
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Distributed Newton-like Algorithms and Learning for Optimized Power Dispatch

Permalink
https://escholarship.org/uc/item/7867563c

Author
Anderson, Tor Kenneth

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7867563c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Distributed Newton-like Algorithms and Learning for Optimized Power Dispatch

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Mechanical Engineering

by

Tor Anderson

Committee in charge:

Professor Sonia Martı́nez, Chair
Professor Jorge Cortés
Professor Miroslav Krstić
Professor Jiawang Nie
Professor Behrouz Touri

2020

The Dissertation of Tor Anderson is approved, and it is acceptable in quality and

form for publication on microfilm and electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To my loving parents, Brian and Karen, my sister, Louise,

and to the memory of my dear friend, Marcus.

iv

EPIGRAPH

I think that it is a relatively good approximation to truth – which is much too complicated to

allow anything but approximations – that mathematical ideas originate in empirics, although the

genealogy is sometimes long and obscure. But, once they are so conceived, the subject begins to

live a peculiar life of its own and is better compared to a creative one, governed by almost

entirely aesthetical motivations, than to anything else and, in particular, to an empirical science.

(. . .) In any event, whenever this stage is reached, the only remedy seems to me to be

rejuvenating return to the source: the reinjection of more or less directly empirical ideas. I am

convinced that this was a necessary condition to conserve the freshness and the vitality of the

subject and that this will remain equally true in the future.

– John von Neumann

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

Acknowledgements . xi

Vita . xiv

Abstract of the Dissertation . xv

Introduction . 1

Chapter 1 Notation and Preliminaries . 7
1.1 Notation . 7
1.2 Graph Theory . 8
1.3 Schur Complement . 9
1.4 Taylor Series Expansion for Matrix Inverses . 10
1.5 Cubic-Regularized Newton Algorithm . 10
1.6 PT-Inverse . 12
1.7 Set Theory . 13

Chapter 2 Distributed Approximate Newton Algorithms and Weight Design for Con-
strained Optimization . 14

2.1 Bibliographical Comments . 15
2.2 Problem Statement . 17
2.3 Weight Design of the Laplacian . 22

2.3.1 Formulation and Convex Approximation . 22
2.3.2 A Bound on Performance . 25

2.4 Discrete Time Algorithm for Relaxed Economic Dispatch 26
2.4.1 Characterization of the Approximate Newton Step 26
2.4.2 The DISTRIBUTED APPROX-NEWTON Algorithm 28
2.4.3 Convergence Analysis . 29

2.5 Continuous Time Distributed Approximate Newton Algorithm 35
2.5.1 Formulation of Continuous Time Dynamics . 35
2.5.2 Convergence Analysis . 37
2.5.3 Interpretation of the Convergence Result . 40

2.6 Simulations and Discussion . 43

vi

2.6.1 Weight Design . 43
2.6.2 Discrete-Time Distributed Approx-Newton . 46
2.6.3 Continuous-Time Distributed Approx-Newton . 48
2.6.4 Robust DANA Implementation . 50

Chapter 3 Distributed Stochastic Nested Optimization via Cubic Regularization 55
3.1 Bibliographical Comments . 55
3.2 Problem Formulation . 57
3.3 Distributed Formulation and Algorithm . 60

3.3.1 Inner Loop Gradient Solver . 61
3.3.2 Outer-Loop Cubic-Newton Update . 63

3.4 Simulation . 67

Chapter 4 Distributed Resource Allocation with Binary Decisions via Newton-like
Neural Network Dynamics . 71

4.1 Bibliographical Comments . 72
4.2 Problem Statement and Dual Problem. 74
4.3 Centralized Newton-like Neural Network . 76
4.4 Distributed Hopfield Neural Network . 85
4.5 Simulations . 91

4.5.1 Runtime and Solution Quality Comparison . 91
4.5.2 Learning Steps and 2-D Trajectories . 94

Chapter 5 Maximizing Algebraic Connectivity of Constrained Graphs in Adversarial
Environments . 99

5.1 Bibliographical Comments . 99
5.2 Problem Statements . 101

5.2.1 Topology Design for Adding Edges . 102
5.2.2 Topology Design for Protecting Edges . 103

5.3 An SDP Relaxation for Topology Design . 105
5.4 Protecting Links Against an Adversary . 107

5.4.1 Nash Equilibria . 108
5.4.2 Coordinator’s Preventive Strategy . 110
5.4.3 Heuristics for Computing a Preventive Strategy . 113

5.5 Simulations . 116

Chapter 6 Frequency Regulation with Heterogeneous Energy Resources: A Realiza-
tion using Distributed Control . 120

6.1 Bibliographical Comments . 121
6.2 Problem Setting . 123
6.3 Test Elements . 124

6.3.1 Optimization Formulation . 124
6.3.2 Regulation Signal . 125
6.3.3 DERs . 126

vii

6.3.4 Computing Setup . 127
6.3.5 Actuation Interfaces and Communication Framework 128
6.3.6 Power Measurements . 128
6.3.7 Performance Metrics . 129

6.4 Test Scenarios and Results . 130
6.4.1 Test Scenarios . 130
6.4.2 Test Results . 133

Chapter 7 Conclusion . 143

Bibliography . 146

viii

LIST OF FIGURES

Figure 2.1. Communication topology used for discrete-time numerical study; n =
100, |E |= 250. 47

Figure 2.2. Comparison of weighted and unweighted DGD versus DANA-D with
various q for solving P6; n = 100, |E |= 250. 48

Figure 2.3. Three node case: projection of x0 +Lz(t) ∈ R3 onto the 2-dimensional
plane {x | ∑i xi = d}. Markers plotted for t = 0,0.2,0.4, . . . ,5 seconds.
Dashed line ellipses indicate intersection of ellipsoid level sets with the
plane; dotted lines indicate intersection of box constraints with the plane. . 49

Figure 2.4. Three node case: trajectories zoomed closer to the optimizer. Markers
plotted in 0.2s increments up to t = 5s. 50

Figure 2.5. Communication graph for continuous-time numerical study: 40 nodes and
156 edges. 51

Figure 2.6. Error in the primal and dual state variables versus time for various q;
n = 40, |E |= 156. 52

Figure 2.7. Value of the Lyapunov function VQ versus time for various q; n= 40, |E |=
156. 53

Figure 2.8. Value of the objective function versus time for various q; n = 40, |E |= 156. 53

Figure 2.9. Error in the primal and dual states for a robust implementation of DANA;
n = 20, |E |= 40. Initialization does not satisfy Assumption 2, and pertur-
bations are injected at t = 25,50,75. 54

Figure 2.10. Violation of the resource constraint over time for robust DANA; n =
20, |E |= 40. Perturbations are injected at t = 25,50,75. 54

Figure 3.1. Comparison of CRN method with gradient-based and Newton-based ap-
proaches. Top: empirical approximation of F(xk), obtained by averaging
f (xk, p?) over 500 realizations of P2 at each k. Bottom: agents’ disagree-
ment on the value of x, quantified by ‖(I−11>/n)xk‖2. 69

Figure 4.1. Illustration of −∇xE(x) (top) and ẋ (bottom) for three instances of a.
Case 1: a > −γ‖p‖2−4T/τ , Case 2: a = −γ‖p‖2−4T/τ , Case 3: a <
−γ‖p‖2−4T/τ . 80

Figure 4.2. Runtime of each method for increasing problem sizes. 96

ix

Figure 4.3. Centralized NNN-C (a) and distributed NNN-D (b) trajectories in 2D
with 15 learning steps. Stable equilibrium points between learning steps
indicated by ×, contours of E and Ẽ in final step indicated by dashed lines. 98

Figure 5.1. Initial topology of 14 nodes and 28 edges. Three methods are implemented
to grow the network to 53 edges, with the additional edges plotted as red
dotted lines. 117

Figure 5.2. Performance each method over k = 25 iterations. 118

Figure 5.3. Network of 7 nodes and 11 edges for algorithm case study. 118

Figure 5.4. Performance of Algorithms 5–7 at each loop t. 119

Figure 6.1. Communication architecture for computation and actuation of control
policies. 127

Figure 6.2. Top: AHU response in Test 0. Middle: V2G response in Test 1. Bottom:
Total response in Test 1. 135

Figure 6.3. From top to bottom, AHU, V2G EVs, V1G EVs, BESS, and total re-
sponses in Test 2. 136

x

ACKNOWLEDGEMENTS

I extend the maximum amount of thanks and appreciation to my advisor, Sonia Martı́nez.

On a personal level, Sonia is kind, funny, and understanding, and professionally, she is insightful,

diligent, and above all else, patient. I credit her for seeding what would become the broad

theme of this thesis in the early stages of my Ph.D. work, and I expect to reap the benefits of the

practices, habits, and modes of thinking that she instilled in me for years to come.

Next, my thanks goes out to the other members of my committee: Professors Jorge

Cortés, Miroslav Krstić, Jiawang Nie, and Behrouz Touri; it is a privilege to benefit from their

volunteered time and feedback during the development and submission of this work. Further, I

would be remiss not to mention those who previously supervised me and molded my professional

development in some way. In reverse chronological order, I extend thanks to: Jorge Cortés

(again) and Jan Kleissl for their supervision and insight during the work that became the content

of Chapter 6 of this thesis; Sonja Glavaski, in part for her vision of the NODES project which

directly inspired the work of Chapter 6, but also for supervising and mentoring me at ARPA-e

during the summer between my undergraduate and graduate study; James (Mike) Sigler, for

being my first boss in engineering and exposing me to how the sauce is made; and, finally, Elias

Lemon, my first boss, who constantly trusted and challenged me in my first “real” job to take on

more than I thought I was capable of at a large martial arts studio.

I would now like to expand on the people mentioned in the dedication. My father, Brian,

has been a steady source of inspiration and motivation throughout my life to pursue ideas that

are interesting and challenging. Without his influence, I likely would not have ever considered

attempting graduate study. My mother, Karen, has always been a grounding influence in my

life. On the pragmatic side, I credit her for teaching me the writing habits that made this

thesis possible, and on the counseling side, she can reliably talk me back into a relaxed and

clear state-of-mind when pressure and obligations otherwise seem overwhelming. My sister,

Louise, is a frequent reminder to me that problems I face are fairly universal, and that one’s

accomplishments are always relative to the lens through which one views them. The cliché “wise

xi

beyond one’s years” applies to people like her. Finally, my late friend Marcus was extremely

formative; his friendship and shared affinity for math, science, and engineering in high school

and undergraduate were irreplaceable. His continued encouragement throughout my graduate

study was essential to completing this thesis.

Additional thanks go to current and former members of our group, including (but not

limited to!) Ashish, Aaron, Erfan, Eduardo, Yifu, Chin-Yao, Dimitris, Miguel, Priyank, Pio,

Dan, and Aamodh, for their friendship and, of course, frequent technical discussions. My

late grandparents, Tor and Phyllis, were passionate educators, and my grandmother, Darlene,

and my late grandfather, Ken, were successful entrepreneurs, so they also have directly and

indirectly helped me get to this point. Lastly, I give thanks to my wonderful partner, Amie, whose

companionship over the last year and a half has helped me get through this “home-run stretch,”

and to my adorable dog, Teddy, who can inject a quick shot of joy into my day at literally any

moment.

The material in Chapter 2, in full, is a reprint of Distributed Approximate Newton

Algorithms and Weight Design for Constrained Optimization, T. Anderson, C.Y. Chang and

S. Martı́nez, Automatica, 109, article 108538, November 2019. A preliminary version of the

work appeared in the proceedings of the Conference on Control Technology and Applications

(CCTA), Mauna Lani, HI, 2017, pp. 632-637, as Weight Design of Distributed Approximate

Newton Algorithms for Constrained Optimization, T. Anderson, C.Y. Chang and S. Martı́nez.

The dissertation author was the primary investigator and author of these papers.

Chapter 3, in full, is being revised and prepared for submission to the Systems & Control

Letters. It may appear as Distributed Stochastic Nested Optimization via Cubic Regularization,

T. Anderson and S. Martı́nez. The dissertation author was the primary investigator and author of

this paper.

The content in Chapter 4, in full, is provisionally accepted in Automatica. It is expected

to appear as Distributed Resource Allocation with Binary Decisions via Newton-like Neural

Network Dynamics, T. Anderson and S. Martı́nez. The dissertation author was the primary

xii

investigator and author of this paper.

The material in Chapter 5, in full, is a reprint of Maximizing Algebraic Connectivity of

Constrained Graphs in Adversarial Environments, T. Anderson, C.Y. Chang and S. Martı́nez,

2018 European Control Conference (ECC), Limassol, 2018, pp. 125-130. The dissertation author

was the primary investigator and author of this paper.

Chapter 6, in full, is under revision for publication in IEEE Transactions on Smart Grid.

It may appear as Frequency Regulation with Heterogeneous Energy Resources: A Realization

using Distributed Control, T. Anderson, M. Muralidharan, P. Srivastava, H.V. Haghi, J. Cortés,

J. Kleissl, S. Martı́nez and B. Washom. The dissertation author was one of three primary

investigators and authors of this paper.

xiii

VITA

2020 Ph.D., University of California San Diego

2017 M.S., University of California San Diego

2015 B.S., University of Minnesota Twin Cities

PUBLICATIONS

1. Distributed Stochastic Nested Optimization via Cubic Regularization , T. Anderson and
S. Martı́nez, In preparation for submission to Systems & Control Letters.

2. Frequency Regulation with Heterogeneous Energy Resources: A Realization using Dis-
tributed Control, T. Anderson, M. Muralidharan, P. Srivastava, H.V. Haghi, J. Cortés,
J. Kleissl, S. Martı́nez and B. Washom, IEEE Transactions on Smart Grid, Under revision.

3. Distributed Resource Allocation with Binary Decisions via Newton-like Neural Network
Dynamics, T. Anderson and S. Martı́nez, Automatica, Provisionally accepted.

4. Distributed Approximate Newton Algorithms and Weight Design for Constrained Opti-
mization, T. Anderson, C.Y. Chang and S. Martı́nez, Automatica, 109, article 108538,
November 2019.

5. Maximizing Algebraic Connectivity of Constrained Graphs in Adversarial Environments,
T. Anderson, C.Y. Chang and S. Martı́nez, 2018 European Control Conference (ECC),
Limassol, 2018, pp. 125-130.

6. Weight Design of Distributed Approximate Newton Algorithms for Constrained Opti-
mization, T. Anderson, C.Y. Chang and S. Martı́nez, 2017 IEEE Conference on Control
Technology and Applications (CCTA), Mauna Lani, HI, 2017, pp. 632-637.

xiv

ABSTRACT OF THE DISSERTATION

Distributed Newton-like Algorithms and Learning for Optimized Power Dispatch

by

Tor Anderson

Doctor of Philosophy in Mechanical Engineering

University of California San Diego, 2020

Professor Sonia Martı́nez, Chair

This thesis explores a particular class of distributed optimization methods for various

separable resource allocation problems, which are of high interest in a wide array of multi-

agent settings. A distinctly motivating application for this thesis is real-time power dispatch of

distributed energy resources for providing frequency control in a distribution grid or microgrid

with high renewable energy penetration. In this application, it is paramount that agent data be

shared as sparsely as possible in the interest of conserving user privacy, and it is required that

algorithms scale gracefully as the network size increases to the order of thousands or millions

of resources and devices. Distributed algorithms are naturally well-poised to address these

challenges, in contrast to more traditional centralized algorithms which scale poorly and require

xv

global access to information.

The class of distributed optimization methods explored here can be broadly described as

Newton-like or second-order, implying utilization of second-derivative information of the cost

functions, in contrast to well-studied gradient-based or first-order methods. We consider three

formulations of separable resource-allocation problems and develop a Newton-like algorithm

for each. First, the cost function is given by the sum of local agent costs, supplemented with

individual linear box constraints and a global matching-constraint in which the sum of agent

states must equal a prescribed constant. Second, we consider a stochastic, nested scenario, in

which batches of realizations of problems of the first type must be used to gradually learn the

optimal value of a parameter which is coupled with the agent costs. Third, we further constrain

the agent states to be binary, and we embed the global matching-constraint as a squared penalty

term in the cost. The analysis and simulation studies in the subsequent chapters demonstrate the

advantages of our approaches over existing methods; most commonly, we note that convergence

rates are substantially improved. We supplement our algorithm development for these three

problem formulations with a network design technique, in which we can construct a maximally-

connected network by adding some edges to the underlying communication graph, and a real

demonstration of distributed algorithms on a large set of heterogeneous devices on the UC San

Diego microgrid.

xvi

Introduction

The natural universe is made up of and governed by distributed interactions. This is

evidenced on every relevant scale and setting: particle interactions, signal exchanges between

neurons, cooperation between biological organs, tight-knit and mass-scale social interactions,

the interacting physics of distant Earth biomes, and gravitational forces between planets, stars,

and galaxies. These distributed physical dynamics are prescribed by the universe (sometimes

indirectly, e.g. via human evolution in the social dynamics case); however, with the advent of

modern technology, current and future engineers can benefit from the imposition of distributed

intelligence and algorithms. It may be the case that this technological imposition is not only

inevitable, but that we are already deeply in the midst of it.

Let us take a step back by considering a specific analogy to biological evolution. It is

estimated that Earth’s first prokaryotic life (cells without a nucleus) originated about 3.5–3.8

billion years ago, while the first eukaryotic life (cells with a nucleus) is estimated to have evolved

around 1.7–2.2 billion years ago.1 The implication is that the time-scale of progression from

eukaryotic cells to modern multi-cellular life, in all its richness and complexity, is roughly equal

to the time-scale of the comparatively miniscule progression of developing the cell nucleus.

Consider, then, the fairly-new (in the scope of human history) technological development of

semi-conductor based computers. Most present-day algorithms and computer intelligence are

designed for centralized architectures, but the technological shift towards decentralized and

distributed computing and information systems is undeniable: one need look no further than the

1Source: Carl Woese, J Peter Gogarten, “When did eukaryotic cells (cells with nuclei and other internal
organelles) first evolve? What do we know about how they evolved from earlier life-forms?” Scientific American,
October 21, 1999. https://www.scientificamerican.com/article/when-did-eukaryotic-cells/

1

https://www.scientificamerican.com/article/when-did-eukaryotic-cells/

recent proliferation of blockchain technologies, advancements in cloud computing and storage

architectures, and the abundance of personal cell phones and daily influence from social media

networks. Hence, if any kind of analogy can be drawn to biological evolution, computers and

intelligence systems seem to find themselves on the precipice of (or already in the midst of) a

dramatic shift toward “multi-cellular” architectures. State-of-the-art computers in the coming

decades might barely resemble their centralized technological ancestors, similarly to how modern

multi-cellular life barely resembles its eukaryotic ancestors.

The above discussion can serve as a philosophical motivation for the ideas and algorithms

that are developed in this thesis, though more pragmatic and immediate motivations exist.2

In particular, we study three closely related formulations of what is broadly referred to as the

distributed resource allocation problem. Namely, (i) a nominal convex formulation, in which

agent states can take continuous values in a convex set; (ii) a nested stochastic formulation, in

which problems of type (i) are nested in a broader stochastic, nonconvex optimization which

aims to optimization a parameterization or design variable over realizations of (i); and (iii)

a further-constrained instance of (i) in which agent states must belong to a binary set. The

approaches for each of (i), (ii), (iii) vary significantly, but they each possess the unifying theme

of being distributed and using Newton-like updates, i.e. the updates utilize second-derivative

information of the local agent costs.

The aforementioned work for (i), (ii), (iii) is contained in Chapters 2, 3, and 4, respec-

tively. In Chapter 5, we supplement the results with a design technique for adding edges to a

communication graph, and in Chapter 6 we describe a demonstration that we performed with

distributed algorithms performing a frequency control application on the UC San Diego micro-

grid. We give more specific descriptions and motivation tailored to each chapter in the following

subsections.
2For more concrete examples in present-day engineering, the reader can refer to the following subsections and

the “Biological Comments” section of each chapter.

2

Nominal Convex Formulation

Networked systems endowed with distributed, multi-agent intelligence are becoming

pervasive in modern infrastructure systems such as power, traffic, and large-scale distribution

networks. However, these advancements lead to new challenges in the coordination of the

multiple agents operating the network, which are mindful of the network dynamics, and subject to

partial information and communication constraints. To this end, distributed convex optimization

is a rapidly emerging field which seeks to develop useful algorithms to manage network resources

in a scalable manner. Motivated by the rapid emergence of distributed energy resources, a

problem that has recently gained large attention is that of economic dispatch. In this problem, a

total net load constraint must be satisfied by a set of generators which each have an associated

cost of producing electricity. However, the existing distributed techniques to solve this problem

are often limited by rate of convergence. Motivated by this, we investigate the design of topology

weighting strategies that build on the Newton method and lead to improved convergence rates.

Nested Stochastic Formulation

As applications emerge which are high dimensional and described by large data sets, the

need for powerful optimization tools has never been greater. In particular, agents in distributed

settings are commonly given a global optimization task where they must sparingly exchange local

information with a small set of neighboring agents for the sake of privacy and robust scalability.

This architecture can, however, slow down convergence compared to centralized ones, which

is concerning if obtaining the iterative update information is costly. Gradient-based methods

are commonly used due to their simplicity, but they tend to be vulnerable to slow convergence

around saddle points. Newton-based methods use second-derivative information to improve

convergence, but they are still liable to be slow in areas where higher order terms dominate

the objective function and even unstable when the Hessian is ill conditioned. A powerful tool

for combating these Newton-based vulnerabilities is imposing a cubic regularization on the

3

function’s second-order Taylor approximation, but the current work on this technique does not

unify distributed, stochastic, and nonconvex elements. Motivated by this, we study the adaptation

of the Stochastic Cubic Regularized Newton approach to solve a distributed nested optimization

problem.

Binary Formulation

There has been an explosion of literature surrounding the design of distributed algorithms

for convex optimization problems and how these pertain to the operation of future power grids.

A common assumption of these algorithms is the property of convexity, which lends itself to

provably optimal solutions which are scalable and fast. However, some settings give rise to

nonconvex decision sets. For example, in an optimal power dispatch setting, devices available

for providing load-side frequency regulation such as HVAC systems, household appliances,

and manufacturing systems are often limited to discrete on/off operational modes. It is even

preferable to charge populations of electric vehicles in a discrete on/off manner due to nonlinear

battery chemistries. The available tools in optimization for these nonconvex settings are less

mature, and when considering a distributed setting in which devices act as agents that collectively

compute a solution over a sparse communication graph, the available tools are significantly less

developed. With this in mind, we are motivated to develop a scalable, fast approach for these

binary settings which is amenable to a distributed implementation.

Topology Design

Multi-agent systems are pervasive in new technology spaces such as power networks

with distributed energy resources like solar and wind, mobile sensor networks, and large-scale

distribution systems. In such systems, communication amongst agents is paramount to the

propagation of information, which often lends itself to robustness and stability of the system.

Network connectivity is well studied from a graph-theoretic standpoint, but the problem of

4

designing topologies when confronted by engineering constraints or adversarial attacks is not

well addressed by current works. We are motivated to study the NP-hard graph design problem of

adding edges to an initial topology and to develop a method to solve it which has both improved

performance and allows for direct application to the aforementioned constrained and adversarial

settings.

Application: Frequency Regulation with Heterogeneous
Energy Resources

Many recent efforts seek to integrate renewable energy resources with the power grid

to reduce the carbon footprint. The high variability associated with wind and solar power can

be balanced using distributed energy resources (DERs) providing ancillary services such as

frequency regulation. Consequently, there is a growing interest among market operators in

DER aggregations with flexible generation and load capabilities to balance fluctuations in grid

frequency and minimize area control errors (ACE). The fast ramping rate and minimal marginal

standby cost put many DERs at an advantage against conventional generators and make them

suitable for participation in the frequency regulation market.

The fast ramping rates reduce the required power capacity of DERs to only 10% of an

equivalent generator to balance a frequency drop within 30s [79]. However, most individual DERs

have small capacities, typically on the order of kWs compared to 10 s of MW for conventional

frequency control resources. Commanding the required thousands to millions of DERs to replace

existing frequency regulation resources over a large balancing area entails aggregating DERs

that are distributed at end points all over the grid on customer premises. The dynamic nature,

large number, and distributed location of DERs requires coordination. This is in contrast to

existing frequency regulation [63] implementation with conventional energy resources. For

example, CAISO requires all generators to submit their bids once per regulation interval. Then,

the setpoints are assigned centrally to all resources every 2-4 sec without any consideration of

5

operational costs [19]. While distributed control has the potential to enable DER participation

in the frequency regulation market (e.g., [91]), there is a general lack of large-scale testing

to prove its effectiveness for widespread adoption by system operators. The 2017 National

Renewable Energy Laboratory Workshop on Autonomous Energy Grids [64] concluded that “A

major limitation in developing new technologies for autonomous energy systems is that there are

no large-scale test cases (...). These test cases serve a critical role in the development, validation,

and dissemination of new algorithms”.

6

Chapter 1

Notation and Preliminaries

1.1 Notation

Let R and R+ denote the set of real and positive real numbers, respectively, and let N

denote the set of natural numbers. For a vector x ∈ Rn, we denote by xi the ith entry of x. For

a matrix A ∈ Rn×m, we write Ai as the ith row of A and Ai j as the element in the ith row and jth

column of A, and for A square, A† is the Moore-Penrose pseudoinverse of A. The transpose

of a vector or matrix is denoted by x> and A>, respectively. We use the shorthand notations

1n = [1, . . . ,1]> ∈ Rn, 0n = [0, . . . ,0]> ∈ Rn, In to denote the n×n identity matrix, and define

In , In−
1n1>n

n
. We refer to this matrix as a pseudo-identity matrix; note that null(In)= span{1n}.

The standard inner product of two vectors x,y∈Rn is written 〈x,y〉, and x⊥ y indicates 〈x,y〉= 0.

The orthogonal complement to a span of vectors ai is written span{ai}⊥, meaning x⊥ y,∀x ∈

span{ai},∀y ∈ span{ai}⊥. For a real-valued function f : Rn→ R, the gradient vector of f with

respect to x is denoted by ∇x f (x) and the Hessian matrix with respect to x by either ∇xx f (x)

or ∇2 f (x). When f : Rn×Rm→ R takes multiple arguments, we specify the differentiation

variable(s) as a subscript of ∇. Cartesian products of sets are denoted by a superscript, for

example, {0,1}n = {0,1}× ·· ·×{0,1}. The positive (semi) definiteness and negative (semi)

definiteness of a matrix A ∈ Rn×n is indicated by A� 0 and A≺ 0 (resp. A� 0 and A� 0). The

same symbols are used to indicate componentwise inequalities on vectors of equal sizes. The set

of eigenvalues of a symmetric matrix A ∈ Rn×n is ordered as µ1(A)≤ ·· · ≤ µn(A) with associated

7

eigenvectors v1, . . . ,vn ∈Rn. An orthogonal matrix T ∈ Rn×n has the property T>T = T T> = In

and T> = T−1. For a finite set S , |S | is the cardinality of the set. The standard Euclidean

norm and the Kronecker product are indicated by ‖ · ‖, ⊗, respectively. We denote elementwise

operations on vectors x,y ∈ Rn as (xiyi)i = (x1y1, . . . ,xnyn)
>, (xi)

2
i = (x2

1, . . . ,x
2
n)
>, (c/xi)i =

(c/x1, . . . ,c/xn)
>, log(xi)i = (log(x1), . . . , log(xn))

>, and (exi)i = (ex1, . . . ,exn)>. The notation

diag(x) indicates the diagonal matrix with entries given by elements of x, and B(x,η) denotes

the closed ball of radius η centered at x. Probabilities and expectations are indicated by P and

E, respectively. The Dirac delta function centered at a ∈ R is denoted by δa, and the uniform

distribution on [a,b] is denoted by U [a,b]. We define the projection

[u]+v :=

u, v > 0,

max{0,u}, v≤ 0.

1.2 Graph Theory

We refer to [47] as a supplement for the concepts we describe throughout this section. A

network of agents is represented by a graph G = (N ,E), assumed undirected, with a node set

N = {1, . . . ,n} and edge set E ⊆N ×N . The edge set E has elements (i, j) ∈ E for j ∈N i,

where N i ⊂N is the set of neighbors of agent i ∈N . The union of neighbors to each agent

j ∈N i are the 2-hop neighbors of agent i, and denoted by N 2
i . More generally, N p

i , or set of

p-hop neighbors of i, is the union of neighbors of agents in N p−1
i . In Chapter 2, we consider

weighted edges for the sake of defining the graph Laplacian; the role of edge weightings and

the associated design problem is described in Section 2.3. The graph G then has a weighted

8

Laplacian L ∈ Rn×n defined as

Li j =

−wi j, j ∈N i, j 6= i,

wii, j = i,

0, otherwise,

with weights wi j = w ji > 0, j ∈ N i, j 6= i, and total incident weight wii on i ∈ N , wii =

∑ j∈N i wi j. From Chapter 3 onward, L is taken to be unweighted, i.e. wi j = 1, j ∈N i, j 6= i.

Evidently, L has an eigenvector v1 = 1n with an associated eigenvalue µ1 = 0, and L = L> � 0.

The graph is connected i.f.f. 0 is a simple eigenvalue, i.e. 0 = µ1 < µ2 ≤ ·· · ≤ µn, and it is

well known that the multiplicity of the zero eigenvalue is equal to the number of connected

components in the graph [47].

The Laplacian L can be written via its incidence matrix E ∈ {−1,0,1}|E |×n and a diago-

nal matrix X ∈ R|E |×|E |+ whose entries are weights wi j. Each row of E is associated with an edge

(i, j) whose ith element is 1, jth element is −1, and all other elements zero. Then, L = E>XE.

1.3 Schur Complement

The following lemma will be used in the sequel.

Lemma 1. [114](Matrix Definiteness via Schur Complement). Consider a symmetric matrix

M of the form

M =

 A B

B> C

 .
If C is invertible, then the following properties hold:

(1) M � 0 if and only if C � 0 and A−BC−1B> � 0.

(2) If C � 0, then M � 0 if and only if A−BC−1B> � 0.

9

1.4 Taylor Series Expansion for Matrix Inverses

A full-rank matrix A ∈ Rn×n has a matrix inverse, A−1, which is characterized by the

relation AA−1 = In. In principle, it is not straightforward to compute this inverse via a distributed

algorithm. However, if the eigenvalues of A satisfy |1−µi(A)|< 1,∀ i ∈N , then we can employ

the Taylor expansion to compute its inverse [92]:

A−1 =
∞

∑
p=0

(In−A)p.

To quickly see this holds, substitute B = In−A, multiply both sides by In−B and reason

with limp→∞. Note that, if the sparsity structure of A represents a network topology, then

traditional matrix inversion techniques such as Gauss-Jordan elimination still necessitate all-to-

all communication. However, agents can communicate and compute locally to obtain each term

in the previous expansion. If A is normal, it can be seen via the diagonalization of In−A that

the terms of the sum become small as p increases due to the assumption on the eigenvalues of

A [43]. The convergence of these terms is exponential and limited by the slowest converging

mode, i.e. max |1−µi(A)|.

We can compute an approximation of A−1 in finite steps by computing and summing the

terms up to the qth power. We refer to this approximation as a q-approximation of A−1.

1.5 Cubic-Regularized Newton Algorithm

We now provide a brief background on the Cubic-Regularized Newton method, which

will be referred to in Chapter 3. See [78] and [25,26] for more information. Consider the problem

of minimizing a (possibly nonconvex) function f : Rd → R:

min
x∈Rd

f (x). (1.1)

10

As nonconvex optimization is typically intractable in high dimensions, a typical objective is to

converge to an ε-second-order stationary point.

Definition 1. (ε-Second-Order Stationary Point). A point x? is an ε-second-order stationary

point of f if

‖∇x f (x?)‖ ≤ ε and λmin(∇
2
xx f (x?))≥−

√
ρε. (1.2)

Here, ρ is commonly taken to be the Lipschitz constant of ∇2
xx f , which we will formalize

in Section 3.2.

One useful iterative model for minimizing f (xk) when the function is strictly convex at

the current iterate xk (or, more accurately, if it is strictly convex on some neighborhood of xk) is

descent on a second-order Taylor expansion around xk:

xk+1 = argmin
x

{
f (xk)+(x− xk)>∇ f (xk)+

1
2
(x− xk)>∇

2 f (xk)(x− xk)

}
= xk−∇

−2 f (xk)∇ f (xk).

(1.3)

This closed form expression for xk+1 breaks down when f is nonconvex due to some eigenvalues

of ∇2 f (xk) having negative sign. Further, when ∇2 f (x2) is nearly-singular, the update becomes

very large in magnitude and can lead to instability. For this reason, consider amending the

second-order model with a cubic-regularization term, to obtain the cubic-regularized, third-order

model of f at xk as:

mk(x),
{

f (xk)+(x− xk)>∇ f (xk)+
1
2
(x− xk)>∇

2 f (xk)(x− xk)+
ρ

6
‖x− xk‖3

}
. (1.4)

The update is naturally given by a minimizer to this model: xk+1 ∈ argmin
x

mk(x). Unfortunately,

this model does not beget a closed-form minimizer as in (1.3), nor is it convex if f is not convex.

The model does, however, become convex for x very far from xk, which can be seen by computing

the Hessian of mk as ∇2mk(x) = ∇2 f (xk)+ρ‖x− xk‖In. Additionally, mk is an over-estimator

for f , i.e. mk(x)≥ f (x),∀x. This is seen by considering the cubic term and recalling Lipschitz

properties of ∇2 f ; we describe this observation in more detail in Chapter 3. Therefore, mk

11

possesses some advantages over other simpler submodels as it possesses properties of a more

standard Newton-based, second-order model while being sufficiently conservative.

Finally, [24] recently showed that simply initializing x = xk− r∇ f (xk)/‖∇ f (xk)‖ for

r ≥ 0 is sufficient to show that gradient descent on mk converges to the global minimizer of (1.4)

(under light conditions on r and the gradient step size).

1.6 PT-Inverse

Next, we introduce the Positive-definite Truncated inverse (PT-inverse) and its relevance

to nonconvex Newton methods.

Definition 2 ([85]). (PT-inverse). Let A ∈ Rn×n be a symmetric matrix with an orthonormal

basis of eigenvectors Q ∈ Rn×n and diagonal matrix of eigenvalues Λ ∈ Rn×n. Consider a

constant m > 0 and define |Λ|m ∈ Rn×n by:

(|Λ|m)ii =

|Λii|, |Λii| ≥ m,

m, otherwise.

The PT-inverse of A with parameter m is defined by (|A|m)−1 = Q>(|Λ|m)−1Q� 0.

The PT-inverse operation flips the sign on the negative eigenvalues of A and truncates

near-zero eigenvalues to a (small) positive value m before conducting the inverse. Effectively,

this generates a positive definite matrix bounded away from zero to be inverted, circumventing

near-singular cases. In terms of computational complexity, it is on the order of standard eigende-

composition (or more generally, singular value decomposition), which is roughly O(n3) [80].

However, we note in Section 4.4 that the matrix to be PT-inverted is diagonal, which is O(n).

The PT-inverse is useful for nonconvex Newton approaches [85] in the following sense:

first, recall that the Newton descent direction of f at x is computed as −(∇xx f (x))−1
∇x f (x).

For f strictly convex, it holds that ∇xx f (x) � 0 and the Newton direction is well defined and

12

decreases the cost. For (non-strictly) convex or nonconvex cases, ∇xx f (x) will be singular,

indefinite, or negative definite. A PT-inverse operation remedies these cases and preserves the

descent quality of the method. Additionally, saddle points are a primary concern for first-order

methods in nonconvex settings [36], and the Newton flavor endowed by the PT-inverse effectively

performs a change of coordinates on saddles with “slow” unstable manifolds compared to the

stable manifolds. We discuss this further in Section 4.3.

1.7 Set Theory

A limit point p of a set P is a point such that any neighborhood Bε(p) contains a point

p′ ∈ P. A set is closed if it contains all of its limit points, it is bounded if it is contained in a ball

of finite radius, and it is compact if it is both closed and bounded. Let Ai = {p | a>i p≥ bi} be a

closed half-space and P= A1∩·· ·∩Ar ⊂ Rm be a finite intersection of closed half-spaces. If

P is compact, we refer to it as a polytope. Consider a set of points F = {p ∈ P | a>i p = bi, i ∈

I ⊆ {1, . . . ,r};a>j p≥ b j, j ∈ {1, . . . ,r}\I }. Let h = dim(span{ai}) be the dimension of the

subspace spanned by the vectors {ai}i∈I . Then, we refer to F as an (m−h)-dimensional face of

P. Lastly, denote the affine hull of F as aff(F) = {p+w | p,w∈Rm, p∈F ,w⊥ span{ai}i∈I }

and define the relative interior of F as relint(F) = {p | ∃ε > 0 s. t. Bε(p)∩ aff(F)⊂F}.

13

Chapter 2

Distributed Approximate Newton Algo-
rithms and Weight Design for Constrained
Optimization

Motivated by economic dispatch and linearly-constrained resource allocation problems,

this chapter proposes a class of novel DISTRIBUTED APPROX-NEWTON algorithms that approx-

imate the standard Newton optimization method. We first develop the notion of an optimal

edge weighting for the communication graph over which agents implement the second-order

algorithm, and propose a convex approximation for the nonconvex weight design problem. This

weight design formulates to a nonconvex bilinear optimization, and we propose a convex approx-

imation that is loosely based on completing the square to compute adequate solutions. We next

build on the optimal weight design to develop a DISCRETE DISTRIBUTED APPROX-NEWTON

algorithm which converges linearly to the optimal solution for economic dispatch problems with

unknown cost functions and relaxed local box constraints. For the full box-constrained problem,

we develop a CONTINUOUS DISTRIBUTED APPROX-NEWTON algorithm which is inspired by

first-order saddle-point methods and rigorously prove its convergence to the primal and dual

optimizers. A main property of each of these distributed algorithms is that they only require

agents to exchange constant-size communication messages, which lends itself to scalable im-

plementations. Simulations demonstrate that the DISTRIBUTED APPROX-NEWTON algorithms

with our weight design have superior convergence properties compared to existing weighting

14

strategies for first-order saddle-point and gradient descent methods.

2.1 Bibliographical Comments

The Newton method for minimizing a real-valued multivariate objective function is

well characterized for centralized contexts in [17]. Another centralized method for solving

general constrained convex problems by seeking the saddle-point of the associated Lagrangian

is developed in [34]. This method, which implements a saddle-point dynamics is attractive

because its convergence properties can be established. Other first-order or primal-dual based

methods for approaching distributed optimization include [22, 39, 53, 70]. However, these

methods typically do not incorporate second-order information of the cost function, which

compromises convergence speeds. The notion of computing an approximate Newton direction in

distributed contexts has gained popularity recently, such as [74] and [105, 106]. In the former

work, the authors propose a method which uses the Taylor series expansion for inverting matrices.

However, it assumes that each agent keeps an estimate of the entire decision variable, which

does not scale well in problems where this variable dimension is equal to the number of agents

in the network. Additionally, the optimization is unconstrained, which helps to keep the problem

decoupled but is narrower in scope. The latter works pose a separable optimization with an

equality constraint characterized by the incidence matrix. The proposed method may be not

directly applied to networks with constraints that involve the information of all agents. The

papers [23, 59, 112] incorporate multi-timescaled dynamics together with a dynamic consensus

step to speed up the convergence of the agreement subroutine. These works only consider

uniform edge weights, while sophisticated design of the weighting may improve the convergence.

In [107], the Laplacian weight design problem for separable resource allocation is approached

from a DISTRIBUTED GRADIENT DESCENT perspective. Solution post-scaling is also presented,

which can be found similarly in [75] and [86] for improving the convergence of the Taylor series

expression for matrix inverses. In [88], the authors consider edge weight design to minimize the

15

spectrum of Laplacian matrices. However, in the Newton descent framework, the weight design

problem formulates as a nonconvex bilinear problem, which is challenging to solve. Overall,

the current weight-design techniques that are computable in polynomial time are only mindful

of first-order algorithm dynamics. A second-order approach has its challenges, which manifest

themselves in a bilinear design problem and more demanding communication requirements, but

using second-order information is more heedful of the problem geometry and leads to faster

convergence speeds.

Statement of Contributions

In this chapter, we propose a novel framework to design a weighted Laplacian matrix that

is used in the solution to a multi-agent optimization problem via sparse approximated Newton

algorithms. Motivated by economic dispatch, we start by formulating a separable resource

allocation problem subject to a global linear constraint and local box constraints, and then derive

an equivalent form without the global constraint by means of a Laplacian matrix, which is well

suited for a distributed framework. We use this to motivate weighting design of the elements of

the Laplacian matrix and formulate this problem as a bilinear optimization. We develop a convex

approximation of this problem whose solution can be computed offline in polynomial time. A

bound on the best-case solution of the original bilinear problem is also given.

We aim to bridge the gap between classic Newton and DISTRIBUTED APPROX-NEWTON

methods. To do this, we first relax the box constraints and develop a class of constant step-size

discrete-time algorithms. The Newton step associated with the unconstrained optimization

problem do not inherit the same sparsity as the distributed communication network. To address

this issue, we consider approximations based on a Taylor series expansion, where the first few

terms inherit certain level of sparsity as prescribed by the Laplacian matrix. We analyze the

approximate algorithms and show their convergence for any truncation of the series expansion.

We next study the original problem with local box constraints, which has never been

16

considered in the framework of a distributed Newton method, and present a novel continuous-

time DISTRIBUTED APPROX-NEWTON algorithm. The convergence of this algorithm to the

optimizer is rigorously studied and we give an interpretation of the convergence in the Lya-

punov function sense. Furthermore, through a formal statement of the proposed DANA

(DISTRIBUTED APPROX-NEWTON algorithm), we find several interesting insights on second-

order distributed methods. We compare the results of our design and algorithm to a generic

weighting design of DISTRIBUTED GRADIENT DESCENT (DGD) implementations in simulation.

Our weighting design shows superior convergence to DGD.

2.2 Problem Statement

Motivated by the economic dispatch problem, in this section we pose the separable

resource allocation problem that we aim to solve distributively. We reformulate it as an uncon-

strained optimization problem whose decision variable is in the span of the graph Laplacian, and

motivate the characterization of a second-order Newton-inspired method.

Consider a group of agents N , indexed by i ∈N , and a communication topology given

by G . Each agent is associated with a local convex cost function fi : R→R. These agents can be

thought of as generators in an electricity market, where each function argument xi ∈ R, i ∈N

represents the power that agent i produces at a cost characterized by fi. The economic dispatch

problem aims to satisfy a global load-balancing constraint ∑
n
i=1 xi = d for minimal global cost

f : Rn→ R, where d is the total demand. In addition, each agent is subject to a local linear box

constraint on its decision variable given by the interval [xi,xi]. Then, the economic dispatch

17

optimization problem is stated as:

P1 : min
x

f (x) =
n

∑
i=1

fi(xi) (2.1a)

subject to
n

∑
i=1

xi = d, (2.1b)

xi ≤ xi ≤ xi, i = {1, . . . ,n}. (2.1c)

Distributed optimization algorithms based on a gradient descent approach to solve P1 are

available [115]. However, by only taking into account first-order information of the cost functions,

these methods tend to be inherently slow. As for a Newton (second-order) method, the constraints

make the computation of the descent direction non-distributed. To see this, consider only (2.1a)–

(2.1b). Recall the unconstrainted Newton step defined as xnt :=−∇xx f (x)−1∇x f (x), see e.g. [17].

In this context, the equality constraint can be eliminated by imposing xn = d−∑
n−1
i=1 xi. Then,

(2.1a) becomes f (x) = ∑
n−1
i=1 fi(xi)+ fn(d−∑

n−1
i=1 xi). In general, the resulting Hessian ∇xx f (x)

is fully populated and its inverse requires all-to-all communication among agents in order to

compute the second-order descent direction. If we additionally consider (2.1c), interior point

methods are often employed, such as introducing a log-barrier function to the cost in (2.1a) [17].

The value of the log-barrier parameter is updated online to converge to a feasible solution, which

exacerbates the non-distributed nature of this approach. This motivates the design of distributed

Newton-like methods which are cognizant of (2.1b)–(2.1c).

We eliminate (2.1b) by introducing a network topology as encoded by a Laplacian matrix

L associated with G and an initial condition x0 ∈ Rn with some assumptions.

Assumption 1. (Undirected and Connected Graph). The weighted graph characterized by L is

undirected and connected, i.e. L = L> and 0 is a simple eigenvalue of L.

18

Assumption 2. (Feasible Initial Condition). The initial state x0 satisfies (2.1b), i.e.

n

∑
i=1

x0
i = d.

If the problem context does not lend itself well to satisfying Assumption 2, there is a

distributed algorithmic solution to rectify this via dynamic consensus that can be found in [32]

which could be modified for a Newton-like method. Given these assumptions, P1 is equivalent

to:

P2 : min
z

f (x0 +Lz) =
n

∑
i=1

fi(x0
i +Liz) (2.2a)

subject to x− x0−Lz� 0n, (2.2b)

x0 +Lz− x� 0n . (2.2c)

Using the property that 1n is an eigenvector of L associated with the eigenvalue 0, we have that

1>n (x0 +Lz) = d. Newton descent for centralized solvers is given in [17]; in our distributed

framework, the row space of the Laplacian is a useful property to address (2.1b).

Remark 1. (Relaxing Assumption 2). The assumption on the initial condition can render the

formulation vulnerable to implementation errors and cannot easily accommodate packet drops

in a distributed algorithm. A potential workaround for this is outlined here. Consider, instead

of (2.1b) in P1, the n linear constraints:

x+Lz = d, (2.3)

where d ∈ Rn,1>n d = d and (2.1b) can be recovered by multiplying (2.3) from the left by 1n.

(As an aside, it may be desirable to impose sparsity on d so that only some agents need access

to global problem data). Both x ∈ Rn and z ∈ Rn become decision variables, and agent i can

verify the ith component of (2.3) with one-hop neighbor information. Further, a distributed

19

saddle-point algorithm can be obtained by assigning a dual variable to (2.3) and proceeding as

in [34].

We provide a simulation justification for this approach in Section 2.6.4, although the

analysis of robustness to perturbations and packet drops is ongoing and outside the scope of this

chapter. For now we strictly impose Assumption 2.

We aim to leverage the freedom given by the elements of L in order to compute an

approximate Newton direction to P2. To this end, we adopt the following assumption.

Assumption 3. (Cost Functions). The local costs fi are twice continuously differentiable and

strongly convex with bounded second-derivatives given by

0 < δi ≤
∂ 2 fi

∂x2
i
≤ ∆i,

for every i ∈N with given δi,∆i ∈ R+.

This assumption is common in other distributed Newton or Newton-like methods, e.g. [59,

74] and in classical convex optimization [17,77]. Assumption 3 is necessary to attain convergence

in our computation of the Newton step/direction and to construct the notion of an optimal edge

weighting L. We adopt the shorthands H(x) := ∇xx f (x), Hδ := diag(δ), and H∆ := diag(∆) as

the diagonal matrices with elements given by ∂ 2 fi(xi)/∂x2
i , δi, and ∆i, respectively.

Next, for the purpose of developing a distributed Newton-like method, we must slightly

rethink the idea of inverting a Hessian matrix. By application of the chain rule, we have that

∇zz f (x0 +Lz) = LH(x0 +Lz)L. Clearly, ∇zz f is non-invertible due to the smallest eigenvalue

of L fixed at zero, a manifestation of the equality constraint in the original problem P1. We

instead focus on the n−1 nonfixed eigenvalues of ∇zz f to employ the Taylor expansion outlined

in Section 1.4. To this end, we project LH(x0+Lz)L to the R(n−1)×(n−1) space with a coordinate

transformation; the justification for this and relation to the traditional Newton method are made

explicitly clear in Section 2.4. We seek a matrix T ∈ Rn×n satisfying T>T = In−1n 1>n /n [43];

20

the particular matrix T we employ is given as

T=

n−1+
√

n −1 · · · −1
1√
n

−1 . . . · · · ...
... . . . −1

...

−1 · · · −1 n−1+
√

n

−1−
√

n · · · · · · −1−
√

n
1√
n

diag(

ρ

1

),

where ρ =
√

n(n+1+2
√

n)
−1

1n−1. This choice of T has the effect of projecting the null-

space of the Hessian onto the nth row and nth column, which is demonstrated by defining

M(x) := JT>LH(x)LT J> ∈ R(n−1)×(n−1), where J =

[
In−1 0n−1

]
. The matrix M(x) shares its

n−1 eigenvalues with the n−1 nonzero eigenvalues of LH(x)L at each x, and M(x)−1 is well

defined, which provides us with a concrete notion of an inverse Hessian. We now adopt the

following assumption.

Assumption 4. (Convergent Eigenvalues). For any x, the eigenvalues of In−1−M(x), corre-

sponding to the n− 1 smallest eigenvalues of In−LH(x)L, are contained in the unit ball, i.e.

∃ ε < 1 such that

−εIn−1 � In−1−M(x)� εIn−1.

Technically speaking, we are only concerned with arguments of M belonging to the n−1

dimensional hyperplane {x0 +Lz | z ∈ Rn}, although we consider all x ∈ Rn for simplicity. In

the following section, we address Assumption 4 (Convergent Eigenvalues) by minimizing ε

via weight design of the Laplacian. By doing this, we aim to obtain a good approximation of

M−1 from the Taylor expansion with small q, which lends itself well to the convergence of the

distributed algorithms in Sections 2.4 and 2.5.

21

2.3 Weight Design of the Laplacian

In this section, we pose the nonconvex weight design problem on the elements of L,

which formulates as a bilinear optimization to be solved by a central authority. To make this

problem tractable, we develop a convex approximation and demonstrate that the solution is

guaranteed to satisfy Assumption 4. Next, we provide a lower bound on the solution to the

nonconvex problem. This gives a measure of performance for evaluating our approximation.

2.3.1 Formulation and Convex Approximation

Our approach hearkens to the intuition on the rate of convergence of the q-approximation

of M(x)−1. We design a weighting scheme for a communication topology characterized by L

which lends itself to a scalable, fast approximation of a Newton-like direction. To this end, we

minimize max
i,x
|1−µi(M(x))|:

P3 : min
ε,L

ε (2.4a)

s.t. − εIn−1 � In−1−M(x)� εIn−1,∀x, (2.4b)

L1n = 0n, L� 0, L = L>, (2.4c)

Li j ≤ 0, j ∈N i, Li j = 0, j /∈N i . (2.4d)

Naturally, P3 must be solved offline by a central authority because it requires complete

information about the local Hessians embedded in M(x), in addition to being a semidefinite

program for which distributed solvers are not mature. Even for a centralized solver P3 is hard

for a few reasons, the first being that (2.4b) is a function over all possible x ∈ Rn. To reconcile

with this, we invoke Assumption 3 on the cost functions and write Mδ = JT>LHδ LT J> and

22

M∆ = JT>LH∆LT J>. Then, (2.4b) is equivalent to

−(ε−+1)In−1 +Mδ � 0, (2.5a)

(1− ε+)In−1−M∆ � 0, (2.5b)

ε− = ε+, (2.5c)

where the purpose of introducing ε− and ε+ will become clear in the discussion that follows.

The other difficult element of P3 is the nonconvexity stemming from (2.5a)–(2.5b)

being bilinear in L. There are path-following techniques available to solve bilinear problems of

this form [54], but simulation results do not produce satisfactory solutions for problems of the

form P3. Instead, we aim to develop a convex approximation of P3 which exploits its structure.

Consider (2.5a) and (2.5b) separately by relaxing (2.5c). In fact, (2.5a) may be rewritten in a

convex manner. To do this, write L as a weighted product of its incidence matrix, L = E>XE.

Applying Lemma 1 makes the constraint become

(ε−+1)In−1 JT>E>XE

E>XET J> H−1
δ

� 0. (2.6)

As for (2.5b), consider the approximation LH∆L ≈
(√

H∆L+L
√

H∆

2

)2

. This approximation

can be thought of as a rough completion of squares, which lends itself well to our approach of

convexifying (2.5b). One should not expect the approximation to be reliably “better” or “worse”

than the BMI; rather, it is only intended to reflect the original constraint more than a simple

linearization. To this end, substitute this in M∆ to get

1
4

JT>(
√

H∆L+L
√

H∆)
2T J> � (1− ε+)In−1

1
2

JT>(
√

H∆L+L
√

H∆)T J> �
√
(1− ε+)In−1

1
2

JT>(
√

H∆L+L
√

H∆)T J> � (1− ε+

2
+

ε2
+

8
+O(ε3

+))In−1,

23

where the second line uses the property that T J>JT> = In−1n 1>n /n is idempotent and that

(
1
2

JT>(
√

H∆L+L
√

H∆)T J>
)2

� (1− ε+)In−1 � 0

⇔ 1
2

JT>(
√

H∆L+L
√

H∆)T J> �
√

1− ε+In−1 � 0,

see [99]. The third line expresses the right-hand side as a Taylor expansion about ε+ = 0.

Neglecting the higher order terms O(ε3
+) and applying Lemma 1 gives

1
2

JT>(
√

H∆L+L
√

H∆)T J>− (1− 1
2

ε+)In−1
1√
8

ε+In−1

1√
8

ε+In−1 In−1

� 0. (2.7)

Returning to P3, note that the latter three constraints are satisfied by L = E>XE. Then,

the approximate reformulation of P3 can be written as

P4 : min
ε−,ε+,X

max(ε−,ε+)

s.t. ε− ≥ 0,ε+ ≥ 0,

X � 0, (2.6), (2.7).

This is a convex problem in X and solvable in polynomial time. To improve the solution,

we perform some post-scaling. Take L?
0 = E>X?

0 E, where X?
0 is the solution to P4, and let

M?
∆0 = JT>L?

0H∆L?
0T J>,M?

δ0 = JT>L?
0Hδ L?

0T J>. Then, consider

β =

√
2

µ1(M?
δ0)+ µn−1(M?

∆0)
,

and take L? = βL?
0. This shifts the eigenvalues of M?

0(x) to M?(x) (defined similarly via L?)

such that 1− µ1(M?
δ
) = −(1− µn−1(M?

∆
)), which shrinks max

i,x
(|1− µi(M?(x))|). We refer to

this metric as εL? := max
i,x

(|1−µi(M?(x))|), and it can be verified that this post-scaling satisfies

Assumption 4 with regard to εL? . To see this, first consider scaling L by an arbitrarily small

24

constant, which places the eigenvalues of In−1−M(x) very close to 1 and satisfies Assumption 4.

Then, consider gradually increasing this constant until the lower bound on the minimum eigen-

value and upper bound on the maximum eigenvalue of In−1−M(x) are equal in magnitude. This

is precisely the scaling produced by β . Then, the solution to P4 followed by a post scaling by β

given by L? is an approximation of the solution to the nonconvex problem P3 with the sparsity

structure preserved.

Remark 2. (Unknown Local Hessian Bounds). It may be the case that a central entity tasked

with computing some L? does not have access to the local bounds δi,∆i,∀i. In this case, globally

known bounds δ ≤ δi,∆i ≤ ∆,∀i can be substituted in place of the local values in the formulation

of P4. It can be verified that this will result in a more conservative formulation, and that the

resulting L? will still satisfy Assumption 4 at the expense of possibly larger ε .

2.3.2 A Bound on Performance

We are motivated to find a “best-case scenario” for our solution given the structural

constraints of the network. Instead of solving P3 for L, we solve it for some A where Ai j = 0

for j /∈N 2
i , i.e. the two-hop neighbor structure of the network and sparsity structure of LH(x)L.

Define MA := JT>AT J>. This problem is:

P5 : min
ε,A

ε

s.t. − εIn−1 � In−1−MA � εIn−1,

A1n = 0n, A� 0,

Ai j = 0, j /∈N 2
i .

This problem is convex in A and produces a solution εA, which serves as a lower bound for the

solution to P3. It should not be expected that this lower bound is tight or achievable by “reverse

engineering” an L? with the desired sparsity from the solution A? to P5, rather, εL?− εA gives

just a rough indication of how close εL? is to the conservative lower bound of P3.

25

2.4 Discrete Time Algorithm for Relaxed Economic Dis-
patch

In this section, we focus on a relaxed version of P2 to develop a direct relation be-

tween traditional discrete-time Newton descent and our distributed, approximate method. First,

we state the relaxed problem and define the approximate Newton step. We then state the

DISCRETE DISTRIBUTED APPROX-NEWTON algorithm and provide a rigorous study of its con-

vergence properties.

2.4.1 Characterization of the Approximate Newton Step

Even the traditional centralized Newton method is not well-suited to solve P1 due to

the box constraints (2.1c). For this reason, for now we focus on the relaxed problem

P6 : min
x

f (x) =
n

∑
i=1

fi(xi), (2.8a)

subject to
n

∑
i=1

xi = d. (2.8b)

The equivalent unconstrained problem in z is

P7 : min
z

g(z) := f (x0 +Lz) =
n

∑
i=1

fi(x0
i +Liz). (2.9)

Remark 3. (Nonuniqueness of Solution). Given a z? which solves P7, the set of solutions

can be characterized by {z?′ | z?′ = z?+ γ 1n γ ∈ R}. The fact that z?′ is a solution is due to

null(L) = span(1n), and the fact that this characterizes the entire set of solutions is due to

null(∇zzg(z)) = span(1n).

To solve P6, we aim to implement a descent method in x via the dynamics

x+ = x+αLz̃nt, (2.10)

26

where z̃nt is the approximate Newton step that we seek to compute distributively, and α > 0 is a

fixed step size.

It is true that P7 is unconstrained with respect to z, although we have already alluded to

the fact that the Hessian matrix ∇zzg(z) = LH(x+Lz)L is rank-deficient stemming from (2.8b).

We now reconcile this by deriving a well defined Newton step in a reduced variable ẑ ∈ Rn−1.

Consider a change of coordinates by the orthogonal matrix T defined in Section 2.2 and write

z = T J>ẑ. Taking the gradient and Hessian of g(z) with respect to ẑ gives

∇ẑg(z) = JT>∇zg(z) = JT>L∇x f (x+LT J>ẑ)

∇ẑẑg(z) = JT>LH(x+LT J>ẑ)LT J> = M(x+LT J>ẑ).

Notice that the zero eigenvalue of ∇zzg(z) is eliminated by this projection and the other eigen-

values are preserved. Evaluating at x+LT J>ẑ
∣∣
ẑ=0, the Newton step in ẑ is now well defined as

ẑnt :=−∇ẑẑg(0)−1∇ẑg(0) =−M(x)−1JT>L∇x f (x).

Consider now a q-approximation of M(x)−1 given by ∑
q
p=0(In−1−M(x))p and return to

the original coordinates to obtain the approximate Newton direction Lz̃nt :

Lz̃nt =−LT J>
q

∑
p=0

(In−1−M(x))pJT>L∇x f (x).

With the property that LT J>JT>L = L2, rewrite Lz̃nt:

Lz̃nt =−L
q

∑
p=0

(In−LH(x)L)pL∇x f (x). (2.11)

It can be seen via eigendecomposition of In−LHL, which is normal, and application of As-

sumption 4 that the terms L(In−LHL)p become small with p→ ∞ at a rate dictated by ε . Note

that there is a nonconverging mode of the sum corresponding to the eigenspace spanned by

1n, but this is mapped to zero by left multiplication by L. This expression can be computed

distributively: each multiplication by L encodes a communication with the neighbor set of

27

each agent, and we utilize recursion to perform the computation efficiently, which is formally

described in Algorithm 1.

2.4.2 The DISTRIBUTED APPROX-NEWTON Algorithm

We now have the tools to introduce the

DISCRETE DISTRIBUTED APPROX-NEWTON algorithm, or DANA-D.

Algorithm 1. DANA-Di

Require: Li j for j ∈ {i}∪N i and communication with nodes j ∈N i∪N 2
i

1: procedure NEWTONi(x0
i ,Li, fi,q)

2: Initialize xi← x0
i

3: loop

4: Compute
∂ fi

∂xi
,

∂ 2 fi

∂x2
i

; send to j ∈N i, N 2
i

5: yi← Lii
∂ fi

∂xi
+∑ j∈N i Li j

∂ f j

∂x j
6: zi←−yi
7: pi← 1
8: while pi ≤ q do
9: Acquire y j from j ∈N 2

i
10: wi = (In−LH(x)L)iy
11: yi← wi
12: zi← zi− yi
13: pi← pi +1
14: Acquire z j for j ∈N i
15: xi← xi +α

(
Liizi +∑ j∈N i Li jz j

)
16: return xi

The algorithm is constructed directly from (2.10) and (2.11). The L∇x f (xk) factor

of (2.11) is computed first in the loop starting on line 4. Then, each additional term of the sum is

computed recursively in the loop starting on line 8, where y implicitly embeds the exponentiation

by p indicated in (2.11), z accumulates each term of the summation of (2.11), w is used as an

intermediate variable, and pi is used as a simple counter. We introduce some abuse of notation

by switching to vector and matrix representations of local variables in line 10; this is done for

compactness and to avoid undue clutter. Note that the diagonal elements of H(x) are given

28

by ∂ 2 f j/∂x2
j and the matrix and vector operations can be implemented locally for each agent

using the corresponding elements y j, Li j, and L2
i j. The one-hop and two-hop communications

of the algorithm are contained in lines 4 and 9, where line 4 calls upon local evaluations of the

gradient and Hessian. (In principle, Hessian information could be acquired along with y j in the

first iteration of the inner loop to utilize one fewer two-hop communication, but it need only be

acquired once per outer loop.) The information is utilized in local computations indicated the

next line in each case. It is understood that agents perform communications and computations

synchronously.

The outer loop of the algorithm corresponding to (2.10) is performed starting on line 14.

If only one-hop communications are available, each outer loop of the algorithm requires 2q+1

communications. The process repeats until desired accuracy is achieved. If q is increased, it

requires additional communications, but the step approximation gains accuracy.

2.4.3 Convergence Analysis

This section establishes convergence properties of the DANA-D algorithm for problems

of the form P6. For the sake of cleaner analysis, we will reframe the algorithm as solving P7

via

z+ = z−αAq(z)∇zg(z), (2.12)

where Aq(z) := ∑
q
p=0(In−LH(x0 +Lz)L)p. Then, note that the solution z? to P7 solves P6 by

x? = x0 +Lz? and that (2.12) is equivalent to (2.10)-(2.11) and Algorithm 1.

Remark 4. (Initial Condition, Trajectories, & Solution). Consider an initial condition z(0) ∈

Rn with 1>n z(0) = ω . Due to Aq(z)∇zg(z)⊥ 1n, the trajectories under (2.12) are contained in

the set {z | z = z̃+(ω/n)1n, z̃⊥ 1n}. The solution x? = x0 +Lz? to P6 is agnostic to (ω/n)1n

due to null(L) = span(1n), so we consider the solution z? uniquely satisfying 1>n z? = ω .

Theorem 1. (Convergence of DANA-D). Given an initial condition z(0)∈Rn, if Assumption 1,

on the bidirectional connected graph, Assumption 2, on the feasibility of the initial condition,

29

Assumption 3, on bounded Hessians, and Assumption 4, on convergent eigenvalues, hold, then

the DANA-D dynamics (2.12) converge asymptotically to an optimal solution z? of P7 uniquely

satisfying 1>n z? = 1>n z(0) for any q ∈ N and α <
2(1− ε)

(n−1)(1+ ε)(1− εq+1)
.

Proof. Consider the discrete-time Lyapunov function

V (z) = g(z)−g(z?)

defined on the domain dom(V) = {z | 1>n z = 1>n z(0)}. From the theorem statement and in

consideration of Remark 4, the trajectories of z under (2.12) are contained in the domain of V ,

and V (z)> 0,∀z ∈ dom(V),z 6= z?. To prove convergence to z?, we must show negativity of

V (z+)−V (z) = g(z+)−g(z). (2.13)

From the weight design of L (Assumption 4), we have ∇zzg(z) � (1+ ε)In, ε ∈ [0,1). This

implies

g(z+) = g(z)+∇zg(z)>(z+− z)+
1
2
(z+− z)>∇zzg(z′)(z+− z)

≤ g(z)+∇zg(z)>(z+− z)+
1+ ε

2
‖z+− z‖2

2,

which employs the standard quadratic expansion of convex functions via some z′ in the segment

extending from z to z+ (see e.g. §9.1.2 of [17]). Substituting (2.12) gives

g(z+)≤ g(z)−α∇zg(z)>Aq(z)∇zg(z)+
(1+ ε)α2

2
‖Aq(z)∇zg(z)‖2

2. (2.14)

We now show Aq(z)� 0 by computing its eigenvalues. Note µi(In−LH(x0 +Lz)L) ∈ [−ε,ε]∪

{1}. Let µi(In−LH(x0 +Lz)L) = ηi(z) for i ∈ {1, . . . ,n−1}. The terms of Aq(z) commute and

30

it is normal, so it can be diagonalized as

Aq(z) =W (z)

. . .

1−ηi(z)q+1

1−ηi(z)
. . .

q+1

W (z)>,

where the columns of W (z) are the eigenvectors of Aq(z)� 0, the last column being 1n, and the

terms of the diagonal matrix are its eigenvalues computed by a geometric series.

For now, we only use the fact that Aq(z)� 0 to justify the existence of Aq(z)1/2. Returning

to (2.14),

g(z+)≤ g(z)−α

(
‖Aq(z)1/2

∇zg(z)‖2
2−

(1+ ε)α

2
‖Aq(z)∇zg(z)‖2

2

)
. (2.15)

Recall ∇zg(z)⊥ 1n and that 1n is an eigenvector of Aq(z) associated with the eigenvalue q+1.

Consider a matrix Ãq(z) whose rows are projected onto the subspace spanning the orthogonal

complement of 1n. More precisely, writing Ãq(z) via its diagonalization gives

Ãq(z) =W (z)

. . .

1−ηi(z)q+1

1−ηi(z)
. . .

0

W (z)>, (2.16a)

Ãq(z)∇zg(z) = Aq(z)∇zg(z), (2.16b)

Ãq(z)1/2
∇zg(z) = Aq(z)1/2

∇zg(z). (2.16c)

31

Combining (2.15)–(2.16) gives the sufficient condition on α:

α <
2‖Ãq(z)1/2∇zg(z)‖2

2

(1+ ε)‖Ãq(z)∇zg(z)‖2
2

. (2.17)

Multiply the top and bottom of the righthand side of (2.17) by ‖Ãq(z)1/2‖2
2 and apply submulti-

plicativity of ‖ · ‖2
2:

2

(1+ ε)‖Ãq(z)1/2‖2
2

≤
2‖Ãq(z)1/2∇zg(z)‖2

2

(1+ ε)‖Ãq(z)∇zg(z)‖2
2

. (2.18)

Finally, we bound the lefthand side of (2.18) from below by substituting ηi(z) with ε:

‖Ãq(z)1/2‖2
2 =

n−1

∑
i

1−ηi(z)q+1

1−ηi(z)
≤ (n−1)

1− εq+1

1− ε
, ∀z ∈ Rn. (2.19)

Combining (2.19) with (2.18) gives the condition on α in the theorem statement and completes

the proof.

In practice, we find this to be a very conservative bound on α due to the employment of

many inequalities which simplify the analysis. We note that designing L effectively such that ε

is close to zero allows for more flexibility in choosing α large, which intuitively indicates the

Taylor approximation of the Hessian inverse converging with greater accuracy in fewer terms q.

Theorem 2. (Linear Convergence of DANA-D). Given an initial condition z(0) ∈ Rn and

step size α =
(1− ε)

(n−1)(1+ ε)(1− εq+1)
, if Assumption 1, on the bidirectional connected graph,

Assumption 2, on the feasibility of the initial condition, Assumption 3, on bounded Hessians,

and Assumption 4, on convergent eigenvalues, hold, the DANA-D dynamics (2.12) converge

linearly to an optimal solution z? of P7 uniquely satisfying 1>n z? = 1>n z(0) in the sense that

g(z+)−g(z)≤−
(1− ε)4(1+ ε(−ε)q)2‖z− z?‖2

2

2(n−1)2(1+ ε)3(1− ε2(q+1))
for any q ∈ N.

32

Proof. Define

c1(z) = ‖Ãq(z)1/2
∇zg(z)‖2

2, c2(z) =
(1+ ε)

2
‖Ãq(z)∇zg(z)‖2

2,

with Ãq(z) defined as in (2.16a). Recalling (2.15)–(2.16), consider ᾱ = 2α as the smallest step

size such that −ᾱc1(z)+ ᾱ2c2(z) is not strictly negative for all z, which is obtained from the

result of Theorem 1. Then,

−ᾱc1(z)+ ᾱ
2c2(z)≤ 0⇒−αc1(z)+α

2c2(z)≤−α
2c2(z). (2.20)

The implication is obtained from the first by substituting ᾱ = 2α . We now consider an imple-

mentation of DANA-D with α . From (2.15) and substituting via (2.16b)–(2.16c), we obtain

g(z+)−g(z)≤−αc1(z)+α2c2(z). Combining this with the second line of (2.20),

g(z+)−g(z)≤−α
2c2(z). (2.21)

We seek a lower bound for Ãq(z). Consider its definition (2.16a), where a lower bound can be

obtained by substituting each ηi(z) by −ε . Then,

Ãq(z)�
1+ ε(−ε)q

1+ ε

(
In−

1n 1>n
n

)
.

Returning to (2.21) and applying the definition of c2(z),

g(z+)−g(z)≤−α2(1+ ε(−ε)q)2

2(1+ ε)
‖∇zg(z)‖2

2, (2.22)

due to null(In−1n 1>n /n) = span(1n) and ∇zg(z)⊥ 1n.

Next, we bound ‖∇zg(z)‖2
2. Apply the Fundamental Theorem of Calculus to compute

33

∇zg(z) via a line integral. Let z(s) = sz+(1− s)z?. Then,

∇zg(z) =
∫ 1

0
∇zzg(z(s))(z− z?)ds. (2.23)

Applying Assumption 4 (convergent eigenvalues) gives a lower bound on the Hessian of g,

implying a lower bound on its line integral:

∇zzg(z)� (1− ε)(I−1n 1>n /n)⇒∫ 1

0
∇zzg(z(s))ds� (1− ε)(I−1n 1>n /n).

(2.24)

Factoring out z− z? from (2.23) and applying the second line of (2.24) gives the lower bound

‖∇zg(z)‖2
2 ≥ (1− ε)2‖z− z?‖2

2, (2.25)

due to null(In−1n 1>n /n) = span(1n) and z− z? ⊥ 1n. Combining (2.25) with (2.22) and substi-

tuting α:

g(z+)−g(z)≤−
(1− ε)4(1+ ε(−ε)q)2‖z− z?‖2

2

2(n−1)2(1+ ε)3(1− ε2(q+1))
.

In principle, this result can be extended to any α which is compliant with Theorem 1;

we have chosen this particular α for simplicity. The methods we employ to arrive at the results

of Theorems 1 and 2 are necessarily conservative. However, in practice, we find that choosing

substantially larger α generally converges to the solution faster. Additionally, we find clear-cut

improved convergence properties for larger q (more accurate step approximation) and smaller ε

(more effective weight design). Simulations confirm this in Section 2.6.

34

2.5 Continuous Time Distributed Approximate Newton
Algorithm

In this section, we develop a continuous-time Newton-like algorithm to distributively

solve P2 for quadratic cost functions. Our method borrows from and expands upon known

results of gradient-based saddle-point dynamics [34]. We provide a rigorous proof of convergence

and an interpretation of the convergence result for various parameters of the proposed algorithm.

2.5.1 Formulation of Continuous Time Dynamics

First, we adopt a stronger version of Assumption 3:

Assumption 5. (Quadratic Cost Functions). The local costs fi are strongly convex and

quadratic, i.e. they take the form

fi(xi) =
1
2

aix2
i +bixi, i ∈ {1, . . . ,n}.

Note that the Hessian of f with respect to x is now constant, so we omit the arguments

of H and Aq for the remainder of this section. The dynamics we intend to use to solve P2 are

substantially more complex than those for the problem with no box constraints, which makes

this simplification necessary. In fact, the quadratic model is very commonly used for generator

costs in power grid operation [5].

We aim to solve P2 by finding a saddle point of the associated Lagrangian L. Introduce

the dual variable λ ∈ R2n corresponding to (2.2b)–(2.2c), and define P(z) as

P(z) =

P(z)

P(z)

=

x− x0−Lz

x0 +Lz− x

 ∈ R2n.

35

The Lagrangian of P2 is given by

L(z,λ) = g(z)+λ
>P(z). (2.26)

We aim to design distributed dynamics which converge to a saddle point (z?,λ ?) of (2.26), which

solves P2. A saddle point has the property

L(z?,λ)≤ L(z?,λ ?)≤ L(z,λ ?), ∀z ∈ Rn,λ ∈ Rn
≥0.

To solve this, consider Newton-like descent dynamics in the primal variable z and gradient ascent

dynamics in the dual variable λ (Newton dynamics are not well defined for linear functions).

First, we state some equivalencies:

∇zL(z,λ) = ∇zg(z)+
[
−L L

]
λ , ∇λ L(z,λ) = P(z),

∇zzL(z,λ) = LHL, ∇λλ L(z,λ) = 02n×2n, ∇λ zL(z,λ) = ∇zλ L(z,λ)
> =

[
−L L

]
.

(2.27)

The CONTINUOUS DISTRIBUTED APPROX-NEWTON, or DANA-C, dynamics are given by

ż =−Aq∇zL(z,λ),

λ̇ = [∇λ L(z,λ)]
+
λ
.

(2.28)

The descent in the primal variable z is the approximate Newton direction as (2.10), augmented

with dual ascent dynamics in λ (one-hop communication) and implemented in continuous time.

The projection on the dynamics in λ ensures that if λi(t0)≥ 0 then λi(t)≥ 0 for all t ≥ t0.

Define Zq : Rn×R2n
≥0→ Rn×R2n as the map in (2.28) implemented by DANA-C. We

now make the following assumptions on initial conditions and the feasibility set.

Assumption 6. (Initial Dual Feasibility). The initial condition λ (0) is dual feasible, i.e. λ (0)�

0.

36

Assumption 7. (Nontrivial Primal Feasibility). The feasibility set of P2 is such that ∃z with

P(z)≺ 0.

The dynamics Zq are not well suited to handle λ infeasible, so Assumption 6 is necessary.

As for Assumption 7, if it does not hold, then either d = ∑x or d = ∑x or P1 is infeasible,

which are trivial cases. Assuming it does hold, Slater’s condition is satisfied and KKT conditions

are necessary and sufficient for solving P2.

Due to the structure of L, ż is computed using only (2q+1)-hop neighbor information.

In practice, the quantity Aq∇zL(z,λ) may be computed recursively over multiple one-hop or

two-hop rounds of communication, with a discrete step taken in the direction indicated by (ż, λ̇).

Note that a table statement of this discretized algorithm would be quite similar to Algorithm 1

(with the addition of one-hop dynamics in λ), so we omit it here for brevity. Discrete-time

algorithms to solve this problem do exist, see e.g. [83] in which the authors achieve convergence

to a ball around the optimizer whose radius is a function of the step size. However, the analysis

of discrete-time algorithms to solve P2 via a Newton-like method is outside the scope of this

work.

2.5.2 Convergence Analysis

This section provides a rigorous proof of convergence of the distributed dynamics Zq

to the optimizer (z?,λ ?) of P2. The solution x? to P1 may then be computed via a one-hop

neighbor communication by x? = x0 +Lz?.

Theorem 3. (Convergence of Continuous Dynamics Zq). If Assumption 1, on the undirected

and connected graph, Assumption 2, on the feasible initial condition, Assumption 4, on con-

vergent eigenvalues, Assumption 5, on quadratic cost functions, Assumption 6, on the feasible

dual initial condition, and Assumption 7, on nontrivial primal feasibility, hold, then the solution

trajectories under Zq assymptotically converge to an optimal point (z?,λ ?) of P2, where z?

uniquely satisfies 1>n z? = 1>n z(0).

37

Proof. Consider Q =

A−1
q 0

0 I2n

� 0 and define the Lyapunov function

VQ(z,λ) :=
1
2

 z− z?

λ −λ ?

>

Q

 z− z?

λ −λ ?

=
1
2

(
‖A−1/2

q (z− z?)‖2
2 +‖(λ −λ

?)‖2
2

)
. (2.29)

The time derivative of VQ along the trajectories of Zq is

V̇Q(z,λ) =

 z− z?

λ −λ ?

>

Q

 ż

λ̇

=−(z− z?)>A−1
q Aq∇zL(z,λ)+(λ −λ

?)> [∇λ L(z,λ)]
+
λ

(a)
≤ −(z− z?)>∇zL(z,λ)+(λ −λ

?)>∇λ L(z,λ)

(b)
= −(z− z?)>LHL(z− z?)− (z− z?)>

[
−L L

]
(λ −λ

?)

+(λ −λ
?)>
[
−L L

]>
(z− z?) =−‖H1/2L(z− z?)‖2

2
(c)
< 0, z 6= z?.

(2.30)

The inequality (a) follows from the componentwise relation (λi−λ ?
i)(
[
∇λi L

]+
λi
−∇λi L)≤ 0.

To see this, if λi > 0, the projection is inactive and this term equals zero. If λi = 0, then the

inequality follows from λ ?
i ≥ 0 and

[
∇λi L

]+
λi
−∇λi L≥ 0. The equality (b) is obtained from an

application of the Fundamental Theorem of Calculus and computing the line integral along the

line (z(s),λ (s)) = s(z,λ)+(1− s)(z?,λ ?) as follows:

∇zL(z,λ) =
∫ 1

0

(
∇zzL(z(s),λ (s))(z− z?)+∇λ zL(z(s),λ (s))(λ −λ

?)
)

ds

= ∇zzL(z,λ)(z− z?)+∇λ zL(z,λ)(λ −λ
?),

∇λ L(z,λ) =
∫ 1

0

(
∇λλ L(z(s),λ (s)(λ −λ

?)+∇zλ L(z(s),λ (s))(z− z?)
)

ds

= ∇zλ L(z,λ)(z− z?),

where the integrals can be simplified due to ∇zzL and ∇λ zL constant, as per (2.27). Recalling

38

Remark 4, which applies similarly here, and noticing ż⊥ 1n, it follows from the theorem statement

that (z− z?)⊥ 1n. Additionally, zero is a simple eigenvalue of H1/2L with a corresponding right

eigenvector 1n, implying that (c), the last line of (2.30), is strict for z 6= z?.

Let S :=
{
(z,λ) | z = z?,λ � 0

}
be an asymptotically stable set under the dynamics

Zq defined in (2.28). We aim to show the largest invariant set contained in S is the optimizer

{(z?,λ ?)}, so we reason with KKT conditions to complete the convergence argument for λ .

For (z,λ) ∈S , clearly primal feasibility is satisfied. Assumption 6 gives feasibility of λ (0),

which is maintained along the trajectories of Zq. The stationarity condition ∇zL(z?,λ ?) = 0 is

also satisfied for (z,λ) ∈S : examine the dynamics ż(t) =−Aq∇zL(z,λ)≡ 0. It follows that

∇zL(z,λ)(z,λ)∈S = 0 due to Aq being full rank. Then, each KKT condition has been satisfied for

(z,λ) ∈S except complementary slackness: Pi(z)λi = 0 for i ∈ {1, . . . ,2n}. We now address

this.

Notice the relation ż≡ 0 implies

λ (t) = λ̂ +φλ (t)

1n

0n

+φ
λ
(t)

0n

1n

 (2.31)

for some constant λ̂ ∈ R2n and possibly time varying φλ (t),φλ
(t) ∈ R. This is due to nullL =

span{1n} and inferring from ż≡ 0 that
[
−L L

]
λ (t) must be constant. Additionally, we may

infer from the map Zq that φλ (t),φλ
(t) are continuous and piecewise smooth. The dynamics λ̇

and differentiating (2.31) in time gives

λ̇ = [∇λ L(z
?,λ)]+

λ
= [P(z?)]+

λ
∈ ∂φλ (t)

1n

0n

+∂φ
λ
(t)

0n

1n

 , (2.32)

where ∂φλ (t) and ∂φ
λ
(t) are subdifferentials with respect to time of φλ (t) and φ

λ
(t), respectively.

Then, φλ (t) and φ
λ
(t) are additionally piecewise linear due to P(z?) constant. We now state two

cases for P(z?) to prove λ (t)→ λ
?.

39

Case 1: Pi(z
?) = 0 for at least one i ∈ {1, . . . ,n}. Then, λ̇ i = 0 and from (2.32) this

implies λ̇ = 0n. Reasoning from the projection dynamics, this implies either λ j = 0 or P j(z
?) = 0

for each j, which satisfies the complementary slackness condition λ
?
jP j(z

?) = 0 for every

j ∈ {1, . . . ,n}, and we conclude that λ = λ
? for (z,λ) ∈S .

Case 2: P(z?)≺ 0. Complementary slackness states λ
?
i Pi(z

?) = 0 for each i ∈ {1, . . . ,n},

implying λ
? = 0n. The dynamics preserve λ (t)� 0, so the quantity λ i−λ

?
i is strictly positive

for any λ i 6= λ
?
i . Applying this to the term (λ −λ ?)>[∇λ L(z,λ)]

+
λ

obtained from the second

equality (third line) of (2.30), and also applying P(z?) = ∇λ L(z?,λ)≺ 0, we obtain V̇Q < 0 for

z = z?,λ 6= λ
?.

The inferences of Case 1 (satisfying complementary slackness) and Case 2 (reasoning

with V̇Q) hold similarly for λ . Then, we have shown that V̇Q(z,λ)< 0,∀(z,λ) ∈S \{(z?,λ ?)}.

Asymptotic convergence to the primal and dual optimizers of P2 follows from the LaSalle

Invariance Principle [62].

2.5.3 Interpretation of the Convergence Result

For fast convergence, it is desirable for the ratio V̇Q/VQ < 0 to be large in magnitude for

any (z,λ) ∈ Rn×R2n
+ . Recall the diagonalization of Aq and use this to compute A−1

q :

Aq =W

1−η
q+1
1

1−η1
. . .

1−η
q+1
n−1

1−ηn−1

q+1

W>,

40

A−1
q =W

1−η1

1−η
q+1
1

. . .
1−ηn−1

1−η
q+1
n−1

(q+1)−1

W>.

Next, write z−z? = ζ1w1+ · · ·+ζn−1wn−1 as a weighted sum of the eigenvectors wi of In−LHL.

Note that we do not need wn = 1n for this representation due to z− z? ⊥ wn. Then, VQ =

∑
n−1
i=1 ζ 2

i (1−ηi)/(1−η
q+1
i)+Vλ , where Vλ := ||λ −λ ?||22. Additionally, note that LHL and

A−1
q share eigenvectors, so V̇Q ≤−∑

n−1
i=1 ζ 2

i (1−ηi). Toward this end, we can write

V̇Q

VQ
≤

−∑
n−1
i=1 ζ 2

i (1−ηi)

∑
n−1
i=1 ζ 2

i

(
1−ηi

1−η
q+1
i

)
+Vλ

.

To interpret this, first reason with the values of q. Consider q = 0, which is analogous to a

gradient-based method. Then, the rational in the sum contained in the denominator is equal

to one and there is no weighting, in a sense, to the step direction. In other words, if the value

of ζi happens to be large in magnitude corresponding to the eigenvector wi of ∇zzL whose

corresponding eigenvalue (1−ηi) is small in magnitude, then that term does not appropriately

dominate the numerator relative to each other term and the quantity V̇Q/VQ is small in magnitude.

On the other hand, if q is large, then the quantity 1−η
q+1
i is close to 1, and the terms of the

sums in the numerator and denominator have the effect of “cancelling” one another, which

provides more uniform convergence on the trajectories of z. In addition, if the values of ηi are

small in magnitude, i.e. our weight design on L was relatively successful, the quantity 1−η
q+1
i

approaches 1 more quickly and the effect of a particular ζi being large relative to the other terms

in the sum is diminished for any particular q.

Note that, although we have framed this argument as an improvement over the gradient

technique, it may be the case that for a particular time t the decomposition on z(t) may have a

41

large ζi corresponding to 1−ηi large. This actually provides superior momentary convergence

compared to a Newton-like method. However, we contend that the oscillatory nature of the

trajectories over the entire time horizon gives way to improved convergence from the Newton

flavor of our algorithm. This is confirmed in simulation.

Finally, it is apparent that choosing q even is (generally speaking) superior to q odd:

the quantity 1−η
q+1
i may take values in

[
1− εq+1,1+ εq+1], as opposed to odd q for which

1−η
q+1
i takes values in

[
1− εq+1,1

]
. We would like this quantity to be large so the magnitude

of V̇Q/VQ is large. This observation of choosing even q to prompt superior convergence is

confirmed in simulation.

This discussion neglects the Vλ term which may be large for arbitrarily ”bad” initial

conditions λ (0)� 0. However, the ascent direction in λ is clearly more effective for z nearly

optimal, so this term is “cooperative” in the sense that its decay roughly corresponds to the decay

of the Lyapunov term in z.

To summarize, gradient methods neglect the curvature of the underlying cost function,

which dictates the convergence properties of descent algorithms. By weighting the descent

direction by Aq, we elegantly capture this curvature in a distributed fashion and the solution

trajectory reflects this property. We now provide a remark on convergence of the algorithm for

nonquadratic costs that are well approximated by quadratic functions.

Remark 5. (Convergence of DANA-C for Approximately Quadratic Costs). Instead of As-

sumption 5 (quadratic costs), let Assumption 3 (general costs) hold and consider the dynamics

ż =−Aq(z)∇zL(z,λ),

λ̇ = [∇λ L(z,λ)]
+
λ
.

(2.33)

Let H ′ :=
H∆ +Hδ

2
and A′q := ∑

q
p=0(In− LH ′L)p. In a sense, these matrices are obtained

from quadratic approximations of the nonquadratic costs fi, i.e.
∣∣∣∣∂ 2 fi

∂x2
i
−H ′ii

∣∣∣∣ ≤ ∆i−δi

2
. Use

42

Q =

A′−1
q 0

0 I2n

 to define the quadratic Lyapunov function VQ(z,λ) as in (2.29). Differentiating

along the trajectories of (2.33) now gives

V̇Q(z,λ) = V̇ ′Q(z,λ)+U(e,z,λ),

where e gives some measure of how much the functions deviate from quadratic and U(0,z,λ) = 0.

The V̇ ′Q(z,λ) is obtained by decomposing the dynamics (2.33) as

ż =−A′q∇zL(z,λ)+u(e,z,λ),

λ̇ = [∇λ L(z,λ)]
+
λ
.

and including only the terms without u(e,z,λ), where the remaining terms are captured by

U(e,z,λ). U and u are continuous functions of e, and u(0,z,λ) = 0. Applying the convergence

argument of Theorem 3 to V ′Q(z,λ), the continuity of U and u imply V̇ ′Q(z,λ) < −U(ē,z,λ)

for sufficiently small ē. Therefore, V̇Q(z,λ) < 0 for functions that are well approximated by

quadratic functions.

2.6 Simulations and Discussion

In this section, we implement our weight design and verify the convergence of the

DISTRIBUTED APPROX-NEWTON algorithm in each of the discrete-time (relaxed) and continu-

ous time (box-constrained) settings.

2.6.1 Weight Design

To evaluate the weight design posed in Section 2.3 we use quadratic costs in accordance

with Assumption 5, i.e. δi = ∆i = ai,∀i. We do this in order to isolate the other parameters

for this part of the study. Consider the following metrics: the solution to P4 followed by the

43

post-scaling by β gives εL? := max(|1−µi(M?)|); this metric represents the convergence speed

of DISTRIBUTED APPROX-NEWTON when applying our proposed weight design of L. Using

the same topology (N ,E), the solution to P5 gives the metric εA. Note that εA is a best-case

estimate of the weight design problem; however, “reverse engineering” an L? from the solution A?

to P5 is both intractable and generally likely to be infeasible. With this in mind, the metric εA is a

very conservative lower bound, whereas εL? is the metric for which we can compute a feasible L?.

The objective of each problem is to minimize the associated ε ; to this end, we aim to characterize

the relationship between network parameters and these metrics. We ran 100 trials on each of 16

test cases which encapsulate a variety of parameter cases: two cases for the cost coefficients,

a tight distribution ai ∈ U [0.8,1.2] and a wide distribution ai ∈ U [0.2,5]. For topologies,

we randomly generated connected graphs with network size n ∈ {10,20,30,40,50}, a linearly

scaled number of edges |E | = 3n, and a quadratically scaled number of edges |E | = 0.16n2

for n ∈ {30,40,50}. The linearly scaled connectivity case corresponds to keeping the average

degree of a node constant for increasing network sizes, while the quadratically scaled case

roughly preserves the proportion of connected edges to total possible edges, which is a quadratic

function of n and equal to n(n− 1)/2 for an undirected network. The results are depicted in

Table 2.1, where the quadratically scaled cases are indicated by boldface. This gives the mean Σ

and standard deviation σ of the distributions for performance εL? and performance gap εL?− εA.

From these results, first note that the tightly distributed coefficients ai result in improved

εL? across the board compared to the widely distributed coefficients. We attribute this to the

approximation LHL≈

(√
HL+L

√
H

2

)2

being more accurate for roughly homogeneous H =

diag(ai). Next, it is clear that in the cases with linearly scaled edges, εL? worsens as network size

increases. This is intuitive: the proportion of connected edges in the graph decreases as network

size increases in these cases. This also manifests itself in the performance gap εL?−εA shrinking,

indicating the best-case solution εA (for which a valid L does not necessarily exist) degrades even

44

Table 2.1. Laplacian Design. Quadratically-scaled number-of-edge cases are indicated by
boldface.

ai ∈U [0.8,1.2]
bi ∈U [0,1] Σ(εL?) σ(εL?) Σ(εL?− εA) σ(εL?− εA)

n = 10
|E |= 30 0.6343 0.0599 0.2767 0.0186

n = 20
|E |= 60 0.8655 0.0383 0.2879 0.0217

n = 30
|E |= 90 0.9100 0.0250 0.2666 0.0233

n = 40
|E |= 120 0.9303 0.0201 0.2501 0.0264

n = 50
|E |= 150 0.9422 0.0175 0.2375 0.0264

n = 30
|E |= 144 0.7266 0.0324 0.2973 0.0070

n = 40
|E |= 256 0.6528 0.0366 0.2829 0.0091

n = 50
|E |= 400 0.5840 0.0281 0.2641 0.0101

ai ∈U [0.2,5]
bi ∈U [0,1] Σ(εL?) σ(εL?) Σ(εL?− εA) σ(εL?− εA)

n = 10
|E |= 30 0.6885 0.0831 0.3288 0.0769

n = 20
|E |= 60 0.8965 0.0410 0.3241 0.0437

n = 30
|E |= 90 0.9389 0.0254 0.2878 0.0395

n = 40
|E |= 120 0.9539 0.0189 0.2830 0.0355

n = 50
|E |= 150 0.9628 0.0168 0.2590 0.0335

n = 30
|E |= 144 0.7997 0.0520 0.3587 0.0524

n = 40
|E |= 256 0.7339 0.0550 0.3688 0.0569

n = 50
|E |= 400 0.6741 0.0487 0.3543 0.0425

45

quicker as a function of network size than our solution εL? . On the other hand, εL? substantially

improves as network size increases in the quadratically scaled cases, with a roughly constant

performance gap εL?−εA. Considering this relationship between the linear and quadratic scalings

on |E | and the metrics εL? and εA, we get the impression that both proportion of connectedness

and average node degree play a role in both the effectiveness of our weight-designed solution L?

and the best-case solution. For this reason, we postulate that εL? remains roughly constant in

large-scale applications if the number of edges is scaled subquadratically as a function of network

size; equivalently, the convergence properties of DISTRIBUTED APPROX-NEWTON algorithm

remain relatively unchanged when using our proposed weight design and growing the number of

communications per agent sublinearly as a function of n.

2.6.2 Discrete-Time Distributed Approx-Newton

Consider solving P6 with DANA-D for a network of n = 100 generators and |E |= 250

communication links. The local computations required of each generator are simple vector

operations whose dimension scales linearly with the network size, which can be implemented

on a microprocessor. The graph topology is plotted in Figure 2.1. The problem parameters are

given by

fi(xi) =
1
2

aix2
i +bixi + ci sin(xi +θi), ai ∈U [2,4], bi ∈U [−1,1],

ci ∈U [0,1], θi ∈U [0,2π], d = 200, x0 = (d/n)1n .

Note that 0 < ai− ci ≤
∂ 2 fi

∂x2
i
≤ ai + ci satisfies Assumption 3. We compare to the DGD and

weight design policies for resource allocation described in [107], along with an “unweighted”

version of [107] in the sense that L is taken to be the degree matrix minus the adjacency matrix

of the graph, followed by the post-scaling described in Section 2.3.1 to guarantee convergence.

The results are given in Figure 2.2, which show linear convergence to the optimal value as the

number of iterations increases, with fewer iterations needed for larger q. We note a substantially

46

improved convergence over the DGD methods, even for the q = 0 case which utilizes an equal

number of agent-to-agent communications as DGD. This can be attributed in-part to the superior

weight design of our method, which is cognizant of second-order information.

In addition, in Figure 2.2 we plot convergence of DGD, weighted by the one-sided

design scheme in [107], compared to our two-sided design with q = 0, for cases in which only a

universal bound on δi, ∆i is known (namely, using δ ≤ δi,∆i ≤ ∆,∀i, as in Remark 2). We note

an improved convergence in each case for the locally known bounds versus the universal bound,

while the locally weighted DGD method outperforms our q = 0 two-sided globally weighted

method by a slight margin.

Figure 2.1. Communication topology used for discrete-time numerical study; n = 100, |E |=
250.

47

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

DGD unw.

DGD w.

q = 0

q = 1

q = 2

q = 3

q = 4

q = 5

q = 6

DGD glob-w

q=0 glob-w

Figure 2.2. Comparison of weighted and unweighted DGD versus DANA-D with various q for
solving P6; n = 100, |E |= 250.

2.6.3 Continuous-Time Distributed Approx-Newton

We now study DANA-C for solving P1 for a simple 3 node network with two edges

E = {{1,2},{2,3}} for the sake of visualizing trajectories. The problem parameters are given

by

f1(x1) =
1
4

x2
1 +

1
2

x1, f2(x2) =
3
4

x2
2 +

1
2

x2, f3(x3) = 2x2
3 +

1
2

x3,

x =
[

0.2 2.5 1.5

]>
, x =

[
1 6 4

]>
, d = 6,

x0 =

[
5 −1 2

]>
, z(0) = 03, λ (0) =

[
1.5 .5 0

]
, λ (0) =

[
0 2 1

]
Note that x0 is infeasible with respect to x,x; all that we require is it satisfies Assumption 2

(feasible with respect to d). We plot the trajectories of the 3-dimensional state projected onto

the plane orthogonal to 13 under various q. Figure 2.3 shows this, with a zoomed look at the

optimizer in Figure 2.4.

It is clear that choosing q even versus q odd has a qualitative effect on the shape of

48

Figure 2.3. Three node case: projection of x0 + Lz(t) ∈ R3 onto the 2-dimensional plane
{x | ∑i xi = d}. Markers plotted for t = 0,0.2,0.4, . . . ,5 seconds. Dashed line ellipses indicate
intersection of ellipsoid level sets with the plane; dotted lines indicate intersection of box
constraints with the plane.

the trajectories, as noted in Section 2.5.3. Looking at Figure 2.3, it seems the trajectories are

intially pulled toward the unconstrained optimizer (center of the level sets) with some bias due to

λ (0) 6= 06. As λ is given time to evolve, these trajectories are pulled back toward satisfying the

box constraints indicated by the dotted quadrilateral, i.e. the intersection of the box constraints

and the plane defined by {x | ∑i xi = d}.

For a quantitative comparison, we consider n = 40 generators with |E |= 156 communi-

cation links whose graph is given by Figure 2.5 and the following parameters.

fi(xi) =
1
2

aix2
i +bixi, ai ∈U [0.5,3], bi ∈U [−2,2],

xi ∈U [1.5,3], xi ∈U [3,4.5], i ∈ {1, . . . ,100},

d = 120, x0 = 3∗140, z(0) = 040, λ (0) = 080 .

49

Figure 2.4. Three node case: trajectories zoomed closer to the optimizer. Markers plotted in
0.2s increments up to t = 5s.

Note from Figure 2.6 that convergence with respect to ‖x0+Lz(t)−x?‖+‖λ (t)−λ ?‖ is

not monotonic for some q. This is resolved in Figure 2.7 by examining VQ as defined by (2.29).

We also note the phenomenon of faster convergence for even q over odd q+1; the reason for

this is related to the modes of In−LHL and was discussed in Section 2.5.3. However, increasing

q on a whole lends itself to superior convergence compared to smaller q. As for the metric

g(z)−g(z?) in Figure 2.8, note that these values become significantly negative before eventually

stabilizing around zero. The reason for this is simple: in order for the Zq dynamics (2.28) in λ to

“activate,” the primal variable must become infeasible with respect to the box constraints. In this

sense, the stabilization to zero of the plots in Figure 2.8 represents the trajectories converging to

feasible points of P2.

2.6.4 Robust DANA Implementation

Lastly, we provide a simulation justification for relaxing Assumption 2 via the method

described in Remark 1. Figure 2.9 plots the error in the primal and dual states over time of

50

Figure 2.5. Communication graph for continuous-time numerical study: 40 nodes and 156
edges.

the modified “robust” method, which tends to approach zero for all observed values of q, and

Figure 2.10 demonstrates that the violation of the equality constraint stablizes to zero very quickly.

Noisy state perturbations are injected at t = 25,50,75, and we observe a rapid re-approach to

the plane satisfying the equality constraint. However, even though the algorithm presents a

faster convergence than gradient methods, here do not observe as clear of a relationship between

performance and increased q as in previous settings. The investigation of the properties of this

algorithm is left as future work.

Acknowledgements

The material in this chapter, in full, is a reprint of Distributed Approximate Newton

Algorithms and Weight Design for Constrained Optimization, T. Anderson, C.Y. Chang and

S. Martı́nez, Automatica, 109, article 108538, November 2019. A preliminary version of the

work appeared in the proceedings of the Conference on Control Technology and Applications

51

0 10 20 30 40 50 60 70 80 90 100

10
-3

10
-2

10
-1

10
0

10
1

10
2

q = 0

q = 1

q = 2

q = 3

q = 4

q = 5

q = 6

Figure 2.6. Error in the primal and dual state variables versus time for various q; n = 40, |E |=
156.

(CCTA), Mauna Lani, HI, 2017, pp. 632-637, as Weight Design of Distributed Approximate

Newton Algorithms for Constrained Optimization, T. Anderson, C.Y. Chang and S. Martı́nez.

The dissertation author was the primary investigator and author of these papers.

52

0 10 20 30 40 50 60 70 80 90 100

10
-6

10
-4

10
-2

10
0

10
2

10
4

q = 0

q = 1

q = 2

q = 3

q = 4

q = 5

q = 6

Figure 2.7. Value of the Lyapunov function VQ versus time for various q; n = 40, |E |= 156.

0 10 20 30 40 50 60 70 80 90 100
-40

-30

-20

-10

0

10

20

30

q = 0

q = 1

q = 2

q = 3

q = 4

q = 5

q = 6

Figure 2.8. Value of the objective function versus time for various q; n = 40, |E |= 156.

53

Figure 2.9. Error in the primal and dual states for a robust implementation of DANA; n =
20, |E | = 40. Initialization does not satisfy Assumption 2, and perturbations are injected at
t = 25,50,75.

Figure 2.10. Violation of the resource constraint over time for robust DANA; n = 20, |E |= 40.
Perturbations are injected at t = 25,50,75.

54

Chapter 3

Distributed Stochastic Nested Optimiza-
tion via Cubic Regularization

This chapter considers a nested stochastic distributed optimization problem. In it, ap-

proximate solutions to realizations of the inner-problem are leveraged to obtain a Distributed

Stochastic Cubic Regularized Newton (DiSCRN) update to the decision variable of the outer

problem. We provide an example involving electric vehicle users with various preferences which

demonstrates that this model is appropriate and sufficiently complex for a variety of data-driven

multi-agent settings, in contrast to non-nested models. The main two contributions of the chapter

are: (i) development of local stopping criterion for solving the inner optimization problem which

guarantees sufficient accuracy for the outer-problem update, and (ii) development of the novel

DiSCRN algorithm for solving the outer-problem and a theoretical justification of its efficacy.

Simulations demonstrate that this approach is more stable and converges faster than standard

gradient and Newton outer-problem updates in a highly nonconvex scenario.

3.1 Bibliographical Comments

One of the most widely used stochastic optimization method is stochastic gradient-

based (first-order) methods, see [13, 14, 44] as broad references. These methods are powerful

because they necessitate only a small sampling of the data set to compute an update direction

at each iterate. However, these first-order algorithms suffer from slow convergence around

55

saddle-points [40], which are disproportionately more present in higher-dimensional nonconvex

problems [36]. By contrast, higher-order Newton-based methods tend to perform more strongly

across applications in terms of number of calls to an oracle or total iterations, see [103, 111] for

examples in stochastic non-strongly convex and nonconvex settings, respectively, and [6, 74, 96]

for various multi-agent examples.

An issue with many of the aforementioned algorithms is they are vulnerable to slow

convergence or instability in the presence of saddle-points and/or an ill-conditioned Hessian

matrix. A growing body of works thus focuses on using a cubic-regularization term in the second-

order Taylor approximation of the objective function. Nesterov and Polyak laid significant

groundwork for this method in [78], and substantial follow-ups are contained in [25, 26], which

study adaptive batch sizes and the effect of inexactness in the cubic submodel on convergence.

Excitement about this topic has grown substantially in the last few years, with [24] showing

how the global optimizer of the nonconvex cubic submodel can be obtained under certain

initializations of gradient descent, and [94] being one of the first thorough analyses of the

algorithm in the traditional stochastic optimization setting. In [28], the authors consider the

stochastic setting from an adaptive batch-size perspective and [97] is, to our knowledge, the

only existing work in a distributed application, with an alternative approach that allows for

a communication complexity analysis. Both [28] and [97] assume convexity, and [97] is

nonstochastic. As far as we know, no current work has unified distributed, stochastic, and

nonconvex elements, particularly in a nested optimization scenario.

Statement of Contributions

We begin the chapter by formulating a nested distributed stochastic optimization problem,

where approximate solutions to realizations of the inner-problem are needed to obtain iterative

updates to the outer problem, and we motivate this model with an example based on electric

vehicle charging preferences. The contributions of this chapter are then twofold. First, we

56

develop a stopping criterion for a Laplacian-gradient subsolver of the inner-problem. The

stopping criterion can be validated locally by each agent in the network, and the relationship

to solution accuracy aids the synthesis with the outer-problem update. Second, to that end, we

formulate a distributed optimization model of the stochastic outer problem and develop a cubic

regularization of its second-order approximation. This formulation lends itself to obtaining

a Distributed Stochastic Cubic-Regularized Newton (DiSCRN) algorithm, and we provide

theoretical justification of its convergence.

3.2 Problem Formulation

This section details the two problem formulations which are of interest, where the first

problem P1 takes the form of a stochastic approximation whose cost is a parameterization of

the cost of the second problem P2. Problem P2 is a separable resource allocation problem in

which n agents i ∈N must collectively obtain a solution that satisfies a linear equality constraint

while minimizing the sum of their local costs. (This problem commonly appears in real-time

optimal dispatch for electric grids with flexible loads and distributed generators, see e.g. [1].)

Thus, P1 can be treated as a nested optimization, with an objective F that takes stochastic

arguments, and is not necessarily available in closed form if P2 cannot be solved directly and/or

the distribution D being unknown. These problems are stated as

P1 : min
x∈Rd

F(x) = Eχ∼D

[
Fχ(x)

]
.

P2 : min
p∈Rn

f (x, p) =
n

∑
i=1

fi(x, pi),

subject to
n

∑
i=1

pi = Pref + χ̂ = Pref +
n

∑
i=1

χ̂i.

In P1, each fi : Rd×R→R, and Fχ(x)≡ f (x, p?), where p? is the solution to P2 for particular

realizations χ̂i, where χi ∼D i, i.e. χ ∼D = D1×·· ·×Dn. The elements pi ∈R of p ∈Rn and

57

terms χ̂i are each associated with and locally known by agents i ∈N , and Pref ∈ R is a given

constant known by a subset of agents (we discuss its interpretation shortly with an example).

First, for Fχ to be well defined, it helps if solutions p? to P2 are unique for fixed x and χ̂ , which

we now justify with convexity assumptions for fi.

Assumption 8. (Function Properties: Inner-Problem Argument). The local cost functions

fi are twice differentiable and ωi-strongly convex in pi for any fixed x. Further, the second

derivatives are lower and upper bounded:

0 < ωi ≤ ∇
2
pi

fi(x, pi)≤ θi, ∀x ∈ Rd, pi ∈ R, and i ∈N .

This implies ∀x ∈ Rd, pi, p̂i ∈ R and i ∈N :

ωi‖pi− p̂i‖ ≤ ‖∇pi fi(x, pi)−∇pi fi(x, p̂i)‖ ≤ θi‖pi− p̂i‖.

We also use the shorthands ω , mini ωi and θ , maxi θi.

This assumption will be required of our analysis in Section 3.3.1. We now state some

additional assumptions.

Assumption 9. (Function Properties: Lipschitz Outer-Problem Argument). The functions fi

have li-Lipschitz gradients and ρi-Lipschitz Hessians:

‖∇ fi(x, pi)−∇ fi(y, pi)‖ ≤ li‖x− y‖, ∀x,y ∈ Rd,∀pi ∈ R,

‖∇2 fi(x, pi)−∇
2 fi(y, pi)‖ ≤ ρi‖x− y‖, ∀x,y ∈ Rd,∀pi ∈ R.

We also use the shorthands l , maxi li and ρ , maxi ρi.

Assumption 10. (Function Properties: Bounded Variance Outer-Problem Argument). The

58

function Fχ possesses the following bounded variance properties:

E
[
‖∇Fχ(x)−∇F(x)‖2]≤ σ

2
1 , E

[
‖∇2Fχ(x)−∇

2F(x)‖2]≤ σ
2
2 ,

‖∇Fχ(x)−∇F(x)‖2 ≤M1 almost surely, ‖∇2Fχ(x)−∇
2F(x)‖2 ≤M2 almost surely.

Assumption 11. (Function Properties: Lipschitz Interconnection of Variables). The gradient

and Hessian of the function f with respect to x are Lipschitz in p; that is, there exists constants

ψg,ψH > 0 such that

‖∇x f (x, p)−∇x f (x, p̂)‖ ≤ ψg‖p− p̂‖,

‖∇2
xx f (x, p)−∇

2
xx f (x, p̂)‖ ≤ ψH‖p− p̂‖,

∀x ∈ Rd, p, p̂ ∈ Rn.

Assumption 8 is relatively common in the convex optimization literature, and it lends

itself to obtaining approximate solutions to P2 very quickly with stopping criterion guarantees.

Assumption 9 is unanimously leveraged in literature on Cubic-Regularized Newton methods,

as the constant ρ pertains directly to the cubic submodel, while Assumption 10 is a common

assumption in the stochastic optimization literature [94]. We note that, although Assumptions 9

and 10 do not give a direct relationship with the local functions fi(x, pi), they do imply an

implicit relationship between x, p, and D in the sense that solutions p? to P2 (and therefore

the distributions D i) must be “well-behaved” in some sense. This relationship, along with a

broader interpretation of the model P1 and P2, is illustrated more concretely in the following

real-world power distribution example.

Example 1. (EV Drivers with PV Generators). Consider two EV drivers who each have an EV

charging station and a PV generator. The goal of this small grid system is to consume net zero

power from the perspective of the tie line to the bulk grid, thus Pref = 0. The distributions D1,D2

represent the power output distributions of the PVs, and we consider two scenarios for these in

this example: (1) a “sunny day” scenario, where the realizations χ1,χ2 ∼D1,D2 of PVs 1 and

2 are deterministic, and (2) a “cloudy day” scenario, where intermittent cloud cover induces

59

some uncertainty in the moment-to-moment PV generation.

Let A ∈ {sunny,cloudy} indicate the weather forecast. The model is then fully described

as

D i =

δ1.5, A = sunny,

U [0,1.5], A = cloudy
for both i=1,2,

f1(x, p1) = (2x+ p1−1)2, f2(x, p2) = (x+ p2−2)2.

For x = 0, these quadratic functions1 have local minima at p? = (p?1, p?2) = (1,2), which

is interpreted as drivers 1 and 2 preferring to charge at rates of 1 unit and 2 units, respectively, if

there are no external incentives. On a sunny day, both PVs deterministically produce χ̂1, χ̂2 = 1.5,

which effectively balances the unconstrained p? and both drivers can charge at their preference

to maintain ∑i pi = Pref +∑i χ̂i.

However, on cloudy days the generation of the PVs is no longer deterministic. Thus,

the variable x comes in to play, which can represent a government credit that the drivers value

differently. The role of x is to shift the cost functions such that the unconstrained minima are

near lower charging values in consideration of the lower expected generation from PVs 1 and 2.

The optimal x? to P1 is the value which gives the lowest expected cost of an instance of P2

given χ̂1, χ̂2 realizations from the A = cloudy distributions D1,D2. A more complete model of

P2 could include power flow constraints; in this work, we relax these for simplicity.

3.3 Distributed Formulation and Algorithm

In this section, we develop the inner-loop algorithm used to solve P2. We then synthesize

inexact solutions to P2 with the DiSCRN algorithm for P1.

1See [9] for an example where quadratic costs to EV users are induced by resistive energy losses in the battery
model and [5] for a broad reference on modeling generator dispatch.

60

3.3.1 Inner Loop Gradient Solver

For this section, consider x to be fixed and known by all agents. Further, let χ̂i be fixed

(presumably from a realization of D i) and known only to agent i. We adopt the following

assumption on the initial condition p0.

Assumption 12. (Feasibility of Inner-Problem Initial Condition). The agents are endowed

with an initial condition which is feasible with respect to the constraint of P2; that is, they each

possess elements p0
i of a p0 satisfying 1>n p0 = Pref + χ̂.

The assumption is easily satisfied in practice by communicating Pref to one agent i and

setting p0
i = Pref + χ̂i, with all other agents j using p0

j = χ̂ j. An alternative to this assumption

consists of reformulating P2 with distributed constraints and using a dynamic consensus

algorithm as in [34], which would still retain exponential convergence. We impose Assumption 12

for simplicity. Finally, we assume connectedness of the communication graph:

Assumption 13. (Graph Properties). The communication graph G is connected and undirected;

that is, a path exists between any pair of nodes and, equivalently, its Laplacian matrix L= L>� 0

has rank n−1 with eigenvalues 0 = λ1 < λ2 ≤ ·· · ≤ λn.

The discretized Laplacian-flow dynamics are given by:

p+ = p−ηL∇p f (x, p). (3.1)

Note that these dynamics are distributed, as the sparsity of L implies each agent need only know

∇pi fi(x, pi) and ∇p j f (x, p j) for j ∈N i to compute p+i . We now justify convergence of (3.1) to

the solution p? of P2:

Proposition 1. (Convergence of Discretized Laplacian Flow). Let p? ∈ Rn be the unique

minimizer of P2. Given Assumption 12 on the feasibility of the initial condition, Assumption 13

on connectivity of the communication graph, and Assumption 8 on the Lipschitz gradient

61

condition of the function gradients, then, under the dynamics (3.1) with 0 < η < 2
θλn

, p converges

asymptotically to p?.

Proof. Using a standard quadratic expansion around the current iterate p (see e.g. §9.3 of [17])

and Lipschitz bounds yields f (p+)− f (p)≤ θη2/2‖L∇p f (x, p)‖2

−η∇p f (x, p)>L∇p f (x, p). Careful treatment of the eigenspace of L and some algebraic manip-

ulation shows that f (p+)− f (p) is strictly negative for η as in the statement. A more detailed

proof can be found in [7].

We now provide an additional result on exponential convergence of the state error with a

further-constrained step size as compared to the statement in Proposition 1.

Proposition 2. (Exponential Convergence with Bounded Error). Let Assumptions 12, 13,

and 8 hold as before. For 0 < η < 2ωλ2/θ 2λ 2
n , the quantity ‖p− p?‖ converges expo-

nentially to zero under the dynamics (3.1). For η = ωλ2/θ 2λ 2
n , the rate is ‖p+− p?‖ ≤√

1−ω2λ 2
2 /λ 2

n θ 2‖p− p?‖, and ‖pK− p?‖ ≤ ∆ for

K ≥ log(∆/‖p0− p?‖)/ log(
√

1−ω2λ 2
2 /λ 2

n θ 2).

Proof. Consider V (p) = ‖p− p?‖2. Substituting (3.1) and applying bounds via eigenvalues of

L, using Assumption 8, and ν-strong function convexity, we get V (p+)≤ (η2λ 2
n θ 2−2ηλ2ω +

1)V (p), with 0 < η < 2λ2ω/λ 2
n θ 2. The choice of η = ωλ2/λ 2

n θ 2 implies the exponential

convergence as in the statement. See [7] for more details.

We note that the results of Propositions 1 and 2 simply build on a Laplacian-projected

version of vanilla gradient descent. However, it lays some basic groundwork and supplements

our main results in the next subsection.

With this, we are ready to transition to the discussion on obtaining a DiSCRN update to

P1.

62

3.3.2 Outer-Loop Cubic-Newton Update

We endow each agent with a local copy xi of the variable x, and we let x ∈ Rnd be the

stacked vector of these local copies. Thus, a distributed reformulation of P1 is

P1 : min
x∈Rnd

F̄(x) = Eχ∼D

[
F̄χ(x)

]
,

subject to (L⊗ Id)x = 0nd,

where F̄χ : Rnd→R is analagous to Fχ : Rd→R in the sense that each agent evaluates fi(xi, p?i)

with its local copy of xi. Note that the constraint (L⊗ Id)x = 0nd imposes xi = x j,∀i, j (Assump-

tion 13), so F̄χ and Fχ are equivalent in the agreement subspace (and P1 is equivalent to P1).

Since our problem is nested and stochastic, there is a lack of access to a closed form expression

for F̄ and F̄χ . Thus, we introduce an empirical-risk, approximate objective function. To this

end, let FS(x) = 1/S∑
S
s=1 F∆

χs(x) be the approximation of F̄ for S samples of χs ∼ D , where

F∆
χs ≡ ∑ fi(xi, p̃s

i) and ‖ p̃s− p?‖ ≤ ∆ for realization χs. In this sense, F∆
χs implicitly depends on

p̃s, and the ∆ superscript is a slight abuse of notation. For now, the reader can consider ∆ to

be a sufficiently small design parameter describing the inexactness of the obtained solutions to

P2; we build on this later. Ultimately, we intend to use batches of FS rather than the exact F to

implement DiSCRN. Consider then the cubic regularized submodel of FS at some xk:

mk
S(x) = FS(xk)+(x−xk)>gk +

1
2
(x−xk)>Hk(x−xk)+

n

∑
i=1

ρi

6
‖xi− xk

i ‖3, (3.2)

where gk = ∇FS(xk),Hk = ∇2FS(xk). Note that there is a slight difference between (3.2) and the

more standard cubic submodel (1.4) in that the regularization terms are directly separable; this is

crucial for a distributed implementation, and our forthcoming analysis justifies that convergence

can still be established. We are interested in finding x+ which minimizes (3.2) in the agreement

subspace:

P3 : min
x∈Rnd

mk
S(x), subject to (L⊗ Id)x = 0nd . (3.3)

63

Therefore, we prescribe the Decentralized Gradient Descent dynamics from [113]:

x+,t+1 =W x+,t−αt∇xmk
S(x

+,t), (3.4)

where W = Ind − (1/λnL⊗ Id) and αt ∼ 1/t. Per Proposition 3 and Theorem 2 of [113], x+,t

under the dynamics (3.2) converges asymptotically to a stationary point of P3 with O(1/k)

convergence in the agreement subspace, i.e. ‖xi− x‖ approaches zero at a rate O(1/k), where

x = mean(xi).

We remark that one could formulate the Lagrangian of P3 and use a saddle-point

method to obtain a useful update x+. This is more parallel to the work of [24], which achieves

the global solution via gradient descent in the centralized setting. However, even the existence

of a Lagrangian saddle-point is in question when the duality gap is nonzero, so further study is

required on that approach.

Our aim is to obtain an ε-second-order stationary point of P1, as in Definition 1. The

above discussion serves to set up the following condition on xk+1:

Condition 1. (Subsolver Output). Let xk+1 be the output of a subsolver for P3. Then,

(i) xk+1 satisfies (L⊗ Id)xk+1 = 0nd .

(ii) For an arbitrarily small constant c > 0 and some ε > 0, xk+1 satisfies mk
S(x

k+1)−mk
S(x

k)<

−cε‖xk+1−xk ‖− c
√

ρε‖xk+1−xk ‖2.

Part (i) is implied in a linear convergence sense by the result of [113] for the sub-

solver (3.4). The (ii) condition is straightforwardly implied by any subsolver that is guaranteed

to strictly decrease mk
S, e.g. (3.4), because c can be taken arbitrarily small. However, it can be

seen in the statement of Theorem 4 that small c implies a direct tradeoff with ∆ (becomes small)

and/or S (becomes large).

We now give a brief outline of the entire algorithm.

64

DiSCRN Algorithm

1. Initialize x0 s.t. (L⊗ Id)x0 = 0nd

2. Realize χs and initialize p0 per Assumption 12

3. Implement (3.1) until |p+i − pi| ≤ ∆ηλ2ω/
√

n,∀i

4. Repeat from step 2 S times, storing p̃s← p+ at each s

5. Compute locally required elements of gk,Hk

6. Compute an xk+1 satisfying Condition 1, e.g. via (3.4); repeat from step 2

The DiSCRN Algorithm describes a fully distributed algorithm, as each step can be performed

with only local information. Ostensibly, x0 could be initialized arbitrarily, but the first outer-loop

would be a “garbage” update until agreement is obtained in step 6. Note that Step 3 relates to

a distributed stopping criterion for the subsolver of P2; this condition produces a solution p+

in finite iterations which is sufficiently close to p? for the sake of our analysis. This is detailed

more in Theorem 4 and its proof.

Condition 2. (Assumptions and Conditions for Theorem 4). Let F satisfy Assumption 9, on

Lipschitz gradients and Hessians, and Assumption 10, on variance conditions, and let f satisfy

Assumption 11, on Lipschitz interconnection of x and p, and Assumption 8, on the Lipschitz

condition of the function gradients with respect to p. Further, let Assumption 12, on the feasibility

of the initial condition for P2, and Assumption 13 on connectivity of the communication

graph, each hold. Let xk+1 be the output of a subsolver for P3 that satisfies Condition 1

with c, and let p̃s← p+, where p+ is the returned value under the dynamics (3.1) satisfying

|p+i − pi| ≤ ∆ηλ2ω/
√

n,∀i.

Theorem 4. (Convergence of DiSCRN). Let the circumstances of Condition 2 apply here. For

S ≥ max{M1
c̄ε
,

σ2
1

c̄2ε2 ,
M2

c̄
√

ρε
,

σ2
2

c̄2ρε
}O(log((ε1.5ζ c̄)−1)) with c̄ε + ψg∆ ≤ cε and c̄

√
ρε + ψH∆ ≤

65

c
√

ρε , then for all ζ > 0 each xi asymptotically approaches a common ε-second-order stationary

point x̃ of F with probability ≥ 1−ζ under the DiSCRN algorithm dynamics.

Proof. First, we aim to obtain the bound ‖p̃s− p?‖ ≤ ∆ for each instance s of P2. The Lipschitz

condition of Assumption 8 implies

ω‖p− p?‖ ≤ ‖∇p f (x, p)−∇p f (x, p?)‖,

λ2ω‖p− p?‖ ≤ ‖L(∇p f (x, p)−∇p f (x, p?))‖

= ‖L∇p f (x, p)‖= 1/η‖p+− p‖ ≤ ∆λ2ω.

Finally, 1/
√

n comes from breaking p+− p into components and since, for v∈Rn, if |vi| ≤ c/
√

n

implies ‖v‖ ≤ c.

Turning to P1, let gk
? =

1
S ∑

S
s=1 ∑i ∇xi fi(xk

i , p?i) and Hk
? =

1
S ∑

S
s=1 ∑i ∇2

xixi
fi(xk

i , p?i).

Lemma 4 of [94] justifies that for arbitrary c̄ > 0, choosing

S≥max{M1
c̄ε
,

σ2
1

c̄2ε2 ,
M2

c̄
√

ρε
,

σ2
2

c̄2ρε
}O(log((ε1.5ζ c̄)−1)) implies that ‖gk

?−∇F̄(xk)‖≤ c̄ε and ‖(Hk
?−

∇2
xxF̄(xk))v‖ ≤ c̄ε

√
ρε‖v‖,∀v with probability 1−ζ .

Let φ k
g = gk−gk

?,φ
k
H = Hk−Hk

? , where gk and Hk use the inexact estimates p̃s satisfying

‖ p̃s− p?‖ ≤ ∆. Substitutions and applying Assumption 11 gives:

‖gk−∇xF̄(xk)‖ ≤ ‖gk
?−∇xF̄(xk)‖+‖φ k

g‖ ≤ c̄ε +ψg∆,

‖(Hk−∇
2
xxF̄(xk))v‖ ≤ ‖(Hk

? −∇
2
xxF̄(xk))v‖+‖φ k

H‖ ≤ c̄
√

ρε +ψH∆,∀v.

Next, let ξ k := xk+1−xk for notational convenience. The separable cubic regularized terms of

66

mk
S can be used to bound the true function value:

F̄(xk+1)≤ F̄(xk)+∇F̄(xk)>ξ
k +ξ

k>
∇

2F̄(xk)ξ k +∑
i

ρi/6‖xk+1
i − xk

i ‖3⇒

F̄(xk+1)− F̄(xk)≤ mk
S(x

k+1)−mk
S(x

k)+(∇F̄(xk)−gk)>ξ
k +1/2ξ

k>(∇2F̄(xk)−Hk)ξ k

≤ mk
S(x

k+1)−mk
S(x

k)+(c̄ε +ψg∆)‖ξ k‖+(c̄
√

ρε +ψH∆)‖ξ k‖2

≤ mk
S(x

k+1)−mk
S(x

k)+ cε‖ξ k‖+ c
√

ρε‖ξ k‖2 < 0,

where the first inequality is implied by breaking up F̄χ(x) in to its separable local functions and

applying Assumption 9 and noting that the inequality carries through the expectation operator.

Subsequent inequalities are directly obtained via substitutions. The lefthand inequality of the

final line stems from the Theorem statement, and the righthand inequality of the final line

from (ii) of Condition 1.

3.4 Simulation

We consider a synthetic nonconvex case for our simulation study. The cost functions fi

can be represented as:

fi(x, pi) =
1
2

αi(x)p2
i +βi(x)pi + γi.

Each αi : R→ R is quartic in x and generated according to (3.4), where each a2
i is determined

such that minx αi(x) = ωi > 0 with ωi ∈U [1,5] per Assumption 8. The βi : R→R are (possibly

nonconvex) quadratic, and γi = 0.

αi(x) = a1
i (x− z1

i)(x− z2
i)(x− z3

i)(x− z4
i)+a2

i ,

a1
i ∈U [0.5,1.5],z1

i ∈U [−2,−1],z2
i ∈U [−1,0],z3

i ∈U [0,1],z4
i ∈U [1,2],

βi(x) = b1
i (x− z5

i)(x− z6
i), b1

i ∈U [−1,1],z5
i ∈U [−2,0],z6

i ∈U [0,2],

We compare our DiSCRN method with gradient-based and Newton-based updates of the

67

same batch sizes, where the gradient-like and Newton-like updates are computed via:

mk
g(x) = FS(xk)+(x−xk)>gk +∑

i

ηg

2
‖xi− xk

i ‖2,

mk
H(x) = FS(xk)+(x−xk)>gk +

1
2
(x−xk)>Hk(x−xk)+∑

i

ηH

2
‖xi− xk

i ‖2,

We obtain xk+1 empirically for all three methods by implementing (3.4) until the updates become

very small. We found that both ηg and ηH must be sufficiently large to ensure stability, and

∇2
xF(x)�−ηHId to ensure mk

H(x) bounded. We take ∆ = 0.1,S = 20,n = 40, |E |= 120,Pref =

40,D i = U [0,1.5] ∀i,ρ = 50,ηg = 100,ηH = 50.

We note substantially improved performance of DiSCRN over the more traditional

gradient-based and Newton-based approaches. In particular, the trajectory finds a minimizer in

roughly half and one-third the number of outer-loop iterations required by Newton and gradient,

respectively. It is clear that, for xk+1 ≈ xk, the cubic regularization is less dominant than the

squared regularizations, allowing the DiSCRN trajectory to be influenced more by the problem

data gk,Hk. As for the parameters (ρ,ηg,ηH), ηH = 50 and ηg = 100 were roughly the lowest

possible values without inducing instability. By contrast, reducing ρ to values ∼ 10−1 was still

stable for DiSCRN. We noticed a clear tradeoff between S and ∆, with small S∼ 100 requiring

∆∼ 10−1 to converge and large S∼ 103 converging even for large ∆∼ 102, which is implied by

Theorem 4. Finally, DiSCRN achieves reduced disagreement compared to gradient and Newton;

this could be in part due to (3.4) finding a stationary point of P3 faster, allotting more iterations

where the consensus terms dominate the update.

Acknowledgements

The material in this chapter, in full, is being revised and prepared for submission to the

Systems & Control Letters. It may appear as Distributed Stochastic Nested Optimization via

Cubic Regularization, T. Anderson and S. Martı́nez. The dissertation author was the primary

68

0 5 10 15 20 25 30 35 40 45 50
300

400

500

600

DiSCRN

grad

Newton

0 5 10 15 20 25 30 35 40 45 50
10

-5

10
-4

10
-3

DiSCRN

grad

Newton

Figure 3.1. Comparison of CRN method with gradient-based and Newton-based approaches.
Top: empirical approximation of F(xk), obtained by averaging f (xk, p?) over 500 realizations of
P2 at each k. Bottom: agents’ disagreement on the value of x, quantified by ‖(I−11>/n)xk‖2.

69

investigator and author of this paper.

70

Chapter 4

Distributed Resource Allocation with Bi-
nary Decisions via Newton-like Neural
Network Dynamics

This chapter aims to solve a distributed resource allocation problem with binary local

constraints. The problem is formulated as a binary program with a cost function defined by the

summation of agent costs plus a global mismatch/penalty term. We propose a modification of the

Hopfield Neural Network (HNN) dynamics in order to solve this problem while incorporating a

novel Newton-like weighting factor. This addition lends itself to fast avoidance of saddle points,

which the gradient-like HNN is susceptible to. Turning to a multi-agent setting, we reformulate

the problem and develop a distributed implementation of the Newton-like dynamics. We show

that if a local solution to the distributed reformulation is obtained, it is also a local solution to

the centralized problem. A main contribution of this work is to show that the probability of

converging to a saddle point of an appropriately defined energy function in both the centralized

and distributed settings is zero under light assumptions. Finally, we enlarge our algorithm

with an annealing technique which gradually learns a feasible binary solution. Simulation

results demonstrate that the proposed methods are competitive with centralized greedy and SDP

relaxation approaches in terms of solution quality, while the main advantage of our approach is a

significant improvement in runtime over the SDP relaxation method and the distributed quality

of implementation.

71

4.1 Bibliographical Comments

Quadratic programs with nonconvex binary constraints are known to be NP-hard in

general, see [27, 65]. In this chapter, we consider a problem which is quite applicable to the

economic dispatch problem in power networks, see [?, ?, 56] for recent examples in microgrid

environments and [6] for a distributed Newton-like method in a more abstract setting. However,

none of these examples address devices with binary constraint sets. The binary problem is,

however, desirable to approach in a distributed context [109, 110]. Greedy algorithms [35] have

been proposed for binary programs, such as the well-known Traveling Salesman Problem (TSP),

but it is well documented that these methods can greatly suffer in performance [52] except

in cases where the cost function is submodular [76, 89]. A more modern approach to solving

optimization problems with a binary feasibility set is to cast them as a semidefinite program

(SDP) with a nonlinear rank constraint, see [16,82,100] for some classical references or [69,102]

for more recent work on the topic. By relaxing the rank constraint, a convex problem is obtained

whose solution can be shown to be equal to the optimal dual value of the original problem, see

e.g. [81]. However, it is necessary in these approaches to either impose a single centralized

coordinator to compute the solution and broadcast it to the actuators or agents, or schedule

computations, which suffers from scalability issues, privacy concerns, and does not enjoy the

simpler and more robust implementation of a distributed architecture in a large network.

Neuro-dynamic programming is a different paradigm for addressing nonconvex problems

with computational tractability, see [11] for a broad reference. A neural-network based method

for binary programs was first developed by Hopfield in [57], which was originally proposed in

order to address TSPs. We refer to this method from here on as a Hopfield Neural Network (HNN).

This method provided a completely different avenue for approaching binary optimizations, and

followup works are found in [10, 60, 71, 90]. These works formalize and expand the framework

in which the HNN method is applicable. However, these algorithms essentially implement a

gradient-descent on an applicable nonconvex energy function, which is susceptible to being

72

slowed down by convergence to saddle-points. There are avenues for Newton-like algorithms

in nonconvex environments to address this issue, which incorporate some treatment of the

negative Hessian eigenvalues in order to maintain a monotonic descent of the cost function,

see e.g. [36, 46]. A recently developed method employs a Positive-definite Truncated inverse

(PT-inverse) operation on the Hessian of a nonconvex energy or cost function in order to

define a nonconvex Newton-descent direction [85], although the technique does not presently

address binary settings. Perhaps more importantly, all variants of existing HNN methods and

the aforementioned works for nonconvex Newton-like algorithms are framed for centralized

environments in which each agent knows global information about the state of all other agents,

which is not scalable.

Statement of Contributions

The contributions of this chapter are threefold. We start by considering a binary program-

ming problem formulated as a summation of local costs plus a squared global term. By leveraging

a specific choice for the cost functions, we adapt the setting to an HNN framework. Then, we

propose a novel modification of the dynamics with a PT-inverse of the Hessian of an appropriate

energy function to define centralized NEWTON-LIKE NEURAL NETWORK (NNN-C). We prove

a rigorous convergence result to a local minimizer, thus excluding saddle-points, with probability

one, given some mild assumptions on the algorithm parameters and initial condition. Thirdly,

we reformulate the problem so that it is solvable via a distributed algorithm by means of an

auxiliary variable. We show that local solutions of the distributed reformulation are equivalent

to local solutions of the centralized one, and we define a corresponding energy function and

distributed algorithm for which we show convergence to a local minimizer with probability

one. Simulations validate that our method is superior to SDP relaxation approaches in terms of

runtime and scalability and outperforms greedy methods in terms of scalability.

73

4.2 Problem Statement and Dual Problem

Here, we formally state the nonconvex optimization problem we wish to solve and

formulate its dual for the sake of deriving a lower bound to the optimal cost.

We aim to find an adequate solution to a resource allocation problem where the opti-

mization variables take the form of binary decisions over a population of n agents. We note

that the problem we consider is applicable to generator dispatch and active device response in

an economic dispatch power systems setting [1], but the remainder of the chapter will frame

it primarily as resource allocation. Let each agent i ∈ {1, . . . ,n} be endowed with a decision

variable xi and a cost ci ∈ R, a value which indicates the incremental cost of operating in the

xi = 1 state versus the xi = 0 state. We do not impose a sign restriction on ci, but this may be a

common choice in the power systems setting where xi = 1 represents an “on” device state and

xi = 0 represents “off.” Additionally, each agent is endowed with a parameter pi which represents

some incremental consumption or generation quantity when operating in the xi = 1 state versus

xi = 0 and also a passive cost di.

We are afforded some design choice in the cost function models for xi /∈ {0,1}, and for

each i ∈ {1, . . . ,n}, so we design abstracted cost functions fi : [0,1]→ R that satisfy fi(0) = di

and fi(1) = ci +di,∀i. This design choice is intrinsic to a cost model for any separable binary

decision optimization context. In particular, the value of fi(xi) for any xi /∈ {0,1} is only relevant

to the algorithm design, but need not have a physical interpretation or pertain to the optimization

model since these points are infeasible. With this in mind, we enlarge the cost model by adopting

the following:

Assumption 14. (Quadratic Cost Functions). The local cost functions fi take the form

fi(xi) =
ai

2
(xi−bi)

2− aib2
i

2
+di,

with ai,bi,di ∈ R.

74

Note that, for any value ci = fi(1)− fi(0), there exists a family of coefficients ai,bi

such that (ai/2)(1− bi)
2− (ai/2)b2

i = ci. Further, the constant terms ensure fi(0) = di and

fi(1) = ci +di. The design of ai,bi will be discussed in Section 4.3.

The problem we aim to solve can now be formulated as:

P1 : min
x∈{0,1}n

f (x) =
n

∑
i

fi(xi)+
γ

2

(
p>x−Pr

)2
.

Here, Pr ∈ R is a given reference value to be matched by the total output p>x of the devices,

with p ∈ Rn having entries pi. This matching is enforced by means of a penalty term with

coefficient γ > 0 in P1. In the power systems setting, Pr can represent a real-power quantity to

be approximately matched by the collective device-response. The coefficient γ and the signal Pr

are determined by an Independent System Operator (ISO) and communicated to a Distributed

Energy Resource Provider (DERP) that solves P1 to obtain a real-time dispatch solution, see [1]

for additional information.

The primal P1 has an associated dual D1 which takes the form of a semidefinite program

(SDP) whose optimal value lower bounds the cost of P1. This SDP is

D1 : max
µ∈Rn,∆∈R

∆, (4.1a)

subject to

1
2

Q(µ) ξ (µ)

ξ (µ)> ζ −∆

� 0. (4.1b)

In D1, Q : Rn → Rn×n and ξ : Rn → Rn are real-affine functions of µ and ζ is a constant.

These definitions are Q(µ) =
(

diag(a/2+µ)+
γ

2
pp>

)
,ξ (µ) = ((aibi)i +µ + γPr p), and ζ =

∑
n
i=1

aib2
i

2
+

γ

2
P2

r . See [17] for more detail on the derivation of D1.

75

4.3 Centralized Newton-like Neural Network

In this section, we develop the Centralized NEWTON-LIKE NEURAL NETWORK, or

NNN-C, which is well suited for solving ¶1 in a centralized setting.

To draw analogy with the classic Hopfield Neural Network approach we will briefly

introduce an auxiliary variable ui whose relation to xi is given by the logistic function g for each

i:

xi = g(ui) =
1

1+ e−ui/T
, ui ∈ R, (4.2)

ui = g−1(xi) =−T log
(

1
xi
−1
)
, xi ∈ (0,1) ,

with temperature parameter T > 0.

Let x ∈ (0,1)n,u ∈ Rn be vectors with entries given by xi,ui. To establish our algorithm,

it is appropriate to first define an energy function related to P1. Consider

E(x) = f (x)+
1
τ

∑
i

∫ xi

0
g−1(ν)dν , (4.3)

where τ > 0 is a time-constant and for z ∈ [0,1],

∫ z

0
g−1(ν)dν =

T
(
log(1− z)− z log(1

z −1)
)
, z ∈ (0,1),

0, z ∈ {0,1}.

The classic HNN implements dynamics of the form u̇=−∇xE(x), where the equivalent dynamics

in x can be computed as ẋ =−∇xE(x)dx/du. These dynamics can be thought of to model the

interactions between neurons in a neural network or the interconnection of amplifiers in an

electronic circuit, where in both cases the physical system tends toward low energy states,

see [57,90]. In an optimization setting, low energy states draw analogy to low cost solutions. We

now describe our modification to the classical HNN dynamics.

76

Recall that the domain of x is (0,1)n and our elementwise notation for log and division.

We have the expressions ∇xE(x) =−Wx−v− (T/τ) log(1/xi−1)i and dx/du = (x− (x2
i)i)/T ,

where W =−diag(a)− γ pp> ∈ Rn×n and v = (aibi)i + γPr p ∈ Rn are defined via f . From this

point forward, we work mostly in terms of x for the sake of consistency. Consider modifying the

classic HNN dynamics with a PT-inverse (|H(x)|m)−1 � 0 as in [85], where H(x) = ∇xxE(x).

The NNN-C dynamics are then given by:

ẋ =−(|H(x)|m)−1 diag(
dx
du

)∇xE(x)

= (|H(x)|m)−1 diag(
(xi− x2

i)i

T
)

(
Wx+ v+

T
τ

log(1/xi−1)i

)
.

(4.4)

These dynamics lend to the avoidance of saddle points of E via inclusion of the PT-

inverse weighting (|H(x)|m)−1, in contrast to the more first-order flavor of the classic HNN

dynamics. To see this, consider the eigendecomposition H(x̃) = Q>ΛQ at some x̃ near a saddle

point, i.e. ∇xE(x̃) ≈ 0. If many entries of Λ are small in magnitude and remain small in the

proximity of x̃, then the gradient is changing slowly along the “slow” manifolds associated with

the eigenspace of the small eigenvalues. This is precisely what the PT-inverse is designed to

combat: the weighting of the dynamics is increased along these manifolds by a factor that is

inversely proportional to the magnitude of the eigenvalues. Additionally, negative eigenvalues

of the Hessian are flipped in sign, which causes attractive manifolds around saddle points to

become repellent.

It is desirable for E to be concave on most of its domain so the trajectories are pushed

towards the feasible points of P1; namely, the corners of the unit hypercube. To examine this,

the Hessian of E can be computed as H(x) = d2 f
dx2 +

1
τ

diag(dg−1(x)
dx) = −W +

T
τ

diag(1
(xi−x2

i)i
).

Notice that the second term is positive definite on x ∈ (0,1)n and promotes the convexity of E,

particularly for elements xi close to 0 or 1. For a fixed T,τ , choosing ai <−γ‖p‖2−4T/τ,∀i

guarantees E(x)≺ 0 at x = (0.5)1n. Generally speaking, choosing ai to be negative and large in

magnitude lends itself to concavity of E over a larger subset of its domain and to trajectories

77

converging closer to the set {0,1}n. However, this comes at the expense of not exploring a rich

subset of the domain. At the end of this section, we develop a Deterministic Annealing (DA)

approach inspired by [84] for the online adjustment of T,τ to obtain an effective compromise

between exploration of the state space and convergence to a feasible point of P1.

We now characterize the equilibria of (4.4) for x ∈ [0,1]n. It would appear that x with

some components xi ∈ {0,1} are candidate equilibria due to the xi− x2
i factor vanishing. How-

ever, the dynamics are not well defined here due to the log term. Additionally, note that

limxi→δ e>i H(x)ei = ∞, δ ∈ {0,1},∀i, where ei is the ith canonical basis vector. Due to the

T
τ(xi−x2

i)
term dominating W in the expression for H when xi values are close to {0,1}, it follows

that an eigenvalue of (|H(x)|m)−1 approaches zero as xi→ 0 or 1 with corresponding eigenvector

approaching vi = ei:

lim
xi→δ

= v>i (|H(x)|m)−1vi =
T
τ
(xi− x2

i) = 0, δ ∈ {0,1},∀i.

Using this fact, and ignoring T,τ > 0, we can compute the undetermined limits in the components

of ẋ as xi→ δ ∈ {0,1} by repeated applications of L’Hospital’s rule:

lim
xi→δ

log
(

1
xi
−1
)
(xi− x2

i)
2 =

0, δ = 0+,

0, δ = 1−.
(4.5)

Thus, components xi ∈ {0,1} constitute candidate equilibria. We will, however, return to the

first line of (4.5) in the proof of Lemma 3 to show that they are unstable. As for components

of x in the interior of the hypercube, the expression ẋ = 0 can not be solved for in closed form.

However, we provide the following Lemma which shows that the set of equilibria is finite.

Lemma 2. (Finite Equilibria). Let X be the set of equilibria of (4.4) satisfying ẋ = 0 on

x ∈ [0,1]n. The set X is finite.

Proof. First consider only X ∩(0,1)n. Note that (|H(x)|m)−1 � 0 (by construction) and

78

diag((xi− x2
i)i/T)� 0 on x ∈ (0,1)n, so we focus on

Wx+
T
τ

log(1/xi−1)i + v = 0n . (4.6)

Examining the above expression elementwise, it is nonconstant, continuous, and its derivative

changes sign only a finite number of times. Therefore, the total number of zeros on (0,1)n must

be finite.

Now consider the ith element of (4.6) for x j→ 0 or 1 for all j in an arbitrary permutation

of {1, . . . ,n}\{i}. Since the number of these permutations is finite, and each permutation still

gives rise to a finite number of solutions to (4.6) in the ith component, it follows that X is

finite.

To demonstrate the qualitative behavior of equilibria in a simple case, consider a one-

dimensional example with a >−γ p2−4T/τ and recall that, for x ∈ (0,1), the sign of −∇xE(x)

is the same as ẋ. In Figure 4.1, we observe that −∇xE(x) monotonically decreases in x, and

a globally stable equilibrium exists in the interior x ∈ (0,1) near x = 0.5. On the other hand,

a < −γ p2− 4T/τ gives way to 3 isolated equilibria in the interior (one locally unstable near

x = 0.5 and two locally stable near x ∈ {0,1}). This behavior extends in some sense to the

higher-dimensional case. Therefore, for a scheme in which T and τ are held fixed, we prescribe

a < −γ‖p‖2−4T/τ . We provide a Deterministic Annealing (DA) approach inspired by [84]

for the online adjustment of T,τ in the following subsection which compromises with this strict

design of a.

Finally, we establish a Lemma about the domain of the trajectories of (4.4).

Lemma 3. (Forward Invariance of the Open Hypercube). The open hypercube (0,1)n is a

forward-invariant set under the NNN-C dynamics (4.4).

Proof. Consider again the terms of ẋ elementwise. There are two cases to consider for evaluating

xi: xi = ε and xi = 1−ε for some 0 < ε� 1 sufficiently small such that the terms of (|H(x)|m)−1

79

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1 0 0.5 1

Figure 4.1. Illustration of −∇xE(x) (top) and ẋ (bottom) for three instances of a. Case 1:
a >−γ‖p‖2−4T/τ , Case 2: a =−γ‖p‖2−4T/τ , Case 3: a <−γ‖p‖2−4T/τ .

are still dominated by (1/xi− x2
i) and the Wx+ v are still dominated by the log term. Then,

consider the expression

log(1/xi−1)(xi− x2
i)

2. (4.7)

For xi = ε ≈ 0, (4.7) evaluates to a small positive value, and for xi = 1− ε ≈ 1, (4.7) evaluates

to a small negative value. We have argued that these are the dominating terms regardless of

values of the remaining components of x, and so we conclude that xi ∈ {0,1} are componentwise

anti-stable and that elements of x will never approach 0 or 1. Thus, the open hypercube is forward

invariant.

Knowing that P1 is generally NP-hard, it is unlikely that a non-brute-force algorithm

exists that can converge to a global minimizer. For this reason, we aim to establish asymptotic

80

stability to a local minimizer of E. We first establish some assumptions.

Assumption 15. (Random Initial Condition). The initial condition x(0) is chosen randomly

according to a distribution P that is nonzero on sets that have nonzero volume in [0,1]n.

An appropriately unbiased initial condition for our algorithm is x(0)≈ (0.5)1n, which

is adequately far from the local minima located near corners of the unit cube. So, we suggest

choosing a uniformly random x(0) ∈B((0.5)1n,ε), where 0 < ε � 1.

Assumption 16. (Choice of T,τ). The constants T,τ > 0 are each chosen randomly according

to a distribution P̄ that is nonzero on sets that have nonzero volume on R+.

Similarly to x(0), we suggest choosing these constants uniformly randomly in a ball

around some nominal T0,τ0, i.e. T ∈B(T0,ε),τ ∈B(τ0,ε),0 < ε � 1. The T0,τ0 themselves

are design parameters stemming from the neural network model, and we provide some intuition

for selecting these in the simulation Section.

Now we state the main convergence result of NNN-C in Theorem 5, which states

that for a random choice of T,τ , an initial condition chosen randomly from (0,1)n converges

asymptotically to a local minimizer of E with probability one.

Theorem 5. (Convergence of NNN-C). Given an initial condition x(0) ∈ (0,1)n, the trajectory

x(t) under NNN-C converges asymptotically to a critical point x? of E. In addition, under

Assumption 15, on the random choice of initial conditions, and Assumption 16, on the random

choice of T,τ , the probability that x(0) is in the set ∪̂
x
W s(x̂), where x̂ is a saddle-point or local

maximum of E, is zero.

Proof. Let X be the set of all critical points of E. We first establish that E decreases along the

trajectories of NNN-C and that x(t) converges asymptotically to X . Differentiating E in time,

81

we obtain:

dE
dt

= ẋ>∇xE(x) = ẋ>
(
−Wx− v+g−1(x)/τ

)
=−ẋ> diag(

T
(xi− x2

i)i
)|H(x)|mẋ < 0, for ẋ 6= 0, x ∈ (0,1)n.

(4.8)

Recall that x(t)∈ (0,1)n for all t ≥ 0 due to Lemma 3. From (4.4) and the discussion that followed

on equilibria, ẋ = 0 implies ∇xE(x) = 0 due to (|H(x)|m)−1 � 0 and diag((xi− x2
i)i/T)� 0 on

x ∈ (0,1)n. The domain of E is the compact set [0,1]n (per the definition of the integral terms),

and E is continuous and bounded from below on this domain, so at least one critical point exists.

Combining this basic fact with (4.8) shows that the NNN-C dynamics monotonically decrease E

until reaching a critical point. More formally, applying the LaSalle Invariance Principle [62] tells

us that the trajectories converge to the largest invariant set contained in the set dE/dt = 0. This

set is X , which is finite per Lemma 2. In this case, the LaSalle Invariance Principle additionally

establishes that we converge to a single x? ∈X .

The proof of the second statement of the theorem relies on an application of the Stable

Manifold Theorem (see [51]) as well as Lemma 2. Let ẋ = ϕT,τ(x) for a particular T,τ . We aim

to show that P[∪x̂{W s(x̂) | x̂ is a saddle or local maximum}] = 0 under Assumptions 15-16. It

is sufficient to show that, for each critical point x? such that ϕT,τ(x?) = 0, and almost all T,τ ,

DϕT,τ(x?) is full rank and its eigenvalues have non-zero real parts. The reason for this argument

is the following: let x? be a critical point with DϕT,τ(x?) full rank and eigenvalues with non-zero

real parts. If the eigenvalues do not all have positive real parts, then some have negative real parts,

which indicates that x? is a saddle or local maximum of E. These negative real-part eigenvalues

induce an unstable manifold of dimension nu ≥ 1. As such, the globally stable set W s(x?) is a

manifold with dimension n−nu < n, and P [x(0) ∈W s(x?)] = 0 per Assumption 15.

To argue this case, define h : (0,1)n×R×R→ R as

h(x,T,τ) = detDϕT,τ(x).

82

We now leverage Assumption 16 and [73] to claim first that P̄ [h(x?,T,τ) = 0] = 0 for each

x? ∈X , i.e. DϕT,τ(x?) is full rank for each x? with probability one w.r.t. P̄. We first address

the points x for which the function h is discontinuous. Define X̂ as the set of x for which

the truncation of the eigenvalues of H(x) becomes active, i.e. the discontinuous points of h.

Although we do not write it as such, note that H is implicitly a function of T,τ and that the

eigenvalues of H can be expressed as nonconstant real-analytic functions of T,τ . Considering

this fact and an arbitrary x, the set of T,τ which give x ∈ X̂ has measure zero with respect to

R2 [73]. Thus, for particular T,τ , h is C∞ almost everywhere. Applying once more the argument

in [73] and Assumption 16 with the fact that h is a nonconstant real analytic function of T,τ we

have that

P̄ [T (x̂), {(T,τ) |h(x̂,T,τ) = 0}] = 0, ∀ x̂ /∈ X̂ .

Now consider the set of critical points as an explicit function of T,τ and write this set as X (T,τ).

Recalling Lemma 2, the set of x̂ that we are interested in reduces to a finite set of critical points

x? ∈X (T,τ). Thus, we can conclude that P̄(∪x?∈X (T,τ)T (x?))≤ ∑x?∈X (T,τ) P̄(T (x?)) = 0.

There is an additional case which must be considered, which is that h(x?,T,τ) 6= 0, but

some eigenvalues of DϕT,τ(x?) are purely imaginary and induce stable center manifolds, which

could accommodate the case of a globally stable set which is an n-dimensional manifold (i.e.

the “degenerate saddle” case). We consider the function h mostly out of convenience, but the

argument can be extended to a function h : (0,1)n×R×R→ Cn which is a map to the roots of

the characteristic equation of DϕT,τ(x). We are concerned that each element of h(x,T,τ) should

have a nonzero real part almost everywhere. To extend the previous case to this, consider the

identification C≡R2 and compose h with the nonconstant real analytic function ζ (w,z) = w, for

which the zero set is w≡ 0, corresponding to the imaginary axis in our identification. From this,

we obtain a nonconstant real-analytic as before whose zero set is the imaginary axis. Applying

the argument in [73] in a similar way as above, h(x,T,τ) has nonzero real parts for almost all

83

(T,τ) for each x. Therefore, the probability of a particular saddle point or local maximum x?

having a nonempty stable center manifold is zero for arbitrary x(0) satisfying Assumption 15

and T,τ satisfying Assumption 16.

We now define a Deterministic Annealing (DA) variant inspired by [84] to augment the

NNN-C dynamics and provide a method for gradually learning a justifiably good feasible point

of P1. In [84], the author justifies the deterministic online tuning of a temperature parameter in

the context of data clustering and shows that this avoids poor local optima by more thoroughly

exploring the state space. Similarly, we aim to learn a sufficiently good solution trajectory by

allowing the dynamics to explore the interior of the unit hypercube in the early stages of the

algorithm, and then to force the trajectory outward to a feasible binary solution by gradually

adjusting T or τ online.

Consider either reducing the temperature T or increasing the time constant τ during the

execution of NNN-C. This reduces the terms in E which promote convexity, particularly near

the boundaries of the unit hypercube. As T,τ are adjusted, for a ≺ −γ‖p‖2, the domain of E

becomes gradually more concave away from the corners of the unit hypercube. Thus, starting

with T0/τ0 sufficiently large, the early stages of the algorithm promote exploration of the interior

of the state space. As T/τ is reduced at a rate dictated by β , the equilibria of E are pushed

closer to (and eventually converge to) the feasible points of P1. The update policy we propose

is described formally in Algorithm 2, and we further explore its performance in simulation.

Algorithm 2. Determinisitc Annealing

1: procedure DET-ANNEAL(β > 1,T0,τ0, td)
2: Initialize x(0)
3: T ← T0,τ ← τ0
4: while true do
5: Implement NNN-C for td seconds
6: τ ← βτ or T ← (1/β)T

Note that Algorithm 2 leads to a hybrid dynamic system with discrete jumps in an

enlarged state φ = (x,T,τ), which can cast some doubt on basic existence and uniqueness of

84

solutions. We refer the reader to Propositions 2.10 and 2.11 of [48] to justify existence and

uniqueness of solutions in the case of td > 0 fixed.

Corollary 1. (Convergence to Feasible Points). Under Assumptions 15-16 and a ≺ −γ‖p‖2,

the NNN-C dynamics augmented with Algorithm 2 converge asymptotically to feasible points of

P1.

The result of the Corollary is quickly verified by inspecting the terms of H(x). The

function E is smooth, strictly concave near x = (0.5)1n for small T/τ due to the design of ai,

and becomes strictly convex as the elements of x approach 0 or 1, corresponding to isolated

local minima of E, due to the T/τ term dominating H(x). As the quantity T/τ is reduced

under Algorithm 2, these local minima are shifted asymptotically closer to corners of the unit

hypercube, i.e. feasible points of P1.

4.4 Distributed Hopfield Neural Network

With the framework of the previous section we formulate a problem ¶2 which is closely

related to P1, but for which the global penalty term can be encoded by means of an auxiliary de-

cision variable. This formulation leads to the Distributed NEWTON-LIKE NEURAL NETWORK,

or NNN-D, which we rigorously analyze for its convergence properties.

It is clear from the PT-inverse operation and W being nonsparse that NNN-C is indeed

centralized. In this section, we design a distributed algorithm in which each agent i must only

know p j, j ∈ N i and the value of an auxiliary variable y j, j ∈ N i∪N 2
i , i.e. it must have

communication with its two-hop neighbor set. If two-hop communications are not directly

available, the algorithm can be implemented with two communication rounds per algorithm step.

We provide comments on a one-hop algorithm in Remark 6.

Assumption 17. (Graph Properties and Connectivity). The graph G = (N ,E) is undirected

and connected; that is, a path exists between any two pair of nodes and, equivalently, its

associated Laplacian matrix L = L> has rank n−1.

85

Now consider the n linear equations (pixi)i +Ly = (Pr/n)1n . Notice that, by multiplying

from the left by 1>n and applying 1>n L = 0>n , we recover p>x = Pr. Thus, by augmenting the state

with an additional variable y ∈ Rn, we can impose a distributed penalty term. We now formally

state the distributed reformulation of P1:

P2 : min
x∈{0,1}n,y∈Rn

f̃ (x,y) =
n

∑
i

fi(xi)+
γ

2
σ
>

σ ,

where the costs fi again satisfy fi(1)− fi(0)= ci and we have defined σ =(pixi)i+Ly−(Pr/n)1n

for notational simplicity. Before proceeding, we provide some context on the relationship

between P1 and P2.

Lemma 4. (Equivalence of P1 and P2). Let Assumption 17, on graph connectivity, hold, and

let (x?,y?) be a solution to P2. Then, x? is a solution to P1 and f (x?) = f̃ (x?,y?).

Proof. The equivalence stems from the global term and the flexibility in the unconstrained y

variable. Notice
γ

2
σ
>

σ =
γ

2
σ
>(In−1n 1>n /n)σ +

γ

2
σ(1n 1>n /n)σ

=
γ

2
σ
>(In−1n 1>n /n)σ +

γ

2
(p>x−Pr)

2.

We have recovered the original global term of P1 in the bottom line, so now we deal with the

remaining term. The matrix In−1n 1>n /n� 0 has image In−1n 1>n /n = span{1n}⊥ = imageL,

given that L is connected. Thus, because y is unconstrained and does not enter the cost anywhere

else, we can compute the set of possible minimizers of f̃ in closed form with respect to any x as

y? ∈ {−L†((pixi)i− (Pr/n)1n
)
+θ 1n | θ ∈ R}

= {−L†(pixi)i +θ 1n | θ ∈ R}.

Moreover, substituting a y? gives σ ∈ span{1n}, and it follows that the problem P2 reduces

precisely to P1.

To define NNN-D, we augment the centralized NNN-C with gradient-descent dynamics

86

in y on a newly obtained energy function Ẽ of P2. Define Ẽ as

Ẽ(x,y) = f̃ (x,y)+
1
τ

∑
i

∫ xi

0
g−1(ν)dν . (4.9)

In Section 4.3, we obtained a matrix W which was nonsparse. Define W̃ , ṽ for Ẽ via

f̃ as W̃ = −diag(a+ γ(p2
i)i), ṽ = (aibi)i + γ diag(p)((Pr/n)1n−Ly) . Compute the Hessian of

Ẽ with respect to only x as H̃(x) = ∇xxẼ(x,y) =−W̃ +(T/τ)diag(1/x− (x2
i)i). Since H̃(x) is

diagonal, the iith element of the PT-inverse of H̃(x) can be computed locally by each agent i as:

(|H̃(x)|m)−1
ii =

|H̃(x)ii|−1, |H̃(x)ii| ≥ m,

1/m, o.w.

where H̃(x)ii = ai+γ p2
i +T/τ(xi−x2

i)
−1. The NNN-D dynamics, which are PT-Newton descent

in x and gradient descent in y on Ẽ, are then stated as:

ẋ = (|H̃(x)|m)−1 diag(
(xi− x2

i)i

T
)

(
W̃x+

T
τ

log(1/xi−1)i + ṽ
)
,

ẏ =−αγL((pixi)i +Ly) ,

(4.10)

where α = diag(αi) is a diagonal matrix of arbitrary positive gains αi > 0. Due to the new

matrices W̃ , ṽ and the sparsity of L, ẋ can be computed with one-hop information and ẏ with

two-hop information (note the L2 term); thus, (4.10) defines a distributed algorithm. Additionally,

recalling the discussion on parameter design, the problem data a and b can now be locally

designed.

Before proceeding, we establish a property of the domain of y and some distributed

extensions of Lemmas 2 and 3.

Lemma 5. (Domain of Auxiliary Variable). Given an initial condition y(0) with 1>n y(0) = κ ,

87

the trjaectory y(t) is contained in the set

Y = {ω +(κ/n)1n | 1>n ω = 0}. (4.11)

Proof. The proof is trivially seen by multiplying ẏ in (4.10) from the left by 1n and applying the

null space of L.

Lemma 6. (Closed Form Auxiliary Solution). For an arbitrary fixed x ∈ [0,1]n, the unique

minimizer y? contained in Y of both f̃ and Ẽ is given by

y? =−L† (pix̃i)i +
κ

n
1n . (4.12)

This is also the unique equilibrium of (4.10) in Y .

Proof. The first term is computed by setting ∇y f̃ (x,y?) = 0n (resp. ∇yẼ(x,y?) = 0n) and solving

for y?. There is a hyperplane of possible solutions due to the rank deficiency of L, but we are

looking for the unique solution in Y . The second term therefore follows from (4.11). The fact that

this point is also the unique equilibrium in Y follows from the fact that ẏ =−α∇yẼ(x,y?).

Lemma 7. (Finite Equilibria (Distributed)). Let X̃ × Ỹ be the set of equilibria of (4.10)

satisfying (ẋ, ẏ) = 0 on (x,y) ∈ [0,1]n×Y . The set X̃ × Ỹ is finite.

Proof. The proof follows closely to the proof of Lemma 2 with the variation that ṽ in the

expression for ẋ is now a function of y. Given the result of Lemma 6, we may directly substitute

the unique y? (4.12) for any x. Because y? is simply a linear expression in x, the same argument

as in Lemma 2 that X̃ is finite follows.

We now extend the results of Theorem 5 to the distributed case of solving P2 via

NNN-D. We have the following theorem on the trajectories of (x(t),y(t)) under (4.10), which

can be interpretted as establishing convergence to a local minimizer with probability one.

88

Theorem 6. (Convergence of NNN-D). Given an initial condition (x(0),y(0)) ∈ (0,1)n×Rn,

the trajectory (x(t),y(t)) under NNN-D converges asymptotically to a critical point (x?,y?)

of Ẽ. In addition, under Assumption 15, on the random choice of initial condition x(0), and

Assumption 16, on the random choice of T,τ , the probability that (x(0),y(0)) is in the set

∪̂
x,ŷ

W s(x̂, ŷ), where (x̂, ŷ) is a saddle-point or local maximum of Ẽ, is zero. Lastly, all local

minima (x?,y?) of Ẽ are globally optimal in y: Ẽ(x?,y)≥ Ẽ(x?,y?),∀y ∈ Rn.

Proof. The first part of the proof to establish convergence to a critical point follows from a

similar argument to the proof of Theorem 5. Differentiating Ẽ with respect to time gives:

dẼ
dt

=

ẋ

ẏ

>∇xẼ(x,y)

∇yẼ(x,y)

=

ẋ

ẏ

>−W̃x− ṽ+g−1(x)/τ

−α−1ẏ

=−ẋ> diag(T/(xi− x2

i)i)|H̃(x)|mẋ−α
−1ẏ>ẏ < 0,

ẋ 6= 0 or ẏ 6= 0, (x,y) ∈ (0,1)n×Y .

(4.13)

Thus, Ẽ monotonically decreases along the trajectories of NNN-D. Given (4.13), we call again

on the forward invariance property of the open hypercube for the distributed case via Lemma 8,

stated below, which verifies that (x,y) ∈ (0,1)n×Y at all times.

Due to the deficiency induced by L, Ẽ is not radially unbounded in y over all of Rn, so

we must be careful before applying the LaSalle Invariance Principle. Instead, define Ẽ only on

[0,1]n×Y in consideration of Lemma 5. Radial unboundedness in Ẽ is then obtained given any

y(0), and it follows that the trajectories converge to largest invariant set contained in dẼ/dt = 0

per the LaSalle Invariance Principle [62]. This is the finite set of critical points of Ẽ per Lemma 7,

and so it additionally follows that we converge to a single critical point (x?,y?).

Because Ẽ is convex in y, it follows that for any fixed x there exist only local minima of Ẽ

with respect to y. In consideration of this, we need only apply the Stable Manifold Theorem [51]

to x. The argument for this develops similarly to the proof of Theorem 5, and we conclude that

the trajectories of NNN-D converge to a local minimizer (x?,y?) of Ẽ with probability one.

89

The final part of the Theorem statement that Ẽ(x?,y) ≥ Ẽ(x?,y?),∀y ∈ Rn can also be

seen from the convexity of Ẽ in y and applying the first-order condition of convexity:

Ẽ(x?,y)≥ Ẽ(x?,y?)+(y− y?)>∇yẼ(x?,y?)

along with ∇yẼ(x?,y?) = 0n.

Lemma 8. (Forward Invariance of the Open Hypercube (Distributed)). The set (0,1)n×Y is

a forward-invariant set under the NNN-D dynamics (4.10).

Proof. The forward invariance of Y is already established per its definition and Lemma 5, but

we must establish that the trajectories y(t) remain bounded in order to apply the argument in

Lemma 3 to the proof of Theorem 6. Compute the Hessian of Ẽ with respect to y as:

∇yyẼ = γL2 � 0.

Due to the connectedness of L, the eigenspace associated with the n−1 strictly positive eigenval-

ues of γL2 is parallel to Y . Therefore, Ẽ is strictly convex in y on this subspace, and it follows

that Ẽ is bounded from below on Y . Due to dẼ/dt ≤ 0 (4.13) and the continuity of Ẽ in y, it

follows that y(t) is bounded for all t. Given this, the argument from Lemma 3 applies to the

trajectories x(t), and the set (0,1)n×Y is forward invariant under NNN-D (4.10).

Remark 6. (One-Hop Distributed Algorithm). The proposed distributed algorithm requires

two-hop neighbor information, which may be intractable in some settings. The source of the

two-hop term stems from the quadratic γ penalty term. However, it is possible to define a one-hop

distributed algorithm via a Lagrangian-relaxation route.

Consider posing P2 with the γ term instead as a linear constraint:
√

γ/2((pixi)i+Ly) =√
γ/2(Pr/n)1n. Applying Lagrangian relaxation to this problem introduces a Lagrange multiplier

on the linear terms, and from there it would be appropriate to define a saddle-point-like algorithm

90

along the lines of [34] in which gradient-ascent in the dual variable is performed. This changes

the nature of the penalty from squared to linear, so the underlying optimization model is different

in that sense, but it follows that this approach could be implemented with one-hop information.

We note that, in some distributed contexts, penalty terms or constraints can be imposed

via
√

L which then appears as L in the associated squared terms of the dynamics (in place of L2).

However, the linear L also appears in our algorithm, and substituting
√

L would not inherit the

sparsity of the communication graph. Therefore we leave the design of a fully one-hop mixed

first-order/second-order algorithm as an open problem.

4.5 Simulations

Our simulation study is split in to two parts; the first focuses on numerical comparisons

related to runtime and solution quality, and the second is a 2D visualization of the trajectories of

the Distributed Annealing (DA) variants for both the centralized and distributed NNN methods.

4.5.1 Runtime and Solution Quality Comparison

In this section, we compare to a greedy method stated as Algorithm 3 and a semidefinite

programming (SDP) relaxation method stated as Algorithm 4. In short, the greedy method

initializes the state as x = 0n and iteratively sets the element xi to one which decreases the cost

function the most. This is repeated until no element remains for which the updated state has

lower cost than the current state. For the SDP method, a convex SDP is obtained as the relaxation

of P1, see e.g. [100]. We use the shorthand SDPrlx(•) to indicate this in the statement of

Algorithm 4. This SDP is solved using CVX software in MATLAB [50] and a lowest-cost

partition is computed to construct a feasible solution. For the sake of convenience in stating both

algorithms, we have defined f ′ : 2n→ R to be the set function equivalent of f , i.e. the cost of

P1. That is, f ′(S) = f (x), where i ∈S indicates xi = 1 and i /∈S indicates xi = 0. Finally,

we additionally compare to a brute force method which we have manually programmed as an

91

exhaustive search over the entire (finite) feasibility set.

Algorithm 3. Greedy Method

1: procedure GREEDY(f ′)
2: S ← /0
3: done← false

4: while done= false do
5: i?← argmin

i/∈S
f ′(S ∪{i})

6: if f ′(S ∪{i?})< f ′(S) then
7: S ←S ∪{i?}
8: else
9: done← true

10: xi←

{
0, i /∈S ,

1, i ∈S .
11: return x

Algorithm 4. SDP Relaxation Method

1: procedure SDP(f ′)
2: ¶SDP← SDPrlx(P1)
3: x?← argmin

x
¶SDP

4: S ← /0
5: done← false

6: while done= false do
7: i?← argmax

i/∈S
xi

8: if f ′(S ∪{i?})< f ′(S) then
9: S ←S ∪{i?}

10: else
11: done← true

12: xi←

{
0, i /∈S ,

1, i ∈S .
13: return x

In Figure 4.2 we plot the runtime in MATLAB on a 3.5GHz Intel Xeon E3-1245 processor

over increasing problem size n for each of six methods: a brute force search, the aforementioned

greedy and SDP methods, the HNN first proposed in [57] (i.e. the gradient-like version of

NNN-C), and the NNN-C and NNN-D methods we developed in Sections 4.3 and 4.4. The

first obvious observation to make is that the runtime of brute force method increases at a steep

92

exponential rate with increasing n and exceeds 120 seconds at n = 22, making it intractable for

even medium sized problems. Next, we note that there are some spikes associated with the HNN

method around n = 25 to n = 40. These are reproducible, and we suspect that this is due to the

emergence of saddle-points and increasing likelihood of encountering these along the trajectory

as n increases. This is a well-documented problem observed in literature, see e.g. [36], and we

also confirm it empirically in this setting by observing that share of iterations for which the

Hessian is indefinite (as opposed to positive definite) tends to grow as n increases. We also note

that NNN-C scales relatively poorly, which can be attributed to a matrix eigendecomposition

being performed at each discretized iteration of the continuous-time algorithm. For NNN-D,

the matrix being eigendecomposed is diagonal, which makes it a trivial operation and allows

NNN-D to scale well. We note that the SDP method scales the worst amongst the non brute-force

methods. Unsurprisingly, the greedy method remains the fastest at large scale, although recall

that the motivation of developing our method is for it to be distributed and that a greedy approach

can not be distributed due to the global penalty term.

As for algorithm performance as it pertains to the cost of the obtained solution, we fix

n = 50 and additionally include DA variants of both NNN-C and NNN-D. We also omit the

brute force method due to intractability. For the sake of comparison, we compute a performance

metric Q and provide it for each method in Table 4.1. The metric Q is computed as follows: for

each trial, sort the methods by solution cost. Assign a value of 6 for the best method, 5 for the

second-best, and so on, down to the seventh-best (worst) receiving zero. Add up these scores for

all 100 trials, and then normalize by a factor of 600 (the maximum possible score) to obtain Q.

Note that Q does not account for runtime in any way.

It should be unsurprising that the tried-and-true centralized greedy and SDP methods

perform the best. However, we note that they were beaten by our methods in a significant number

of trials, which can be seen by noting that a Q score for two methods which perform best or

second-best in all trials would sum to 1100/600 = 1.83, while Q(greedy)+Q(SDP) = 1.75, or

a cumulative pre-scaled score of 1050, indicating that our methods outperformed these methods

93

in net 50 “placement spots” over the 100 trials. In general, we find that the DA version of the

NNN algorithms obtains better solutions than the non-DA version, confirming the benefit of this

approach. We also find that NNN-D generally outperforms NNN-C. It’s possible that an initially

“selfish” trajectory in x is beneficial, which would neglect the global penalty until y adequately

converges, although this is speculative. Lastly, we note that the HNN method never performs

better than worst, which we attribute to the steepest-descent nature of gradient algorithms which

do not use curveature information of the energy function. It might be possible that the stopping

criterion forces HNN to terminate near saddle-points, although we do not suspect this since we

observe the Hessian is positive-definite in the majority of termination instances.

As for parameter selection, we find that choosing m� 1 is generally best, since m≥ 1

would always produce a PT-inverse Hessian with eigenvalues contained in (0,1]. This effectively

scales down ẋ in the eigenspace associated with Hessian eigenvalue magnitudes greater than 1,

but does not correspondingly scale up ẋ in the complementary eigenspace associated with small

eigenvalues. Additionally, choosing T/τ greater than 1 in the fixed case tended to be effective.

This may be related to selecting ai <−γ‖p‖2−4T/τ to guarantee anti-stability from (0.5)1n,

and would explain why a high T0/τ0 that decreases in the DA learning variant performs so well.

In general, for the DA learning variant, we recommend choosing T0,τ0 so that T0/τ0� 1 and

also β > 1 sufficiently large so that T/τ � 1 by algorithm termination, which gives rise to a

robust exploration/exploitation tradeoff. Finally, all α ≈ 1 seem to behave roughly the same,

with only α � 1 and α � 1 behaving poorly (the former leading to slow convergence in y and

“selfish” behavior in x, and the latter being destabilizing in the discretization of ẏ).

4.5.2 Learning Steps and 2-D Trajectories

Next, for the sake of understanding how the learning rate T/τ affects the trajectories

of the solutions, we have provided Figure 4.3 which plots the 2-D trajectories of NNN-C and

NNN-D with T/τ being gradually reduced over 15 learning steps. The contours of the energy

94

Table 4.1. Comparison of performance metric Q for 100 randomized trials with n = 50.

Method Q
NNN-C 0.2161

NNN-C-DA 0.2891
NNN-D 0.5443

NNN-D-DA 0.7005
HNN 0

Greedy 0.8411
SDP 0.9089

Table 4.2. Problem data and parameter choices (where relevant) for performance comparison.
Problem data pi,ci is generated randomly from given distributions for each of 100 trials.

Data or parameter Value
n 50
pi U [1,50]
ci pe

i , e∼U [2,3]
Pr 1500
γ 1
T0 1
τ0 0.1
m 0.1
α 1

Learning steps 10
β 1.4
n 50

95

Figure 4.2. Runtime of each method for increasing problem sizes.

function for the final step are also plotted. The problem data and choice for a is:

c = (2,1)>, p = (3,1)>, Pr = 2.8, γ = 4, a =−(10,10)>.

Note that, in each case, the trajectory approaches the optimal solution x? = (1,0)>. However,

it is worth noting that a steep saddle point occurs around x = (0.75,0.6)>. Intuitively, this

corresponds to a high risk of the trajectory veering away from the optimal solution had the DA

not been implemented. With the opportunity to gradually learn the curveature of the energy

function, as shown by stabilization to successive equilibria marked by ×, each algorithm is given

the opportunity to richly explore the state space before stabilizing to the optimal solution (1,0)>.

Further studying the learning-rate T/τ and a more complete analysis of Algorithm 2 and the

parameter β are subjects of future work.

96

Acknowledgements

The material in this chapter, in full, is provisionally accepted in Automatica. It is expected

to appear as Distributed Resource Allocation with Binary Decisions via Newton-like Neural

Network Dynamics, T. Anderson and S. Martı́nez. The dissertation author was the primary

investigator and author of this paper.

97

(a)

(b)

Figure 4.3. Centralized NNN-C (a) and distributed NNN-D (b) trajectories in 2D with 15
learning steps. Stable equilibrium points between learning steps indicated by ×, contours of E
and Ẽ in final step indicated by dashed lines.

98

Chapter 5

Maximizing Algebraic Connectivity of
Constrained Graphs in Adversarial En-
vironments

This chapter aims to maximize algebraic connectivity of networks via topology design

under the presence of constraints and an adversary. We are concerned with three problems. First,

we formulate the concave-maximization topology design problem of adding edges to an initial

graph, which introduces a nonconvex binary decision variable, in addition to subjugation to

general convex constraints on the feasible edge set. Unlike previous methods, our method is

justifiably not greedy and capable of accommodating these additional constraints. We also study

a scenario in which a coordinator must selectively protect edges of the network from a chance of

failure due to a physical disturbance or adversarial attack. The coordinator needs to strategically

respond to the adversary’s action without presupposed knowledge of adversary’s feasible attack

actions. We propose three heuristic algorithms for the coordinator to accomplish the objective and

identify worst-case preventive solutions. Each algorithm is shown to be effective in simulation

and we provide some discussion on their compared performance.

5.1 Bibliographical Comments

The classic paper [42] by Miroslav Fiedler proposes a scalar metric for the algebraic

connectivity of undirected graphs, which is given by the second-smallest eigenvalue of the graph

99

Laplacian and is also referred to as the Fiedler eigenvalue. One of the main problems we are

interested in studying is posed in [45], where the authors develop a heuristic for strategically

adding edges to an initial topology to maximize this eigenvalue. Lower and upper bounds for

the Fiedler eigenvalue with respect to adding a particular edge are found, however, the work is

limited in that their approach is greedy and may not perform well in some cases. In addition, the

proposed strategy does not address how to handle additional constraints that may be imposed on

the network, such as limits on nodal degree or restricting costlier edges. The authors of [12] aim

to solve the problem of maximizing connectivity for a particular robotic network scenario in the

presence of an adversarial jammer, although the work does not sufficiently address scenarios

with a more general adversary who may not be subject to dynamical constraints. The Fiedler

eigenvector, which has a close relationship to the topology design problem, is studied in [72].

Many methods to compute this eigenvector exist, such as the cascadic method in [98]. However,

these papers do not fully characterize how this eigenvector evolves from adding or removing

edges from the network, which is largely unanswered by the literature. The authors of [38]

study the spectra of randomized graph Laplacians, and [108] gives a means to estimate and

maximize the Fiedler eigenvalue in a mobile sensor network setting. However, neither of these

works consider the problem from a design perspective. In the celebrated paper by Goemans and

Williamson [49], the authors develop a relaxation and performance guarantee on solving the

MAXCUT problem, which has not yet been adapted for solving the topology design problem.

Each of [15, 37] survey existing results related to the Fiedler eigenvalue and contain useful

references.

Statement of Contributions

This chapter considers three optimization problems and has two main contributions.

First, we formulate the concave-maximization topology design problem from the perspective of

adding edges to an initial network, subject to general convex constraints plus an intrinsic binary

100

constraint. We then pose a scenario where a coordinator must strategically select links to protect

from random failures due to a physical disturbance or malicious attack by a strategic adversary. In

addition, we formulate this problem from the adversary’s perspective. Our first main contribution

is a method to solve the topology design problem (and, by extension, the protected links problem).

We develop a novel MAXCUT-inspired SDP relaxation to handle the binary constraint, which

elegantly considers the whole problem in a manner where previous greedy methods fall short.

Our next main contribution returns to the coordinator-adversary scenario. We first discuss the

nonexistence of a Nash equilibrium in general. This motivates the development of an optimal

preventive strategy in which the coordinator makes an optimal play with respect to any possible

response by the adversary. We rigorously prove several auxiliary results about the solutions of

the adversary’s computationally hard concave-minimization problem in order to justify heuristic

algorithms which may be used by the coordinator to search for the optimal preventive strategy. A

desirable quality of these algorithms is they do not presuppose the knowledge of the adversary’s

feasibility set, nor the capability of solving her problem. Rather, the latter two algorithms

observe her plays over time and use these against her construct an effective preventive solution.

Simulation studies demonstrate the effectiveness of our SDP relaxation for topology design

and the performance of the preventive-solution seeking algorithms when applied to the related

adversarial link-protection problem.

5.2 Problem Statements

This section formulates the three optimization problems that we study. The first is the

problem of adding edges to an initial topology to maximize algebraic connectivity of the final

graph. The second problem introduces a coordinator who is charged with protecting some

links in a network that are subject to an external disturbance or attack from the perspective of

maximizing connectivity. The third problem takes the opposite approach of the second problem

by aiming to minimize connectivity from an adversarial point of view.

101

5.2.1 Topology Design for Adding Edges

Consider a network of agents with some initial (possibly disconnected) graph topology

characterized by an edge set E 0 and Laplacian L0. We would like to add k edges to E 0, possibly

subject to some additional convex constraints, so as to maximize the Fiedler eigenvalue of the

final Laplacian L?. This problem is well motivated: the Fiedler eigenvalue dictates convergence

rate of many first-order distributed algorithms, such as consensus and gradient descent. First, let

E be the complete edge set (not including redundant edges or self loops) with m = |E |. Consider

the incidence matrix E associated with E and the vector of edge connectivities x, as described in

Section ??. The constrained topology design problem is then formulated as

P1 : max
x,α

α, (5.1a)

subject to E(diag(x))E> � α In, (5.1b)
m

∑
l=1

xl ≤ k+ |E 0 |, (5.1c)

x ∈X , (5.1d)

xl = 1, l ∼ (i, j) ∈ E 0, (5.1e)

xl ∈ {0,1}, l ∈ {1, . . . ,m}. (5.1f)

In P1, the solution α? is precisely the value for λ2 of the final Laplacian solution given by

L(x?) = L0+E(diag(x?))E>. This is encoded in the constraint (5.1b), where the pseudo-identity

matrix In has the effect of filtering out the fixed zero-eigenvalue of the Laplacian. A useful rela-

tion is λ2 = inf
z
{z>L(x)z | z⊥ 1n,‖z‖2 = 1}, which shows that λ2 as a function of x is a pointwise

infimum of linear functions of x and is therefore concave. By extension, P1 is a concave-

maximization problem in x. The set X is assumed compact and convex and may be chosen

by the designer in accordance with problem constraints such as bandwidth/memory limitations,

restrictions on nodal degrees, or restricting certain edges from being chosen. These constraints

102

may manifest in applications such as communication bandwidth limitations amongst Distributed

Energy Resource Providers for Real-Time Optimization in renewable energy dispatch [20]. The

binary constraint (5.1f) is nonconvex and makes the problem a NP-hard. Handling this constraint

is one of the main objectives of this chapter and will be addressed in Section 5.3.

As for existing methods of solving P1, one option is solve it over the convex hull of the

constraint set, which is given by [0,1]m∩X . Then, the problem may be solved in k steps by

iteratively adding the edge l ∼ (i, j) for which xl is maximized in each step. This is discussed

in [45] and the references therein. Although this method allows the designer to easily capture

X , it is not a satisfying relaxation because the underlying characteristics of the connectivity are

not well captured. The authors of [45] propose an alternate method which chooses the edge l

for which
∂λ2

∂xl
= v>2

∂L(x)
∂xl

v2 = v>2 ele>l v2 = (v2,i− v2, j)
2 is maximal. This method is limited in

that it is (a) greedy and (b) cannot account for X . We are motivated to develop a relaxation for

P1 which improves on existing techniques in both performance and the capability of handling

constraints.

5.2.2 Topology Design for Protecting Edges

We now formulate a problem which is closely related to P1, but which is interesting to

study in its own right for a variety of reasons. Motivated by the possibility of guarding against

disruptive physical disturbances or adversarial attacks, consider a coordinator who may protect

up to ks links from failing in a network. The failure of the links are assumed to be independent

Bernoulli random variables whose probabilities are encoded by the vector p ∈ [0,1]m. Then,

consider the coordinator’s decision vector s ∈ S = {0,1} ∩ S′, where S′ is assumed convex.

We write out the Laplacian as before, L(x) = E diag(x)E>. Following a disturbance or attack,

the probability that an edge l is (dis)connected is given by P(xl ≡ 1) = (sl − 1)pl + 1 (resp.

P(xl ≡ 0) = (1− sl)pl). The interpretation for the vector s here is that, if a particular element

sl = 1, it is deterministically connected and considered immune to the disturbance or attack. The

103

coordinator’s problem is formulated as

P2 : max
s,α

α, (5.2a)

subject to E
[
E(diag(x))E>

]
� α In, (5.2b)

P(xl ≡ 1) = (sl−1)pl +1, (5.2c)

P(xl ≡ 0) = (1− sl)pl, (5.2d)
m

∑
l=1

sl ≤ ks, (5.2e)

s ∈ S,′ s ∈ {0,1}m. (5.2f)

Due to the linearity of the expectation operator, (5.2b) is equivalent to E(diag((s− 1m) � p+

1m))E> � α In, which is an LMI (linear matrix inequality) in s. We note that, as in P1, the

objective of P2 may be thought of as a pointwise infimum of linear functions and, as such, is a

binary concave-maximization problem in s.

The formulation in P2 presupposes a fixed vector p. However, it may be the case that a

strategic attacker detects preventive action taken by the coordinator and adjusts her strategy to

improve the likelihood of disconnecting the network. We now formulate the attacker’s problem

for some known, fixed coordinator strategy s:

P3 : min
p,α

α, (5.3a)

subject to λ2(E
[
E(diag(x))E>

]
) = α, (5.3b)

P(xl ≡ 1) = (sl−1)pl +1, (5.3c)

P(xl ≡ 0) = (1− sl)pl, (5.3d)

p ∈ P, p ∈ [0,1]m. (5.3e)

Notice here that the optimization is instead over p, and is now a minimization of α . The

104

constraint (5.3b) is now a nonlinear equality rather than an LMI, which manifests itself from this

becoming a concave-minimization problem. This equality is not a convex constraint and will be

addressed in Section 5.4. We assume P is convex. In addition, we assume it is compact, which

has the interpretation of assuming the attacker’s resources are finite, in some sense.

5.3 An SDP Relaxation for Topology Design

This section aims to develop a relaxed approach to solve P1 in a computationally

efficient manner. Ideally, such an approach may also be straightforwardly extended to problems

of the form P2. To do this, we draw on intuition from the randomized hyperplane strategy given

in [49] for solving the well-studied MAXCUT problem.

We now provide a novel reformulation of P1 which is well suited for SDP relaxation.

There are two notable differences between P1 and MAXCUT: the entries of the decision

vector in P1 take values in {0,1}, whereas in MAXCUT, the decision (let’s say z) takes

values zi ∈ {−1,1}. The latter is convenient because it is equivalent to z2
i = 1. Additionally,

the enumeration in MAXCUT is symmetric in the sense that, if z? is a solution, then so is −z?.

However, P1 is assymmetric in the sense that, if x? is a solution, it cannot be said that−2x?+1m

is a solution (effectively swapping the zeros and ones in the elements of x?). We rectify these

issues with a transformation and variable lift, respectively. Introduce a vector

y = 2x−1m (5.4)

and notice x ∈ {0,1}m maps to y ∈ {−1,1}m. Then, define Y = yy> so that y2
l = 1 may be

enforced via Yll = 1, l ∈ {1, . . . ,m}. In addition, define Ỹ =

y

1

y

1

>

=

 Y y

y> 1

 to capture

the asymmetry in the original variable x. Now, we are ready to reformulate P1 as an SDP in the

105

variable y:

P4 : max
Y,y,α

α, (5.5a)

subject to
1
2

E(diag(y)+ Im)E> � α In, (5.5b)

Ỹ =

 Y y

y> 1

� 0, (5.5c)

rank(Ỹ) = 1, (5.5d)

Ỹll = 1, l ∈ {1, . . . ,m}, (5.5e)

y ∈ Y , (5.5f)

yl = 1, l ∼ (i, j) ∈ E 0, (5.5g)

1
2 ∑

i
(yi +1)≤ k+ |E 0 |. (5.5h)

where Y is an affine transformation on the set X in (5.1d); we have simply used (5.4) and the

variable lift to rewrite the constraints. The problem P4 is equivalent to P1: the NP-hardness

now manifests itself in the nonlinear constraint (5.5d). Dropping this constraint produces a

relaxed solution Ỹ ? with the rank of Ỹ ? not necessary one.

This also produces a solution y? which can be mapped back to x?. Of course, x? may

not take binary values due to the dropped rank constraint. We now briefly recall the geometric

intuition for the solution to MAXCUT in [49] with many technical details omitted here for

brevity. Let Z? ∈ Rmz×mz be a rank rz solution to the rank-relaxed MAXCUT SDP problem.

Decompose Z? = W>W with W ∈ Rrz×mz , and notice the columns of W given by wi ∈ Rrz ,

i ∈ {1, . . . ,mz}, are vectors on the rz-dimensional unit ball due to Z?
ii = 1, i ∈ {1, . . . ,mz}. Then,

generate a uniformly random unit vector p ∈ Rrz which may define a hyperplane. If the vector

wi lies on one side of the hyperplane, i.e. 〈wi, p〉> 0, place the corresponding node i in the first

partition. If it is on the other side of the hyperplane, 〈wi, p〉 < 0, place node i in the second

partition (equality is an event with probability 0). Geometrically speaking, the stronger a vector

106

wi is aligned with p, the more “correlated” (for lack of a better term) node i is with the first

partition and vice-versa. From another perspective, consider the case rz = 1 which implies the

solution is equivalent to the nonrelaxed problem. Then, 〈wi, p〉 ∈ {−1,1} and the partitioning

gives the exact optimizer for MAXCUT.

For our problem, decompose Ỹ ? = U>U with U ∈ Rr×m+1, and obtain unit-vectors

ul ∈ Rr, l ∈ {1, . . . ,m+1}, from the columns of U . Because of the asymmetry of our problem,

we do not implement a random approach to partition the solution. Instead, notice that the last

column um+1 is qualitatively different than ul , l ∈ {1, . . . ,m} due to the variable lift. We have

that yl = 〈ul,um+1〉, l ∈ {1, . . . ,m}. Thus, larger entries of yl correspond to vectors ul on the

unit ball which are more “aligned” with um+1, which hearkens to the geometric intuition for the

MAXCUT solution. In this sense, um+1 may be thought of as the partitioning vector p as before,

and entries of yl give a quantitative measure of the inclination for edge l ∼ (i, j) to be connected.

For this reason, we suggest iteratively choosing the edge l associated with the largest element of

y for which l /∈ E 0. If a particular edge is infeasible, this is elegantly accounted for by (5.5f) and

is reflected in the relaxed solution to P4. This approach may be iterated k times, updating E 0

and decrementing k each time in accordance with (5.5h), to construct a satisfactory solution to

the original NP-hard binary problem. In addition, this formulation is easily adaptable to solve

P2 via a similar transformation and variable lift in s.

5.4 Protecting Links Against an Adversary

This section begins by studying the Nash equilibria of a game between the coordinator

and attacker where they take turns solving P2 and P3. We first study the (non)existence of

the Nash equilibria of this game, and use this result to motivate the development of a preventive

strategy for the coordinator. We then provide some auxiliary results about the solutions of P3

and use these to justify methods for finding such a preventive strategy.

107

5.4.1 Nash Equilibria

We begin by adopting the shorthand notation L(s, p) = E
[
E(diag(x))E>

]
with x dis-

tributed as in (5.2c)–(5.2d), i.e. L(s, p)i j = (1− sl)pl − 1, l ∼ (i, j) ∈ E , i 6= j and L(s, p)ii =

−∑ j∈N i L(s, p)i j. This matrix may be interpreted as a weighted Laplacian whose elements

are given by the righthand side of (5.2c), (5.3c). We also adopt the shorthand α(s, p) =

inf
z
{z>L(s, p)z | z ⊥ 1n,‖z‖2 = 1} to refer to the Fiedler eigenvalue of L(s, p), and note that

α(s, p), as a pointwise infimum of bilinear functions, is concave-concave in (s, p). From this,

recall the first-order concavity relation [17]

α(s2, p)≤ α(s1, p)+∇sα(s1, p)>(s2− s1), ∀s1,s2 ∈ S,

α(s, p2)≤ α(s, p1)+∇pα(s, p1)>(p2− p1), ∀p1, p2 ∈ P .

(5.6)

To get a better grasp on this, we compute the gradient of α with respect to both s and p.

Let v be the Fiedler eigenvector associated with the second-smallest eigenvalue (in this case, α)

of L(s, p). Then,
∂α

∂ sl
= v>

∂L(s, p)
∂ sl

v,= v>plele>l v = pl(vi− v j)
2, (5.7)

which is a straightforward extension of the computation shown near the end of Section 5.2.1.

Additionally,

∂α

∂ pl
=

−(vi− v j)

2, sl = 0

0, sl = 1.
(5.8)

The gradient with respect to s and p is a vector with elements in (5.7)–(5.8), which are nonpositive

for p and nonnegative for s. Additionally, note that v 6= 1n, v 6= 0, implying the quantity (vi−v j)
2

must be strictly positive for some edges l ∼ (i, j).

Now, consider a game where the coordinator and attacker take turns solving and imple-

menting the solutions of P2 and P3, respectively. A Nash equilibrium is a point (s?, p?) with

108

the property

α(s, p?)≤ α(s?, p?)≤ α(s?, p),∀s ∈ S,∀p ∈ P, (5.9)

which is a stationary point of the aforementioned game. We now state a lemma to motivate the

remainder of this section.

Lemma 9. (Nonexistence of Nash Equilibrium). A Nash equilibrium point (s?, p?) satisfy-

ing (5.9) is not guaranteed to exist in general.

Proof. To show this result, we provide a simple counterexample. Consider a complete graph

with n = 3 nodes and m = 3 edges, l ∈ {1,2,3} ∼ {(1,2),(1,3),(2,3)}= E , and the coordinator

and attacker feasibility sets S= {0,1}3∩{s | ∑l sl ≤ 2}, P= {p | ∑l p≤ 1}. Note that, for s1 =

0, p1 ∈ (0,1], p−1 = 0, we have the Fiedler vector v = (
√

2/2,−
√

2/2,0)>, implying
∂α

∂ p1
< 0

on the interval p1 ∈ (0,1] (this extends to different choices of the “attacked” edge with the

components of v reordered accordingly), with
∂α

∂ p1

∣∣∣∣
p1=0

not well defined due to nonuniqueness

of λ2(s, p) at this point. We state this observation for completeness, but for the sake of simplicity

the remainder of the proof does not require it.

We first establish the values of α(s, p) in a few cases. A play (s1, p1) with any s1 ∈ S

and p1 = 0m gives α(s1, p1) = 3; a play (s2, p2) with p2
l = 1, p2

−l = 0 and s2
l = 0,s2

−l ∈ {0,1}

gives α(s2, p2) = 1; and a play (s3, p3) with s3
l = 1,s3

−l ∈ {0,1} (one of these componenets must

be zero for feasibility) and p3
l = 1, p3

−l = 0 gives α(s3, p3) = 3. Note that α(s, p) ∈ [1,3] ,∀s ∈

S,∀p ∈ P, and if 6 ∃l such that pl = 1, then α(s, p) > 1. We refer to the latter condition as (∗)

and the calculation is omitted for brevity.

Now, consider an initial play s(0) by the coordinator with ∑l sl(0) = 2. The dynamics of

the game dictates that the attacker solves P3 and chooses the optimal play with pl(0) = 1 for

the edge l corresponding to sl(0) = 0, giving α(s(0), p(0)) = 1. Note that generality is not lost

for the choice of s(0) due to (∗). The lefthand side of (5.9) is violated, so (s(0), p(0)) is not a

Nash equilibrium. The coordinator then solves P2 and makes a play s(1), with sl(1) = 1 for the

corresponding edge that pl(0) = 1. This gives α(s(1), p(0)) = 3. Now the righthand side of (5.9)

109

is violated, so (s(1), p(0)) is not a Nash equilibrium. The attacker then resolves P3 and chooses

pl(1) = 1 for the edge l s.t. sl(1) = 0, giving α(s(1), p(1)) = 1. These dynamics continue with

α(s(t), p(t − 1)) = 3 and α(s(t), p(t)) = 1,∀t > 0, and from generality we conclude a Nash

equilibrium does not exist.

The near-trivial nature of the counterexample employed in the proof of Lemma 9 gives

credence to the idea that Nash equilibria are unlikely to exist in more meaningful instances. This

result should not come as a surprise: the solutions to P2 and P3 are in direct conflict with one

another, and playing sequentially has the effect of the coordinator “chasing” the attacker around

the network. We find that the cases for which we can construct a Nash equilibrium are trivial:

for example, if 1m ∈ S, the coordinator may choose s? = 1m, and the attacker’s solution set is

trivially the whole set P with the interpretation that the attacker is powerless to affect the value

of α . Then, (1m, p),∀p ∈ P are Nash equilibria, and are not interesting.

5.4.2 Coordinator’s Preventive Strategy

Lemma 9 motivates the study of an optimal preventive strategy for the coordinator under

the assumption that the attacker may always make a play in response to the coordinator’s action.

Instead of a Nash equilibrium satisfying (5.9), we seek a point (s?, p?) satisfying the following:

(s?, p?) = argmax
s∈S

argmin
p∈P

α(s, p). (5.10)

The interpretation of s? solving (5.10) is that it provides the best-case solution for the coordinator

given that the attacker makes the last play. In this sense, s? is not optimal for p?; rather, it is an

optimal play with respect to the whole set P.

From the coordinator’s perspective, the objective function argmin
p∈P

α(s, p) is a pointwise

infimum of concave functions of s, and therefore the problem is a concave maximization.

However, computing such a point may be dubious in practice, particularly since we have not

110

assumed the coordinator has the capability of solving the concave minimization problem P3 or

even knowledge of P. It would, however, be convenient to use the attacker’s solutions to P3

against herself. To do this, we establish some lemmas to gain insight on the solution sets of the

attacker. This helps us construct heuristics for computing s? in the sense of (5.10). We assume

S,P 6= /0.

Lemma 10. (Attacker’s Solution Tends to be Noninterior). Consider the set of solutions P?⊆P

to P3 for some s. If there exists point p? ∈ P? which is an interior point of P, then P? = P.

Proof. Consider p? ∈ P? which is an interior point of P. Pick ε > 0 so Bε(p?) ⊆ P. Then,

from (5.6), the point p′ = p?− ε∇pα(s, p?) ∈ P violates the condition that p? is a solution to

P3 unless ∇pα(s, p?) = 0m, so this must be the case. Then, in accordance with (5.6), all p′ ∈ P

are solutions, and the statement P? = P follows.

This lemma implies the solution set P? consists of noninterior point(s) of P except in

trivial cases. We now provide a stronger result in the case where P is a polytope, which shows

that solutions tend to be contained in low-dimensional faces of P such as edges (line segments)

and vertices (points).

Lemma 11. (Attacker’s Solutions Tend Towards Low-Dimensional Faces). Let P=A1∩·· ·∩

Ar ⊂ Rm be a compact polytope with half-spaces Ai characterized by ai,bi for i ∈ {1, . . . ,r},

and F be a face of P with a>j p = b j for j ∈J ⊆ {1, . . . ,r}, ∀p ∈F . If a point p? ∈ relint(F)

is a solution to P3, then ∇pα(s, p?) ∈ span{a j} j∈J .

Proof. Suppose that ∇pα(s, p?) /∈ span{a j} and decompose ∇pα(s, p?) = c+d,c ∈ span{a j},

d ∈ span{a j}⊥,d 6= 0m. Now consider the point p′ = p?− εd/‖d‖2 ∈ F for some ε > 0.

From (5.6), we have the relation α(s, p′)≤ α(s, p?)− ε‖d‖2 with ε > 0 and ‖d‖2 > 0, which

contradicts p? being a solution and completes the proof.

To interpret the result of Lemma 11, notice that p ∈ relint(F) implies p does not belong

to a lower dimension face, and that the the dimension of span{a j} j∈J becomes large only as

111

the dimension of F becomes small, which intuitively suggests that the gradient of α at p? may

only belong to span{a j} j∈J for a p ∈F if this span is large in dimension. This allows us to

conservatively characterize the solution set P?, and the result gives credence to the notion that

solutions take values in low-dimensional faces of P.

These results are necessarily conservative due to the lack of understanding in the literature

of how v evolves with a changing p, which shows up in the elements of ∇pα(s, p). For this

reason, it is our intent to instead use Lemmas 10 and 11 to establish intuition for the problem

and justify solution strategies to the hard problem of computing a preventive s?.

Before proceeding, we establish one more simple lemma and provide discussion on

deterministically connected graphs.

Lemma 12. (Deterministic Connectivity). Assume ∃p ∈ P with p � 0m and that the attacker

makes the last play. Let L(x) indicate the random matrix whose elements are distributed as

in (5.3c)–(5.3d). Then, a coordinator’s strategy s gives λ2 > 0 of L(x) with probability 1 if and

only if the elements of s equal to 1 are associated with edges of a connected graph.

Proof. ⇒) We do not need to assume the attacker has made an optimal play with respect to P3.

Instead, consider any play p� 0m and note that each edge l associated with sl = 0 has a nonzero

probability of being disconnected. Then, there is a nonzero probability that xl = 0 for each l with

sl = 0, and the remaining protected edges do not form a connected graph. Then, if the elements

of s equal to one are not associated edges defining a connected graph, λ2 = 0 is an event with

nonzero probability.

⇐) This direction is trivial: xl = 1 with probability 1 for edges l corresponding to sl = 1.

If these edges form a connected graph, then λ2 > 0 with probability 1.

The consequence of Lemma 12 is obvious: if the coordinator does not have the resources

to protect edges which form a connected graph and the attacker targets all edges, then there is no

guarantee the resulting graph will be connected. A subject of future work is to provide some

insight on the lower bound of λ2 for particular cases of S and P.

112

5.4.3 Heuristics for Computing a Preventive Strategy

Recall from the previous subsection that the goal is to compute s? as a solution to (5.10).

In this subsection, we describe three approaches to computing a satisfactory solution and formally

adopt the following assumptions.

Assumption 18. (Coordinator’s Problem is Solvable). Given a known vector p, the coordinator

can find the optimal solution of P2.

The binary constraint makes P2 NP-hard, which we addressed in Section 5.3 by devel-

oping an effective relaxation which may be extended to solving P2.

Assumption 19. (Attacker Plays Optimally and Last). The attacker’s play p belongs to a

convex, compact set P. In addition, she always makes optimal plays which solve P3 given

the coordinator’s play s, and she may always play in response to the coordinator changing his

decision.

Assumption 20. (Available Information). The coordinator is cognizant of Assumption 19 and

has access to the current attacker play p. He may compute α(s, p) for a particular play (s, p).

Assumption 21. (Only Last Play Matters). The objective α(s, p) (and, by extension, λ2) is only

consequential once both the coordinator and attacker have chosen their final strategy and do not

make additional plays.

With these assumptions, we construct three heuristics for computing s? iteratively by

observing the plays of the attacker p(t) over a time horizon t ∈ {1, . . . ,T}.

Algorithm 5 is simple and doesn’t utilize the attacker’s plays. For each t, it constructs

s(t) by picking edges uniformly randomly. Each loop terminates when no feasible edges remain.

The value of α is recorded following the attacker’s response p(t), and the best s(t) is returned.

Algorithm 6 utilizes a weighting function η with the property ∑
t
k=1 η(k) = 1. We suggest

113

Algorithm 5. Random Sampling
1: procedure RAND(S,E ,T)
2: for t = 1, . . . ,T do
3: M ←{1, . . . ,m}
4: s(t)← 0m
5: done← f alse
6: while done = f alse do
7: Choose l ∈M uniformly randomly
8: if sl(t)← 1⇒ s(t) ∈ S then
9: sl(t)← 1

10: M ←M \{l}
11: if 6 ∃l ∈M s.t. sl(t)← 1⇒ s(t) ∈ S then
12: done = true
13: Play s(t)
14: Store s(t) and α(s(t), p(t))
15: t?← argmax

t
α(s(t), p(t))

16: return s? = s(t?)

Algorithm 6. Convex Combinations
1: procedure CVX(S,E ,T)
2: s(1)← 0m
3: Store s(1), p(1) and α(s(1), p(1))
4: pθ (1)← p(1)
5: for t = 2, . . . ,T do
6: s(t)← argmax

s∈S
α(s, pθ (t−1))

7: Store s(t), p(t), and α(s(t), p(t))
8: for k = 1, . . . , t do
9: θ(k)← η(k)

10: pθ (t)← ∑
t
k=1 θ(k)p(k)

11: t?← argmax
t

α(s(t), p(t))

12: return s? = s(t?)

114

three possible choices for η :

η1(k) = 1/t,

η2(k) =
γ(t−k)

∑k γ(t−k)
, γ ∈ (0,1),

η3(k) =
α(s(k), p(k))

∑k α(s(k), p(k))
.

These may be interpreted as a uniform weighting of each observation p(t), a recency-biased

weighting, and a penalty-biased weighting. respectively. Algorithm 6 is motivated by a few

observations. Firstly, recall Lemmas 9–11 and note that p(t) may jump around extreme points

of P as s(t) evolves. The solution s? from (5.10) accounts for the whole space P, so successive

convex combinations of the solutions p(t) effectively push the coordinator’s decision towards a

response to the vulnerable parts of the space over time.

Algorithm 7 adopts the following stronger version of Assumption 18.

Assumption 22. (Coordinator’s Problem is Solvable Over Multiple Points). Given a finite set

of points p(t) = P⊂ P, the coordinator may compute the solution

s? = argmax
s∈S

min
p∈P

α(s, p),

where s? is the best preventive play over the set P.

Algorithm 7 operates by computing the solution s(t) as the optimal play with respect to

each of the previous attacker plays p(k),k < t. Although it is more computationally demanding

than Algorithms 5 and 6, it is more strongly rooted in the theoretical understanding of the

problem we have developed in the following sense: the convex hull of these points co(P) at time

t is a compact polytope whose vertices are defined by the points p(k), and applying Lemma 11, it

stands to reason that points in the interior or in higher-dimensional faces of co(P) are uncommon

solutions. We expect co(P) to grow in each loop of the algorithm and effectively reconstruct

115

Algorithm 7. Constructing P via Pointwise Search
1: procedure SEARCH(S,E ,T)
2: s(1)← 0m
3: Store s(1), p(1), and α(s(1), p(1))
4: P← p(1)
5: for t = 2, . . . ,T do
6: s(t)← argmax

s∈S
min
p∈P

α(s, p)

7: Store s(t), p(t) and α(s(t), p(t))
8: P← P∪{p(t)}
9: t?← argmax

t
α(s(t), p(t))

10: return s? = s(t?)

the attacker’s feasibility set P. For now, convergence to the true s? is not guaranteed due to the

difficulty of characterizing the evolution of ∇pα(s, p) with p. However, we note in simulation

studies that Algorithm 7 converges to the global optimizer in a few iterations.

Finally, we state the following trivial lemma for completeness.

Lemma 13. (Nondecreasing Performance of Algorithms 5–7). Let p? solve P3 for s = s?(T),

where s?(T) is the returned strategy of Algorithm 5, 6, or 7 truncated at time T . For all T > 1,

α(s?(T), p?)≥ α(s?(T −1), p?).

Proof. The result is trivially seen in that s?(T) = s(t?), t? = argmax
t∈{1,...,T}

α(s(t), p(t)) and

{1, . . . ,T −1} ⊂ {1, . . . ,T}.

5.5 Simulations

We now examine our proposed SDP relaxation for solving P1. For ease of comparison

with the Fiedler vector heuristic given in [45], we do not include any additional convex constraints

beyond (5.1c). For a network with 14 nodes, |E 0 |= 28 initial edges generated randomly, we

implement the Fiedler method, our SDP method, and the approach of taking the convex hull of

the feasibility set of P1. We ran 100 trials with different topology initializations for each of

the k ∈ {25,40} edge-addition cases. Our SDP design outperforms the Fiedler vector heuristic

116

in 75 trials of the k = 25 case, 80 trials of the k = 40 case, and it outperforms the convex hull

approach in all 100 trials of each case. This improved performance is observed over a variety of

network sizes and initial connectivities, and we observe that increasing k is likelier to improve

the performance of our method over the alternatives.

One such instance of k = 25 added edges is plotted in Figure 5.1 and the performance is

plotted in Figure 5.2. Firstly, note that both our SDP method and the Fiedler vector method greatly

outperform the simple convex hull approach. We note that our SDP method is outperformed by

the Fiedler method in early iterations. This is due to the greedy nature of the Fiedler heuristic:

it does not account for the entire horizon of adding k edges, in contrast with our method. In

later iterations, the performance of our method catches up with and surpasses the Fiedler vector

heuristic (this is common behavior across other initializations). We contend that the reason for

this is that the solution of P2 at each iteration is cognizant of the entire problem horizon, as

opposed to the Fiedler vector heuristic which greedily chooses edges in accordance with the

direction of steepest ascent in λ2.

Figure 5.1. Initial topology of 14 nodes and 28 edges. Three methods are implemented to grow
the network to 53 edges, with the additional edges plotted as red dotted lines.

Next, we study a small network of 7 nodes and 11 edges so that the solutions to P2

117

0 5 10 15 20 25
1

2

3

4

5

6

7

 SDP

 Fiedler

 Convex Hull

Figure 5.2. Performance each method over k = 25 iterations.

and P3 may be brute-forcibly computed to test Algorithms 5–7, with η1(k) being used for

Algorithm 6. The network is shown in Figure 5.3. We choose P= [0.25,0.75]11∩{p | ∑l pl ≤

4.25} and S= {0,1}11∩{s | ∑l sl ≤ 5}. We run the algorithms for T = 30 iterations and plot

the results at each iteration in Figure 5.4.

Figure 5.3. Network of 7 nodes and 11 edges for algorithm case study.

Clearly, Algorithm 5 does not improve across iterations due to the fact that it does

not utilize information about the attacker’s plays from previous iterations. Additionally, if

general convex constraints are included, it may not account for these particularly well. This

118

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Alg 1

Alg 2

Alg 3

global opt

Figure 5.4. Performance of Algorithms 5–7 at each loop t.

algorithm does achieve a maximum value of s(t?) = 0.8175, which is a bit below the global

optimum α(s?, p?) = 0.8762, although there is certainly no guarantee that this may reliably

occur in general. Algorithm 6 achieves the global optimum α(s(t?), p(t?)) = 0.8762 the fastest,

at t? = 5, although it never reaches this point again and instead oscillates around suboptimal

points. The overall performance of Algorithm 7 is the strongest of the three. Counter-intuitively,

the performance does not improve monotonically in t, although this should be expected: early

points may get “lucky”, in some sense, but the subsequent iteration may allow the attacker to

jump to a new vulnerable part of the space. Once the algorithm achieves the global optimum

at t? = 9, it does not dip below this for the remainder of the time horizon. We observe similar

behavior of each algorithm when implemented on other small graphs.

Acknowledgements

The material in this chapter, in full, is a reprint of Maximizing Algebraic Connectivity of

Constrained Graphs in Adversarial Environments, T. Anderson, C.Y. Chang and S. Martı́nez,

2018 European Control Conference (ECC), Limassol, 2018, pp. 125-130. The dissertation author

was the primary investigator and author of this paper.

119

Chapter 6

Frequency Regulation with Heterogeneous
Energy Resources: A Realization using
Distributed Control

This chapter presents one of the first real-life demonstrations of coordinated and dis-

tributed resource control for secondary frequency response in a power distribution grid. A

series of tests involved up to 69 heterogeneous active distributed energy resources consisting of

air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery

energy storage system, and 107 passive distributed energy resources consisting of building loads

and solar photovoltaic systems. The distributed control setup consists of a set of Raspberry Pi

end-points exchanging messages via an ethernet switch. Actuation commands for the distributed

energy resources are obtained by solving a power allocation problem at every regulation instant

using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The problem for-

mulation minimizes the sum of distributed energy resource costs while tracking the aggregate

setpoint provided by the system operator. We demonstrate accurate and fast real-time distributed

computation of the optimization solution and effective tracking of the regulation signal over

40-minute time horizons. An economic benefit analysis confirms eligibility to participate in

an ancillary services market and demonstrates up to $49k of potential annual revenue for the

selected population of distributed energy resources.

The results of this chapter are the outcome of a project under the ARPA-e Network

120

Optimized Distributed Energy Systems (NODES) program1,which postulates DER aggregations

as virtual power plants that enable variable renewable penetrations of at least 50%. The vision of

the NODES program was to employ state-of-the-art tools from control systems, computer science,

and distributed systems to optimally respond to dynamic changes in the grid by leveraging DERs

while maintaining customer quality of service. The NODES program required testing with at

least 100 DERs at power. Here, we demonstrate the challenges and opportunities of testing on

a heterogeneous fleet of DERs for eventual operationalization of optimal distributed control at

frequency regulation time scales.

6.1 Bibliographical Comments

To the best of our knowledge, real-world testing of frequency regulation by DERs has

been limited. A Vehicle-to-Grid (V2G) electric vehicle (EV) [61] and two Battery Energy

Storage Systems (BESS) [93] provided frequency regulation. 76 bitumen tanks were integrated

with a simplified power system model to provide frequency regulation via a decentralized control

algorithm in [29]. In buildings, a decentralized control algorithm controlled lighting loads in a

test room [67], centralized frequency control was applied to an air handling unit (AHU) [66,101],

an inverter and four household appliances [68], and four heaters in different rooms [41]. A

laboratory home with an EV and an AHU, and a number of simulated homes were considered

for demand response in [8] through an aggregator at a 10 s level. Technologies for widespread,

but centrally controlled, cycling of air conditioners directly by utilities cf. [87] and aggregators

are common place for peak shifting, but occur over time scales of minutes to hours. Industrial

solutions enabling heterogeneous DERs to track power signals also exist, but they are either

centralized, cf. [30] or require all-to-all communication [95].

Our literature review exposes the following limitations: (i) centralized control or need

for all-to-all communication [8, 30, 41, 61, 66, 68, 87, 93, 95, 101], which does not scale to

millions of DERs; (ii) small numbers of DERs [8, 41, 61, 66, 68, 93, 101]; (iii) lack of diversity in
1https://arpa-e.energy.gov/arpa-e-programs/nodes

121

https://arpa-e.energy.gov/arpa-e-programs/nodes

DERs [29,41,61,66,67,93,101], with associated differences in tracking time scales and accuracy.

No trial has been reported that demonstrated generalizability to a real scenario with (i) scalable

distributed control and a (ii) large number of (iii) heterogeneous DERs.

Statement of Contributions

To advance the field of real-world testing of DERs for frequency control, we conduct

a series of tests using a group of up to 69 active and 107 passive heterogeneous DERs on

the University of California, San Diego (UCSD) microgrid [104]. To the best of the authors’

knowledge, this is the first work to consider such a large, diverse portfolio of real physical DERs

for secondary frequency response. As such, the major contributions of this work are:

• A detailed account of the testbed, including the DER actuation and sampling interfaces,

the distributed optimization setup, and communication framework.

• A description of techniques to work around technical barriers, provision of lessons learned,

and suggestions for future improvement.

• Evaluation of the performance of both the cyber and physical layers, including an evalua-

tion of eligibility requirements for and the economic benefit of participating in the ancillary

services market.

Chapter Overview. Frequency regulation is simulated on the UCSD microgrid using

real controllable DERs (Section 6.3.3) to follow the PJM RegD signal [3] interpolated from

0.5Hz to 1Hz (Sections 6.3.2). The DER setpoint tracking is formulated as a power allocation

problem at every regulation instant (Section 6.3.1), and uses three types of provably convergent

distributed algorithms from [?, 6, 31, 33] to solve the optimization problem; see the Appendix.

Setpoints are computed distributively on multiple Raspberry Pi’s communicating via ethernet

switches (Section 6.3.4). The setpoints are implemented on up to 176 DERs at power using

dedicated command interfaces via TCP/IP communication (Section 6.3.5), the DER power

122

outputs monitored (Section 6.3.6), and their tracking performance evaluated (Section 6.3.7).

Results for the various test scenarios (Section 6.4.1) show that the test system tracks the signal

with reasonable error despite delays in response and inaccurate tracking behavior of some groups

of DERs, and qualifies for participation in the PJM ancillary services market (Section 6.4.2).

6.2 Problem Setting

This chapter validates real-world DER controllability for participation in secondary

frequency regulation through demonstration tests implemented on a real distribution grid. The

tests showcase the ability of aggregated DERs to function as a single market entity that responds

to frequency regulation requests from the independent system operators (ISO) by optimally

coordinating DERs. The goal is to monitor and actuate a set of real controllable DERs to

collectively track a typical automatic generation control (AGC) signal issued by the ISO.

Three different distributed coordination schemes optimize the normalized contribution of

each DER to the cumulative active power signal. Unlike simulated models, the use of real power

hardware exposes implementation challenges associated with measurement noise, sampling

errors, data communication problems, and DER response. To that end, precise load tracking is

pursued at timescales that differ by DER type consistent with individual DER responsiveness

and communication latencies, yet meet frequency regulation requirements in aggregation.

The 69 kV substation and 12 kV radial distribution system owned by UCSD to operate

the 5 km2 campus was the chosen demonstration testbed. It has diverse energy resources with

real-time monitoring and control capabilities, allowing for active load tracking. This includes

over 3 MW of solar photovoltaic (PV) systems, 2.5 MW/5 MWh of BESS, building heating

ventilation and air conditioning (HVAC) systems in 14 million square feet of occupied space,

and over 200 unidirectional V2G (V1G) and V2G EV chargers. The demonstration tests used a

representative population of up to 176 such heterogeneous DERs to investigate tracking behavior

of specific DER types as well as their cooperative tracking abilities. While the available DER

123

capacity at UCSD far exceeds the minimum requirements for an ancillary service provider set

by most ISOs (typically ∼ 1 MW), logistical considerations and controller capabilities dictated

the choice of a DER population size with less aggregate power capacity (up to 184 kW) for this

demonstration. Since this magnitude of power is insufficient to measurably impact the actual

grid frequency, we chose to simulate frequency regulation by following a frequency regulation

signal.

6.3 Test Elements

Here, we elaborate on the different elements of the validation tests. These include the

optimization formulation employed to compute DER setpoints (Section 6.3.1), the reference

AGC signal (Section 6.3.2) and types of DERs used to track it (Section 6.3.3), the computing

platform (Section 6.3.4), the actuation (Section 6.3.5) and monitoring interfaces (Section 6.3.6),

the performance metrics used to assess the cyber and physical layers, and eligibility for market

participation (Section 6.3.7).

6.3.1 Optimization Formulation

The optimization model for AGC signal tracking using DERs can be mathematically

stated as a separable resource allocation problem subject to box constraints as follows:

min
p∈Rn

f (p) =
n

∑
i=1

fi(pi),

s.t.
n

∑
i=1

pi = Pref,

pi ∈ [pi, pi], ∀i ∈N = {1, . . . ,n}.

(6.1)

The agents i ∈N each have local ownership of a decision variable pi ∈ R, representing

an active power generation or consumption quantity (setpoint), a local convex cost function fi,

and local box constraints [p, p], representing active power capacity limits. Pref is a given active

power reference value determined by the ISO and transmitted to a subset of the agents as problem

124

data, see e.g. [21]. Pref is a signal that changes over time, so a new instance of (6.1) is solved in

1 s intervals corresponding to these changes.

For the validation tests, we used two types of cost functions: constant and quadratic.

Constant functions were used for the Ratio-Consensus (RC) solver, which turns the optimization

into a feasibility problem. Quadratic functions were used for the primal-dual based (PD) and

Distributed Approximate Newton Algorithm (DANA) methods, see the Appendix. The quadratic

functions were artificially chosen to produce satisfactorily diverse and representative solutions

for each DER population. We split the total time period of the signal, Pref into three equal

segments, and implemented RC, PD, and DANA in that order. Box constraints [pi, pi] were

typically centered at zero for simplicity, see Section 6.3.3.

6.3.2 Regulation Signal

The 40 min RegD signal published by PJM [3] served as the reference AGC signal for

the validation tests, and was used to obtain the value for Pref in (6.1). The normalized RegD

signal, contained in [−1,1], was interpolated from 0.5 Hz to 1 Hz. The signal was then treated

by subtracting the normalized contributions of building loads and PV systems, cf. Section 6.3.3.

Finally, the normalized signal was scaled by a factor proportional to the total DER capacity

∑i(pi− pi) before sending to the optimization solvers. More precisely,

Pref = β
∑i(pi− pi)

‖PRegD +PPV−Pb‖∞

(
PRegD +PPV−Pb

)
, (6.2)

where PRegD refers to the normalized RegD signal data, PPV and Pb respectively refer to the

normalized PV generation and building load data obtained from the UCSD ION server as

described in Section 6.3.6, and 0 < β < 1 is an arbitrary scaling constant. For most test scenarios,

β = 0.75 to prevent extreme set points that would require all DERs to operate at either pi or pi

simultaneously, which may be infeasible in some time steps due to slower signal update times,

see Table 6.1. Each P in (6.2) is a vector with 2401 elements corresponding to each 1 s time

125

step’s instance of (6.1) over the 40 min time horizon. The acquired target regulation signal is

characterized by steep positive and negative ramps that range from -14 kW to +16 kW over 1 s

intervals and an average absolute ramp-rate of 1.7 kW/s.

6.3.3 DERs

The reference AGC signal was to be collectively tracked using DERs consisting of HVAC

AHUs, BESS, V1G and V2G EVs, PV systems, and whole-building loads. Since PV systems

and (non-AHU) building loads were not controllable, they participated in the test as passive

DERs. Consequently, the active DERs were commanded to track a modified target signal derived

by subtracting the net active power output of passive DERs from the reference AGC signal and

applying appropriate scaling (cf. Section 6.3.2). Table 6.1 lists the typical net power capacity

pi− pi of the different active DER types.

Table 6.1. DER counts and characteristics for each test.

DER Type AHU V1G EV V2G EV BESS
DERs for

Test 0 7 4 5 1

DERs for
Test 1 34 29 5 1

DERs for
Test 2 34 17 6 1

Signal update
times 1 min

5 min (Test 0 & 1),
1 min (Test 2) 1 sec 20 sec

Typical power
rating per DER type 2 kW

3.3 kW (Test 0 & 1),
4.9 kW (Test 2) 5 kW 3 kW

The contribution of each active DER to the target signal was defined with respect to

a baseline power, around which [pi, pi] was centered, to enable tracking of both positive and

negative ramps in the target signal. For DERs like V2G EVs and BESS, which were capable of

power adjustments in both directions, the baseline was 0 kW. The baseline for V1G EVs was

defined to be halfway between their allowed minimum and maximum charging rates, where the

former was restricted by the SAE J1772 charging standard to 1.6 kW. Similarly, the baseline for

126

AHUs was defined to be half of their power draw when on. Further, since AHUs were limited to

binary on-off operational states, the continuous and arbitrarily precise AHU setpoints obtained

by solving (6.1) were rounded to the closest discrete setpoint obtained from a combination of

on-off states before actuation.

AHU control was restricted, by UCSD Facilities Management, to specifying only DER

setpoints and duration of actuation; since building automation controllers could not be modified,

model-based designs were impossible. This was to avoid malfunctioning or disruptions to real

physical infrastructure in the networked building management system that also controls lighting,

security, and fire protection systems.

Figure 6.1. Communication architecture for computation and actuation of control policies.

6.3.4 Computing Setup

The DER active power setpoints were computed using a set of 9 Linux-based nodes,

named C1-C9, that communicate with each other over an undirected ring topology, cf. Fig. 6.1.

As one of the sparsest network topologies, where message passing occurs only between a small

number of neighbors, the ring topology presents a challenging scenario for distributed control.

Since there were more active DERs than computing nodes, the 9 nodes were mapped subjectively

to the 69 active DERs such that nodes C1-C2 computed the actuation setpoints for the AHUs,

C3 for V1G EVs, C4-C8 for V2G EVs and C9 for the BESS.

127

Each computing node generated actuation commands as CSV files containing the power

setpoints for their respective group of DERs at a uniform update rate of 1 Hz. Preliminary testing

revealed different response times across DER types, with AHUs and V1G EVs exhibiting slower

response than other active DER types. DERs with response times greater than 1 s were subject

to a stair-step control signal with a signal update time consistent with DER responsiveness and

constant setpoints during intermediate time steps. Table 6.1 lists the signal update times for the

different DER types.

6.3.5 Actuation Interfaces and Communication Framework

The actuation commands were issued using fixed IP computers through dedicated in-

terfaces that varied by DER type as depicted in Fig. 6.1. The setpoints for AHUs were issued

through a custom Visual Basic program that interfaced with the Johnson Control Metasys build-

ing automation software. The power rate of the BESS was set via API-based communication with

a dedicated computer that controlled the battery inverter. The V1G and V2G EVs charging rates

were adjusted through proprietary smart EV charging platforms of the charging station operators.

EVs using ChargePoint R© V1G stations were manually controlled via the load shedding feature

of ChargePoint’s station management software. The actuation of EVs using PowerFlex R© V1G

chargers and Nuvve R© V2G chargers was automated and commands were issued via API-based

communication.

6.3.6 Power Measurements

The active power of all DERs was metered at a 1 Hz frequency. The power outputs of PV

systems and building loads were obtained prior to the test from their respective ION meters by

logging data from the UCSD ION Supervisory Control and Data Acquisition (SCADA) system.

A moving average filter with a 20 s time horizon was used to remove noise from the measured

data for these passive DERs. V2G EVs and BESS power data were acquired using the same

interfaces that were used for their actuation, which logged data from dedicated power meters.

128

Since neither AHUs nor the ChargePoint V1G EVs had dedicated meters, they were

monitored via their respective building ION meters by subtracting a baseline building load from

the building meter power output. Assuming constant baseline building load, any change in the

meter outputs can be attributed to the actuation of AHUs and V1G EVs. This assumption is

justifiable considering the tests were conducted at 0400 PT to 0600 PT on a weekend, when

building occupancy was likely zero and building load remained largely unchanged. Noise in

the ION meter outputs observed as frequent 15 - 30 kW spikes in the measured data for AHUs

(Fig. 6.2) and ChargePoint V1G EVs was treated by removing outliers and passing the resulting

signal through a 4 s horizon moving average filter. Here, outliers refer to points that change in

excess of 50% of the mean of the 40 min signal in a 1 s interval.

6.3.7 Performance Metrics

The performance of the distributed implementation (cyber-layer) was measured by the

normalized mean-squared-error (MSE) between the distributed and true (i.e. exact) centralized

optimization solutions. The true solutions were computed for each instance of (6.1) using a

centralized CVX solver in MATLAB [50]. The MSE was normalized by dividing by the mean of

the squares of the true solutions.

The tracking performance of the DERs was evaluated through (i) the root-mean-squared-

error (RMSE) in tracking

RMSE =

√
∑

T
t=1(P

prov
t −Ptar

t)2

∑
T
t=1(P

tar
t)2

, (6.3)

where Pprov
t is the total power that was provided (measured), and Ptar

t is the target (commanded)

regulation power at time step t ∈ {1, . . . ,T = 2401}; and (ii) the tracking delay, computed as the

time shift of the measured signal which yields the lowest RMSE between the commanded and

measured signals.

The PJM Performance Score S following [4, Section 4.5.6] was computed as a test for

eligibility to participate in the ancillary services market, and is given by the mean of a Correlation

129

Score Sc, Delay Score Sd , and Precision Score Sp:

Sc =
1

T −1

T

∑
t=1

(Pprov
t −µprov)(Ptar

t −µ tar)

σprovσ tar ,

Sd =

∣∣∣∣δ −5 min
5 min

∣∣∣∣, Sp = 1− 1
T

T

∑
t=1

∣∣∣∣Pprov
t −Ptar

t
µ tar

∣∣∣∣,
S = 1/3(Sc +Sd +Sp),

where Pprov
t and Ptar

t are as in (6.3), µprov,µ tar and σprov,σ tar denote their respective means and

standard deviations, and δ is the corresponding maximum delay in DER response for when Sc

was maximized. A performance score of at least 0.75 is required for participating in the PJM

ancillary services market.

6.4 Test Scenarios and Results

In this section, we describe the test scenarios carried out on the UCSD microgrid and

present their outcome, elaborating on the challenges we faced and the differences across the

tests.

6.4.1 Test Scenarios

Commonalities

A series of three tests were conducted on December 12, 2018 (Test 0), April 14, 2019

(Test 1) and December 17, 2019 (Test 2). All three tests involved a 40 min preparatory run

followed by a 40 min final test. Table 6.1 lists the number and type of DERs used in each test.

All tests were carried out during non-operational hours (between 0400 PT and 0540 PT) to

maximize fleet EV availability and to avoid potential disruptions to building occupants. Day-time

PV output data from February 24, 2019 was used as a proxy for an actual daytime PV signal.

130

Test 0

Test 0 was a preliminary calibration that used only a representative sample of 17 DERs.

The purpose of Test 0 was to examine the response times and tracking behavior of every DER

type and detect issues related to communication and actuation.

Test 1

Test 1 was identical to Test 0, but it used a larger population of 69 active DERs and 107

passive DERs.

a) DERs. The V1G and V2G population for Test 1 was composed of UCSD fleet EVs

plugged in at ChargePoint and Nuvve charging stations, respectively. Since the ChargePoint

V1G EVs were operated via manual input of DER setpoints (an interface to their API had not

been developed yet), to avoid overloading the (human) operators, they were grouped into three

groups and actuated in a staggered fashion such that each of the three groups maintained a signal

update time of 5 min but were commanded 1 min apart from each other.

b) Computing Setup. For both Tests 0 and 1, 9 laptops running a Robotic Operating

System (ROS) communicated via local Wi-Fi hotspot to implement the distributed coordination

algorithms and compute the DER setpoints. Given that the available power capacity of fast-

responding DERs such as V2G and BESS was smaller than slow-responding DERs, the steep

ramping demands of the target signal were met by upscaling the power of the fast responding

DERs in solving for the contribution of individual DERs. Another option would have been to

reduce the number of slow responding DERs, but the funding agency stipulated prioritizing

the number and types of heterogeneous DERs over accuracy in signal tracking. A real DER

aggregator would instead require a more balanced capacity of slow and fast DERs to ensure

feasibility of tracking these ramp features.

131

Test 2

Test 2 also used the entire population of DERs but substituted the cumbersome V1G

population with more capable V1G chargers and used a new distributed computing setup and

method of actuation based on lessons learned from Test 1.

a) DERs. The V1G EVs used in Test 1 performed poorly owing to an unreliable actuation-

interface that experienced seemingly random stalling and lacked automated control capabilities.

Therefore, 17 PowerFlex V1G charging stations at one location replaced the distributed 29 V1G

charging stations in Test 1. Since the PowerFlex interface did not permit actuating individual

stations, the 17 charging stations participated in the test as a single aggregate DER. The 0930 –

1010 PT timing of the V1G EV part of the test coincided with the start of the workday and a V1G

EV population that had only recently plugged in and therefore had ample remaining charging

capacity. The EVs were contributed by UCSD employees and visitors randomly plugging in at

the PowerFlex charging stations just before the start of the trial. An aggregate signal of 15 kW to

19 kW was distributed equally amongst the 17 EVs.

In addition to the new V1G EVs, the V2G population in Test 2 was replaced with

a different set of Nuvve chargers to resolve a tracking/noise issue during discharge-to-grid

observed in Test 1 and expanded to include an additional charger, amounting to a total of six

V2Gs charging six 5 kW EVs.

The order of AHU actuation was modified to allow for device settling time and prevent

interference. In particular, in Tests 0 and 1, individual AHUs were ordered and actuated using a

protocol that was not cognizant of settling times or building groupings, while the protocol was

revised in Test 2 to systematically command the entire population of AHUs in a manner which

maximized time between consecutive actuations for an individual unit.

b) Computing Setup. Test 2 featured a fully distributed architecture, unlike the ROS-

based semi-centralized computing setup in Test 1. The new distributed setup consisted of a

network of Raspberry Pi’s that asynchronously communicated with each other via an ethernet

132

switch. In addition, a modified synchronization technique was implemented in the software

which improved the fidelity and robustness of message-passing. This upgraded message-passing

framework and synchronization technique for both software and hardware resulted in significantly

faster communication between nodes.

c) Two-Stage Actuation. Test 2 also featured a two-stage approach of actuation that was a

result of the DER tracking behavior in Test 1. Some DERs, such as BESS, V1G EVs and V2G

EVs, tracked quickly and accurately, whereas others, such as AHUs, tracked poorly. The overall

tracking performance in Test 2 was improved by using “well-behaved” DERs to compensate for

AHU tracking errors by incorporating the error signal from actuating AHUs in Stage 1 to the

cumulative target signal for BESS, V1G EVs and V2G EVs in Stage 2. Although synchronous

actuation of all participating DERs is preferred in practice, the two-stage approach highlights the

significance of systematic characterization of DERs in minimizing ACE.

6.4.2 Test Results

Distributed Optimization/Cyber-Layer Results

In Table 6.2, we present MSE results of our 1 s real-time Raspberry-pi distributed

optimization solutions (the “cyber-layer” of the system).

Table 6.2. Normalized mean-squared-error of distributed solutions obtained from real-time
1-second intervals compared to centralized solver solution for Test 2 (Section 6.3.7)

DER Type RC PD DANA all
AHU 0 1.4×10−7 2.8×10−9 4.6×10−8

V1G EVs 0 7.0×10−8 1.7×10−9 2.3×10−8

V2G EVs 0 6.6×10−5 5.0×10−7 2.1×10−5

BESS 0 2.0×10−6 9.1×10−8 6.5×10−7

Total 0 1.8×10−5 1.1×10−7 4.9×10−6

RC converged to the exact solution in all instances. This is unsurprising, as the RC

problem formulation does not account for individual DER costs and thus, is a much simpler

problem with a closed-form solution. For PD and DANA, we obtained excellent convergence,

133

with errors on the order of 0.001% in the worst cases. In general, DANA tended to converge

faster than PD and obtained more accurate solutions. For our application with 1 s real-time

windows, accuracy and convergence differences did not affect the physical layer results in any

tangible way, but applications with more stringent accuracy or speed requirements may benefit

from using a faster algorithm like DANA. The differences between DER populations can be

largely attributed to the faster time scale of the V2G EVs (and to a lesser extent the BESS), see

Table 6.1. Since the V2G EVs were responsible for the high-frequency component of Pref, the

solver was required to converge to new solutions at every time step, which induced more error

compared to the slow V1G EVs and AHUs with relatively static solutions.

Physical-Layer Test Results

We now present the results of the tracking performance pertaining to the physical-layer

of the experiment. We provide only some selective plots for Test 0 and Test 1 in Fig. 6.2, and a

complete set of plots for each Test 2 DER population in Fig. 6.3. Error and tracking delay data

defined in Section 6.3.7 is given in Table 6.3 for Test 1 and Test 2. Data for Test 0 is omitted due

to its preliminary nature. The optimal shift described in Section 6.3.7 is applied to each time

series and hence some areas in plots may appear like the provided signal anticipated the target.

Signal tracking accuracy in Test 0 was generally poor despite the small number of DERs

employed, largely due to inexperience in actuating the AHUs and V1Gs. In particular, Fig. 6.2

reveals some oscillations in the AHU response. It is overall difficult to determine if even large-

feature, low-frequency components of the signal were tracked. Further, data gathering for V1Gs

and AHUs was done via noisy and unreliable building ION meters, which motivated the need

for outlier treatment (Section 6.3.6) in Tests 1 and 2, and resulted in the smoother and better

tracking signal in the top plot of Fig. 6.3.

Test 1 yielded a 111% rMSE for AHUs. We speculate that the small 4 s delay is not

representative of the actual AHU delay due to random correlations dominating the time shift for

this large error. This is confirmed by a much better AHU response in Test 2 with rMSE 12%,

134

Figure 6.2. Top: AHU response in Test 0. Middle: V2G response in Test 1. Bottom: Total
response in Test 1.

where a 105 s delay is more likely to be representative of the true AHU actuation delay. Given

the poor visibility into AHU and V1G controllers explained in Section 6.4.1, it is challenging

to identify the source of the poor tracking behavior. We speculate that DER metering at the

building level rather than the DER level was a major source of error for AHU and V1G in Test 1.

This was largely resolved in Test 2 by utilizing a different population of V1Gs with dedicated

meters and by modifying the actuation scheme for AHUs to be less susceptible to metering

errors as described in Section 6.4.1. Additionally, the actuation-interface stalling for V1G EVs,

described in Section 6.4.1, was dominant in Test 1, resulting in the poor tracking for V1Gs.

Actuating-interface issues were resolved in Test 2 by utilizing an automated control scheme for

135

Figure 6.3. From top to bottom, AHU, V2G EVs, V1G EVs, BESS, and total responses in
Test 2.

the V1Gs, which led to significantly lower error.

The BESS emerged as the star performer achieving very accurate tracking across all tests

136

with no delay. The V2G EVs also performed relatively well aside from a signal overshoot issue

observed during the discharge cycle in Test 1 seen in Fig. 6.2. The issue was resolved in Test 2 by

using V2G EV charging stations from a different manufacturer (Princeton Power), as described

in Section 6.4.1. The V2G charging stations deployed for these tests were pre-commercial or

early commercial models that had a few operating issues, such as the overshoot issue during

Test 1.

The inability of the AHUs to respond to steep, short ramps (Fig. 6.3) could be due to

slow start-up sequences programmed into the building automation controllers to increase device

longevity or due to transients associated with driving their AC induction electric motors. Tackling

this would require dynamic models and parameter identification of signal response and delay.

With the new V1G EV population in Test 2, tracking delay reduced from 40 s to 10 s and the

tracking accuracy improved significantly. The 1 kW bias seen in Fig. 6.3 is likely due to rounding

errors arising from the inability of PowerFlex charging stations to accept non-integer setpoints.

The superior performance of the BESS and V2Gs motivated the two-stage actuation

scheme described in Section 6.4.1, which contributed to reducing the total RMSE from 50%

in Test 1 to 10% in Test 2 (compare the bottom plots of Figs 6.2 and 6.3). The two-stage

approach allows a sufficiently large proportion of accurately tracking DERs to compensate for

the errors of the first stage, where tracking is worse. In this way, poorly-tracking DERs, such as

AHUs, can still contribute by loosely tracking some large-feature, low-frequency components

of the target signal. The low-frequency contribution reduces the required total capacity of the

strongly-performing DERs in the second stage leading to more fine-tuned signal tracking in

aggregation. Some recommended rules of thumb for two-stage approach are: (i) Total capacity

of first-stage DERs is less than or equal to total capacity of second-stage DERs. (ii) DERs in

the first stage are capable of tracking with < 50% rMSE. (iii) DER cost functions are such that

the deviation from the baseline is lower cost for first-stage DERs than for second-stage. (iii)

allocates a significant portion of the target signal initially to first-stage DERs, freeing up DER

capacity in the second-stage for error compensation.

137

Table 6.3. Left: Relative root mean-squared-error of tracking error by DER type. Right: Delay
(optimal time-shift) of DER responses in sec.

DER Type Test 1 Test 2
AHU 1.11 0.12

V1G EVs 0.68 0.077
V2G EVs 0.30 0.060

BESS 0.054 0.018
Total 0.50 0.097

DER Type Test 1 Test 2
AHU 4 105

V1G EVs 40 10
V2G EVs 5 3

BESS 0 0
Total N/A N/A

Economic Benefit Analysis

Here, we evaluate the economic benefit of the proposed test system, which is vital for

wider scale adoption of DERs as a frequency regulation resource in real electricity markets. To

this end, we take an approach similar to [66] to first demonstrate that the testbed is eligible to par-

ticipate in the PJM ancillary services market. Following the PJM Manual 12 [4] (Section 6.3.7),

we compute a Correlation Score Sc = 0.98, Delay Score Sd = 0.65, and Precision Score Sp =

0.91 from data for Test 2, and obtain a Performance Score S = 0.85≥ 0.75, which confirms the

eligibility to participate in the PJM ancillary service market.

Next, we compute the estimated annual revenue assuming that the resources are available

throughout the day. Using PJM’s capability clearing price data2 with our total (active) DER

capacity of 184 kW and performance score of 0.85, the revenue for this population of resources

(cf. [2, Section 4]) would be $135 for July 9, 2020. This gives an estimated amount of $49,210 as

the total annual revenue. Note that the 184 kW DER capacity employed in this work represents

less than 5% of the total DER capacity and less than 0.5% of the total capacity of the UCSD

microgrid, cf. [104]. As such, the revenue would significantly increase if more microgrid

resources are utilized for regulation, even with reduced availability.

2https://dataminer2.pjm.com/feed/reg prices/definition

138

https://dataminer2.pjm.com/feed/reg_prices/definition

Appendix: Distributed Coordination Algorithms

In this section we describe the algorithms used in our distributed computing platform to

solve (6.1).

Ratio-Consensus (RC): The ratio-consensus of [?] computes equitable contributions from

all DERs without DER-specific cost functions (or constant DER costs). The ratio-consensus

algorithm for providing Pref is given by

yi[k+1] = ∑
j∈N i

1
|N i |

y j[k], zi[k+1] = ∑
j∈N i

1
|N i |

z j[k],

yi[0] =

Pref
|I | − pi, i ∈ I,

−pi, i /∈ I,
zi[0] = pi− pi,

where, k is the iteration number, yi and zi are two auxiliary variables maintained by each agent,

N i denotes the neighboring DERs of DER i, and pi and pi are the minimum and maximum

power level for DER i from the problem formulation in Section 6.3.1. I denotes the subset of

DERs which know the value of the reference signal. One can see that

p?i = pi + lim
k→∞

yi[k]/zi[k](pi− pi)

= pi +
Pref−∑i pi

∑i pi− pi

(pi− pi),

where p?i is then the power assignment for DER i.

Primal-Dual (PD): Both this dynamics and DANA (described next) take into account

the cost functions of the DER types when computing the power setpoints, i.e., fi are noncon-

stant. These functions are modeled as quadratics, which is a common choice in generator

dispatch [5]. The dynamics is based on the discretization of the primal-dual dynamics [33] for

the augmented Lagrangian of the equivalent reformulated problem, see [31], and it has a linear

139

rate of convergence to the optimizer. The algorithm is given by

ṗi

ẏi

λ̇i

=

−
(

f ′i (pi)+λi + pi ∑ j∈N i Li jy j−Pref/n
)

−
(

∑ j∈N i Li j(λ j + x j−Pref/n)+∑ j∈N 2
i
L2

i jy j

)
pi +∑ j∈N i Li jy j−Pref/n

 ,

where, L is the Laplacian matrix of the communication graph (see [18]), yi is an auxiliary variable,

and λi is the dual variable associated with agent i. The update step is followed by a projection of

the primal variable pi onto the box constrained local feasible set. These dynamics converge from

any set of initial conditions. Since this algorithm evolves in continuous time, we use an Euler

discretization with fixed step-size to implement it in discrete time.

Distributed Approximate Newton Algorithm (DANA): The Distributed Approximate

Newton Algorithm (DANA) of [6] has an improved rate of convergence compared to PD. This

algorithm solves the equivalent reformulated problem

min
z∈Rn

f (p0 +Lz) =
n

∑
i=1

fi(p0
i +Liz),

subject to p− p0−Lz≤ 0n,

p0 +Lz− p≤ 0n,

(6.4)

where p0 is a vector of initial power levels of all the DERs with ∑i p0
i = Pref, and z is the new

variable of optimization. The continuous time dynamics are given by

ż =−Aq∇z L (z,λ),

λ̇ = [∇λ L (z,λ)]+
λ
,

where L is the Lagrangian of (6.4) and Aq is a positive definite weighting on the gradient

direction which provides distributed second-order information. For brevity, we do not provide

the full details of the algorithm here, which can instead be found in [6]. The cost functions are

140

again taken to be quadratic with strictly positive leading coefficients.

Acknowledgements

The material in this chapter, in full, is under revision for publication in IEEE Transactions

on Smart Grid. It may appear as Frequency Regulation with Heterogeneous Energy Resources: A

Realization using Distributed Control, T. Anderson, M. Muralidharan, P. Srivastava, H.V. Haghi,

J. Cortés, J. Kleissl, S. Martı́nez and B. Washom. The dissertation author was one of three

primary investigators and authors of this paper.

We would like to thank numerous people in the UCSD community and beyond for

their generous contributions of time and resources to enable such an ambitious project to come

together. We extend thanks to: (i) Aaron Ma and Jia (Jimmy) Qiu for assisting with hardware

setup and software development for the distributed computation systems; (ii) Kevin Norris for

coordinating the fleet vehicles; (iii) Abdulkarim Alamad for overseeing V1G drivers in Test 2;

(iv) Kelsey Johnson for managing the Nuvve contributions; (v) Ted Lee, Patrick Kelly, and

Steven Low for managing the PowerFlex contribution; (vi) Marco Arciniega, Martin Greenawalt,

James Gunn, Josh Kavanagh, Jennifer Rodgers, Patricia Roman and Lashon Smith from UCSD

parking for reserving EV charging station parking spaces; (vii) Charles Bryant, Harley Crace,

John Denhart, Nirav Desai, John Dilliott, Mark Gaus, Martin Greenawalt, Gerald Hernandez,

Brandon Hirsch, Mark Jurgens, Josh Kavanagh, Jose Moret, Chuck Morgan, Curt Lutz, Jose

Moret, Cynthia Wade, Raymond Wampler and Ed Webb for contributing their EVs in Test 1;

(viii) Adrian Armenta, Adrian Gutierrez and Minghua Ong who helped with ChargePoint manual

control; (ix) Bob Caldwell (Centaurus Prime), Gregory Collins, Charles Bryant, and Robert

Austin for programming and enabling the AHU control; (x) Gary Matthews and John Dilliott

for permitting the experimentation on “live” buildings and vehicles; and (xi) Antoni Tong and

Cristian Cortes-Aguirre for supplying the BESS. Finally, we would like to extend a sincere

thanks to the ARPA-e NODES program for its financial support and to its leadership, including

141

Sonja Glavaski, Mario Garcia-Sanz, and Mirjana Marden, for their vision and push for the

development of large-scale power-in-the-loop testing environments.

142

Chapter 7

Conclusion

In this thesis, we studied a class of separable resource allocation problems, and we

developed three types of Newton-like algorithms to approach three different scenarios of the

resource allocation. Each algorithm was theoretically analyzed and rigorously shown to satisfy

some convergence criteria, and the efficacy of each was validated in simulation with comparisons

to relevant alternatives available in literature. We now summarize chapter-by-chapter the more

specific conclusions that can be drawn and suggestions for future work.

In Chapter 2, motivated by economic dispatch problems and separable resource allocation

problems in general, this work proposed a class of novel DISTRIBUTED APPROX-NEWTON

algorithms. We first posed the topology design proplem and provided an effective method

for designing communication weightings. The weight design we propose is more cognizant

of the problem geometry, and it outperforms the current literature on network weight design

even when applied to a gradient-like method. Our contribution on the second-order weight

design approach is novel but is limited in scope to the given problem formulation. Distributed

second-order methods are quite immature in the present literature, so an emphasis of future

work is to generalize this weight design notion to a broader class of problems. Ongoing work

also includes generalizing the cost functions for box-constrained settings and discretizing the

continuous-time algorithm. In addition, we aim to develop distributed Newton-like methods

suited to handle more general constraints and design for robustness under uncertain parameters or

143

lossy communications. Another point of interest is to further study methods for solving bilinear

problems and apply these to weight design within the Newton framework.

Chapter 3 studied a nested, distributed stochastic optimization problem and applied a

Distributed Stochastic Cubic-Regularized Newton (DiSCRN) algorithm to solve it. In order

to compute the DiSCRN update, a batch of approximate solutions to realizations of the inner-

problem are obtained, and we developed a locally-checkable stopping criterion to certify sufficient

accuracy of these solutions. The accuracy parameter is directly leveraged in the analysis of the

outer-problem, and simulations justify both faster and more robust convergence properties than

that of comparable gradient-like and Newton-like approaches. Future work involves developing

and analyzing a saddle-point dynamics approach for solving ¶3 (extending the work of [24]),

extending the analysis to accommodate small disagreements in the agent states xi, and exploring

adaptive batch size techniques.

In Chapter 4, we posed an optimal generator dispatch problem for settings in which

the agents are generators with binary controls. We first showed that the centralized problem

is amenable to solution via a Centralized NEWTON-LIKE NEURAL NETWORK approach and

proved convergence to a local minimizer with probability one under light assumptions. Next,

we developed an approach to make the dynamics computable in a distributed setting in which

agents exchange messages with their two-hop neighbors in a communication graph. The methods

scale and perform well compared to standard greedy and SDP-relaxation approaches, and the

latter method enjoys the qualities of a distributed algorithm, unlike previous approaches. Future

research directions include application of the methods to a broader class of problems which may

include additional cost terms or constraints and a deeper analysis of the Deterministic Annealing

variant as it pertains to the online adjustment of the learning-rate T/τ .

Chapter 5 introduced three related problems motivated by studying the algebraic con-

nectivity of a graph by adding edges to an initial topology or protecting edges under the case

of a disturbance or attack on the network. We developed a novel SDP relaxation to address the

NP-hardness of the design and demonstrated in simulation that it is superior to existing methods

144

which are greedy and cannot accommodate general constraints. In addition, we studied the

dynamics of the game that may be played between a network coordinator and strategic attacker.

We developed the notion of an optimal preventive solution for the coordinator and proposed

effective heuristics to find such a solution guided by characterizations of the solutions to the

attacker’s problem. Future work includes characterizing the performance of our SDP relaxation

and developing an algorithm which provably converges to the optimal preventive strategy.

Finally, in Chapter 6 we presented one of the first real-world demonstrations of secondary

frequency response in a distribution grid using up to 176 heterogeneous DERs. The DERs

include AHUs, V1G and V2G EVs, a BESS, and passive building loads and PV generators.

The computation setup utilizes state-of-the-art distributed algorithms to find the solution of a

power allocation problem. We show that the real-time distributed solutions are close to the true

centralized solution in an MSE sense. Tests with real, controllable DERs at power closely track

the given active-power reference signal in aggregation. These tests highlight the importance of

dedicated and noise-free measurement sensors and a well-understood and reliable DER control

interface for precise signal tracking. Further, our economic benefit analysis shows a potential

annual revenue of $49K for the chosen DER population. As is already recognized by the

power systems community and federal funding agencies such as ARPA-e and NSF, large-scale

power-in-the-loop testing is needed for transitioning distributed technologies to real distribution

systems.

We hope that the work of this thesis spurs further study, testing, and ultimately widespread

adoption of distributed algorithms by relevant players in industry, particularly in the renewable

energy sector. Returning to the philosophical motivation of the Introduction, it is paramount

to anticipate and resolve the issues of scale that are emerging as a result of computing systems

transitioning from the “single-cellar” to the “multi-cellular” model. To this end, rigorous theory

must continue to be developed in order to deeply understand distributed intelligence systems and

to ensure they continue to improve quality of life and serve humanity.

145

Bibliography

[1] CAISO business practice manual for market operation. https://bpmcm.caiso.com/Pages/
BPMDetails.aspx?BPM=Market%20Operations, 2018. Version 57.

[2] PJM manual 28: Operating agreement accounting, December 3 2019. Revision 83.

[3] PJM markets and operations: Anciliary services. https://www.pjm.com/
markets-and-operations/ancillary-services.aspx, 2019. RegD Normalized Signal
Test (after 1.30.2017).

[4] PJM manual 12: Balancing operations, March 26 2020. Revision 40.

[5] G. Sheblé A. Wood, B. Wollenberg. Power Generation, Operation, and Control. John
Wiley, 3 edition, 2012.

[6] T. Anderson, C.-Y. Chang, and S. Martı́nez. Distributed approximate Newton
algorithms and weight design for constrained optimization. Automatica, 2019.
https://doi.org/10.1016/j.automatica.2019.108538.

[7] T. Anderson and S. Martı́nez. Distributed stochastic nested optimization via cubic regular-
ization. ArXiv. Preprint arXiv:2008.13291, 2020.

[8] K. Baker, X. Jin, , D. Vaidhynathan, W. Jones, D. Christensen, B. Sparn, J. Woods,
H. Sorensen, and M. Lunacek. Frequency regulation services from connected residential
devices: Short paper. In Proceedings of the 3rd ACM International Conference on Systems
for Energy-Efficient Built Environments, pages 119–122, Palo Alto, CA, 2016.

[9] Saeid Bashash and Hosam K. Fathy. Optimizing demand response of plug-in hybrid
electric vehicles using quadratic programming. In American Control Conference, pages
716–721, 2013.

[10] S. Bauk and Z. Avramović. Hopfield network in solving travelling salesman problem in
navigation. In Seminar on Neural Network Applications in Electrical Engineering, pages
207–2010, 2002.

[11] D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[12] S. Bhattacharya, A. Gupta, and Tamer Basar. Jamming in mobile networks: a game-
theoretic approach. Numerical Algebra, Optimization, and Control, 3(1):1–30, 2013.

146

https://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Market%20Operations
https://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Market%20Operations
https://www.pjm.com/markets-and-operations/ancillary-services.aspx
https://www.pjm.com/markets-and-operations/ancillary-services.aspx

[13] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Conference
on Computational Statistics, pages 177–186, Paris, France, 2010.

[14] L. Bottou, F.E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[15] S. Boyd. Convex optimization of graph Laplacian eigenvalues. In Proc. Int. Congress of
Mathematicians, volume 3, page 1311–1319, 2006.

[16] S. Boyd and L. Vandenberghe. Semidefinite programming relaxations of non-convex
problems in control and combinatorial optimization. In A. Paulraj, V. Roychowdhuri,
and C. Schaper, editors, Communications, Computation, Control and Signal Processing:
A Tribute to Thomas Kailath, chapter 15, pages 279–288. Kluwer Academic Publishers,
1997.

[17] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[18] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic Networks. Applied
Mathematics Series. Princeton University Press, 2009.

[19] CAISO. Pay for performance regulation: Draft final proposal addendum, February 22
2012.

[20] CAISO Business Practice Manual for Market Operation, 2017. Version 51. Available at
https://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Market%20Operations.

[21] CAISO. Business practice manual for market operation, May 24 2018. Version 57.

[22] R. Carli and G. Notarstefano. Distributed partition-based optimization via dual decompo-
sition. In IEEE Int. Conf. on Decision and Control, 2013.

[23] R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo. Analysis of Newton-Raphson
consensus for multi-agent convex optimization under asynchronous and lossy commu-
nications. In IEEE Int. Conf. on Decision and Control, page 418–424, Osaka, Japan,
2015.

[24] Y. Carmon and J. Duchi. Gradient descent finds the cubic-regularized nonconvex newton
step. SIAM Journal on Optimization, 29(3):2146–2178, 2019.

[25] C. Cartis, N. Gould, and P. Toint. Adaptive cubic regularisation methods for unconstrained
optimization. part I: motivation, convergence and numerical results. Mathematical Pro-
gramming, 127:245–295, 2009.

[26] C. Cartis, N. Gould, and P. Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. part II: worst-case function- and derivative-evaluation complexity.
Mathematical Programming, 130:295–319, 2010.

[27] P. Chardaire and A. Sutter. A decomposition method for quadratic zero-one programming.
Management Science, 41(4):704–712, 1995.

147

https://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Market%20Operations

[28] X. Chen, B. Jiang, T. Lin, and S. Zhang. On adaptive cubic regularized Newton’s methods
for convex optimization via random sampling. preprint arXiv:1802.05426, 2018.

[29] M. Cheng, J. Wu, S. J. Galsworthy, C. E. Ugalde-Loo, N. Gargov, W. W. Hung, and
N. Jenkins. Power system frequency response from the control of bitumen tanks. IEEE
Transactions on Power Systems, 31(3):1769–1778, 2016.

[30] S. Cherian and P. Asmus. Liberating microgrids (and all DER): Aligning customer needs
with solutions provider offerings. White Paper, 2016.

[31] A. Cherukuri and J. Cortés. Distributed algorithms for convex network optimization
under non-sparse equality constraints. In Allerton Conf. on Communications, Control and
Computing, pages 452–459, Monticello, IL, September 2016.

[32] A. Cherukuri and J. Cortés. Initialization-free distributed coordination for economic
dispatch under varying loads and generator commitment. Automatica, 74:183–193, 2016.

[33] A. Cherukuri, B. Gharesifard, and J. Cortés. Saddle-point dynamics: conditions for asymp-
totic stability of saddle points. SIAM Journal on Control and Optimization, 55(1):486–511,
2017.

[34] A. Cherukuri, E. Mallada, S. H. Low, and J. Cortés. The role of convexity in saddle-point
dynamics: Lyapunov function and robustness. IEEE Transactions on Automatic Control,
63(8):2449–2464, 2018.

[35] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
3 edition, 2009.

[36] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization. Int.
Conf. on Neural Information Processing Systems, pages 2933–2941, 2014.

[37] N. de Abreu. Old and new results on algebraic connectivity of graphs. Linear Algebra
and Its Applications, 423:53–73, 2006.

[38] X. Ding and T. Jiang. Old and new results on algebraic connectivity of graphs. The Annals
of Applied Probability, 20(6):2086–2117, 2010.

[39] T. Doan and C. Beck. Distributed Lagrangian methods for network resource allocation.
In IEEE Conf. on Control Technology and Applications, 2017.

[40] S. Du, C. Jin, J. Lee, M. Jordan, B. Poczos, and A. Singh. Gradient descent can take
exponential time to escape saddle points. In Int. Conf. on Neural Information Processing
Systems, pages 1067–1077, Long Beach, CA, USA, 2017.

[41] L. Fabietti, T. T. Gorecki, F. A. Qureshi, A. Bitlislioğlu, I. Lymperopoulos, and C. N.
Jones. Experimental implementation of frequency regulation services using commercial
buildings. IEEE Transactions on Smart Grid, 9(3):1657–1666, 2018.

148

[42] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298–305, 1973.

[43] S. Friedberg, A. Insel, and L. Spence. Linear Algebra. Pearson, 4 edition, 2003.

[44] W. A. Gardner. Learning characteristics of stochastic-gradient-descent algorithms: A
general study, analysis, and critique. Signal Processing, 6(2):113–133, 1984.

[45] A. Ghosh and S. Boyd. Growing well-connected graphs. In IEEE Int. Conf. on Decision
and Control, page 6605–6611, San Diego, USA, 2006.

[46] P. Gill, W. Murray, and M. Wright. Practical optimization. Academic Press, 1981.

[47] C. D. Godsil and G. F. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in
Mathematics. Springer, New York, 2001.

[48] R. Goebel, R. G. Sanfelice, and A. Teel. Hybrid dynamical systems. IEEE Control
Systems Magazine, 29(2):28–93, 2009.

[49] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the Association
for Computing Machinery, 42(6):1115–1145, 1995.

[50] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.1. http://cvxr.com/cvx, March 2014.

[51] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifur-
cations of Vector Fields. Springer, 1983.

[52] G. Gutin, A. Yeo, and A. Zverovich. Traveling salesman should not be greedy: Domination
analysis of greedy-type heuristics for the TSP. Discrete Applied Mathematics, 117(1-
3):81–86, 2002.

[53] S. Hassan-Moghaddam and M. Jovanovic. On the exponential convergence rate of
proximal gradient flow algorithms. In IEEE Int. Conf. on Decision and Control, 2018.

[54] A. Hassibi, J. How, and S. Boyd. A path-following method for solving BMI problems in
control. In American Control Conference, page 1385–1389, San Diego, CA, USA, 1999.

[55] X. He, X. Fang, and J. Yu. Distributed energy management strategy for reaching cost-
driven optimal operation integrated with wind forecasting in multimicrogrids system. IEEE
Transactions on Systems, Man, & Cybernetics. Part A: Systems & Humans, 49(8):1643–
1651, 2019.

[56] X. He, J. Yu, T. Huang, and C. Li. Distributed power management for dynamic economic
dispatch in the multimicrogrids environment. IEEE Transactions on Control Systems
Technology, 27(4):1651–1658, 2019.

149

http://cvxr.com/cvx

[57] J. Hopfield and D. Tank. Neural computation of decisions in optimization problems.
Biological Cybernetics, 52(3):141–152, 1985.

[58] B. Huang, L. Liu, H. Zhang, Y. Li, and Q. Sun. Distributed optimal economic dispatch for
microgrids considering communication delays. IEEE Transactions on Systems, Man, &
Cybernetics. Part A: Systems & Humans, 49(8):1634–1642, 2019.

[59] D. Jakovetic, J. Xavier, and J. Moura. Fast distributed gradient methods. IEEE Transac-
tions on Automatic Control, 59(5):1131–1146, 2014.

[60] B. Kamgar-Parsi and B. Kamgar-Parsi. Dynamical stability and parameter selection in
neural optimization. In Int. Joint Conf. on Neural Networks, page 566–571, 1992.

[61] W. Kempton, V. Udo, K. Huber, K. Komara, S. Letendre, S. Baker, D. Brunner, and
N. Pearre. A test of vehicle-to-grid (V2G) for energy storage and frequency regu-
lation in the PJM system, 2008. Available at http://www1.udel.edu/V2G/resources/
test-v2g-in-pjm-jan09.pdf.

[62] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[63] M. Kintner-Meyer. Regulatory policy and markets for energy storage in North America.
Proceedings of the IEEE, 102(7):1065–1072, 2014.

[64] B. Kroposki. Basic research needs for autonomous energy grids-Summary report of the
workshop on autonomous energy grids. Technical report, NREL, September 13-14 2017.
NREL/TP-5D00-70428.

[65] D. Li, X. Sun, S. Gu, J. Gao, and C. Liu. Polynomially solvable cases of binary quadratic
programs. In A. Chinchuluun, P. Pardalos, R. Enkhbat, and I. Tseveendorj, editors,
Optimization and Optimal Control, pages 199–225. Springer, 2010.

[66] Y. Lin, P. Barooah, S. Meyn, and T. Middelkoop. Experimental evaluation of frequency
regulation from commercial building HVAC systems. IEEE Transactions on Smart Grid,
6(2):776–783, 2015.

[67] J. Liu, W. Zhang, and Y. Liu. Primary frequency response from the control of led lighting
loads in commercial buildings. IEEE Transactions on Smart Grid, 8(6):2880–2889, 2017.

[68] B. Lundstrom, S. Patel, S. Attree, and M. V. Salapaka. Fast primary frequency response
using coordinated DER and flexible loads: Framework and residential-scale demonstration.
In 2018 IEEE Power Energy Society General Meeting, pages 1–5, Portland, OR, August
2018.

[69] Z. Q. Luo, W. K. Ma, A. So, Y. Ye, and S. Zhang. Semidefinite relaxation of quadratic
optimization problems. IEEE Signal Processing Magazine, 27(3):20–34, 2010.

[70] E. Mallada, C. Zhao, and S. Low. Optimal load-side control for frequency regulation in
smart grids. IEEE Transactions on Automatic Control, 62(12):6294–6309, 2017.

150

http://www1.udel.edu/V2G/resources/test-v2g-in-pjm-jan09.pdf
http://www1.udel.edu/V2G/resources/test-v2g-in-pjm-jan09.pdf

[71] J. Mandziuk. Solving the travelling salesman problem with a Hopfield-type neural network.
Demonstratio Mathematica, 29(1):219–231, 1996.

[72] R. Merris. Laplacian graph eigenvectors. Linear Algebra and Its Applications,
278(1–3):221–236, 1998.

[73] B. Mityagin. The zero set of a real analytic function. arXiv:1512.07276v1, 2015.

[74] A. Mokhtari, Q. Ling, and A. Ribeiro. An approximate Newton method for distributed
optimization. IEEE Transactions on Signal Processing, 65(1):146–161, 2017.

[75] M. Mozaffaripour and R. Tafazolli. Suboptimal search algorithm in conjunction with
polynomial-expanded linear multiuser detector for FDD WCDMA mobile uplink. IEEE
Transactions on Vehicular Technology, 56(6):3600–3606, 2007.

[76] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions-I. Mathematical Programming, 14(1):265–294,
1978.

[77] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[78] Y. Nesterov and B.T. Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108:177—-205, 2006.

[79] Z. A. Obaid, L. M. Cipcigan, L. Abrahim, and M. T. Muhssin. Frequency control of future
power systems: reviewing and evaluating challenges and new control methods. Journal of
Modern Power Systems and Clean Energy, 7(1):9–25, 2019.

[80] V. Pan and Z. Chen. The complexity of the matrix eigenproblem. In ACM Symposium on
Theory of Computing, pages 507–516, 1999.

[81] P. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic optimization
in control. European Journal of Control, 9(2-3):307–321, 2003.

[82] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for (0,1)-
quadratic programming. Journal of Global Optimization, 7(1):51–73, 1995.

[83] E. Ramı́rez-Llanos and S. Martı́nez. Distributed discrete-time optimization algorithms
with application to resource allocation in epidemics control. Optimal Control, Applications
and Methods, 2017. To appear. Available at the Wiley Online Library.

[84] K. Rose. Deterministic annealing for clustering, compression, classification, regression,
and related optimization problems. Proceedings of IEEE, 86(11):2210–2239, 1998.

[85] S. Paternain, A. Mokhtari, and A. Ribeiro. A Newton-based method for nonconvex
optimization with fast evasion of saddle points. SIAM Journal on Optimization, 29(1):343–
368, 2019.

151

[86] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[87] SDGE. AC saver for business.

[88] S. Y. Shafi, M. Arcak, and L. E. Ghaoui. Designing node and edge weights of a graph to
meet Laplacian eigenvalue constraints. In Allerton Conf. on Communications, Control
and Computing, page 1016–1023, UIUC, Illinois, USA, 2010.

[89] M. Shamaiah, S. Banerjee, and H. Vikalo. Greedy sensor selection: Leveraging submodu-
larity. In IEEE Int. Conf. on Decision and Control, pages 2572–2577, 2010.

[90] K. Smith. Solving Combinatorial Optimization Problems Using Neural Networks. PhD
thesis, University of Melbourne, March 1996.

[91] P. Srivastava, C.-Y. Chang, and J. Cortés. Participation of microgrids in frequency
regulation markets. In American Control Conference, pages 3834–3839, Milwaukee, WI,
May 2018.

[92] G.W. Stewart. Matrix Algorithms Volume 1: Basic Decompositions. SIAM, 1998.

[93] M. Swierczynski, D. Stroe, A. Stan, R. Teodorescu, R. Lærke, and P. C. Kjær. Field tests
experience from 1.6MW/400kWh Li-ion battery energy storage system providing primary
frequency regulation service. In IEEE PES ISGT Europe, pages 1–5, 2013.

[94] N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M. Jordan. Stochastic cubic regularization
for fast nonconvex optimization. In Int. Conf. on Neural Information Processing Systems,
pages 2904–2913, 2018.

[95] A. Tuckey, S. Zabihi, and S. Round. Decentralized control of a microgrid. In Euro-
pean Conference on Power Electronics and Applications, pages 1–10, Warsaw, Poland,
September 2017.

[96] R. Tutunov, H. Bou-Ammar, and A. Jadbabaie. Distributed Newton method for large-scale
consensus optimization. IEEE Transactions on Automatic Control, 64(10):3983–3994,
2019.

[97] C. Uribe and A. Jadbabaie. A distributed cubic-regularized Newton method for smooth
convex optimization over networks. preprint arXiv:2007.03562, 2020.

[98] J. Urschel, J. Xu, X. Hu, and L. Zikatanov. A cascadic multigrid algorithm for com-
puting the Fiedler vector of graph laplacians. Journal of Computational Mathematics,
33(2):209–226, 2015.

[99] J. VanAntwerp and R. Braatz. A tutorial on linear and bilinear matrix inequalities. Journal
of Process Control, page 363–385, 2000.

[100] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,
1996.

152

[101] E. Vrettos, E. C. Kara, J. MacDonald, G. Andersson, and D. S. Callaway. Experimental
demonstration of frequency regulation by commercial buildings—part II: Results and
performance evaluation. IEEE Transactions on Smart Grid, 9(4):3224–3234, 2018.

[102] P. Wang, C. Shen, A. Hengel, and P. Torr. Large-scale binary quadratic optimization using
semidefinite relaxation and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(3):470–485, 2017.

[103] X. Wang, S. Ma, D. Goldfarb, and W. Liu. Stochastic quasi-newton methods for nonconvex
stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

[104] B. Washom, J. Dilliot, D. Weil, J. Kleissl, N. Balac, W. Torre, and C. Richter. Ivory tower
of power: Microgrid implementation at the University of California, San Diego. IEEE
Power and Energy Magazine, 11(4):28–32, 2013.

[105] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method for network utility
maximization, I: Algorithm. IEEE Transactions on Automatic Control, 58(9):2162–2175,
2013.

[106] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed Newton method for network
utility maximization, II: Convergence. IEEE Transactions on Automatic Control,
58(9):2176–2188, 2013.

[107] L. Xiao and S. Boyd. Optimal scaling of a gradient method for distributed resource
allocation. Journal of Optimization Theory & Applications, 129(3):469–488, 2006.

[108] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S., Srinivasa, and R. Sukthankar.
Decentralized estimation and control of graph connectivity for mobile sensor networks.
Automatica, 46(2):390–396, 2010.

[109] Z. Yang, A. Bose, H. Zhong, N. Zhang, Q. Xia, and C. Kang. Optimal reactive power dis-
patch with accurately modeled discrete control devices: A successive linear approximation
approach. IEEE Transactions on Power Systems, 32(3):2435–2444, 2016.

[110] P. Yi, Y. Hong, and L. Feng. Initialization-free distributed algorithms for optimal resource
allocation with feasibility constraints and its application to economic dispatch of power
systems. Automatica, 74:259–269, 2016.

[111] F. Yousefian, A. Nedić, and U. Shanbhag. Stochastic quasi-newton methods for non-
strongly convex problems: Convergence and rate analysis. In IEEE Int. Conf. on Decision
and Control, pages 4496–4503, 2016.

[112] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato. Newton-Raphson
consensus for distributed convex optimization. IEEE Transactions on Automatic Control,
61(4):994–1009, 2016.

[113] Jinshan Zeng and Wotao Yin. On nonconvex decentralized gradient descent. IEEE
Transactions on Signal Processing, 66(11):2834–2848, 2018.

153

[114] F. Zhang. The Schur complement and its applications, volume 4. Springer, 2005.

[115] M. Zhu and S. Martı́nez. Distributed Optimization-Based Control of Multi-Agent Networks
in Complex Environments. Springer-Briefs in Electrical and Computer Engineering.
Springer, 2015.

154

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Notation and Preliminaries
	Notation
	Graph Theory
	Schur Complement
	Taylor Series Expansion for Matrix Inverses
	Cubic-Regularized Newton Algorithm
	PT-Inverse
	Set Theory

	Distributed Approximate Newton Algorithms and Weight Design for Constrained Optimization
	Bibliographical Comments
	Problem Statement
	Weight Design of the Laplacian
	Formulation and Convex Approximation
	A Bound on Performance

	Discrete Time Algorithm for Relaxed Economic Dispatch
	Characterization of the Approximate Newton Step
	The distributed approx-Newton Algorithm
	Convergence Analysis

	Continuous Time Distributed Approximate Newton Algorithm
	Formulation of Continuous Time Dynamics
	Convergence Analysis
	Interpretation of the Convergence Result

	Simulations and Discussion
	Weight Design
	Discrete-Time Distributed Approx-Newton
	Continuous-Time Distributed Approx-Newton
	Robust DANA Implementation

	Distributed Stochastic Nested Optimization via Cubic Regularization
	Bibliographical Comments
	Problem Formulation
	Distributed Formulation and Algorithm
	Inner Loop Gradient Solver
	Outer-Loop Cubic-Newton Update

	Simulation

	Distributed Resource Allocation with Binary Decisions via Newton-like Neural Network Dynamics
	Bibliographical Comments
	Problem Statement and Dual Problem
	Centralized Newton-like Neural Network
	Distributed Hopfield Neural Network
	Simulations
	Runtime and Solution Quality Comparison
	Learning Steps and 2-D Trajectories

	Maximizing Algebraic Connectivity of Constrained Graphs in Adversarial Environments
	Bibliographical Comments
	Problem Statements
	Topology Design for Adding Edges
	Topology Design for Protecting Edges

	An SDP Relaxation for Topology Design
	Protecting Links Against an Adversary
	Nash Equilibria
	Coordinator's Preventive Strategy
	Heuristics for Computing a Preventive Strategy

	Simulations

	Frequency Regulation with Heterogeneous Energy Resources: A Realization using Distributed Control
	Bibliographical Comments
	Problem Setting
	Test Elements
	Optimization Formulation
	Regulation Signal
	DERs
	Computing Setup
	Actuation Interfaces and Communication Framework
	Power Measurements
	Performance Metrics

	Test Scenarios and Results
	Test Scenarios
	Test Results

	Conclusion
	Bibliography

