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Abstract

This paper considers how interactions with AI algorithms can
boost human creative thought. We employ a psychological task
that demonstrates limits on human creativity, namely semantic
feature generation: given a concept name, respondents must
list as many of its features as possible. Human participants
typically produce only a fraction of the features they know be-
fore getting “stuck.” In experiments with humans and with
a large language model (GPT-4), we contrast behavior in the
standard task versus a variant in which participants can ask
for algorithmically-generated hints. Algorithm choice is ad-
ministered by a multi-armed bandit whose reward indicates
whether the hint helped generating more features. Humans
and the AI show similar benefits from hints, and remarkably,
bandits learning from AI responses prefer the same prompting
strategy as those learning from human behavior. The results
suggest that strategies for boosting human creativity via com-
puter interactions can be learned by bandits run on groups of
simulated participants.

Keywords: interactive machine learning; multi-armed bandit;
large language models; computational creativity

Introduction
In an early study of human problem solving, Maier asked
participants to tie together two ropes hanging from the ceil-
ing (Maier, 1931). The ropes were far enough apart that it
was impossible to reach one while holding on to the other, but
participants made creative use of various objects strewn about
the room: lengthening one rope by affixing an extension cord,
for instance, or hooking the second rope on a broom handle.
Each time a solution was reached, the experimenter asked for
a new one. Eventually the obvious solutions were depleted,
at which point the experimenter, seemingly bored, would bat
lightly at one of the ropes. With remarkable frequency, par-
ticipants would quickly hit upon a new solution: tie an object
to one rope, swing it like a pendulum, run to grasp the second,
and catch the first as it swung back. Participants typically had
little idea how they hit upon the answer, and made no refer-
ence to Maier’s subtle hint when asked.

This classic study highlights two interesting properties of
human thought: first, though human minds are creative, they
can also easily get stuck. Second, these mental roadblocks
can sometimes be overcome by environmental cues, even
when the cues themselves seem relatively opaque. Indeed,
despite almost a century and dozens of studies since Maier’s
paper, it remains unclear what kinds of environmental cues
will help people overcome mental roadblocks when generat-
ing new ideas (Robertson, 2016).

The current work assesses whether human interactions
with adaptive AI algorithms can serve as a kind of “creative
prosthesis” in such situations. Consider a scenario in which,
after much thought, a human agent has run out of ideas and
asks an AI agent for help. Though the AI agent possesses
many different algorithms for automatically generating hints,
it is not clear a-priori, however, which hint-generating algo-
rithms are likely to be effective. How then might the AI agent
decide which hint-generating algorithm to use at a given mo-
ment?

Our main idea is to treat this task as a multi-armed bandit
(MAB) problem. The AI agent is a k-armed bandit. Each
arm is a hint-generating algorithm. Upon pulling an arm –
i.e. deploying a given algorithm to produce a hint – the user
may or may not be able to generate new ideas. The quantity
(and quality) of new ideas is the immediate reward given to
that arm. The bandit will then follow its exploration vs. ex-
ploitation strategy in order to maximize expected cumulative
rewards, which is to help the user generate many new ideas.
Study 1 evaluates this approach using experiments in which
the users are human participants.

Training a bandit on human behavior is, however, pro-
hibitively expensive in many applications where the number
of potential hint algorithms increases to hundreds or thou-
sands. Study 2 evaluates whether important patterns of hu-
man behavior from Study 1 are captured by simulations with
a contemporary large language model (specifically GPT-4)
(OpenAI, 2023), and if so, whether the bandit can be pre-
trained using GPT-4 behavior as a proxy for human interac-
tion. If bandits trained in this way learn to prefer the same
hinting strategies as those trained directly on human behav-
ior, this suggests that language models can be used to “warm
the seat” to find promising hinting strategies for human users
amongst a much broader pool of possibilities.

Toward these ends, we employed a simple generation task
commonly studied in cognitive science and known to reliably
produce mental roadblocks, namely the verbal fluency task
in which participants must produce as many appropriate re-
sponses to a cue as they can think of (Shao, Janse, Visser, &
Meyer, 2014; Mathuranath et al., 2003). For instance, they
may be asked to list all the animals they know, or all the
words they can think of beginning with F. For reasons that re-
main poorly understood, people produce only a small fraction
of the responses they know in such tasks before running out
of ideas: despite knowing hundreds of animal names, most
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people can produce just 20-30 before running dry (Jun, Zhu,
Rogers, Yang, et al., 2015; Hills, Jones, & Todd, 2012). Our
studies used a feature fluency task (McRae, Cree, Seiden-
berg, & McNorgan, 2005), where participants must list all
the properties of a familiar concept such as penguin or jour-
nalist. As with other fluency tasks, people know many more
properties than they can produce before getting stuck, but fea-
ture fluency additionally affords a greater degree of creativ-
ity/flexibility since participants are free to generate a wide
variety of different response types.

Study 1 evaluates whether a bandit AI agent can reliably
improve human performance on the feature-generation task.
The bandit interacts individually with each human partici-
pant, learning strategy preferences independently for each.
We consider (a) whether hints provided by the bandit AI
lead people to generate more features, and more diverse fea-
tures, relative to unhinted conditions, (b) whether and how
features generated relate semantically to hints provided, and
(c) whether the bandit learns to prefer some hinting strategies
over others.

Study 2 replicates Study 1, but uses GPT-4 to simulate hu-
man performance in the feature-generation task. Note that
GPT-4 does not possess the same cognitive constraints on
memory search as humans, and from extensive training on
vast amounts of language, has the potential to exhibit super-
human performance on the feature-listing task. On the other
hand, several studies have found that the model can gener-
ate remarkably human-like patterns of responding in some
tasks (Dillion, Tandon, Gu, & Gray, 2023), while others
have demonstrated a tendency to “hallucinate” facts that are
incorrect. Thus a key and nontrivial question is whether
GPT-4 captures important aspects of human behavior in the
task when given analogous instructions in both hinted and
unhinted conditions. Following this analysis, we consider
whether bandits interacting with GPT-4 can learn strategies
that reliably boost its performance; whether GPT-4 responses
relate semantically to hints provided to the bandit; and how
strategy preferences learned by the bandit relate to those
learned from human behavior. In the discussion we consider
the implications of this work for augmenting human thought
at much larger scale, and for more difficult problems.

Related Work
Verbal fluency has been extensively studied in cognitive
science, both behaviorally (Rosen, 1980; Regard, Strauss,
& Knapp, 1982; Whiteside et al., 2016) and computation-
ally (Zemla & Austerweil, 2017; Jun et al., 2015; Hills et
al., 2012). A rich psychology literature has also character-
ized a range of problem-solving phenomena where people
struggle to find creative solutions (Robertson, 2016) and out-
lines several hypotheses about how they eventually achieve
insight (Öllinger & Knoblich, 2009). Likewise, human-AI
co-creation has been explored in a number of domains includ-
ing drawing (Karimi, Rezwana, Siddiqui, Maher, & Dehbo-
zorgi, 2020; Zhang et al., 2022), storytelling (Yang, Zhou,

Zhang, Li, & LC, 2022), and design (Kim, Maher, & Sid-
diqui, 2021). To our knowledge, however, this is the first
work exploring Human-AI interaction specifically in facili-
tating performance in the verbal fluency task, or indeed any
task where humans are prone to mental roadblocks. Lehman
and Stanley (2011) and Liapis et al. (2023) have argued
for playfulness- or novelty-based objectives in co-creativity
tasks. Much of the vast literature on prompting methods for
large language (Liu et al., 2023) is not immediately applica-
ble to this work due to the open-ended nature of the feature
recall problem and adaptation to the session history.

Study 1: Multi-Armed Bandit for Human
Creativity

Computational Method: The Bandit
Our AI agent is the standard k-armed adversarial bandit al-
gorithm EXP3 (Auer, Cesa-Bianchi, Freund, & Schapire,
2002), which balances exploration and exploitation, makes
only weak assumptions (in particular, no stochastic assump-
tion on arm rewards), and enjoys a sublinear regret guarantee.
We model different hint generating algorithms as bandit arms,
and will specify them below. Whenever a user wants a hint, it
is an arm pull request to the bandit. The bandit chooses which
arm to pull based on the entire history of user interaction. If
the resulting hint causes the user to generate new features, the
arm is rewarded. To follow adversarial bandit convention, we
use loss (negation of reward) to express the EXP3 algorithm.
Specifically, we use binary arm loss ℓt,at = 0 if the user pro-
duces one or more new features after the t-th hint produced
by the at -th hint algorithm; otherwise ℓt,at = 1. We present
the EXP3 algorithm with interpretation for our human exper-
iment in Algorithm 1.

Algorithm 1 EXP3 Algorithm Adapted to Feature Recall
Protocol

1: Initialize weights w11 = . . .= w1k = 1
2: for t = 1,2, . . . do
3: Wait until the user requests a hint
4: Compute arm probability pt,i =

wt,i

∑
k
j=1 wt, j

for all i ∈ [k]

5: Sample arm at ∼ pt
6: Use the at -th hint-generating algorithm to generate a

hint, give the hint to the user, receive arm loss ℓt,at .
7: Update arm weights with inverse probability weight-

ing wt+1,i = wt,i exp
(
−η

1[at=i]
pt,i

ℓt,i

)
for all i ∈ [k].

8: end for

Here t indexes the number of hints. For example, at t = 1
EXP3 generates a hint to the user; the user may subsequently
produce ten features from that hint; but the next time the user
requests a hint, t will be 2 instead of 11. This interaction pro-
ceeds for the duration of the participant’s session. The indica-
tor function 1[at=i] is 1 if at = i and 0 otherwise. For standard
no-regret analysis, the step size parameter η is optimized as

η =
√

2lnk
T k , where T is the assumed horizon (total number of
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hints). Before our human experiments, we estimate a hori-
zon T = 20, giving η ≈ 0.19. We use this η throughout the
experiments.

Computational Method: The Arms
We experimented with k = 3 arms. Each arm, when pulled,
produces a hint consisting of a list of 5 English words. The
arms differ in the algorithm that chooses those 5 words based
on user interaction history and external resources such as
word embedding. Importantly, a priori we do not claim any
arm is useful for improving human creativity. This is the ben-
efit of our bandit framework: the true value of the arms are
learned via interactions. Our framework also allows one to
easily add / replace more arms.

In the following arm descriptions, embeddings φ(·) were
computed using fastText (Bojanowski, Grave, Joulin,
& Mikolov, 2016) while distributional data was provided
by Segaran and Hammerbacher (2009). The candidate vo-
cabulary V refers to the intersection of vocabularies defined in
fastText and Segaran and Hammerbacher (2009). At itera-
tion t, Ht is the set of word types occurring in provided hints
throughout history, while St is the set of word types occur-
ring in the participant’s produced features throughout history.
Word types w can be associated with the frequency statistic
fw provided by Segaran and Hammerbacher (2009).

Arm 1: Semantic Neighbors. When pulled, arm 1 looks
at what feature words the user has produced so far and ba-
sically gives 5 neighboring words in the word embedding
space. For example, suppose the user only produced the fea-
ture word “penguin” up to this point, then arm 1 may pro-
duce the hint “dolphin mammals species ships whaling.” The
rationale is that semantically related words may help users
further expand their feature listing. However, when the user
has already produced many features, it will be important to
judiciously choose one of those historical words to generate
the neighbors. Arm 1 chooses the historical word with the
least frequency in general English. This tends to choose the
most salient historical word, and leads the user to parts of the
semantic space that are less easily accessible (Jescheniak &
Levelt, 1994). Formally, at arm pull t, arm 1 constructs a hint
by choosing the word type ct ∈ St which is the least frequently
according to fw, and has not yet been chosen in any previous
arm 1 pulls. The 5 nearest neighbors of φ(ct) among φ(V ) are
concatenated to form the hint.

Arm 2: English Frequency. This arm simply samples
5 words from the English vocabulary based on large corpus
word frequency fw. On each hint round, words previously
produced by the participant or used in prior hints are re-
moved from the vocabulary and five hints are drawn without
replacement from the frequency-based multinomial distribu-
tion over remaining words. More formally, we sample w∼ fw
for v ∈V ∩H C

t .
Because they are randomly drawn, hint words bear no prin-

cipled relationship to the target concept, prior responses, or
prior hint words – for instance, one hint for the concept jour-
nalist was “search rocket centre incorporating point.” The

rationale for this hint strategy arises from the hypothesis that
people become mentally “stuck” in a semantic neighborhood,
unable to think of semantically relevant features that they
have not already produced (Troyer, Moscovitch, & Winocur,
1997). If this is so, provision of random cues may push peo-
ple out of the saturated part of the space, allowing them to
find new, relevant features.

Arm 3: Diversity Cover. This arm also aims to “un-
stick” the user, but in a different way than Arm 2. It tries to
cover the whole English semantic space quickly, by sampling
hint words that are semantically distal to all previously user-
produced words and hints. Consider all the word types ap-
pearing in prior feature responses St and previously-generated
hints Ht . The remaining English word types form a point
cloud in the word embedding space. Arm 3 tries to maximally
spreads out the 5 hint words, with a stochastic procedure, to
cover this point cloud. Formally, the point cloud to be covered
is V \ (St ∪Ht). Each word type vi ∈V \ (St ∪Ht) is assigned
a probability pi proportional to its minimum squared distance
to the historical words: pi ∝ minw∈St∪Ht d(φ(w),φ(vi))

2. The
choice of squared distance is motivated by the kmeans++ al-
gorithm (Arthur & Vassilvitskii, 2007). The intuition is that
vi has a larger probability of being sampled if it is far from
all historical words. Arm 3 then samples 5 hint words from
{pi}.

Human Behavioral Experiments

Participants. 37 undergraduates at the a university completed
the study for partial course credit. The study was approved
by the institutional review board (IRB) of our institution.

Procedure. Participants completed the study online
through a web interface that presented them with the name of
a concept and asked them to generate as many of its properties
as they could. In the hinted condition, instructions indicated
that participants could request a hint by pressing a button in
the user interface. This initiates an arm pull in the bandit al-
gorithm. Hint words returned by the bandit algorithm would
then be displayed in the interface. Participants were further
instructed that hints may or may not be useful, and that they
could request a new hint at any time. In the unhinted condi-
tion, the interface text indicated that no hints were available.
Participants entered each feature property by typing a short
phrase into a text box and hitting Enter; for instance, prop-
erties of the concept penguin might include phrases like “is
black and white,” “has feathers,” or “appeared in the movie
Happy Feet.” Each such phrase was counted as one response.
The study began with a short practice session using two unre-
lated concepts (tiger and desk) to familiarize respondents with
the interface. In the experiment proper, all participants com-
pleted two 20 minute sessions, one using the concept penguin
and the other using the concept journalist. For each partic-
ipant, one concept appeared in the hinted condition and the
other the unhinted condition. Pairing of concept and condi-
tion, and the ordering of the two tasks, was counterbalanced
across participants.
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#par AIC BIC logLik deviance χ2 d f p
m0 3 602.5 609.4 -298.2 596.5 - - -
m 4 592.4 601.5 -292.2 584.4 12.10 1 .0005
m 4 592.4 601.5 -292.2 584.4 - - -
m1 5 594.2 605.6 -292.1 584.2 0.17 1 .68
m2 6 595.7 609.3 -291.8 583.7 0.70 2 .70
m3 5 588.6 600.0 -289.3 578.6 5.76 1 .02
m3 5 588.6 600.0 -289.3 578.6 - - -
m4 6 590.5 604.1 -289.2 578.5 0.13 1 .72
m5 10 596.3 619.1 -288.1 576.3 2.28 5 .81

Table 1: Model comparison of null model m0, model with
condition m, model with condition and concept m1, model
with condition-concept interaction m2, model with condition
and block m3. Model m4 adds an interaction between con-
dition and block, while m5 is the full-model with all interac-
tions.

Results
One participant produced a very large number of features,
more than 3.5 standard deviations above the sample mean,
including a large number of highly arbitrary features (for in-
stance, listing drinking every possible variety of tea as prop-
erties of journalist). This participant’s data was removed and
analyses were conducted on the remaining 36.

Do hints lead participants to produce more features?
Participants produced a median of 34 features in the hinted
condition and 26.5 in the unhinted condition. To evaluate
whether these differences are statistically reliable, we fit a
series of nested mixed effects models predicting the num-
ber of features produced by each participants from the condi-
tion (hinted/unhinted), the concept (penguin/journalist), and
the block order (first block/second block). Table 1 shows fit
statistics and comparisons of all models in the series. The
best-fitting model showed a significant fixed effect of condi-
tion, with reliably more features produced in hinted than un-
hinted condition (model m : β = 8.0, p < .001 vs null model
m0), and a significant fixed effect of block order, with reli-
ably fewer features produced in the second block (m3 : β =
−5.1, p < .02 vs m), presumably due to fatigue. Adding con-
cept name (penguin/journalist) did not improve model fit, nor
did addition of any interaction term. Thus participants pro-
duced equal numbers of features for penguin and journalist,
benefited equally from hinting for both concepts, and showed
equal decrements in performance when appearing in the sec-
ond block.

Do participants produce more diverse information?
Perhaps the hinting effect just described does not reflect im-
proved creativity, but just leads participants to generate addi-
tional phrases composed of words and ideas already used. For
instance, after generating has feathers and is black for pen-
guin, then receiving a hint, participants may feel obligated to
write new information even if no new ideas have arisen, and
so may generate a new phrase that restates prior features (e.g.
has black feathers).

To evaluate this possibility, we evaluated the the number of
word types produced. Taking all unique words produced, we
performed case-folding, stopword removal, stemming, and

lemmatization on the participant’s responses to compute the
total of word types produced in each condition. Participants
produced a median of 57 word types in the hinted condition
and 42 in the unhinted condition. A mixed effects model re-
gressing word type count per participant on the experimental
condition shows that this result is significant at p < .01.

We further considered word type density in each
condition—the number of word types divided by the total
word count in a participant’s responses. The median density
in the hinted condition was 0.56 while in the unhinted condi-
tion 0.59, a difference that is not statistically reliable. Thus
the increase in productivity with hinting was not accompanied
by a decrease in word density.

Do hints inspired semantically related ideas? To as-
sess whether features produced in the hinted condition are
inspired by the most recent hint, we computed a minimum-
linkage distance between hints and features. Letting distance
d(x,y) = minv∈x minw∈y ∥φ(v),φ(w)∥2 for sentence x and hint
y, where φ(·) takes word embeddings, we can consider the
empirical distribution of distances between hint y and concept
c over all sentences produced by all subjects in the unhinted
condition for concept c. This distance is negative when when
a feature produced is more semantically related to a hint than
is the mean feature. Figure 1a shows this metric normalized
as z-scores for features produced prior and subsequent to the
request for a hint. Words leading up to the hint are not more
semantically related to the upcoming hint words than average,
but following the hint, features produced become much more
related to the hint words–an effect that wanes after about five
produced features.

-5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
−20
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(a) Human

-6 -5 -4 -3 -2 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

(b) GPT-4

Figure 1: Z-score of distance between i-th feature and mean
distance to hint before and after hint.

Does the bandit learn to prefer some strategies over oth-
ers? As described in section 3.2, there is a rationale un-
der which each hinting strategy could potentially help hu-
man participants “break out” of their mental block to produce
more information in the feature listing task. A key question,
then, is whether the bandit algorithm reliably learns to prefer
some strategies over others. Such a preference might indi-
cate, for instance, whether human behavior in the task is best
enhanced by expanding semantic neighborhoods already of-
fered (semantic strategy), “jumping” to a randomly-selected
low-frequency word (frequency strategy), or broadly and sys-
tematically covering unexplored parts of semantic space (di-
versity strategy).
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Figure 2: Relation between final weight on each arm and
number of responses produced for all participants. For the
semantic arm, weight magnitude correlates with better per-
formance; the relationship is not reliable for the other two
arms.

To answer this question, we first considered which arm had
the lowest loss at the end of a participant’s session. For 17
participants, there was a unique least-loss arm; among these,
the semantic strategy won in cases, the frequency strategy in
5, and the diversity strategy in 2. The semantic strategy won
more often than expected by chance if all arms have equal
probability of winning (p < .03 given 1 in 3 chance of win-
ning).

We next computed the mean weight on each arm at the
end of the session for each participant. The semantic arm
had a mean weight of 0.40, reliably higher than both the fre-
quency arm (mean = 0.31, p < .05 paired-samples t-test) and
the diversity arm (mean = 0.29, p < .03 paired-samples t-
test). Thus on average across participants the bandit prefers
the semantic arm.

Finally, we considered how the final weights learned on
each arm related to the number of participants produced by
each participants. Results are shown in Figure 2. When
bandits learned larger weights on the semantic arm, the cor-
responding participant produced more features (r = 0.33,
p < .05). No such relationship was observed for either of
the other arms. Together this evidence suggests that the im-
provement in performance shown above is best driven by the
semantic hinting strategy, and that the MAB is capable of dis-
covering the best strategy from human behavior.

Study 2: Multi-Armed Bandit Interacting with
GPT-4

Study 1 showed that MABs can find effective strategies for
improving human performance in a cognitive task, at least
when selecting from amongst a small set of possibilities. Yet
for many problems the space of possible hinting strategies
may be very large, making it infeasible to train the bandit di-
rectly on human behavior. Study 2 assessed whether GPT-4,
a large language model, exhibits similar patterns of behav-
ior, and hence whether it can be used as a proxy for training
the MAB. At first blush this possibility might seem unlikely:

LLMs like GPT-4 are not transparently subject to the same
cognitive constraints as humans, and it is not obvious that
they will get “stuck” in simple tasks like feature listing. Yet
several recent studies have suggested that such models of-
ten exhibit behaviors remarkably similar to those of human
participants in a host of different language-based tasks (see
Dillion et al. (2023) for review). We therefore conducted a
model analog of Study 1 but using GPT-4 to simulate human
behavior. As with the human study, the model was instructed
to ask for hints when it ran out of ideas, and its responses were
fed to the same MAB algorithm, which then generated hints
according to the same procedures described earlier. LLM re-
sponses were tabulated and analyzed in the same way as hu-
man data.

Methods.
The GPT-4 experiments were run in early May 2023 using the
OpenAI API, with the default temperature of 1 to ensure vari-
ability of responses akin to variation across individual partic-
ipants. In lieu of the web interface from human experiments,
we used prompts to guide the model’s behavior. The initial
prompt asked the agent to type as many properties on the
concept as it could think of. In the hinted condition, fur-
ther instruction was added to type “Get Hints” when it had
run out of ideas. And in both conditions the prompt directed
the agent to type “Give Up” when it had exhausted all ideas.
An experiment started by instructing the LLM with the initial
prompt for the corresponding condition (hinted/unhinted) and
concept (penguin/journalist). The control flow for simulating
the ‘Unhinted’ and ‘Hinted’ conditions is shown in Figure
3. In both conditions, the model was instructed to give up
when it had exhausted its knowledge. Critically, in the hinted
condition the AI was additionally instructed that it could ask
for hints when it ran out of ideas. Of course, these instruc-
tions don’t ensure that the model has indeed run out of ideas,
or is in need of a hint–rather, the prompts provide a linguis-
tic context that may lead the LLM to behave similarly to a
human participant that indeed may run out of ideas or need
hints. The GPT-4 experiment was run 60 times, simulating
15 participants in each cell of the condition (hinted/unhinted)
by concept (penguin/journalist) design. Data were analyzed
identically to the human studies with the sole exception that
we used standard between-subjects regression models rather
than mixed-effects models (since there is no model analog to
a within-subjects manipulation).

Results.
Does GPT-4 show human-like behavior with and without
hints? GPT-4’s output is intrinsically limited only by the pre-
specified size of its output buffer–the model lacks the cogni-
tive limitations that lead humans to get “stuck.” Nevertheless,
GPT-4 limited its output in both hinted and unhinted condi-
tions, ceasing to produce new features well before reaching
the specified output token buffer size. That is, the instruction
to give up when its knowlege was exhausted led the model to
produce comparable numbers of features to humans. Across
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Figure 3: Control flow for GPT-4 study. Red arrows indicate
unhinted condition, green arrows the hinted condition.

RSS d f Sum of Squares F p
m0 2838.2
m 2292.2 1 546.02 13.82 .0005
m 2292.2
m1 2177.3 1 114.82 3.01 .09
m 2292.2
m2 2174.5 2 117.63 1.51 .23

Table 2: Model comparison of null model m0, model with
condition m, model with condition and concept m1, model
with condition-concept interaction m2.

the two concepts, a median of 31 features were produced in
the hinted condition (compare to 34 for human) versus 25 in
the unhinted condition (compare to 27 for human).

To assess whether the model produced more items in the
hinted condition, note that the analysis is simpler here as there
is no meaningful mixed effect and no concern about block
effect. Thus ANOVA results are shown in Table 2. As in
the human participant experiment, the model produced reli-
ably more features in the hinted condition p < .001. Adding
concept name (penguin/journalist) did not improve model fit,
with or without the interaction term, indicating that, like hu-
man participants, the model produced similar numbers of fea-
tures for both concepts.

Since the model receives additional prompt words when
it asks for a hint, it may not seem surprising that it subse-
quently produces more information. Note, however, there is
no requirement for the model to ask for a hint at all, or even
to limit the number of its responses. Nevertheless, the model
does regularly ask for hints when given the opportunity to do
so, allowing it to then mimic the human behavior of request-
ing and benefiting hints provided.

Does GPT-4 produce more word types in hinted con-
ditions? GPT-4 produced a median of 95 word tokens in
the hinted condition and 83 in the unhinted conditions, with
ANOVA showing this to be a statistically reliable difference
with p < .05. Thus, like humans, GPT-4 does not simply
“remix” words already produced when provided with hints.

The median word type density in the hinted condition was
0.60 and 0.63 in the unhinted condition. The small differ-
ence is comparable to that observed in human participants,
but in contrast to Study 1, ANOVA results showed this to be
a statistically reliable effect p < .05. Thus GPT-4s responses

become reliably less diverse with hints.
Is GPT-4 inspired by the hints it receives? As in study

1, we considered whether the words generated by GPT-4 fol-
lowing a hint were semantically related to the hints provided,
relative to the mean similarity to produced words in the un-
hinted condition. Figure 1b shows the results, plotted in the
same manner as Study 1. We observed a similar pattern to
human behavior, in which responses provided immediately
following a hint were more semantically related to the hint
words than those immediately preceding the hint–an effect
that again persisted over about 5 subsequent features.

Do bandits learned the same arm preferences from
GPT behavior? The preceding analyses suggest that GPT-
4’s behavior in the task is remarkably similar to human be-
havior in many respects. Does this mean that a bandit trained
to “boost” GPT-4’s performance will select similar strategies
to those trained on human data? Although GPT-4 asked for
fewer hints than humans overall (median of 4 vs 8), never-
theless the same best strategy (semantic) was identified as the
preferred arm, accounting for 65% of arm pulls in the GPT-
4 sessions. As with the human-trained bandits,the final arm
probability for the semantic strategy was reliably higher than
both the frequency-based strategy (p < .002 paired-sample t-
test) and the diverse exploration strategy (p < .01). In other
words, had we chosen a strategy based on GPT-4 simulated
human behavior, we would have selected the arm shown in
Study 1 to best improve human performance.

Conclusion and Future Work
Our results suggests that bandit AI agents can improve hu-
man performance on a feature generation task known to pro-
duce mental roadblocks. A benefit of the proposed frame-
work is its scalability to a much larger set of prompting strate-
gies. It is easy to see how the current approach could be de-
ployed on crowd-sourced human judgments to adjudicate a
wide range of hypotheses about ways of improving human
creativity across a variety of tasks.

A second contribution is the validation of LLMs as a proxy
for a human participant for this task. The human-like be-
havior of GPT-4 is surprising given that the models are not
subject to processing constraints that limit human behavior.
Indeed, GPT-4 can generate a very extensive list of proper-
ties for a given concept in little time. When given the option
of asking for help or giving up, the model shows human-like
tendencies in the information it produces.

These contributions suggest a tantalizing direction for fu-
ture work: using LLMs to efficiently evaluate a much broader
set of prompting strategies. A key goal for future research
will be to extend the range of potential creativity applications
beyond the feature recall task to reshape our understanding of
human-AI co-creativity.
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