exp(-iul,t) (11.8)
Applying Eq.(II.7) to Eq.(II.1):

xi = sl + Zwl(t)(IxCOSwt + I sinwt)cos(wt + ¢)

y
-1
+ AXG, A (11.9)

where Aw = o - wg is the resonance offset. The rf interaction inJ&f
contains terms that oscillate at 2w and terms that do not oscillate.
Similar]ijqntA_l is generallya sum of constant terms and terms that
oscillate at multiples of w. Since w = wgs and wg is much larger than

m? and much larger than the magnitude of Hint > it is a good approximation

to retain only the non-oscillatory terms in ¥/, ﬂ[ then becomes ¥, given

by:
H = Awl, + w,(t)(I cos¢ + I sing) + x{o) (I1.10)
z 1 X y int
3(0) | -1 s +(0)
where It 1S the constant part of Aﬂ}ntA . Specifically, int

is the part of'?'('int that commutes with I.. ¥ in Eq.(11.10) is usually
taken to be the Hamiltonian in the rotating frame.

The step from in to ¥ can also be accomplished by averaging
in time over a single period v = 2s/w. At multiples of 1, the
laboratory frame and the rotating frame coincide, since A(nt) = 1. This
derivation of an approximate effective Hamiltonian by averaging a

time-dependent one is an example of a procedure that will be employed
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extensively in Chapters IV and V. |

Finally, the replacement ofinnt by ﬂﬂ%{ may also be justified by
perturbation theory, which states that the lowest order effect of the
perturbation ﬂﬁnt on the unperturbed energies established by -wyl,

comes from the part of x}nt that commutes with ~wgl .
3. Observations in the rotating frame

The rotating frame is more than a mathematical trick. Due to the
usual design of an NMR spectrometer, experimental observations are
actually made in the rotating frame. To show this, it is first
necessary to present the quantum statistical mechanical description of
spin systems and observables.

A spin system is described by a density operator, p(t). If the

system is in a pure state |y(t)>, the corresponding density operator is:
p(t) = Ju(t)><y(t)] (I1.11)

The system may also be, and generally is, in a mixed state, or an
incoherent superposition of states. In that case, it can not be
described by a single ket, but can be described by the density

operator:
p(t) = ¢ cnm(t)]n><ml (I11.12)

where {[n>}is a complete basis of orthonormal states, possibly

*

eigenstates of the Hamiltonian. p(t) is hermitian, so that o = Smn



Any other complete set of operators can be used in place of { |n><m|} as a
basis in which to express the density operator.

The evolution of p(t) is governed by the Liouville equation:
2lt) = i[p(t) ] (11.13)
The formal solution to Eq.(11.13) is:
p(t) = U(t)p(O)U(t)'1 (11.14)
where the time evolution operator U(t) may generally be written:
U(t) = Texp(-is g(t')dt") (11.15)

using the Dyson time-ordering operator T. U(t) is commonly called the
propagator in the NMR literature. The same propagator governs the

evolution of pure states:
[w(t)> = U(t) Jp(0)> (I1.16)

Given the density operator, the expectation value b of an

observable, hermitian operator B can be expressed as a trace:

b = Tr(Bp) (I1.17)
The laboratory frame observable in an NMR experiment is typically the
x component of the bulk nuclear magnetization. The corresponding

observable operator is proportional to Ix' Thus, the observed signal

i Iw: AT )

e
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S(t) is:
S(t) = Tr[IxUL(t)p(O)UL(t)-l] (11.18)

Here UL(t) is the propagator in the laboratory frame. Egs.(II.2) and
(I1.8) imply that the propagator U(t) in the rotating frame is related
to that in the laboratory frame by:

UL(t) = exp(iwlzt)U(t) (I11.19)
Substituting Eq.(I11.19) into Eq.(11.18), it can be shown that:

S(t) = Tr[IxU(t)p(O)U(t)-l]COSwt
+ Tr[IyU(t)p(O)U(t)-l]sinwt (11.20)

The coefficient of coswt in S(t) is the expectation value of the x
component of spin angular momentum in the rotating frame; the
coefficient of sinwt is the expectation value of the y component.
Experimentally, the signal S(t) is divided in two and mixed
separately with two rf reference signals, one proportional to coswt and
the other proportional to sinwt. The two results after mixing are then
passed through separate, low-pass audio filters. This process of mixing
and filtering has the effect of extracting signals that are proportional
to the coefficients of coswt and sinwt. The two extracted signals are

stored as the real and imaginary parts of a complex signal S+(t):

s, (t) = TrLIU(t)p(0)u(t) ™ o (1n21)
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with I: = Ix E in. The experimental arrangement is illustrated in

Ml‘v T

Figure II.1.

L A

Thus, experiments are actually performed in the rotating frame,
with the two measured signal channels correspondinyg to the rotating
frame x and y components of spin angular momentum. In subsequent

discussions, the rotating frame will be assumed unless otherwise stated.
B. Nuclear spin interactions
1. Zeeman interaction

The Zeeman interaction with the static field has already been
introduced and has been shown to give rise to the AwIz term in
Eq.(I11.10). The offset Aw can be the result of a missetting of the rf
frequency, or it can be the result of spatial inhomogeneity of the

static field. In the latter case, aw is a function of spatial position.
2. Rf interaction

The interaction with rf fields has been shown to give rise to the

ml(t)(lxcos¢ + I sing) term in Eq.(II.lO). As mentioned earlier, wl(t)

y
has the nominal value w? during a pulse. However, wl(t) is always

inhomogeneous in space, so that the rf interaction can be written:

ysin¢) :
+ 80, (1 cose + Iysin¢) (11.22) .

s = wg(lxcos¢ + 1
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Fjgure I1.1: Typical design of an NMR receiver that allows observations
to be made in the rotating frame. Signals near the rf carrier frequency
are mixed independently with rf references with a 90° phase difference.
The complex audio signal after filtering corresponds to the the x and y
magnetization components in the rotating frame.




where 8wy is a function of position. The significance of rf
inhomogeneity depends on the design of the coil that produces the rf

fields and on the relative sizes of the coil and the sample.

3. Chemical shifts
The chemical shifts are one contribution to Rint’ with the form:

Heg = -zsilzi (11.23)
The sum in Eq.(II.21) is over individual nuclei. The chemical shift is
a shift in the apparent Larmor frequency of a nucleus due to its
chemical environment, specifically due to local fields set up by
electron currents. The shift is proportional to the static field, so
that chemical shifts are measured as fractions of the Larmor frequency,
in parts per million (ppm). For hydrogen nuclei (protons) in organic
liquids, the chemical shift range is about 10 ppm; for 130 nuclei, it
is about 200 ppm.

The resonance offset term and the chemical shift terms are clearly
similar in form. In subsequent discussions, particularly in problems
involving isolated spins or systems of spins with identical chemical
shifts, the offset and chemical shift terms are combined and referred

to collectively as the resonance offset.
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4. Dipole couplings .

T

1 A

Another contribution to Hint is the dipole coupling:

L

Xy = i§jdij[lzilzj - (1/3)Ii.lj] (I11.24) -
¥y is the interaction of the magnetic moment of one nucleus with
the magnetic field created by the dipole moment of another
nucleus. The sum in Eq.(I1.24) is over all pairs of nuclei. The

coupling constants di‘ are given by:

J

2
L2 (1 - 3cos eij)

r'IJ

rij is the distance between nuclei i and j; °ij is the angle between
the internuclear vector and the static field direction, i.e. the 2z
axis. Dipole couplings on the order of 50 kHz are common in proton NMR
of organic solids. If there are rapid molecular motions, the right-hand
side of Eq.(I1.25) is replaced by its time average. “Rapid" means that
the motions occur on a time scale that is small compared to l/dij' Such
motions reduce the effective coupling constants if the motions are
anisotropic, as in the rotation of methyl groups in organic solids or
the restricted movements of liquid crystals. If the motion is

isotropic, as in the tumbling of small molecules in liquids, the

coupling constants average to zero.
5. Quadrupole couplings

Quadrupole couplings also contribute to J%nt’ The quadrupole
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coupling is an interaction between the quadrupole moment of the nuclear
charge distribution and electric field gradients at the nucleus, set up
by the electronic charge distribution. It can be put in the form of a
nuclear spin interaction through the Wigner-Eckart theorem [10,11,14].

If the field gradients have axial symmetry, the result is:

2 2
* = T gl - (13)1] (11.26)
1 .
3eQ.V__.
wgi = BRI (3cos?e; - 1) (11.27)

where eQi and vzz are respectively the quadrupole moment and the

i
electric field gradient along the unique direction for the ith
spin. 6; is the angle between the static field direction and the
unique field gradient direction. Quadrupole couplings of several hundred
kilohertz are common in solid state deuterium NMR.

For a nucleus to have a quadrupole coupling, it must have a
total spin quantum number greater than 1/2. For spin-1/2 nuclei,
[sz - (1/3)I§] is zero. Eq.(I1.26) also applies to non-axially
symmetric field gradients, but the orientational dependence of Qi is
more complicated.

The remarks about the averaging of the dipole coupling constants by

molecular motions apply identically to g In particular, quadrupole

couplings are averaged away in liquids.

qu and Ka

they are both irreducible tensor operators of the type TZO'

have an obvious similarity of form. As discussed later,
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6. Scalar couplings

The final contribution to Hint that plays a role in subsequent
discussions is the isotropic J coupling, or scalar coupling:

H,o= I J;.1

1.1, (11.28)
Iy M

i*7J
The scalar coupling is an indirect coupling between two nuclear spins,
mediated by electron orbitals that cover both nuclei. The Jij are -

generally much smaller than the d the wgi » and w?. Scalar couplings

ij?
between protons in liquid state NM; are usually less than 15 Hz.
Couplings between protons and 13C nuclei are less than 200 Hz. The
scalar coupling is thus negligible except over rather long time periods.
It has important effects only where mentioned explicitly.

The form in Eq.(11.28) applies when the chemical shift differences
of coupled nuclei are smaller than or comparable to Jij' When[s, - Gjl

>>ldijl, the following form may be used:

¥, = i?jdijllilzj (11.29)
Eq.(I1.29) retains only the part of ﬂh that commutes withJCCS. The
elimination of non-commuting parts can be justified by

perturbation theory, or by an averaging argument such as the one

that led to the replacement of “fnt by “ﬁai in Eq.(I11.10). Systems
in which Eq.(11.29) applies are often called "first-order" or

"weakly coupled" systems.

e

SAEELE ‘]m LR
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C. Pulse sequence propagators
1. General remarks

The effect of an rf pulse sequence on a spin system is given by the
propagator, defined most generally in Eq.(II.13). Eq.(II.13) can be viewed

in several ways. The exponential operator can be expanded in a series:

t | t
u(t) = 11 - ifozc(t’)dt' - (1/2)(f03f(t')dt')2 +...]  (11.30)

The time-ordering operator performs the following function:

x(tlxw(tz), t1 > t2
Te(ty be(t,) = , (11.31)
H(t,he(ty), ty <ty

which converts Eq.(I1I1.30) to:

t t t
u(t) =1 - ifodtlJC(tl) - fodtlfoldtz'l((tl)!{'(tz) +eee  (11.32)

Eq.(II.32) is the Dyson series expression for a propagator [15].
If the Hamiltonian is piecewise-constant, equal to ¥y, ¥,, ¥4, etc.
during successive intervals of length tl, tz, t3, etc., the propagator

can be written:

U(t) = exp(-B t )...exp(-#(,t,)exp(-#( t,) (11.33)
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t=zt, (11.34)
If the Hami;tonian varies continuously in time, imagine dividiqg the
total time interval t into many small subintervals during which the
Hamiltonian is essentially constant. Then an expression like Eq.(I1.33)
holds to an increasingly good approximation as the number of

subintervals increases. Thus, for a general time-dependent Hamiltonian:

U(t) = 1im exp[-i3(t)t/N]...exp[-i3(2t/N)t/NJexp[ -ix(t/N)t/N]
(I1.35)

The expression in Eq.(I1.15) can be thought of as shorthand for
Eq.(II.35).

The rotating frame Hamiltonian during an ideal pulse sequence’is
piecewise-constant. A pulse sequence composed of n contiguous pulses

, where 8 =

may be represented by the notation (6,) (ez) eee(.)
1 ¢1 ¢2 n th

*n

mgri, with Ty and ¢; being the length and phase of the i~ pulse. o, is

i
frequently called the flip angle of the pulse.
Propagators for Hamiltonians that are not piecewise-constant are

considered in detail in Chapter IV.
2. Isolated spins and two-level systems

In liquid state NMR, it is generally a good approximation to
consider the individual nuclei to be isolated spins during a pulse,
since the scalar couplings are very small compared to typical
values of wg . In treating the effect of a pulse sequence on a

system of uncoupled, isolated spins, it is sufficient to consider

e A

SRR R
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a single spin, with angular momentum operator 1. The Hamiltonian

during a pulse of length t is:

= .36 =

X Awlz + mll¢ (11.36)

I¢ = I cos¢ + 1sing (11.37)
The propagator is:

U() = expl-i(8w/wl, + wi/wdl Judr] (11.38)

T P w Nl 2z 0)1 (Dl ¢ wl't .
The propagator is therefore specified by four quantities: a
phase ¢, a flip angle w?r, a relative offset Aw/wg, and a
relative rf amplitude wl/wg.
Any unitary operator of the form:

R = exp(-ig.L) : (I1.39)

is a rotation operator in the operator space spanned by{Ix, Iy,

1,}. The length of a is the net rotation angle and the direction
of o is the rotation axis. The sense of the rotation is
established by the relation:

exP(-iIxe)lyexp(ilxa) = 1,cose + 1. sing (11.40)

y
Eq.(I1.40) holds if {x,y,2} is cyclically permuted, as well.

U(1) clearly has the form of a rotation operator. The overall
propagator for a sequence of contiguous pulses is the product of the

propagators for the individual pulses. Since any product of rotations
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is equivalent to some single net rotation, the propagator for any pulse
sequence is a rotation operator.

The pulse sequence propagator acts on the initial density operator,
transforming ft to a final density operator. If the initial density

operator describes a spin system at equilibrium, it is given by:
p(0) = exp(- ﬂl/kT)/Tr[exp(-JfL/kT)] (11.41)

where ﬂl is the laboratory frame Hamiltonian with no rf fields present.
Since the dominant term in ﬂl is the Zeeman term, and since wg << kT at
temperatures above a few degrees K even for proton NMR in the highest

fields currently available, it is a good approximation to write:

p(0) = [1 + wyI,/kTI/N (11.42)

Here N is the total number of spin states, or the dimension of the
system. This is the high temperature approximation [10,11,16]. The
unit operator part of p(0) commutes with all propagators and does not
contribute to observed signals. Therefore, it is usually dropped along
with the constant of proportionality multiplying I, which only
determines the absolute signal amplitude, leaving an initial density
’operator of Iz. Rf pulses then rotate the density operator to some

linear combination of Ix’ I, and Iz. The density operator is therefore

y
always in the form:

p(t) = M(t).1 (11.43)
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where M is a unit magnetization vector, or Bloch vector [17]. It is

sometimes useful to picture the effect of a pulse sequence on an

isolated spin as the trajectory of M(t) on a unit sphere, as will be 3
seen in Chapter III.

That a pulse sequence propagator is a rotation and that the state
of the spin system may be described by a Bloch vector are both
consequences of the linear form of the Hamiltonian and of the
commutation rules for angular momentum operators. The above discussion
therefore applies to isolated spins with any total spin quantum number,
not just to spin-1/2 nuclei. However, the state of any quantum
mechanical two-level system, of which a spin-1/2 nucleus is an example,
can be described by a Bloch vector [18]. Its time development can be
described as a series of rotations. This is because the 2X2 matrices

corresponding to {1, I s Iz} form a complete basis for all 2X2

x? Iy
matrices. Both the Hamiltonian and the density operator may always be

written as linear combinations of Ix, I nd Iz plus constants,

y @
regardless of the physical origin of the system and the Hamiltonian. -

3. Coupled spins

If dipole or quadrupole couplings exist, the Hamiltonian has terms

that are bilinear in the angular momentum operators. The pulse sequence

propagator is no longer a rotation, but is a more general unitary
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transformation. For a pulse of length t, the propagator is:

Ux) = expg-iL(aw/wi)l, - 5(6;/up)1,
+ T(agi/ep)(12 - (1/3)15)
+I (dij/wg)(IZilzj - (1/3)14415)
+ gy 1,0 %) | (11.44)

The propagator is therefore specified by a phase, a flip angle, a
relative offset, a relative rf amplftude, and sets of relative chemical
shifts, relative quadrupole couplings, and relative dipole couplingé.

The initial density operator is still Iz. There are certain
important cases in which the evolution of the density operator can be
calculated analytically after reasonable simplifying assumptions. There
are other cases in which symmetry in the pulse sequence places
restrictions on the evolution. These will be encountered later. In
general, however, the evolution can only be calculated numerically. The
results depend on the specific network of couplings.

If the density operator is expressed according to Eq.(II.12), with
{In>} being eigenstates of IZ and of the Hamiltonian, certain names can
be assigned to the coefficients Cnm that make up the density matrix.

The diagonal element Snn is the population of the state|n>. An

off-diagonal element nn' is a coherence between states |n> and |n'>. If:

Iz]n> = mnln> . (I1.45)
Lin'> =m..n'> (I1.46)

the coherence is called an (mn - mn.)-quantum coherence, e.g. a
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zero-quantum, single-quantum, double-quantum, or in general a
multiple-quantum coherence.
Only single-quantum coherence contributes to observable signal,

in particular only single-quantum coherence Con' that satisfies:

Tr(I,In><n") = 0 (11.47)
or:

<n'lI+ln> =0 (11.48)

D. Broadband excitation problems

1. Population inversion

The pulse sequence propagator in general depends on dimensionless
experimental parameters such as the relative offset, the relative rf
amplitude, and the relative couplings. The object of broadband
excitation is the development of pulse sequences whose propagators are
nearly independent of one or several of those parameters over some large
range of values. Two specific types of pulse sequences are of
particular interest because of their many applications in NMR. The
first is a sequence that inverts spin populations. Spin population
inversion is defined by the following property:

U(T)Izu(xil = -] (11.49)

Z
or.:

{U(-[)’Iz} = 0 (11.50)

A

i
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where the curly brackets indicate an anticommutator. A pulse sequence

that inverts populations takes an initial denéity operator of I, to a

final density operator of -1,. For a more general initial condition,
population inversion corresponds to an exchange of the total populations

th

of the m~ and (-m)th Zeeman manifolds, for all m. To see this, write

the initial density operator as:
LLcC_i..1(0)ms>m',s'| (11.51)
ss .

The states |m,s> are eigenstates of Iz, with eigenvé]ue m, and of ¥ without

the rf interaction, with eigenvalue w The total population pm(t) of

sl
the mth Zeeman manifold is defined by:

e

Pu(t) = L cpes(t) (11.52)
S .
Using the fact that:

Comss (1) = Triim,s><m,sip(x)] (11.53)
the total population of the (-m)th Zeeman manifold at the end of the

inverting sequence may be written:

1 g0 (0)TrL 1 =, > <-m,s1U(T)Im* ' ><n" 51 U(< ]
(11.54)

nl ‘m'm

Because of Eq.(I1.50):
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U(t)Ims> = ¢ 3l Mit> (11.55)
t =

Then Eq.(11.54) becomes: ' 3

*
p_m('r) = ;';”g §'§"§ E.lemnsnsn(O)amnsctamusntl
X Tr(}=-m,s><-m,st-m',t><~-m",t'l ) (I1.56)
Using the unitarity of U(t) and the fact that:
Tr(1-m,s><-m,s|-m*,t><-m",t'} ) = Gm,m'sm,m"és,tss,t' (11.57)
P_, (1) reduces to:
P (1) = §.c“““s.s.(0) (11.58)
which is pm(O).
Any U(t) that satisfies Eq.(I11.49) can be rewritten as:
U(t) = exp(-ilxt)A (I1.59)

where A is a unitary operator that commutes with IZ. This is so

because:

A= exp(il x)u(t) (11.60)

and:
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exp(iL,m)U(1)I, = exp(iI,%)U(1)I,U(r¥lexp(-il x)
X exp(il,%)U(x) (11.61)
= 1exp(il x)U(x) (11.62)

For an isolated spin, the only possibility for the form of a propagator

that inverts populations is:

U(t) = exp(-iI,w)exp(2il,¢) (11.63)

or equivalently:
U(r) = exp(-il¢n) (11.64)

It is sometimes useful to picture the inversion of an isolated spin as a
Bloch vector trajectory from +z to -z on a unit sphere.

The extent of inversion is measured by the quantity W, defined by:
1 2
W= =Tr[IU()1,U(<]" 1/Tr (1) (11.65)

Thus, W is the negative of the expectation value of the final z
component of spin angular momentum, normalized to a maximum value of 1.
W =1 corresponds to complete population inversion, while W = -1
corresponds to equilibrium populations. For an isolated spin, -W is the
-final z component of the Bloch vector.

The standard method for inverting populations in pulsed NMR
experiments is to use a single » pulse, i.e. a pulse with a flip angle

of x. To illustrate the need for broadband inversion sequences, and to

R |

T
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give a benchmark against which the later sequences can be compared,
Figure II.2 shows theoretical plots and experimental data for the exteﬁt g

of inversion by a single pulse as a function of the relative offset and

the relative rf amplitude. These results apply to a system of isolated =
spins. It is clear that the inversion bandwidth is quite limited with
respect to both the offset and the rf amplitude. The exact expression

for the inversion in this case is:

W= -(coszxcos; + sinzx) (11.66)
x = tan’ (sw/w;) (11.67)
¢ = w(ad + 802) Y2700 | (11.68)

Two criteria for defining a'broadband inversion sequence may be
used. Thg more liberal one is that the pulse sequence propagator be in
the form of Eq.(II1.59) over a large range of some experimental
parameter, such as the relative offset or rf amplitude, but with A 50 0
allowed to be a function of that parameter. For such a pulse sequence,
populations will be inverted over a large range of the parameter. An
initial density operator of IZ will be transformed to -Iz. However,
other initial density operators will in general be transformed to 5 |
final form that is still a function of the parameter.

A more stringent requirement is that the propagator be strictly
constant over a range of the parameter. Then an arbitrary initial
condition will be transformed in a constant way. There are certain | .
important applications of broadband inversion sequences in which the 7
more stringent requirement is necessary. These are discussed in Chapter

V. It is particularly useful to generate a pulse sequence with a
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Figure I1.2: The extent of population inversion produced by a single =
pulse as a function of the resonance offset Aw(a) and the true rf
amplitude wy (b). Simulations (solid lines) and experimental proton NMR
measurements (dots) are shown. The experimental measurements were
performed on Hzo(l) with a nominal rf amplitude w?/Zn = 21.6 kHz.
Broadband inversion sequences (composite » pulses) are designed to have
larger inversion bandwidths than those shown here.
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constant propagator of the form of Eq.(II1.64), even in a coupled spin

system.

!“ R

ol

2. Creation of transverse magnetization :

The second type of pulse sequence that is of special importance is

one that takes Iz to a linear combination of Ix and I, i.e.:

Y

U(t)IzU(rf1 = I,sing - chos¢ (11.69)

This corresponds to the creation of transverse magnetization from
longitudinal magnetization. For an isolated spin, the sequence yields a
Bloch vector trajectory from +z to a point on the equator of a unit
sphere. In a coupled spin system, the density operator may evolve into
a general linear combination of operators at intermediate times between
0 and 1.

A general form for U(t) satisfying Eq.(I11.69) is:
U(t) = exp(-iI_¢)exp(-il n/2)B (11.70)

where B is a unitary operator that commutes with I,. That B commutes

with I, if U(t) satisfies Eq.(11.69) may be shown as follows:

B = exp(ilxw/Z)exp(iIz¢)U(t) (I1.71)
BIZ = [exp(ilxw/Z)exp(iIz¢)U(t)IZU(rflexp(-iIz¢)
X exp(-iwa/z)]exp(iIxa/z)exp(ilz¢)u(r) (11.72)

- '73
1B | (11.73)
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For an isolated spin, the only possible form for U(z) is:
U(t) = exp(-iIz¢l)exp(-1wa/Z)exp(-iIz¢2) (11.74)

The extent of the creation of transverse magnetization can be measured
by the quantity Mxy’ defined by:
1/2

) /

_ Il

~— &N

M
M, = Tr{1 U(x) LU T /Te(12) (11.76)

Mxy is proportional to the signal amplitude observed immediately

following the pulse sequence. The signal phase & is defined by:
tang = My/Mx (I11.77)

If the pulse sequence propagator is in the form of Eq.(II.70) over a
large range of some experimental parameter, Mxy will be constant and
equal to 1. ¢ may still vary, reflecting variations in ¢ in Eq.(I1.70).

The standard way to create transverse magnetization in NMR is with
a single %/2 pulse, i.e. a pulse with a flip angle of /2. Figure II.3
shows plots of the signal amplitude and phase following a %/2 pulse,
with an rf phase of zero, as a function of the relative offset. Figure
I1.4 shows the signal amplitude as a function of the relative rf

amplitude; the phase is constant. Again, these results apply to

isolated spins. The exact expressions are:
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resonance offset.
signal phase is a strong, approximately linear, function of the offset.

Composite v/2 pulses may be designed to give a constant signal phase
over a larger bandwidth.
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Simulations of the NMR signal amplitude and phase

The signal amplitude bandwidth is large, but the
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Figure I1.4: Simulation of the NMR signal amplitude following
excitation by a single /2 pulse as a function of the relative rf

amplitude. Composite /2 pulses may be designed to produce uniform
excitation over a larger range of rf amplitudes.
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My = cosx[sin2y(1-cosg)2 + sinZg]l/2 (11.78) -

tané = sing/[siny(cosg - 1)] (11.79) ;

where x and ¢ are defined in Eqs.(I11.67) and (11.68). Figure II.3 indicates
thgt Mxy

approximately linearly with offset. Figure II.4 indicates that Mxy is not

is fairly constant over a large range of offsets, but ¢ varies

constant as a function of the rf amplitude.
Again, two criteria may be used to define broadband creation of
transverse magnetization. If the propagator is only required to be in

the form of Eq.(I1.70), M, will be constant but & may vary. A general

Xy
initial density operator will not be transformed in a constant way. In
certain applications, it is important that U(t) be strictly constant.
In particular, it is useful for U(t) to be a constant rotation, in the
form of Eq.(11.74).

Finally, rotations of the form of Eq.(11.74) perform many other

functions in addition to the creation of transverse magnetization. Some

of these are discussed in later chapters.
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Chapter III: Previous Work in Broadband Excitation
A. Adiabatic inversion

An early method for broadband population inversion is the adiabatic
rapid passage [10,17]. In this technique, a long, continuous rf pulse
is given and either the rf frequency or the static field strength is
swept so that the resonance offset goes from a large positive value to a
large negative value, or vice versa, for all spins. If the sweep is
accomplished in a time that is short compared to spin relaxation times,
and Tong compared to l/wg, then populations are inverted to a high
degree of accuracy in isolated spin systems.

The performance of an adiabatic sweep can be explained generally in
terms of the Adiabatic Theorem of quantum mechanics [13]. In this
specific case, however, a simple argument leads to a more detailed
understanding. Consider the rotating frame Hamiltonian during a linear

field sweep:

I = Aw(t)lz + ol (I11.1)
Aw(t) = -kt, -t ctety (I11.2)
Aw(t) and w, are the z and x components of an effective field Waff> with

a time-dependent magnitude and direction. k is the sweep rate. 1In a
new reference frame related to the rotating frame by the transformation

T(t):

i

AR (5

S A
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T(t)

exp[i1 6(t)] (111.3)°

o(t) = /2 - tan"'[au(t)/w,] (111.4)

the Hamiltonian is:
_ de

If Woff >» %% at all times during the sweep, in the new frame it appears
as if the field is always nearly aligned with the z axis. This is the
condition that the sweep be slow, placing an upper limit on k. If
e(-to) = 0, the initial density operator in the new frame is
approximately Iz. This is the condition that the sweep start far above
resonance. If'ﬂ&.is always nearly proportional to Iz’ the density matrix
remains approximately equal to I, in the new frame throughout the sweep.
At the end of the sweep, the rotating frame is related to the new frame
by T(to)'l. If e(to) = x, then the final density operator in the
rotating frame is approximately 'Iz’ This is the condition that the
sweep end far below resonance. The degree of accuracy of the inversion
is determined by the extent to which the various conditions are
satisfied. It is generally sufficient to have w ¢ > 50%%),6(-t0)< 0.1,
and e(to) >x%x - 0.1. Such a sweep requires a total time 2ty > 2n X
100/w1.

Broadband inversion with respect to the resonant frequency is
possible since, for a linear sweep, the condition Woff » %% is
satisfied for all resonant frequencies once it is satisfied for any

particular frequency. To invert spins over a large range of resonant

frequencies, it is only necessary to begin the sweep far above the

R RTLEE

-

i
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highest resonant frequency and end it far below the lowest resonant

frequency. Calculated plots of inversion as a function of the resonance

mwlz:qrwnqwmu R

“offset", i.e. the displacement from the central frequency of the

e -

sweep, are shown in Figure IIlI.1 for sweeps of various lengths.

Broadband inversion with respect to the rf amplitude is possible .
since the condition waff > %% is satisfied for all values of w; greater
than m? once it is satisfied for wg. Eventually, w) may become so large
that 8 is no longer nearly 0 and » at -to and tO’ respectively. This
places the upper limit on the inversion bandwidth in wys but that upper
limit can be made as large as desired by using a large toe Simulations
of inversion as a function of the rf amplitude for sweeps of various
lengths are shown in Figure III.2.

Thus, the inversion bandwidths with respect to the resonant frequency
and the rf amplitude are ultimately limited only by the total time allowed
for the sweep. The time is in turn limited by spin relaxation and by spin
couplings, in other words by the time scale on which it is a good

approximation to consider spins as being isolated. -
B. Composite pulses

The use of a sequence of single-frequency, phase-shifted pulses to
perform the functions of a single » or x/2 pulse, but over a larger
bandwidth, was first suggested and demonstrated by Levitt and Freeman .
[19-28]. Those authors introduced the name “"composite pulse" to 7
describe such a sequence. A composite pulse offers several advantages
over an adiabatic sweep. First, an adiabatic sweep does not apply to

the creation of transverse magnetization over a range of resonant
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Figure III.1: Simulations of inversion as a function of the relative
offset for linear frequency sweeps with a sweep rate k/(w?)z = 0.2.

The overall lengths of the sweeps are Zw?to = 15.82 (a), 31.46 (b),
62.86 (c), 200.0 (d). The offset is the difference between the resonant
frequency and the central frequency of the sweep.
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frequencies, while composite pulses that invert populations and that

create transverse magnetization may be derived. Second, fairly large

Inaq: LU

bandwidths are accessible with composite pulses that are more than ten 4

sl r;

times shorter in time than an adiabatic sweep. Third, composite pulses
that have large bandwidths with respect to spin couplings may be
derived, while an adiabatic sweep is generally not effective in a
coupled spin system. Fourth, composite pulses that have constant net
propagators may be derived, with important consequences that will be
discussed later. Finally, composite pulses are easily given
experimentally on modern pulsed NMR spectrometers, while the capability
to perform field or frequency sweeps usually does not exist.

The original derivation of composite pulses by Levitt and Freeman
[19] and by Freemaﬂ, Kempsell, and Levitt [20] relied on Bloch vector
pictures and computer simulations. Bloch vector trajectories were
examined as a function of Aw/w? or wl/w?. The phases and flip angles of
pulses were chosen so that the deviation from the ideal trajectory, i.e.
the trajectory with Aw = 0 and w = w?, in one pulse was compensated by
the deviations in other pulses. Important examples are the composite =
pulses of the form 900990900. Regardliess of 8, a 900690900 sequence
inverts spins when Aw = 0 and wy = w?. When 8 = 0, the sequence reduces
to a single w pulse. By choosing & # 0, it is possible to extend the
inversion bandwidths in wy and Aw. Intuitively, this can be understood
by an argument based on a Bloch vector. Consider the case where wq <
w?. The first 900 pulse takes the Bloch vector from +z to a point in
the yz plane short of the y axis. If a perfect 180° rotation could be
given about the y axis, the Bloch vector would move to a point in the yz

plane related to the previous point by a reflection in the xy plane.
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Then the final 900 pulse would take the Bloch vector to -z, completing
the inversion. Of course, if a range of wy values is present, it is
impossible to give a perfect 180° rotation for the entire sample.
However, it is at least conceivable that 90018090900 may have a larger
béndwidth than 1800. For variations in Aw, the argument is not as
simple, since variations in Aw affect the direction of the rotation axis
for a pulse as well as the rotation angle. However, simulations of the
trajectories and of the resulting inversion as a function of Aw Show
that 90024090900 has a large inversion bandwidth, covering offsets of Aw
< O.Swg. Simulations of the inversion as a function of Aw and wy for
various 900990900 sequences are shown in Figure III.3.

Later derivations of composite pulses by Levitt and Freeman [21]
employed a more mathematical analysis, treating pulse sequences as
products of rotation operators. The propagator U for 90018090900 as a

function of the rf amplitude is as follows:

U = exp[-il (v/2 + e)]exp[-ily(n + 2¢)Jexp[-i1,(n/2 + €)]
(111.6)
e = nlup - wi)/26) (111.7)
To first order in e:
Us= éxp(-iwa/Z)exp(-inu)exp(-iIxn/Z)exp(ZiIze) (111.8)
= exp(-11 x)exp[il (x + 2¢)] (111.9)

Eq.(II1.9) has the form of Eq.(II1.63)
Similarly, the propagator for 90027090900 as a function of Aw
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Figure II1.3: Simulations of the extent of population inversion as a
function of resonance offset (a) and rf amplitude (b) for the composite
% pulses 90018090900 (solid lines), 90024090900 (dashed lines), and
90027090900 (dotted lines).
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can be written:

U= exp(iIyx)exp(-ilxc/2)exp(-iIyx)exp(-ilxx)
X exp(-31Iy;/Z)exp(1Ixx)exp(1Iyx)exp(-1Ix;/Z)exp(-1Iyx)

(111.10)
With x and ¢ defined in Eqs.(I1.67) and (I1.68), with u = u).
To first order in Aw/wgz
U= exp(-11,%/2)exp(-311,5/2)exp(-i1,7/2) (111.11)
= exp(-ilxw)exp(3ilzw/2) (IT1.12)

Eq.(II1.12) has the form of Eq.(11.63). In addition, the propagator for
90027090900 is independent of Aw to first order in Am/wg, i.e. it is a
constant net rotation.

Further work by Levitt [22,23] involved evaluating the final
density matrix as a function of wy Or Aw in a Taylor series expansion
about the value at wy = w? and aw = 0. Simple geometric conditions were
derived under which the first-order correction term in the expansion
could be made to vanish. For example, for the case of variations in Wy
it can be shown that the first-order term vanishes for a two-pulse
sequence if the ideal Bloch vector trajectories during the two pulses
have the same arc length and are antitangential. One sequence that
satisfies those conditions is 900180120, assuming an initial Bloch
vector aligned with the z axis. 900180120 takes Bloch vectors from +z

e 0
to points in the xy plane to a good approximation over the range 0.&»1 <

w, < 1.2wg. From there, the sequence 180120900 takes the vectors from

s

e 1 e

s
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the xy plane to -z, along trajectories that are approximately relatedlfo

the trajectories during 900180120 by reflection in the xy plane. For wy

= wg, the reflection symmetry is exact. Thus, 90036012090o is suggested
as a composite = pulse that covers a range of rf amplitudes.

On the whole, the composite pulse work of Levitt, Freeman, et al.
is of great practical importance. They have suggested simple sequences
that significantly improve upon the bandwidths of single pulses.
Additionally, they have demonstrated the usefulness of composite pulses
in spin-lattice relaxation time measurements [19,20], Carr-Purcell
multiple spin echo experiments [21], two-dimensional NMR experiments
(28], and heteronuclear decoupling experiments [24,25,29-32].

Certain limitations of the theoretical approaches described above
provided the motivation for developing new approaches to the derivation
of composite pulses, as described in this dissertation. First, the
reliance on Bloch vector pictures and computer simulations and the
treatment of pulse sequence propagators as products of rotations limits
the development of composite pulses to isolated spin problems. In
coupled spin systems, the vector pictures do not apply. It is not
possible to perform definitive computer simulations that apply to all
coupled systems. The pulse sequence propagators are more complicated,
without corresponding simple geometric pictures. Second, while it
appears reasonable to expect that the bandwidths of composite pulses may
improve as the number of individual pulses increases, the original
methods of Levitt and Freeman do not provide a systematic method for
deriving successively longer sequences with increasing bandwidths. An
attempt to go beyond first-order arguments is cumbersome and not

particularly successful [23], lTeading ultimately to a reliance on
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computer simulations and optimizations. Third, composite pulses are
derived from the standpoint of a particular initial spin density
operator, namely I. The result is pulse sequences that are not
strictly constant over any bandwidth, except in the fortuitous example
of the 90027090900 sequence. Finally, no methods are proposed for
generating sequences for broadband excitation with respect to more than
one experimental parameter at a time.

In the following chapters, theoretical methods for deriving
composite pulses that overcome the above limitations are presented. - In
addition, further developments by other authors that have been made
concurrently with the work described in the following chapters are

discussed where appropriate.
C. Broadband population inversion by phase-modulated pulses

Before moving on to the main body of the dissertation, an approach
to broadband population inversion in systems of isolated spins that
bridges between composite pulses and adiabatic inversion will be
discussed briefly. The central idea is that, as the number of
phase-shifted pulses in a composite pulse increases, the composite pulse
may begin to resemble a single rf pulse with a continuously modulated
phase. Conversely, if a continuously modulated pulse with broadband
inversion properties is known, it may be possible to generate composite
pulses by approximating the continuously varying phase function by a
piecewise-constant function.

Pines has suggested using a particular pulse first proposed by

Allen and Eberly [33], which can be written in the form:

SR RO (R
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oy (t) = (w?/siny)sech(wgt) (111.13)
$(t) = -ulcotytanh(ult) (111.14)

where $(t) is the time derivative of the rf phase. Work by Baum, Tycko,
and Pines [7,8] shows that this pulse inverts spins on resonance for any
value of y, and that the inversion bandwidths in both Wy and Aw become
as large as desired as y approaches 0. The same behavior holds for an

equivalent pulse with a constant amplitude, defined by:

o (t) = ul, -/ (20510Y) < t < n/(2u3siny) (111.15)
$(t) = -w?COSYtan(w?Siny)t (I11.16)

The pulse of Eqs.(III.15) and (II11.16) is equivalent to that of
Eqs.(III.13) and (II1.14) in the sense that the inverting trajectory for
a Bloch vector with aw = 0 is the same for the two pulses. Inversion
plots as a function of the resonance offset for pulses of the form of
Eqs.(I11.15) and (II1.16) are shown in Figure III.4.

Composite pulses may be derived from the continuously modulated
pulse by considering the on-resonance inverting trajectory. If N points
are chosen along the trajectory, with the first point at +z and the last
point at -z, a sequence of N-1 pulses can be found such that it causes
an on-resonance Bloch vector to move between successive points. As N
becomes larger, the pulse sequence derived by this “connect the dots"
method approximates the continuously modulated pulse. This approach to
generating composite pulses is particularly well suited for generating

long sequences with very large bandwidths, although short sequences
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Figure IIl.4: Simulations of population inversion as a function of
offset for phase modulated pulses of the form in Eqs.(II1l.15) and
(I111.16), with y = ®/2 (solid line), 0.245 (dashed line), and 0.111
(dotted line). vy = %/2 corresponds to a single = pulse. .
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resembling those of Figure III.2 can also be derived. Inversion results
for some derived composite pulse sequences are shown in Figure III.5.

A continuously modulated pu1§e such as that of Eqs.(III.15) and
(ITI.16) becomes an adiabatic frequency sweep for small y. This is
because phase modulation and frequency modulation are equivalent: the
time derivative of the phase is indistinguishable from a frequency
shift. Eq.(III.16) may therefore be interpreted as a frequency sweep
from far above resonance to far below resonance. As y becomes smaller,
the maximum sweep rate becomes smaller and the sweep becomes adiabatic.
Note, however, that the sweep is not linear, i.e. the sweep rate is not
constant. Far from resonance, the sweep is very rapid. This is
permitted as long as the condition Woff » %%-is satisfied, as discussed
in section A. In fact, the varying sweep rate allows the adiabatic
inversion to be accomplished in less time than the standard, linear
sweep. Thus, the phase-modulated pulse considered here is an example of
an efficient adiabatic sweep when y is small, and inverts spins on
resonance regardless of y. Further details of this work are given in

references 7 and 8.
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Figure III1.5: Simulations of population inversion as a function of
offset for composite » pulses derived from continuously phase modulated
pulses. Shown are 84,,251.84., (dotted 1ine), 64.,,122,.310,122,.64

. 94°>*0%"94 3227°%96°"70"°°96" " 322
(dashed line), and 394195420966139847026708470661395420939419 (solid line).
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Chapter IV: Cohereht Averaging Approach to Broadband Excitation:

Formalism and Computational Methods
A. Motivation

As explained in Chapter II, the problem of broadband excitation in
NMR is the problem of finding a pulse sequence for which the net
propagator has a desired form, independent of the relative strength of a
particular term in the Hamiltonian. Similar problems occur in other
areas of NMR, although for different reasons. An important example is
the area of high resolution NMR in solids [34,35]. The spectra of
abundant nuclei in solids, for example protons (lH) in crystalline
organic compounds, are typically broad and largely structureless. They
are dominated by homonuclear dipole couplings, with values ranging from
0 to about 50 kHz. The large number of non-degenerate transitions
between the coupled spin states makes it impossible to resolve
individual transitions. However, if a pulse sequence for which the net
propagator is independent of the couplings is given repetitively while
the NMR signals are observed, a spectrum can be obtained which
corresponds to an effective Hamiltonian in which there are no couplings.
That spectrum has resolved lines whose positions are determined by
chemical shifts. Pulse sequences of this sort are called line-narrowing
sequences [34-44].

Other examples that may be related to the broadband excitation
problem include experiments where the desired propagator is not

necessarily independent of the values of coupling constants, but has
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particular symmetry properties regardless of the specific couplings.
Time-reversal experiments are one such example [45-47]. Pulse sequences
may be constructed such that an overall rf phase shift of w/2 converts
the propagator to its inverse. The inverse propagator reverses the net
evolution in time brought about by the original propagator.

The formalism for describing line-narrowing, time-reversal, and
other such experiments in which a pulse sequence is designed to produce
a propagator of some desired form is provided by coherent averaging
theory, originally formulated by Haeberlen and Waugh [37]. The
essential idea of coherent averaging theory is that a pulse sequence
acts on the spin Hamiltonian, rather than on the spin state, averaging
it in such a way that it may be replaced by some other effective
Hamiltonian. If the pulse sequence has a total length 1, the propagator
for the true, time-dependent Hamiltonian is the same as the propagator
for the constant, effective Hamiltonian acting for a time t.

A coherent averaging theory analysis of a proposed pulse sequence

begins with the separation of the Hamiltonian into two parts:
Jc=3€rf(t) +V (Iv.1)

where x}f(t) is the piecewise-constant interaction with ideal rf fields
and V contains all other interactions, possibly including terms that
represent imperfections in the rf pulses. The propagator for K}f(t)
alone, a product of rotation operators, is Urf(t), with Urf(o) =1, In
a frame of reference related to the rotating frame by the transformation

Upe(t)™), the Hamiltonian is V(t), defined by:

A Iv:r.uu:wn“w

s
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V(t) = U e(t)-1vu g(t) (Iv.2)
The new frame of reference is an interaction representation in the
terminology of time-dependent perturbation theory. Most applications of
coherent averaging theory are to pulse sequences consisting of a train
of pulses separated by delays in which the rf is switched off. It is
often assumed, at least as a first approximation, that the pulses are of
very large amplitude and are very short compared to the total length of
the sequence. Then the rotations induced by the pulses can be
considered to be instantaneous; this is the "delta function" pulse
limit. In that limit V(t) is piecewise-constant if V is constant. The
interaction representation is called the "toggling frame" in the delta
function pulse limit.

Frequently, it is more realistic to take the finite pulse lengths
and amplitudes into account. Line-narrowing sequences designed
explicitly for finite pulse lengths have been demonstrated by Burum,
Linder, and Ernst [44]. During a pulse, V(t) varies continuously in
time. This is necessarily the situation in broadband excitation
problems, in which parameters such as Aw/wg and dij/“? are deliberately
not negligible.

The propagator for V(t) is Uv(t). The overall propagator for

the pulse sequence, U(t), is then:
U(t) = Urf(T)Uv(T) (Iv.3)

Eq.(1V.3) can be interpreted to mean that the overall evolution in the

rotating frame can be calculated by first transforming to the
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interaction representation at t = 0, calculating the evolution in the.
interaction representation up to t = 1, and finally transforming back to
the rotating frame at t = t. Note that the rotating frame and the
interaction representation coincide at t = 0, since ur..f(O)'1 =1,

Eq.(IV.3) is reminiscent of the forms for desired propagators
introduced in Eqs.(I1.57) and (11.68). Those forms involve the product
of a pure rotation operator and another unitary operator of a more
general type, just as in Eq.(IV.3). The resemblance suggests that a
coherent averaging theory approach may be appropriate in broadband
excitation problems. |

It is necessary to evaluate UV(T), the propagator for a
time-dependent Hamiltonian. Coherent averaging theory uses the Magnus

expansion [48-51] to express Uv(r) as the exponential of an effective

Hamiltonian:
U, (x) = exp(-iV cet) (Iv.4)
Voge = vi0) L (1) (@) (1V.5)

The Magnus expansion is a power series expansion in Iv]r. The
derivation of the Magnus expansion, the form of thé terms V(i), and
other properties are discussed in the next section. In most
applications of coherent averaging theory, a pulse sequence is found for
which V(0 has the desired form and V() vanishes. Provided that [V]<

is small, higher terms are considered negligible. Then veff = v(o). In
line-narrowing applicatipns, sequences for which v(o) has only terms
that are linear in the angular momentum operators are used. In

(0)

time-reversal applications, sequences for which V becomes -V(o) under

kL 'lmrl“:v:;m:m"y‘i |
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an overall rf phase shift of x/2 are used.

The two major requirements for the applicability of coherent

averaging theory are that Urf(r) = ] and that the state of the spin
system only be observed at times that are multiples of . A pulse -
sequence for which Urf(r) = 1 is commonly called a cycle. The f
requirement that the pulse sequence be cyclic makes U(t) equal to Uv(r),
as follows from Eq.(IV.3). If the pulse cycle is repeated, and if
signals are only observed at multiples of v, the spin system appears to
be evolving under the Hamiltonian Veff = V(O). The pulse sequence qoes
not affect the evolution explicitly, i.e. two different pulse sequénces
with the same veff give the same evolution. It is in this way that the
pulse sequence acts on the Hamiltonian to create a new, effective
Hamiltonian.
Only certain parts of coherent averaging theory are applicable to
broadband excitation problems. These are the separations of the
Hamiltonian and the propagator according to Eqs.(IV.1) and (IV.3) and
the use of the Magnus expansion to evaluate Uv(r). The requirement that
Urf(T) = 1 certainly does not apply. Urf is instead required to be a
rotation that inverts spin populations or creates transverse
magnetization. Another difference is that broadband excitation
sequences are typically given as individual units. They are not meant
to be applied repetitively and contiguously, as line-narrowing and
time-reversal sequences are. Therefore, the idea of observing signals
stroboscopically at multiples of t plays no role. The related idea of
evolution under a constant effective Hamiltonian is only of importance
insofar as the Magnus expansion is used to evaluate UV(T). Because the

broadband excitation work only uses the Magnus expansion and the
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interaction representation, which is standard in time-dependent
perturbation theory, and does not use the additional ideas of coherent
averaging theory, the phrase "coherent averaging theory" has not been
used to describe that work in publications. It should be appreciated,
however, that the prevalence of coherent averaging theory in NMR
provides the background and inspiration for the approach to broadband

excitation described below.

B. The Magnus expansion

1. Derivations

As originally formulated by Magnus [48], the Magnus expansion is

the solution to the problem of finding a linear operator Q(t) such that:

U(t) = expla(t)] (1V.6)

if U(t) satisfies:

QL) = a)u(t) (IV.7)
U(0) = 1 (IV.8)

where A(t) is another linear operator. The Schrodinger equation for the
propagator is a special case of Eqs.(IV.7) and (IV.8) in which iA(t) is
hermitian and U(t) is unitary.

Magnus showed that g(t) satisfies:

3 oy ‘lv.:p;mmpm CRETE]
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& = T 8yl...[[[A,a],0),0)...] (Iv.9)
where the B, are related to Bernoulli numbers. Bn is the coefficient
of an n-fold commutator. Eq.(IV.9) can be solved for @(t) by iterative
integration.

Other derivations of the Magnus expansion that lead to a solution
for g(t) by iterative integration have been given by Pechukas and Light
[49] and by Wilcox [50]. For the case where A(t) = -iV(t) and Q(1) =
-ivefft, as in Eq.(IV.4), the result is an expansion of Veff as in .

Eq.(IV.5), with:

vi0) . -,%!Tdt V(t) (1V.10)
0
Tt

vil) - %yodtrroldtz[V(tl),V(tz)] (1v.11)

v(@) . '_1!Tdt ftldt ftzdt {IV(t,),0V(t,),V(t,)]]
6t 0 1 0 2 0 3 17 2 ’ 3

+ [V(t3),[V(,), V(¢ (Iv.12)

V(") is always a sum of terms that involve (n+l)-fold integrals of
n-fold commutators of g(t) with itself at different times. V(n) is
hermitian for all n, so that the approximation to Uv(r) arrived at by
truncating the expansion for veff at any point is always unitary. An
explicit, non-recursive formula for V(") has been derived by
Bialynicki-Birula et al. [51]. If V(t) commutes with itself at all
times, the only non-zero term is V(o), which is simply the average of
V(t). Even if V(t) does not commute with itself at all times, V(n)
vanishes for all odd n if V(t) = ¥(z - t) [52]. A pulse sequence for
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whichV(t) =V (tr - t) is said to be symmetrized.
A particularly simple derivation of the Magnus expansion goes as
follows. Assume that the Hamiltonian is AV(t). Eq.(I11.30) then

implies:
T 2 T 'l.'l .

Further assume that:

U (1) = expl-i ({0 4 W& 4332,y (1v.14)
=1 =@ M L,
w0 () 22, (IV.15)

Equating the operator coefficients of A" in the expressions for Uv(r) in
Eqs.(IV.13) and (IV.15) gives Eqs.(IV.10) through (IV.12). While this
derivation allows the Magnus expansion terms to be calculated, it does

not demonstrate a priori the commutator structure of those terms.
2. A parameter differentiation theorem

Suppose that the Hamiltonian for some system is proportional to a

parameter i:
H(t) = av(t) ’ (Iv.16)

In the previous section, such a form was used to derived the Magnus

expansion, with powers of A serving merely as labels for various orders.




61

Here, A is intended to have physical significance, for example as a para-

meter that determines the o erall size of coupling constants in an

interaction representation. The propagator for a time t is a function of

A, Uv(r,x), with derivatives dc’) at A = 0 defined by:

(") =-——-u HERY (1v.17)
da" A=0
A theorem that relates the derivatives of the propagator to the Magnus
expansion can be stated as follows: U( n) van1shes for 1< ng< N 1f and
only if V( m) vanishes for 0 < m < N-1.
The theorem follows most directly by using Eq.(IV.15), which
implies:
T ——-{1 - i(xv( PENTIC P P
dA
( DRV By ke 0 (vae)

The only terms inside the square brackets that contribute to Usn) are
those that are proportional to A", The highest-order Magnus expansion
term that contributes is therefore V("'l), SO Usn) vanishes for 1 < n <
N if V(m) vanishes for 0 < m < N-1.

The converse may be proved inductively:
usl) - -iv(0), (IV.19)

so that v(o) vanishes if Usl) vanishes. If it is assumed that
US") vanishes for 1 < n < N and that v(m) vanishes for 0 < m < N-2,

Eq.(1V.18) yields:
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oM = cin v(W1, (Iv.20)

Therefore, V(N'l) vanishes as well, so V(m) vanishes for 0 < m < N-1 if - ;
Ué") vanishes for 1 < n < N.
If the overall propagator is given by Eq.(IV.3), the derivatives of

the overall propagator are:

ﬂn—”(li—*%- = (x)ulm (1v.21)
dx ' [a=0 -
The theorem is then a mathematical statement of the idea that the
propagator for a pulse sequence for which V(") vanishes up to some order
N should be independent of the values of the parameters in V(t) over
some range of values. ' That range of values should increase as N
increases. This is the essential idea of the coherent averaging
approach to broadband excitation. Conversely, if it is known that the
overall propagator is independent of some parameter, then it must be
that V(") vanishes up to some order. This fact is of importance in
theories of heteronuclear decoupling, particularly in liquid state NMR
[32,53,54].

Finally, the theorem suggests that the Magnus expansion terms can
be calculated by numerically evaluating the derivatives of a pulse
sequence propagator. The practicality and utility of such a calculation
have not yet been demonstrated, but it may be useful as a means for
verifying more direct calculations or as a replacement for direct

calculations when they are excessively complicated.
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C. Application to the construction of composite pulses

1. Formal approach

~The coherent averaging approach to constructing composite pulses

~ employs the strategy summarized by Eqs.(IV.1) through (IV.5) and (IV.10)
through (IV.12). Two types of composite pulses are cbnsidered,
composite v pulses and composite w/2 pulses, although other types may
be constructed similarly. A composite » pulse is defined by the :

condition:
TR ()T U (1)} = -Tr(12) (1v.21)
zrf zrf Zz *
A composite w/2 pulse is defined by the condition:

Tr[IZUrf(t)IzUrf(t)] =0 (1v.22)

Broadband excitation with respect to four interactions is considered. For

resonance offsets or chemical shifts, V is‘taken to be:
V= AwIz (1v.23)
For rf amplitude inhomogeneity:

V= swl[Ixcos¢(t) + Iysin¢(t)] (1v.24)
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For dipole couplings:

= I S0 S 1L v.25
} 1§j dy 01,4155 - (1/3)1.1,] ( )

For quadrupole couplings:
V = 2 2
= wglly - (1/3)17] (1v.26)

Simultaneous broadband excitation with respect to several interactions
can be treated by taking V to be the sum of the interactions. The order
of a composite pulse is defined by the number of Magnus expansion terms

that vanish. An Mth order composite pulse has:
v 2o, 0¢jam (1v.27)

Eq.(IV.27) ensures that Uv(r) = 1 for some range of Aw, Swy, dij’ or wq
around zero. Then the overall propagator is U(t) =,Urf(r), i.e. a
constant pure rotation. This is a unique and important feature of
composite pulses derived with a coherent averaging approach. Zeroth
order and first order composite pulses are demonstrated in Chapter V,
with an emphasis on features that result from the constancy of U(t).
The problem now is to find a pulse sequence that satisfies
Eqs.(IV.21) or (IV.22) and (IV.27). In other applications of coherent
averaging theory, specific pulse cycles are found by some combination of
experience, intuition, inspection, and inspiration. Typically, a cycle
is chosen to have the desired V(O) in the delta function pulse limit.

Higher-order terms and effects of finite pulse lengths and pulse
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imperfections are made to vanish by symmetrization and by combining
variants of the basic cycle to form longer supercycles [41,46], or by
readjusting the lengths of delays and the flip angles of pulses [42,43].
Theorems that indicate when variants of a cyc]g can be combined to form
a superior supercycle have been developed [41,46].

The approach to finding composite pulses is conceptually different.
It is essentially a "brute force" technique. Consider a general N-pulse
sequence. With the phase of the first pulse arbitrarily set to zero,
the sequence has 2N-1 variable parameters, namely N flip angles and.N-l
phases. Eqgs.(IV.21) or (IV.22) and (IV.27) are a set of simultaneous
equations in those variables. If N is chosen to be large enough, it may
be expected that there is a solution to that set of equations. Such a
solution is the desired composite pulse. The procedure therefore
consists of constructing expressions for the appropriate equations in
terms of the flip angles and phases and then finding the simultaneous
solution.

The choice of N fs not obvious. Each of the equations.is an
operator equation, and is therefore composed of several component
equations. The equations are non-linear. Still, experience shows that
solutions can usually be found when the number of variables
approximately equals the number of equations, although this is not
guaranteed.

In simple cases, of which an example is given below, the equations
can be written out by hand and solved analytically. In most cases, this
is tedious and essentially impossible. Therefore, computer programs are

usually used, as described later.

T

=
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2. A simple example

In this section, zeroth order composite = pulses for broadband
excitation with respect to resonance offsets are derived, with the
general form 008¢a0. There are clearly three variables, the two flip

angles o« and 8 and the phase ¢. The pure rf propagator for such a

sequence is:

exp(-ilxwgt), 0<tcx a/w?

. 0 . : 0
Upe(t) = exp(-i1_ ¢)exp(-il,u t")exp(il ¢)exp(-ila), 0 < t' < B/uy

exp(-iwagt“)exp(-iIz¢)exp(-iIxe)exp(ilz¢)exp(-iIxc),

0<t"« a/w? (Iv.28)

with:
t' =t - aluy (1V.29)
t"=t - (a + B)/mg (Iv.30)

Using Eq.(IV.28), and with t = (2a + B)/wy:

-1
c = -sinzasin2¢ - sinzacosscosz¢ - 25inacosasinpcose + COSzaCOSB

(1v.32)

The condition that the pulse sequence be a composite » pulse is

Eq.(IV.Zl), which becomes ¢ = -1. This condition is satisfied when:

cosasing (IV.33)

COS¢ = §ina(l - cosB)
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Any 308¢a0 sequence for which Eq.(IV.33) holds inverts populations when
Aw = 0. The next step is to evaluate V(t). Using Eq.(IV.28) and the
definition of V(t) in Eq.(IV.2):

Y(t) = Am[a(t)lx + b(t)I.y + c(t)Iz] (1v.34)
with:
0
0, 0<t<u/m1
a(t) = -sin¢sinw2t', 0<t'< 5/81
singcos¢(l - cose)sinw?t" - sin¢sinsc05w?t", 0<t"« a/w?
(Iv.35)
sinmot, 0<tc« a/wo
1 1
b(t) = cos¢c05asinw?t‘ + SinaCOSw?t', 0<t'< B/w?
(cosz¢cosec05a + Sin2¢COSu - cos¢sinesinu)sinwgt"
+ (cos¢singcosa + cosssina)c05w?t“, 0<t"« a/mg
(Iv.36)
c05w0t, 0<ctcx u/wo
1 1
c(t) = COSaCOSw?t' - cos¢sinasinw?§', 0<ct« B/w?
-(cos¢singcosa + COSZ¢COSBSina + sin2¢sina)sinwgt"
+(cosgcosa - cos¢sinssina)c05wgt", 0< t"« a/w?
(Iv.37)
V(o) can now be calculated by integrating Eqs.(IV.35),(IV.36), and

(IvV.37). For the special case ¢ = x/2, the result is:

v(°) = aw[(cosg - 1 - sinasing)l, + (1 + singsina - COSza +COSBSin2a)Iy
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+ (singcosa + cosgsinacosa + sinacosa)l,l/(2a + 8)
(1v.38)

(0)

The requirement V = 0 is satisfied, along with Eq.(IV.33), whenever a
is an odd multiple of »/2 and B = 2nv - « for an integer n. Thus, the
sequence 90027090900 derived with other methods by Levitt and Freeman
[21] and by Levitt [23] belongs to a class of zeroth order composite =
pulses in the coherent averaging approach.

For an arbitrary ¢, the expression for V(o) is considerably longer.
However, it can be shown that V(o) = 0 whenever Eq.(IV.33) and the

equation 8 = 2nn - a are satisfied.
3. Numerical methods: resonance offsets and rf inhomogeneity

The example in the previous section illustrates the complexity of
the equations that must be solved to derive composite pulses. Even for
a sequence with only three variables, V(t) does not have a simple form.
If Tonger sequences are used in an effort to find higher-order composite
pulses, the expression for V(t) soon becomes unwieldly. The same holds
for the expression for Urf(r)lzurf(tfl. The number of terms in V(l) is
roughly the square of the number of terms in V(O), and each term
involves roughly twice as many trigonometric functions of the flip
angles and phases. Additionally, while in the resonance offset and rf
inhomogeneity cases the only operators that appear in V(t) and V(n) are

I, 1, and Iz’ due to the closed commutation relations of the angular

x* 'y
momentum operators, in the dipole and quadrupole coupling cases there

are more operator components to each equation. For all of these

iy

fal ;rrmmzurm;

e
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reasons, it is generally not feasible to generate the equations

explicitly by hand and solve them analytically. Instead, computer

programs that evaluate the required expressions and search for solutions

B ‘F: wm

to the equations are written.

F

As an example of the way such a program works, consider the
construction of a first order composite = pulse with compensation for
resonance offsets of the form (91)0(92)¢2(e3)¢3...(eN)¢N. For a given
choice of the N variable flip angles and N-1 variable phases, the
program first checks to see if the sequence inverté populations when_Aw
= 0. If N is small, a general expression for the coefficient of Iz fn
Urf(ei,¢i)lzurf(ei,¢iy1 can be derived by hand. The program evaluates
that expression for the specific choice of flip angles and phases.
Otherwise, the coefficient of Iz can be extracted after applying the N
rotations that make up Urf to an initial operator Iz in a lbop in‘the
program. If the result differs from -1 by more than a specified
tolerance, that choice of flip angles and phases is discarded and a new
choice is made. If the result equals -1 to within the specified
tolerance, the equation V(o) = 0 is tested.

For the resonance offset case:

V(t) = sul,(t) (1v.39)
with: |
T,(t) = U(tT! LU (t) (1V.40)

t

During the n h pulse, T (t) has the form:

0 .. 0 0
Tg(tn) = Iz(clnsinm?tn + °2n°°s“1tn) + Iy(c3n51"“1tn + °4nc°s“1tn)
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+ Ix(csnsinw?tn + c6nc05w?tn), 0<t, < Bn/m? (1v.41)
where:

0
t,=t- (e1 +0, + ol ¥ en_l)/m1 (Iv.42)
The coefficients Cyp are calculated according to the expression:

T;(tn) = exp(iIxel)exp(-iIz¢2)...exp(1'Ixen_l)exp[-ilz(¢n - ¢n_1)]

0 .0 . .
X (Izc05w1tn + Iys1nw1tn)exp[1lz(¢n - ¢n_1)]exp(-1lxen_1)...

X exp(ilz¢2)exp(-1lxel) (Iv.43)

by applying the indicated rotations about z and x in a loop in the program.

V(o) is then proportional to:

T 0 en/w(l)dtln(t) =% I_[c,.(1 -cose ) +c,.sine_] + I [c, (1l - cose )
n“’lf0 ALK Cin't - n 2n>"""n y+“3n n
+ c4nsinen] + Ix[c5n(1 - cosen) + c6nsinen]

(Iv.44)

The total coefficients of Lo Iy and I in Eq.(IV.44) are calculated

y
individually and checked to see if they are within a specified tolerance of

zero. If not, a new choice of flip angles and phases is made and the

(1)

program begins again. If so, the equation V = 0 is checked.

(1)

There are two contributions to V'"’'. The first is from commutators
of Tz(t) during one pulse with Tz(t) during another pulse. These are

proportional to:

0 0

0_/w 8 /w
™ tatTe),s M T atTNe)] = 5 [91,9(m.n,3,8,1,2)
m>n 0 0 m>n
+ ing(m.n'I’Z’s,G) + i Izg(m’n’5’6’3!4)]

(IV.45a)

AL

:v”-rr g
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g(m,n,i,j,k,1) = [cim(l - cosem) + cjmsinem][ckn(l - cosen) + ¢ypsine ]

- [c,, (1 - cose ) + c, sing J[c, (1 - cose ) + Cypsine ]

(IV.45b)

The contribution from commutators of Tz(t) at one time during a pulse

with Tz(t) at a different time during the same pulse is proportional to:

0
en/“’l

t
0o 7 dt'[T5(t),T5(t')] = x(sine, - 8 )L (cq Cqn = C3nCon)

r ()%
n n
* Iy(c2n°5n - clncﬁn) + Iz(c3nc6n - C4nc5n):l (1v.46)

The sums of the coefficients of Ix’ I, and Iz in Eqs.(IV.45) and (IV.46)

are calculated and checked to see if ihey are within a specified tolerance
of zero. If so, the values of the flip angles and phases are saved.

A1 possible combinations of flip angles and phases within
specified ranges and in specified increments are tested. The tolerances
within which Eqs.(IV.Zl)‘or (Iv.22) and (1V.27) must be satisfied are
made sufficiently small that only a small number of flip angle and phase
combinations are saved. Simulations of the performance of the composite
pulses are used to select the best composite pulse from those that
satisfy the required equations within the specified tolerances.
Differences in the performance of various composite pulses may be
attributed to differences in the higher-order Magnus expansion terms
that are not calculated. The flip angles and phases may be further
refined, when the required equations have not been solved exactly, by

reducing the tolerances and searching through flip angles and phases in

smaller increments in the neighborhood of the flip angles and phases
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that have previously been saved.
A similar procedure is used to derive composite pulses that are

broadband with respect to the rf amplitude. In that case, Eq.(IV.39) is
replaced by:

V(t) = 6w17¢(t) (Iv.47)
with:

T,(t) = Upe(t) ™ (1, cose + 1 sing)u ¢(t) (1v.48)

th

During the n™" pulse, T¢(t) is the constant operator 1

o

T¢n = exp(i1,0,)exp(-11,4,)...exp(il o _)exp(il ¢, ,)(I cose, + 1sing,)

X exp(-iIz¢n_1)exp(-iIxen_l)...exp(iIz¢2)exp(-ilxel) (Iv.49)

The fact that T, (t) is piecewise-constant simplifies the expressions for
V(o) and V(l):

vi0) , ; ARN (1V.50)
n
v oz e nnlls o1, ] (IV.51)
m>n m n

Computer programs, written in FORTRAN, that are used to find first
order composite m pulses are given in Appendix B. The programs follow

the procedure described above.
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4. Numerical methods: dipole and quadrupole couplings

As pointed out in Chapter 11.B, the dipole and quadrupole

interactions have similar forms. This is made particularly clear by

rewriting Eq.(IV.25) as:

d .
1,2 2 _1p2 2 1.2
v =i§3 [(1213 3i5) - (15 - 315) - (Izj - sqj)] (IV.52)
with:
ST (1v.53)

The right-hand sides of both Eq.(IV.52) and Eq.(IV.26) consist of terms
of the form:
13,2 (1v.54
2 E( ) ')
The notation T20 indicates that this is the m = 0 component of a second
rank irreducible tensor operator{TZm}. An irreducible tensor operator

with respect to rotations of the form exp(-ig.l)is defined by the

relations [14,55]:

(1,7 d = 10 +1) =m(m < 1) Ty, (IV.55)
1,7y, = Ty, (1.56)

withm= -1, -1 +1,..., 1 -1, 1. As results of Eqs.(IV.55) and

(IvV.56), irreducible tensor operators have the properties that:

AR THE R

S
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exp(-ilz¢)T]mexp(iIz¢) = exp(-im@)T]m (1v.57)
. . 1
exp(-11ye)T1mexp(llye) =L dm'm(e)Tlm' (Iv.58)

where d;.m(e) are elements of a reduced Wigner rotation matrix. An
important conclusion to draw from Eqs.(IV.57) and (IV.58) is that the
components of a given irreducible tensor operator transform only among
themselves under any rotation.

The other components of the second rank tensor are:

! '
T211 +211(212 + 1) » (Iv.59)
_12

The normalization in Eqs.(IV.54), (IV.59), and (IV.60) follows reference
55.

The above remarks indicate that V(t) for a dipole or quadrupole
coupling is always a sum of terms that are second rank irreducible
tensor components. V(o) is therefore also a sum of second rank
irreducible tensor components. Even if V is the sum of several T20
terms, they all transform in the same way and independently under
rotations. There are no cross terms in V(t) or V(o). Therefore it is
sufficient to consider only a single T20 term, and take:

v = d(312 - 19) (IV.61)
The equation v(o) = 0 has five independent operator components,
regardless of the number of coupled nuclei and regardless of their total

spin quantum numbers.
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v(0) for a pulse sequence may be calculated by summing the

contributions from individual pulses. The contribution from the nth

(0),

pulse is Vn :
vi0) . exp(iI_6.)exp(-il_¢,)...exp(il o .)exp[-il, (¢, - )3T,n(6,)
n x"1/€XP 292/ OXPLIL, 0, qexpl-11,0¢p = on_1/4720!%9
X exp[Iz(¢n - ¢n_1)]exp(-iIxen_l)...exp(ilz¢2)exp(iIxel)

0 (Iv.62)

®/u) 0 0
Tzo(e) = fo 6 dtexp(il,wit)Togexp(-11,0t) L, (IV.63)
= -:g(e - sinecose)(Ty, + T, o) + —zisin"e(Ty; + T, ;) )
+-%(e + 3sinecose)T20 (IV.64)

V£0) can be evaluated in a loop in a computer program using Eq.(IV.57)

1 . .
and the reduced Wigner matrix d (6), or the matrix representation for

exp(ilxe) in the operator basis {TZZ’TZI’T T TZ-Z} derived

20°'2-1°
from Table 3 of reference 55:
%(1+cose) 2 %ﬁine(1+cose) 'Zgéinze f%sine(l-cose) %-(l-cose)2 \\

1sine(1+cose) 1(1+cose)(2cose-1) lfé;inecose 7l(1-cose)(2cose+1) 'lsine(l-cose)
2 K 2 2 2

7£§;in26 lﬁg.sinecose %{3cosze-1) l-'{g’sinecose -{%;1n29

- ine(1l-cose) 7l(l-cose)(2cose+1) iﬁ-sinecose l-(1+cose)(2cose-1) lsine(1+cose)
7 2 2 2 2

-}-(l-cose)2 '%sine(l-cose) 'ﬁgginze %sine(1+cose) %-(1+cose)2

L /

(Iv.65)

A

Apr
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Line (IV.65) is actually the matrix representation of the superoperator,

NG

i.e. the linear transformation on operators, corresponding to

W vrv g

exp(ilxe). As before, a search through possible flip angle and phase N

mwnr W

combinations is conducted. Those combinations for which the inversion
equation is satisfied and for which the coefficients of the T2m

(0)

components in V are zero to within a specified tolerance are saved.
The number of operator components in the higher-order Magnus
expansion terms depends on the size of the spin system. Consider first

the case of a single quadrupolar nucleus with total spin I. V(n)

V(n) may then contain

involves n-fold commutators of T2m components.
irreducible tensors with ranks from 0 to n + 2 in general. This fact
may be seen as follows.

The product T]mT].m. of two tensor components may be decomposed
into a linear combination of tensor components Tynge withm" =m + m':

1+
- 1300 | g
T-'mT-lnmc ']§= ]-].<]] "m" 1 1ml'm >T]umu (IV.GG)

where <11'1"m"|Im1'm'> is a Clebsch-Gordon coefficient. The maximum
value of 1" in [Tlm’Tl'm‘] is 1 + 1' - 1, however. The only commutator

that could have a component of Tyuqu with 1" =1 + 1' is [T]],T].].].

but this must be zero because:

Ty e (1,)] (1v.67)

Therefore:

r(Thagyaay e Tigd) =0 (Iv.68)
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1

| [

for all m and m'. For any component T(]+].)m", a finite number of

rotations Ri and constants Cy can be found such that:

LT nruw EIE

s

. -1 -l
Tawer = cRiTaagaanfe* SRTamgaanfe * -
(IV.69)
Eqs.(IV.68) and (IV.69) imply:
Tr(T [Ty wTaea]) = ciTr(T RI7, R GRIIT,, LR, D)
(141" )m" ' 1m? l‘m' B a1+ MmT1271 1'm'

+ CZTY'(T(-I+]|)(]+]|)[R2 T]mRz,Rz T-'nmuRZ]) * oo
(I1v.70)
=0 (Iv.71)

where Eq.(IV.71) follows from Eq.(IV.68). Therefore, [Tlm’Tl'm'] has no
tensor component of rank 1 + 1'., The maximum rank tensor in an n-fold
commutator of TZm components can not be greater than n + 2.

For the case of a quadrupolar nucleus, an upper limit on the tensor
rank in all Magnus expansion terms is set by the total spin quantum
number I to be 2I. Any tensor Tlm with 1 > 21 becomes the zero matrix
when written in a basis of spin states for a spin-I nucleus.

The other important case to consider is that of a system of N
dipole-coupled spin-1/2 nuclei. In this case, only the terms involving
Iij operators are not zero in Eq.(IV.52). A non-zero n-fold commutator
can involve angular momentum operators from at most n + 2 different
nuclei, implying a maximum irreducible tensor rank of n + 2, as before.

(n)

It is sufficient to consider a system of n + 2 spins when treating V' ',

(n)

since all possible independent terms in V will then be present.
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Unlike the case of a single quadrupolar nucleus, there is generally more
than one independent irreducible tensor of a given rank.

One modification of the procedure that proves useful in the case of
composite pulses for coupled systems is to replace the v(") =0
requirement with the requirement [V("),Iz] = 0. Sequences that satisfy
the latter requirement have overall propagators that are still
approximately in the form of Eq.(I1I.59) or (I1.70). The propagators are

not pure rotations and are not strictly constant over a range of

couplings, however. Such sequences are discussed further in Chapter V.
5. Limitations of the methods

The practical limitations on the coherent averaging approach to
broadband excitation are of two types. First, the expression for V(")
for a general pulse sequence with many variables can not be written out

(n)

by hand. Once the contributions to V have been sorted out and a
general form for each contribution has been determined, as in
Eqs.(IV.41) and (IV.44) through (Iv.46), V'™ can be evaluated for each
combination of flip angles and phases using some arrangement of loops in
a computer program. Even this will become tedious and prone to error as
n becomes large, however.

One way around this limitation may be to use symbolic manipulation
programs (e.g. MAXIMA or SMP). It may be possible to give such a
program the definition of V(n), as in Eqs.(IV.10) through (IV.12), and a
specific form for V, as in Eqs.(IV.23) through (IV.26), and have the

program produce an expression for v(") as a function of the variables in

the pulse sequence, using the angular momentum commutation rules and

U

A

e
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rotation relationships. ~
The second limitation on the approach is the amount of computer
time required to search for solutions to the required equations in the
space of variables (ei,¢i). For the examples treated in Chapter V, the
programs typically tested about 106 flip angle and phase combinations in
several hours of CPU time on VAX 11/780 computers at the Lawrence
Berkeley Laboratory computer center. For a four-pulse sequence with
four variable flip angles and three variable phases, the required CPU
time might 1imit the initial search to flip angles and phases between 0°
and 360° in 45° increments. With existing methods, sequences with more
variables can not be tested with sufficiently small flip angle and phase

increments in practical amounts of time.

-1

Ypf could be derived

If explicit expressions for V(") and UrfI
with symbolic manipulation programs, it is likely that the required
equations could be checked in considerably less time, extending the length
of the pulse sequences that may be treated practically. Additionally, more
intelligent search procedures may help. Rather thaﬁ testing all
combinations of the variables in specified increments, a directed search
may be employed. A single quantity Q that indicates the deviation from a
simultaneous solution of the required equations can be defined. Q is a
function with a value at each point in (ei’¢i) space. The gradient of Q
at some initial point can be approximately calculated by evaluating Q at
nearby points. A new point can then be chosen in the direction in
(ei;¢i) space along which Q decreases. Repeating this process may lead to
a minimum of Q that represents an approximate solution to the equations.

With such a method, a composite pulse may be found without searching

through all flip angle and phase combinations.

* o

g
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Chapter V: Coherent Averaging Approach to Broadband EXcitation:

Results
A. Motivation

In this chapter, composite pulses constructed with the methods of
Chapter IV are presented and demonstrated both experimentally and in
simulations. The composite pulses may be divided into two categories:
those that have large bandwidths with respect to resonance offsets or rf
anplitudes and are therefore primarily, but not exclusively, intended
for applications in liquid state NMR, and those that have large
bandwidths with respect to dipole and quadrupole couplings and are
therefore intended for applications in solid state NMR. This division
is appropriate partly because dipole and quadrupole couplings aré the
dominant interaction in.solids. Rf inhomogeneity is a factor in solid
state NMR experiments, but its most dramatic effects are in NMR
experiments that use surface coils [56], as explained later. Surface
coils are most commonly used in liquid state, in vivo studies.

Resonance offsets and chemical shifts are also present in solids, but
they are usually negligible compared to the rf amplitudes typically used
in solid state NMR, since large rf amplitudes are required due to the
large couplings. In solids, it is common to have w?/Zw = 100 kHz.
Smalier rf amplitudes are common in liquid state NMR, with m?/Zu = 10
kHz. In a 100 kG static magnetic field, not unusual in liquid state
NMR, proton chemical shifts in organic compounds span a range of about 5

kHz. In NMR imaging techniques [57-59], the static field may be as

1

ST 2

i F "
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small as 1 kG, but a 10 kHz range of resonance offsets may be produced
by static field gradients. In medical NMR imaging, it is particularly
difficult to produce a large m?, due to the large sample volume that
must be irradiated, so that resonance offsets are particularly
significant if rf pulses are applied at the same time that static field
gradients are present.

In addition to differences in their applications, one reason for
dividing the composite pulses into two categories is that a large body
of work that deals with composite pulses that compensate for resonance
offsets and rf inhomogeneity exists, some previous to the work described
in this dissertation and some concurrent. The distinguishing feature of
the composite pulses constructed with the methods of Chapter IV is the
fact that they produce constant net rotations, as explained in Chapter
IV.C. This feature is emphasized in the demonstrations of composite
pulses for resonance offsets and rf inhomogeneity in sections B and C
below. The importance of constant rotations is discussed further in
section D. Bloch vector pictures illustrating the general case of
composite »/2 and » pulses are given in Figure V.1.

Considerably less work has been devoted to composite pulses for
broadband excitation with respect to dipole and quadrupole couplings.

Apart from the composite pulses presented in section E below, there is

currently one other publication on the subject, which is also discussed in

section E.

B. Rf inhomogeneity

1. Composite » pulses

RS R LE

S
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(a) (b)

XBL 845-1€99

Figure V.1: The general case of phase variations in composite pulses.
a) As the resonance offset or the rf amplitude varies, the net rotation
angle and the net rotation axis of a composite w/2 pulse change. This
is indicated by Bloch vector trajectories on a unit sphere,
corresponding to the net rotation produced by a hypothetical composite
x/2 pulse for various values of the resonance offset or rf amplitude.
b) For a composite » pulse, it is the net rotation axis that changes,
even though magnetization may be inverted over a range of resonance
offsets or rf amplitudes.
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Figure V.2 shows the inversion performance of two composite =

pulses designed to cover a large range of rf amplitudes. The sequence

(0)

18001801201800 is a zeroth order composite pulse, with V = 0 exactly.

180018010518021036059 is a first order composite pulse, with V(o) =

6u;(-0.0016 I, + 0.0007 I.) and vt . (6(»1)2(0-0004 Iz)m?. Note that

1) = 0 are nearly, but not

the required equations V(o) = 0 and V(
exactly, satisfied. The inversion bandwidth increases with order, as
predicted theoretically.

The general form of the propagator for a composite w pulse is
given in Eq.(I1.61). The angle ¢ in that equation characterizes the net

rotation axis. For 180,180 = 0., It is

0°""1207770° 1
generally true of composite » pulses that the rotation axis is a

180,, ¢ = 240° when 8w
function of wys 8S in Figure V.1b. This can be seen experimentally if
the composite n pulse is used as a refocussing pulse in a n/2-1-w-1
spin echo sequence [60,61]. <t represents a delay in which spins evolve
under resonance bffsets, chemical shifts and scalar couplings. Assuming
a perfect »/2 pulse and a perfect composite » pulse, the density
operator for an isolated spin with resonance offset Aw is, after the

second delay:

p(21) exp(-iIzAm)exp(-iwa)exp(ZiIz¢)exp(-iIzAw-c)exp(-iwa/Z)IZ
X exp(iwa/Z)exp(iIzAmt)exp(-ZiIz¢)exp(iIx:)exp(iIZAwr)

(v.1)

-Ixsin2¢ + chosz¢ (v.2)

The echo sequence results in a spin state at 2t that is independent of

R
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inversion

XBL 845-1700

Figure V.2: Inversion as a function of the relative miscalibration of

the rf amplitude for a single x pulse (simulations in the dotted line),

the zeroth order composite x pulse 18001801201800 (experimental data in

triangles, simulations in the dashed line), and the first order

composite » pulse 180018010518021036059 (experimental data in heavy dots,

simulations in the solid line). The inversion bandwidth increases with .
the order to which rf amplitude miscalibration effects are cancelled in

the theory.
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the evolution during the t periods. In other words, the resonance
offset is "refocussed." In a one-dimensional spin echo experiment, the
MMR free induction decay (FID) signal, i.e. the signal resulting from
the free evolution of a spin system after preparation in a
non-equilibrium state by rf pulses, is observed beginning at time 21,
which is the peak of the echo. According to Eq.(I1I1.75), the phase of
the echo signal is 2¢ + v/2. Thus, if ¢ is a function of Swq, then so
is the phase of the echo signal.

A striking example of the difference between composite pulses |
derived by the coherent averaging approach and those derived by other
means is provided by a comparison of the results of spin echo
experiments using 18001801201800 and 900360120900 as refocussing pulses.
90,360,,,90

077712070
For 900360120900, V(o) = -Gwllz/f§l Surprisingly, the two composite =

was derived by Levitt [22], as discussed in Chapter III.B.

pulses give the same inversion performance. The inversion W is:

= —cose + 3Sin29(1 - co0s8)/4 (v.3)

= (0] + Sup)/u) (V.4)

x
L

(<]
Ll

The phase of the echo as a function of Swy for the two refocussing

pulses is shown in Figure V.3. For variations of Swy between -0.4w? and

0.4m?, the echo phase varies over a range of 224° with 900360120900, but
o s

only 31° with 18001801201800.

For 180,180 5180 360

0"""10
180,,,,360

2103605956 = 105° when 6w, = 0. When

1800180105 210059 is used as a composite refocuss1ngopulse, the echo

phase varies over a range of 16° for -0.4m? < 6“1 < 0.4w1.
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Figure V.3: The phase of the echo signal in a spin echo experiment using
a composite x refocussing pulse, as a function of the relative
miscalibration of the rf amplitude. Results are shown for two composite
® pulses: 18001801201800, with’experimental data in dots and simulations
in the solid line, and 900360120900, with experimental data in triangles
and simulations in the dashed line. Although the two composite pulses
invert longitudinal magnetization equally well, their performance in
refocussing transverse magnetization is markedly different. The

fact that the phase variations with 18001801201800 are less severe is

a consequence of the theoretical method used in the derivation.

1
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2. Composite w/2 pulses

Figures V.4a and V.5a are plots of the signal magnitude, as defined
in Eq.(I1.73), following excitation by composite x/2 pulses as a
function of 6wy« Results for two composite /2 pulses are shown. The
first, 905180051805 ¢, has ¥'®) = 6w (0.0071 1). The second,
270036016918033180178’ has V(o) = 6w1(0.0001 I, - 0.0002 I,) and v(l) =
-(6w1)2(0.0003 Iy)/w?. Again, the excitation bandwidth increases in
going from a single /2 pulse to a zeroth order composite »/2 pulse to a
first order composite /2 pulse.

If the propagator for a composite »/2 pulse is written in the form
of Eq.(II.72), the signal phase after applying the pulse to a system of
isolated spins at equilibrium is ¢ + 3n/2. This follows from
Eqs.(I1.74) and (I1.75). Plots of the signal phase as a function of Swy
for the two sequences are given in Figures V.4b and V.5b. The sequence
270036016918033180178 is particularly free of phase variations,
reflecting the constancy of ¢1» with the signal phase remaining within a
range of 15° for -mg < buy < m?.

In the notation of Eq.(11.72), ¢ = 60° and 95 =0 for
900180105180315 when Sw; = 0; ¢ = 110° and ¢, = 180° for
270036016918033180178’ While 28 does not affect the signal phase after
excitation by a single composite %x/2 pulse, there are other experiments
in which 28 does affect the phase. A simple example is a u/2-rl-n/2-12
spin echo sequence [60], using two identical composite /2 pulses. The

density operator at the end of the sequence for a spin with resonance

offset Aw is:

[AEELEt L T[S

U



Signal Magnitude

Signal Phase (deg)

XBL 845-1697

Figure V.4: The signal magnitude (a) and phase (b) following excitation
by the zeroth order composite w/2 pulse 900180105180315, as a function
of the relative rf amplitude miscalibration. Experimental data appears
in dots and simulatiors in the solid lines. For comparison, the signal
magnitude 'following a single %/2 pulse is shown in the dashed line.
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Figure V.5: Same as Figure V.4, but for the first order composite »/2

pulse 2700360

16918033180

178°

significantly as the theoretical order increases.

The amount of phase variation decreases
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p(rytty) = exp(-1180T))R(9),05)exp(-11 80t )R(9),07)1 R(0),05)71
X exp(11,8ut;)R(41,6,) "Texp(i1 sur,) (v.5)

= Ix sin[Am(r1 + 12) teot 2¢1] + sin[Am(-r1 - 12) + ¢2] /2
+ I.y COS[Aw(tl - 12) + ¢2] - cos[aw(ty + 1,) + ¢, + 2¢1] /2
- Izcos(Am1 t oyt ¢1) (v.6)
with:
R(¢1,¢2) = exp(-iIz¢1)exp(-ilxw/2)exp(-iIz¢2) (V.7)

The echo signal arises from the part of p(11+12) that depends on Aw(Tl -

12), and therefore becomes independent of aAw at Ty = Toe At vy = 1,,

that part is p':
1) = q
p (Ix51n¢2)/2 + (chos¢2)/2 | (v.8)

The echo phase is w/2 - ¢

If the signal phase varies with the rf amplitude, and if rf
amplitude inhomogeneity exists across the sample, then signals arising
from different points in the sample may interfere destructively, thus
attenuating or eliminating the advantages of broadband excitation with
respect to the rf amplitude. This applies particularly to NMR studies
using surface coils [56]. Surface coils are loops of wire placed near
the surface of a sample. They are used to excite and detect signals
when a small region beneath the surface of a large sample, most commonly
tissue or organs within living animals, is of interest. The rf field
along the axis perpendicular to the plane of the coil decreases with
distance from the coil, i.e. it decreases with increasing depth into

the sample. Sometimes it is desirable to use pulse sequences that
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excite spins only over a narrow range of rf amplitudes in order to

- obtain the spectrum of a localized region in the sample, e.g. a
particular organ. Such narrowband excitation sequences are developed in
Chapter VIII. In other applications, it may be desirable to excite
spins iﬁ as large a region as possible to maximize the signal-to-noise
ratio, perhaps for examining metabolism in muscles close to the skin or
organs that have been surgically exposed. Due to the intrinsic rf
inhomogeneity, composite »/2 and » pulses for broadband excitation with
respect to the rf amplitude may be useful provided that signal phase

varijations do not lead to destructive interference.

C. Resonance offsets
1. Composite w pulses

Zeroth order composite = pulses for resonance offsets have been
treated in Chapter IV.C.2. Figure V.6 shows the inversion performance
of the zeroth order sequence 90027090900, with V(O) = 0, and the first
order sequence 3362461g,10g074,7910g246,5,336,, with v{® < su(0.0005
I +0.0010 1) and v(})

= (80)2(0.0002 I, - 0.0001 I + 0.0001 IZ)/w?.

y y

In a x/2-1t-w-1 echo experiment, the first order sequence contributes

less than 1° to the variation in the echo signal phase for resonance

offsets between -O.Gw? and 0.6&?. As defined in Eq.(I1I1.61), ¢ = 135°
= - = .77°

for 90027090900 when Aw = 0; ¢ 27° for

336024618010907427010902461803360 when Aw = 0.

2. Composite /2 pulses

A
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Figure V.6: Simulations of inversion as a function of the relative
resonance offset for a single » pulse (dashed line), the zeroth order

composite » pulse 90027090900, and the first order composite = pulse

336024618010907427010902461803360.
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Figure II.3 shows that a single x/2 pulse already compensates for
resonance offset effects to a large extent, at least for the purpose of
creating transverse magnetization. The amplitude of the FID signal
following a single x/2 pulse remains within 0.99 times its maximum for
resonance offsets between O.ng and -0.9w?. The signal phase varies by
80° over that range, but the phase is nearly a linear function of Aw.

If the spectrum of a sample is obtained by Fourier transformation of the
FID signal after a single »/2 pulse, the lines arising from nuclei yith
various chemical shifts can be made to have the same phase by applying a
Tinear phase correction to the spectrum, provided that the individual
lines are resolved. If the lines are not resolved, however, it is not
possible to correct the phases in the spectrum. Consider an FID signal

of the following form:
S(t) =1 du(uexp (-iut)exp(-t/T,) (V.9)

where A(w) is the complex amplitude of the contribution to the total
signal with frequency w. T2 is the transverse, or spin-spin, relaxation

time, assumed to be constant over the spectrum. The spectrum F(w) is:
Flw) = f;dtexp(iwt)s(t) (v.10)

=f’_':dw'|A(w')lexp[u(w')][fl(w-w') +ify(eme')]  (V.11)
where:
£(0) = [Tyu? + 17317 | (v.12)

fole) = wiu? + 1T5) (v.13)

o T R TR
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Alw) = A(w) exp[i¢(w)]

fl(w) is a Lorentzian absorption lineshape. fz(m) is a dispersion
lineshape. The spectrum is a superposition of absorption/dispersion
pairs centered at each frequency w' with an amplitude A(w') and a

phase ¢(w'). In a properly phased spectrum, ¢(w') = 0 for all w'. Then
all the absorption components are in the real part of F(w) and all the
dispersion components are in the imaginary part. If the lines in the
spectrum are resolved, A(w') is a sum of delta functions centered at

widely separated frequencies. Then:

Flu) = £ a expliou )I0f (wagy) + 1 (0-up)] (v.14)

where the sum is over the resolved lines centered at frequencies w a

n° °n
is the real amplitude of the line at woe If F(w) is multiplied by
expl-in(w)] with n(w,) = ¢(w,), the spectrum becomes properly phased at
all frequencies W although the phase may still be distorted at
intermediate frequencies where the spectral intensity is small. If
individual lines are not resolved, however, the spectrum can not be
properly phased by multiplying by a phase correction. Significant
contributions to the spectral intensity at w arises not only from a line
centered at w, but also from the wings of lines centered elsewhere.

NMR imaging [57-59] is an important case ﬁhere resolved lines are
not to be expected. Static field gradients produce a continuum of
transition frequencies. A common trick to eliminate linear phase
variations resulting from excitation in a field gradient is to reverse

the gradient direction for a short time after the rf pulse [62].

SR ;y:qn,w:v’mm AT

e
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Composite »/2 pulses that produce constant net rotations and thus
prepare transverse magnetization with a uniform phase may make such
gradient switching unnecessary. In addition, gradient switching does
not correct for phase variations that are not a linear function of Aw.

Other possible applications of composite w/2 pulses in which a
constant net rotation is essential include multiple pulse line-narrowing
[34-45] and time-reversal [45-47] sequences. Such sequences are usually
employed in solid state NMR. The discussion in section A indicated that
resonance offsets are usually negligible in solid state NMR. However,
line-narrowing and time-reversal sequences are used in conjunction with
static field gradients in solid state NMR imaging [63,64]. The field
gradients may be large enough that the resonance offsets do become
considerable, making composite x/2 pulses that compensate for resonance
offsets applicable. As discussed in Chapier IV.A, line-narrowing and
time-reversal sequences work by averaging the internal spin Hamiltonian
over a deliberately chosen series of rotations in the toggling frame
[34,35,37]. If the net rotation of a composite x/2 pulse varies with
offset in a general way, it can not be incorporated into multiple pulse
techniques.

A simple demonstration of a composite /2 pulse in a multiple pulse
experiment is shown in Figure V.7. The composite =/2 pulse is

1)

385,320 250, for which V(o) = Aw(0.0026 I, + 0.0026 Iy) and V(

180
-(Aw)2(0.0026 Ix)/wg. The experiment consists of applying a train of

x/2 pulses separated by delays, with the signal being sampled once in
the center of each delay. This is a commonly used technique for
calibrating and adjusting rf amplitudes [65]. When the pulses are

applied on resonance, a characteristic signal pattern of three lines

R e el {ER R I ]

e
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Figure V.7: Signal traces generated by applying a train of closely space
*/2 (a,b) and composite x/2 (c,d) pulses to a small bulb of Hp0(g), with
the signal sampled once after each %/2 pulse. The composite /2 pulse

is 3850320180250. designed to be free of resonance offset effects to first
order in the theory. In a and c, the pulses are applied on resonance
with an rf amplitude of 3 kHz. In b and d, the pulses are off resonance
by 450 Hz. The signal trace in b exhibits an obvious offset dependence;
the trace in d is largely unaffected by the offset, due to the absence

of appreciable phase distortion in the composite %/2 pulse.
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results. In Figures V.7a and V.7b, it is apparent that the signal
pattern deteriorates considerably at resonance offsets of 0.15wg when
single »/2 pulses are used. This is primarily due to variations in the
net rotation of the x/2 pulses rather than free evolution during the
delays, since long »/2 pulses (84 us) and short delays (20 us) were
used. When composite x/2 pulses are substituted for the single =/2
pulses, the signal pattern becomes much less sensitive to the resonance
offset, as shown in Figures V.7c and V.7d. Again, 20 us delays were
used, but the length of each composite #/2 pulse was 688 us, so that the
signal patterns in Figures V.7c and V.7d represent a longer time than

those in V.7a and V.7b.

D. The importance of constant net rotations

The arguments in sections B and C demonstrate the need for
composite pulses that produce constant net rotations when the simplest
one- and two-pulse experiments are performed in the presence of static
or rf field gradients. For the sake of completeness, however, it is
appropriate to point out that there are situations in which a constant
net rotation is not essential.,

In some cases, the phase of detected signals is unaffected by the
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specific values of ¢ in Eq.(II.61) or ¢, and ¢p in Eq.(11.72). These
cases include the use of composite » pulses for inversion-recovery
measurements of spin-lattice relaxation times [19,20] and for
heteronuclear decoupling [24,25,29-32]. In other cases, composite
pulses are used to overcome a miscalibration of the rf amplitude [28],
rather than true rf inhomogeneity. Then the rotation produced by any
composite pulse is constant throughout the sample, not because of an
intrinsic property of the composite pulse, but simply because the rf
amplitude does not vary.

Sometimes the signal phase can be made constant by using multiple
composite pulses. This has been demonstrated in multiple spin echo
(Carr-Purcell) trains [21], i.e. %/2-t-w-21-%-21-... In such a
sequence, only the phase of odd numbered echoes depends on the net
rotation axis of the composite = pulse. If only even numbered echoes
are observed, there are no signal phase variations induced by the
composite = pulses. Similarly, if the single echo sequence x/2-t-w-1
is changed to w/2-t-w-1-w, the phase of the echo signal becomes
independent of ¢. This is easily seen by examining the density operator
p'(21) created by the modified echo sequence. p'(21) is related to

p(2t) in Eq.(V.1l) by:

p'(21) = exp(-iIxn)exp(ZiIZ¢)p(21)exp(-21Iz¢)exp(ilxw) (V.15)
= o V.16
I, (V.16)
Experimentally, it is preferable to use the simpler =x/2-1-w-t Sequence,
however, since the additional composite » pulse in the x/2-1-x-1-r

sequence may aggravate the effects of pulse imperfections. The

7
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®/2-t-x-1 sequence also has the advantage of avoiding distortions in the
spectrum due to pulse rihgdown.

Levitt and Ernst have suggested general principles for
incorporating composite pulses into various multiple-quantum,
polarization transfer, and two-dimensional NMR techniques in such a way
that most effects of variable net rotations cancel between pairs of
composite pulses [66]. The composite pulses must be carefully matched.
In particular, it is necessary to form composite pulse pairs whose
propagators are inverses of one another. If resonance offsets are .
negligible and the composite pulses compensate for rf inhomogeneity, the
inverse of a given pulse sequence is formed by reversing the order of
the pulses and phase-shifting them by x. If resonance offsets are
significant, an exact inverse can not be constructed by any general
method, although an approximate method is demonstrated.

The methods of Levitt and Ernst primarily prevent the effects of
variable rotations from accumulating over several composite pulses and
allow composite x/2 pulses that do not produce rotations by =/2 about an
axis in the xy plane to be used. Often the signal phase remains
sensitive to variations in the net rotation of the final composite
pulse, however. Thus, the problems of destructive interference and of
improper spectral phasing remain. In addition, the effects of variable
rotations can not be cancelled in single pulse, x/2-1-x-t echo, and
multiple pulse experiments.

Finally, composite pulses that produce constant rotations prove to
be important as models for the design of composite excitation sequences

in Chapter VI.

A )
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E. Dipole and quadrupole couplings

1. Composite » pulses

Figure V.8 shows simulations of the inversion performance as a
function of the relative dipole coupling constant in a system of a pair
of equivalent spin-1/2 nuclei for two composite » pulses and for a
single » pulse. The composite pulses are 450180909018018090450, for
which V(o) = 0, and 180,180,,,180,, for which V(O) = 0.25 V, with V
given by Eq.(IV.25). 18001801201800 satisfies the requirement [v(o),lz]
= 0, rather than V(O) = 0, as discussed in Chapter IV.C.4. Recall that
180 180120180o also compensates for rf inhomogeneity to zeroth order, as

0
seen in section B.1. Both 45,180,,90.,,180,,45, and 18001801201800

0777907180900

provide substantial improvements in inversion performance over a single
n pulse. Good inversion is accomplished with couplings that are as
large as 2w1. The results in Figure V.8 apply identically to the
inversion of a quadrupolar spin-1 nucleus, substituting ZwQ/wl for d/uw, .
on the abscissa. The equivalence of a spin-1 nucleus and a pair of
coupled spin-1/2 nuclei is apparent from a comparison of Eq.(IV.26) with
Eq.(IV.52) and from the discussion in Chapter IV.C.4.

An interesting feature of Figure V.8 is that 18001801201800 gives
slightly better inversion for small couplings than 4501809090186890450’
It is possible that the presence of a non-zero V(O) term truncates the
higher-order terms in the Magnus expansion. For example, if V(O) is
much larger than v(l’, then only those components of v(l) that commute
with V(o) will significantly affect the inversion. Such an effect is

reminiscent of the "second averaging" technique commonly employed in
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Inversion

XBL 841-301

Figure V.8: Simulations of population inversion for a system of two
dipole coupled spin-1/2 nuclei as a function of the ratio of the
coupling constant d to the applied rf amplitude W, Results are shown
for a single » pulse (dotted line), a 450180909018018090450 composite
% pulse (solid line), and a 18001801201800 composite x pulse (dashed
line).
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multiple pulse line-narrowing experiments in solid state NMR [35,67].
In second averaging, a deliberately large resonance offset term in v(o)
is introduced to truncate higher-order correction terms.

Figure V.9 illustrates pulse sequences used to experimentally
contrast the inversion performance of composite = pulses against that
of a single » pulse. Spins initially at equilibrium are inverted by a
v (V.9a) or composite » (V.9b) pulse. Coherences dephase during a
delay 1, leaving the spin system in a state describable by a density
operator that commutes with IZ. The FID signal is then collected
following a /2 pulse and Fourier transformed to give the spectrum.
Spectral distortions at low rf power reflect imperfect inversion. The
sequence of Figure V.9a is commonly used to study spin-lattice
relaxation. Figure V.9b represents the analogous experiment employing a
composite » pulse.

Figure V.10 shows simulations of powder pattern spectra resulting
from the sequence of Figure V.9a applied to an isotropic orientational
distribution of pairs of spin-1/2 nuclei. The usual Pake pattern [68]
results from the 300526-1 dependence of the dipolar coupling constant on
the angle between the static magnetic field and the internuclear
displacement vector. Here the maximum coupling is taken to be d/2r =
80 kHz. Clearly, the characteristic spectral features are lost as the
rf amplitude is reduced.

Figure V.10 also shows simulated spectra resulting from the
sequence of Figure V.9b. The spectral distortion at low rf amplitudes
is dramatically reduced by the substitution of a composite v pulse for
a single » pulse. The composite » pulse 18001801201800 gives

essentially the same results.
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Figure V.9: Schematic representation of the pulse sequences used in the
simulations of Figure V.10 and the experiment§ of Figures V.11 and V.13.
a) Spins are inverted by a » pulse. Coherences, which are created at
low rf amplitudes, dephase during a delay 1. The FID signal after the
final /2 pulse is digitized and Fourier transformed to give a spectrum
that reflects the inversion efficiency of the initial = pulse. b) Same
as (a), but with a 45_.180_..90 18090450 composite » pulse in place of

0"7"907"180
the single » pulse.
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v = 10 MHz v, = 32 kHz

Single w/2 Pulse

c d
Y = 32 kHz v = 32 kHz
e f
v, = 20 kHz v, = 20 kHz
Single = Pulse Composite 7 Pulse
00 kHz

Figure V.10: Simulated NMR spectra of an isotropic orientational
distribution of pairs of dipole coupled spin-1/2 nuclei. The maximum
coupling is dmaxlz" = 80 kHz. 1 kHz line-broadening is added. a)
Spectrum after a single x/2 pulse, with wl/Zw =v; = 10,000 kHz. Since
) > dmax’ the spectrum is undistorted. b) Spectrum after a single =/2
pulse, with v, = 32 kHz, illustrating the distortion resulting from a
x/2 pulse alone at low rf amplitudes. .c) Spectrum resulting from
sequence a of Figure V.9 with v, = 32 kHz. d) Spectrum resulting from
sequence b with v, * 32 kHz. e) Spectrum from sequence a with vy = 20
kHz. f) Spectrum from sequence b with v, = 20 kHz. The characteristic
features of the spectrum, which are lost by a single w pulse at low rf
amplitudes, are preserved by a composite w pulse.
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The slight asymmetry in the spectrum in Figure V.10f resulting frem
the composite » pulse requires some explanation. Suppose the coupled
spin system is initially described by a density operator Iz. When a
weak pulse sequence is applied to the spin system, the presence of the
couplings interferes with the action of the applied rf in such a way
that the magnitude of the expectation value of the spin angular momentum
changes. In other words, the magnetization shrinks. The density

operator evolves into not only a linear combination of I» I, and I,

y
but also into non-observable coherences and non-equilibrium populations.
One part of the non-equilibrium populations is dipolar order [69].
Dipolar order is defined to be a component of the density operator
proportional to the dipole coupling term in the Hamiltonian. The
spectrum of a dipolar ordered, two-spin state is antisymmetric about the
center.
The asymmetry is absent in the spectra resulting from a single «

pulse. It can be proved that there can be no dipolar order produced by

a single » pulse, regardless of the rf amplitude. The amount of

dipolar order is proportional to D, where:
D = TelVU(x)1,u(x) 1] (V.17)

V is given by Eq.(IV.25). U(t) is the propagator for a weak 1800 pulse.
Since the trace is invariant to a unitary transformation, all of the
operators on the right side of Eq.(V.17) can be rotated by an angle =
about the x axis without changing the validity of the equation. Since
that rotation changes Iz to -Iz and leaves all the other operators

unchanged, the result D = -D is obtained, implying that D = 0. The
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proof may be extended to show that no dipolar order is created by any
| pulse sequence in which the rf phase only takes on the values ¢ and
¢+ x.

Figure V.11 shows proton NMR spectra of Ba(C103)2-H20 powder obtained
with the sequences of Figure V.9 applied at two different rf amplitudes.
The delay t in Figure V.9 is here taken to be 5 ms. As predicted by the
simulations, the spectral distortion with weak rf is quite obviously
reduced by the use of a composite n pulse.

The spectrum of Ba(C103)2-H20 reflects the fact that individual H20
molecules are essentially isolated from one another, giving a Pake
pattern characteristic of pairs of protons. The experimental pattern is
somewhat distorted from the ideal pattern assumed in the simulations by
two factors. The first of these is the presence of couplings between
HZO molecules. Such intermolecular couplings have the effect of
broadening each individual transition, as reviewed in reference 70.

The second factor is the presence of chemical shift anisotropy. The
proton chemical shift anisotropy for Hé)in ice has been measured to be
about 34 ppm [71]. The sharp peak in the center of the Ba(C103)Z-H20
spectra arises from residual protons and from HZO molecules that are
free to reorient rapidly and isotropically.

The delay t of 5 ms was chosen to be long compared to the dephasing
time (TZ) but short compared to the spin-lattice relaxation time (Tl)‘
T1 in Ba(C103)é-H20 at room temperature is approximately 10 s.
Measurements of Tld’ the relaxation time for dipolar order, using the
Jeener-Broekaert technique [69], indicate that T1d is about equal to Tl‘
Hence, a slight asymmetry in the composite » pulse spectra in Figure

V.11 is observed, due to the presence of dipolar order. Similar
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v, = 63 kHz 'vl s 33 kHz

Single =/2 Pulse
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v, = 33 kHz v, = 33 kH2
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Single = Pulse Composite w Pulse
100 kHz

XBL 841-302

Figure V.11: Experimental proton NMR spectra of Ba(C103)2-H20 powder.
A1l spectra are the averages of 60 scans, with a recycle delay of 30 s.
a) Spectrum after a single x/2 pulse with vy = 63 kHz. b) Spectrum
after a single x/2 pulse with vy = 33 kHz. c) Spectrum from sequence a
of Figure V.9 with v, = 33 kHz. d) Spectrum from sequence b with vy ®
33 kHz. e) Spectrum from sequence a with v, = 20 kHz. f) Spectrum from
sequence b with v, = 20 kHz. The principal features of the simulations
in Figure V.10 are reproduced.

iy
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experimental results to those in Figure V.11 were obtained using the
18001801201800 sequence,

The results in Figures V.8, V.10, and V.11 indicate that zeroth
order composite » pulses invert spin populations over a much larger
range of coup]i;gs than a single » pulse in two-spin systems. This is
important because, even in a many-spin system, the strongest couplings
may be arranged in pairs, for example as methylene groups in an organic
solid. The fact that the two-spin results apply identically to
quadrupolar spin-1 nuclei makes the composite x pulses useful in

14N NMR as well.

deuterium and

Coupled spins occur in other configurations, however. For
composite » pulses to be of general use in solid state NMR, they should
provide an advantage over a single = pulse in an arbitrary coupled
system. Therefore, the inversion performance of composite m pulses in
systems of more than two coupled spin-1/2 nuclei is investigated.

Figure V.12 presents the results of computer simulations of the
inversion performance of the 450180909018018090450 and 18001801201800
composite n pulses, as well as that of a single » pulse, in three
different spin systems. The spin system of Figure V.12a consists of
three spin-1/2 nuclei arranged in an equilateral triangle perpendicular
to the applied static field, so that all dipole coupling constants are
equal. Figure V.12b represents a system of four spin-1/2 nuclei in a
square, again perpendicular to the applied field. The coupling
ij * where rij is the
distance between nucleus i and nucleus j. The spin system of Figure

constants are taken to be proportional to r

V.12c is a straight row of six, equally spaced spin-1/2 nuclei. Again,
-3

the coupling constants are proportional to '13
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Inversion

Inversion

Inversion

XBL 84)-299

Figure V.12: Simulations of inVersion as a function of the ratio of the
nearest-neighbor dipole coupling constant d to the rf amplitude w3 for
three possible systems of coupled spin-1/2 nuclei. Results are shown
for a single = pulse (dotted lines), a 450180909018018090450 composite
» pulse (solid lines), and a 1800180120180O composite » pulse (dashed
lines). a) Three spins in an equilateral triangle. b) Four spins in a
square. c¢) Six spins in a row. Coupling constants are taken to be
proportional to r1J'3. where rij is the distance between nuclei i and j.
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In all cases considered, both composite = pulses give better
inversion than a single » pulse over some range of couplings.

Generally speaking, the 450180909018018090450 séquence is the more
effective of the two. Note that the range of nearest-neighbor couplings
over which good inversion is achieved is substantially smaller than in
the two-spin case, for the single » as well as the composite » pulses.

Experimental spectra resulting from the sequences of Figure V.9
applied to a single crystal squaric acid (C404H2)-samp1e are shown in
Figure V.13. In the crystal, squaric acid molecules are arranged in
planes in such a way that the hydrogen nuclei, or protons, for chains
perpendicular to the molecular planes. The spacing between adjacent
protons in a chain is known to be 2.636 R [72]. Squaric acid has been
the subject of NMR [73,74] and other [75,76] studies, in particular due
to the observation of a structural phase transition at 370 K which
exhibits critical behavior suggestive of a two-dimensional system
[75,76]. Squaric acid was chosen for demonstration purposes because it
is a true many-spin sold, yet there is resolved structure in its proton
MR spectrum. The spectra in Figure V.13 resulting from the sequence of
Figure V.9b have greater overall intensity at low rf amplitudes than
those resulting from the sequence of Figure V.9a.

It is worth emphasizing that the spectra in Figure V.13 are from a
single crystal, although they superficially resemble a powder pattern.
In a powder pattern, as in Figure V.11, the features of the spectrum
furthest from the center result from spin pairs with the largest
couplings., Therefore, those features are lost first due to poor
inversion at low rf amplitudes. The squaric acid spectrum, on the other

hand, is the product of an essentially infinite network of coupled
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v, =63 kHz v, = 20 kHz
Single »/2 Pulse

c d
v, = 20 kHz v, = 20 kHz
e f
v, =15 kHz v, =15 kHz
Single = Pulse Composite w Pulse
" 100 kHz
XBL 841-303

Figure V.13: Experimental proton NMR spectra of a squaric acid crystal.
A1l spectra are the averages of 20 scans, with a recycle delay of 30 s.
The narrow peak to the right of center of each spectrum results from
residual protons. a) Spectrum after a single /2 pulse with vy = 63
kHz. b) Spectrum after a single »/2 pulse with v, = 20 kHz. Low rf
amplitude results in a loss of intensity from the center of the
spectrum, c) Spectrum from sequence a of Figure V.9 with vy = 20 kHz.

d) Spectrum from sequence b with v = 20 kHz. e) Spectrum from sequence
a with vy = 15 kHz. f) Spectrum from sequence b with v, = 15 kHz. Use
of the composite » pulse results in greater overall intensity,
reflecting a more complete inversion.
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spins, with the strongest couplings occurring along chains. Each of the
individual, unresolved transitions that make up the spectrum is a
transition of the spin system as a whole, so that it should not be
expected that the outer spectral features would be attenuated at low rf
anplitudes.

For the squaric acid experiments, a delay t of 5 ms was used. The
crystal was doped with chromium to reduce the proton T1 to approximately
10 s. The crystal was oriented with the b axis parallel to the static
magnetic field. In this orientation, the proton chains are parallel to

the field, giving the strongest possible couplings.

2. Composite =/2 pulses

Two composite x/2 pulses for broadband excitation in coupled spin
systems have been derived with the coherent averaging approach. With V
- dT,, the sequence 45,135,.:135,45, has V(%) = da[-0.0056 T, -
0.0069 (T22 + TZ-Z)]° The sequence 18090180270148086180280 has V(O) =
d[0.13063 Too + 0.000144 (T21 + Tz-l) - 0.00049 (T22 + TZ-Z)]' The
irreducible tensor components Ty are defined in Eqs.(IV.54), (IV.59),
and (IV.60). Theoretical signal amplitudes from a system of two coupled
spin-1/2 nuclei following excitation by the two composite /2 pulses are

plotted as a function of the relative coupling constant in Figure V.14.
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Figure V.14: Simulations of the signal amplitude immediately following
excitation by a single /2 pulse (dotted line), a 4501351801359045270
composite x/2 pulse (dashed 1ine), and a 18090180270148086180280 composite
%/2 pulse (solid line), as a function of the relative dipole coupling
constant in a system of identical pairs of coupled spin-1/2 nuclei.
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For comparison, the signal amplitude following excitation by a single
%/2 pulse is plotted as well. 4501351801359045270 offers an advantage
over a single /2 pulse only over a small range of couplings, while
18090180270148086180280 performs considerably better. As suggested in
the preceding section, it is possible that the presence of a non-zero
V(o) with [V(o),lz] = 0 helps the performance by truncating higher-order
Magnus expansion terms. The higher-order terms may be particularly
135,445

180°790 270"
Plots such as those in Figure V.14 do not give a complete

unfavorable for 450135

characterization of the usefulness of composite »/2 pulses for obtaining
spectra in spin systems with large couplings. The signal amplitude
immediately after the composite w/2 pulse is proportional to the area of
the spectrum if the spectrum is obtained by Fourier transformation of
the FID. The signal amplitude arises only from the Ix and I.y components
of the density operator, i.e. the observable single-quantum coherences.
In a coupled system, a composite x/2 pulse generally produces a density
operator with other, non-observable single-quantum coherences.
Initially, these components do not contribute to the signal. However,
they may subsequently evolve into observable coherence under the
internal Hamiltonian. Thus, they contribute distortions to the
spectrum, although they do not contribute to the area of the spectrum.
To classify the types of spectral distortion that appear due to
excitation at low rf amplitudes, it is useful to treat the density
operator p(t) after the single or composite »/2 pulse as a linear

combination of irreducible tensor operators T]m’ Because p(t) is

hermitian, and because the tensor components satisfy:




T = (17, (v.18)

the tensor components must appear in p(t) as independent hermitian

combinations Alm and B]m:

_ s . m
B]m = 1T]m - i(-1) T]-m (v.20)

A]m

The tensor operators transform under a rotation about x by = according

to:
exp(-ilxu)T]mexp(iIxn) = (-1)]T]_m (v.21)

Observable signal arises only from A]1 and B]1 components. These

satisfy:
exp(-11x)A; exp(ilx) = (-1) A, (V.22)
exp(-ilxn)B]Iexp(ilxn) = (-l)lB]1 (v.23)

The coefficients of A]1 and B]1 in the density operator after the

composite w/2 pulse are real numbers a and b]:

Tr[A]lu(r)IZU(T)'IJ/Tr(A]f) (v.24)
b, = Tr[B,IU(r)IZU(x)'l]/Tr(B,f) (v.25)

4

where U(t) is the pulse sequence propagator. The FID signal and the

corresponding spectrum is a superposition of the signals and spectra
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arising from each tensor component separately. A signal component S;(t)

can therefore be defined by:
S](t) = Tr‘[I,{exp(-iV'c)(a]A]1 + b]Bll)exp(in)] (v.26)

V is the dipole or quadrupole coupling Hamiltonian. V is invariant to a

rotation about x by w. Then, if the operators in the trace in Eq.(V.26)

are all rotated about x by w, leaving the trace unchanged, S](t)

becomes:

Mlaay, + (<1)'byBy Jexp(ive)
(v.27)

S](t) = Tr{l_exp(-iVt)[(-1)

In addition, if the adjoint of the product of the operators in the trace

in Eq.(V.26) is taken, S](t) is replaced by its complex conjugate:
*
,S](t) = Tr‘[I_exp(-in)(a]A]1 + b]B]I)exp(in)] (v.28)

Comparison of Eqs.(V.27) and (V.28) reveals the following facts: A]l
components contribute to the real part of the signal when 1 is odd and
to the imaginary part of the signal when 1 is even; B]1 components
contribute to the real part of the signal when 1 is even and to the
imaginary part when 1 is odd.

The undistorted spectrum, which would result from the FID following
a single or composite w/2 pulse with a very large rf amplitude, has
absorption Tineshapes in the real part and dispersion/lineshapes in the

imaginary part, as discussed in section C.2 of this chapter. For a
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coupled spin system on resonance with no chemical shifts, the real part
of the spectrum is symmetric about the center and the imaginary part is

antisymmetric, that is:
*
Flw) = F(-w) (v.29)

where F(w) is given by Eq.(V.10). EQ.(V.29) holds if the signal is
purely real. The imaginary part of the signal results in a contribution
to the spectrum with the opposite symmetry. Specifically, imaginary
signal makes an antisymmetric contribution to the real part of the
spectrum. The resulting asymmetric "absorption" spectrum, even if it
has a larger total area than the spectrum obtained with a single »/2
pulse, is an undesirable result of composite ®/2 pulse excitation.

Two possible remedies for asymmetry in the spectrum exist. One is
to artificially set the imaginary part of the FID signal to zero before
the Fourier transformation. This is justifiable only if the spectrum is
known to be symmetric a priori. In addition, it is difficult to
determine experimentally that the two recorded signal channels actually
correspond to the real and imaginary parts, and not to linear
combinations of the real and imaginary parts that require a constant
phase correction. It may also not be known with certainty that the
spins are being irradiated exactly on resonance.

A second possibility is to collect two FID signals, one from the
original composite w/2 pulse and one from a new version of that pulse in
which all the rf phases are replaced by their negatives. This negation
of phases may be called "phase reversal." If U(t) is the propagator for

the original composite pulse, then U'(t) is the propagator for the
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phase-reversed pulse, with: .

U'(x)

Texp{-ifg[wl(lxcos¢ - Iysin¢) + V]dt} (v.30)

exp(il »)U(z)exp(iI,m) (v.31) ;

If the operators in the traces in Eqs.(V.24) and (V.25) are rotated

about x by n, the following equations result:

ay = (-1)*heLag ()1 (0 Tr(A ) (v.32)
= (-1)]+1ai (Vv.33)
by = (-1) ' TrlBy U (11,0 (1) /Te(e,8) (v.34)
= (-1)'b} (v.35)

Thus, phase reversal changes the sign of the coefficients of the tensor
components that contribute to the imaginary part of the signal. If the
FID signals from the original and the phase-reversed composite =/2
pulses are added either before or after Fourier transformation, and if
the undistorted spectrum is truly symmetric, the antisymmetric spectral
components are eliminated. This method avoids the a priori assumption
of a symmetric spectrum and avoids experimental uncertainties about the
adjustment of the signal channels and the rf frequency.

Note that U'(t) equals U(t) if the rf phase in the original .
composite »/2 pulse only takes on the values 0 and =. Such a composite
pulse therefore can not introduce asymmetry into the spectrum regardless
of the rf amplitude. A single =/2 pulse is a special case of such a
composite pulse.

Figure V.15 shows simulated powder pattern spectra resulting from
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excitation by a single »/2 pulse and by the composite »/2 pulse

180 180270148086180280 at various rf amplitudes. The spin system is an

90
isotropic orientational distribution of either coupled pairs of spin-1/2
nuclei or quadrupolar spin-1 nuclei with an axially symmetric quadrupole
interaction. The imaginary signals have been set to zero in the
composite pulse case in order to symmetrize the spectra. The same
spectra would result from the phase-reversal procedure. At low rf
amplitudes, the composite w/2 pulse spectra in Figure V.15 clearly have
greater areas and less obvious distortion than the single n/2 pulse
spectra.

The distortions in the spectra of spin-1 nuclei or pairs of
spin-1/2 nuclei resulting from single pulse excitation at low rf
amplitudes have been well characterized, first by Barnaal and Lowe [77]
and later by Bloom et al. [78]. The distortion is a combination of a
loss of signal amplitude and a shift in the signal phase. The phase
shift is proportional to the coupling constant. As in the discussion in
section C.2 above, the phase distortion in a powder pattern can not be
corrected after the spectrum is obtained.

An important application of composite /2 pulses is in a solid echo
sequence [79], i.e. (n/2)0-11-(u/2)90-12. In the case of a spin-1
nucleus or a pair of spin-1/2 nuclei, and in the limit of very large rf
amplitude, the signal collected after a solid echo sequence with Tp =17y
is exactly the same as the signal after a single =»/2 pulse. For a
general coupled spin system, the signal from a solid echo sequence is
approximately the same as that from a single »/2 pulse if T and T, are
equal and small. At lower rf amplitudes, the echo signal is attenuated

and peaks when Ty is slightly different from 3 [78]. The solid echo is
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Single ¥/2 pulse, », = | MHZ
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¥, =100 kHz v, = 100 kHz
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d
| X 50 kHz v, ® 50 kH:z
Single w/2 pulse Composite w/2 pulse

Figure V.15: Simulated powder pattern spectra for an isotropic
orientational distribution of pairs of dipole coupled spin-1/2 nuclei,
resulting from excitation by a single «/2 pulse (a,b,d) and the
composite x/2 pulse 18090180270148086180280 (c,e) at various rf
amplitudes. The spectrum in a is essentially undistorted. A comparison
of b and d with c and e shows that the distortions at low rf amplitudes
are less severe when the composite =/2 pulse is used.
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widely used in place of a single x/2 pulse to obtain solid state NMR

spectra because the delay Ty allows signal artifacts from the rf pulses

to die out before the signal observation begins. If a single %/2 pulse
is used, such pulse artifacts generally obscure the beginning of the =
FID, making an accurate spectrum impossible to achieve. »
The composite x/2 pulse 18090180270148086180280 can be used in a
solid echo sequence with limited success. A difficulty with using the
composite solid echo sequence to obtain a powder pattern spectrum is
that the optimum difference between Ty and T depends on the coupling
constant, i.e. different frequency components in the powder pattern
echo at different times. This problem does not arise with the solid
echo sequence using single n/2 pulses, at least not in the spin-1 and
pair of spin-1/2 cases [78].
Levitt, Suter, and Ernst [27] have introduced composite =/2 pulses
specifically for solid echo sequences applied to quadrupolar spin-1
nuclei or pairs of coupled spin-1/2 nﬂclei. The most effective of these
is 90180180090180135045180. The spectrum resulting from the FID after )
one of these composite n/2 pulses has severe phase and amplitude
distortions, even at an rf amplitude comparable to the spectral width.
However, when the composite =/2 pulses are used in a solid echo
sequence, a virtually undistorted spectrum can be obtained when w1/2ﬂ
is only one quarter of the spectral width. This is an important example
of how distortions can be made to cancel between pairs of composite
pulses.
The composite x/2 pulses of Levitt, Suter, and Ernst are derived by
applying a fictitious spin-1/2 formalism [80-82] to the three-level,

spin-1 system. It is shown that certain composite » pulses that
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compensate for resonance offsets in systems of isolated spins can be
adapted to form composite x/2 pulses for anharmonic three-level systems. s

The particular composite = pulse used to generate

90180180090180135045180 was developed by Shaka et al. [25].

Finally, other possible applications of composite =/2 pulses
compensated for couplings include their incorporation into
line-narrowing, spin-locking, time-reversal, and multiple-quantum
excitation sequences. In some of those applications, it is common
practice to use single w/2 pulses arranged so that the average of the
coupling Hamiltonian during the pulses vanishes in the interaction
representation when calculated over the sequence as a whole. The

~relative merits of making the average vanish for each composite /2

pulse individually is a matter for further investigation.



Chapter VI: Broadband Excitation in Other NMR Techniques

A. Motivation

This chapter deals with broadband excitation problems other than
population inversion and the creation of transverse magnetization.
There are a number of techniques in NMR in which simple sequences of
strong rf pulses separated by delays are used to produce a desired
transformation of a spin system. As an example, a sequence that is.
commonly used in multiple-quantum spectroscopy [83,84] is shown in
Figure VI.1. Assuming that the rf pulse amplitudes are very large
compared to internal spin couplings, resonance offsets, and chemical

shifts, the propagators for the pulse sequences considered in this

chapter depend on the products of the coupling constants with the delay

lengths. For given delay lengths, the desired transformation is
achieved only for specific values of the coupling constants if the
standard, simple sequences are used. In many experimental situations,
however, a range of coupling constants exists. This range may result
from the random orientations of crystallites in a powdered or
polycrystalline solid, from differences in bond connectivities between
coupled nuclei, from differences in electronic environments of
quadrupolar nuclei, or from differences in the motional averaging of

couplings.

In certain cases, the pulse sequence propagator can be analyzed as

a rotation operator in a fictitious two-level system. The coupling

constants determine the rotation rate; the products of coupling
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3 3 1472 1472
o° 180°  0° 0°

Figure VI.1: A'simple sequence for multiple-quantum spectroscopy,
composed of w/2 and x pulses with the indicated phases. The signal is
acquired as a fynction of tl' 1 is fixed at a value that optimizes the
preparation of desired multiple-quantum coherences by the first three
pulses. The best value of t depends on the particular arrangement and
strengths of couplings in a particular spin system.
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constants with delay lengths are rotation angles. The problem of
constructing a pulse sequence that is effective over a broad range of
coupling constants reduces to the problem of finding a sequence of
rotations for which the final net rotation is insensitive to the
rotation rate. This is precisely the problem solved by composite pulses
that compensate for variations in the rf amplitude, as in Chapter V.B.
Thus, it is possible to construct composite excitation sequences by
direct analogy to composite pulses.

The first work in which a composite excitation sequence was
explicitly based on a composite pulse was the development of homonuélear
decoupling sequences for liquid state NMR by Garbow, Weitekamp, and
Pines [85]. Their technique, bilinear rotation decoupling (BIRD),
depends on the selective population inversion of protons that are bound
to 13C nuclei in an organic molecule. If there is a scalar coupling
between a proton and a 13C nucleus, with coupling constant J, then the

simple sequence 900-1-90 applied to the proton on resonance inverts

180
the proton populations if t = 2x/J. In that case, 90,-7-90,g, is 2
bilinear w pulse, called "bilinear" because of the bilinear form of the
scalar coupling. To cover a range of J values, Garbow, Weitekamp, and
Pines suggested replacing the simple bilinear n pulse with the
composite bilinear » pulse 900-1/2-9090-1-90270-r/2-90180, which is a
bilinear analog of the 90018090900 composite = pulse of Levitt and
Freeman [19].

An earlier technique for cross-polarization in liquids employed a
composite excitation sequence as well, but the analogy to composite

pulses was not made explicit [86].

Sections B, C, and D of this chapter are devoted to another example
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of composite excitation, namely composite double-quantum excitation. -

Section E describes composite polarization transfer sequences. At this

point, it is worthwhile to emphasize the 'difference between composite

excitation sequences and composite pulses. Both may be concerned with -
uniform excitation over a range of couplings. However, the parameter of
interest in a composite excitation sequence is the product of the
coupling constant with a delay length, while the parameter of interest
in a composite pulse is the ratio of the coupling constant to the rf
amplitude. Composite excitation sequences are useful even when the rf
amplitude is much greater than all coupling constants. A second z
difference is that composite excitation sequences are designed to
produce a uniform transformation over a range of coupling constants
centered around a non-zero value, while composite pulses produce a
uniform transformation over a range of coupling constants centered

around zero.
B. Theory of broadband double-quantum excitation
1. Fictitious two-level systems

In this section, a method for constructing pulse sequences for
broadband double-quantum (DQ) excitation is developed. The spin systems
considered are all effectively three-level systems. The problem of
broadband DQ excitation in a three-level system is pictured -
schematically in Figure VI.2.
Consider first the internal Hamiltonian for a pair of equivalent

dipole-coupled spin-1/2 nuclei:



%

Energy —»

|3>

XBL 847-2662

Figure VI.2: The problem of broadband double-quantum excitation. A
three-level system with a coupling that depends on a parameter x is
shown. The efficiency of the excitation of coherence between /1> and

| 3> generally depends on the energy mismatch between [2> and the inter-
mediate, or virtual, state of the double-quantum transition. In solid
state NMR, x may specify the orientation of a molecule or crystallite,
as for quadrupolar spin-1 nuclei or pairs of dipole-coupled spin-1/2
nuclei. In liquid state NMR, x may label different bond connectivities
between scalar coupled spin-1/2 nuclei. '
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- 1

Assuming that the rf amplitude is much larger than d and Aw, the

propagator for the pulse sequence 9090-t/2-180270-t/2-9090 is:

u(t) = exp(-inw/Z)exp(-i t/2)exp(i1yr)exp(-i t/Z)GXpI-inw/Z)
(V1.2)
Using the fact that:

. -, 1 -
exp(t1lyn/2) exp(+1Iyn/2) =z d(lelx2 - 311.12) + Aw(le + Ixz)
(VI.3)

Eq.(VI.2) can be rewritten:

The fact that the two terms on the right side of Eq.(VI.3) commute with
one another is used to derive Eq.(VI.4).

At this point, it is useful to introduce the fictitious spin-1/2
formalism of Vega [82] and Wokaun and Ernst [81]. In an n-level system,
it is possible to define fictitious spin-1/2 operators for each pair of

levels p and q, as follows:

Ig'q = (|p><ql + |g><pl)/2 (V1.5a)
Ig'q = (-1 |p><gl + ilg><pl )/2 (V1.5b)
1579 = (Ip<pl - 1@<a))/2 (V1.5c)
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The fictitious spin-1/2 operators for a given pair of levels satisfy the .

same commutation relations as standard angular momentum operators: -

¥ E R i

P-q P-qy _ ..P-q .
[la ,IB ] = 11Y (VI.6)

mpv’x: g

where {a,B,y} is any cyclic permutation of {Xs¥2Z -
For the Hamiltonian of Eq.(VI.1l), the basis of eigenstates is
(11> = Jaad,12> = (JaB> + [Bad)NZ,|3>

represent spins in their m = 1/2 and m

|88>} where |a> and |B>

-1/2 states, respectively.
These eigenstates make up the triplet, i.e. total spin 1, manifold;
Additionally, there is a singlet state (Ja> -18a>)/{2, but the singlet
state never mixes with triplet manifold under any combination of rf
pulses and delays. It is therefore ignored.

Eq.(VI.4) can now be rewritten in terms of fictitious spin-1/2

operators, using:

1 _1,1-3 1,,1-2 2-3
Ix11x2 - 311‘l2 - ZJx - B(Iz - Iz ) (VL.7)
The result is:

U(t) = exp(-id1} 3e/2)explia(1372 - 127%)/6] (V1.8)

Similarly, the propagator for the sequence (9090-t/2-180270-t/2-9090)Y,

where y denotes an overall rf phase shift, is:

U(s,x) = expl-ig(1} >coszy + I, >sinzy)lexplis(1;72 - 127°)/3]
(v1.9)

with g = dt/2. The phase shift introduces an angle 2y in Eq.(VI.9)
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instead of y because I, = 21%‘3. The sequence for which the propagator :

is U(8,v) will be denoted by P(s,y).
The initial, equilibrium state of the system is described by a

§'3. The second exponential operator : gﬁ

on the right-hand side of Eq.(VI.9) commutes with all Ii'3 operators; E

density operator proportional to I

the first exponential operator produces a rotation in the 1-3 subspace.

As long as the total excitation sequence consists only of P(g,y)
subcycles, it is possible to disregard the second exponential operator
and treat U(g,y) as the operator for a rotation in the xy plane of the
1-3 subspace. U(B,y) is therefore formally analogous to the usual
angular momentum rotation operator resulting from a single rf pulse with

phase 2y and flip angle 8.
2. Composite double-quantum excitation sequences

DQ coherence is an off-diagonal density matrix element connecting
states |1> and |3>, which differ in their Zeeman quantum numbers by 2.

DQ coherence is therefore described by a density operator that is a
1-3 1-3
X and Iy

of P(8,y) subcycles that excites DQ coherence over a range of coupling

linear combination of I . The problem of finding a sequence

constants is the same as the problem of finding a sequence of rotations

about axes in the xy plane that brings a vector from the z axis into the

xy plane over a range of variations in the rotation angles. This

problem is solved by composite »/2 pulses that compensate for rf -
inhomogeneity. Thus, as anticipated in section A, it is possible to

construct composite preparation sequences directly by analogy to

composite »/2 pulses. If (91)¢1(°2)¢2"‘(6N)¢N is a composite x/2
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pulse, with e and ¢; being the flip angle and phase of the ith puise,
then the corresponding composite DQ excitation sequence is

P(91.¢1/2)P(62.¢2/2)...P(eN,¢N/2), with the overall propagator:

The particular composite w/2 pulse used as the model for the DQ
experiments that follow is 270036016918033180178, the first order
composite pulse presented in Chapter V.B. This choice is explained

later.
3. Reduced composite sequences

The construction of a composite sequence from P(8,y) subcycles
entails juxtaposing the first /2 pulse of one subcycle with the last
x/2 pulse of the previous subcycle. The juxtaposition of rf pulses of
different phases is a common and important feature of composite » and
n/2 pulses, as in Chapter V. In the case of composite DQ excitation
sequences, however, it is merely an artifact of the construction method
and is a source of experimental imperfections. Normally, a gap between
pulses on the order of microseconds is needed in practice to ensure that
their transients do not interfere and to allow for the switching time of
an rf phase shifter. Spin evolution due to resonance offsets or
chemical shift differences during the gaps can degrade the performance
of a composite excitation sequence. The gaps can be eliminated and the
total flip angle shortened, without changing the overall propagator in

the limit of perfect pulses, by replacing adjoining pairs of »/2 pulses
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by an equivalent single pulse. The reduction in the number of pulses
and the total flip angle should alleviate the effects of rf
inhomogeneity, phase transients, and finite pulse amplitudes somewhat.
The derivation of the reduced form of a composite excitation sequence
depends on the following identity:

exp[-i(lxcos¢1 + Iysin¢1)w/2]exp[-1'(Ixcos¢2 + 1 sin¢2)n/2]

Yy
= exp[-ilz(¢l - u/Z)Jexp-iIx(n + 4y - ¢1)]exp[ilz(¢2 + %/2)]

(VI.11)

The left-hand side of Eq.(VI.1l) is the product of the two rotations of
a 9O¢2904>1 pair. The right-hand side is a product of three rdtations.
The first and third factors are rotations about z that commute with the
internal Hamiltonian and merely affect the phases of pulses in a reduced
sequence. The second factor is a rotatioh about x, corresponding to a
pulse with a flip angle of n + 0o = 91 If 99 = 97 0, the flip angle
may be changed to n - 05 + ¢4 and the sense of the rotation reversed.
Using Eq.(VI.11) and this rule, the reduced form of the composite DQ
excitation sequence based on 270036016918033180178 is:

900-3T/2-180 -T-180,-T-90

90 0 180
(VI.14)

80-3T/2-95.5 -2T-180,-2T-112

90 0 9o~ 1-180

-T-107.5

1 180

A general composite excitation sequenée (900-t1-180180-t1-900)0-
(900-t2-180180-t2-900)Yz

reduced sequence:

...(900-tn-180180-tn-900)Yn corresponds to the
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180180-t3-(180+y3-y4) =eee=t =90 (VI.15)

180
An interesting bonus of the reduced sequence is that the pulse phases
are multiples of 90°. This will be true regardless of which composite
%/2 pulse is used as the model. It simplifies the experimental
requirements since standard phase tune-up procedures are applicable and

a small angle phase shifter is not required.

4. The double-quantum experiment

Figure VI.3 depicts the class of pulse sequences which will be
demonstrated in the following section. The general form of the multiple
quantum (MQ) experiment, the notation, and much of the earlier work are
reviewed in references 83 and 84. In general terms, an MQ experiment
consists of a preparation sequence that creates MQ coherence from the
initial, equilibrium state, an evolution time t1 in which the system
evolves under a Hami]?onian that commutes with Ig, a mixing sequence
that converts part of the MQ coherence to observable single quantum
coherence, and a detection beriod. Signals are recorded as a function
of tl. Composite DQ excitation can be used in the preparation or the
mixing period, or preferably in both. Here the case where the
preparation and mixing propagators, U and V respectively, are of the

form of Eq.(VI.10) is considered. The actual mixing sequence differs
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Figure VI.3: a) General form of time domain double-quantum
spectroscopy, showing preparation, evolution, mixing, and detection
periods. An optional » pulse in the evolution removes chemical shifts
and static field inhomogeneity. The detected signal S(tl,tz) may be
Fourier transformed with respect to tl at t2 = 0 to give a one-
dimensiona],'double-quantum spectrum; a double Fourier transform with
respect to t1 and t2 yields a two-dimensional spectrum. b) A

composite preparation sequence, based on 9090-1/2-180270-1/2-9090
subcycles. These subcycles, with various values of Ty and overall phase
shifts ¢;» are combined to form a sequence for preparing double-quantum
coherence over a large range of couplings. The Ty and ¢ are easily
derived from existing composite »/2 pulses. c) The matching mixing
sequence. The final /2 pulse in V is omitted to allow the detection of
transverse magnetization. If there is no » pulse in the evolution, 95
1s replaced by ¢ Preparation and mixing sequences should be matched
to give the maximum signal amplitude and a uniform signal phase.
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from V only by the deletion of the final x/2 pulse to create transverse
magnetization. The signal at the end of the mixing period in the

channel orthogonal to this x/2 pulse has the form:
-1 . -1 .
Sl(tl) = Tr[V IzVexp(-Jﬂtl)UIzU exp(ﬁKtl)] (VI.16)

Since U and V are DQ selective, it can be shown that the other channel
carries no signal at this time, in the absence of pulse errors. The
propagator in the evolution period, exp(-iﬂtl), is a rotation about z in

the 1-3 subspace by an angle ZAwtl.
1-3

Eq.(VI.16) can be analyzed by using the facts that Iz = 21Z and
that U and V are also rotations in the 1-3 subspace:
-1 _ 1-3 1-3_. 1-3
UIZU 1 = ap(1§ 3cosYp + I.y 51nyp) + eplz (V1.17)
VIV = (1 cosy, + 157 3siny ) + 81173 (VI.18)
The detected DQ signal becomes:
SDQ(tl) = (l/Z)amapCOS(Yp - Yyt ZAwtl) (VI.19)

Two important features of the DQ experiment are apparent in Eq.(VI.19).
First, the amplitude of the detected DQ signal depends on both the
efficiency with which DQ coherence is prepared (up) and the efficiency
with which it is mixed back to SQ coherence (am). Calculated plots of
the DQ signal amplitude as a function of the coupling constant are shown
in Figure VI.4 for the non-composite DQ experiment, the experiment with

composite preparation only, and the experiment with both composite
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Figure VI.4: Theoretical doub]e-quantdm signal amplitudes as a function
of the ratio of the actual coupling constant d to the nominal coupling
constant d0 in a non-composite experiment (dotted line), a composite
preparation or composite mixing experiment (dashed line), and a

- composite preparation and composite mixing experiment (solid line). A

composite double-quantum excitation sequence based on the composite pulse
270036016918033180178 is assumed.
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preparation and mixing. Second, the phase of a DQ line is Yp = Ype
When the signal in Eq.(VI.19) is averaged over a distribution of systems
with different couplings, the possibility of overlap in the DQ spectrum
must be considered. It is therefore important that the phases be
independent of the internal Hamiltonian to avoid destructive
interference.

A feature of most composite w/2 pulses is that they produce
transverse magnetization with a phase that depends on the rf amplitude,
as discussed in Chapter V. If such a composite pulse is used as the
basis for the composite preparation sequence, the DQ signal phase will
generally be a function of the coupling constant. Signal cancellation
may result. This could occur if a composite sequence is only used in
the preparation period. For such an experiment, the composite sequence
should be based on a composite w/2 pulse with minimal phase variations.
used here has this

The composite =/2 pulse 2700360 18033180

169
property, as shown in Chapter V.B.

178

Phase variations can be eliminated in more general ways, and the DQ
signal amplitude increased, by using composite sequences in both the
preparation and the mixing periods. This matching of preparation and
mixing periods to maximize signal is a general principle of MQ
spectroscopy [84]. if the mixing sequence is the same as the -
preparation sequence, but with the pulses and delays given in reverse

order, then the following equations hold:

V= exp(-iIzw/Z)U'lexp(iIzw/Z) (VI.20)
ap = o (VI.21)
Yo, =Y , (v1.22)
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Here the DQ selectivity of U was used.

If, as in the experiments that follow, a » pulse is added to the
evolution period (for example at t1/2 to remove resonance offsets and
chemical shifts) the phases 95 in the mixing period must be changed to
-9; to preserve uniform phase. In this form, the experiment is a
special case of a general procedure for obtaining spin inversion

transitions in phase and does not depend on selectivity [84].
C. Broadband double-quantum excitation results
1. Experiments and spectra

Experiments were performed on a sample of CH2C12 dissolved in
Eastman 15320 liquid crystal. Excess CH2C12 was evaporated until the
isotropic solution became nematic, at which point it was sealed. For
this sample, at 29° C the single quantum spectrum of CH2C12 is a doublet
with a splitting of 2.18 kHz, implying d/2nx = 1.09 kHz. The
spectrometer operated at 180 MHz. The rf amplitude was wl/zu = 50 kHz.
As explained above, the composite excitation sequence
P(3dT,0)P(4dT,169/2)P(2dT,33/2)P(2dT,178/2) was used. The performance
of composite sequences over a range of internal couplings was mimicked
by varying T around the theoretically optimum value of 230 us. A =
pulse in the middle of the evolution period removed static field
inhomogeneity. Zero-, one-, and two-quantum spectral lines were
separated using time-proportional phase incrementation (TPPI) [87]. All

experiments were performed twice, with an overall phase shift of the
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preparation sequence by w/2 the second time, and the results added

together to cancel artifacts due to imperfections in the TPPI phase §

cycling. Phase shifts in increments of 360°/256 were available from a -
digitally controlled phase shifter. A delay of 2.5 us was required for £
the switching time of the phase shifter.
Figure VI.5 shows DQ lines of CHZCI2 obtained by varying T from 46
us to 460 uys in 46 us increments. Figure VI.S5a results from
experiments with single P(dT,0) preparation and mixing sequences;
Figure VI.5b results from experiments with composite preparation
sequences; Figure VI.5c results from experiments with composite
preparation and composite mixing sequences. The theoretical signal
amplitude as a function of T is superimposed on the experimental
results. As predicted, the range of values of dT over which the DQ
signal amplitude is nearly its maximum is greatly extended by the use of
composite excitation sequences. The DQ signal phase remains nearly
constant as T varies. In Figure VI.5b, where the preparation and mixing
sequences are not matched, this is a result of the use of a model

composite »/2 pulse derived with the approach of Chapter IV.
2. Effects of pulse imperfections

The theoretical analysis in the preceding section assumed perfect,
delta function rf pulses. The existence of pulse imperfections affects
the experimental results in several noticeable ways. First, the optimum
value of T is less than the theoretical prediction. This effect is most
pronounced in the experiments employing composite preparation and

composite mixing, and results from the finite pulse lengths. The
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Figure VI.5: Double-quantum H NMR Tines of oriented CH,Cl, in a

liquid crystal solvent. The lines are shown as a function of the
preparation and mixing time for non-composite (a), composite preparation
(b), and composite preparation and composite mixing éxperiments (c).

In d, reduced composite preparation and mixing sequences are used,
replacing adjoining x/2 pulses by a single equivalent pulse and thereby
decreasing pulse imperfection effects. Theoretical line amplitudes,
‘normaldzed to those in a, are shown in dotted lines. The fact that the
composite sequences give uniform line amplitudes and phases over a range
of T for a fixed proton-proton coupling implies that they give uniform
line amplitudes and phases over a range of couplings for a fixed T.
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simulations in Figure VI.5 have been shifted to coincide with the
experimental maxima.

Second, the maximum DQ signal in the composite experiments is about
10% less than that in the experiments with single preparation and
mixing. A number of pulse imperfections may be responsible for a loss
of signal amplitude. These include pulse length miscalibrations, rf
inhomogeneity, rf phase transients, and rf phase misadjustments. Rf
inhomogeneity proved to be a particularly significant factor in the
experiments, as experiments with a larger sample resulted in larger
relative differences in the maximum DQ signals between experiments with
different numbers of pulses.

A third, and related, effect is the observation of SQ lines, which
appear as artifacts to the left of individual DQ lines in Figure VI.5.
Ideally, a sequence of P(8,y) subcycles would prepare no SQ coherence.
However, any of thé above pulse imperfections may interfere with the DQ
selectivity of P(g,y). The preparation of SQ coherence contributes to
the loss of DQ signal amplitude. In addition, the lack of perfect DQ
selectivity causes signal to be detected in both receiver channels,
rather than the single channel assumed in the theory section.

The presence of signal in both channels as a result of pulse
imperfections may produce small signal phase variations as a function of
dT even if the preparation and mixing sequences are matched as in Figure
VI.5c. These could be removed by actually giving the final x/2 pulse in
the mixing sequence of Figure VI.3c, allowing coherences to dephase
during a delay, and then sampling longitudinal magnetization with a =/2
“read" pulse. This procedure for performing a true single-channel

experiment has been followed in reference 47.
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Figure VI.5d shows results from the reduced composite preparation
and mixing sequence of line (VI.14). In comparison to Figure VI.5c, the
overall amplitude in Figure VI.5d is greater and the SQ artifacts are
smaller. The improved performance of the reduced composite sequences
may be attributed to a reduction in pulse imperfection effects.

The effects of pulse imperfections may be further attenuated by
incorporating composite pu]ses into composite DQ excitation sequences.
In particular, composite pulses that compensate for rf inhomogeneity and

for dipole and quadrupole couplings may be beneficial.
D. Extensions and applications
1. Liquid state NMR

The internal Hamiltonian for a pair of weakly coupled spin-1/2

nuclei in a liquid is:

= lellz2 + 61121 + 62122 (vI.23)

The propagator for the sequence 9090-t/2-180270-t/2-9090 is then:

U(t) = exp(-1J1 1 ,t) (V1.24)

R X 2-3 1-2
exp(-101, “t/2)exp[-id(I; ~ - I )t/6] (V1.25)

A factor of exp(-iJt/12) has been dropped from Eq.(VI.25), making it
formally the same as Eq.(VI.8). The same derivation of composite

sequences follows. Note that the triplet basis of spin states is
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assumed in Eq.(VI.25), although those states are not the eigenstates of
the Hamiltonian in Eq.(VI.23). This basis is appropriate because the =
pulse in the center of a P(B8,y) subcycle removes the chemical shifts.

DQ excitation in liquids is used in DQ filtering [88], a technique
that allows the spectral lines of pairs of coupled nuclei to be
separated from those of isolated nuclei. Two-dimensional DQ
spectroscopy in liquids [89,90] is used to establish bond connectivities

of carbon atoms in organic molecules. In this technique, 13C SQ lines

are correlated through the DQ spectrum. A range of 130-13C couplings
arises due to the variety of C-C bonds.

13

2. C spectroscopy in solids

The generalization of Eq.(VI.1) to pairs of inequivalent nuclei is:

K= (110 3LLL) * 610 + 6,1, (VI.26)
In this case, the 9090-t/2-180270-t/2-9090 subcycle does not apply when
|d) and !61 - 6, are comparable, since the dipole coupling term and the
chemical shift terms do not commute. This is likely to be the situation
in 136 NMR i solids. An alternative subcycle for the case in
Eq.(V1.26) is simply a strong rf pulse of length t. If the rf phase is
zero, and if t is a multiple of 2n/wy, then the propagator for the

effective Hamiltonian in the lowest order of coherent averaging theory

is:

U(t) = explid(I,41, - 31,.1,)t/2] (V1.27)
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[

Eq.(VI.27) is again formally the same as Eq.(VI.4). Both DQ filtering

and the two-dimensional DQ experiment can be applied in solids as well

as in liquids [91]. In solids, the need for broadband DQ excitation 3
arises from the distribution of dipole coupling constants due to .

differences in bond lengths and orientations.
3. Quadrupolar spin-1 nuclei

The quadrupole coupling constant wq for deuterium and 14N nuclei in
solids is typically much larger than wye If wy <<|wd, then irradiation
at a resonance offset Aw leads to an effective Hamiltonian [80]:

Ko = Wolu 1, + (w3 (1372 - 1273) 4 200173

(vi.28)
If |8l ,m%/wa, Eq.(VI.28) is analogous to Eqs.(VI.4) and (VI.7)
so that the same composite excitation sequences can be constructed. If
Aw can not be jgnored, Eq.(VI.28) implies that composite »/2 pulses with
simultaneous compensation for rf inhomogeneity and resonance offsets
should be used as mddels for composite excitation sequences, since the
first and third terms in Eq.(VI.28) look like the rf and offset
interactions of an isolated spin. Again, the second term commutes with
the others and can be ignored.

DQ spectroscopy is used to obtain chemical shift spectra of
deuterium and 14N nuclei in solids [92-94]. The DQ spectrum displays
the chemical shifts, and possibly the dipole couplings, that are

otherwise masked by the much larger quadrupole couplings. In powdered,
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polycrystalline, or amorphous solids, the randomness of orientations
combines with differences in electronic environments to give a range of
quadrupole couplings. Magic angle spinning may be used in conjunction
with DQ spectroscopy to acquire chemical shift spectra [94]. Otherwise,
chemical shift powder patterns are obtained.

Regardless of the sequence used for DQ excitation, no DQ coherence
can be excited at molecular orientations where the quadrupole couplings
are zero. Thus, if for example a deuterium chemical shift powder
pattern is recorded, there will necessarily be an intensity deficit at
chémica] shift values corresponding to those orientations. However, if
the maximum coupling in an axially symmetric quadrupole powder pattern
is wgax’ the bandwidth of uniform excitation for the composite sequences
described above is sufficient that the signal amplitude arising from all
orientations with couplings between the singularities at mgax and wgax/z
will be within 0.99 of the maximum, provided that the composite sequence
is optimized for a coupling of 3mgax/4. The shape, but not the area, of
the observed chemical shift powder pattern will depend on the relative

orientation of the principle axes of the quadrupole coupling tensor and

the chemical shift anisotropy tensor.

E. Broadband polarization transfer
1. Background

In a given static magnetic field, the equilibrium polarization of a

RS LR T
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particular nuclear isotope is‘proportiona1 to its gyromagnetic ratio.
This is apparent in Eq.(II.40). The initial polarization limits the
maximum signal amplitude in any experiment. Therefore, to increase the
sensitivity of experiments performed on nuclei with small gyromagnetic
ratios, techniques have been developed for\fransferring polarization
from nuclei with higher gyromagnetic ratios to those with lower
gyromagnetic ratios. Polarization transfer (PT) relies on couplings
between the different isotopes, i.e. heteronuclear couplings. In the

most common case, the transfer is from protons to 13

C nuclei in organic
compounds. In this case, there are the additional advantages that the
proton spin-lattice relaxation times are typically shorter than those of
13C nuclei and that several protons may contribute polarization to a
single 13C nucleus.

A commonly used PT method in 13C NMR in solids is
cross-polarization, developed by Pines, Gibby, and Waugh [95] based on
earlier work of Hartmann and Hahn [96]. Cross-polarization is usually
accomplished by giving a /2 pulse to protons, followed by long (several
milliseconds) rf pulses applied simultaneously to protons and 130 nuclei
satisfying the Hartmann-Hahn condition Wi = 919 where I and S label
protons and carbons respectively. Cross-polarization in solids is
analyzed as an incoherent process, using kinetic and thermodynamic
formalisms, due to the large number of protons coupled to one another.

Cross-polarization in liquids has been demonstrated as well [86].
In liquids, the proton-proton couplings are insignificant, allowing
cross-polarization to be analyzed coherently, i.e. using exact quantum

mechanical calculations of the spin evolution. Composite

cross-polarization sequences have been developed for liquids in order to
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extend the range of heteronuclear couplings for which PT is effective %
[86]. .
Other PT techniques for liquids have appeared, in particular INEPT E

[97] and DEPT [98]. In place of long pulses satisfying the
Hartmann-Hahn condition, these make use of simple sequences of »/2 and =
pulses and delays similar to those used in MQ spectroscopy as discussed
above. The INEPT sequence is shown in Figure VI.6. The delays are
adjusted for optimal transfer for a single value of the heteronuclear
coupling. In what follows, composite versions of INEPT are suggested to
increase the range of couplings over which the transfer is nearly
optimal. The composite sequences are again based on a formal analogy to
composite pulses. The analogy in this case is the one introduced by

Garbow, Weitekamp, and Pines for composite BIRD sequences [85].
2. Polarization transfer in an I-S spin system

To describe experiments in which rf pulses are applied near the
Larmor frequencies of two different isotopes I and S, it is useful to
use a doubly rotating frame of reference, related to the laboratory
frame by the transformation exp[-i(mOIIz + mossz)t]. With I and S
labelling a single proton and a carbon, respectively, the doubly
rotating frame internal Hamiltonian for a C-H fragment in a liquid is
given by:

=248 Iz + 68

s, + JLS, (V1.29)

I S

A version of the INEPT sequence may be written:
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o° 180° 90° o°

D

o° 270°  180° O°

Figure VI.6: A simple sequence of the INEPT type for transferring
13

polarization from a nucleus I to a nucleus S (e.g. a proton to a " °C
nucleus), composed of x/2 and » pulses with indicated phases. For
optimal transfer, the delay t is set to »/(2J), where J is the scalar

coupling constant between I and S.
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I: 900-1-180180-1-900 -9090- 1-180p -t (VI.30a)
1 2 3
S: ’T‘IBOO -T= "90270' 900-1-180180-1-900 (VIO30b)

Line (VI.30a) is the sequence applied to the proton; 1ine (VI.30b) is
the sequence applied to the carbon. The sequence in Figure VI.6 is a
reduced form of (VI.30). The form in (VI.30) is chosen to emphasizé the
symmetry of the proton and carbon sequences and to facilitate the
following discussion by dividing PT into three steps.

| Assume an initial density operator Iz. The aim of PT is to create
a final density operator with a large component of Sz‘ The propagator

for part 1 of line (VI.30) is:

U1 = exp(-iIxn/Z)exp(-tKr)exp(iIxn)exp(-isxn)exp(-ﬂmr)exp(-ilxn/Z)
(V1.31)
= exp(iZJIySZT)exp(-inn) (VI.32)

Since S refers to a spin-1/2 nucleus, Si = 1/4. Then the density

operator after part 1 is:

P exp(12JIySzr)Izexp(-1201yszr) (VI.33)

IZCOS(ZJSZT) - Ixsin(ZJSzt) (V1.34)
Izcos(Jr) - ZSzIxsin(Jr) (VI.35)
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The step from Eq.(VI.34) to (VI.35) can be seen by expanding the cosine
and sine in their Taylor series [99]. Assuming Jr = %/2, the density

operator after part 2 is:

Py = -2exp(-1Iyn/Z)exp(iIanZ)SZIxexp(iSyu/Z)exp(iIyn/Z)
(VI.36)
= —ZIZSx (VI.37)
The propagator for part 3 is:
U3 = exp(ilxn)exp(-iJIZSyT) (vI.38)

U3 is related to UIl by an exchange of the labels I and S. Therefore,
since U1 converts 1, to -ZSZIx when Jt = /2, U3 converts -ZIZSx to S,
when Jt = #/2. The polarization transfer is complete. For other values
of J, the final coefficient of SZ in the density operator is sinz(dt).
The key element in the PT process is the conversion of Iz to an
operator of the form ZSZ(IXCOSY + Iysiny). This conversion can be
treated as a rotation in the operator space spanned by the set
{ZSZIX,ZSZIy,I£ , which satisfies the same commutation rules as
{Ix,Iy,IQ-. The desired rotation is analogous to the creation of
transverse magnetization. As in the theory of broadband DQ excitation,
composite sequences can be constructed from basic units of the form of
part 1 of line (VI.30), with various values of T, and with overall phase
shifts ¢; of the proton rf. The basic unit is denoted by Q(8,¢), where

B = Jt and ¢ is the phase shift. The propagator for the sequence

Q(81297)Q(8,,85)---Q(859,) is:
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U= ¢ : 24 . _93
exp(zlszl sn)exp( 21521 Bn_l)...exp(21SzI¢232)exp( 213z1¢131)

(vI.39)

®n $n-1

The alternation of the signs in the exponents is due to the factor
exp(-isxn) in Eq.(VI.32). n is assumed to be even in Eq.(VI.39).
Eq.(VI.39) shows that composite sequences can be modelled after
composite w/2 pulses that compensate for rf inhomogeneity. The
composite pulse (91)¢1(92)¢2...(en)¢n becomes the composite sequence
Q(81501)Q(8,,0p%m)cce Qo ,0p+m).

A composite sequence may convert I, to ZSZ(IxcosY + Iysiny)over a
large range of values of J. If y is constant, the second step of PT,
namely the conversion to ZIZ(chosY + Sysiny),can be accomplished with a
pair of single /2 pulses, one on the proton and one on the carbon. If
vy varies with J, the second step can not be accomplished efficiently.
Therefore, it is important to use a composite n/2 pulse that produces a
constant net rotation as the model. Again, a good choice is
270,360, .,180,.,180. ..

0777169777337 77178
The final step, the conversion of ZIZ(chosY + S siny) to SZ, is

achieved by a pulse sequence whose propagator is the ?nverse of that in
Eq.(VI.39), but with the I and S labels reversed. Such a pulse sequence
is easily constructed by reversing the order of pulses in the composite
sequence in the first step and applying the I pulses to the S spins and
the S pulses to the I spins. A general composite PT sequence is shown
in Figure VI.7.

The plots of DQ signal amplitude as a function of the coupling

constant for composite DQ excitation sequences in Figure VI.4 apply to
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Figure VI.7: General form for a composite polarization transfer

sequence, a generalization of Figure VI.6. The overall sequence is -
composed of three parts (a). The sequence of part 1 (b) converts an

initial density operator Iz to I.SZ. The second part is a pair of %/2 -
pulses that convert the density operator to xzs¢. The sequence of part

3 (c) converts IZS¢ to Sz’ completing the transfer.
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composite PT sequences as well if the ordinate is considered to be the
final coefficient of S,e

The composite PT sequences may be converted to reduced forms by
combining adjoining =/2 pulses as discussed in section B.3 above. The
effects of rf inhomogeneity and of resonance offsets acting during the
rf pulses can be further weakened by incorporating composite pulses into

the composite PT sequences.
3. Polarization transfer in In-S systems.

In organic molecules, coupled protons and 13C nuclei exist as CH,
and CH3 groups in addition to CH groups. Spin evolution in PT sequences
differs for the different groups. This fact is used to selectively

13 13C

polarize "“C nuclei of one type, e.g. CHZ groups, and obtain the
spectrum of that type alone [98,100]. The impact of multiple I spins on
the construction of composite PT sequences is that the evolution during
the third step of the process is no longer a rotation. For example,
consider a CH2 group. EQ.(VI.29) still applies, but with I,=1,+
Izz. Eq.(VI.38) applies as well, but the final density operator

becomes:

Pgy = exp(iIxa)exp(-ZiJIzlsyt)exp(-ZiJIzzsyr)(-ZIsz)exp(ZiJIzzsyt)
X exp(2iJ1 ;S t)exp(-i1,x) © (VI.40)
I

= ZIszcos(ZJr) + 41 sin(2J1) + stin(ZJt) (v1.41)

zl zZSz
It is not gauranteed that composite sequences based on composite

pulses in the third PT step will increase the effective bandwidth.

T
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However, the evolution in the first step is formally the same for all Ln-S
systems, so that composite sequences always apply. In addition, the S
signal is sometimes acquired immediately after step 2, omitting step 3

entirely. This leads to a spectrum with zero area.

*
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Chapter VII: Iterative Schemes: Fixed Point Theory and Application to -

Broadband Population Inversion 4

A. Background

1. Definition of iterative schemes

The approach to broadband excitation in Chapters IV and V is based
on the well established methods of coherent averaging theory. The work
described in Chapter III is also in the spirit of a great deal of
previous work in NMR, relying as it does on Bloch vector trajectories.
In very general terms, all of these approaches are similar in that they
proceed by evaluating specific proposed pulse sequences in detail.

Recently, a qualitatively different approach to pulse sequence
design has appeared in several areas of NMR. Rather than examining
specific pulse sequences, the approach is to propose a set of operations
that may be applied iteratively to any initial pulse sequence SO’ or any
of a class of pulse sequences, to generate a series of iterate sequences
.Sl’ 52, S3, etc., usually with increasing lengths. If a pulse sequence

with a propagator of the form U, is desired, the goal is to find

D
operations such that the propagators UO’ Ul’ UZ’ U3, etc. corresponding
to the iterate sequences converge to UD regardliess of the choice of SO.
Thus, the theoretical emphasis is on evaluating the proposed operations,
rather than the specific sequences. A set of operations that may be
performed repetitively on a large class of initial sequences is called

an iterative scheme. A schematic illustration of the action of an
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iterative scheme is given in Figure VII.1. Iterative schemes are

ideally suited for generating very long pulse sequences, which can not

w-’rrrnmmm [ e

be derived by traditional methods due to the complexity of the

1:;\[a:l| A

calculations or due to practical computer time limitations, in cases
where shorter sequences do not have the desired propagator. Iterative
schemes have been used previously to construct pulse sequences for
order-selective multiple-quantum excitation [46] and for heteronuclear
decoupling [32,54], and to construct composite /2 pulses [101]. The
purpose of this chapter is to present a unified theoretical framework
for iterative schemes and to show how that framework can be used to
analyze iterative schemes for broadband population inversion in systems
of isolated spins. Chapter VIII extends those iterative schemes to the
problem of narrowband population inversion. Chapter IX contains
analyses of iterative schemes proposed by other authors, in order to

demonstrate the wide applicability of the theory presented here.
2. Iterative schemes as functions on the propagator space

In any n-dimensional space of spin states, for example
corresponding to a system of logn/log2 coupled spin-1/2 nuclei, there
are nz-l independent operators, excluding the identity operator. The
operator space spanned by the operators is called Liouville space
[35,102]. The density operator that describes the spin system exists in ] .
a subspace of Liouville space corresponding to Hermitian operators. 7
Similarly, the propagator U that describes the transformation resulting
from a pulse sequence exists in a subspace corresponding to some subset

.of all.possible unitary operators. The space in which U lies may be
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Figure VII.1: Schematic illustration of an iterative scheme for
generating pulse sequences. Starting with an initial sequence SO’ a set
of operations are performed iteratively to generate sequences Sl’ 52'
etc. that typically become increasingly complex, but produce the
desired transformation of a spin system with increasing accuracy.
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called the propagator space. It is sometimes convenient to write:
U = exp(=-iA) (VII.1)

where A is a Hermitian operator. Thus, for a spin system with given
internal interactions, the effect of a pulse sequence is described
either by a point in the propagator space or by a point in a
topologically equivalent subspace of the space of Hermitian operators.
When an iterative scheme acts on a pulse sequence, it generates a
new pulse sequence. To the new sequence, there corresponds a new
propagator U'. This suggests that an iterative scheme may be viewed as
a function F on the propagator space, with U' = F(U). Equivalently, F
may be considered to act on the space of Hermitian operators, with A' =
F(A). For certain iterative schemes, this is actually the case; for
others, F is not single-valued. Nevertheless, an interpretation of
iterative schemes in terms of functions on an operator space proves to
be useful and forms the basis of the theoretical approach. Chapter IX
gives examples of jterative schemes that are not described by a single
function. The necessary modifications to the theory are discussed

there.

3. An example of a function

a. Iterates, fixed points, and attractors

As a means of introducing the principles and terminology of the

theory that follows, consider a simple class of functions f of a single
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variable:

f(x) = Ax - x° (VI1.2)

A is a parameter that characterizes members of this class of functions.
A plot of f with A = 3/2 is given in Figure VII.2.

Beginning with any initial point Xqo f can be used to generate a
series of iterates X1 Xps X3, €tC. With Xp = f(xo), Xy = f(xl), X3 =
f(xz), etc. The iterates satisfy x = fn(xo). Certain initial points
have the property Xg = f(xo); this implies Xn = Xgs for all n. Such
points are called fixed points of f. In the example of Eq. (VII.2), the
fixed points are 0 and :(x-l)l/z, provided that A > 1. For A < 1, 0 is
the only fixed point.

The properties of the iterates of a function may be called the
dynamics of that function [103]. Fixed points have an important
influence on the dynamics of a function, particularly if they are
stable. A fixed point x is stable if the iterates Xn of all initial
points in the neighborhood of x converge to x as n increases. The
stability of x is determined by evaluating the derivative of f at x,
i.e. f'(X). If f'(X) <1, x is stable; if f'(X) > 1, X is unstable.
Stable fixed points are sometimes called attractors. Initial points in
the neighborhood of an attractor converge geometrically if 0 < f'(x) <
1; that is xn-i & f‘(i)(xn_l-i) . The most rapid convergence occurs

when f'(x) = 0. In that case, x is called superstable. In the example

of Eq.(VII.2), O is an attractor when A < 1. It is superstable when X
- 0. The points :(A-l)ll2 are attractors when 1 < A < 2, and superstable

when A = 3/2.
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‘f(x)

— f(x) = -g—x-xa

—_——f(x)= x
====f(x)= -x

Figure VII.2: An example of a function of a single variable x that
illustrates the concepts and behavior that underlies the analysis of
iterative schemes. The points #x = £ J1/2 are superstable fixed points;
the point x = 0 is an unstable fixed point. All initial points between
-x. and +x., with x_ =/5/2, converge to X, =X, or 0 upon iteration.

The open intervals (0,a), (-b,-a), (b,c), etc. converge to x, and
therefore constitute the basin of x. The points a, b, ¢, etc. converge

to 0.
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b. Basins of attractors

The assessment of the stability of a fixed point is based on a ‘
linearization of the function in the neighborhood of the fixed point.
Only the first derivative is considered. However, when a fixed poiﬁt is
stable, it can affect the dynamics of the function far beyond its
immediate neighborhood, i.e. in the non-linear regime. Large regions
of initial points, not just the nearby initial points, may converge .to
an attractor. The set of points that converge to an attractor is called
the basin of that attractor.

For the function of Eq.(VII.2), with A = 3/2, the iterates of all
initial points in the open interval (-I§7§;J§7§) converge to one of the
three fixed points. (-J§7§;J§7§) may be divided into subintervals that
converge to one or the other of the superstable fixed points as depicted
in Figure VII.2. First, note that it is sufficient to examine (0,/375-,
since fn(-x) = -fn(x) for all n. All initial points in the open
interval (0,J§7§) converge to the superstable fixed point at x =JT7EZ
This interval is denoted by Ia' The point a =y3/2 satisfies f(a) = 0.
Beyond a, there is an open interval Ib that maps onto (-a,0) on the
first iteration , and therefore converges to -/T75. The upper bound of
I, is a point b that satisfies f(b) = -a, or fz(b) = 0. Beyond b, there
is an open interval Ic that maps onto (-b,-a), which converges toJT7'.
I. is bounded by a point c that satisfies f(c) = -b, or f3(c) = 0.
Continuing in this way, the interval (0,¥572) is decomposed into open
intervals that converge alternately toJT7§ and -{1/2. The intervals are
separated by isolated points a, b, ¢, etc. that map onto 0 with
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increasing numbers of iterations. The sequence a,b,c, ... converges to
the point x. =/5/2. This point satisfies fn(xc)= (-l)nxc. Its iterates
alternate between “Xe and Xo+ X Mmay be called a fixed point with a
period of 2. For x > xc,lf(x)l> |xp Therefore, the iterates of points

in (- o, -xc) and (xc,w ) diverge.
4. Remarks

The example of Eq.(VII.2) and Figure VII.2 illustrates a number of
general features. A function may have more than one fixed point. The
attractors influence the dynamics of the function over large ranges of
inigia] points. The basins may consist of many disconnected regions.

The fact that f in Eq.(VII.2) is a simple function of a single
variable makes the dynamics easy to analyze in detail by algebraic and
graphical means. The analysis of more complicated cases follows the
same steps, although a complete description of the dynamics may not be
possible. First, the fixed points are found. In the NMR examples in
the following sections, certain fixed points are known a priori. Others
can be found numerically. Next, a linear analysis is performed in the
neighborhood of the fixed points. In general, a function of many
variables is equivalent to a linear transformation in the neighborhood
of a fixed point. The stability of a fixed point is determined by
examining the features of that linear transformation, in particular its
eigenvalues. If the magnitudes of all the eigenvalues are less than or
equal to 1, the fixed point is stable. Finally, the basins are
examined. If the function is complicated, as in the examples below, the

basins must be determined numerically.




163

In the following sections, the above principles are applied to
iterative schemes that generate composite » pulses. Algebraic and
numerical methods for analyzing the dynamics of the corresponding

functions are developed.

B. Iterative schemes for broadband population inversion
1. Propagator space for an isolated spin or two-level system

The propagator for a pulse of length 1 is:

=
n

exp(-ia.l) (VI1.3)

where:

R

= (mlrcos¢,wlrsin¢,Amr) (Vi1.4)

R is a rotation operator in the spin angular momentum vector space. The
density operator describing the initial, equilibrium spin state is
proportional to IZ; rf pulses merely rotate the density operator to a

linear combination of Ix’ I, and Iz. Therefore, the relevant space of

Y
Hermitian operators is the three-dimensional space spanned by Ix’ Iy and
Iz. For describing the propagator, only a subspace of this space is

required. Any sequence of rf pulses produces a transformation that is a

product of rotations, equivalent to a single net rotation. The net
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rotation is completely characterized by a vector a, as in Eq.(VII.3),
where the magnitu&e of a is the net rotation angle and the direction of
a is the net rotation axis. g is determined by the pulse lengths and
phases of the sequence, and by the values of Aw and Wy Since any
product of rotations is equivalent to a net rotation of » or less, g
lies in a sphere with a radius of . Since rotations of » about
antiparallel axes are equivalent, antipodal points on the surface of the
sphere are identified. This spherical subspace represents the group of

rotations, called SO(3) or 0+(3) [104]. It is pictured in Figure YII.3°
2. An iterative scheme and the corresponding function

A class of iterative schemes that may be applied to any inital
pulse sequence S0 is defined by the following operations:

1. Construct N phase-shifted versions of SO, with overall phase
(1)
0

shifts ¢y The phase-shifted versions may be denoted by S
N is taken to be an odd integer.
2. Concatenate the phase-shifted versions, producing a new sequence
Sl = Sél)SéZ)...SéF).
The operations may be applied to S1 to generate SZ’ and so forth. An
iterative scheme of this class is specified by the notation
[¢1,¢2,...,¢N], with the phase shifts given in degrees. Under such a
scheme, Sy is Nn times longer than SO'
A [¢1,¢2,...,¢N] scheme dictates a function on SO(3) space. If So
produces a rotation corresponding to the point 9 = (a sa.,a.), then S1

X'y'z
produces a a rotation corresponding to the unique point 2 satisfying:



equator

Figure VII.3: The spherical space that represents the group of
rotations SO(3). Each distinct rotation corresponds to a point in the
space rhose distance and direction from the origin are respectively the
angle and axis of rotation. The space has a radius of », and antipodal
points are identified (correspond to the same rotation). A closed path
in the space is shown. Iterative schemes that generate pulse sequences
that act on isolated spins are treated as functions on the space. The
equator corresponds to rotations, or pulse sequences, that invert spin
populations.

165

R

v ¢



166

exp(-ig,.1) = exp(-iug.l)exp(-igg'l.l)...exp(igé.l) (VIL.5).
with:

g; = (axcos¢i-aysin¢i,aycos¢i + axsin¢i,az) (VII.6)
Eq.(VII.6) is a statement of the fact that an overall rf phase shift by
¢ rotates a pulse sequence propagator about z by ¢ The only possible
ambiguity in the definition of a arises if the right-hand side of
Eq.(VII.5) is equivalent to a net rotation of wx, but this ambiguity is
resolved by the identification of antipodal points in SO(3). The
mapping of 2 to 8 and then to higher iterates, makes no reference to
the details of the pulse sequence SO' If two different sequences
produce the same net rotation, possibly with different values of Aw and
W s then their iterates will produce the same net rotations,
corresponding to the same series of points 20212895 etc. The function
that generates these points is F, with g = Fn(go). |

Certain fixed points of F are immediately obvious and are common to
all [¢1,¢2,...¢N] schemes with odd N. First, if g8y = 0, then the
right-hand side of Eq.(VII.5) is the unit operator, making 9 = 0.

Thus, the origin of SO(3) is always a fixed point.

A second type of fixed point appears from the following
considerations. Suppose 9 = (wcosy,xsiny,0). Then S0 produces a
rotation of x about an axis in the xy plane, taking Iz to -Iz. Any
phase-shifted version of S0 also produces a rofation of = about an axis
in the xy plane. An odd number of these rotations will again take I, to
-Iz, and is therefore equivalent to a net rotation of x about an axis

in the xy plane. In fact:

1

\crrwhw:ww [ERRL

m”:[( i« PR



167

8 = (wcos(y + ¢T),wsin(y + ¢T),0) (VI1.7)
with:

o1 = igl(-l.)“%i | (V11.8)
2 and 81» as}we11 as higher iterates generated by F, lie on the equator
of SO(3), although they are generally different points. To describe
this situation, in which F generates iterates that are all contained in
a specific set of points, the definition of a fixed point must be
generalized somewhat. The equator of SO(3) is called a fixed, or
invariant, set of points. Note that there are schemes in which all
points on the equator are individually fixed, in particular when o7 = 0
or ¢r = m. The equator is an especially significant set of points,
since a rotation that takes a density operator of IZ to -IZ corresponds
to perfect population inversion.

The third fixed set of points common to all [¢1,¢2,...,q“] schemes
is the z axis of SO(3). 1If 2 lies on the z axis, then the right-hand
side of Eq.(VII.5) is a product of rotations about the z axis,
equivalent to a net rotation about the z axis. Thus, 8 lies on the z
axis as well. Specifically, g, = (0,0,Naz). Points along the z axis
for which = 2nn/(N-1) for some integer n are individually fixed

points.
3. Stability of the fixed points

a. The origin
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As discussed in Section A, the stability of a fixed point is
assessed by a linearization of the function in the neighborhood of the

fixed point. A linearization of F about the origin of S0(3) is effected

by evaluating the right-hand side of Eq.(VII.5) to first order in ]gog. ) e

The result is:

(VII.9)
Eq.(VII.9) expresses a linear transformation, which can be written as
9 = TOSO' The linear operator To is a sum of rotations about the z
axis by angles 95

To = Ryleg) + Ry(ey ) + oout R (o)) (V11.10)

In the {x,y,z} basis, T° is:

( N )
I cos¢ L sing 0 .
n=1 n n=1 n
To = (VI1.11)
N N
-z sing I COS¢ 0
n=1 N pet n
\ 0 0 N )

One eigenvector of T0 is (0,0,1), a vector along the z axis of SO(3).
Its eigenvalue is N. Since N > 1, the z axis is an unstable direction.
The other eigenvectors are (1,i,0) and (1,-i,0), with eigenvalues xs and

Ag respectively:
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N
13 = I exp(ti¢,) (VI1.12)
n=1
The existence of complex eigenvectors and eigenvalues is indicative of a
rotation. To stretches or shrinks vectors in the xy plane by a factor
of }Agland rotates them about z by an angle ¢_, where ¢ _ is the phase of
-AS. The stability of the origin of S0(3) along directions in the xy
plane is thus determined by IASI. Eq.(VII.12) implies:

N N :
[l = [(n§1c05¢n)2 + (n§1s1n¢n)2 12 (VII.13)

If Ilal < 1, the origin is stable with respect to displacements in the

xy plane.

b. The equator

The assessment of the stability of the equator of SO(3) is
complicated by the fact that points on the equator are not individually
fixed under F, but constitute an invariant set. The linear analysis can
take two forms. One is to write g, as g5 = g, + §,where g, lies on the
equator and § is small. The right-hand side of Eq.(VII.5) can then be

evaluated to first order in |§| using relations such as:

exp[-i(go+g).l] = exp(-igo.l)exp(-ig.l) (VI1.14)
where: )
€= (-Zszsiny/n + cxcoszy + GysinchSy,ZszcosY/u
+ stinycosY + Gysinzy,26xsin1/w - Zéycosy/n) (VII.15)

A T }ml‘n‘

o 1“[“’!' Ty
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Eq.(VII.15) assumes that gy = (wcosy,nsiny,0), and is valid to first
order in |§|. In fact, the analysis can be somewhat simplified by

requiring that sxsiny - §,cosy = 0. This may be done because §,siny -

Y

GyCOSy is the projection of § onto a direction in the xy plane

perpendicular to 50’ namely (siny,-cosy,0). To first order, the
component of § perpendicular to gy merely converts gq to another point
on the equator, still in the invariant set of points. Thus, there are
really only two significant directions for displacements from the
equator, which may be obvious in retrospect.

A more concise way of treating the linearization about the equator,
and one that simplifies the algebra, is to write the propagator for S0
in the form of the right-hand side of Eq.(VII.14) immediately, with the
restriction €, = 0. Such an expression is actually completely general,
regardless of |¢|. In other words, any net rotation at all can be
expressed as the product of two rotations in the xy plane, the first by
el and the second by 180°. Again, this fact may not be surprising in
retrospect, since there are still three variables in such an expression,
i.e. the direction of g, and the magnitude and direction of g.For a
given net rotation, those three variables are uniquely determined in all
cases except when the net rotation is about the z axis.

A linear analysis using an expression for the net rotation in the

form of the right-hand side of Eq.(VII.14) proceeds as follows. If:

exp(-igo.l) = exp[-i(IxcosY+1ysiny):]exp(-is.l) (VII.16)
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then, to first order in lgl :

exP('121°l) = exp[-i(lxcos(y + ¢T)+Iysin(y + ¢T))']°xP(‘i£T'l) ;

(VII.17) =
where:
N
. +1 n+lo .
£T = nzl (excosrn-eysmrn,(-l)n eycosrn+(-1) exs1nrn,0)
(V11.18)
n-1 m+1
o= ¢+ I (-1)7 20, n odd (VII.19)
m=1
n-1 m :
= ¢n-Zy + @ (-1) 2¢m, n even (viI.20)
m=1

Eq.(VII.16) presents the inital rotation as the product of an error
rotation characterized by ¢ with a perfect » rotation with a phase v.
Eq.(VII.17) indicates that the effect of F is to transform that rotation
to a new rotation of the same form, but with the error ET and the phase
y + $1e €71 is related to ¢ by a linear transformation Te. Te can be

expressed in terms of rotations as:

Te = [RZ(FN) + Rz(rn_z) + eee + Rz(rl)]
+ R (MIR,(Py 1) + R (T 3) + eer + R (r))] (ViI.21)

(0,0,1) is always an eigenvector of Te with eigenvalue 1, but this is
not a significant direction since ¢ always has a z component of 0. In

the {x,y} basis, Te is:

N N
ZcosT -Z sin
n=1 " n=1 "
N N
T, = Z'(-l)n+lsinrn I (-1)n+1cosrn (VI1.22)

n=1 n=1
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In investigating the dynamics of F near the equator, the phase
shift o1 is ignored due to the fact that the equator is generally an
invariant set of points within which individual points are not fixed.
Therefore, in studying the transformation of E,it is the direction of ¢
relative to the phase y and the direction of sTlrelative to the phase y
tor that are important. For this reason, it is convenient to rewrite

Eq.(VII.17) as:

exp(-igl.l) = exp(-iIZ¢T)exp[-i(lxc051 + Iysiny)n] |
. .
X exp[(-15T.l)exp(1Iz¢T) (V11.23)
where:
[
£ = Rz(-¢T)£T (VII.24)
The significant linear transformation is no longer Te’ but is the
product Rz(-¢T)Te, denoted by Té. Eq.(VII.21) implies that Té has the

same matrix form as Te in EQ.(VII.22), but with a redefinition of T :

N N
£ cosr! -z sinr!
n=1 " n=1 " | |
Té = (V11.25)
N el N an
L (-1) sinrﬁ t (-1) cosrﬁ
n=1 n=1
rto=r, + (1) " (VII.26)

The eigenvectors and eigenvalues depend on the choice of the iterative

scheme. Three possible scenarios exist: First, the eigenvalues can be
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real and distinct, implying the existence of two real eigenvectors.

Second, the two eigenvalues can be complex and conjugate to one another,

implying two complex conjugate eigenvectors. Third, the two eigenvalues
can be real and degeneréte. In this last case, there may be either one 4
or two independent real eigenvectors. It should be realized that Té and

Te,are generally not hermitian, and so need not have a complete basis of
eigenvectors. This statement is generally true of iterative schemes.

The eigenvalues of Té are A:, given by:

i=

e = (cosTi+cosTa+...+cosTy) ¢ [(cosré+cosr&+,,,+cosrﬁ_1)2

A
+ (sinré+sinr&+ +sinr&_1)2 - (sinri+sinré+...+sinr&)2]1/2

(ViI.27)

The criteria for stability at the equator are lx:l <1 and ]A; I< 1.
The eigenvalues are independent of y but the eigenvectors are not. The
eigenvectors for y # 0 are related to those for y = 0 by a rotation

about z by v.
4. Schemes for which the equator of SO(3) is superstable

Iterative schemes can be found with various stability properties at
the equator and the origin. One way to find iterative schemes is to
make use of vector diagrams. This is particularly useful for finding
schemes for which the fixed points are superstable. For example,
Eqs.(VII.18) through (VII.21) suggest the following picture: g; is the
sum of N vectors of equal magnitudes in the xy plane, rotated about z by

e These vectors may be divided into two groups, those with odd n and
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those with even n. Those with even n, in addition to being rotated
about z, are rotated about x by x. Now, if r, can be found such that
the two groups of vectors separately add up to zero, £T will be zero
regardless of ¢ and regardliess of y. Then the equator is superstable.
Examples of vector diagrams that imply iterative schemes for which the
equator is superstable are given in Figure VII.4. A minimum N of 5 is
required. Once the rn are determined, the phase shifts ¢, can be
derived with Eqs.(VII.19) and (VII.20). For N = 5, possible

superstability conditions are:

r3 = r1 + 2x/3 (VII.28a)
r4 = r2 +n (VII.28b)
Fg=r,+ 4n/3 (VII.28c)

Two schemes that satisfy Eq.(VII.28) are [0,0,120,60,120] and
£0,330,60,330,0]. If the inital sequence is chosen to be 1804, i.e. a
single » pulse, these schemes generate sequences of 5n » pulses.

Table VII.1 lists the phases of the x pulses in the first three iterate
sequences generated by [0,0,120,60,120].

The arguments above make no reference to the source of the error g.
vThus, errors due to rf inhomogeneity and miscalibration or resonance
offsets are both cancelled by iteration. Figures VII.5 through VII.8
show inversion plots for the iterate sequences of 1800 under
[0,0,120,60,120] and [0,330,60,330,0] as functions of Aw/w and w/u’.
| Note that large bandwidths of essentially perfect inversion are achieved
with respect to both parameters. A contour plot of the inversion as a

function of Aw/mg and ml/m? simultaneously for the 25-pulse sequence
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Table VII.1: Rf phases in degrees of individual = pulses in the
broadband inversion sequences Sl’ SZ’ and 53 generated
from an initial pulse 1800 by the iterative scheme

(o,0,120,60,120]

s,: 0,0,120,60,120

SZ: 0,0,120,60,120,0,0,120,60,120,120,120,240,180,240,60,60,180,
120,180,120,120,240,180,240

S3: 0,0,120,60,120,0,0,120,60,120,120,120,240,180,240,60,60,180,
120,180,120,120,240,180,240,0,0,120,60,120,0,0,120,60,120,
120,120,240,180,240,60,60,180,120,180,120,120,240,180,240,
120,120,240,180,240,120,120,240,180,240,240,240,0,300,0,180,
180,300,240,300,240,240,0,300,0,60,60,180,120,180,60,60,
180,120,180,180,180,300,240,300,120,120,240,180,240,180,
180,300,240,300,120,120,240,180,240,120,120,240,180,240,240,
240,0,300,0,180,180,300,240,300,240,240,0,300,0
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Figure VII.4: Vector diagrams that describe iterative schemes for which
the eqyator of SO(3) is superstable. Such schemes generate broadband
population inversion sequences. a) A diagram that describes schemes of
the form [0,¢,120+2¢,60+3¢,120+4¢]. b) A diagram that describes schemes
of the form [0,¢,90+2¢,300+3¢,240+4¢,300+5¢,90+6¢]. See Eqs.(VII.19)
and (VII.20) and section B.4 of Chapter VII.
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Figure VII.5: Inversion as a function of the relative resonance offset
for pulses sequences generated iteratively according to the scheme
{0,0,120,60,120]. From a to d, the pulse sequences are composed of 5,
25, 125, and 625 phase-shifted » pulses, with the phase shifts given in
Table VII.1. Simulations appear in the solid lines. Experimental
measurements appear in dots. The results apply to isolated spins or to
two-level systems in general.
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Figure VII.6: Same as Figure VII.5, but with the inversion plotted as a
function of the relative rf amplitude.
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Inversion
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Figure VII.7: Same as Figure VII.5, but for the scheme
[0,330,60,330,0].
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Figure VII.8: Same as Figure VII.7, but with the inversion plotted as a
function of the relative rf amplitude.

AR R E e S I TN

VA R



180

generated by [0,0,120,60,120] is shown in Figure VII.9.
Iteration also cancels errors that arise from experimental pulse :

imperfections. These include pulse shape errors and phase transients.

Other errors, such as amplitude imbalances among the rf pulse channels .
or rf phase misadjustments, may also cancel, depending on how the
experiment is performed. The requirement for cancellation is that the
error transform under a phase shift as a rotation about z. The
cancellation of experimental imperfections probably contributes to the
good agreement between the simulations and experimental measurementsvin
Figures VII.5 and VII.6. |
Similar vector diagrams apply to the linear analysis about the
origin of SO(3). Eqs.(VII.9) and (VII.10) indicate that the origin will
be superstable with respect to displacements in the xy plane if the sum
~ of N unit vectors in the xy piane making angles on with x is zero. In
fact, IASI is the magnitude of the resultant vector, as is clear in
Eq.(VII.13). For [0,0,120,60,120], then, |AS’ = 3, For [0,330,60,330,0],
'AEI = (11 + 4J§)1/2. The origin is unstable in all directions for both

schemes.,

C. Numerical analysis of iterative schemes in S0(3)
1. Motivation

In section B, iterative schemes were constructed so that the fixed

points at the origin and the equator of S0(3) were unstable and
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Figure VII.9: A calculated contour plot of the population inversion
performance of the 25-pulse sequence of Figures VII.5b and VII.6b,
illustrating broadband inversion with respect to the resonance offset
and the rf amplitude simultaneously. In the region enclosed by the
dotted line, the inversion is greater than 0.99. Contours corresponding
to an idinversion of 0.90 (dashed line) and 0.50 (solid line) are shown as
well,
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superstable, respectively. The stability determines how the function F .

corresponding to some scheme transforms points in SO(3) that are close

to the fixed points. However, it would seem that most points in SO(3)

are not close to the fixed points. In the example of section A.3, the

fixed points were shown to affect the dynamics of a function far from v
the fixed points. Methods for examining the dynamics of F over its

entire domain are needed.

For the problem of broadband population inversion, the stability of
the equator is most important, since points on the equator correspond to
rotations that produce complete inversion. Typically, S0 is chosen to
be a pulse sequence that produces complete inversion when Aw = 0 and wy
= w? . There will necessarily be small ranges of Aw and wy for which
the rotation vector g, lies close to the equator. If the equator is an
attractor, then the iterates of S0 will produce‘increasingly good
inversion over those ranges. However, it is possible that the ranges of
bw and w, for which the iterates of g, converge to the equator can be
quite large. This is apparent in the results in section B. A method of
determining which initial rotations will converge to the attractor, i.e.
the basin of the attractor, and the number of iterations required for
convergence is needed. In particular, it is desirable to know the
region of SO(3) that converges quickly. Knowledge of the rapidly
convergent region allows S0 to be chosen so that the iterative scheme
acts most efficiently.

If a fixed point is unstable or only stable in certain directions,
as is always the case for the origin for the schemes considered here and
is sometimes the case for the equator, then other points may not

converge to the fixed point. However, with successive iterations, they
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may approach the fixed point along a stable direction before diverging
along an unstable direction. Thus, an initial sequence S0 may approach
a desired form in a transient way. In the neighborhood of a fixed
point, the linear analysis implies that the dynamics of F may be
pictured in terms of smooth flows. Away from the fixed points, the
dynamics may be apparently irregular or random. A method of
illustrating the flows and defining the regions in which they apply is
needed.

Finally there may be fixed points, either stable or unstable, that
are not anticipated a priori. Locating them and determining their

basins or flows may assist in the selection of SO’
2. Maps of basins

Since a simple expression for F is not available, basins must be

mapped with a computer program. The rotation corresponding to a vector

‘ )

a in SO(3) can be represented by a 3X3 real matrix R(a):

sinzecosz¢+sin2¢c05a -c0s8Sina singsingsina
2 2 . 2 . .
+C0S"6C0S $COSa +sin“ecos¢sing(l-cosa) +cosesinecos¢(l-cosa)
. L2 .2 2 . i
cosesina sin"esin ¢+cos ¢CcOSa -5inecos¢sina
+sin26cos¢sin¢(1-c05a) +coszesin2¢c05a +c0s6sinesing (1-cosa)
C . . . 2 2

-sinesingsina sinecos¢sina cos @+sin“8cosa
\+cosesinecos¢(1-c05a) +cososinesing(1l-cosa) /

(VII.29)
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where a is Igl and 6 and ¢ are the polar and azimuthal angles defining
a 1in polar coordinates. Given any initial vector 2 in SO(3), the
corresponding rotation matrix R(go) can be constructed. Phase-shifted

. n . : n -1
versions R( )(50) are formed according to R( )(go) = R,(¢,)R(gg)R,(¢,) -
Finally, these are multiplied together: 3

Rigy) = RV (gr™ D g)... e gy

By examining the matrix elements of R(gl), @, may be extracted.
Repeating this process, the series of iterates of gy can be generated
numerically for any % and iterative scheme of the form [¢1,¢2,...,¢N].

The task of mapping the dynamics of F is greatly simplified by
symmetry with respect to rotations about z. If % and 26 are related by
a rotation about z, then their iterates g and g are related by the
same fotation, as follows from Eq.(VII.5). A corollary is that the
fixed points must have symmetry about z, i.e. if % is a fixed point,
or a member of a fixed set of points, then so is any other vector
related to 20 by a rotation about z. Thus, in what follows it is
sufficient to consider any single half slice through SO(3) containing
the z axis. For the following maps, the slice defined by y = 0 and x >
0 is chosen.

The series of iterates of a representative grid of points in the
slice are generated. A criterion for convergence to a fixed point must
be established. In the following maps, the criterion for convergence on

k iterations is:

|9 - 2.ql <0:01 rad. (VII.30)
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This criterion is necessarily somewhat arbitrary, with consequences that
are discussed below. In checking Eq.(VII.30), the vectors are always
rotated about z so that they both'1ié»in,the xz plane with x > 0. In
other words, the phase shift ¢; is removed. A maximum value k.. is
defined so that, if a particular initial point does not converge after

k iterations, the iteration process stops and kma is assigned to

max X

that point. Thus, an intéger k is assigned to every initial point on
the grid. This constitutes a mép of the basins. The map only specifies
the number 6f iterations réquired to reach a fixed point, and not the
fixed point itself. If there were multiple attractors, it would be
necessary to examine the vectors g, to determine which attractor
corresponded to a basin.

Figure VII.10 is a basin map of the scheme [0,0,120,60,120].
Initial points were examined in +5° increments in both the x and z
directions, starting with the point (2.5°,0,2.5°). The map was
displayed on a graphics terminal by shading 5° x 5° blocks, centered at
the initial points, according to k.

Figure VII.10 reveals a large region near the equator that
converges to the equator after only several iterations. - Except for a
small number of isolated points, the rest of SO(3) also converges to the
equator. Those isolated points apparently converge elsewhere, but that
convergence is probably an artifact of the mapping procedure, as
explained later. These results suggest that very high iterations of
[0,0,120,60,120], applied to an arbitrary initial sequence, will
generate sequences that invert spin populations for most values of Aw

and w, . of course, experimental hardware and software limitations, as

B B

e
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[0,0,120,60,120]

Figure VII.10: Basin map of the scheme [0,0,120,60,120]. Shown is the
xz plane in SO(3). Regions are shaded according to the number of
iterations required for an initial point in a given region to converge
to a fixed point. The shade scale is shown to the left.
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well as intrinsic factors such as relaxation processes restrict the
length of a useful sequence and thus the feasible number of iterations.
Thus, it is‘the size and structure of the rapidly convergent region that
is of practical importance. | |

Figure VII.11 is a basin map for the scheme [0,330,60,330,0]. The
region of SO(3) that converges rapidly is somewhat different than in
Figure VII.10. However, the most striking qualitative difference is the
symmetry uﬁth respecf to a reflection in the xy plane in Figure VII.11.
This symmetry is a consequence of the symmetry of the phase shifts in
[0,330,60,330,0], ~In general, if ¢, = ON-ns+ aNd if two initial vectors

'

and 29 are related by reflection in the xy plane, then i and 5; are

20
related by the same reflection. - Again, an obvious corollary is that, if
%4 is a fixed point, there must be a fixed point related to 89 by
reflection in the xy plane. A second corollary, which will be important
in Chapter VIII, is that the iterates of an initial point in the xy

plane must all remain in the xy plane.
3. Maps of fixed points and the flow of iterates

As mentioned above, certain isolated initial points in the basin
maps apparently converge to points not on the equator. This suggests
the existence of unanticipated fixed points. It is unlikely that
unanticipated attractors exist in the schemes considered, since an
attractor would probably have a basin large enough to be apparent in
Figure VI1.10 or VII.11. However, even if a fixed point is unstable,
initial points move slowly in its neighborhood. Consequently, due to

the criterion in Eq.(VII.30), there may be an apparent convergence to an
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[0,330,60,330,0]

Figure VII.11: Basin map of the scheme [0,330,60,330,0].
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unstable fixed point.

Unstable fixed points are difficult to identify in the basin
mapping procedure for two reasons. First, initial points can only be
examined in increments of some finite spacing., It is likely that fixed
points will be missed. - Second, the calculation of the iterates of an
initial point involves many matrix multiplications. Inevitably,
round-off errors become significant, so that a point that should remain
fixed will apparently move. It is therefore not possible to distinguish
conclusively between a fixed point and a region in which the movement of
iterates is merely slow. For the purpose of designing pulse sequences,
however, such a distinction is not necessary. One method for finding
unanticipated fixed points is as follows. The first iterates of initial
points in a slice through SO(3) with a spacing of 2° in the x and z

directions are calculated. If an initial point gj and its first iterate

g, satisfy:
'31 - 50' | < 20° (VII.31)
then g, may be close to a fixed point. Again the choice of 20° is

somewhat arbitrary. All initial points satisfying Eq.(VII.31) are
plotted. The plot that results from the procedure applied to the scheme
[0,0,120,60,120] is shown in Figure VII.12a. The anticipated fixed
points at the equator and along the z axis are clearly visible. The
structure of the plotted points near (0,0,x/2) suggests the existence of
another unstable fixed point. A more detailed examination indicates
that there is probably a fixed point at approximately («/4,0,0.39%),

since initial points near (x/4,0,0.39x) appear to rotate around that

vrr’rqmwnm [

]

K wnl; i



190

120, 60, 120]
c

Figure VII.12: Fixed point map of the scheme [0,0,120,60,120]. Half of
the xz plane of SO(3) is shown. Initial points that move less than 20°

on the first iteration are plotted in a, revealing regions around
possible fixed points. The first, second, and third iterates of the
points in a are plotted in b, ¢, and d , revealing the stability
properties of the fixed points.
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point and diverge from it. Again, it is impossible to distinguish
definitively between a true unstable fixed point and a region in which
the flow of iterates is merely very slow. It should also be realized
that the fixed points may actually be fixed sets of points, related by a
rotation about z.

Figure VII.12 traces the flow of iterates initially near the fixed
points. The superstability of the equator is apparent, as is the
instability of the other fixed points.

Figure VII.13 is a fixed point map for the scheme [0,330,60,330,0].
There are two unanticipated fixed points along the x axis, at
approximately (0.3989r,0,0) and (0.7035%,0,0). The fixed point at
(0.3989%,0,0) is unstable. The eigenvalue in the direction of the
origin is approximately -3.6; the eigenvalue along z is approximately
-1.7. The fixed point at (0.7035w,0,0) is stable along z, with an
eigenvalue of 0.19, and unstable towards the origin, with an eigenvalue
of 2.4, The eigenvalues and the positions of the fixed points are
determined by a detailed examination of the flow of initial points in
the dotted regions of Figure VII.13a. The fixed points could be
localized precisely in this case because the symmetry of
[0,330,60,330,0] results in a one-dimensional movement of points along
the x axis. The instability of the origin and the other fixed points on
the z axis, the superstability of the equator, and the one stable

direction near (0.7035x,0,0) are apparent.



Figure VII.13:

[0, 330, 60, 330, 0]

Fixed point map of the scheme [0,330,60,330,0]. In this

case, in addition to the superstable fixed point at the equator and the
unstable fixed point at the origin, two other fixed points in the xy
plane appear. One of these is stable with respect to displacements in

the z direction.
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D. Generation of pulse sequences for broadband population inversion

The schemes [0,0,120,60,120] and [0,330,60,330,0] can be used to
generate sequences for broadband population inversion, as in Figures
VII.5 through VII.9. Here it is shown how the maps of section C can be
used to guide the selection of an initial pulse sequence S0 whose
iterates have larger inversion bandwidths than the iterates of a single
n  pulse.

The selection of S0 is based on the idea that, for any SO’ there is

a locus of initial points a, in SO(3) that corresponds to the

0
experimentally relevant ranges of Aw and w . As an example, Figure
VII.14 shows the loci for a single » pulse that arise from variations
of Aw and wy separately. A comparison of Figure VII.14 with Figures
VII.10 and VII.1l1 reveals the ranges of Aw and wy for which the
inversion will be nearly complete for sequences resulting from a small
number of iterations of [0,0,120,60,120] and [0,330,60,330,0] acting on
an initial single n pulse. Those ranges are given by the portions of
the loci in Figure VII.14 that lie inside the rapidly convergent regions
in Figures VII.10-and VII.11.

The iterates of initial sequences for which the analogous loci lie
inside the rapidly convergent regions for larger ranges of Aw and wy
will produce nearly complete inversion over larger ranges of Aw and wy
Such sequences can be found by means of a computer search. For example,

the rapidly convergent region of the scheme [0,0,120,60,120] is roughly

defined by the requirements:

IR ELE "”!“ i
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Aw/wc"

Figure VII.14: Loci of points in SO(3) corresponding to a single »
pulse, resulting from variations in the relative rf amplitude (a) and
the relative resonance offset (b).
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40° < ¢ < 140° (VI1.32a)
125° < r < 180° (VII.32b)

where ¢ and r are polar coordinates in SO(3). A search is conducted
over possible initial sequences consisting of two pulses with phases of
0° and 180° and flip angles in increments of 10°. For each possible
sequence, the point g, is calculated for all values of aw between -1.4w?
and 1.4m2, in increments of O.Im?. This is done by treating the pulse
sequences as a product of 3X3 rotation matrices and extracting g, as in
section C.2. One sequence for which g, lies inside the region defined by
Eq.(VII.32) for -1.4m? < Aw < 1.4w? is the sequence 3004120, g4- The
corresponding locus of initial points is shown in Figure VII.15.
Simulations of the population inversion as a function of Aw for the
first four iterates of 300,120

07180
given in Figure VII.16. Figure VII.16 shows nearly complete inversion

under the scheme [0,0,120,60,120] are

for -1.8&1 < Aw < 1.851. For comparison, the results in Figure VII.5
using 1800 as the initial sequence showed nearly complete inversion for
-0.9w? < Aw < l.lm?. Thus, the inversion bandwidth is nearly doubled by
the choice of an appropriate initial sequence.

In any experimental situation, there is a range of wy values as
well as aw values. Figure VII.17a shows the locus of points in SO(3)
corresponding to a single » pulse with simultaneous variations of aw
between -wg and w? and w, between D.4w? and I.Gw? . For the scheme
[0,330,60,330,0], this Tocus extends outside of the rapidly convergent
region. In particular, the rapidly convergent region is limited in its

extent along the x axis, due to the existence of the fixed point at

(0.7035%,0,0) seen in Figure VII.13. This fixed point primarily limits

"TH\" TSR i
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300,120,g,

Figure VII.15: Locus of points in SO(3) corresponding to the sequence
3000120180 with variations in the resonance offset. Comparison with
Figures VII.14b and VII.10 reveals that the locus for 3000120180
conforms to the basin of the equator under the scheme [0,0,120,60,120]
over a larger range of offsets than the locus for 1800.
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Figure VII.16: Simulations of inversion as a function of the relative
resonance offset for sequences generated iteratively from 3000120180 by
the scheme [0,0,120,60,120]. The performance of 3000120180 alone (a),
and of its first, second, and third iterates (b through d) is shown.
Comparison with Figure VII.5 demonstrates that the inversion bandwidths
of the iterate sequences are substantially improved by choosing an
initial sequence for which the locus of points in SO(3) conforms to the
basin of the equator.
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Figure VII.17: Loci of points in SO(3) for the pulse sequences 180, (a)
and 16501651051650 (b) resulting from simultaneous variations of the
resonance offset and the rf amplitude. Points for offsets in the range
-léw/w él in increments of 0.05 and rf amplitudes in the range

0.4% wl/wlél 6 in increments of 0.05 are plotted. 16501651051650

is chosen because its locus of points conforms to the basin of the

equator under the scheme [0,330,60,330,0].
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the range of ®y for which inversion is achieved if a single n pulse is

used for SO' Figure VII.17b shows the locus of initial points for the :

sequence 16501651051650, for the same variations of Aw and wye This
sequence was found by a computer search, fitting the initial points into =

a region defined by:

40° < ¢ < 140° (VII.33a)
130° < r < 180° (VII.33b)

for -0.8wg < Aw < 0.8mg and 0.7w? < wp < l.3w?. The locus of initial
points is clearly more concentrated in the rapidly convergent region for
16501651051650 than for a single s pulse.

Figure VII.18 shows inversion contour plots for sequences generated
by two iterations of [0,330,60,330,0], where S0 is either a single =
pulse or the sequence 16501651051650. As anticipated, the inversion is
nearly complete for larger simultaneous variations of Aw and wg when S0
is 165,165...165.. The bandwidth is especially enlarged in the wq

07771057770
dimension.

E. Summary of principles of the fixed point theory

The viewpoint of the fixed point theory is that an iterative scheme
for generating pulse sequences corresponds to an underlying function on

the propagator space. The fixed points of the function and their
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1.0 2.0
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) -2.0 -1.0
Figure' VII.18: Inversion contour plots for pulse sequences that are the

second iterates of 1800 (a) and 16501651051650 (b) under the scheme
[0,330,60,330,0]. Shown are the 0.99 (dotted line) and the 0.50 (solid
1ine) inversion contours. The results demonstrate that the area of
uniform population inversion is enlarged by choosing an initial pulse
sequence for which the locus of points in SO(3) conforms to the basin of
the equator for simultaneous variations of the offset and the rf
amplitude. ‘
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stability determine the behavior of the scheme.

The process of designing an iterative scheme begins with the
identification of a general form for the desired propagator. The
relevant propagator space and the locus of points in that space that
corresponds to the desired propagator are determined. Next, a class of
operations on pulse sequences for which that locus is a fixed point or
an invariant set of points must be discovered. The stability properties
of that fixed point or set of points, as well as other fixed points that
are known a priori, may be calculated for a general member of the class
of operations. A particular member with the desired properties is then
selected.

The choice of the particular scheme may be made with the help of
the mapping techniques of section C. As in section D, those techniques
also may be used to select an initial sequence on which the iterative
scheme acts most effectively.

The mapping techniques are quite feasible in problems where the
relevant propagator space is three-dimensional, e.g. all isolated spin
problems. In higher dimensions, or in problems where the number of
dimensions is arbitrary, representative maps are more difficult to
compute. For those cases, a qualitative understanding of the variety of

types of behavior is provided by the three-dimensional examples.

B AT lm:‘-q‘\ i
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Chapter VIII: Iterative Schemes for Narrowband Population Inversion
A. Motivation

Certain members of the class of iterative schemes introduced in
Chapter VII can generate pulse sequences for narrowband, rather than
brdadband, population inversion of isolated spins. Of particular
interest are pulse sequences that invert populations only over a narrow
range of wy centered at mg and leave populations undisturbed at other
values of w) . Such sequences can be incorporated into a method for
spatially localizing NMR signals in an rf field gradient. This method
is discussed in section C.

The fixed point theory of Chapter VII can be used to analyze the
narrowband inversion schemes. The basic idea is as follows. While the
equator of SO(3), pictured in Figure VII.3, is stable for broadband
inversion schemes, it is unstable for narrowband inversion schemes. The
origin of S0(3) is stable with respect to displacements in the xy plane
for narrowband schemes. Points close to the origin move towards the
origin upon iteration. If the initial sequence is chosen to be 1800,
points close to the origin correspond to rf amplitudes that are close to
even multiples of m?. as shown in Figure VII.14. Points at the equator,
which remain at the equator upon iteration, correspond to rf amplitudes
that are odd multiples of m?. Points close to the equator are repelled
from the equator. Thus, the iterate sequences are expected to develop

the desired narrow inversion profile.
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B. Generation of pulse sequences.

The simplest example of an jterative scheme based on phase shifts

for which the origin is superstable with respect to displacements in the é
xy plane is [0,120,240]. The superstability follows from the discussion
in Chapter VII.B. The equator is unstable, with A: = -] % ff'i as
defined in Eq.(VII.27). A fixed point map for [0,120,240], produced
according to the procedure in Chapter VII.C.3, is shown in Figure
VIII.1. The instability of the equator and the stability of the origin
in the xy plane are apparent.
Inversion plots as a function of wy for the first four iterates of

180, under [0,120,240] are shown in Figure VIII.2. The narrowband

0
property is obvious. However, it appears that significant inversion
develops at intermediate values of wy in the higher iterations. This is
because the origin of SO(3) is unstable along the z axis and because the
z axis itself is not stable. Thus, points may move towards the origin
on the first few iterétions. then escape along z to become rotations
that affect spin populations. This behavior is depicted in Figure
VIII.3. The development of the desired inversion profile is only a
transient property of [0,120,240]. It is nonetheless useful, however,
and serves as an illustration of the significance of fixed points that
are not unconditionally stable.

One way to prevent the escape of points along z is to use an
iterative scheme with symmetric phase shifts, as discussed in Chapter
VII. Initial points in the xy plane are constrained to remain in the xy
plane by the symmetry. [180-cos™ 0.25,180+cos 10.25,0,180+c0s ]

180-cos'10.25], or roughly [104.5,255.5,0,255.5,104.5], is an example of

0.25,
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Figure VIIl.1: Fixed point map for [0,120,240], showing that the origin

of SO(3) is superstable with respect to displacements in the xy plane
and the equator is unstable.
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Figure VIII.2: The extent of population inversion as a function of the
relative rf amplitude for pulse sequences generated from an initial
single » pulse by the scheme [0,120,240]. From a to d, the pulse
sequences are composed of 3, 9, 27, and 81 phase-shifted » pulses.
Pulse sequences generated by [0,120,240] exhibit narrowband inversion.



[0, 120, 240]

HFigure VII1.3: The movement of iterates in SO(3) under [0,120,240].
Initial points in the xy plane first move towards the origin, but
diverge on higher iterations. This results in the reappearance of

significant inversion at rf amplitudes far from wy = w? in Figure
VIII.2d.
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a symmetric scheme for which the origin is superstable in the xy plane
and the equator is unstable. A fixed point map for this scheme is shown
in Figure VIII.4. Since there are no other fixed points in the xy
plane, the iterates of initial points in the xy plane flow from the
equator to the origin. Inversion plots as a function of wy for
sequences generated from an initial 1800 sequence are shown in Figure

VIII.5. The narrowband inversion profile is clearly not transient.

C. Application to the spatial localization of NMR signals

If rf inhomogeneity is deliberately introduced, pulse sequences
that are sensitive to the value of wy can be used to spatially localize
NMR signals [105-107], i.e. selectively observe those signals that
arise from a region in space where wy has a particular value. This is
particularly useful for in vivo studies using surface coils [56,108].
Typically, it is desirable to observe signals from a single organ
without interference from surrounding tissue. If signals are excited
with a single pulse, the degree of spatial localization is often
insufficient, requiring that the organ be surgically exposed [109,111].
A higher degree of spatial localization can be achieved if surface coils
are used in conjunction with following method, called NOBELS (Narrowband
Excitation for Localization in Space).

Let P be a narrowband inversion sequence and R be a "read" pulse or
pulse sequence. As illustrated in Figure VIII.6, NOBELS consists of the

following steps:

1) Digitize and store the FID following R alone, as in Figure VIII.6a.
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[104.5, 255.5, 0, 255.5, 104.5]

Figure VIII.4: Fixed point map for [104.5,255.5,0,255.5,104.5], showing
the instability of the equator of SO(3), the superstability of the
origin with respect to displacements in the xy plane, and the absence of
other fixed points in the xy plane. The symmetry of the scheme
constrains points in the xy plane to remain in the xy plane , flowing
towards the origin on successive iterations.
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Figure VIII.5: Simulations of inversion as a function of the relative rf
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Figure VIII.6: Schematic representation of NOBELS. P is a narrowband
inversion sequence, inverting spins over a small range of rf amplitudes
as in Figures VIII.2 and VIII.5. R is a "read" pulse or pulse sequence.
The FID signal in b(i) or b(ii) is subtracted from the FID in a.
Contributions from transverse magnetization created by P are eliminated
by dephasing during t in b(i) or by phase cycling in b(ii), with ¢ =0
and ¢ = x. When the pulses are applied with a surface coil, the
remaining signal arises only from the localized spatial region in which
P inverts spins and R excites signal.
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2) Digitize and store the FID following the sequence of FigureVIII.6b(i).
1 is a delay during which residual transverse magnetization dephases.

A static field gradient may be required during the delay. In the FID,

signals arising from the spatial region in which P inverts spins are B
themselves inverted.
3) Subtract the FID of step 2 from that of step 1. Only spins inverted

by P contribute to the remaining signal.

The need for a pulsed field gradient may be eliminated by a variant of
NOBELS:

1') Digitize and store two FIDs following R alone.

2') Digitize and store two FIDs from the sequence in Figure VIII.6b(ii).
The notation P¢ indicates that the overall rf phase of P is cycled
between 0 and w.

3') Subtract the sum of the FIDs of step 2' from the sum of the FIDs of
step 1'. The phase cycling in step 2' cancels the effects of residual

transverse magnetization following P.

In principle, the two forms of NOBELS produce the same spatial
localization. The choice is a matter of experimental convenience. One
effective narrowband inversion sequence is the sequence of 27
phase-shifted pulses, each with a nominal flip angle of x», illustrated
in Figure VIII.2c.

The inversion produced by the 27-pulse sequence is periodic in
wl/wg, with a period of 2. Any sequence of » pulses will be periodic

in this way. Thus, spins are inverted in regions of space where the rf
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amplitude is any odd multiple of w?. This presents a problem for
spatial localizatiﬁn.‘ If mg is taken to be the rf amplitude at a region
of interest at some distance from a éurféce coil, there will be regions
closer to the coil where the rf amplitude is 3m?, 5m?, etc. These
régions may contribute to the signal collected with NOBELS. If a gap
between the surface coif‘and the sample is permitted; the problem is
alleviated somewhat. However, it is still desirable to minimize at
least the contributions from the 3w? region. _

One way to eliminate signal from the 3m? region is to use a nominal
n/3 pulse as the read pulse R. Then, at 3wg, R is in fact a » pulse and
does not excite signal. In Figure VIII.7, a calculated plot of the
signal amplitude as a function;of wl/wg resulting from.either version of
NOBELS 1is shown, using the 27-pulse sequence of Figure VIII;ZC for P and
a nominal /3 pulse for R. The signal amplitude is norm&lized to its
value at wy = m?. Note that the maximum signal in the 3wg region is
smaller than that at w? by a féctor ofv0.07.

Figure VIII.7 app]ies to any surface coil geometry. It may be
desirable to design a coil such that the size and shape of the w? region
conforms to that of the interesting sample region. if the same coil is
used for both the excitation and the detection of signals, then the
observed signal amh]itudé is further weighted by a factor of wllw?.

This is because the intrinsic sensitivity at a given point in space is
proportional to the transverse field amplitude that would be produced at
that point by a unit current flowing in the detection coil [112].

Figure VIII.7_is intended as dn indication of the high degree of

spatia]_]ocalizatidn that is posSiBle with NOBELS. The qualitative

features are independent of the specific pulse sequences used. Other

& R 1’1!@“”:\::;{11 |
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Figure VIII.7: Simulation of the signal resulting from NOBELS as a
function of the relative rf amplitude (solid line). The narrowband
inversion sequence of Figure VIII.c is used for P. A nominal x/3 pulse
is used for R. For comparison, the signal amplitude resulting from a
single nominal x/2 pulse is shown (dashed line). Signal amplitudes are

normalized to their value at B?.
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choices for P, perhaps with a different periodicity, are possible. R’
may be a sequence of pulses, rather than a single pulse, with its own
narrowband properties. It may also be profitable to combine NOBELS with
shaping of the static magnetic field to further localize signals.

With both the surface coil and the sample held fixed, it is
possible to move the region from which signals are detected in two
equivalent ways. Eiiher‘the rf power is varied while maintaining
constant pulse lengths, or all pulse lengths in P and R are varied
proportionally while maintaining a constant rf power. A series of NMR

spectra from various spatial regions may thus be collected.
D. Resonance offset behavior

The pp]se sequences generated by [0,120,240] and [104.5,255.5,
0,255.5,104.5] also invert spin populations over narrow resonance offset
ranges, with w = wg. Inversion as a function of offset for sequences
generated from an initial single n pulse by t0.120,240] is shown in
Figure VIII.8. If the chemical shift range of a sample is significant,
the nafrowband behavior with respect to the resonance offset makes
spatial localization in an rf field gradient with these sequences
impossible. The acquired signal will arise from nuclei with different
chemical shifts located in different parts of the sample. In order to
observe signal from all chemically shifted nuclei in a single spatial
region, sequences that invert populations over a broad range of offsets
and a narrow range of rf amplitudes are needed.

As a step towards the derivation of broadband/narrowband

combination sequences, consider the jterative scheme [0,200,230,30,95].
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Figure VII1.8: Population inversion as a function of the relative
resonance offset for the iterates of 1800 under [0,120,240].
Simulations (solid lines) and experimental data (dots) are shown for the

first four iterates in a through d.
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As is apparent in the fixed point map in Figure VIII.9, for this scheme
the origin of S0(3) is stable with respect to displacements in the xy
plane. The equator is unstable towards the origin but stable along
the z direction. Specifically, Ag = 0.196 + 0.3881 and A} = 0.826 ¢
0.845. Displacements along z arise from resonance offsets if the
initial pulse sequence is a single » pulse. Thus, resonance offset
effects should be removed by iteration, at’least'near the equator, due
to the stability with respect to displacements along z.

Plots of inversion as a function of ml/w? for the 25-pulse sequence
that is the second iterate of 180, under [0,200,230,30,95] are shown in
Figure VIIL.10 for several values of w/u. Near wj/us = 1,
the inversion is insensitive to the offset as expected. Elsewhere,
however, the inversion is still dependent on the offset. These other
values of wl/w? correspond to initial points in SO(3) that are not
near the equator, so that their offset dependence is not removed by

jteration.

Ty

M |x i
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[0, 200, 230, 30, 95]

Figure VIII.9: Fixed point map in SO(3) for the scheme [0,200,230,30,95].
The origin is stable with respect to displacements in the xy plane. The
equator has one stable and one unstable direction.
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Figure VIII.10: Simulations of the inversion as a function of the

relative rf amplitude for the second iterate of 1800 under [0,200,

230,30,95]. Plots for irradiation on resonance (solid line) and off -
resonance (dotted and dashed 1ines.A=Au/m(1)) are shown. Near

w = ug. narrowband inversion with respect to ) and broadband inversion R
with respect toAw are achieved simultaneously.
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Chapter IX: Fixed Point Theory Analyses of Other Iterative Schemes
A. Motivation

In this chapter, iterative schemes developed by other authors for
various purposes in NMR are examined. The treatments of those schemes
are not intended to be complete descriptions; complete descriptions are
given in the original papers. The intention is only to demonstrate the
applicability of the fixed point theory. Modific;tions that are
required when an iterative scheme is not strictly equivalent to a
function on the propagator space are discussed. In éddition, an example
in which the relevant space is not the three-dimensional space SO(3) is

treated.
B. Heteronuclear decoupling in liquids

Recently, several authors have demonstrated pulse sequences, and
iterative schemes for generating such sequences, designed to remove
heteronuclear couplings in liquids, e.g. to decouple protons from
carbon-13 nuclei by applying a pulse sequence to the protons, allowing
the observation of the carbon-13 spectrum without line splittings caused
by the coupled protons. The decoupling sequences are designed to

compensate for the existence of a large range of proton chemical shifts.

1. Waugh's theory of decoupling

i ;m\uuwr:r\ M |

o
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Waugh has given a criterion for evaluating decoupling sequences: ‘A
good decoupling sequence is one for which the net rotation experienced
by isolated spins is independent of the resonance offset over a large
range of offsets [53]. In addition, Waugh has demonstrated a particular
iterative scheme that produces pulse sequences that are equivalent to
net rotations of nearly zero over a large range of offsets [54]. They
are therefore good decoupling sequences. It is shown here that, for a
specific range of offsets, the scheme leads to a stable fixed point at
the origin of the space SO(3).

The iterative scheme may be applied to any initial sequence of x/2
pulses. The operations are to permute a /2 pulse from the end of the
sequence to the beginning, to form a version of the permuted sequence
phase-shifted'by 180°, and finally to concatenate the permuted sequence
with the phase-shifted, permuted sequence. These operations generate a
new pulse sequence that is twice as long as the original one. The new
sequence is also made up of x/2 pulses, so that the operation may be
applied iteratively.

Since the criterion for decoupling involves a single, isolated
spin, the pulse sequence propagators are described by points in the
spherical space in Figure VII.3. For particular values of Aw and wys
the initial sequence corresponds to an initial vector ¢ in SO(3).
Assuming for simplicity that the phase of the last x/2 pulsé in the
initial sequence is 0, the propagator for the new sequence is a rotation

R given by:

R = exp[i(6Ix-AIz)tIZJexp(-ié.L)exp[-i(GIX-AIZ)w/ZJexp[-i(61x+AIz)n/2]
X exp(-ig.l)exp[i(51x+AIz):/2] (IX.1)

PR
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with;

5 = (-¢ o ey,ez) (IX.2)

18 Iw\:l‘".wm‘?ﬂ"h | s

ww:lx u

§ and A are the relative rf amplitude and the relative resonance offset,
respectively, defined as the ratios of w) and Aw to the nominal rf
amplitude wg. The net rotation vector associated with R is g.If ¢ =
(0,0,0), then R =1 and g = (0,0,0). Therefore the origin of S0(3) is a
fixed point of the relation implied by Eq.(IX.1). To determine its
stability, Eq.(IX.1) is linearized. To first order in lel, it can be

shown that:

g = (0,0,Zexcosesine(1-cosa)+Zeysinecose+252(coszecosa+sinze))
(1X.3)
where:
£ = (s24a2) Y242 (1x.4)
tane = A/§ (IX.5)

The linear transformation relating ¢ and g in Eq.(IX.3) has a doubly

degenerate eigenvalue of 0 and another eigenvalue Ays with:
2 . 2
Ay = 2(cos ecostg + sin 6) (Ix.6)

The eigenvector with eigenvalue Ay is (0,0,1). This eigenvalue and
eigenvector are independent of the phase of the permuted %/2 pulse.
There are two other eigenvectors with eigenvalue 0 except in the case
where A, = 0 and either cosesine(l-cosg) # 0 or singcose # 0. In that

W
case, there are altogether two eigenvectors.



222

The dynamics given by Eq.(IX.3) has a simple interpretation. Near

the origin, points are either taken directly to the origin on a single

iteration, or they are taken to the z axis. Once on the z axis, they %

move either towafds the origin or away from the origin, dictated by the

magnitude of Ay Thus, iflxw’< 1, the origin is stable. .
If 6§ = 1.0, Eq.(IX.6) shows that the origin is stable if [al< 1.732.

If 6§ = 0.8, the origin is stable ifjal< 1.216. If A = 0, the origin is

stable if § < 2/3. When the origin is unstable, successive iterations

of Waugh's scheme may not be expected to generate pulse sequences that

produce net rotations successively closer to zero. Thus, the fixed

point analysis leads to a prediction of intrinsic limits on the offset

and rf amplitude ranges for which the scheme may be effective.
Finally, it has been suggested that the scheme be applied to

initial sequences composed of composite, rather than single, /2 pulses

[25]. This may increase the accessible offset or rf amplitude ranges.

In addition, it has been shown that an appropriate initial sequence can

improve the decoupling performance of the iterate sequences [24,25]. -
2. MLEV decoupling sequences

Levitt, Freeman et al. have demonstrated heteronuclear decoupling
sequences, called MLEV-4, MLEV-16, etc., that are also derived with an
iterative scheme. These sequences provided the impetus for muéh of the .
subsequent work on decoupling sequences and composite pulses. The 7
original development of the MLEV scheme [32] was in terms of coherent
averaging theory. Successive iterations eliminate successive terms in a

Magnus expansion of the effective heteronuclear coupling. However,
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Waugh's criterion for decoupling may also be applied to the MLEV
sequences. Here it is shown that the origin of S0(3) is a stable fixed
point under the MLEV scheme for specific ranges of wy and Aw.

The MLEV scheme operates on an initial sequence composed of an even
number of composite = pulses. The composite » pulses are all of the
same type, with overall phases of either 0 or 180°. Four versions of
the initial sequence are formed: the initial sequence itself; the
initial sequence with an overall phase shift of 180°; the initial
sequence with one composite n» pulse permuted from the end to the
beginning; the permuted sequence with an overall phase shift of 180°.
In the simplest example of the MLEV scheme, the four versions are
concatenated to generate a new sequence, still composed of composite =
pulses, that is four times longer than the original one. Although the
full MLEV theory allows considerably more flexibility in the
construction of iterates, only this simplest case is considered for the
sake of clarity. If the initial sequence produces a rotation
corresponding to the point ¢ in SO(3), and if the permuted composite =
pulse produces a rotation P, then the new sequence produces a net

rotation R, given by:

R = B exp(-iz.1)F tPexp(-ic.1)P Lexp(-iZ.1)exp(-ig.I)  (IX.7)
where:

P = exp(-i1_x)Pexp(il,x) (IX.8)

and 5 is as in Eq.(IX.2). Again, the question is what point g is
associated with R. If ¢ = (0,0,0), then g = (0,0,0), so that the origin
of SO(3) is a fixed point. To assess its stability, P may be expressed
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in the following form:

P = exp(-ilzyl)exp(-iIxyz)exp(-i1213) (1X.9) g

Evaluating the right-hand'side of Eq.(IX.7) to first order in |g): -

[ (0,0,Zsinyzsinysex + ZsinyzcosY3ey + 2(cosvz+1)ez) (1x.10)

The MLEV scheme is thus equivalent to a linear transformation on SO(3)
in the neighborhood of the origin. Eq.(IX.10) is obviously analogous to
Eq. (IX.3), so that the dynamics of the MLEV and Waugh schemes are
similar. Eq.(IX.10) defines a linear transformation with a doubly

degenerate eigenvalue of 0 and a third eigenvalue Ay
Ay = 2(cosYZ+1) (Ix.11)

In view of Eq.(IX.11), the stability condition A € 1 is the same as the -
requirement that the population inversion produced by P be greater than

or equal to 1/2, since the inversion is ~COSY . For a given composite «

pujse, this inversion requirement dictates particular ranges of wy and

Awe.
3. Remarks
The MLEV and Waugh iterative schemes for heteronuclear decoupling

differ in several ways from the schemes for population inversion

presented in Chapters VII and VIII.
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To begin with, the equator of SO(3) is not a fixed point in the
decoupling schemes as it is in the inversion schemes. The origin of =

SO(3) is stable in all directions under certain conditions in the

decoupling schemes, while it is always unstable along z in the inversion -
schemes. These differences are in accordance with the different
purposes of the schemes. The purpose of a decoupling scheme is to
produce net rotations of nearly zero, while the purpose of an inversion
scheme is to produce rotations of .

There are other, more qualitative differences that affect the
applicability of an analysis, such as that in Chapter VII.C, designed to
map out the dynamics of a function. First, the decoupling schemes act
only on pulse sequences of a particular form, i.e. composed of x/2 or «
pulses. In itself, this fact is not very significant. However, it is
related to a second, important difference. The decoupling schemes are
based on the creation of new versions of an initial sequence by the
permutation of pulses. If an initial sequence, with propagator UO’ is
composed of M pulses with propagators Vi’ then:

Uy =V, Vo, 1e0eV

w Vu1 (IX.12)

0 1

(1)

Permuting a pulse gives a new version with propagator U0 » given by:

(1) ,
Ug ! = VypeooVyVy (1X.13)

-1
= Vg UgVy o (1xa14)

Since the transformation vM depends on parameters in the

Hamiltonian, for example wy and Aw, as well as the form of the permuted
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pulse, or composite pulse, the relationship betweenlﬂ})anduo depends on
those parameters. Consequently, if the initial sequence corresponds to £

a point ) in SO(3), the first iterate 8 depends on parameters in the

Hamiltonian and the form of the permuted pulses. An iterative scheme is 3
therefore generally not equivalent to a single function when it relies L
on the permutation of pulses. The fixed points, their stability, and
their basins are not determined by the iterative scheme alone. This is
apparent in the above discussion of decoupling schemes, where the
stability of the origin depends on s and &, as in Eq.(IX.6), as well as
the form of the permuted pulses, as in Eq.(IX.11).

Despite the fact that a function on SO(3) is not uniquely defined,
useful results are obtained from a fixed point analysis of decoupling
schemes, specifically the limits on the stability of the origin of
S0(3). In addition, a function does exist for each pair of values of A
and- 8§ and for a particular form of the permuted pulses. For example, if
an MLEV sequence is composed entirely of composite = pulses of the form
900180180900’ and if A = 0.5 and § = 1.0, then the MLEV scheme, in the
simplest case discussed above, defines a function F0 on SO(3) when the
overall phase of the permuted composite » pulse is 0. If the overall

phase of the permuted composite » pulse is ¢, then the function is F

¢
F¢ and F0 are related by:

F¢(g) = R,(¢) Fu(R,(-¢)a) (IX.15)

Eq.(IX.15) implies that it is sufficient to study the single function

Fo.

With the above complications in mind, the development of decoupling
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sequences based on a fixed point analysis might proceed as follows:

1. Decide on the experimentally relevant ranges of A and §.

2. Study the properties of F0 for representative values of A and
§, using various composite w» pulses (for the MLEV scheme) or
composite x/2 pulses (for the Waugh scheme). In particular,
find a composite pulse for which the basin of the origin is large
and converges rapidly for the chosen values of 4 and §.

3. Select an initial sequence, made up of the chosen composite -
pulses, for which the locus of relevant initial points lies within

the basin of the origin.

A generalization of this procedure would apply to other iterative
schemes for other purposes in which the function on Liouville space
depends on parameters in the Hamiltonian and on the structure of the

pulse sequences.
C. Composite Pulses
1. Recursive Expansion Procedure

Levitt and Ernst have proposed the recursive expansion. procedure
for generating broadband composite x/2 pulses [101]. Operating on any
initial pulse sequence, the recursive expansion procedure depends on the
existence of an inverse sequence, i.e. a sequence that produces the
inverse rotation. When A = 0, inverse sequences are easily constructed

by phase shifting the initial sequence by 180° and reversing the order
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of the pulses. When A # 0, there is no general method for constructing
an exact inverse sequence, although an approximate method has been
proposed [66]. Thus, the recursive expansion procedure, and other
iterative schemes that rely on inverse sequences, are primarily useful
for problems in which the resonance offsets are small.

The propagator R0 for an arbitrary initial sequence can be written:
_ Ro = exp(-ilzyl)exp[-iIx(w/2+e)]exp(-ilzyz) (IX.16)

where ¢ reflects the deviation from a perfect composite =/2 pulse.
Recursive expansion consists of concatenating the initial sequence with
its inverse, phase-shifted by 90°. If the initial sequence is SO, the
new sequence may be symbolized by S1 = S0 (50'1)90. Sl has a propagator
R1 given by:

R1 = exp(-iIzw/Z)exp(iIzyz)exp[iIx(a/2+e)]exp(ilzu/2)
X exp[-ilx(u/z + e)]exp(-ilzyz) (IX.17)

To first order in ¢:
R1 = exp[-iIz(-yz+e)]exp(-iIx:/Z)exp[-iIz(n/2+12+e)] ‘(IX.18)

R1 in Eq.(IX.18) is a rotation that brings a vector from the z axis into
the xy plane, exactly. Eqs.(IX.10) through (IX.18) show that such
rotations form a superstable invariant set under the recursive expansion
procedure. The explicit form of the vectors a in SO(3) that belong to

that set is:
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a = |al| (sinecos¢,sinesing,cose) (IX.19)
with:

cos |al = -cotz(e) | (IX.20)

These vectors define a closed surface in S0(3), pictured in Figure IX.1.
There is only one significant direction of deviations from that surface,
i.e. the direction normal to the surface, as indicated by the fact that

only one error parameter, ¢, appears in Eq.(IX.16).
2. Composite » pulses

Shdka and Freeman have introduced iterative schemes that generate
pulse sequences for population inversidn that are either broadband or
narrowband with respect to the rf amplitude [113]. These schemes rely
on inverse sequences, so that they are most useful in cases where Aw =
0. One scheme that produces narrowband inversion sequences may be
represented by S1 = 50(561)60(50)120’ i.e. a concatenation of the
initial sequence, the inverse sequence with a phase shift of 60°, and
the initial sequence with a phase shift of 120°. Using the methods of
Chapter VII, it can be shown that the equator of SO(3) is an unstable
fixed set of points under this scheme. However, every point on the z
axis is superstable with respect to displacements in the x and y
directions. To see this, write the propagator R0 for S0 in the general

form:

R0 exp(-ilzy)exp(-ig.l) (IX.21)
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) Z

Figure IX.1: The surface'cbntained in S0(3) that is the locus of points
that correspond to rotations, or pulse sequences, that create transverse
magnetization when acting on isolated spins at equilibrium.
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where the z component of ¢ is zero. The propagator R1 for S1 is then:

Ry = exp[-1I_(y+2x/3)]exp(-ig.1)exp(iI_x/3)exp(ic.])
X exp(ilzu/B)exp(-is.L) (1X.22)

To first order in e}, Eq.(IX.22) reduces to:
R = exp(-il ) | (1x.23)

Since the z axis is an attractor, points in SO(3) that are not on the
equator converge to the z axis, corresponding to rotations that do not
invert populations at all. Points on the equator, corresponding to
perfect inversion, remain there. This leads to narrowband inversion, as

1

in the schemes [0,120,240] and [180-cos” 0.25,180+cos‘10.25,0,

180+cos ~20.25,180-cos

0.25] discussed in Chapter VIII, although in
those schemes it is only the origin that is superstable to displacements
in the xy plane, rather than the entire z axis.

Shaka and Freeman also suggest a scheme in which S1 =
50(50'1)30050. For this scheme, the equator of SO(3) is a superstable
fixed set of points, leading to broadband population inversion. In
addition, they demonstrate a scheme represented by S1 = 50(551)27050.
This scheme leads to broadband inversion, but the equator of SO0(3) is
not an attractor. It can be shown that, in a linear analysis, the
eigenvalues at the equator are A: = 1, using the notation of Chapter
VII.B.3. Broadband inversion is instead the result of the fact that
this scheme converts rotations of the form of Eq.(IX.18) or Eqs.(IX.19)

and (IX.20) to rotations that produce complete inversion. In other
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words this scheme maps the surface in Figure IX.l onto the equator.
Finally, Shaka and Freeman demonstrate a scheme for which

S1 = 50(561)90(50)180‘ This scheme maps the surface of Figure

IX.1 onto the z axis, and leads to narrowband inversion.

Inversion plots for the last two examples do not exhibit the smooth
regions of uniform inversion seen in Chapters VII and VIII. Rather, the
inversion as a function of wy displays ripples [113]. This is due to
the fact that the points in SO(3) that correspond to the desired

transformations are not attractors.

3. Remarks

The mapping techniques developed in Chapter VII.C can bg applied to
the above iterative schemes to investigate basins, fixed points, and
flows. As in Section III, these techniques can aid in the selection of
an initial sequence and in the development of new schemes.

Several operations on pulse sequences that may be used in iterative
schemes have been encountered, namely phase shifting, pulse permutation,
and the reversal of the order of pulses. These operations are intended
to produce some transformation of the pulse sequence propagator. 1In
general, the effect that an operation has on the propagator is dependent
on the Hamiltonian, as has been seen particularly in the cases of pulse

permutation and order reversal.

E-
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D. Selective excitation of multiple quantum coherence

The first true iterative scheme for generating pulse sequences for
MMR applications was developed by Warren, Weitekamp, and Pines for
selectively exciting multiple quantum coherences in coupled spin systems
[46]. The objective was to excite coherences only between spin states
that differ in their Zeeman quantum number by a multiple of a particular
integer n, i.e. nk-quantum coherences. The propagator for a pulse
sequence in a coupled spin system is a general transformation U0 which
may be written in terms of irreducible tensor operators T]m(q), where
the index q is necessary because there may be several, independent

operators with the same 1 and m:

= exp(-}Q) (1x.24)
C]m(Q)T]m(Q) (1X.26)

0

u
Q= rz :
ql m=-1

A must be Hermitian, which implies:

¢_q(@) = (1), (a) (1x.26)

Alternatively, instead of using the irreducible tensors themselves as a
basis, a basis of Hermitian combinations A]m(q) and Blm(Q)’ as defined

in Eqs.(Vv.18) and (V.19) may be used:

1
Q= z >]: [Cyp(@) Typla) + R (ay,(0)A1n(Q) + byo(q)Byp(q)
(1x.27)
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The coefficients a, (q), b]m(q) and CIO(Q) are real. The set of these
real coefficients is a generalization of the vector g in SO(3) that
describes the transformation of a system of uncoupled, isolated spins.
For a system of N coupled spin-1/2 nuclei, there are 4N-1 independent,
réal numbers that specify Q. Thus, the relevant propagator space is
(4N1)-dimensiona1. The pulse sequence propagator is characterized by a

point in that space.

The selective excitation scheme employs the phase shifting and -
concatenation operations discussed in Chapters VII and VIII. For
selective nk-quantum excitation, the scheme
[0,1x360/n,2x360/n,...,(n-1)x360/n] may be used. Phase shifting has the
effect of rotating Q about z, so that, if the initial sequence has the
propagator U0 of Eq.(IX.24), the first iterate sequence has the
propagator U1:

U1 = exp(-iQn_l)exp(-iQn_z)...exp(-iQo) (IX.28)
with:
exp[-im(2xp/n)]1Cy (q)T; . (q) (IX.29)
Eq.(IX.29) depends on the property of irreducible tensor operators that:

exp(-11_6)T; (a)exp(il ¢) = exp(-ime)T (q) (IX.30)

To first order in the coefficients C]m(q), the exponents in Eq.(IX.28)
can be added. Using the identity:
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n-1 )
o0 expl-im(2np/n)] = {&'o?h:rwgl:‘p]e of n (IX.31)

U1 becomes:

U1 = exp(-iQT) (I1X.32)
Q = g ? ;‘ n C]m(q) T]m(q) (IX.33)

where the sum over m in Eq.(IX.33) is restricted to multiples of n.
Since the propagator in Eq.(IX.32) contains only T‘m(q) operators with m
a multiple of n, it generates coherences only between spin states that
differ in their Zeeman quantum number by a multiple of n, i.e.
nk-quantum coherences, when it acts on a spin system initially at
equilibrium.

In terms of a fixed point analysis, the origin of the propagator
space is a fixed point. Eqs.(IX.24) through (IX.33) show that the
origin is superstable along directions corresponding to T]m(q) with m
not a multiple of n, and unstable, with an eigenvalue of n, along
directions corresponding to T]m(q) with m a multiple of n. The
situation is formally analogous to the scheme [0,120,240] in SO(3) where
the origin is superstable along x and y and unstable along z. If the
scheme for selective excitation is to be successful, the initial
sequence must be such that Q in Eq.(IX.24) is small, i.e. close to the
origin. Then the first several iterations may produce sequences for
which the desirable tensor compdnents are much larger than the
undesirable ones. However, with higher iterations, the point that
describes the sequence propagator will move away from the origin, and

may develop large components of undesirable tensors. In other words,
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the scheme may only be effective in a transient way. This is because
the axes in the propagator space that correspond to the desired
transformations are a fixed set of points, but are not stable. Behavior
analogous to that in Figure VII.3 is expected.

The development of the iterative schemes for selective excitation
of multiple quantum coherences was originally based on coherent
averaging theory. It was shown that successive iterations cause the
undesirable tensor components to vanish from successively higher terms
in a Magnus expansion of the propagator. The need for an initial '
sequence for which A is small was recognized as a requirement for thé‘

convergence of the Magnus expansion [46].
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Chapter X: Conclusion

The previous chapters describe in detail two methods for deriving
pulse sequences for broadband excitation. The work described in those
chapters does not exhaust the potential of either method, however. Some
extensions and areas for improvement of the methods are listed here.

Two obvious extensions of the coherent averaging approach are the
derivation of higher-order composite pulses and the derivation of
composite pulses with broadband properties with respect to two different
experimental parameters at once. Both extensions require improvements
in the numerical methods to allow more complicated equations to be
generated and solved. Promising avenues to pursue are the use of
symbolic manipulation programs and directed searches, as described in
Chapter IV.C.5. It may also prove fruitful to 1ift the restriction to
constant pulse amplitudes and piecewise-constant phase functions.
Piecewise-constant or continuously varying pulse amplitudes and
continuously varying rf phases may result in improved excitation
sequences.

Coherent averaging theory calculations by the direct numerical
evaluation of the Magnus expansion have not been employed in NMR
problems outside of the construction of composite pulses. Such an
approach may be useful in other problems when suitable sequences can not
be found by the usual means. Even when sequences can be found by other
means, those that are derived numerically may turn out to be more
effective.

The generation of pulse sequences by iterative schemes is an area

T
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of NMR whose potential is as yet unknown, beyond what has been presented
in Chapters VII through IX. Some problems that deserve attention are
the generation of pulse sequences that produce constant net rotations,
pulse sequences that are broadband with respect to one parameter and
narrowband with respect to a different parameter, pulse sequences for
broadband excitation in coupled spin systems, and improved sequences for
selective multiple quantum excitation. All of these problems are likely
to require an investigation of new classes of operations that may be
applied iteratively to an initial pulse sequence.

Finally, the incorporation of broadband excitation sequences into
MMR experiments in general, and the comparison with the more traditional

forms of those experiments, is an important area for future research.
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Appendix A: Experimental Methods

1. Spectrometers

Experiments were performed on two home-built NMR spectrometers that
have been described in detail in other dissertations [99,114]. One
spectrometer, operating at a proton Larmor frequency of 360 MHz, was
used to obtain the data and spectra in Chapters II and V. The other,
operating at a proton Larmor frequency of 180 MHz, was used to obtain
the data and spectra in Chapters VI and VII.

Both spectrometers are based on Bruker superconducting magnets (42
and 84 kG). The timing sequence of rf pulses, delays, and signal
acquisition is stored in and controlled by a pulse programmer with an
independent microprocessor. Overall triggering of the pulse programmer,
data storage and averaging, Fourier transformation, and other data
manipulations and analysis are accomplished by Data General Nova
computers, running the SPEC operating system [115]. The principal
- components of the spectrometer are diagrammed in Figure A.1l.

An unusual feature of many of the pulse sequences investigated in
this dissertation, from the experimental standpoint, is their uncommon
rf phase shifts. The spectrometers normally operate with four proton rf
pulse channels and four X nucleus channels, each producing pulses with
relative phases of 0°, 90°, 180°, and 270°. Phase generation and pulse
gating takes place at an intermediate frequency (IF) of 30 MHz. In
addition, there is a digital phase shifter capable of producing overall

phase shifts in increments of 360°/256 [87,114]. The overall phase
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Figure A.1: Block diagram of the principal components of the pulsed NMR
spectrometers used in the studies described in this dissertation.
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shift produced by the phase shifter can be determined by an eight bit
binary number stored in a RAM. Thus, the overall phases can be set to
any value within a nominal precision of 360°/512 by loading the
appropriate numbers into successive RAM locations. Approximately 2.5 us
is required for the phase shifter to change state, however, so that 2.5
us gaps are required between pulses if the phase shifter RAM is used to
set the pulse phases. Pulse phases were set in this way for experiments
whose results are given in Figures V.2, V.4..V.5, and VI.5.

In cases where gaps between pulses would degrade the performance of
a sequence due to the presence of large resonance offsets or dipole
coup]ings; or in cases where the required phase shifts were
comparatively simple, the phase shifter was not used. This applies to
data in Figures V.2, V.3, V.7, V.11, V.13, VI.5, VIL.5, and VIL..
Where necessary, the relative phases of the rf channels were readjusted
with a combination of delay cables and phase tweakers. Relative phases
were measured with a vector voltmeter. For the experiments that
produced the data in Figures VII.5 and VII.6, six rf channels with
phases in increments of 60° were required. Therefore, the outputs of
two of the X nucleus channels were combined with the outputs of the four
proton channels and the relative phases were adjusted appropriately.

A schematic diagram of the phase generation circuitry is given in

Figure A.2.
2. NMR probes

The two probe circuits used in the experiments are given in Figure

A.3. The 360 MHz probe in Figure A.3a was designed and built by Erika
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Figure A.2: Block diagram of circuitry for generating phase-shifted rf
pulses. The components are: divider (a), 0°/180° hybrid (b), 0°/90°
hybrid (c), phase and amplitude tweakers (d), rf switch (e and k),
four-way combiner (f), two-way combiner (g), RAM circuit (h), Daico
phase shifter (i), mixer (j). This set up allows pulses with seven
chosen phases to be given at one frequency and pulses of a single phase
to be given at another frequency. In addition, overall phase shifts in
increments of 360°/256 can be performed by the phase shifter.




Figure A.3: NMR probe circuits.
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Schneider and Kurt Zilm. It is a double-tuned probe, suitable for
irradiating and detecting signals from protons and 13C nuclei
simultaneously, although only the proton side was used in the
experiments in this dissertation. The coil consists of four turns of 2
mn wide, flattened copper wire. The coil is 10 mm long, with an inside
diameter of 7 mm.

The 180 MHz probe in Figure A.3b was built by Warren Warren. The
probe is designed for liquid crystal experiments, requiring the
capability of controlling the sample temperature. An auxiliary
temperature controller is used to read the voltage from a thermocouple
positioned near the sample and switch current through a heater.
Temperature regulation was employed in the experiments of Figure VI.5.

The coil in the 180 MHz probe is wound from 7 turns of 2 mm wide,
flattened copper wire, with a length of 22 mm and an inside diameter of

8 mm.
3. Samples

Experiments to demonstrate the performance of composite pulses as a
function of the resonance offset or the rf amplitude were performed on
an Hzo(z) sample in a glass bulb with an inside diameter of 3 mm. The
spectra in Figure V.11 were obtained from a sample of Ba(C103)2-H20
powder packed into a glass tube with an inside diameter of 3 mm. The
sﬁmple was 5 mm long. The dimensions of the squaric acid crystal used
4n the experiments of Figure V.13 were approximately 5 mm by 6 mm by 8
mm.

The sample of CH2C1 dissolved in Eastman 15320 liquid crystal for

2
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Figure VI.5 was prepared as described in Chapter VI.C.1. The sample was

sealed in a glass bulb with an inside diameter of 4 mm.

4. Additioﬁal remarks on techniques

Population inversion measurements vere made with sequences
analogous to that in Figure V.9b. Variations in wy were mimicked by
equivalent variations in pulse lengths in the inverting sequence, since
it is experimentally easier to calibrate wy once and then vary the pulse
lengths rather than varying wy and recalibrating it for every data
point. The length of the »/2 "read" pulse was kept constant. The
inversion was measured by the peak height in a magnitude spectrum,
normalized to the peak height after the read pulse alone.

When the inversion is incomplete, transverse magnetization is
created by the composite n pulse. The transverse magnetization
dephases due to static field inhomogeneity during t.in Figure V.9, but
is partially refocussed at a time t after the read pulse, giving an echo
signal. In the HZO inversion experiments, t was taken to be 20 ms. The
static field homogeneity was spoiled by missetting the magnet shims so
that the FID after the read pulse did not overlap with the echo.
Typically, the inhomogeneous linewidth was several hundred Hz.

In order to measure inversion as a function of Aw, it was necessary
to give the composite » pulse off resonance while keeping the read
pulse on resonance. An independent rf gate, fed by a fixed 30 MHz IF
source, was used to give the read pulse. The remaining gates were fed
by a variable IF from a frequency synthesizer. The outputs of all gates

were combined. Thus, the frequency of the composite » pulse could be
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varied at will without affecting the read pulse.

Pulse lengths corresponding to flip angles in multiples of =/4 were
calibrated by giving a sequence of four identical pulses and observing
the ensuing FID. The pulse lengths were adjusted to produce a null in
fhe FID signal. When necessary, pulse lengths for other flip angles
were interpolated.

Measurements of signal phases were made directly from the FID,

using Eq.(II.75).
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Appendix B: Computer Programs . 1

1. Simulations ' -

Simulations of signal amplitude, signal phase, or inversion as a
function of Awlwg or ml/w? were accomplished with FORTRAN programs
similar to DELTA.FOR, reproduced along with the necessary subroutines in
Figure B.1. Specifically, DELTA.FOR calculates the final x, y, and z
components of a Bloch vector as a function of Aw/m? for any given pulse
sequence. The pulses are treated as a sequence of rotations applied to
an initial vector aligned with the z axis.

Simulations of signal amplitude or inversion as a function of
dipole coupling constants in a system of coupled spin-1/2 nuclei were
carried out with NROT.FOR and its\associated subroutines, reproduced in
Figure B.2. The number of spins and the nominal values of dij/w? are
entered, along with the pulse sequence. The final density matrix in a
dfrect product basis is calculated as a function of an overall factor C
that multiplies all coupling constants.

Simulations of powder pattern spectra for an isotropic
orientational distribution of pairs of coupled spin-1/2 nuclei were
produced by WQDP.FOR and FFT.FOR in Figure B.3. WQDP.FOR generates the
FID after a given sequence of pulses and delays. FFT.FOR Fourier

transforms the FID, using the IMSL subroutine FFT2C.

2. Derivation of pulse sequences in the coherent averaging theory

approach
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Figure B.1: DELTA.FOR

DIMENSION P(2000),F(2000)+FF (2000)

PROGRAN CALCULATES INVERSION FOR ANY SEQUENCE
FOR SPECIFIED RANGE OF RESONANCE OFFSET T

TYPE 100 - TR TTTTIITeTs o e e s
100 FORNAT (1X» "ENTER NUNBER OF PULSES’)
T ACTEPT TN
TYPE 101
101 FORNAT(1Xy "ENTER FLIP ANGLES" Y - - T
ACCEPT 8/, (F(1),I=1sNP)
TYPE 102 T TTreTmT s e T
102 FORMAT (1X» ‘ENTER PHASES ‘)
ACCEPT X+(P(]1)y1=1,NP)

TYPE 103
» "ENTER TOW OFFSETY, NIOHW GFFSEYT, INCREMENT ')

ACCEPT 2,DL)DHsDINC .

PRINT ¥ "PRASES! /o (P(I)sl=1,NP) =~ =~ =~ T

PRINT 8 'FLIPS : ‘4 (F(I)sIelsNP)

amod

103

DO 30 I=1,NP
P(1)=sP({1)SCORNV o T mmmTTm o mm e T
F(I)sF(I1)2CONV
30 CONTINUE
D=DL
-3 Xwo O
Y=0.0
Z=1.0
D0 SO I=1.NP
CALL ROTIDYFII)oPITI) o XoY e 22U VWY —~  ° o
X=U
YU
Z=W
S0 CONTIRUE - T
FRINT 8+sDeXeYr2
D=D4DINC
. IF(D.LE.DH) GD TO 35
- —sTor
END

SUBROUTINE ROT(D:sFoPiXsYsZ2UrVoW)

c
c GIVES RIGHT HAND ROTATION
[ (X2Ye2)=INITIAL VECTORS (UsVs¥)=FINAL VECTOR
[

CALL ROTZ(=PosXsYsZsUsVrW)

CALL ROTX(DsFolleVUrWrXsVe2)

CALL ROTZ(PsXsYeZsUrVil)
T RETURN
END

SUBROUTINE ROTX(DsFeXoYsZoUrVrld)
A=ATAN(D) -
PsFESQRT(14D8D)

T T T Ot oSt
SA=SINIA)
cy=Ccosty) e
SP=SIN(D)

RESATSASCE) - YESPESA-ZR (CATSASTR-CASSAY ——— ~
VaX8SASSD+YRCR-Z2CARSE =
T

RETURN = ’
END - [P . e = . ———— B

SUBROUTINE ROTZ(Pe X2 Yo ZoUe VW)
Y=2

TPeTUs Py .
SP=SIN(P) B
UsX3CP-Y¥BP . -
VaXe8P+YSCP :
RETURN . T - T :
END




Figure B.2: NROT.FOR

PROGRAN PERFORNS ARBITRARY PULSE SEUUVENCE
ON SYSTEM OF UP TO 6 SPINS

BIMENSION F(20):P(20):D(8:8)52(44,44)
TTOINENSION X(§%:84) yHD (8434 HT2080) »STHOYET ~ ~ T
CONPLEX Y(é‘véd)olNO(‘val}oN.N(“vlJ)tQOT(‘QcGQ)

CONPLEX RM1
COMPLEX T(64164)sV(64)

0

BET PARAMETERS

TYPE %, 'ENTER 9 OF SPINS, & OF PULSES"
ACCEPT %NS, NP S
Ne233NS

TYPE ¥ ENTER FLIP AWNGLES™
ACCEPT 2+(F(1)sl=1,NP)

TYPE 8, "ENTER PHASES”  ~—~—~ —— 7~ T o

ACCEPT 2+, (P(I)sI=1,NP)
DD 20 I=1,NS-1 ) oo ST
DO 10 JsI+1,NS

10

20

— DO ATIUFLNS

TIPe J¥PITVJ

FORMAT(1X+ "ENTER COUPLING OF '»I3»’ TO0’»13)
ACCEPT 3,D(I,J) LT
CONTINUE

CONTINUE - o ottt T

TYPER, "ENTER LOWs HIBHN COUPLING MULTIPLIER, INCREMENT'
7CLyCRT ”

DO 30 I=1+N

PO 28 J=I N T T T oTToTm et T T T

2(1»J)=0.0

X(1+,J)20,0 -

HD(I1,4)=0,0

’ UV V)
CONTINVE
CONTINUE

SET uP 12

N=23%8(J-1)

DO 40 I=1,N - N
Ks(I-1)/HM

Z(1+11)8201+1740.5%0(-1782K)

CONTINUE

CONTINUE

T"BETUP IX AND 1Y

"1=1,N8
N=288(I-1)

v
IFC((J-1).AND.M).NE.O) 8D TD SO

T KsJIR T .
X(JrK)=0.S
X(K,J)=0.5 ’ B
Y(J1K)®(0,0+-0.95)

S0
35

AALIE 2448 23435224
CONTINUE
CONTINUE
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[
g SET UP COUPLING NATRIX
T DU 70U INTNSSY
DO 65 JsI+1,NS v

NI=2%%(1-1) o -

HJ=288(J-1)

L it S ’ T

DDs-D(1+J4)/6.0

PO B0 KYTW N
KN=(K-1).,AND. M

AD(K»K)sHDIKsKI$DD T )

IF((KN.EQ.M).OR.(KN.EQ.0)) HD(K:K)-HD(K:K)-? oxDD

IF(KM.NE.NTI) B0 TO 60 - - )

LaK=-NI¢n)
- B ALY RA S
HD(L+K)=DD
60 CONTINUE
45 CONTINUE
20 CONTINUE T

CONV=ATAN(1.0)/745.0
I LA S W L 4.
P(1)=P(I)SCONV
F(I)=F(I)SCONV - i e
71 CONTINUE
TYPE % 'DONE WITH SET-UP PARTY’
INC=1
Txtt

RM1=(0.0+1.0)

C
c NAIN LOOP: STEP THROUBH COUPLINBS
c :
73 DD 80 I=1,N
e PN
RHO(I,J)8Z2(1+J)
7S CONTINUE
80 CONTINUE
K=0
DD 90 I=1sN
208312
K=K+1
H(K)=XTJ,I)$CEHD(J» T)
-1 CONTINUE
%0 CONTINUE
CALL REIGEN(HsS»N)

€
c STEP THROUGH PULSES
[

DO 150 1I=1,NP
DO 100 I=i,N
DD 95 Js=1sN
HAM(I,J)=(0.0+0.0)
ROT(I+J)=(0.0:,0.0)
TCJeIN=S(J4(I-1)EN)
14-1 CONTINUE
100 CONTINUE
DO 105 I=1+N
T ROTUIG IYACEXPU-RAIYPUIDIXIYL LYY o — ———
HAM(I1)=CEXP(-RMISN(I)SF(I1))
105 CONTINUE T
CALL UMUA2(T+HAMIN164+V)
" CALL UNUA2(ROT HAM/ N+ 64,V) T
CALL UMUA2(HAM/RNDINs 64+ V)

¥U=0.0
PO 1460 1wl
DO 155 J=1.N
Ws@4Z 11, JITRRDCIT) -
155 CONTINUE :
- 180 ———COWTIWUE
W=4,08W/(NENS)
PRINT %,CoW T ST
TYPE 3,'DONE WITH POINT §°,INC
INCeINCH1
CeC+CINC
- oo ——rTtTE 73 :
sToP :
EnD




c

subroutine usua2(urbrsmsnrv)

€~ T T PETTOTES UNTLEYY UYIRSTOTEIvION.

4
c

bsusbruadioint

cosrlex ulnindebinsndrvin)
call mstrallurbrarnrv)
call satesnl(brurerniv)

rewurn
end

subroutine sstaai(arbrarnsry)
comrlex a(nin)rb(nendrrvinles
60 I ITLN

do 12 J=1rm

$=0.0

do 11 k=lra
s=g4a(irk)Bconig(Dljrk))
rv(j)=g

TTTTTTET IO e

alirdderv(y)
continue
return

end

11

12

13
14

.nnnnnqnnn

20

30

subroutine astral{(srbrasnscv)
coarlex a{nindrbinsndrscvinlss
do 14 J=1l,a

do 12 ixirm

$=0.0

oot xTrhyw

s=s+a(isk)ED(KkrJ)

ev(i)=g

do 13 i=1lrs

blird)mevii)

continue

return

end

disgonalizes » resl hasiltonian.
h is a8 one-diaensional vector whose elements
L IVE TOTUBSAS IV T

- —FEFUTEFIR

haniltonian., on returnr the eisenvalues are
in the first n locstions in h. s is » vector
whose eleaents sre successive eisenvectors,

n is the disensionality.

T TRUDTOUTITE PEINERTINI TN

disension h(1),s(l)
eatlivi)=iRi~1)/2+%i
ansn

rande=},0e-7

iJj=0

gy 20 JIvW

do 20 i1=1/n

fJsiJ41

s(iJj)=0.0

iP{1.00..4) 8(ij)=1.D
snhores0.0

(214}
Jalsj-1
do 30 f=1,.jal
{jmeat(ird)
anore=anorathlijIBh(iJ)
anora=sart(2.0%snora)

e TPTSRSTS . TV . FINATT #0 Yo 129

40

anorax=anoratrange’/an
ind=0

thrsanors

thrsthr/en
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30

do 100 e*2»n

61

62
63

44
45

70

WWITEY

do 100 i=1,mnl

lazaat(lrm)
if(abs(h(lae)).2t.thr) so to 100
ing=g

1l=mpt(ls1

wnvprttwrwy
diffsh(an)=-h(1l1l)
ift(dirf.ea.0.0) dirr=1,00-1S
28=0.583tan(2.08h(1m)/da??)
sina*sin(as)

coss=cos(as)

sins2=sinastsinas
cosal=cosalkcoss

do 70 k=ien

ifCk=-1) 61+70+42

kl=mat(ks1)

km=patkom)

f0 to 85

if(k-n) 63:70:64
kl=aat(lrk)
kazagzt(kim)

g0 to 4%
kl=ast(lik)

UrasasttaiE)

hhecossth(kl)~sinash(kn)
hikn)=sinath(kl)écosath(knm)
hikl)=hh

continue
ss=2,08sinss%cosath(ln)

et b4 T P L AR P AL 2L L2108 ] AL 39

h(an)=sinalth(l1)¢cosa2th(an)+ss
LIS R0,

hi{la)=0.0

do 80 i=l,n

il=(1-1)8%n+i

80
100

IRETR-TYIN*Y
ss=coss¥s{il)-sinafs(im)
s(inl=ginaBs{il)tcosalslin)
s(il)=gs
continue
continue

— O ee 0wt 120

ind=0

g0 to 30

iftthr.gt.enorex) go to 40
do 130 i=2.n

ii=mat(iri)

TITTYENTTLY

continue
return
end
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Figure B.3: WQDP.FOR and FFT.FOR
WQDP.FOR

dgimension sr(1024),85(1024)snrsv(20),t(20)sPh(20)
disension @(3)x(3sT)rN(E)rsl?) oo e T
cosrlex rho(3s3)sham(3e3)rr(3)su(33)
coarlex rep(3,3)12,ut3e3)
tworis=sg,080.001%3t0n(3.0)
rrutss .0
ncogo=0
do 5 §i=1,1023 - T T
sr{i)=s0.0
si(1)=0,0 -
if(i.gt.20) g0 to S
NPIVIIIE®Y,V
t(i)=0,0
rh(i)=0,0
3 continue
do 1% §=1,3 o
do 15 J=1,3

R+ JIEY. VU
wiirJidmemrln(0,000.0)

13 continue
x{1e2)ei/(gart(2.0))
%02,y 1)wx{1,s2)
x(213)ex(3,»2)

- RVITLTERVIV T
w(1r2)menrlx(0.0r-x(172))
w(2,) )=yl ed)
wi2r1)mcarlx(0,0rx(1+,2))
w(3r2)eyl2,1)
twre %, 'how eany cusdrurole fresuvencies?’
STCEPT ¥ hwa
twvre %) ‘rowder rPattern?’
accert Srnpp
if(ner.ea.1) ture 8y ‘'vary we froa -wa/2 to +wa’
tvre ¥, ‘enter low and high wa values’
accert Zrvwalrvaf

ST tyFR T NOW RSNV STEFS 1IN Pulie SeauenceY

accert Sonp
ture 3, ’enter pulse strensth (khz)’
sccert ¥rwl
ture ¥r‘enter seauence vector’
accert BrinrPsv(i)rixlong)

TWPE S ENTEYT PRI Es
accert $o(phi(i)rizlrnp)
do 10 i=lene -
rh(i)=ph(i)81000.08twori/360.0 ’
10 continue
ture 2, ‘enter pulse lensths (usec)’
T e 11 124 SRS A8 RAR L2 SN 1.2
twre %:’'resove coherences asfter some ster?’
accert Srmcoh
if(scoh.ee.0) go to 20
ture ¥ after which stesr?’
accert 8rncoso
20— tYFF ¥ SNIWT ¥ O RGINtsy senrlind rete Tor ¥id lusecy’
accert Xinfidetfid
rrint ¥snfiditPid
woinc=0.,0
if{nwe.sa.1) g0 to 190
waincs(waf-wei)/(nue-1)
190" U0 IOV TUEFIAWE
if(ive.90.1) werwei-wainc
woswatwaine
do 3O i=1,3 :
do 30 J=1,3 . L
rho(irJimcarlxn(0.0,0,.0)
T T T MR LT IS EER IRTUST O UL 07
30 continue
rhotisldmcarintt.0,0,0%
rho(3r3)=carlx(-1.0,0.0)
h(l)sua’/3,0
ht2)sui/sert(2.0)
hi3)=-2,08n(1)
h(4)=0,0
htS)rsh(2)
h(é)=mh(}) H

L
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R 2 1.4 A 403 227 | Iy PAE AR 3 2 X

call reisenthysr3)
do 40 i=1,3

T ETTYERTEY
continue
ul{leldeg(l)
ul1,2)eg(4)
ul(l1,3)ag(?)
u(2,1)m8(2)

(e aend $8-2)
ul2,3)=g(8)
ui(3+11)=8(3)
u(3e2)=g(4)
uil3r»J)=g(9)
do 110 ir=linpe

do 70 j=1,3

do 70 J=1,3

if(i.ee.J) g0 to SO
haalsrsJ)scarln(0.0:,0.00
fo to 70

SO~ T IETEF IR TRt TR T I TRt U YY

70

hea(iri)mcexr(2)
continue

csll usualurhsarIrr)
do 80 {=1,3

do BO Je1,3

D 4 AR I PA M | e 28 XA AL NN R

80

60

20

continue
z=carlx(0.0vph{ir))
rep(lsl)=cexr(=-2)
rrrp(2,2)xcarlx(1.0:,0.0)
rep(3y3)mcexr(z)

TIIT USLIFTTFFF IR+ 37 FY
so to 90

do 120 i=1,3

do 120 J4=1,3
haa({irJj)=carlx(0.0+0.0)
continue

T T 2E AP IR0 O WEST T IF T RLNORI /3. 0T
haa(lyl)=scexr(~2)
hae(2y)=cexr(2,082)
hea(3r»3)=ham(lr})
csll usua(haarsrho,3sr)
if(acoh.®a.0) so0 to 110

T NEURY T S0 T TIOC

220

110

160

150

140

130

do 220 i=1,3

do 220 J=1,3

if(i.ea.Jj) g0 to 220
rho(1+J)=carlx(0,0+0.0)
continue

T TONt MUY
do 160 i=1,3
do 160 .=1,3
hom(irdl=carlx(0.0¢0,0)
continue
zacarlx(0.0rwastfidRtuori/3.0)

o tramttytrTreReteYy
hae(2+2)wcexm(2,082)
han(3,3)=ham(1,1)
if(nrp.e0.1) call]l rreen(ivernuarrrut)
do 130 {fid=i,ntid
if(ifid.ea.1) go to 150
call uaua(hamsrhor3rr)
svex=0,0
svew=0.0
do 140 i=1,3
do 140 Jj=1,3
svexsavextx(irJj)Erho(iri)

SVEVERVENYY LIy JTETNO\Jr3 )
continue
srlifid)=sr(iPid)tavextrrwt/2.0
si(ifid)=gi(ifid)tavevirsut/2.0
continue

ture Sr'srin & ‘rive

TIOUT T T econtinue

170

do 170 i=i.nfid
sri{idegr(i)/nua
si(i)=sgi(i)/nwe

rrint Briesr(i)rsi(i)
continue

stow
end

254

e

Vv e



subroutine usus(usbrnsv)

serforas unitary transforastion
beysdRusdJoint

nnnan

cOBPIEX UlNINIIBTAIAIyVIN)
call matral(usbrnev)

et - P YRR 27 PRY AR ELIARS
return
end

subroutine astasl(srbrnsry)

’ ’ MM7eTVIRI S
do 14 isi,n
do 12 J=isn
£=0,0
do 11 k=1,n
11 s=stal(irk)Bconig(blisk))

12 rotrsy

do 13 J=isn
13 lirddErved)
14 continue

retyrn

end

subroutine astrai(ssbrnrev)
coarlex atnendeb(nsnd)ecvin)les
do 14 Jjsiin

do 12 i=f,n

SFUL T
do 11 k=1lsn
1 sogda(irk)BD(koJ)
12 cvii)eg
do 13 i=1sn
13 blisd)mev(i)

13 ——""TontIinue
return
end

subroutine rreen(ivernworrrut)
rrutessert(2.02(nuwa-1))

return

end

255
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FFT.FOR

character®lS fnase
dimension ar(1024),8§(1024)
LR 44
cosrlex 2(1024)
" ture %) ’enter power of 2 PO+ TIC lensth” T
sccert $ra
ture %) ’outprut resl(1) or {a8NT(2) srectrus?’
accert 2ris

¥ Uy TIU T11IW
accert 20/nsPnoee(iin)
foraat(ers) ,
oren(unit=2ynane=fnaae(iin)rstatuss’old’»resdonly)
nf1d=2%3a
twre %y 'clesr one buffer of fid 7’

ibc=0

if(icdb.ne.0) ture %y ’which one (1 or 2) 7
if(icb.na.0) sccert %ribe

read(2+:2) nnitfid

do 30 i=i,nfid

30

28

40

42
50

b 2 -AV4A AU AR RER 2 N

if(ibc.ea.1) ar(i)=0.0

ifttibc.ea.2) #i(i)=0,0

a{il=carix(ar(i)epi(i))

continue

tvre ¥)’enter doaring (taus wer 128 pts)’
r

daar=daar/128

do 28 i=1,nfid

a(id=a(i)texr(~danrtj)

eontinue

csll fft2cl(armriwk)

if(is.ne.1) go to S0

do 40 ix1l.nfid/2

k=jénfid/2

rrint Srisresl (a(k))

continue

do 42 ix1lynfid/2

LISV

rrint S:koreal (0(i))
continue

so to 70

do 60 i=t,nfid/2
k=iénPid/2

(1)

62

444 TIEthTIO00 07T

AR UL IR LR ST 21 1T AC AL
continue

do 82 i=1ynfid/ 2
ksiéntid/2

rrint Sskrpionslal(i))
continue

ture 8y 'srectral width(khz) = ‘ruidth
closelunits2)

stor

end

m\
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The programs HOPE.FOR and RF2180.FOR were used to find first order

w‘r?n W[

composite » pulses that are broadband with respect to resonance offsets [ z

e

and rf amplitudes, respectively. Q180.FOR was used to find zeroth order
composite » pulses that are broadband with respeét to dipole and
quadrupole couplings. HOPE.FOR, RF2180.FOR, and Q180.FOR are reproduced
in Figures B.4 through B.6. They follow the procedures outlined in

Chapter IV.C.3 and IV.C.4.
3. Generation of maps for iterative schemes

The program CARTMAP.FOR, along with subroutines ITER.FOR,
EXTRACT.FOR, and REFINE.FOR was used to generate data for the maps of
attractor basins in Chapter VII.C.2. The programs are given in Figure
B.7. CARTMAP.FOR accepts information that specifies a scheme. That
information is passed to ITER.FOR, along with the coordinates of an
initial point in SO(3). ITER.FOR sets up the corresponding 3X3 rotation -
matrix and applies the scheme to generate a new 3X3 matrix corresponding
to the next iterate. The new point in SO(3) is calculated by
EXTRACT.FOR and REFINE.FOR. ITER.FOR then checks for convergence to a
fixed point, according to the dfscussion in Chapter VII.C.2.

Related calculations, leading to data of the type presented in
Figures VII.12 and VII.15, were carried out with programs that were

modified versions of those in Figure B.7.
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Figure B.4: HOPE.FOR

DIMENSION C(é:7)

DIMENSION CT(1000)+s8T(1000)+sCF{7)sSF(?),CP(7)+SP{7)+N(7)
G(AL1A2+/AZ+A4)=AIS(1.~AT)+A22A4

18A=0

IKT=0

CREATE COSINE AND SINE TABLES
FOR ANGLES BETWEEN -340 AND 4360 DEGREES
ANGLE 1 IS -361+1

PI=4.SATANC(L,)

DO 10 I=1,721 o o
CT(1)=COS((-361+1)8P1/180)
ST(I)=SINI(~361+1)8P1/180)

CONTINUE

GET RANGES OF PARAMETERS: CRITERIA

TYPE 600
FORMAT (1X»"ENTER LOW VALUES FOR 3 PHASES’)
ACCEPT 3.M2L M3L)»MAL

601

402

603

404

405

TYPE 30T

FORMAT (1Xy'ENTER HIGH VALUES FOR 3 PHASES')
ACCEPT 3,M2H»M3IH,»M4AH

TYPE 602

FORMAT (1X,"ENTER LOW VALUES FOR 4 FLIPS')
ACCEPT ®/NIL/N2L/N3L/N4L

TYPE BUJS

FORMAT (1X»‘ENTER HIGH VALUES FOR 4 FLIPS')
ACCEPT #/N1H/)N2H)NIH)NAH

TYPE 604

FORMAT (1X, "ENTER PHASE INCREMENT’)

ACCEPT 2.MINC

TYPE OV3

FORMAT (1X,»'ENTER FLIP INCREMENTY’)

ACCEPT ®sNINC

TYPE 606

FORMAT (31X, "ENTER INVERSION: H(0),» H(1) CRITERIA’)
ACCEPT S UIN)NHO )WHY

INITIALIZE PARAMETERS

M2=M2L
MI=M3IL
HasMAL

TTTTTTTNTITERTU

N(2)sN2L
N(3)eN3L
N(4)=NaL
N(S)=N(3)
N(&)=N(2)

LARAE L AR W)

L]

E m;m|m e «wu"|mm:‘;uq“h\ﬂ1 i
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GET SINES AND COSINES FROM TABLES

[ CP(2)=mCTI(N24341)
CP(3)=CT(M3I-M243641)
A28 2L ARLL A T L 2 ] 2 02
CP(S)=CP(@)
CPCs)=CP( )
CP(?)=CP(2)
SP(2)=ST(N2+381)
SP(J)=ST(MI-N24341)

— St ES TN NITSETY
SP(S)=-8SP(4)
SP(4)w-8P(2)
SP(7)=-8P(2)
CF(1)mCT(M(1)4381)
CFt2)aCT(N(2)+4361)
CF(3)=CT(N(3)4361)
CF(Aa)=CT(N(4)4361))
CF{S)=CF(3)
CF(6)=CF(2)
CF(7)=CF(1)
SF(1)=ST(N(1)4341)

T T SIS TIRT 2RIy

SF(3)=ST(N(3)>4361)

SF(4)=ST(N(4)4341)

SF(S)=SF(3)

SF(46)=SF(2)

SF(?)=SF(1)

OO0

| R

s

g — ——
c CHECK INVERSION EQUATION
ps .. .
X1=CF(1)8CF(2)2CF(3)-5F(1)8CP(2)8SF(2)8CF(3)
1 ~SF(1)SCP(2)SCF(2)RCP(I)XSF{3)-CF(1)88F (2)8CP(3)ESF (D)
1 4SF(1)88P()ESP(3)IRSF ()
1 +SF(1)XSP(2)SSP(3I)RCF(I)-CF(1)BCF(2)88F(3)
1 4SF(1)SCP(2INSF(2ITSF(I) T
X3=~SF(1)8SP(2)8CP(JI)~SF(1)XCP(2)BCF(2)RSP(3)
1 =CFCt1)¥SF(2I¥SPTD) :
X4=X18(CF(A)XCF(I)-SF(A)SCP(A)BSF (3))+X28(CP(4)ISF ()
1 4X38(-SP(4)BSF(4)8CF(3)-8BP(4)BCF(A)XCP(A)BSF(3)
1 HCPTLINSP(A)IESF(I)) : : : . -
XSeX18(-8F (4)RCP(A)RCF(I)~-CF(4)BSF(J))+X28(CP(Q) -
1 SCFTATRCP(A)IRCFIT)I$SP(4)RSP(4)SCF{T)-CP(4)ESF(AIRSFTIIYT -
1 4X3(-SP(A)ECF(A)SCP(4)SBCF(3)4CP(A)ESP(4)RLF (D)
CTTTTTTTTYSPUEISSF IR RS U
Xé=X18SF (4)8SP(4)¢+X28(SP(A4)SCP(4)-CP(4)XCF (4)XSP(4))
1 4XIS(CP(4)BCP(4)4SP(4)SCF(4)8SP(4)) T T
X=XAR(CF(2)2CF(1)~-SF(2)8CP(2)8SF (1))+XSE(CP(I)BSF (D)
1 SCF(1)4CP(3I)STF(2)RCP(2)8SF(1)-SP{J)ESP(2)8SF (1))
1 4X6B(SP(I)BSF(2)BCF(1)4SP(3)RCF(2)XCP(2)8SF (1)
T T FCPCITNSPUIRSF UL )
IF (X.GT.WIN) GO TO S00
c
[ BET C(IsJ) MATRIX
[+
C(31+1)=0.
BAY 4R RéZ K
C(3v1)=1,
C(4,1)=0.
C(S5+1)=0. -
C(6+1)=0. L

PO 100 K=2,7

VA PRIEY, )
C(2,K)s1,

C(3/K)nt,

C(a)K)=0,

C(S,KI=0,

C(61K)=0. -




260

UV IV LLELTRN

LeK42-LL

NLIRS]
D1=C(1+sK)IBCF(JI)=C(IK)SCPIL)ISSF(JI)=C(S+KI)SSP(LISSF(J)
D2=C(2)KIRCF(J)-Cla4IKIBCP(L)IRSF(J)=C{& KIRSP(L)IESF ()
D3I=C(3+KIBCPILISCF (DI 4C(SIKIBSP(LIRCF(JI4C(11K)ISSF (D)

T T DATCt YR YR IS O IS iR TYSPIL TRCF T g
DS=C(5+K)BCP(L)-C(3,K)XSP(L)
DE=C(6:KIRCP(L)-C(4,KIESP(L)

C(1¢K)=D]

C(2/K)=D2

C(3:K)=D3

Cta,K)=D4

C(S)K)=DS

C(&)K)aDs ’ T
30 CONTINUE
100 ' CONTINUE . CoT

T TWECK WTUY

WXeGIT(S»1)rCCE01)2CFUL1)sSFUIL)I4BIC(5+2)¢C(602)
CF(2)sSF(2))4B(C(S13)»C(6s3)sCF(I)1SF(3))
+G(C(S+4)9Cl802)9sCF(A)sSFLA)I4BIC{S»5)9C(8:5)sCFIS)y
SF(5))40(C(Sr18)rC(618)1CF(E)»SFCE)I4B(C(S1?)9C(6+¢7) s
CFU7I 7 SFU77)
UXsWxsux
IF (NX.GT.WRO) GU TO 500
MY=G(C(3r2)rCCas1)¢CFU1)2SF(1)I4G(L(3I+2)¢C(4:2)y
1 CFL2)sSF(2)I4G(C(IsT)»CC(493)sCF(I)»SF(I))
1 +G(C(3+14)+C(4+4)9CF(Q)+SF(4))48(C(I+5)1C(4+8)CF(S),
“TSF X240 X-340 7 V2T X4 K
1 CF(7)sSF(7))

WY=WYRUY

IF (WY.GT.WHO) GD TO 500

4 - -8 pa

c
c CHECK H(1)
S

PFI=P1/180

yZ=0. Semmmsm s e s s

PO 1310 1=1,7

VZSVZHSFIT)-N(IISPPIIBIC(I, IISTIE, DD-CH, TIFCTIS» I¥Y
110 CONTINUE

W 13V 195/

DO 120 J=1,1I

VZeUZAGI(TIS 11L& T)H»CFIT)+SFIDNIWBICTI» I CLA )y
1 CF(D)»SF(J))~- G(C(JII)'C(COX)oCF(I)tSF(I))lG(C(SvJ)r
1 CtérNHCFINISFIYY

120 CONTINUE

- T30 -—CONTIWUE
VUZeV2sv2
~IFYVZ.6T.WAI) GO YO SO0 ——~— — - o <o e
vX=0.

DO TF0 I=1,7 CoTm T -
UX=UXH (SFCII-N(D)SPPI)IB(C(1,I)0C (A9 1)=C(3y1)8C(2+1))
T80 CONTINUE

DO 160 1=2,7

DO 150 J=1,1

VUX=UX4B(C(I1I)1CCa,T)eCF(I)2SFII)IRG(C(I»D)2C(209D)
1 CF(D)sSF(S)II=-B(CTT1+I)sCC29T)oCFII)+SFI{I))IRGIC(IoJ)y
1 C(4:J)+CF(J)»SF(J))

~ 130 CONTTNUE "
160 CONTINUE
VX=VXBUX ﬁ
IF (VX.GT.WH1) 60 TO 500
vY=0.

DO 170 I=1.+7
170 CONTINUE
DO 190 I=2,7
DO 180 J=1,1
VYsUY$B(C(1+1)9C(2+T)9CF(I)»BFIIIISBIC(S ) eC(60J)
CF(I)1SF(I))=B(C(S»I)sC(621)sCF(I)eSF(INIRBICILsd)
""‘1“t12‘17‘tf737‘8f1J77
180 CONTINUE
190 CONT INUE -

i

g 1“(11[‘1“]11:“’,7]7“%"\!’} 177 |

I ‘myurw
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VY=yYRVY

IF (vY.GT,.¥WM1) 60 TO S00

ISA=ISA+L

PRINT 620/ M2sM3sMasN(1)sN(2)N(3))N(4),1I84
620 FORMAT (1X,81S)

PRINT 621+ X2WX WY UXsVYoV2Z
621 FORMAT (1Xv6F10.%)
500 M2=H24MINC

IF (M2.LE.M2H) GO TO 20
T TN

M3=MI4+MINC

IF (M3.LE.N3H) GO TO 20

M3=M3IL

M4=MA$NINC

IF (MA.LE.MAH) GO YD 20

L L, 018

N(1)SN(1)+NINC
NH=NTL)
IF(N(1).LE.N1H) GO YO 20
R(DYSNIL

N(7)=M(1)

T NTZTENTZTENIRC
N(&)=N(2)
IF (R{2).LE.N2R) 8D TD 20
N(2)=N2L
N{&)=N(2)
N(3)=N(J)+NINC

NETT=NTSY
IF (N(3).LE.N3H) GO TD 20
N(I)=N3IL

N(S)=N(3)

IKT=IKT41

TYPE 777+1KT

T PP P ORMAT TN T INCRENERTATION 7 1Y
N(A)=N(4)4NINC
IF (N(4).LE.N4N) GO TO 20
sTOP
END

261
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»Figure B.5: RF2180.FOR

WITH H(O)=0 AND H(1)20 FOR RF INHONOGENEITY - -

DINENSION CT(2000),ST(2000),CF(¥3,8F (#),CPI&Y
DIMENSION SP(4)/N(4)sV(304)

== TSATY
IKT=0

CREATE COSINE AND SINE TABLES
FOR ANGLES BETWEER -360 AND +720 DEOREES
ANGLE 1 IS -361+1

603

604

405

606

00

(¢ Rale ]

(2]

0

PI=4,8ATAN(2.)

DO 10 I=1,1081
CT(1)=COS((~-36141)8P1/180)
ST(1)=SIN((-361+41)8P1/180)
CONTINUE

BET RANGES OF PARAMETERS: CRITERIA

TYPE 600
FORNAT (1X, ENTER LOV VALUES FOR 3 PHASES')
ACCEPT %,M2L M3L o M4L
TTTYPE RO
FORMAT (1X,’ENTER MIGH VALUES FOR 3 PHASES’)
ACCEPT S,M2MH,M3IH» M4M
TYPE 602
FORMNAT (1X, 'ENTER LOW VALUES FOR 4 FLIPS")
ACCEPT #,NIL/N2LoN3LsNAL
TYPE 603
FORMAT (1X»’ENTER HIGM VALUES FOR 4 FLIPS’)
ACCEPT SoNIH)N2ZH»NIH: N4H
TYPE 6404
FORMAT (1X, 'ENTER PHASE INCREMENT’)
ACCEPT B.MINC
TYFE 800
FORMAT (1X, ENTER FLIP INCREMENT')
ACCEPT %,NINC
TYPE 606
FORMAT (1X,"ENTER INVERSION, H(0)» H(1) CRITERIA’)
ACCEPT S,WIN»WHOrWHI

INITIALIZE PARAMETERS

MH2=M2L
N3=n3L
Ha=NAL

T NIRRT

N(2)sN2L
N(3)=N3L
N(4)=NaL

BET SINES AND COSINES FROM TADLES

CP(2)eCT(M24361)
CP{3)=CT(N3-N24361)
CP(4)=CT(MA-M3+361)
SP(2)=ST(M2¢361)
SP(3)=ST(M3-M24361)

P TEY TS T IN=NI*ISTY
CF(1)=CT(N(1)4341)
CF(2)sCTINI2)+381)
CF(3)sCT(N(3)+361)
Cr(a)=CY(N(4)4341)
SF(1)=8T(N(1)4361)

T TR T IN T T RIS T

SF(3)sST(N(3)4361)
SF(4)=ST(N(4)+362)

FvaE T
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CHECK INVERSION EQUATION

- ’x'c"!7.c'(2"c’(3"5F‘ll't7!l!'§"l7'rf‘J)

=SF(1)8CP(2)SCF(2)SCP(3)IBSF(I)-CF(1)8SF(2)RCP(3)SSF(J)
4SF(1I¥SPIIESP(I)ISSF( D)

X2=-SF (1)8CP(2)SCF(2)8CP(3)SCF(I)-CF(1)8SF(2)SCP(IIBCF(3I)
#SF(1IBSP(2)RSP(IIBCF(I)-CFLL1)YSCF(2)8SF(3) :
4SF(1)8CP(2)BSF(2)88F (3)

3)
~CF(1)BSF(2)2SFP (D)
X=X1¥CF(4)4X28CF (4)¥SF (4)-X3IRSP(4)IRSF(4A)

IF (X.GT.WIN) GO TO S00

CP(1)=1,0

“STTIIEOY

CONV=PI/180.0
CONV2=CONVECONY

CREATE TDGGLING FRAME RF VECTOR

T VRITYELD

V(2,1)20.0
V(3,1)20,0

DO S0 I=2.4

V(1,1)=1.0

V(2,1)=0.0

\3,1)%0,0

DO 40 J=2,1

K=T-J41

LeK+t

UX=U(1,1)SCP(L)-V(2,1)8SP(L)

VY=V(L, TIBSP(L)BCF(K)I+V(2,I)BCP (L) SCF(K) 4V (3, 1) ESF(K)
VZ==UTTy TT¥SFILTESFIK) -V, D RCPTLIABF IR+ S, DIRCF (KT —
Vi1, I =eyx

Vi2s 1))=Y

V3, 1)8v2

CONTINUE

CONTINUE

CHECK H(0)

S0

t —= -- o ——— —_ —
c

c

40

AX=0.0

AY=0.0

AZs0.0

DO 50T W
AX=AXIV (2, I)EN(])
AYSAYIVID2, 1)BN(])
AZ=AZ+V(I 1)UN(])
CONT INUE
AX=AXSCONV

RYSATECONY
AZ=AZSCONV
ASAXBAX+AYSAYHAZEAZ
IF(A.GT.WHO} GO TD S00

SRR TR R R
T | 1

g

I
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CHECK H(1)
BX=0.0
BY=0.0
BI=0.0
DO BO I=2,4
DD 70 J=1,1
T Ta D2 AMACIP SR LA DR AR AS TR SR LA {ICPRE L 1@ @2 { 400 RE—
BY®RY$(V(I+IIBV(19J)=V(1+1)BV(Io J)IENIIIENC(Y)
BZ=BZ4+(VI191)BVI29J)-VI2:TIRV(I+ JIIENTIIENC D)
70 CONTINUE . ‘
80 CONTINUE
BX=BXXCONV2
EY=EBYICONVY
BZ=BZRCONV2
R=RXSBX+BYSBY+BZ3B2Z
IF(B.GT.WH1) GO TO 300
ISA=TISA+1
PRINT £20+M2+ M3 s MAINCL)sN(2)9N(3)1N(4)s18A
820 T FORMNATCIXSIST—
PRINT 4621+ XsAX+AY1AZ+sBXsBY B2
621 FORMAT(1X,6F10.5)
500 M2=M24MINC
IF (M2.LE.m28) B0 YO 20
M2=M2L
T MIwNIvrInt g
IF (M3.LE.M3K) 60 TO 20
M3I=M3IL
Ma=MA4MINC
IF (M4.LE.NaN) GO TO 20
LEELLIS
NULIFNT DY eNING — -~ ——
IF(N(1).LE.NIN) B0 TO 20
N{1)=N]IL . -
NE2)I=N(2)¢NINC -
IF (N(2).LE.N2H) GO TO 20 :
N(2)YaN2L
N{Z)=N(I)ENINC
IF (N(3).LE.N3H) GO TO 20
N(3)=NIL
IKT=IKT+1
TYFE 7772,IKT
777 FORMAT(1X, ' INCREMENTATION ¢°214)
T NRUATENTRTININC B

12 EaNa]

IF (N(4).LE.NAH) GO0 TO 20
STOP
END

TERCER -



Figure

B.6: Q180.FOR

DIMENSION CY(3000)+8T(1000)sCF(7)s8F(7)»CP(7)s8P(7)sN(7)

DIMENSION T(S¢7s2)+R(5:5+4),8(5:2)

R6DB=SORY(4.0)/8.0
CONV=4,08ATAN(1.0)/180.0
D0 10 I=1,721

T A¥T=3STFITICONY

10

CT(1)=COS(A)

ST(I)eSINCA) . -
CONTINUE

1SA=0 B

IKT=0

T T T TYPE S00
FORMAT (1X» "ENTER LOW VALUES FOR 3 PHASES’ )

600

601

ACCEPT ¥,M2L,M3L,R4L
TYPE 601

FORMAT(1X» "ENTER HIBH VALUES FOR 3 PHASES')

ACCEPT SsM2H,)M3IH,MAN

603

TIre OoVS

FORMAT (1X» ‘ENTER . LOW VALUES FOR 4 FLIPS )

ACCEPT Z/NIL,N2LN3L/N4L
TYPE 403

FORMAT(1X+ "ENTER HIBN VALUES FOR 4 FLIPS’)

ACCEPT S/NIH/N2ZHsNIH ) N4H

604

605

TYPE8O%

FORMAT (1X» "ENTER PHASE INCREMENT ')

ACCEPT ®,MINC
TYPE 60%

FORMAT(1X,» "ENTER FLIP INCREMEWNTY')

ACCEPT 8$.NINC

606

20

T NUYTV=NTLY

TIPE BUd
FORMAT (1X+ ‘ENTER INVERSION,
ACCEPT Z/,WIN,WHO
M2=M2L

M3I=N3L

o

N(1)=sNIL
N(2)=N2L
N(Z)=N3L
NC4)=NAL
N{S)=N(T)
N(6)=N(2)

H(0) CRITERIA')

M2F=M24361
MIP=M3I-M2+341
HAP=MA-MI+341
NiP=N{1)4361
N2PeN(2)4361

T TRIPERTITTIE]
NAP=N(4)4361
CP(2)=CT(N2P)
CP(3)elTI(NIP)
CP(4)=CT(M4P)
CF(S)=CP(4)

TPtSIvCPTYY
CP(2)sCP(2)
SP(2)=8T(M2P)
SP(3)=s8T(MIP)
SP(4)eST(M4P)
SP(S)=-8P(4)

L LAY TA At AT 2/

$P(7)s-8P(2)
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CFL1)sCTNIP)
CF(2)>=CT(N2P)
CF(3)=CT(NIP)
CF(4)=CT(NAP)

CrtSTeCresy
CF(4)=CF ()
CF(7)=CF(1)
SF(1)=ST(NIP)
SF(2)=ST(N2P)
SF(3)=ST(N3IP)

—SFtOIYETINEPT—

1
1

1

SF(S)=SF(3)
SF(4)=SF(2)
SF(7)=8F(1)

X1=CF(1)ISCF(2IRCF(3)-SF (1 ) SCPTITSF (2YSCFTI) -
~8SF(1)8CP(2)8CF(2)3CP(I)IBSF(3I)-CF(1)8SF(2)BCP(3)A8F(3)

X2=~-8F (1)SCP(2)SCF(2)8CP(3)BCF (3)-CF(1)8SF(2)SCP(I)RCF(3)
+SFU1IBSP(2)BSP(IIBCF () -CF(1)XCFI2IUSF(TY -
4+SF(1)SCP(2)88F(2)88F (3)
X3=-SF{1ITSP(2)FCPI3)-SF(1ISCP()TCF (2 ¥SPTD)
~CF(1)XSF(2)88P(3)

T XARXTECCF

1
1
1

1

—

1
1
1

1

40

TRV DY v

BCF(II4CP(A)ISCF(A)SCP(4)BSF (J)4SP(4)XSP(4)2SF(I))
$X3E(-SP(4)XSF(A)ISTF(I)-SP{A)SCFIRISCP(RIXSF (D)
+CP(A)ESP(4)8SF(3))
X3sX18(-SF(Q)SCP(AISCF(II-CF(R)BSF () I4X2N(CPL L)
SCF(4)3CP(A)BCF(3)+SP(4)XSP(4)BCF(J)=CP(4)BSF(4)XSF(3))

CRI3Lr VS

+SP(4)ESF(4)8SF(3))
X6=X18SF (4)BSP(4)4X2R(SPLAISCP(A)-CP(4)RCFIAIESP(4))
+XIR(CP(4IBCP(4)+SP(4)BCF(4)XSP(4))
X=X48(CF(2)8CF (1)-BF (2YSCP{2)EBF (1) Y+ XSBICPII)ESF (D)
RCF(1)+CP(3)XCF(2)BCP(2)8SF(1)~SP(3)8SP(2)8SF (1))

k)

+CP(3)>¥SP(2)8SF (1))

IF (X.GT.¥IN) GO TO S00 - - -7 T
DO 40 I=1,7
T(1,1+1)=-RADBEIN(IISCONV-SF(IISCF (1))
T(1+102)20.0

T(2+1+1220.0
T(2+1+2)=2.08R4DOXSF (1) BSF(])
T(Ir1:1)=(N(1)SCONVHI, O8SF(I)SCF(1))80.25%
Tt3r1¢2)=0.0

T(4,1+1)=0,0

T(491+2)=T(2+1+2)

RAS- IR AR RAAAL X2 2 B

T(S,1:2)=20.0

CONT INUE

DO SO I=1,6

CPL1=CF(I)+1.0

CHi=CF(])-1.,0

RTI T, TTsCPLTRCPLI®D. 2T
R(1,2,1)=SF(I)SCPL1%0.S
R(1+3,1)=-R4DBX2.08SF(1)BSF(])
R(1,4,1)=SF(I1)8CM120.5
R(1+,5,1)=CHMiSCM120.25
R(2+2,1)=CPL1X{2.08CF(])~1,0)%20.5

TREDUSA . O¥SFTITSCFITIY
R(2+4,1)aCH1%(2.08CF(1)41,0)%0.,5
R(2:)S»I)=R{1,4, 1)
R(I¢3+1)=(3,.08CF(I)RCF(1)-1.0)%0.5
R(3 4, 1H)=R(2,3, 1)
R(3+S»1)=R(1+3, 1)

TTRCATAFITIRTT LY

R(4»Ss1)=R(1+2+1)
R(S:!S/1I=2R(1,1,1)
R(211,1I=2R(1+2+1)
R(I s 2H>DI=R(2,3¢ D)
R(3r1:1)=R(2+3, 1)

T T RIS TR TN AT

R(A»2)118R(214, 1)
R(4:1+1)=R(1v4: 1)
R(S+4,1)sR(4+5,1)
RIS, I+ IIER(IIS» 1)
R(S+2+1)=R(2:,5,1)

So

LALJR IR AL AR I IR &

CONTINUE

e e



B0 70 12,7
DO 60 J=2,]
K=l-J42
Lek-1

T T T RERCPTKTYCPTK T=SPIRTYEPTKY

BF=2,08CP(K)ESP(K)
HR=T(1,1+1)8DE4T(1+1,2)8PF
HI=T(1,202)8BE-T(1+1,1)8DF
T(1,1,1)=HR

T(111+2)=H]

ARET T IV TP UK TS T TS T 2T RSP IR
HI=T(2/1+12)2CP(K)=T(2+1+1)8SP(K)

T(2+1I,1)=HR
T(2:1+2)=H]1

HR=T (4, 1+1)PCP(K)~T(4,1+2)8EP(K)
HI=T(4,1+12)8CP(K)4T(4,],1)88P(K)

TITUHGITITYART
T(a4yI+2)mHY
HR=T(S,1+1)8BE-T(S13,2)8DF
HI=T(S,19s2)8BE4T(Ssr1+1)8BF
T(SyIr1)=HR
T(Se1e2)mH]

35

40
70

U JJ FITIVIV &

S(ll-l)'k(lll1oL)lT(lplol)-R(llr?rL)'T(211v2)

SROII,IrLIBYCIS102)=RUITVA»LIST(401»2)"

+R(II»SrLIBT(S,Ir1)

S(I112)=RIIs1,LIBT (240 2I4RTTITI2ILIBTE2T01)

RIS IPLIBT(IrIo2I4R(ITIv49LIBT(4rIrD)

RTIIISHLIXT(S,I,2)
CONTINUE
DO 56 II=2,4,2 -7

SCILv1)o=R(IT+2sLIST(IvI+s2)4R(IT12+L)8T(2,1s1)

=ROII>IrLISTU(I 12 2)4R(ILs4/LIBT(4r 10 1)

“R(IIsS+LIBT(S41,2)

[ v tir

4R(I!v37L)37(3vlvl)0R(11r4vL)'T(41192)

RITILIS/LIRT(S,T,1)
CONTINUE
Ti1+191)%5(1,1)
T(1r1+2)m8(2+2)

14

LAY {2 12 242 AV 1B %)
T(2+1+2)28(252)
T(3+1+,1)88(3,1)
T(3¢1+2)w8(3,2)
T(4rTv1)=504,1)
T(491+2)=5(4,2)

LA IR L8 Ried AL IR R4
T(S+1,2)88(5,2)

CONTINUE

CONTINUE

D0 80 1=2,7
Tr10151)2T(25191)4T(101s 1)

1S SR IX AR IR AN ZAARYE YR LXK 1
T(293+1)mT(2+301)4T(29191)
T(29302)=T{291 93T (2+: 10 2)
T(30321)27(31291)4T(I0 11 1)
T(3:2o2)=T(I92 s I4T(32 1+ 2)

T(a4r1+1)=T(A»3,1)4T(49102)
\aasarerss

S ORI

80

1

T(S+121)8T(Sr2 o 1)4T7(5,101)
T(S11+2)8T{S,»1»2)4T(S5: 12 2)
CONTINUE

XX=T (19153287 C1v192)4T(193/,2)0TL(2+152)
+T(2r3+3)08T(2:803)4T(2+1+2)8T(2+1012)

i S AR XSRS AAT IR SR TAART IR SX 24 2T b & £
$TCA,3,2)8T (A0 21)4T(401+2)8T(4:1+2)

TS 1 IIRT(Sv I v 14T (S21/,2)FT(S91:2)

IF(XX.GT.WHO) B0 TO S00
ISA=ISA4]

PRINT 6207, M2+ NI+ MA:N(1)eN(2)2N(I)sNCA)

S0 FORNRTTITIXT7ISY

621

PRINT 621+X,XX»18A
FORMAT(1X,2F10.5,110)
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500 N2aM24NINC
IF(N2.LE.M2H) GO TO 20
M2=M2L
— T MTENTENINC
IF(M3.LE.H3H> GO TO 20
H3=p3L
Ma=MA+NINC
IF (R4.LE.NAK) GO TO 20 =
Ha=MalL
S TS WU SRTITENINT
N(7)=N(1)
IF(N(1).LE.NIH) GO TO 20
N(1)=NIL
N(7)=N(1)
N(2)=N(2)+NINC
TNCEYENTYY
IF(N(2).LE.N2H) GO TO 20
N(2)=N2L
N(6)=N(2)
N3 =N(Z)+NINE
N(S)aN(3)
CALL TIME(THYNME)
TYPE 776+ THYME
776 FORMAT(1X,A15)
IF(N(3).LE.N3H) GO TO 20
N(3)=N3L
N(S)eN(3)
IRNTEINTYI
TYPE 777+1KT
77 FORMAT(1X, ' INCREMENTATION #’,I4)
N(4)=N(4)+NINC -
IF(N(4),LE.NAH) GO TO 20
STOP
—ENT

RIEEIER!



Figure B.7: CARTMAP.FOR

£ PROGRAN MAPS OUT FIXED POINT OF
£ — ———PNASE=

c COORDS

t

DOUBLE PRECISION AMsAT APsP(20)+Xs»Z+CINC
DOUBLE PRECISION CONV,»CoXXsRAD
DATA CONV,C/3,.14159265358979323844626434,180.0/

—= T DRTAXZ70TOTTIe0 07—

YYPE 8, 'ENTER ITERATION LENGTH, WAX & OF ITERATIONS'
ACCEPT B/NS/NI

TYPE %+ ENTER PHASE SHIFTS (FIRST SWOULD BE ZERD)’
ACCEPT 2, (P(I)eI=1/yNS)

“TYYPE ¥y "ENTER RESULUTION UOF ORID
ACCEPT #»CINC :
DO 10 I=1,NS
P(I)=P(1)RCONV/C
10 CONTINUE

20 IF(X8X,LT7.0,0001) GO YO 100
T RADEXYXFTNL
IF(RAD.GT.32400.0) GO TO 3100
AN=DSORT (RAD)
XX=DARS (X)
AT=CONV/2.0-DATAN(Z/XX)
AT=ATSC/CONV

— T T RPED.T
CALL ITER(AMsAT/AP+P;NSINIIN)
IF(N. EG.-!) N=NT+1
T *
100 et
IF(X.LE. wo 0) 80 TO 20

e XwoTU
Z=2+CINC
IF(Z.LE.180.0) 60 TO 20
STOP
END

SUBROUTINE ITER(AM+AT AP, PINSsNI»NNI)
PROORAH APPLIES SPECIFIED PHASE-~SHIFY
ITERATION TO GIVEN INITIAL ROTATION»

o0

DOUDLE PRECISION RU3:3)11A(3) e T(313+207,0UT3,3)P(20)
DOUBLE PRECISION CONVrAM AT rAP+CAN»SAMICATSAT ¥
DOUBLE PRECISION CAP+SAP»C+»8¢C2:52:SCrANN ATT  APP
CONVS3.1415926535897932304626434/180.0

ood

CONSTRUCT INITIAL ROTATION MATRIX

NNI=0
AN=ARSCONY
AT=ATRCONV
AP=APSCONY
20 AMN=AM
ATTsAT T : ' T T omTEmTTT e e o
APP=AP
CAM=DCOS (AN)
BAM=DSIN(AM)

T T CATEDCUSTRTY
SAT=DSIN(AT)
CAP=DCOS(AP) . : -
SAP=DSIN(AP)
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R{1+1)=BATISATRCAPSCAP+SAPSSAPSCANICATECATSCAPSCAPSCAM
R(2+2)=SATESATESAPESAP+CAPSCAPSCANICATSCATSSAPESAPSCAN

3¢

100

RUI+3STRCATSCATIERTYSATICAN
R(1+2)=-CATESAN+SATESATSCAPESAPS(]1.0-CAM)
R(2+1)2R(1,2)42.08CATESAN
R(1:3)=SATESSAPRSAMICATESATICAPS(1.0-CAN)
R(3:,1)8R(1,3)-2,085ATESAPRSAN
R(2:3)=-SATSCAPESAMICATESSATSSAPS(1,0~CAMN)

DO 100 J=2,NS
C=pCOS(P(J))
S=DSIN(P(J))
c2=CxC

§2=538

— Sttt

T(1+30J)mR(1+1)8C2-R(192)8SC-R(2,1)8SC4R(2,2)882
T(2:30J)8R(1+1)8SC~-R(1,2)¥S24R(2,1)8C2-R(2,2)8SC
T(3v392)=R(311)8C-R(3»2)8S

TU102+J)%RT191)8STHR(1,2)9C2-R(2+1)852-R12,2)2SC
T(212¢J)=R(1:1)8S24R(1,2)XSCHR(2+3)8SCHR(2,2)8C2

Ty ITERTITITESIRUI 2T

T(1+,3+J))mR(1,3)8C-R(2+,3)78S
T(2:3+J)3R(1,TIXSH+R{2»3)2C
T(3:3+11)=2R(3I»3)

CONTINUE

DO 150 J=2,NS

120
130

0130 K173

DO 120 L=1,3

UK LY =2TIKy I» JIBROIHLIFTIK» 2/ JIFR(24LI$TIK» 3o JIERIIHL)
CONTINUE

CONTINUE

DO 140 K=1,3

T TTTDD 13RI

135
140
150

R{KsL)=U(K,L)

CONTINUE

CONTINUE

CONTINUE

WsR(1+1)SR(1+1)4R(1)2)CR(1,2)4R(1+3IBR(1:3)
T2 ITIRT27IY

TSIV IRT 2T 2T IRC 72T IR
1 4R(IH1IFR(I DIHR(I DIBR(Is I 4R(I I DIER(TY D)

Y=DSART(3.0/W)

R(1,1)=WER(1,1)
R(1,2)sWSR(1,2)
R(1,3)=USR(1,3)

LAY 18 i L LAF S 2 %
R(212)=2WBR(2,2)
RC2,3)=WER(2,3) -
R(3+1)sWER(391)
R(3,2)=UER(3,2)
R{(3,3)=WER(3,3)

SO ANTRARTCONY

CALt EXTRACTIR Ny

NNI=NNI¢1

ANEA(1)

AT=A(2)

AP=A(Y)

IF(AN.LT.0.001) BD TO SO
DIFF=ANSAN+ANNSANN-2, 0SANSAMMEDCOS(AT-ATT)
AMH= AN

ATT=AT

APP=AP

IF((DIFF.GY.0.01).AND,(NNI.LT.NI)) 80 TO 30
IF(NNI.EQ.NI) NNl=s-}

AT=AT/CONYV
AP=AP/CONV
RETURN
END




aly)
c FROM ROTATION MATRIX R¢3»3)
c

SUBDROUTINE EXTRACT(R:A)
DOUBLE PRECISION R(3,3),A(Y)
P1=3.14159245358979323046246434

T TR IV T ZT RT3 TS U D
IF(T.87.1.0) Te1.0

IF(T.LT.~1.0) T=-1.,0 o T

AL=ACOS(T)
IF(AL.CT.0.01) B0 TO 20
720.0

Led ‘X4
80 Y0 300
10 JFCIPI-AL).LT.0.01) €0 TD 100 T
SA=SIN(AL)
To(RT2:1)-R11,2))/12,.008A)
IF(T.607.1.0) T=1,0

T=ALOS(T)

P=0.0

IF(T.LT7.0.01) 60 TO S00
IF((PI-T).LT.0.01) 80 TO SO0
ST=SIN(T)

ST T T O IR 2T RTZy ST Y 7 OFS TYS K
SP=(R(1+3)-R(3+5))/(2.085T88A)
CALL INVCOS(CP,SP.P)
80 T0 300

ALPHAsP] SECTION

s LxXz]

00 TsR(3+3)
IF(7.87.1.0) T=1.0
IF(YT.LY.~1,0) T=-1.0
TT=ACDS(T)

P=0.0

TTT72°0

IF(TT.LY.0.01) GO TO S00
IF((PI-TT).LT.0.01) GD TO 200
STT=SIN(TT)

CP=R(31+,3)/8TT

SP=R(2+,3)/8TT

ST=SIN(T)
X»23STESTECPRSP
X=(X=-R(212))S(X-R(2:2))
IF(X.LT.0.001) BO TD 500
TaPI-T

’ [l )

» >
=R IYr

60 T0 500

ALPHA=P] AND THETA=P1/2 SECTION

oo

00 CTP=R(1,1)
STP=R(1,2)
CALL INVCOS(CTP»STP,TP)
P=TP/2.0

FINAL SECTION

g(’flﬂ

BLAR RAd.Y
A(2)=T
Al3) =P
IF(A(1).,87.0.01) CALL REFINE(R+A)
RETURN
END

SUDROUTINE FINDS ANGLE BETWEEN O AND 23PI
FRON SINE AND COSINE

SUBRDUTINE INVCDS(Ce8rA)

IF(C.BT.1.0) Cel.0

IF(C.LT.~2.0) C=~1.,0

"7

T T T WERCOSTTY
TP1»8.08ATAN(1,0)
IF(S.LT.0.0) AaTPI-A
RETURN
Enp
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T SUPROUTINE REFINEIRAY

SUBRDUYINE TO REFINE ROTATION AXIS
EXTRACTED BY SUBROUTVINE EXTRACT

DOUBLE PRECISION R(3+3)+A(I)sAX2»AY1AZ+BX»BY B2
DOUBLE PRECISION AAC(J3),DOT.DOTO

N=0

ND=0

AA(2)=A(2)

T RATITEATSY

10

TR I RAR RS ITERY RO ITIRZ

W=0.1

AZ=AC1)EDCOS(AALR))
AX=A(1)BDSIN(AA(2))BDCOS(AAL(D))
AY=A(1)SDSINCAA(C2))EDSIN(AALS))
BX*R(1,1)8AX4R(1+2)BAY+R(1+3)8A2Z

BZ=R(3+1)8AX4R(I»2)BAY+R(3»3)RA2Z
DOT=(AXIBX+AYSBYH+AZEBZ)/(A(1)SA(]))
NOT=(DPOT-1.0)8(DOT-1.0)

IF(N.EG.0) DOTO=DOT

IF(DOT.BE.DOTO) 60 TO 15

T T I TN NEST O NEN=T

ND=0
AL2I=AA(2)
ACTIEAA(D)
POTO=n0T
6O TO 20

19— IO 80T 20

20

200

IF(K.EQ.0) AA(2)=AA(D)-¥
IF(K.ER.1) AR(2)=AA(2)4W
IF(K.EQ.2) AA(3)=AA(T)~-W
IF(K.ED.3) AAISI=AA(T)+W
NaN¢$ 1

ND=NTET

IF(ND.GE.S) GO TD 200
K=N-4%(N/&)

IF(K.EQ.0) AA(2)=AA(2)+W
IF(K.EQ.1) AA(2)=AAL2)-W
IF(K.EQ.2) AA(3)=AA(3)+N
JIF(K.EQ.3) AA(I)=AACT)-N
60 T0 10

UsH/10.0

N=0

ND=0

IF(W.GE.0.,0005) BO TO 20

RETURN

END
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