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EPIGRAPH 
 
 
 
 

Nothing in biology makes sense 
except in the light of evolution 

 
Theodosius Dobzhansky 

 
 
 
 

 
 
It is not the critic who counts; not the man who points out how the strong man stumbles, or where the doer 
of deeds could have done them better. The credit belongs to the man who is actually in the arena, whose 
face is marred by dust and sweat and blood; who strives valiantly; who errs, who comes short again and 
again, because there is no effort without error and shortcoming; but who does actually strive to do the 
deeds; who knows great enthusiasms, the great devotions; who spends himself in a worthy cause; who at 
the best knows in the end the triumph of high achievement, and who at the worst, if he fails, at least fails 
while daring greatly, so that his place shall never be with those cold and timid souls who neither know 
victory nor defeat. 
 
 Theodore Roosevelt 

Speech at the Sorbonne 
Paris, France 
April 23, 1910 
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ABSTRACT OF THE DISSERTATION 
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Professor Timothy Q. Gentner, Chair 
Professor Tatyana O. Sharpee, Co-Chair 

 
 

 
 

 The ability to learn to recognize new sensory signals such as voices or faces is an important 

cognitive function in many species. This ability is thought to involve the plasticity of neural representations 

in high-level sensory cortical areas, but this plasticity is poorly understood. Using European starlings (a 

species of songbird) trained to recognize natural conspecific song segments, I investigated the emergence 

of neural representations for learned signals across two auditory forebrain regions: the caudolateral 

mesopallium (CLM) and the caudomedial mesopallium (CMM). In both CLM and CMM, neurons encoded 

more information about the motifs (short, stereotyped segments of song) that make up songs paired with 

reward during training than the motifs that make up novel songs. This shows that behavioral experience is 

an important modulator of neural encoding in the songbird auditory forebrain.  

 In the natural world, individuals learn which signals convey relevant information for particular 

behaviors. However, it is unknown how this behavioral information influences neural encoding in the brain. 

I explored this by training starlings on a paired-motif recognition task where one motif was informative 

about the behavior required to obtain reward and the other motif was not informative. Following training, 

single neurons in CLM responded more strongly to informative motifs than to uninformative or novel 



 xiii 

motifs, whereas single neurons in CMM responded strongly to both informative and uninformative motifs. 

This suggests that encoding in CLM may serve to emphasize those signals that are particularly behaviorally 

relevant.  

Sensory encoding in cortical areas is distributed across many neurons. But how learning alters 

these neural population representations remains unexplored. To explore this question, I analyzed the 

correlated activity of simultaneously recorded neurons within CLM. When processing informative motifs, 

the correlations led to enhanced population discriminability, relative to the correlations when processing 

uninformative or novel motifs. Thus, the information that a sensory signal conveys about behavior 

modulates neural encoding in both single neurons and in neural populations. Collectively, these studies 

demonstrate that behavioral relevance substantially influences neural processing by both single neurons and 

larger populations in cortical brain regions. 

 

 

 
 

 

 

 



 

 1 

I. Introduction 
 
 
 

Learning and the brain 

 Behavior is flexible. Perhaps one of the most important survival strategies is the ability of 

individuals to adapt to changing conditions. Many animals are capable of gathering information about the 

world, organizing it in a meaningful way, and calling upon it to change their behavior, a process known as 

learning. For instance, the marine mollusk Aplysia californica exhibits a gill-withdrawal reflex triggered by 

touching the siphon (a tube-like appendage used for feeding). With repeated stimulation of the siphon, 

however, the magnitude of the gill withdrawal decreases in a form of learning known as habituation 

(Pinsker et al., 1970). American Crows (Corvus brachyrhynchos) crack nuts open by dropping them from 

the air, and can learn that harder walnut species need to be dropped from higher altitude than softer walnut 

species and harder ground surfaces require shorter drops than softer ground surfaces (Cristol and Switzer, 

1999). Humans (Homo sapiens) learn a large set of vocalizations known as speech that enable a remarkably 

complex ability to communicate (Kuhl, 2004). This ability of organisms to learn to alter their behavior in 

meaningful ways requires changes in the structure and function of the nervous system, but the nature of 

these changes are only just beginning to be elucidated. 

 Learning to make associations between sensory signals and behavioral outcomes leads to 

functional changes in multiple areas of the brain. In owl monkeys trained to distinguish between tones of 

similar frequency, the region of auditory cortex that best encodes the training frequencies expands in 

proportion with discrimination ability (Recanzone et al., 1993). This large-scale effect of learning on the 

topographic organization of the auditory cortex (known as a tonotopic map) must result from changes in the 

frequency encoding properties of individual neurons. Indeed, after less than an hour of training to associate 

a tone of a particular frequency with a noxious stimulus such as a foot shock alters the neural responses of 

single auditory cortical neurons specifically at the learned frequency (Diamond and Weinberger, 1986; 

Bakin and Weinberger, 1990). Similar findings have been reported across many sensory modalities, 

including somatosensation (Jenkins et al., 1990; Recanzone et al., 1992), vision (Rainer and Miller, 2000; 
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Schoups et al., 2001; Rainer et al., 2004), and olfaction (Brennan and Keverne, 1997). These studies 

demonstrate that neural processing of sensory signals in the cortex is highly dynamic and corresponds 

directly to the animal’s recent behavioral experience. Importantly, these changes in the cortical 

representation are not merely corollaries to learning: they in fact have a causal influence on behavior. After 

inducing expansions of the tonotopic representation of certain frequencies in the auditory cortex in rats, 

their ability to learn to discriminate nearby frequencies increased substantially, compared to control rats 

with no tonotopic map expansions (Reed et al., 2011). The plasticity of neural representations in the cortex 

is therefore an important feature of the brain that subserves an animal’s ability to learn new associations 

and subsequently change its behavior.  

 Investigations into the neurochemical basis of cortical plasticity have revealed that 

neuromodulators play an important role in reshaping neural receptive fields. In particular, acetylcholine 

(ACh) can alter the responses of single cortical neurons in primary auditory cortex (Metherate and 

Weinberger, 1989), and lesions to the cholinergic nucleus basalis disrupt rats’ ability to learn a 

discrimination task (Butt and Hodge, 1995). Consistently, paring acoustic stimuli with stimulation of the 

nucleus basalis (resulting in ACh release into the cortex) leads to an expansion of the cortical 

representation of the paired frequencies, suggesting a critical role for ACh in shaping experience-dependent 

organization of cortical function (Kilgard and Merzenich, 1998). Similarly, dopamine release from the 

ventral tegmental area (VTA), which is associated with discrepancies in the prediction of reward, is thought 

to play an important role in cortical plasticity since errors in reward prediction are an important signal in 

learning (Hollerman and Schultz, 1998). In parallel with the effects of stimulating nucleus basalis, when 

stimulation of the VTA is paired with presentation of an acoustic tone, the area of cortical representation 

for that tone in the auditory cortex increases (Bao et al., 2001). Collectively, these results suggest that the 

cortical plasticity that underlies learning depends not only on behavioral experience, but also on the 

coordinated action of multiple neuromodulatory signals from multiple subcortical brain regions. 

 In addition to the role of neuromodulators, several cellular and sub-cellular mechanisms are 

thought to underlie this functional plasticity of cortical circuitry. Synaptic plasticity, including long-term 

potentiation (LTP, an increase in synaptic strength) and long-term depression (LTD, a decrease in synaptic 
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strength), in the amygdala and hippocampus is required for certain forms of learning (e.g. fear memories) 

(Maren, 2005; Feldman, 2009). Similar mechanisms appear to mediate the learning-driven changes to 

receptive fields of primary visual cortical neurons (Dan and Poo, 2006), and likely occur in other sensory 

cortical areas as well (Feldman, 2009). Excitatory synaptic transmission typically occurs at specialized 

protrusions along the dendrite known as dendritic spines. A recent study in juvenile zebra finches 

demonstrates that learning to sing is accompanied by an increase in the number and size of dendritic spines 

in the sensorimotor cortical area HVC, a region known to be involved in the production of song (Roberts et 

al., 2010). Importantly, both acetylcholine (Patil et al., 1998) and dopamine (Otani et al., 2003) have a 

powerful influence on long-term synaptic plasticity, meaning that synaptic mechanisms are well-poised to 

subserve the ability of animals to learn new associations and behaviors.  

 

Learning in Songbirds 

 The songbirds (suborder Passeri of the order Passeriformes) form the most diverse group of birds, 

with more than 4500 known species around the world (Perrins, 2009). Songbirds are particularly notable in 

that their vocalizations are learned rather than innate, a trait shared only with cetaceans, bats, parrots, 

hummingbirds, and humans (Doupe and Kuhl, 1999). Vocal learning in songbirds has been explored 

extensively since early observations that juvenile chaffinches (Fringilla coelebs) raised in isolation did not 

develop normal songs (Thorpe, 1954, 1958). The process of song learning is highly variable from species to 

species, but tends to proceed through several stages. During the first stage, known as the memorization 

stage, juvenile birds actively listen to the songs of their tutor (often their father) and memorize this song 

into what is called a “template.” During the second stage, known as the sensorimotor stage, juveniles first 

produce rambling, inconsistently structured, and highly variable vocalizations known as “subsong.” 

Gradually, the juvenile begins to imitate the tutor’s song, and produces progressively more stable and 

consistent vocalizations known as “plastic song”. The final stage, known as crystallization, occurs when the 

variability of the plastic song decreases and the song becomes highly stable and stereotyped (Hultsch and 

Todt, 2008). In some species, such as the zebra finch (Taeniopygia guttata) and white-crowned sparrow 

(Zonotrichia leucophrys), the song remains crystalized throughout life; these species are known as closed-
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ended learners. In other species, such as the European starling (Sturnus vulgaris) studied here, new song 

material can be added in subsequent years; these species are known as open-ended learners (Beecher and 

Brenowitz, 2005). To date, song learning in juvenile songbirds remains one of the most remarkable non-

human examples of learning in the natural world, and has become a particularly valuable model for speech 

and language learning in humans (Doupe and Kuhl, 1999). 

In addition to learning to sing their own songs, songbirds also learn to recognize the songs of other 

individuals. Song playback experiments in the field show that white-throated sparrows (Zonotrichia 

albicollis) make more flight and singing responses to playback of a stranger’s song in a neighbor’s territory 

than to playback of the true neighbor’s song, demonstrating the ability to distinguish between different 

individuals based on song (Falls and Brooks, 1975). Furthermore, songbirds form long-lasting memories of 

their neighbors. In the male hooded warbler (Wilsonia citrina), a migratory songbird, specific behavioral 

responses to neighboring individuals’ songs persisted even after 8 months during which birds ceased 

singing, migrated to, and returned from Central America (Godard, 1991). This recognition ability likely 

subserves the functions of both mate attraction and territory defense. When broadcasting male songs from a 

speaker in the field, the number of conspecific males that visit the territory around the speaker is smaller 

than during control sounds (Yasukawa, 1981) and the number of females that visit the territory is greater 

than during control sounds (Johnson and Searcy, 1996). These data support the hypothesis that learning to 

recognize songs of other individuals is an important natural behavior in songbirds that relates to 

reproductive goals.  

 

Vocal behavior in the European starling 

European starlings are a species of songbird known for their complex and variable songs, and their 

vocal mimicry (Eens, 1997). An early account of the song of the starling described it as “a lively rambling 

melody of throaty warbling, chirruping, clicking and gurgling notes interspersed with musical whistles and 

pervaded by a peculiar creaking quality” (Witherby et al., 1943). However, the application of modern 

spectrographic methods reveals that the song has a remarkably hierarchical structure. A full song lasts from 

30 to 90 seconds, and is composed of stereotyped acoustic units called motifs, each lasting about 0.5 to 1.5 
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seconds. Each motif consists of a combination of individual sounds called notes (Figure 1.1). Starling 

motifs are classified into four types, whistle motifs, variable motifs, rattle motifs, and high-frequency 

motifs. Starlings have multiple motifs of each type in their repertoire, and a typical song progresses through 

singing several motifs from each of the four motif classes in order, with each motif repeated 1-4 times 

(Adret-Hausberger and Jenkins, 1988; Eens, 1997). Individual starlings have a repertoire consisting of 15 – 

70 motifs (Eens et al., 1991). Starlings also mimic the sounds of other birds and environmental sounds, and 

can even produce utterances that resemble human speech (Eens, 1997). Like other songbirds, starlings 

raised in isolation produce songs that lack the organization and repertoire size of normally reared 

individuals (Chaiken et al., 1993). Given the choice, female starlings prefer naturally ordered male songs 

over reverse ordered songs and longer male songs over shorter songs (Gentner and Hulse, 2000b). Thus it is 

in a male starling’s best interest to learn the natural song organization and to continue to expand his vocal 

repertoire. Because starlings are open-ended learners (Hultsch and Todt, 2008), expanding the vocal 

repertoire can occur throughout life and the vocal repertoire size may be an indicator of age and fitness 

(Chaiken et al., 1993). The ability to learn new sounds is thus a very important aspect of natural starling 

behavior, both for learning to produce song, and in learning to recognize the songs of other individuals. 

Bringing starlings into the laboratory and using operant conditioning procedures enables the 

investigation of specific perceptual mechanisms that underlie the ability to learn to distinguish between 

songs of multiple conspecific individuals. For example, in European starlings, this ability derives, in part, 

from learning repertoire of motifs sung by an individual, as well as learning the particular sequences in 

which these components are combined (Gentner and Hulse, 1998). Furthermore, the classification 

performance of individuals based on song is proportional to the fraction of that individual’s motifs that are 

actually present in the song (Gentner and Hulse, 2000a). These experiments demonstrate that the structure 

of the starling’s song is important not just for sexual selection, but for individual recognition as well.  

The songbird auditory forebrain 

Understanding how learning changes the songbird brain requires an understanding of its functional 

anatomy. Figure 1.2 shows a schematic view of the major forebrain regions involved in processing auditory 

signals. Auditory information from the mesencephalicus lateralis dorsalis (MLd), a brainstem nucleus 



10kHz
1sec

Figure 1.1 Spectrogram of a full starling song. The x-axis is time, and y-axis is frequency. The four panels 
connect end-to-end.
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analogous to inferior colliculus, projects primarily to the nucleus ovoidalis (Ov), the avian equivalent of the 

medial geniculate body. Ov, in turn, projects to the forebrain region known as field L, analogous to primary 

auditory cortex (Vates et al., 1996). Field L is divided into several subregions. Field L2a is the primary 

thalamorecipient region, contains many small granular neurons, and is analogous to layer 4 of mammalian 

cortex (Wang et al., 2010). L2a projects to both Field L1 and L3, which correspond anatomically to 

supragranular and subgranular layers, respectively (Wang et al., 2010). All subregions of Field L project to 

the caudomedial nidopallium (NCM) and the caudolateral mesopallium (CLM), two areas analogous to 

secondary auditory cortex. Finally, both NCM and CLM project to the caudomedial mesopallium (CMM), 

another secondary auditory area. No obvious anatomical boundary exists between CLM and CMM, except 

for the different projection patterns to and from Field L and NCM (Vates et al., 1996). CLM and CMM are 

collectively referred to as CM. Importantly, nearly all the connectivity in the forebrain (all subregions of 

field L, CLM, CMM, and NCM) are bidirectional, creating a highly recurrent network of auditory 

information pathways. One advantage of the songbird auditory system over mammalian systems is that at 

least some of the projections to non-auditory forebrain regions are well-described and functionally 

constrained. In particular, CLM projects to HVC, a sensorimotor area known to be involved in the 

production of song (Bauer et al., 2008). Similarly, Field L1 and L3 both project to the HVC shelf, the area 

surrounding HVC, and appear to make indirect connections into HVC (Vates et al., 1996). CLM, in 

particular, may provide auditory feedback into HVC and the song motor system that is critical for juvenile 

song learning and adult song maintenance (Lei and Mooney, 2010). 

The neural encoding of song gets progressively more complex as one ascends this auditory 

pathway. As noted above, much of the connectivity in the auditory forebrain is reciprocal, yet it remains 

useful to follow the changes in auditory processing as one ascends from the periphery. In MLd and Ov, 

neural responses are tightly time-locked to changes in the stimulus, and linear spectrotemporal receptive 

field (STRF) models predict nearly all the variance in the response, whereas in field L this linearity is 

reduced, indicating greater complexity of the neural encoding (Woolley et al., 2009; Amin et al., 2010). 

The responses of CM neurons are even less well modeled by STRF models than most field L neurons (Sen 

et al., 2001) and show tuning that more strongly matches the spectrotemporal statistics of song (Hsu et al., 
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2004). Furthermore, neurons in CMM are tuned specifically to those songs that are familiar (Gentner and 

Margoliash, 2003). The auditory system of songbirds is thus loosely organized into an ascending hierarchy, 

along which neurons become increasingly specialized for processing song. 

The remarkable behavioral abilities, adaptability to laboratory environments, richness of acoustic 

repertoire, and well-understood forebrain circuitry collectively make songbirds (and in particular, the 

European starling) an excellent model for studying the brain mechanisms that underlie complex cognitive 

functions such as learning. The remaining three sections of this introductory chapter will briefly introduce 

the specific experiments presented in chapters 2-4 that advance our understanding of how learning modifies 

the function of cortical neural circuitry. 

Learning-Dependent Plasticity of neural encoding in CLM and CMM 

Neural encoding is the means by which external sensory signals, such as sounds, are transformed 

into patterns of action potentials (spikes) in neurons in the nervous system. For neurons to encode aspects 

of a sensory stimulus, their spiking response must vary in a way that correlates with the stimulus. 

Sometimes, this variability is imminently obvious. For example, neurons in primary visual cortex are tuned 

to orientation, meaning that bars of light at certain angles elicit high firing rates, while bars of light at other 

angles elicit low firing rates (Hubel and Wiesel, 1962). However, in some neurons, the variability can be 

subtle. In these instances, a measure known as mutual information can be useful because it formalizes the 

notion of sensory encoding by neurons as the reduction in uncertainty about a stimulus that results by 

observing a neural response (Nelken and Chechik, 2007). Uncertainty is measured as entropy, a 

quantification of variability similar to variance. Mutual information is then the difference between the total 

entropy across all neural responses and the noise entropy, which is the uncertainty in neural responses when 

the stimulus is known. Mutual information can therefore be thought of as simply the variability in the 

neural response that directly relates to the sensory stimulus, and none of the remaining variability. Because 

neural responses can often be noisy and variable from trial to trial, mutual information is a useful way to 

quantify neural encoding, even when it is rather subtle.  

How does learning affect neural encoding of natural birdsong stimuli in CLM, and how does this 

differ with neural encoding in CMM? In starlings trained to recognize segments of conspecific song, 
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neurons in CMM respond to trained songs with higher firing rates than to unfamiliar songs (Gentner and 

Margoliash, 2003). However, the degree to which learning modifies neural encoding in CLM has not been 

explored, and is particularly relevant to understand because CLM provides auditory input into CMM (Vates 

et al., 1996) and may be a principal brain region for providing auditory feedback information into the song 

production system (Bauer et al., 2008). Furthermore, because starling songs consist of sequences of 

spectrally and temporally complex motifs, neural encoding in individual neurons may vary from motif to 

motif. In chapter 2 of this thesis, I describe experiments conducted to compare the effects of learning (and 

of association with reward) on encoding between CLM and CMM, using methods from information theory 

to capture more precisely the amount of neural variability that corresponds to differences in motifs.  

The role of behavioral information on plasticity in CLM and CMM 

  In the natural world, many sensory signals have the potential to become informative for an 

animal’s behavior. Consistent with this, one role for learning is to associate particular signals with 

particular behaviors that lead to a desired outcome. For example, when learning to drive, we associate red, 

yellow, and green lights with distinct behaviors that help to ensure our safety on the road. For starlings 

learning to recognize the songs of their neighbors or potential mates, the complexity of the songs means 

that multiple different components could be used for recognition, while some components may be shared 

between individuals and therefore ambiguous. Are those song components that convey more information 

about a singer’s identity encoded differently in CLM and CMM? In chapter 3 of this thesis, I describe 

experiments conducted to explore this question. Through a carefully controlled behavioral paradigm, these 

experiments specifically control the information that motifs convey about the motor response required by 

the bird to receive a food reward. This design allows an independent analysis of the role of information in 

modifying neural encoding, separate from the previously explored effects of familiarity and reward. 

Learning-dependent plasticity of neural population coding in CLM  

 The brain is made up of billions of neurons which function together to support perception and 

cognition. However, most studies of neural function rely on sampling the activity of single neurons 

recorded independently. With such techniques, many aspects of the function of the larger population cannot 

be explored. For instance, because the neural encoding of most sensory signals is distributed across 
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multiple neurons, one way to improve the signal-to-noise ratio of these representations would be to form an 

average of the responses of similarly tuned neurons (Averbeck et al., 2006). Previous studies have shown, 

however, that the noise in the neural response is not independent between neurons; rather, this noise tends 

to be positively correlated (Zohary et al., 1994). Consequently, averaging across such a neural population 

will not remove all the noise in the response. Positively correlated trial-to-trial variability in neural 

responses (known as “noise correlations”) is not, however, necessarily detrimental to the fidelity of a neural 

population code. For instance, the responses of two neurons that encode opposite features but have 

positively correlated noise could be subtracted to remove common noise, while enhancing signal (Romo et 

al., 2003). The tuning similarity of multiple neurons (known as “signal correlations” because they are 

stimulus-driven) is thus as important for measuring the information encoded in a neural population as the 

noise correlations. In diverse neural populations, therefore, it is the particular relationship between signal 

and noise correlations⎯and not simply the noise correlations themselves⎯that directly impacts the 

population code (Averbeck and Lee, 2006; Gu et al., 2011). While a positive relationship between signal 

and noise correlations is detrimental, a negative relationship is beneficial (Figure 1.3). However, previous 

studies find only positive (or flat) relationships (Lee et al., 1998; Bair et al., 2001; Constantinidis and 

Goldman-Rakic, 2002; Kohn and Smith, 2005; Cohen and Maunsell, 2009; Gu et al., 2011), thought to be 

due to common input providing both correlated signal and noise. Despite its theoretical benefit, the 

existence of negative relationships between signal and noise correlations has yet to be observed.  

 How does recognition learning alter neural population coding? Despite extensive work on both 

population coding and learning-related plasticity, the two have rarely been investigated in conjunction (c.f. 

Gu et al., 2011). In chapter 4 of this thesis, I describe experiments conducted to study how learning alters 

the structure of neural population representations. Using the same behavioral paradigm as described in 

chapter 3, but now taking advantage of the simultaneous recording of multiple well-isolated single neurons, 

I investigate the influence of learning (and behavioral information) on the relationship between signal and 

noise correlations. Using a simple model of neural discriminability, the results are related directly to 

population coding.
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Figure 1.3. Schematic of theoretical relationships between signal and noise correlations. Each colored dot 
denotes the mean response for two neurons to each of four stimuli. Each colored ellipse denotes the 
standard deviation of the two-dimensional response distribution for each stimulus. For the positive 
relationship in (a), neuron pairs with positive signal correlation and large noise correlation have substantial 
overlap in their responses (inset right), while pairs with negative signal correlation and small noise 
correlation have less overlap (inset left). Center inset depicts pairs with zero signal correlation but moder-
ate noise correlation. For the negative relationship in (b), neuron pairs with positive signal correlation and 
small noise correlation have some overlap in their responses (inset right), while neuron pairs with negative 
signal correlation and large noise correlation have very little overlap (inset left). The negative relationship 
thus yields neural populations that discriminate between stimuli better than the positive relationship.
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 Collectively, the experiments described in chapters 2-4 provide a coherent picture of how learning 

to recognize songs changes the neural encoding of those songs by both single neurons and larger neural 

populations in the auditory forebrain of the European starling. The observations reported here likely reflect 

the general operating principles of learning-related plasticity in cortical circuits across diverse taxa, 

including humans.  
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II. Emergence of learned categorical representations within an auditory forebrain circuit 

 

Abstract 

Many learned behaviors are thought to require the activity of high-level neurons that represent 

categories of complex signals, such as familiar faces or native speech sounds. How these complex, 

experience-dependent neural responses emerge within the brain’s circuitry is not well understood. The 

caudomedial mesopallium (CMM), a secondary auditory region in the songbird brain, contains neurons that 

respond to specific combinations of song components and respond preferentially to the songs that birds 

have learned to recognize. Here, we examine the transformation of these learned responses across a broader 

forebrain circuit that includes the caudolateral mesopallium (CLM), an auditory region that provides input 

to CMM. We recorded extracellular single-unit activity in CLM and CMM in European starlings trained to 

recognize sets of conspecific songs and compared multiple encoding properties of neurons between these 

regions. We find that the responses of CMM neurons are more selective between song components, convey 

more information about song components, and are more variable over repeated components than the 

responses of CLM neurons. While learning enhances neural encoding of song components in both regions, 

CMM neurons encode more information about the learned categories associated with songs than CLM 

neurons. Collectively, these data suggest that CLM and CMM are part of a functional sensory hierarchy 

that is modified by learning to yield representations of natural vocal signals that are increasingly 

informative with respect to behavior.  

Introduction 

Faced with an immense quantity of sensory input, individuals learn to identify sensory features 

relevant to behavioral goals and ignore others that are irrelevant. The representation of objects by high-

level sensory neurons depends heavily on this form of learning (e.g. Rolls et al., 1989; Sigala and 

Logothetis, 2002; Gentner and Margoliash, 2003) and some neurons represent learned categories of objects 

rather than the objects themselves (Freedman et al., 2001; Sigala and Logothetis, 2002; Freedman and 

Assad, 2006). These kinds of complex representations are commonly understood to result from processing 
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pathways in which higher-order neurons integrate convergent input from lower-order neurons (Felleman 

and Van Essen, 1991; Binder et al., 2000; Kaas and Hackett, 2000; Riesenhuber and Poggio, 2000; Chechik 

et al., 2006; Rauschecker and Scott, 2009). However, very few studies have examined changes in the 

encoding of natural stimuli along these processing pathways (Chechik et al., 2006; Rust and DiCarlo, 2010) 

or how learning mediates this encoding (Freedman et al., 2003; Freedman and Assad, 2006), particularly in 

the auditory domain.  

 Songbirds serve as an excellent model system to study the learning-dependent neural encoding of 

natural signals because they easily learn to identify conspecific songs (Gentner and Margoliash, 2003) and 

have well-defined neural circuitry specialized for processing songs (Hsu et al., 2004; Woolley et al., 2005; 

Woolley et al., 2009). The caudomedial mesopallium (CMM), a secondary auditory area in the songbird, 

contains some of the most complex neurons in the avian auditory system (Meliza et al., 2010), which elicit 

stronger responses to learned songs than to novel songs (Gentner and Margoliash, 2003). As with high-

level brain regions in mammals, however, the circuitry that produces the experience-dependent responses in 

CMM are not well understood. CMM receives indirect input from the Field L complex (the analogue of 

mammalian primary auditory cortex) by way of bidirectional connectivity with the adjacent caudolateral 

mesopallium (CLM) and the caudomedial nidopallium (NCM; Fig 2.1a; Vates et al., 1996). The responses 

of neurons in CLM are less well predicted by linear receptive field models (Sen et al., 2001) and are more 

sharply tuned for the statistical properties of song (Hsu et al., 2004) than many neurons in Field L. 

Although it is possible that neural processing in CLM contributes to the learning-dependent representations 

of song in CMM, it is unknown whether the neural encoding of songs in CLM differs from CMM or 

whether CLM encodes learning-dependent information.  

 To understand the functional relationship between CLM and CMM, we compare their neural 

encoding properties in European starlings (Sturnus vulgaris) that have learned to recognize sets of 

conspecific songs and ask whether learning modifies the responses of neurons differently between CLM 

and CMM. We show that the responses of neurons in CMM are more selective between song components, 

convey more information about song components, and respond with greater variability to repeated song 

components. In both regions, learning increases the information encoded about song components, but 
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CMM neurons encode more information about behaviorally defined song categories. These results are 

consistent with a model of neural processing in which information about natural vocal signals flows 

through CLM to CMM, giving rise to complex representations of acoustic signals and their behavioral 

relevance.  

Materials and Methods  

All experiments were performed in accordance with the Institutional Animal Care and Use 

Committee of the University of California, San Diego.  

 

Subjects 

Nineteen adult European Starlings (Sturnus vulgaris) were wild-caught in southern California, and 

housed in aviaries with free access to food and water until the commencement of behavioral training. At the 

start of training, subjects were naïve to all experimental procedures and stimuli. Thirteen starlings were 

used for CLM experiments, five starlings were used for CMM experiments, and one starling was used for 

both CLM and CMM experiments. Data from CMM experiments were combined with a subset of 

previously published data (Gentner and Margoliash, 2003) from an additional four starlings, yielding a total 

of 23 subjects. Very few differences in behavioral training were observed between the two sets of CMM 

data (supplemental table 1). 28 of the 48 CMM neurons reported here were from this previously published 

data. 

 

Stimuli 

Six starling song stimuli were created from a collection of songs previously recorded from four 

adult male European starlings. Each stimulus was a unique section of continuous song (durations ranging 

from 9.1s – 10.7s) from a single male and shared no motifs with any other stimulus. The six song stimuli 

were divided into three sets of two song stimuli each. For each experimental subject, the three stimulus sets 

were assigned as “rewarded,” “unrewarded,” and “novel” stimuli to reflect the subject’s experience with 

those stimuli during behavioral training. Across subjects, this assignment was counterbalanced such that the 

same stimuli were used for different conditions in different birds. Nearly identical stimuli were used for 



 

 

22 

CLM and CMM experiments. 

 

Behavioral training 

After acclimation to individual housing in a sound-attenuating chamber (Acoustic Systems, ETS-

Lindgren, Austin, TX), each subject was trained on a standard go/no-go operant-conditioning procedure to 

classify two of the song stimulus sets (Gentner and Margoliash, 2003). For each bird, the rewarded songs 

were assigned as the “go” stimulus set and the unrewarded songs were assigned as the “no-go” stimulus set. 

A subject started a trial by inserting its beak into a small hole on a response panel inside the sound-

attenuating chamber (Fig 2.1b), which initiated the playback of one of the four stimuli, chosen at random. 

After stimulus playback ended, a subject had two seconds to report its classification decision by either 

inserting its beak again (a “go” response) or by refraining from inserting its beak (a “no-go” response). Go 

responses to the go stimulus set were rewarded with two-second access to food and go responses to the no-

go stimulus set were punished with variable-duration darkness (range, 10s – 90s) during which no food was 

available and trials could not be initiated. In all cases, no-go responses were neither rewarded nor punished. 

Water was provided ad libitum, but food was only available from correct go responses.  

 

Neurophysiology 

After achieving satisfactory classification performance (see results), each subject underwent 

surgery under isoflurane anesthesia (1.5-2% concentration) to prepare for recording. The top layer of skull 

was removed from the region above CLM or CMM and a small metal pin was affixed to the skull just 

caudal to the opening. Each subject recovered for 12-24 hours before neurophysiological recordings began. 

On the morning of the recording day, the subject was anesthetized with urethane (20% by volume, 

7mL/kg), and head-fixed in a stereotactic apparatus inside a sound-attenuating chamber. The subject was 

situated 30 cm from a speaker through which the song stimuli were presented (all normalized to 95dB peak 

SPL).  

 Extracellular electrical activity of single neurons in CLM or CMM in response to 5-50 repetitions 

of all six song stimuli (presented in random order) was recorded using glass-coated platinum-iridium wire 
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electrodes (1-3MΩ impedance) inserted through a small craniotomy directly dorsal to CLM or CMM. The 

extracellular waveform was amplified (5,000X – 50,000X gain), filtered (high pass 300Hz, low pass 3kHz), 

sampled (25kHz), and stored for offline analysis (Cambridge Electronic Design, Cambridge, UK). At the 

end of the recording session, one to three fiduciary electrolytic lesions (10-20µA, 10-20s) were made to 

facilitate recording site localization using standard histological techniques.  

 All recording sites were confirmed to be within CLM or CMM (Fig. 2.S1c). All CLM neurons 

were located between 1200µm and 1650µm from the midline; all CMM neurons were located between 0µm 

and 1000µm from the midline (Fig. 2.1d). Putative action potentials from single neurons were identified by 

amplitude and sorted offline using principal component analysis on waveform shape (Cambridge Electronic 

Design, Cambridge, UK). Only action potential waveforms with a single obvious cluster in principal 

component-space and with very few refractory-period violations (Fig. 2.S1a,b) were considered to be from 

a single neuron. Only 4.8% (7/145) of all neurons exhibited any inter-spike intervals (ISIs) shorter than 

1ms, and within that subset of neurons, ISIs shorter than 1ms accounted for less than 0.1% of all ISIs in 

each neuron. 

 Only neurons that responded significantly to any part of our stimulus set were included in our data 

analysis. Response significance was determined quantitatively, following previously described methods 

(Gentner and Margoliash, 2003). Briefly, the mean response to each song was divided into 500ms 

segments, and the variance of the mean response over each segment was computed. The variance for each 

song was normalized by the variance of spontaneous firing. To be considered auditory, the largest 

normalized variance value needed to be greater than (1.96 × 1 S.E.) + 1, where S.E. is the standard error of 

the normalized variance values for the remaining songs, and 1 is the normalized variance that would be 

expected for a non-auditory neuron. 

 

Data Analysis 

Analyses were performed using custom-written MATLAB (Natick, MA) software.  

Behavioral performance was evaluated using d prime (Macmillan and Creelman, 2005),  
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! 

d'= zscore(Hit rate)" zscore(False alarm rate)
 

(1) 

a measure of discriminability between two distributions. Values of d prime were computed in non-

overlapping blocks of 100 trials.  

 For most analyses of neural activity, responses to full song stimuli were segmented into the 

responses to each constituent motif (Fig. 2.2). The starting time for a motif was defined as the onset of 

power for that motif, and the ending time for a motif was defined as the onset of power for the following 

motif. Thus, a neuron’s response to a motif consisted of the neural activity both during that motif and 

during the subsequent silent period following that motif. Each individual song stimulus contained multiple 

renditions of some motifs, but because of subtle acoustical variability between renditions, each rendition 

was considered to be distinct for all analyses except the variability analysis of repeated motifs (Fig. 2.4).  

 

Motif selectivity analysis The non-parametric selectivity of each neuron was calculated over all 

motifs (rewarded, unrewarded, and novel) collectively for each neuron (Rolls and Tovee, 1995; Vinje and 

Gallant, 2000): 
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where ri is the mean firing rate in response to the ith motif, and n is the total number of motifs. This measure 

ranges from 0 to 1, with 0 representing the minimum motif selectivity (responses to all motifs are identical) 

and 1 representing the maximum motif selectivity (response to only one motif). Although this measure 

includes all responses from each neuron, it emphasizes the larger values in the response distribution. 

Therefore, we also used the entropy method (Lehky et al., 2005), which equally considers selectivity of 

both excitatory and suppressive responses. Both measures yielded the same result (Fig. 2.S2).  Mean 

spontaneous firing rates did not differ significantly between CMM (3.24±0.59 Hz) and CLM neurons 

(3.37±0.34 Hz; Wilcoxon rank sum test, p = 0.41). 

 

Information analysis Firing rates for each neuron’s evoked response to each motif were divided 

into six equally spaced bins ranging from the lowest firing rate to the highest firing rate elicited by that 
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neuron. Six bins were chosen to balance the need to capture the dynamic range of responses for each 

neuron with the need to appropriately sample the conditional probabilities. For each neuron, identical firing 

rate bins were used for all information calculations. Control analyses in which the number of bins varied 

from 2-10 yielded changes in the absolute number of bits but did not alter the effect of learning on 

information or the differences between CLM and CMM (Fig. 2.S3). In all cases, mutual information was 

calculated as  

 

! 

I(s;r) = p(s,r)
s,r
" log2

p(s,r)
p(s)p(r)

# 

$ 
% 

& 

' 
( . (3) 

Where s indexes the stimulus and r indexes the bin of the firing rate response (Brenner et al., 2000; Cover 

and Thomas, 2006). 

 For mutual information between motif identity and motif firing rate, p(r,s) represented the 

empirical joint probability distribution of motif firing rates and motif identities. Because multiple renditions 

of single motifs were considered to be distinct, the distribution of motif identities, p(s), was always 

uniform. The distribution of firing rates, p(r), was computed by averaging across the conditional 

distributions for each motif.  Information about motif identity was computed in two ways: across responses 

to all motifs regardless of stimulus class (rewarded, unrewarded, and novel), and separately for the motifs 

in each stimulus class. For information encoded about all motifs (Figure 2.3), p(r) was found by averaging 

the conditional distributions across all motifs presented to each neuron. For the information encoded about 

motifs within each stimulus class (Figures 2.5, 2.6), the conditional distributions were averaged across 

motifs within each class to obtain separate p(r) distributions for each class. 

 For mutual information between motif class (rewarded, unrewarded, novel) and motif firing rate, 

p(r,s) represented the empirical joint probability distribution of motif firing rates and each motif’s 

associated stimulus class. This distribution was determined by averaging the response distributions for all 

motifs within each stimulus class. The distribution of stimulus classes, p(s), was uniform and the 

distribution of firing rates, p(r), was found by averaging the class-conditional distributions. 

 For mutual information between song class and song firing rate, calculations were exactly 

analogous to calculations for motif class, except that firing rate responses were averaged over the entire 
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duration of the presented song.  

 The significance of information encoded about learned motif and song categories was evaluated 

relative to information about randomly shuffled categories. For shuffled motif category information, each 

motif was randomly assigned to one of three categories such that the behavioral meaning of the categories 

was lost but the association between motif identity and firing rate was preserved (because single trials were 

not shuffled). This procedure was repeated for 100 random permutations to generate a distribution of 

shuffled information values, providing an estimate of the information encoded about arbitrary categories. 

The distribution of shuffled values was then used to determine the p-value for the category information for 

each neuron. Significance was evaluated at p < 0.05. For song category information, shuffling was 

conducted similarly. However, because there are only two songs per category, there are only eight distinct 

permutations of category assignment that disrupt all three original category boundaries. Thus, information 

about learned categories was considered significant when it was greater than the information about all eight 

shuffled information values for each neuron. Importantly, because neurons could encode any arbitrarily-

defined categories, positive information about shuffled categories does not imply the presence of residual 

bias in the estimation of information about behaviorally-defined categories. Rather, neurons may 

“categorically” encode other features of song, such as a particular spectrotemporal pattern that only appears 

in some motifs. Making a comparison with the shuffled categories thus provides a test of whether the 

information encoded about the learned categories is greater than would be expected by chance. 

 Two control analyses for the mutual information were carried out. First, to ensure that mutual 

information values were not solely dependent on variations in a neuron’s dynamic range, we limited 

responses by the maximum and minimum single-trial firing rate elicited by a novel motif (Fig. 2.S4). In this 

case, all firing rates from rewarded or unrewarded motifs that were outside this range were ignored (i.e. 

considered never to have occurred). Second, to test our assumption that responses to multiple renditions of 

acoustically similar motifs are independent, mutual information was recomputed with multiple renditions 

considered as a single motif. Both controls yielded qualitatively similar results to those reported in the text 

(Fig. 2.S5) 

 In addition, because estimates of information from limited samples are inherently biased upwards 
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(Treves and Panzeri, 1995), bias was corrected by extrapolating the information estimate for each neuron to 

an infinite data size (Strong et al., 1998; Brenner et al., 2000). Variability in the estimate of mutual 

information was determined by a jackknife resampling of the data. The standard deviations of the 

information estimations were very low (median for estimates over all motifs: 0.014 bits, median for 

estimates within motif classes: 0.022 bits), which indicates highly stable estimations. Subtracting analytical 

estimates of the bias (Panzeri et al., 2007) instead yielded qualitatively similar results to the extrapolation 

method.  

 Entropy values were computed using the same bins as were used for information calculations. 

Total entropy was calculated as  

 

! 

HTotal (r) = " p(r)log2 p(r)# . (4) 

Noise entropy was calculated as 

 

! 

HNoise(r) = " p(s)
s
# p(r | s)log2 p(r | s)

r
# . (5) 

Because estimates of the entropy are subject to similar biases as estimates of the mutual information, bias 

in the computed entropy was corrected by using methods analogous to those described for mutual 

information. 

 

  Repeated motif analysis Four independent observers classified motifs based on visual inspection 

of the spectrogram and listening to the waveform. Repeated motifs were judged to be renditions of the 

same type only when all four observers agreed on the classification. Motifs of the same type were then 

considered to be identical for the purposes of the repeated motif analyses. Variability of responses within 

sequences of repeated motifs was measured by computing the coefficient of variation (CV) of trial-

averaged firing rates in response to each repeated motif sequence presented to each neuron. The CV values 

for all sequences for a given neuron were averaged to find the mean variability for that neuron.  

 

Statistics All data were tested for normality using the Lilliefors test with p < 0.05. Non-parametric 
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tests were applied when data were not normal. Central tendencies are reported as means ± standard errors, 

unless otherwise noted. 

Results 

 To compare how learning affects neural encoding in CLM and CMM, we began all experiments 

by training European starlings (Sturnus vulgaris) to recognize four different conspecific songs using an 

established operant procedure (Fig. 2.1b) (Gentner and Margoliash, 2003). Birds learned to peck in 

response to one pair of songs (“rewarded” songs) to obtain a food reward and to withhold pecks to the other 

pair (“unrewarded” songs) to avoid a mild punishment (Materials and Methods). After birds learned this 

task (Fig. 2.1c), we analyzed the activity of single neurons (supplemental Fig. 1) in either CLM (n = 97 

neurons) or CMM (n = 48 neurons) (Fig. 2.1d) in response to the rewarded and unrewarded training songs 

and to two songs with which the birds had no prior experience (“novel” songs; Fig. 2.2; Materials and 

Methods). 

 The birds used for CLM recordings learned at similar rates and ultimately reached similar levels of 

performance as the birds used for CMM recordings. Song recognition performance (measured by d-prime; 

Materials and Methods) exceeded chance by a significant margin (p < 0.01) after a mean of 814±100 trials 

in CLM birds and a mean of 900±87 trials in CMM birds (Fig. 1c; t-test, p = 0.55). CLM birds performed a 

mean of 22,639±8,713 trials and CMM birds performed a mean of 28,987±10,913 trials (t-test, p = 0.65). 

By the end of training, both sets of birds recognized the training songs with high accuracy (mean d’ over 

the last 500 trials: 2.68±0.20 in the CLM birds and 2.90±0.36 in the CMM birds, t-test, p = 0.57). Thus all 

birds had learned to recognize all the training songs with high proficiency prior to the neural recording. 

  

Motif Selectivity in CLM and CMM 

 We first sought to characterize functional differences between neurons in CLM and CMM. 

Because starlings compose their songs from stereotyped clusters of notes called motifs (Chaiken et al., 

1993) that are thought to be perceived as discrete auditory objects (Gentner and Hulse, 2000; Gentner, 

2008; Seeba and Klump, 2009), we analyzed the neural responses to each motif. In some CMM neurons, 

small subsets of motifs elicit high firing rates, while many other motifs elicit low firing rates (Gentner and 
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CLM neuron (a) and CMM neuron (b) in response to rewarded motifs (top), unrewarded motifs (middle), 
and novel motifs (bottom). Scale bar in upper left spectrogram denotes 0.5s and 5kHz. Scales are identical 
for all spectrograms.
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Margoliash, 2003; Meliza et al., 2010), a characteristic known as lifetime sparseness or non-parametric 

selectivity (Willmore and Tolhurst, 2001; Lehky et al., 2005). Here we refer to this characteristic as “motif 

selectivity”, and compare this measure between the responses of neurons in CMM and CLM to the motifs 

that made up all four training and the two novel songs. In the representative CLM neuron shown in figure 

2.2a, a large number of motifs elicited high firing rates. In the representative CMM neuron (Fig 2.2b), 

however, a smaller number of motifs elicited high firing rates, while most motifs elicited low firing rates. 

Differences in the distribution of each neuron’s firing rate response can be directly compared between the 

sample CLM and CMM neurons by rank-ordering the responses for each motif (Fig 2.3a). 

 For each neuron in CLM and CMM, we computed the non-parametric motif selectivity (Vinje and 

Gallant, 2000; Materials and Methods). This measure quantifies the relative extent of the positive tail of the 

distribution of mean firing rates in response to motifs (Franco et al., 2007). If all motifs elicited the same 

firing rate, the motif selectivity would be 0; if only one motif elicited a positive firing rate, the motif 

selectivity would be 1. The CLM neuron in Fig 2.2a had a motif selectivity of 0.24, whereas the CMM 

neuron in Fig 2.2b had a motif selectivity of 0.49. Although both regions exhibited a large range of motif 

selectivity values, we found that, on average, neurons in CMM had higher motif selectivity values 

(0.40±0.04) than neurons in CLM (0.26±0.02; Wilcoxon rank sum test, p = 1.6×10-4; Fig 2.3b). These motif 

selectivity differences (and those observed using other measures of selectivity; Fig. 2.S2) reflect the 

observations that CMM neurons responded with higher firing rates to a smaller subset of motifs than CLM 

neurons. 

 

Motif information encoding in CLM and CMM 

Responding selectively to a small subset of motifs is one effective way to encode information, but 

responding to many motifs can also encode a substantial amount of information, provided the response to 

each motif is distinct. Mutual information captures all the differences between the responses to different 

motifs (Cover and Thomas, 2006) and is thus agnostic to the actual method of encoding. We computed 

mutual information between firing rate and motif identity from the probability distribution of firing rate 

conditioned on motif identity (Materials and Methods). The conditional firing rate distributions of the 
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Figure 2.3. Motif selectivity and information encoding in CLM and CMM neurons. (a) Distributions of 
firing rates conditional on motif identity for the CLM neuron (left panel) and CMM neuron (right panel) 
shown in Fig 2.2a and 2.2b, respectively. Each row in each panel shows the firing rate distribution for a 
single motif. Motifs are arranged in order of ascending mean firing rates and the conditional probability is 
encoded in grayscale. (b) Distribution of motif selectivity values for CLM (grey bars) and CMM (black 
line) neurons. Grey arrow denotes mean for CLM neurons, black arrow denotes mean for CMM neurons. 
(c) Distribution of motif information values for CLM (grey bars) and CMM (black line) neurons. Arrows 
are as in (b). (d) Relation between mutual information and motif selectivity in CLM (dots) and CMM 
(circles) neurons. CMM neurons tend to have either low motif selectivity or low mutual information, but 
not both. CLM neurons can have both low motif selectivity and low mutual information. 
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representative neurons from Fig 2.2 show that the CMM neuron exhibited a greater diversity of firing rates 

than the CLM neuron, and that this diversity was more closely tied to motif identity for the CMM neuron 

than for the CLM neuron (Fig 2.3a). Accordingly, the CMM neuron encoded 0.76 bits of information about 

motif identity, whereas the CLM neuron encoded only 0.38 bits of information. Across all neurons, we 

observed a broad distribution of information values in both CLM and CMM (Fig 2.3c). On average, 

neurons in CMM encoded significantly more information (0.55±0.03 bits) about motif identity than 

neurons in CLM (0.38±0.02 bits; Wilcoxon rank sum test, p = 3.5×10-5; Fig 2.3c).  

 In both CLM and CMM, high motif selectivity and high motif information did not coexist in the 

same neurons (Fig 2.3d). This is expected because each of these measures mutually constrains the other. 

Motif selectivity measures the distinctness of a neuron’s response to a small number of motifs, while 

mutual information measures the diversity of a neuron’s response to many motifs. The response of a highly 

selective neuron can effectively distinguish between a small number of motifs, yet has little ability to 

distinguish between the majority of motifs. High motif selectivity thus constrains the amount of 

information that can be conveyed about the whole set of motifs. Similarly, neurons that encode a large 

amount of information must necessarily respond to many motifs, but in a manner that maps different 

responses to different motifs. The populations of neurons from both CLM and CMM range from low motif 

selectivity but high information, to high motif selectivity but low information (Fig 2.3d). This pattern 

suggests that neurons in both regions possess a continuum of sensory encoding properties. In addition, 

because CMM contains fewer neurons with both lower motif selectivity and lower information values than 

CLM (Fig. 2.3d), CMM neurons encode motifs in a manner that is closer to the constraints set by 

information and selectivity. 

  

Responses to repeated motifs in CLM and CMM 

Over the course of a song, starlings typically sing multiple renditions of one type of motif before 

switching to a different type of motif (Eens, 1997). We examined whether CLM and CMM neurons elicited 

variable responses to repeated motifs of the same type. Evidence of such variable responses was found in 

both regions. The responses of the representative CLM and CMM neurons in Fig 2.4a and b show change 
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Figure. 2.4. Response variability of CLM and CMM responses to repeated motifs. (a) Response of 
an example CLM neuron to a single song illustrating response variability to repeated motifs. Motif 
types are denoted as letters below the spectrograms. Motifs of the same type were judged to be 
acoustically similar for the purposes of the response variability analysis (Materials and Methods). (b) 
Response of an example CMM neuron to the same song, as in (a). (c) Distribution of mean coeffi-
cient of variation (CV) across repeated motifs for all CLM and CMM neurons. The CV is computed 
from the firing rates across each sequence of repeated motifs and averaged for each neuron. Higher 
CV values indicate greater response variability. Scale bar in upper spectrogram denotes 0.5s and 
5kHz. Scales are identical for both spectrograms.

33



 

 

34 

across each rendition of the repeated motif types in the sequence. To quantify this observation, we 

computed the coefficient of variation (CV) of mean firing rates in response to each motif within a repeated 

sequence. For the sample CLM neuron in Fig 2.4a, CV values were 0.40, 0.22, and 0.30 for motif types A, 

B, and C, respectively. For the sample CMM neuron in Fig 4b, CV values were 0.54, 1.15, and 0.65, for 

motif types A, B, and C, respectively. We observed instances of firing rates increasing over motif 

repetitions (e.g. motif type A in Fig 2.4a), as well as instances of firing rates decreasing over motif 

repetitions (e.g. motif type C in Fig 2.4b). We computed a measure of each neuron’s overall variability to 

repeated motifs by averaging all the CV values for each sequence of repeated motifs presented to that 

neuron. On average, the neurons in CMM had higher mean CV values (0.40±0.03) than the neurons in 

CLM (0.32±0.02; Wilcoxon rank-sum test, p = 0.0040; Fig 2.4c). These results suggest that neurons in 

CMM are more variable within a motif type than are neurons in CLM. Together, the results of motif 

selectivity, mutual information, and variability analyses indicate that song-evoked neuronal responses 

increase in complexity between CLM and CMM. 

 

Learning increases information encoded about motifs in CLM 

One way in which learning might act on CLM neurons is to modify their encoding of individual 

motifs. To test this idea, we compared the responses of CLM neurons to the motifs that were paired with 

reward during training (“rewarded motifs”), the motifs not paired with reward during training (“unrewarded 

motifs”), and the motifs not used for training (“novel motifs”). In the representative CLM neuron in Fig 

2.2a, neural activity was more variable among the rewarded motifs than among the unrewarded or novel 

motifs. We quantified these differences by computing the mutual information between firing rate and motif 

identity separately for each class of motifs (Materials and Methods). The strength of the association 

between firing rates and motif identity within each stimulus class corresponds directly to the amount of 

information each neuron encodes about the motifs in that class. The conditional probability distributions of 

firing rates for each set of motifs presented to the example neuron (Fig 2.5a) shows that the firing rate 

diversity was more closely tied to motif identity for familiar motifs than between the unrewarded or novel 

motifs. Accordingly, this neuron encoded more information about rewarded motifs (0.66 bits) than about 
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Figure 2.5. Effects of learning on encoding of motif identity in CLM. (a) Distributions of firing rates 
(F.R.) conditional on motif identity for rewarded (left), unrewarded (middle) and novel (right) motifs for 
the neuron shown in Fig. 2.2a. Each row in each panel shows the firing rate distribution for a single motif. 
Motifs are arranged in order of ascending mean firing rates and the conditional probability is encoded in 
grayscale. The firing rates of this neuron allow greater disambiguation of motif identity for rewarded 
motifs than for novel motifs. (b) Comparison of mean (± SEM) mutual information across all CLM 
neurons for rewarded, unrewarded, and novel motifs. Wilcoxon signed-rank test: * p < 0.01; ** p < 10-5. 
(c) Scatter plot illustrating distributions of information values for novel motifs and rewarded motifs. Each 
point represents a single neuron. Upper right, histogram of differences between mutual information values 
for rewarded vs. novel motifs for all neurons. The arrow denotes the mean. (d) Mean (± SEM) total 
entropy (squares) and noise entropy (circles) values over all CLM neurons. Paired t-test: * p < 0.01; ** p 
< 0.005.
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unrewarded motifs (0.16 bits) and novel motifs (0.26 bits).  

 Across the population of CLM neurons, learning significantly increased the amount of information 

encoded by individual neurons (Friedman test, p = 1.7×10-4). The mean information encoded about 

rewarded motifs was 34.5% higher than that for novel motifs (Wilcoxon signed-rank test, p=1.6×10-5; Fig 

2.5b,c). This learning effect was observed in most neurons: 69 of 97 neurons (71%) encoded more 

information about rewarded motifs than novel motifs (χ2 test: p= 0.0001; Fig. 2.5c). The mean information 

encoded about unrewarded motifs was comparable to that for novel motifs (Wilcoxon signed-rank test, 

p=0.091; Fig. 2.5c). The proportion of neurons encoding more information about unrewarded motifs than 

about novel motifs was not greater than that expected by chance (56/97; χ2 test, p = 0.13). Thus, the 

association of songs with reward was necessary to induce significant changes in encoding by single CLM 

neurons.  

 The observed effects of learning on information encoding could arise from two forms of firing rate 

variability. First, the diversity of responses to all motifs (“the total entropy”) could increase, which could 

potentially allow for a greater number of motifs to be represented. Second, the diversity of responses to 

repeated presentations of the same motif (“the noise entropy”) could decrease, which could allow for 

greater discriminatory power between responses to different motifs (Strong et al., 1998). Across all CLM 

neurons, learning increased the total entropy (repeated measures ANOVA, p = 2.1×10-4), but had no effect 

on the noise entropy (repeated measures ANOVA, p = 0.13; Fig 2.5d). Learned motifs thus elicited a 

greater diversity of responses than novel motifs without compromising the reliability of responses, which 

increased the capacity of CLM neurons to convey information about learned stimuli. 

We then asked what drives the increase in the total entropy of the neural response distribution. In 

principle, this change may be due to an increase in the total range of responses or to an increase in the 

number of distinct spike rates observed within a fixed range. Across all CLM neurons, we observed a 

slightly larger range of firing rates for rewarded motifs (16.5±0.9 Hz) than for unrewarded (16.2±0.8 Hz) or 

novel motifs (15.2±0.9 Hz; Friedman test: p = 0.005). This increased range, however, did not fully account 

for the increased information encoding. The main effect of learning was unaltered in a control analysis 

where we omitted any response that fell outside the range of firing rates elicited by the novel motifs (Fig. 
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2.S4). Learning, therefore, increased the amount of information encoded by CLM neurons primarily by 

increasing the effectiveness with which this range was used. 

  

 Learning increases information encoded about motifs in CMM 

 Because of the substantial effects of learning on motif encoding in CLM, we next investigated 

whether learning also modified information encoding about individual motifs in CMM. Fig 2.6a shows the 

conditional probability distributions of firing rates for each set of motifs presented to the CMM neuron 

illustrated in Fig 2.2b. As with most CLM neurons, the diversity in this CMM neuron’s firing rates was 

more closely tied to rewarded motifs than to unrewarded or novel motifs. Accordingly, this neuron encoded 

more information about rewarded motifs (0.91 bits) than about unrewarded motifs (0.60 bits) and novel 

motifs (0.09 bits). Over our entire sample, learning significantly modulated the information encoded by 

CMM neurons (repeated measures ANOVA, p = 0.016; Fig 2.6b,c). The mean amount of information 

encoded about rewarded motifs was 27.7% higher than that for novel motifs (paired t-test, p = 0.012; Fig 

2.6c). Like CLM, the information encoded about unrewarded motifs was comparable to that encoded about 

novel motifs (paired t-test, p = 0.41). Although CMM encoded more information than CLM on average 

(Fig 2.3c), the effects of learning on neural encoding in both regions were comparable (mixed model 

ANOVA, interaction term, p = 0.65).  

 Across all CMM neurons, learning increased the total entropy (repeated measures ANOVA, p = 

0.019), but had no significant effect on the noise entropy (Friedman test, p = 0.09; Fig 2.6d). Therefore, as 

in CLM neurons, learned motifs elicited a greater diversity of responses than novel motifs in CMM 

neurons, but this greater diversity did not substantially decrease the reliability of responses. We observed 

no significant learning-dependent increase in the range of firing rates evoked by single motifs (repeated 

measures ANOVA, p = 0.08). Thus, learning and reward enhanced neural encoding of motifs in similar 

ways in both CLM and CMM. In both regions, the effect of learning on information encoding was not 

dependent on our assumption that responses to repeated motifs are independent (Materials and Methods); 

similar differences were observed when repeated motifs are considered to be identical in the mutual 

information analysis (Fig. 2.S5).
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Figure 2.6. Effects of learning on encoding of motif identity in CMM. (a) Distributions of firing rates 
(F.R.) conditional on motif identity for rewarded (left), unrewarded (middle) and novel (right) motifs for 
the neuron shown in Fig. 2.2b. Conventions are the same as in Fig 2.5a. (b) Comparison of mean (± SEM) 
mutual information across all CMM neurons for rewarded, unrewarded, and novel motifs. Wilcoxon 
signed-rank test: * p < 0.05. (c) Scatter plot illustrating distributions of information values for novel motifs 
and rewarded motifs. Each point represents a single neuron. Upper right, histogram of differences between 
mutual information values for rewarded vs. novel motifs for all neurons. The arrow denotes the mean. (d) 
Mean (± SEM) total entropy (squares) and noise entropy (circles) values for all CMM neurons. Paired 
t-test: * p < 0.05.
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Learning increases information encoded about motif categories 

In addition to encoding more information about the identity of learned motifs than about novel 

motifs, CLM and CMM might also specifically encode information about the behaviorally relevant 

categories for motifs acquired through training (i.e rewarded, unrewarded, and novel). Such encoding could 

appear as any consistent difference in responses to motifs from different categories and thus is distinct from 

the foregoing analysis of information about motif identity. To explore this possibility, we formed firing rate 

distributions from responses to all motifs from these three categories (Fig 2.7a). From these distributions, 

we computed the information encoded by single neurons in CLM and CMM about the behaviorally-defined 

category of each motif. Because the behaviorally-defined categories are just one way that groups of motifs 

might be represented, we compared the information about learned categories to the distribution of 

information values when the category membership of each motif was randomly shuffled into other 

groupings (Materials and Methods). The example CMM neuron depicted in Fig 2.7a,b encoded 0.22 bits of 

information about motif category and only 0.03±0.03 (mean ± s.d.) bits about the randomly shuffled 

categories. Because different motifs can elicit very different firing rates in the same neuron, the information 

about motif category is small relative to information about motif identity. Nonetheless, the information 

about learned categories was significantly greater than the information about shuffled categories (evaluated 

at p < 0.05) in 45.8% (22/48) of CMM neurons and in 28.9% (28/97) of CLM neurons. These proportions 

are larger than would be expected by chance. On average, the information about behaviorally relevant 

categories of motifs was larger than the mean information about shuffled categories for neurons in both 

CLM (0.023±0.002 bits vs. 0.014±0.001 bits; Wilcoxon signed rank test, CLM: p = 7.3×10-8; Fig. 2.7b) and 

CMM (0.072±0.009 bits vs. 0.023±0.002 bits; Wilcoxon signed rank test, p = 1.2×10-8; Fig. 2.7c). 

Correspondingly, neurons in CMM encoded significantly more information about behaviorally relevant 

categories than neurons in CLM on average (Wilcoxon rank sum test: p = 1.95×10-7; Fig 2.7d). Thus, while 

both CLM and CMM encode information about the learned motif categories, neurons in CMM encode 

significantly more of this information than neurons in CLM.
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Figure 2.7. Effects of learning on encoding of motif category in CLM and CMM. (a) Probability distribu-
tion for the sample CMM neuron depicted in Fig 2b of firing rates in response to motifs, conditional on 
behavioral category. (b) Probability distribution of the same CMM neuron conditional on a randomly 
shuffled set of categories. (c) Comparison of information encoded about the learned motif categories 
(rewarded, unrewarded, novel), and the mean information encoded about 100 permutations of randomly 
shuffled categories for all CLM (gray dots) and CMM (open circles) neurons. Black line is the unity line. 
(d) Distributions of amounts of information about motif category encoded by CLM neurons (gray bars) and 
CMM neurons (black outline). Arrows denote means for CLM (gray) and CMM (black).
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Learning increases information encoded about song categories  

Because the firing rate of CLM and CMM neurons typically varies substantially over the motifs 

within a song (e.g. Fig 2.2) while the behavioral category (i.e. rewarded, unrewarded, or novel) remains 

unchanged, we reasoned that the firing rate averaged over the course of the song may better represent the 

behavioral category. As for motifs, we formed firing rate distributions from responses to each song from 

the three behavioral categories as well as for all permutations of shuffled categories (Fig 2.8a; Materials 

and Methods). From these distributions, we computed the information encoded by single neurons in CLM 

and CMM about the learned categories and shuffled categories. Because there are only two songs per 

category, there are only eight distinct permutations in which all categories are shuffled. Thus, we compared 

the information about the learned categories with the information about the shuffled set of categories that 

encoded the maximum information. The example CMM neuron depicted in Fig 2.8a encoded 0.99 bits of 

information about song category and a maximum of 0.68 bits about randomly shuffled categories. We 

found that the information about learned categories was significantly greater than the maximum 

information about shuffled categories in 37.5% (18/48) of CMM neurons but in only 22.7% (22/97) of 

CLM neurons. These percentages reflect significant differences between the populations of CLM and 

CMM neurons. In CMM, on average, information about the song category (0.42±0.04 bits) was 

significantly greater than the mean information about shuffled categories (0.28±0.03 bits; paired t-test: 

4.7×10-4; Fig 2.8c) In CLM, in contrast, information about the song category (0.19±0.03 bits) was similar to 

the mean information about shuffled categories (0.17±0.02 bits; paired t-test: p = 0.11; Fig 2.8c). 

Correspondingly, neurons in CMM encoded more category information than neurons in CLM on average 

(Wilcoxon rank sum test: p = 7.4×10-7; Fig 2.8d). This difference can also be observed by comparing the 

mean firing rates between the rewarded and novel songs (Fig 2.8e) and between the rewarded and 

unrewarded songs (Fig 2.8f). The average firing rate differences were slightly greater in CMM than in 

CLM, but variance of these differences was much greater in CMM than in CLM (chi-square variance test: 

rewarded vs. novel, p = 2.1×10-11; rewarded vs. unrewarded, p = 2.3×10-4). Learning therefore strongly 

modulates (by either increasing or decreasing) the average firing rate responses of CMM neurons to 
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Figure 2.8. Effects of learning on encoding of song category in CLM and CMM. (a) Probability distribu-
tions of firing rates in response to songs for the sample CMM neuron depicted in Fig 2.2b, conditional on 
song identity (left) and behavioral category (right). Arrows depict the construction of category-conditional 
distributions. (b) Probability distributions as in (a) but for the randomly shuffled category with the highest 
information. (c) Comparison of information encoded about the learned categories (rewarded, unrewarded, 
novel), and the mean information about randomly shuffled categories for all CLM (gray dots) and CMM 
(open circles) neurons. Black line is the unity line. (d) Distributions of  category information values for 
CLM neurons (gray bars) and CMM neurons (black outline). Arrows denote means for CLM (gray) and 
CMM (black). (e) Distribution of the change in average firing rate between novel songs and rewarded 
songs for CLM neurons (gray bars) and CMM neurons (black outline). Positive values indicate higher 
firing rates for rewarded songs. Arrows denote means for CLM (gray) and CMM (black). (f) Distribution 
of the change in average firing rate between unrewarded songs and rewarded songs for CLM neurons (gray 
bars) and CMM neurons (black outline). Positive values indicate higher firing rates for rewarded songs. 
Arrows are as in (e). 
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enhance the encoding of song category, but such modulation is much less pronounced in CLM neurons.  

Discussion 

The complex (Meliza et al., 2010), learning-dependent encoding of song by CMM neurons 

(Gentner and Margoliash, 2003) suggests that these representations are the product of an extensive neural 

processing network. Our results reveal some of the functional characteristics of that network by 

highlighting multiple differences between the encoding properties of individual CLM and CMM neurons, 

and by demonstrating that learning modifies these encoding properties. Together, these results suggest that 

CLM and CMM are part of a functional sensory circuit across which representations of natural vocal 

signals become increasingly informative with respect to behavior. 

 

Coding along the avian auditory processing pathway 

CLM and CMM sit near the top of a sensory processing pathway along which neural responses get 

progressively more complex. Within Field L, neurons in the L1 and L3 sub-regions selectively encode 

species-specific vocalizations more than neurons in the thalamorecipient Field L2 (Bonke et al., 1979; 

Langner et al., 1981). Linear spectrotemporal receptive field (STRF) models of neurons in Field L2a 

predict neural responses substantially better than the same models for neurons in CLM, indicating that 

response nonlinearities increase from L2a to CLM (Sen et al., 2001). Nonlinear stimulus transformations, 

such as the spectrotemporal “surprise,” substantially improve the predictive power of STRF models for 

CLM neurons, but only moderately for Field L neurons, again highlighting the increase in nonlinear 

processing between CLM and Field L (Gill et al., 2008). In addition, some neurons in CLM show a 

moderate preference to respond to the bird’s own song over other conspecific songs (Bauer et al., 2008), a 

hallmark of neural complexity (Margoliash, 1983) not observed in Field L (Amin et al., 2004; Shaevitz and 

Theunissen, 2007).  

 The differences in neural processing between CLM and CMM resemble those within known 

hierarchical circuits. First, neurons in CMM have higher motif selectivity than neurons in CLM. Selectivity 

often increases along ascending hierarchical circuits, including pathways in the visual (Maunsell and 

Newsome, 1987; Rust and DiCarlo, 2010) and auditory (Janata and Margoliash, 1999; Kikuchi et al., 2010) 
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systems. Second, neurons in CMM encode more information about motif identity than neurons in CLM. In 

many sensory processing pathways, neurons at higher levels encode abstract concepts such as object 

identity whereas neurons at lower levels process the physical components of those objects (Nelken, 2004; 

Winer et al., 2005; Chechik et al., 2006; Nahum et al., 2008; Russ et al., 2008). Like visual objects, motifs 

are high-level concepts that are abstracted from the physical combinations of sounds from which they are 

composed (Gentner and Hulse, 2000; Gentner, 2008; Seeba and Klump, 2009). Third, neurons in CMM 

exhibit more variability in their responses to repeated motifs of the same type than CLM neurons. Because 

these repeated motifs have subtle acoustic differences and different positions within the song, we cannot 

attribute the increased sensitivity of CMM neurons exclusively to either feature. Nonetheless, sensitivity to 

subtle differences in complex stimuli, such as faces, is a hallmark of responses at high levels in known 

hierarchical circuits (Desimone et al., 1984), and temporal context-sensitivity increases between the 

auditory thalamus and auditory cortex in mammals (Asari and Zador, 2009). Collectively, all three of these 

coding differences⎯motif selectivity, information, and variability across motif renditions⎯suggest that 

neural representations in CMM are more complex than in CLM, and thus support the hypothesis that CLM 

and CMM are a part of functional hierarchical neural circuit.  

 Even with the evidence provided here, there are several reasons to be cautious of drawing too 

strict a conclusion about hierarchical processing across CLM and CMM. First, connectivity between the 

two regions is reciprocal (Vates et al., 1996), which could make the precise flow of information 

multifaceted and complex (but does not necessarily preclude hierarchical processing; Van Essen et al., 

1992). Second, CMM shares a strong reciprocal connection with the caudomedial nidopallium (NCM), 

another secondary auditory forebrain region that receives input from Field L (Vates et al., 1996). Responses 

of NCM neurons are also modified by song-recognition learning (Thompson and Gentner, 2010), and thus 

may also contribute directly to the emergence of complex, learning-dependent responses in CMM. Finally, 

the response properties of neurons in both CLM and CMM are heterogeneous and partially overlapping, 

suggesting that multiple pathways of information flow may be present. Regardless of the specific 

underlying architecture, however, our data show significant functional differences between CLM and 

CMM. 
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Learning modifies information encoding in CLM and CMM 

Our results suggest that learning acts on CLM and CMM neurons in at least two ways: by 

increasing the information about motif identity and by increasing the information about behaviorally 

defined song categories. We found that both CLM and CMM neurons encoded more information about the 

identity of the learned motifs than about the identity of novel motifs. Behavioral experiments suggest that 

starlings recognize conspecifics by memorizing the motifs that compose their repertoires (Gentner and 

Hulse, 2000). The preferential encoding of the learned motifs by neurons in CLM and CMM may be a part 

of this stored memory. Alternatively, because of the rich acoustical structure of starling songs, 

identification could be achieved by learning a subset of the motifs that the bird finds particularly useful for 

recognition. The additional information encoded by CLM and CMM neurons about the learned motifs may 

therefore reflect changes in the representations of the most useful motifs. Consistent with this, the strongest 

effects of learning occur for the motifs paired with reward during training (Figs. 2.5-2.6; Gentner and 

Margoliash, 2003), pointing to a role for positive reinforcement in shaping the neural codes in both regions. 

Similar effects have been reported in primary cortical areas in mammals (Blake et al., 2006; Polley et al., 

2006). Because learning increases the information encoded about motifs similarly in CLM and CMM, at 

least some of the learning-dependent representations in CMM (Gentner and Margoliash, 2003) may be 

inherited from responses in CLM. 

 Neurons in CLM and CMM also encoded information about the learned behavioral categories and 

this information was substantially larger in CMM than in CLM. Given that each bird’s task was to 

distinguish between rewarded and unrewarded songs, we hypothesize that neural activity in both regions 

contributes to this cognitive process and supports categorical processing in post-synaptic targets (Prather et 

al., 2009).  Phenomenologically, our results are similar to the processing of learned categories along the 

primate dorsal and ventral visual pathways (Freedman et al., 2001, 2003; Freedman and Assad, 2006). The 

neural encoding of behaviorally relevant categories (i.e. the grouping of signals that share behavioral 

meanings with similar neural representations) may be a general adaptive principle of cortical sensory 

processing to organize the complexity of sensory input (Merzenich and deCharms, 1996; Freedman and 
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Miller, 2008; Hoffman and Logothetis, 2009; Seger and Miller, 2010). To date, however, the behavioral 

modulation of categorical processing has been studied primarily in the primate visual system and the 

underlying circuitry remains poorly understood. The emergence of categorical representations between 

CLM and CMM provides an excellent opportunity to study the encoding of natural acoustic categories at 

the cellular and circuit level. 

 Multiple pathways are likely to be involved in the transformation of information between CLM 

and CMM. For example, because CLM neurons encode relatively small amounts of information about 

learned categories, a single CMM neuron that processes convergent input from many CLM neurons could 

amplify this effect substantially. Recent results that the responses of some CMM neurons to whole motifs 

are well-modeled by a combination of the responses to motif components (Meliza et al., 2010) are 

consistent with a general pattern of convergence into CMM. Furthermore, synaptic input from NCM 

neurons, which elicit weaker responses to learned songs than to novel songs (Thompson and Gentner, 

2010), likely contributes to the encoding of learned categories in CMM. Because CMM contains large 

numbers of GABAA-positive neurons (Pinaud et al., 2004), signals from NCM may specifically suppress 

the activity in CMM for novel songs. Additional studies will be necessary to compare the roles of CLM and 

NCM in shaping CMM responses. 

 This circuit will also be highly valuable for tracking changes in neural encoding over the course of 

learning, which is extremely difficult to do in primate models because of the large amounts of time required 

to train monkeys (Hoffman and Logothetis, 2009; c.f. Messinger et al., 2001). In contrast, starlings can 

learn to recognize songs very quickly (unpublished observations). With awake, behaving recording 

techniques, the modification of neural responses to encode newly learned categories could be readily 

observed. Thus, our identification of the emergence of behaviorally relevant information about songs along 

the CLM to CMM pathway highlights it as an especially valuable model for studying the circuit and 

plasticity mechanisms that underlie the selective neural processing of learned signals. 
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Figure 2.S1. Spike sorting and histology. (a) Superimposed plots of extracellular action potential shape 
for the neuron shown in figure 2.2a. Light grey lines are individual action potential waveforms, black line 
is mean action potential shape. (b) Interspike interval histogram for the same neuron showing very few 
refractory period violations. (c) Photomicrograph of Nissl-stained coronal tissue section showing fiduciary 
electrolytic lesion in CLM (denoted by arrowhead) at the bottom of a recording penetration. Scale bar = 
1000μm. LaM: Mesopallial Lamina. 
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Figure 2.S3. Effects of varying the number of bins in information calculations. (a) Information about motif 
identity in CLM. (b) Information about motif identity in CMM. (c) Information in motifs about category. 
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Figure 2.S4. Effects of limiting firing rate range on single neuron information encoding in CLM. (a) 
Conditional probability distributions of a sample CLM neuron. Red bars indicate the maximum firing rate 
elicited by a novel motif. Information was computed using six bins linearly spaced from the minimum 
novel firing rate to the maximum novel firing rate. Responses outside this range were ignored in this 
analysis. (b) Comparison of mean (± SEM) information encoded under this restricted firing rate range 
(grey bars; Friedman test, p = 1.7×10-4) with the mean information encoded under the full firing rate 
range (black bars; Friedman test, p = 1.7×10-4).  No difference is observed between the effects of learning 
under the two conditions (two-way repeated measures ANOVA interaction term: p = 0.19).
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III. Learning alters neural encoding of natural auditory signals in relation to their informativeness 

for behavior 

	
  

Abstract 

Learning plays an important role in the modification of neural encoding in the brain, by changing 

cortical maps of sensory space to increase the coverage of learned signal parameters and by forming single-

neuron representations of complex learned signals. However, neural processing of natural sensory signals is 

a complex process that unfolds over time and involves coordinated activity across many regions of the 

brain. Thus, it is important to understand how learning modifies spatially and temporally distributed neural 

representations. Using European starlings trained to recognize short segments of natural birdsong (motifs), 

we show here that learning alters the neural encoding of motifs in a spatially and temporally dissociated 

manner within the caudal mesopallium (CM), a higher order auditory area in the songbird. Neurons in 

medial CM (CMM) primarily encode motif familiarity, whereas neurons in lateral CM (CLM) primarily 

encode the behavioral informativeness of motifs. Moreover, this encoding emerges over time, being most 

pronounced in CMM early in the motif and in CLM towards the end of the motif. Finally, the strength of 

encoding of familiarity and behavioral meaning decreased with duration of behavioral experience. 

Together, these findings implicate both CLM and CMM in a neural circuit that extracts behaviorally 

relevant information from complex natural stimuli.  

 

Introduction 

Plasticity alters the neural representations of sensory signals in the cortex as a function of 

familiarity and association with reward (Bakin and Weinberger, 1990; Recanzone et al., 1993; Gentner and 

Margoliash, 2003; Blake et al., 2006; Jeanne et al., 2011). Furthermore, subcortical signals of reward from 

the ventral tegmental area can elicit a similar reshaping of cortical encoding (Bao et al., 2001). However, in 

many cases, rewarded signals may be complex and high dimensional, such that multiple features can be 

informative while others uninformative for the task at hand. For example, one can distinguish a raven from 
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a crow by its size or its voice, but not by its color. Because the informativeness of natural sensory signals 

can vary substantially, it is important to understand how it influences the plasticity of neural encoding. By 

altering the importance of stimulus features, previous studies have demonstrated that categorical 

representations of non-natural signals in the brain can be manipulated by behavioral context (e.g. Sigala 

and Logothetis, 2002; Freedman and Assad, 2006; Mirabella et al., 2007; Zhang et al., 2010). However, the 

role of behavioral relevance on forming long-lasting representations of natural signals is currently 

unknown. The European starling (Sturnus vulgaris) is an excellent model for exploring the influence of 

learning on neural encoding of natural stimuli, because its behavior can be easily controlled in laboratory 

settings, quickly learns new songs, and has well-identified auditory processing circuitry (Gentner and 

Margoliash, 2003). Starlings sing spectrotemporally complex songs composed of discrete collections of 

notes, called motifs, which are thought to function in conspecific recognition in the wild (Gentner and 

Hulse, 2000; Gentner, 2008). This recognition is mediated, in part, by the activity of neurons in the 

caudomedial mesopallium (CM), a secondary auditory area, which is modulated by learned association 

with reward (Gentner and Margoliash, 2003), forms categorical representations of learned motifs (Jeanne et 

al., 2011), and may function in the processing of auditory feedback during juvenile song learning (Keller 

and Hahnloser, 2009). 

 Here, we explore how learned behavioral relevance alters neural encoding in lateral CM (CLM) 

and medial CM (CMM) by experimentally manipulating the information that motifs convey about the 

motor output required to obtain reward, while controlling for the temporal association with reward. We find 

that informative motifs elicit higher firing rates than uninformative or novel motifs and that the firing rate 

difference between informative and uninformative motifs are most pronounced in CLM neurons. 

Furthermore, the temporal profile of these responses is dynamic, with the biggest effects of informativeness 

emerging within CLM near the end of the motif. Finally, these effects diminish with increasing time spent 

training, consistent with the expansion-renormalization hypothesis of cortical plasticity (Reed et al., 2011). 

Collectively, our results show that the information that natural auditory signals convey about behavior 

plays an important role in its neural representation during learning. 
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Materials and Methods 

All procedures were carried out in accordance with the guidelines of the Institutional Animal Care 

and Use Committee at the University of California, San Diego. 

 

Stimuli All stimuli were constructed from 12 motifs (stereotyped clusters of natural starling song) 

taken from recordings of songs from three adult European starlings. Motifs were divided into three sets: 

four motifs (A,B,C,D,) were labeled “informative,” four motifs (E,F,G,H) were labeled “uninformative,” 

and four motifs (I,J,K,L) were labeled “novel.” Pairs of motifs were aligned sequentially with a 20ms gap 

of silence between them to form the stimuli used for behavioral training. Each stimulus contained exactly 

one informative and one uninformative motif, and they could occur in either order. The resulting 32 stimuli 

were divided into two groups for behavioral training: the 16 stimuli containing motifs A or B were used as 

class 1 (i.e. go left) and the 16 stimuli containing motifs C or B were used for class 2 (i.e. go right). All 

uninformative motifs occurred with equal probability in both class 1 and class 2 stimuli. The complete set 

of 12 motifs was presented in isolation (i.e. not paired) during all neural recording sessions. 

 

Behavioral Training Nine wild-caught adult European starlings (Sturnus vulgaris) were trained 

using a two-alternative choice operant conditioning paradigm with established techniques (Gentner and 

Margoliash, 2003) to distinguish between stimuli from class 1 and class 2. Prior to training, none of the 

subjects had any exposure to these stimuli. All training took place inside a sound attenuation chamber with 

an operant response panel (Fig. 3.1a). Starlings initiated trials by inserting their beak into the center port of 

the response panel, which initiated the playback of one of the 32 stimuli from the speaker inside the 

chamber. After the end of playback, starlings had two seconds to indicate their response by pecking in 

either the left or the right port. Incorrect responses were punished by extinguishing the lights for 10-90 

seconds, during which time the starling could not initiate further trials. Correct responses were rewarded by 

two-second access to food on a fixed ratio schedule of reinforcement: starlings had to respond correctly to a 

fixed number of trials sequentially before receiving food. The number of correct trials required for reward 

was gradually increased over time from 1 to 6. A secondary reinforcer (flashing of LEDs on the response 
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panel) was used on correct trials when the food reward was not delivered. Incorrect responses reset the 

running count of correct trials. The fixed ratio reinforcement was necessary to ensure that all motifs were 

presented an equal number of times, and to ensure that starlings could not systematically ignore any of the 

stimuli. At the end of training, starlings were presented with randomly reinforced probe stimuli consisting 

of each of the 8 training motifs presented in isolation, to confirm that they learned the task appropriately. 

  

Electrophysiology Approximately 24 hours prior to electrophysiological recording, a small pin 

was attached to the surface of the skull under isoflurane anesthesia (1.5-2% concentration), after which 

starlings were allowed to recover. On the recording day, starlings were anesthetized with urethane (20% by 

volume, 7-8ml/kg) and head-fixed via the attached pin to a stereotactic apparatus inside a sound-attenuating 

chamber. A small craniotomy was made dorsal to CLM and CMM, and multi-channel silicon electrode 

arrays (177µm2 electrode surface area, 50µm spacing, 1x16 and 1x32 electrode layout; NeuroNexus). 1x32 

electrode arrays were generally inserted at a 35° angle (relative to horizontal) and simultaneously measured 

neural activity across the medial-lateral axis of CM. 1x16 electrode arrays were generally inserted at a 90° 

angle (relative to horizontal) directly into CMM. For some subjects, only the 1x32 array was used. Motif 

stimuli were presented free field from a speaker 30cm from the bird. Electrode arrays were advanced while 

presenting the 12 motif stimuli until 2 or more auditory single units were isolated. Once single units were 

isolated, all 12 single motifs and the set of training motif pairs were presented pseudo-randomly in blocks 

while the extracellular electrical activity was amplified (5000× gain; AM Systems), filtered (high pass, 

300Hz; low pass, 3-5kHz), sampled (20kHz), and saved digitally for offline analysis (Spike2; Cambridge 

Electronic Design). Electrodes were coated with Di-I to facilitate localization of penetration tracks in 

histological sections. 

 

Histology At the end of the recording session, starlings were euthanized with an overdose of 

nembutal (150ml/kg), and perfused transcardially with 10% neutral buffered formalin. Brains were 

removed from the skull and placed in 30% solution for several days for cryoprotection. Brains were then 

cut into 50µm coronal sections on a freezing microtome and mounted on glass slides. Electrode penetration 
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tracks were identified with the assistance of Di-I marking and epifluorescence microscopy. Tissue was then 

stained with cresyl violet to localize penetration tracks to neuroanatomical boundaries. The recording 

location of each neuron was aligned to the position of its corresponding electrode track and its lateral 

distance from the midline was measured. The boundary between CLM and CMM was taken to be 900µm. 

Recording locations for CMM neurons ranged from 0-895µm and recording locations for CLM neurons 

ranged from 900-2081µm.  

 

Data Analysis The data reported here are a superset of previously reported neural recordings 

(Jeanne, et. al, 2012, not yet published). Putative action potentials in the recorded voltage traces were 

identified by amplitude, and sorted into single units with principal components analysis on waveform shape 

using Spike2 software (Cambridge Electronic Design). Only spike waveforms that formed a clear cluster in 

principal component space and which had very few refractory period violations were considered to be 

single units. Because the recording sites on each multi-channel array were only 50µm apart, stereotrode 

sorts were used to further improve sorting quality. Only sites that were driven by the auditory stimulus 

were used in subsequent analyses. 

Behavioral criterion (the point at which birds learned the task) was taken to be the point when the 

bird first performed the task above chance for 5 consecutive blocks of 200 trials. Behavioral performance in 

each non-overlapping block of 200 trials was analyzed using d’,  

, 

a measure of signal discriminability (Macmillan and Creelman, 2005). Chance performance was evaluated 

as the 95% confidence interval of the distribution of d’ values for 5000 sets of randomly generated 

responses to each trial in a block.  

 For whole motif analysis, firing rates were averaged over the duration of the motif starting 30ms 

after onset, and ending 30ms after offset, to account for signal propagation delay. For the analysis of the 

temporal response profile, the response was partitioned into bins 56.5ms in duration. Because the motifs 

used in the experiment were not of identical duration (range: 565-957ms, median: 756ms), only the first 10 

bins after the motif onset were within the duration of all 12 motifs. To compare firing rate profiles over the 

( ) ( )ratealarmFalsezscorerateHitzscored −=ʹ′
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course of the motif, we defined two 200ms time windows within each motif. The “early period” lasted from 

50-250ms after the start of the motif; the “late period” lasted from 300 to 100ms prior to the start of the 

motif. Unless specified otherwise, firing rate responses were normalized by computing the z-score over all 

driven responses. For analyses that considered the temporal profile of neural responses, the z-scores were 

computed over the mean firing rates of all time windows for all motifs for a given neuron. 

 

Statistical Analysis All data were tested for normality using the Lilliefors test evaluated at p < 0.05. 

Nonparametric tests were used when data were not normal. All reported p-values are for Wilcoxon Signed-

Rank tests, unless otherwise noted. Central tendencies are reported as means ± standard errors of the mean. 

 

Results 

We trained 9 starlings to distinguish pairs of motifs using a two-alternative choice operant 

conditioning paradigm(Gentner and Margoliash, 2003) (Fig. 3.1a). Stimuli were sequentially constructed 

pairs of motifs (stereotyped clusters of notes that comprise full songs; Fig. 3.1b) such that one of the two 

motifs (the “informative” motif) indicated the correct behavioral response (go left or go right) while the 

other motif had no relation to the correct response (the “uninformative” motif; Fig. 3.1c). All motif pairs 

were presented with equal probability such that exposure to the relevant and irrelevant motifs was identical. 

Starlings learned this task quickly, performing above criterion after 7422±728 trials (Fig. 3.1d; Methods). 

Mean performance during the final 200 trial block was 84.5±1.6%. Following behavioral training, we 

recorded the electrical activity of multiple well-isolated single units within the caudomedial mesopallium 

(CMM) and caudolateral mesopallium (CLM; Fig. 3.1e), and compared the spiking activity in response to 

informative and uninformative motifs and a third set of novel motifs (Fig. 3.1f,g).  

We first investigated whether learning modified the average firing rate responses to motifs within 

CM. Figure 3.2 illustrates the responses of one neuron from CLM (Fig. 3.2a) and one from CMM (Fig. 

3.2b). These neurons responded with the most spikes during presentation of informative motifs. Some of 

the uninformative motifs elicited moderate responses (e.g. motif A in Fig. 3.2b), but the novel motifs 
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Figure 3.1. Behavioral training. (a) Setup of operant apparatus. (b) Example paired-motif stimulus used 
during training. Top: example go left simulus composed from motifs E and A. Bottom: example go right 
stimulus composed from motifs C and E. (c) Complete set of stimuli used during training. Each letter 
denotes a single motif. Motifs in red are informative (i.e. indicate whether the correct response is go left or 
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performance. (e) Schematic of starling avian forebrain anatomy showing CLM and CMM in relation to 
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generally elicited very weak responses. On average, the behavioral category significantly modulated firing 

rates in neurons throughout CM (Friedman test, p = 2.9×10-6; Fig. 3.3a), with informative motifs eliciting 

higher rates (4.03±0.025Hz) than uninformative motifs (3.84±0.24Hz) and novel motifs (3.66±0.25Hz). 

Despite considerable variability from neuron to neuron, these data show that the information conveyed by 

motifs about behavior significantly alters their representation in the brain (Fig. 3.3b).  

How does this representation change across the medial-lateral axis of CM? To address this 

question, we compared encoding of informative, uninformative, and novel motifs with the lateral position 

of the neuron. The difference in mean firing rate between familiar (informative and uninformative) motifs 

and novel motifs decreased significantly with distance from the midline (Pearson correlation coefficient: r 

= -0.16, p = 0.0035; Fig 3.4a). In contrast, the difference in mean firing rate between informative and 

uninformative motifs exhibited no such correlation with distance from the midline (Pearson correlation 

coefficient: r = -0.0057, p = 0.92; Fig. 3.4b). Consequently, CMM neurons primarily encoded familiarity, 

with firing rates in response to informative motifs (3.67±0.33Hz; Fig. 3.3c) and uninformative motifs 

(3.49±0.30Hz) significantly higher than firing rates in response to uninformative motifs (3.10±0.30Hz; 

Wilcoxon signed-rank tests, informative vs. novel: p = 3.4×10-5, uninformative vs. novel: p = 0.0015). 

However, no difference in firing rate was observed between informative and uninformative motifs 

(Wilcoxon signed-rank test: p = 0.22; Fig. 3.4d). CLM neurons, however, primarily encoded behavioral 

relevance, with firing rates in response to informative motifs (4.03±0.25Hz) significantly higher than firing 

rates in response to uninformative motifs (3.84±0.24Hz; Wilcoxon signed-rank test: p = 0.024) and novel 

motifs (3.65±0.25Hz; Wilcoxon signed-rank test: p = 0.015). No significant difference in firing rate was 

observed between uninformative and novel motifs (Wilcoxon signed-rank test: p = 0.76). Thus, while 

learning modifies neural encoding in both CLM and CMM, the nature of this encoding differs between the 

two regions (Two-way mixed model ANOVA interaction: p = 0.026). 

We next investigated whether learning altered how neural responses in CLM and CMM unfold 

over time. The response profile of CMM neurons shows that, on average, responses to familiar motifs 

(informative and uninformative) are larger than responses to unfamiliar motifs throughout the duration of 

the motif (Fig. 3.5a). Consistently, both early in the motif (50-250ms after onset), and late in the motif 
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each class. Upper right inset: Histogram of differences in maximum-normalized firing rates between 
informative and uninformative motifs.
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(300-100ms prior to offset), CMM neurons responded with higher firing rates to familiar motifs than to 

unfamiliar motifs (early: Wilcoxon signed-rank test test, p = 3.1×10-4; late: Wilcoxon signed-rank test: p = 

0.0074; Fig. 3.4b,c). However, the response profile of CLM neurons shows that, on average, a subtle 

preference for familiar motifs early in the response gives way to a substantial suppression of uninformative 

motifs late in the response (Fig 3.5d). Consistently, early in the response, firing rates are higher for familiar 

motifs than for novel motifs (Wilcoxon signed-rank test: p = 0.0013; Fig. 3.5e). Yet late in the response, 

firing rates for familiar and novel motifs were indistinguishable (Wilcoxon signed-rank test: p = 0.41) but 

uninformative motifs were strongly suppressed (Wilcoxon signed-rank tests: uninformative vs. informative: 

p = 2.8×10-5; Uninformative vs. novel: p = 0.0049; Fig. 3.5f). Neurons in CLM therefore encode different 

aspects of behavioral information at different times during the motif (Two-way repeated measures ANOVA 

interaction: p = 0.0031), with the largest firing rate differences between informative and uninformative 

motifs not arising until nearly the end of the motif.  

Because the cortical encoding of learned signals can change during the time after initial learning 

(Takehara-Nishiuchi and McNaughton, 2008), we wondered whether the effects of learning on neural 

coding relate to the extent of the bird’s experience with the behavioral task. Although each bird reached 

behavioral criterion (Materials and Methods) after a similar number of trials, the number of trials 

performed after reaching this criterion was quite variable across birds (Fig. 3.6a). This variability in 

exposure was due to differences both in the number of days in which birds were trained and in the number 

of trials done per day (Fig. 3.6b). We therefore asked whether the number of trials performed after criterion 

influenced the neural encoding of differences between informative and uninformative motifs. Because 

CLM and CMM neurons encoded different features at different times during the motif, we analyzed 

responses during the early period (50-250ms after motif start) separately from the responses during the late 

period (300-100ms before motif end). In CMM, we found that additional experience decreased 

discriminability of informative motif from uninformative motifs (measured as d-prime, Materials and 

Methods) during the early period (r = -0.77, p = 0.015; Fig. 3.6c), but had no effect during the late period (p 

= 0.31; Fig. 3.6d). In CLM, these effects were reversed: additional experience did not significantly alter 

discriminability during the early period (p = 0.071; Fig. 3.6e), but substantially decreased discriminability 
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during the late period (r = -0.80, p = 0.0094; Fig. 3.6f). These results parallel our findings of population 

averaged firing rates where the largest differences between firing rates in response to informative and 

uninformative motifs occurred in CMM during the early period and in CLM during the late period. This 

suggests that cortical coding continues to change after learning, and does so in a spatially and temporally 

specific manner. 

 

Discussion 

The results described here demonstrate that learning alters the neural encoding of behaviorally 

relevant information in a spatially and temporally dissociated manner. In the natural world, any sensory 

signal has the potential to convey information to an organism. Through learning, an animal can discern 

which signals actually carry information about behavior and potential reward. We designed the experiments 

here to manipulate the information conveyed by motifs while controlling for amount of exposure and 

temporal association with reward (Fig. 3.1b,c). Our findings demonstrate that for neurons within CM, 

motifs that convey information about the proper motor task required to obtain reward (i.e. go left or go 

right) elicit stronger firing rate responses than motifs that do not carry this information (Fig. 3.3). These 

results are consistent with previous findings that reward and familiarity alter neural encoding in CM 

(Gentner and Margoliash, 2003; Jeanne et al., 2011), and in other vertebrate auditory areas (Blake et al., 

2006; Polley et al., 2006; Thompson and Gentner, 2010). However, our study extends these results to show 

that learning can also modify neural encoding based on the information that signals provide about behavior. 

 

Spatial dissociation of learning effects in CM 

 We also find that learning affects motif encoding in CMM differently from CLM. While CMM 

encodes the differences between familiar and novel motifs quite strongly, CLM predominantly encodes 

differences between informative and uninformative motifs. This occurs primarily because the distinction 

between uninformative and novel motifs is lost in CLM neurons. This may be a means for emphasizing 

behaviorally relevant motifs by CLM, which sends axonal projections to several regions of the song 

production circuitry, including HVC, the HVC shelf, and NIf (Vates et al., 1996; Bauer et al., 2008). This 
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function of CLM is also consistent with the hypothesis that CLM may play a primary role in providing the 

auditory feedback to the song system that is necessary for juvenile song learning and for adult song 

maintenance (Lei and Mooney, 2010).  

In a previous study, we found that neural encoding of behavioral categories of motifs defined by 

reward was stronger in CMM than in CLM (Jeanne et al., 2011). This is not inconsistent with the present 

results. Because CMM neurons respond similarly to informative and uninformative motifs, one would 

expect CMM neurons to respond similarly to all rewarded motifs. In contrast, CLM neurons (when 

normalized for total response variance) have a comparably large difference in responses for informative 

and uninformative motifs so one would expect greater variability in responses to rewarded motifs. In the 

previous study, behavioral relevance of informative motifs was not controlled, and likely was highly 

variable both within and between subjects. Thus, CMM neurons encode rewarded motifs more 

categorically than do CLM neurons, which make a greater relative distinction based on behavioral 

relevance. 

 

Temporal dissociation of learning effects in CM 

The degree to which the behavioral relevance of motifs (i.e., informative, uninformative, or novel) 

is encoded in CLM and CMM varies over the duration of the motif. Studies of the neural encoding of 

dynamic signals often employ receptive field models to capture the relationship between stimulus and 

response dynamics (Adelson and Bergen, 1985; Nagel and Doupe, 2008; Geffen et al., 2009). Although our 

stimulus set was too small to make reliable estimates of receptive field models, we nonetheless find robust 

temporal structure in the responses to natural birdsong components that relates to the behavioral relevance 

acquired during training. Because the receptive fields of neurons in CM are high dimensional and strongly 

nonlinear (Gentner and Margoliash, 2003; Meliza et al., 2010), however, a subtle learning-induced change 

in the receptive field could have large effects on the neural responses. Such changes would be well poised 

to enable neurons to emphasize particular features within informative motifs. Because many studies of 

plasticity in high-level cortical areas use static or highly simplified stimuli (e.g. Sigala and Logothetis, 
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2002; Takehara-Nishiuchi and McNaughton, 2008), the temporal nature of the responses observed here 

may reflect mechanisms not previously observed. 

Neurons in CLM, in particular, encoded information associated with behavior substantially 

differently early in the motif than late in the motif. Of particular interest was that the largest differences 

between neural responses of CLM neurons to informative and uninformative motifs occurred several 

hundred milliseconds prior to the end of the motif. This suggests that CLM integrates dynamic acoustic 

information over the course of the motif and, just prior to the end of the motif, reduces firing rates to 

uninformative motifs. In addition, such a response pattern may relate to the bird’s decision-making process. 

The end of the informative motif contains the last acoustic material that can signal whether the bird needs 

to respond in the left port or the right port in order to obtain reward. When processing uninformative motifs, 

the response suppression could help to ensure that the bird does not accidentally base its behavioral 

decision on the uninformative motif. Further studies, ideally in awake, behaving starlings, will be necessary 

to confirming such a hypothesis. 

 

Renormalization of plasticity over time 

Our results also suggest that extended experience after training continues to alter neural encoding. 

Because behavioral performance remains high after initial learning, this finding may reflect a cortical 

reorganization that is independent of behavior, akin to mechanisms of memory consolidation from the 

medial temporal lobe to cortex (Squire and Alvarez, 1995). However, our observations are distinct from 

those attributed to memory consolidation in prefrontal cortex (Takehara-Nishiuchi and McNaughton, 2008) 

because the strength of neural encoding in CM decreases rather than increases with additional training. In 

contrast, our results are more consistent with the expansion-renormalization theory of cortical map 

plasticity, in which neural representations strengthen during initial learning, and then return to baseline 

levels over time (Yotsumoto et al., 2008; Takahashi et al., 2010; Reed et al., 2011). Our findings suggest 

that the same principles by which learning alters the tonotopic map in primary auditory cortex also alter 

representations of complex signals in higher-order cortical areas. In accordance with the expansion-

renormalization theory, especially strong representations likely form during the early stages of learning that 
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assist the bird by highlighting multiple relevant features. As the bird settles onto a strategy for solving the 

task, the encoding of additional features becomes superfluous and subsides, leaving a sparser neural 

representation that is harder to detect in single unit recordings, but still sufficiently subserves behavior. 

Such a possibility could be tested with repeated recordings from the same bird to directly compare changes 

to neural representations over time, and behavioral experiments to probe the strategies adopted by 

individual birds.   

Although our neural recordings were conducted under urethane anesthesia, it is likely that similar 

neural representations would be found under awake, behaving conditions. In the bird, urethane alters 

neuronal excitability, but does not affect tuning or discriminability during responses to natural birdsong 

(Capsius and Leppelsack, 1996; Schumacher et al., 2011). Furthermore, urethane anesthesia allows for 

strong control of novelty during neural recording: because it precludes cognitive involvement, novel stimuli 

remain novel even after many presentations. Of course, awake preparations will be important for 

understanding how neural encoding of motifs change as behavioral relevance changes.  

 

Conclusion 

 Identifying the signals that convey information about behavior or reward is a critical function of 

learning. By prescribing which motifs convey information, we demonstrate that the informativeness of a 

signal modulates the firing rates of neurons in CM. Further, we show that this learning-dependent neural 

encoding is spatially and temporally organized within CM, and agrees with the expansion-renormalization 

theory of cortical plasticity. Collectively, our results show that the information a signal conveys about 

behavior plays a central role in the plasticity of cortical neural representations and warrants a careful re-

examination of the role of informativeness (as compared to familiarity and association with reward) in 

shaping sensory neural coding in other areas of the brain.  
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IV. Selective, learning-dependent enhancement of a neural population code 

Abstract 

Plasticity in the encoding properties of single adult cortical neurons is well established (Bakin and 

Weinberger, 1990; Recanzone et al., 1993; Gentner and Margoliash, 2003; Jeanne et al., 2011) and required 

for learning (Reed et al., 2011). However, the cortical circuits that support learned behaviors comprise 

millions of neurons operating in coordination (Averbeck et al., 2006) and little is known about plasticity 

beyond the level of single neurons. The representational fidelity of a neuronal population depends on the 

relationship between shared neuronal variability (noise correlations) and similarity in average sensory 

tuning properties (signal correlations): positive relationships blur the responses to different stimuli while 

negative relationships sharpen them (Johnson, 1980; Oram et al., 1998; Abbott and Dayan, 1999; Averbeck 

et al., 2006; Gu et al., 2011). Most studies report a positive relationship between signal and noise 

correlations (Lee et al., 1998; Bair et al., 2001; Constantinidis and Goldman-Rakic, 2002; Kohn and Smith, 

2005; Cohen and Maunsell, 2009; Gu et al., 2011). Here, using songbirds trained to recognize segments of 

natural birdsong (motifs), we show that the relationship between signal and noise correlations depends on 

the learned behavioral relevance of the sensory signal. Populations of putative projection neurons in the 

auditory cortex driven by behaviorally uninformative motifs show the typical positive relationship between 

signal and noise correlations. When the same populations are driven by behaviorally informative motifs, 

however, the signal and noise correlations are negatively related and this enhances discriminability in large 

neural populations. Thus, learning can selectively enhance the fidelity of behaviorally informative 

representations in a population code. 

 

Introduction 

Current understanding of the function of cortical circuits rests on two common intuitions: that 

cortical processing involves the orchestration of large populations of neurons and that cortical plasticity 

supports learning. Little is known, however, about how learning-dependent plasticity influences neural 

population representations. Neurons in sensory cortical areas exhibit a broad range of tuning properties and 

elicit variable responses to repeated presentations of the same stimulus. Response variability between 
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neurons is not independent, however, and these inter-neuronal correlations can have profound implications 

for encoding at the population level (Oram et al., 1998; Abbott and Dayan, 1999; Averbeck et al., 2006). In 

the cortex, trial-to-trial co-variability (noise correlation) typically increases with similarity of tuning (signal 

correlation), which is likely due to common inputs that provide correlated signal and noise to post-synaptic 

neurons (Bair et al., 2001; Kohn and Smith, 2005). Theoretical work demonstrates that this positive 

relationship between the signal and noise correlation can blur differences between encoded signals in the 

neural population response (Fig 4.1a) while a negative relationship between signal and noise correlations 

can sharpen response differences (Johnson, 1980; Oram et al., 1998; Abbott and Dayan, 1999; Averbeck et 

al., 2006) (c.f.Ecker et al., 2011) (Fig. 4.1b). Since the relationship between signal and noise correlations 

alters population encoding fidelity, we predicted that changes in this relationship may contribute to the 

selective representation of learned sensory signals. Because recognition learning can change the tuning 

properties of single neurons in the songbird auditory cortex (Gentner and Margoliash, 2003; Thompson and 

Gentner, 2010; Jeanne et al., 2011), we tested here whether this learning also alters the relationship 

between signal and noise correlations in this system.  

 

Results 

Using an established operant procedure (Gentner and Margoliash, 2003), we trained 9 European 

starlings (Sturnus vulgaris), a species of songbird, to recognize sets of stereotyped natural song segments 

called motifs (Fig 4.1b-d; Methods). Motif recognition underlies a range of natural behaviors (Gentner and 

Hulse, 2000), and can be tightly controlled in the laboratory (Gentner and Margoliash, 2003; Thompson 

and Gentner, 2010; Jeanne et al., 2011). On each trial we presented the bird with a pair of sequentially 

ordered motifs (e.g. Fig. 4.1c). One motif was always informative of the correct behavioral response for the 

trial (i.e. whether to poke at the left or right port to receive food; “informative” motifs) and the other motif 

was never informative for the correct response (“uninformative” motifs; Fig 4.1d). Informative and 

uninformative motifs occurred with equal frequency and in identical proximity (on average) to reward 

during training; all that differed between the two motif classes was their relevance for the animal’s 

response. This design permits the dissociation of the experience-dependent effects of reward from those 
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Figure 4.1 Experimental design. (a,b) Schematic of theoretical relationships between signal and noise 
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stimulus. For the positive relationship in (a), neuron pairs with positive signal correlation and large noise 
correlation have substantial overlap in their responses (inset right), while pairs with negative signal 
correlation and small noise correlation have less overlap (inset left). Center inset depicts pairs with zero 
signal correlation but moderate noise correlation. For the negative relationship in (b), neuron pairs with 
positive signal correlation and small noise correlation have some overlap in their responses (inset right), 
while neuron pairs with negative signal correlation and large noise correlation have very little overlap 
(inset left). The negative relationship thus yields neural populations that discriminate between stimuli better 
than the positive relationship. (c) Schematic of behavioral training apparatus. (d) Experimental stimulus 
setup. Informative motifs (green) indicated whether to respond left or right. Uninformative motifs (red) 
were paired in sequence with relevant motifs and occurred with equal probability in left stimuli and right 
stimuli. Novel motifs (black) were never presented during behavioral training, but were presented during 
neural recording. (e) Example “go left” stimulus (top) and “go right” stimulus (bottom). Arrowheads 
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< 0.05.

80



 

 
 

81 

associated with behavioral response. All birds learned to perform this task accurately (Fig. 4.1e). After 

training, we recorded the simultaneous activity of multiple well-isolated single neurons in the caudolateral 

mesopallium (CLM) in response to behaviorally informative and uninformative motifs and a third set of 

entirely novel motifs, under urethane anesthesia (Methods; Supplemental Figs. 4.1, 4.2). CLM is a higher-

order auditory region in the songbird cortex that is specialized for processing learned songs (Jeanne et al., 

2011), and projects auditory information into the vocal premotor region HVC (Fig. 4.1f) (Bauer et al., 

2008). The behavioral training led to a modulation of firing rates in CLM neurons (n = 134 neurons from 9 

birds; Friedman test, p = 0.038; Fig. 4.1g), with informative motifs eliciting significantly higher firing rates 

(4.92±0.55Hz) than both uninformative motifs (4.63±0.53Hz; Wilcoxon signed-rank test, p = 0.0024) and 

novel motifs (4.58±0.52Hz; Wilcoxon signed-rank test, p = 0.042). Thus, information that motifs provide 

about appropriate behavioral responses is important for shaping neural encoding in CLM.  

Because connectivity and correlation within neural populations depends on cell type (Lee et al., 

1998; Constantinidis and Goldman-Rakic, 2002; Hofer et al., 2011), we divided our dataset into wide 

spiking (WS) and narrow spiking (NS) neurons on the basis of action potential width (trough-to-peak 

duration; Fig 4.2a,b; Methods) (Bartho et al., 2004; Mitchell et al., 2007). The distribution of action 

potential widths is bimodal (Hartigan’s dip test, p = 0.041; Fig 4.2c) (Hartigan and Hartigan, 1985; 

Mitchell et al., 2007). Based on network interactions and correlations between extracellular and 

intracellular features, previous studies have established that WS and NS neurons correspond to excitatory 

principal neurons and inhibitory interneurons, respectively (Harris et al., 2000; Bartho et al., 2004; Tamura 

et al., 2004). Consistent with these classifications, our sample of NS neurons (n = 33) elicited significantly 

higher spontaneous firing rates (4.76±0.82Hz) than our sample of WS neurons (n = 101; 1.83±0.20Hz; 

Wilcoxon rank-sum test, p = 1.84×10-6). Because our sample of simultaneously recorded pairs of NS 

neurons was relatively small (n = 13 pairs), we focus our population analysis on pairs of WS neurons (n = 

185 pairs from 6 birds). We note, however, that results similar to those described below are also observed 

across all pairs of CLM neurons (n = 252 pairs from 8 birds; Supplemental Fig. 4.3).
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To determine whether learning altered the relationship between signal and noise correlations 

among neuron pairs, we compared signal and noise correlations during processing of informative, 

uninformative, and novel motifs. Figure 3 depicts the responses of two example pairs of WS neurons in 

CLM. The tuning of the neurons in the first pair was dissimilar for informative motifs, but similar for 

uninformative and novel motifs (Fig. 4.3a), leading to negative signal correlations for informative motifs 

and positive signal correlations for uninformative and novel motifs (Fig. 4.3b). Over repeated trials, 

however, the response variability was similar for the three sets of motifs (Fig. 4.3c). Thus, the noise 

correlations were uniformly strong and positive (Fig. 4.3d). In theory (Fig. 4.1b), the combination of a 

positive noise correlation and negative signal correlation in the responses to informative motifs should 

enhance discriminability in this neuron pair. The shared sign of the signal and noise correlations in the 

responses to uninformative and novel motifs, however, should impair the discriminability in this neuron 

pair. The second example pair shows dissimilar tuning (negative signal correlations) for all motifs (Fig. 

4.3e,f), but a positive noise correlation for only the informative motifs (Fig. 4.3g,h). Again, this 

combination of signal and noise correlations should lead to an enhancement in the discriminability of this 

pair’s responses to informative motifs relative to uninformative or novel motifs. These two example pairs 

show that stimulus-dependent differences in either signal or noise correlation can lead to selectively 

enhanced encoding of informative motifs (Fig. 4.1a,b).  

Similar stimulus-dependent relationships between signal and noise correlations were present 

across our sample of CLM WS neuron pairs. For behaviorally informative motifs, this relationship was 

negative (r = -0.15, p = 0.037, Fig. 4.4a): larger signal correlations were accompanied by smaller noise 

correlations. For uninformative and novel motifs, in contrast, the relationship was positive (uninformative: 

r = 0.16, p = 0.030; novel: r = 0.21, p = 0.0042; Fig 4.4b,c): larger signal correlations were accompanied by 

larger noise correlations. The difference between these relationships was highly significant (ANCOVA 

motif class × regression slope interaction, p = 8.2×10-4). These effects are not tied to differences in how the 

noise correlations are related to either firing rate or inter-neuronal distance (Supplemental Fig. 4.4). 

Likewise, no differences exist in the average signal or noise correlations evoked by the three classes of 

song motifs (Fig. 4d,e; repeated measures ANOVA, p = 0.24 and p = 0.16, noise and signal correlations, 
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Figure 4.3 Signal and noise correlations in two sample pairs of WS neurons. (a) Normalized trial-averaged 
responses of informative (left), uninformative (center), and novel (right) motifs. Orange and blue bars 
depict neurons 1 and 2, respectively. r values in each plot denote the signal correlation for each set of 
motifs. (b) Signal correlations by motif class. (c) Trial-by-trial firing rates by motif class, ordered as in (a). 
Responses to each motif are converted to z-scores independently of the other motifs. r values in each plot 
denote the noise correlation (computed from raw firing rates for each motif separately and averaged). (d) 
Noise correlations by motif class. (e-f) Same as (a-d) but for a second sample pair.
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plots of noise and signal correlations for all pairs for responses to each class of motifs. Black line depicts 
zero noise correlation; heavy colored lines are linear regression lines. (d-e) Distribution of noise (d) and 
signal (e) correlations from responses to informative (green), uninformative (red), and novel (black) motifs. 
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tion greater than 0.4 for informative (n = 65 pairs), uninformative (n = 75 pairs), and novel (n = 64 pairs) 
motifs. (g) Mean (±SEM) noise correlations for all pairs with signal correlation less than -0.4 for informa-
tive (n = 54 pairs), uninformative (n = 39 pairs), and novel (n = 54 pairs) motifs. (h) Model simulations of 
discriminability of left motifs from right motifs from populations of neurons with noise-signal correlation 
relationship defined by the linear regression from informative (green), uninformative (red), or novel (solid 
black) motifs and independent correlations (dashed black). Population d-prime is greater for correlations 
defined from informative motifs than for independent correlations or for correlations defined from uninfor-
mative or novel motifs for all population sizes (Wilcoxon signed-rank test, p < 1×10-4 for all compari-
sons). * p < 0.05, ** p < 0.005.
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respectively). Rather, it is the relationship between the signal correlation and noise correlation that is 

stimulus-specific (see Fig. 4.1a,b). This specificity is particularly apparent in neuron pairs that have strong 

(either positive or negative) signal correlations (Fig. 4.4f,g). Among WS neuron pairs with strong positive 

signal correlations (greater than 0.4), the uninformative and novel motifs evoked significantly larger noise 

correlations than the informative motifs (ANOVA, p = 0.015; Fig. 4.4f). Similarly, in WS neuron pairs that 

had large negative signal correlations (less than -0.4) the uninformative and novel motifs evoked 

significantly weaker noise correlations than the informative motifs (ANOVA, p = 0.0042; Fig. 4.4g). We 

note that the magnitude of these differences is similar to previously reported behavior-dependent changes 

in noise correlation (Cohen & Maunsell 2009, Gu, et. al., 2011), except that these differences are not 

uniform with respect to signal correlation. Because the stimulus-specific effect is unique to the informative 

motifs, we conclude that learning selectively alters the relationship between the signal and noise 

correlations among WS neurons for those signals that inform behavior. 

Does the observed negative relationship between signal and noise correlations for informative 

motifs improve population encoding? To address this, we constructed a model of population responses to 

motifs associated with left responses (“left motifs”) and motifs associated with right responses (“right 

motifs”) that preserves the empirically measured tuning functions and trial-to-trial variability of individual 

neurons. We then systematically varied the relationship between signal and noise correlations within the 

population (Methods). As expected, increasing the number of neurons increased the discriminability of left 

vs. right motifs. However, for large numbers of neurons, the populations simulated using the correlation 

structure from the informative motifs permitted significantly better discrimination of left vs. right motifs 

than the populations simulated using the correlation structure from the uninformative or novel motifs (Fig. 

4.4h). In addition, the negative correlation relationship from the informative motifs even performed better 

than a model with independent noise (Fig. 4h). The negative relationship between signal and noise 

correlations for informative motifs thus improves population coding fidelity of behaviorally meaningful 

information.  
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Discussion 

We demonstrate a long-lasting, stimulus-specific reversal of the population correlation structure 

that is more directly tied to learned behavioral responses than to reward. Noise correlations are typically 

thought to positively co-vary with signal correlations because common stimulus drive provides both signal 

and noise (Bair et al., 2001; Kohn and Smith, 2005), but our results demonstrate that the correlation 

structure is more flexible than previously appreciated. The negative relationship that we observe for 

informative motifs may result from the active modulation of neuronal correlation by local circuitry. One 

possibility is that common local circuit activity increases noise correlations among dissimilarly tuned 

neurons, while inhibitory mechanisms subtract out common noise from similarly tuned neurons (Renart et 

al., 2010).  Other mechanisms are possible as well, and flexibility in the population correlation structure 

likely differs across neuronal subpopulations (Lee et al., 1998; Constantinidis and Goldman-Rakic, 2002; 

Hofer et al., 2011). In primate medial superior temporal cortex, for example, training can reduce noise 

correlations, but does so uniformly for all stimuli and without altering the slope of the relationship between 

signal and noise correlations (Gu et al., 2011). Changes in this slope have been observed, however, in 

motor cortex when monkeys make an overt arm movement (Lee et al., 1998). Our observation that learning 

evokes a stark reversal of the signal and noise correlation relationship for signals that provide information 

about the action required to receive reward (informative motifs) shows that, at least in some sensory 

regions, behavioral relevance plays an important role in structuring population correlations. Our 

observation that the shift in the correlation structure is strongest among the WS neurons is consistent with 

this. Because the WS neurons we identify are thought to be projection neurons, the plasticity in their 

population encoding may especially influence CLM’s target regions, such as HVC (Bauer et al., 2008), a 

region known to control song production (Nottebohm et al., 1976; Long and Fee, 2008). CLM may thus 

bias the routing of auditory information into the song production system, and possibly other motor control 

systems, by emphasizing song components that are most instructive for behavior. Further experiments will 

be necessary to understand the mechanisms and functions of this plasticity, including in awake starlings 

actively engaged in similar recognition tasks. Nevertheless, we show that learning can selectively enhance 

the neuronal population code, confirming that a long-standing and theoretically well-grounded prediction 
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about the existence of negative signal-noise correlation relationships (Johnson, 1980; Oram et al., 1998) is 

realized for the representation of behaviorally meaningful sensory information.  

 

Methods Summary 

Starlings were trained to recognize sets of paired motifs (Fig. 4.1d-e; Supplemental Fig. 4.2) using 

established operant techniques (Gentner and Margoliash, 2003). Correlations were measured for pairs of 

simultaneously recorded neurons using the Pearson product-moment correlation coefficient of trial-

averaged motif firing rates (signal correlations) and trial-to-trial response variability (noise correlations). 

Population modeling was based on previously reported techniques (Shadlen et al., 1996; Cohen and 

Newsome, 2008; Cohen and Maunsell, 2009), and designed such that only the noise correlation matrix 

varied between conditions. 

 

Methods 

All procedures were carried out in accordance with the guidelines of the Institutional Animal Care 

and Use Committee at the University of California, San Diego. 

 

Stimuli We constructed all stimuli from 12 motifs (stereotyped multi-note elements of natural 

starling song) recorded from the song repertoires of three adult European starlings. Motifs (565ms-957ms 

long) were grouped into three sets: four motifs (A,B,C,D) were labeled “informative,” four motifs 

(E,F,G,H) were labeled “uninformative,” and four motifs (I,J,K,L) were labeled “novel” (Supplemental Fig. 

4.2). For behavioral training, we presented a sequential pair of motifs for each trial. Each pair contained 

exactly one informative and one uninformative motif, in either order, separated by a 20ms silent gap. This 

yielded 32 stimuli; the 16 containing motifs A or B were used as “left” stimuli and the 16 containing motifs 

C or D were used as “right” stimuli. All uninformative motifs occurred with equal probability in both left 

and right stimuli. Novel motifs were never presented during training. To ensure that learning effects were 

not due to intrinsic acoustic differences between motifs, motif assignment to informative, uninformative, 
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and novel categories was counter-balanced across birds. During neural recording sessions we presented 

each of the twelve motifs in isolation (i.e. not paired). 

 

Behavioral Training Nine wild-caught adult European starlings (Sturnus vulgaris) were trained 

using a two-alternative choice operant conditioning paradigm (Gentner and Margoliash, 2003) to 

distinguish between the left stimuli and right stimuli described above. Prior to training, none of the subjects 

had any exposure to these stimuli. All training took place inside a sound attenuation chamber with an 

operant response panel (Fig. 4.1c). Birds initiated trials by inserting their beak into the center port of the 

response panel to start playback of one of the 32 stimuli from the speaker inside the chamber. Following 

playback, birds had two seconds to indicate their response by pecking in either the left or the right port. 

Incorrect responses were punished by extinguishing the lights and prohibiting trial initiation for 10-90 

seconds. Correct responses were rewarded by 2-s access to food on a fixed ratio reinforcement schedule. 

The number of correct trials required for reward was gradually increased over time from 1 to 5. A 

secondary reinforcer (flashing of LEDs on the response panel) was used on correct trials when the food 

reward was not delivered. Incorrect responses reset the running count of correct trials. The fixed ratio 

schedule ensured that all stimuli were presented an equal number of times and that none were 

systematically ignored. At the end of training, starlings were presented with randomly reinforced (with 

secondary reinforcer only) probe stimuli consisting of each of the 8 training motifs in isolation (i.e. not 

paired) to obtain behavioral confirmation that all four informative motifs were recognized (data not shown). 

Probe trials were randomly interleaved with other trials, and accounted for 8-20% of all trials.  

 

Electrophysiology Approximately 24 hours prior to electrophysiological recording, the animal was 

anesthetized (1.5-2% isoflurane), a small pin was attached to the surface of the skull just caudal to CLM, 

and the animal was allowed to recover. On the recording day, starlings were anesthetized with urethane 

(20% by volume, 7-8ml/kg) and head-fixed via the attached pin to a stereotactic apparatus inside a sound-

attenuating chamber. A small craniotomy was made dorsal to CLM, and multi-channel silicon electrode 

arrays (177µm2 electrode surface area, 50µm spacing, 1x16 and 1x32 electrode layout; NeuroNexus 
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technologies). 1x32 electrode arrays were generally inserted at a 35° angle (relative to horizontal) and 

simultaneously measured neural activity across the medial-lateral axis of CLM. 1x16 electrode arrays were 

generally inserted at a 90° angle (relative to horizontal). For some subjects, only the 1x32 array was used 

(Supplemental Fig. 4.1a). Motif stimuli were presented free field from a speaker 30cm from the bird. 

Electrode arrays were advanced while presenting the 12 motif stimuli until 2 or more auditory single units 

were isolated. Once single units were isolated, all 12 single motifs and the set of training motif pairs were 

presented pseudo-randomly in blocks while the extracellular electrical activity was amplified (5000× gain; 

AM Systems), filtered (high pass, 300Hz; low pass, 3-5kHz), sampled (20kHz), and saved digitally for 

offline analysis (Spike2; Cambridge Electronic Design). Electrodes were coated with Di-I to facilitate 

localization of penetration tracks in histological sections. 

 

Histology At the end of the recording session, starlings were euthanized with an overdose of 

nembutal (150ml/kg), and perfused transcardially with 10% neutral buffered formalin. Brains were 

removed from the skull and placed in 30% sucrose solution for several days for cryoprotection. Brains were 

then cut into 50µm coronal sections on a freezing microtome and mounted on glass slides. Electrode 

penetration tracks were identified with the assistance of Di-I marking and epifluorescence microscopy 

(Supplemental Fig. 4.1b). Tissue was then stained with cresyl violet to localize penetration tracks to 

neuroanatomical boundaries. All electrode tracks were reconstructed from tissue sections, and the recording 

locations of all sites were measured. The medial boundary of CLM was taken to be 800µm from the 

midline. Recording locations for CLM neurons ranged from 810-2100µm from the midline, and from 507-

2240µm from the dorsal surface (Supplemental Fig. 4.1c,d).  

 

Data Analysis Putative action potentials in the recorded voltage traces were identified by 

amplitude, and sorted into single units with principal components analysis on waveform shape using Spike2 

software (Cambridge Electronic Design). Only large amplitude spike waveforms that formed a clear cluster 

in principal component space and which had very few refractory period violations were considered to be 

single units. In our sample, 99.3% (133/134) of neurons had no refractory violations (inter-spike intervals 
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of less than 1ms) and one neuron had a single violation, which accounted for less than 0.005% of all 

measured ISIs for that neuron. Since presentation of informative, uninformative, and novel motifs were 

temporally interleaved, none of the effects reported here can be due to changes in neuron isolation or 

changes in anesthetic state. Because the recording sites on each multi-channel array were only 50µm apart, 

stereotrode sorts were used to further improve sorting quality. All but one of the WS neuron pairs analyzed 

here were recorded from different electrode channels on the multi-channel array. Omitting the one pair 

recorded from the same channel does not alter the main results. Only neurons that were driven by the 

auditory stimulus were used in subsequent analyses. 

All further analysis was performed using custom written MATLAB (MathWorks) software. Spike 

shape classification was performed using spike width, the time from the initial trough to the subsequent 

peak (Fig. 4.2a). During recording, data from some birds were low pass filtered at 3kHz and others at 5kHz. 

Because differences in this cutoff frequency can alter the spike shape (Vigneswaran et al., 2011), we 

applied a first-order low-pass Butterworth filter with cutoff frequency at 3kHz to all spike shapes to 

equalize these differences. All mean spike waveforms were cubic spline interpolated to a 2.5µs sampling 

interval. The filtering slightly increased the spike widths of all neurons. Thus, our threshold of 425µs 

between WS and NS neurons is towards the upper end of the distribution of thresholds used in previous 

reports (Mitchell et al., 2007; Vigneswaran et al., 2011). 

Signal correlations were computed for each pair of neurons as the Pearson product-moment 

correlation coefficient between the mean (averaged over trials) firing rates to the four motifs within the 

informative, uninformative, and novel classes. Noise correlations were computed for each individual motif 

for each pair across trials, then averaged for all motifs within a class. Because motifs were variable in 

duration (range: 565ms-957ms, mean: 756ms) and the size of the analysis window can affect measured 

correlation values (Cohen and Kohn, 2011), we use only the first 565ms (the minimum motif duration) of 

each response in the analyses reported here. 

Population coding simulations were performed similarly to previous reports (Shadlen et al., 1996; 

Cohen and Newsome, 2008; Cohen and Maunsell, 2009). Briefly, neurons were selected from our sample 

randomly, with replacement, and the mean firing rates for each relevant motif were assembled into a 4×N 
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vector, where N is the number of neurons in the simulated population. To construct a correlation matrix, we 

computed the noise correlation as predicted by the linear regression fits for informative, uninformative, and 

novel motifs (Fig. 4.4a-c) for each pair of neurons. Because arbitrary symmetric matrices are not, in 

general, valid correlation matrices, we used the matrix square root to construct a valid matrix (Shadlen et 

al., 1996). Because this technique only approximates the desired noise correlation values, we manually 

adjusted the square root of the correlation matrix such that the simulated correlation values matched the 

empirical values. This technique also introduced variability in the noise correlation values, which was 

appropriate for our simulations, because the actual distributions of noise correlations have substantial 

variability (Fig. 4.4a-c). Single neuron variability was set by the empirically measured firing rate variance. 

We did not model correlations between three or more neurons, but note that their effects on population 

coding have been shown to be minimal in the cortex (Cohen and Maunsell, 2009). 

Responses to 10000 trials were simulated 100 times for each population size. The simulated 

responses were four N-dimensional vectors (two for left motifs and two for right motifs) generated from a 

multivariate Gaussian distribution following the previously described mean and covariance values. 

Responses of each simulated neuron to the two left motifs were grouped and responses to the two right 

motifs were grouped. Population coding of left vs. right motifs was quantified by projecting the two 

resulting groups onto the line that connected their mean responses, and computing d-prime for these two 

distributions (difference in mean divided by root mean square of the standard deviations) (Cohen and 

Maunsell, 2009). Modeling of responses with independent noise correlations was performed by trial-

shuffling the responses of populations simulated from the informative motif correlation structure. 

 

Statistical Analysis All data were tested for normality using the Lilliefors test evaluated at p < 

0.05. When available, nonparametric tests were used when data were not normal. Central tendencies are 

reported as means ± standard errors of the mean, except where noted.
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Figure. 4.S1. Recording setup and histology. (a) Schematic showing approximate positioning of multi-
channel electrode arrays within CLM. Most data was obtained from 1x32 linear probes inserted at a 35 
degree angle. In some birds, a vertical penetration with a 1x16 linear probe was also used. (b) Nissl 
stained section showing fluorescent Di-I marking electrode penetration track into CLM. Orientation is 
same as in (a). Midline is to the right. (c) Distribution of distances from midline within CLM for wide 
spiking neurons (blue) and narrow spiking neurons (red). (d) Distribution of depths from the brain surface. 
Colors are as in (d).
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Figure. 4.S2. Spectrograms of motifs used in the study. Each spectrogram is a single motif and is identified 
by a letter A-L. During behavioral training, pairs of motifs were concatenated with 20ms of silence 
between them, as described by Fig. 1d,e. During neuronal recording, motifs were presented individually.
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Figure 4.S3. Relationship between signal and noise correaltions for all CLM neuron pairs. (a-c) Signal and 
noise correlations of pairs of all CLM neurons (including WS-WS, WS-NS, and NS-NS pairs) for informa-
tive (a), uninformative (b), and novel (c) motifs. The slopes of the linear regression fits for these three 
classes are significantly different (ANCOVA motif class × regression slope interaction, p = 0.024). (d) 
Mean noise correlations for pairs of neurons with signal correlation greater than 0.4. (e) Mean noise 
correlations for pairs of neurons with signal correlation less than -0.4. * p < 0.05.
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Figure 4.S4. Relationship between noise correaltions and mean firing rate and inter-neuronal distance for 
pairs of WS neurons. (a) Scatter plots of mean firing rate and noise correaltion. Noise correlation increases 
with mean firing rate of the pair, but no difference in this relationship exist between informative (left, 
green), uninformative (center, red), and novel (right, gray) motifs (ANCOVA motif class × regression slope 
interaction, p = 0.74). (b) Scatter plots of distance between neurons and noise correlation. No difference in 
this relationship is observed between informative (left, green), uninformative (center, red), and novel (right, 
gray) motifs (ANCOVA motif class × regression slope interaction, p = 0.87).
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V. Conclusion 

The preceding three chapters describe several important advances in how learning changes the 

function of neural circuits in the brain. Chapter 2 describes how neurons in CLM and CMM encode motifs 

from learned songs paired with reward with greater fidelity than motifs from unrewarded songs or novel 

songs. Chapter 3 describes how neurons in CLM respond with higher firing rates to motifs that are 

informative about the motor behavior required to achieve reward, while neurons in CMM respond with 

similarly high firing rates to both informative and uninformative motifs. Chapter 4 describes how 

populations of neurons in CLM respond to behaviorally informative motifs with a negative relationship 

between signal and noise correlations, which yields enhanced discrimination of informative motifs at a 

population level. Collectively, these results elucidate the learning-dependence of processing within the 

CLM-CMM circuit. Learning dependent processing within CLM had never been observed prior to this 

work, and the direct comparisons between CLM and CMM enabled by this work have highlighted 

important differences between these two regions, especially in their processing of behaviorally relevant 

song components. Because CLM projects to HVC (Bauer et al., 2008), an important brain region for the 

control of song production, the learning-dependent population coding we describe in CLM may be 

especially important for auditory feedback during juvenile song learning and adult song maintenance.  

 The studies described in Chapter 2 demonstrate that learning modifies the information encoding in 

both CLM and CMM in similar ways. To quantify this neural encoding, we measured the mutual 

information conveyed by neural firing rates about motif identity, a quantity that captures how variability in 

the stimulus correlates with variability in the response. In both CLM and CMM, mutual information about 

rewarded motifs was higher than that about unrewarded or novel motifs, indicating that a greater fraction of 

the response diversity of these neurons is allocated to rewarded motifs than other motifs. CLM may thus 

contribute to the particularly strong representations of learned songs observed in CMM (Gentner and 

Margoliash, 2003). Neurons in both CLM and CMM also encoded information about learned behavioral 

categories: responses to motifs or songs that were a part of the same training category (i.e. go, nogo, or 

novel songs) were more similar to each other than they were to motifs or songs of a different training 
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category. Although this categorization is not perfect, it is stronger for motifs than for songs and is stronger 

in CMM than in CLM, and is reminiscent of categorical encoding of objects observed in the visual system 

of monkeys (Freedman et al., 2001, 2003; Freedman and Assad, 2006). Thus, the abstraction of 

behaviorally defined categories of songs may emerge within the CLM-CMM circuitry and such 

representations may contribute to categorical encoding observed in the avian song production system 

(Prather et al., 2009). 

 Starling songs consist of many motifs, however, and thus there are many ways to distinguish 

between multiple songs. Are the motifs that are especially informative to this distinction encoded from 

other, more ambiguous motifs? The studies described in Chapter 3 demonstrate that the information a 

sensory signal carries about a behavior can influence neural encoding. By controlling for motif exposure 

and temporal association with reward during training, we could dissociate the effects of reward and 

exposure from the effects of information conveyed about behavior. We find that neurons in CLM elicit 

stronger responses for the informative motifs than for the uninformative or novel motifs. In contrast, 

neurons in CMM elicited similarly strong responses for both informative and uninformative motifs, but 

substantially weaker responses for novel motifs. In addition, the strength of these effects varied over the 

duration of the motifs, with the strongest difference in firing rates between informative and uninformative 

motifs occurring near the end of the motif among CLM neurons. Collectively, these findings highlight both 

a temporal and spatial dissociation of learning-dependent neural encoding within CM. Combined with the 

results from Chapter 2, these results suggest that different types of information may flow in different 

directions through the CLM-CMM circuit. While the formation of categorical representations may emerge 

from the medial flow of information from CLM to CMM, the preferential representation of behaviorally 

informative signals may emerge from the lateral flow of information from CMM to CLM. Further studies, 

however, will be necessary to fully understand the nature of this flow of information. Consistent with 

similar studies in monkey cortex (Sigala and Logothetis, 2002), these findings extend previous reports that 

reward and familiarity alter neural encoding in CM (Gentner and Margoliash, 2003; Jeanne et al., 2011) to 

show that the information that a signal conveys about a behavior also significantly alters neural encoding. 
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 While the brain consists of billions of neurons, most studies of learning-related neural plasticity 

only investigate the effects on single neurons. It is widely accepted that neural processing in the cortex 

occurs in a distributed manner across large populations of neurons, and the nature of correlated activity 

between neurons can have a significant impact on the ability of the population to encode sensory signals 

(Johnson, 1980; Zohary et al., 1994; Abbott and Dayan, 1999; Averbeck et al., 2006). Nevertheless, 

learning has never been shown to enhance the encoding fidelity of a neural population code. The results 

shown in chapter 4, however, provide the first evidence that learning does enhance population-coding 

fidelity. Neural correlations can be divided into two classes: those derived from similarity in tuning 

functions (signal correlations) and those derived from trial-to-trial cofluctuations (noise correlations). 

While early experimental studies focused exclusively on noise correlations (Zohary et al., 1994), later 

studies showed that the relationship between signal and noise correlations is most important for neural 

coding in heterogeneous neuronal populations (Abbott and Dayan, 1999; Gu et al., 2011). In particular, a 

positive relationship between signal and noise correlations blurs the distinctions between the population 

representations of different stimuli whereas a negative relationship sharpens them (Figure 4.1a,b). To date, 

primarily negative relationships have been observed in cortical circuits (Bair et al., 2001; Kohn and Smith, 

2005; Cohen and Maunsell, 2009; Gu et al., 2011). In CLM, we found the canonical positive relationship 

existed among putative excitatory neurons when processing uninformative and novel motifs, but observed a 

negative relationship when processing informative motifs. A simple neural population simulation showed 

that, for large neural populations, this shift in the correlation structure substantially enhanced the 

discriminability of informative motifs. Thus, these findings show for the first time that learning can alter 

the encoding ability of a neural population by altering the neural correlation structure. Such a result 

suggests that the neural correlation structure is more flexible than previously thought and implies that such 

neural population plasticity may be a fundamental principle of sensory cortical function.  

These results suggest several directions for future research. First, it will be important to 

understand how sensory encoding in single neurons and neural populations changes during the course of 

learning. All the experiments described above were conducted in animals after learning had taken place. 

Historically, recording during learning has proven difficult in monkey models because of the large amounts 
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of time required to train them (Hoffman and Logothetis, 2009), although some studies have achieved some 

success (Messinger et al., 2001). In contrast, starlings can be trained very quickly, and the task can be 

optimized so that the learning of new sounds can occur on the timescale of minutes to hours (Daniel 

Knudsen, personal communication), which is fast enough to allow the monitoring of learning-driven 

modulations to single neuron activity with chronically implanted electrodes. Such techniques will also be 

important for addressing how interneuronal correlations change over the course of learning. Attention is 

known to reduce correlated activity in the cortex of monkeys (Cohen and Maunsell, 2009; Mitchell et al., 

2009), so the related cognitive states that are involved during learning likely involve similar neuronal 

processes. Similarly, it will be important to understand how neural representations change after the initial 

learning. In the auditory cortex of rats learning a simple tone-discrimination task, the cortical area 

representing the learned tones expands during initial learning, and then renormalizes after extended 

training, following a “inverted U” shape (Reed et al., 2011). The data presented in this thesis are consistent 

with this (Figure 3.6), but tracking these changes in single neurons or populations after learning will be 

important to understand the precise time course of this neural plasticity. 

 A second direction for future research is to understand how different forebrain auditory regions 

interact. As shown in chapter 3, CLM and CMM encode different aspects of learned information, with 

CMM neurons responding most strongly to familiar songs and CLM neurons responding most strongly to 

behaviorally relevant songs. Neurons in NCM, however, respond qualitatively different: novel songs elicit 

stronger responses than learned songs (Thompson and Gentner, 2010). Somewhat similarly, preliminary 

evidence suggests that neurons in Field L1 respond more weakly to songs paired with reward than to 

unrewarded or novel songs, although evidence has not been found for the encoding of learning-related 

information in neurons in Field L2a and L3 (Emily Caporello, personal communication). In the forebrain, 

therefore, CM may be unique in its encoding of familiar and relevant information with higher firing rates. 

Because NCM is reciprocally connected with CMM and Field L1 is reciprocally connected with CLM 

(Vates et al., 1996), the inversely-related representation of learned songs suggests that CM may form an 

inhibitory relationship with both NCM and Field L. How does learning alter the flow of sensory 

information between these regions? Future experiments which simultaneously record neural activity in 
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CMM and NCM or in CLM and Field L could address this question. Unfortunately, given the vastness of 

the cortical network, the probability of finding synaptically coupled neurons is very small; coupled neuron 

pairs account for less than 1% of all simultaneously recorded neuron pairs in the medial prefrontal cortex 

(Fujisawa et al., 2008). Two approaches could prove helpful. First, a measure known as transfer entropy, 

the amount of the neural response not explained by its past response but that can be explained by the past 

response of another neuron, can be helpful in establishing the directionality in the flow of information even 

when neurons are not directly synaptically coupled (Schreiber, 2000; Gourévitch and Eggermont, 2007; 

Vicente et al., 2011). Second, comparing the local field potential (LFP), the spatially averaged neural 

activity over a region of several hundred microns in diameter (Mitzdorf, 1985; Katzner et al., 2009), 

between multiple regions can establish the broad-scale trends in information flow (Nauhaus et al., 2009) 

between forebrain regions. Both of these techniques would enable an assessment of whether the neural 

processing of learned songs flows through the forebrain network differently from novel songs, a question 

that has remained poorly explored (Salinas and Sejnowski, 2001). Furthermore, pharmacologically 

inactivating one region while measuring neural activity in another would complement these studies by 

providing causal evidence for the role of different brain regions on downstream neural representations (e.g. 

Bauer et al., 2008). 

 A third direction for future research is to further understand how processing differs between 

different cell types in CM. In chapter 4, we separate two classes of neuron on the basis of spike width, with 

the narrow spiking neurons generally thought to be inhibitory and the wide spiking neurons thought to be 

excitatory neurons (Harris et al., 2000; Bartho et al., 2004; Tamura et al., 2004). This correspondence, 

however, has recently been challenged (Vigneswaran et al., 2011). To more reliably classify cell type, two 

approaches could be taken. In one approach, recordings could be made using glass pipettes loaded with 

biocytin and, using the juxtacellular labeling technique, cells can be filled for later histological 

identification (Wilson and Sachdev, 2004). Physiological neural encoding properties could then be directly 

related to morphological properties, which have been shown to cluster into several neuron classes in the 

starling forebrain (Saini and Leppelsack, 1981). It is highly likely that neurons of different morphology 

serve different functions and elucidating this structure-function relationship is an important area of modern 
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neuroscience research (Bock et al., 2011; Briggman et al., 2011). In a second approach to classifying cell 

type, neurons could be identified based on their projection targets using antidromic stimulation. With this 

technique, a putative postsynaptic target region is stimulated electrically while recording a single neuron. If 

the stimulation creates a spike in the recorded neuron, this is taken as evidence that the neuron projects to 

the stimulated target region (Fuller and Schlag, 1976). Such a technique has proven highly successful in 

discriminating between projection targets of neurons other brain regions in songbirds, such as HVC (Dutar 

et al., 1998). Given the multiple projection targets of neurons in CLM and CMM (including Field L, NCM, 

and HVC), it will be important to understand how neurons with different projections encode learned 

sensory information. This will also provide important evidence for understanding how specific information 

flows through the auditory forebrain circuitry. 

 The experiments described in this thesis provide a new view into how learning changes the 

sensory processing capabilities of cortical circuits. I show that the processing of learned information 

changes between CLM and CMM and that this neural encoding depends both on the reward associated with 

a song and the information it provides with respect to behavior. Furthermore, I show that the interactions 

between neurons contribute to the formation of population-level representations that preferentially encode 

behaviorally relevant song components. It will be especially exciting to see how the learning-dependent 

representations in single neurons and neural populations in CLM and CMM interact with sensory 

processing within the larger auditory forebrain circuitry and ultimately, to understand how this circuitry 

causally influences perception, cognition, and behavior.  
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