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A B S T R A C T

A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution,
communications and adaptations between these two genomes occur extensively to achieve and sustain home-
ostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to
gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear
genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and
consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes
with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This
review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress
response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/
CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely
sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play
key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-
cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect
targets to treat resistant cancers.

1. Introduction

In addition to the functions in signaling transduction, mitochondria
in all organisms including singular or multiple cell forms provide the
major biofuel in the form of adenosine triphosphate (ATP), the energy
currency mainly generated through oxidative phosphorylation
(OXPHOS) by coupling of electron transport with proton pumping, for
the energy consumption required for cell proliferation and organ de-
velopment. Instead of its own genome, more than 98% of mitochondrial
proteins are transcribed by the genes located in the nuclear genome [1],
and only 13 out of ∼1500 mitochondrial proteins/factors remain to be
encoded by mitochondrial DNA [2,3]. Such coordinative pattern of two
genomes in the same cell illustrates a potential evolution trend in which
an organelle is adapted to a host in order to keep the homeostatic
cellular functions under the control of the leading genome. It can
therefore be assumed that the nuclear genome gradually rules over the
mitochondrial functions so as to provide timely and economically en-
ergy supply required for different cellular functions and organism re-
generation.

This two-way signaling traffic between mitochondria and the nu-
cleus is further illustrated by accumulating evidence including that

nucleus-coded proteins control the mitochondrial DNA segregation [4],
dynamics, function, and autophagy [5]; whereas mitochondrial dys-
function leads to nuclear genomic instability [6], tumorigenesis [7–9],
tumor growth [10,11], therapeutic resistance [12], and tumor metas-
tasis [13,14]. Over functional mitochondria are also implied in different
stress conditions including the adaptive response to radiation in cancer
cells [15–18]. In addition, mitochondria-assisted cell cycle progression
is confirmed by blocking mitochondrial fission that damages cell cycle
progression and causes apoptosis [19]. Recent results suggest that mi-
tochondria are the key cellular organelle targeted by CDKs (cylcin-de-
pendent kinases) in compensating cell cycle regulation. In such studies,
CDK4 is shown to upregulate mitochondrial antioxidant MnSOD [20],
cyclin D1 inhibits mitochondrial activity in B cells [21], cyclin B1/
CDK1 not only coordinates mitochondrial biogenetics for G2/M pro-
gression [22], but also mediates SIRT3 activation to enhance mi-
tochondrial function and tumor radioresistance [23], and phosphor-
ylates mitochondrial antioxidant MnSOD in cell adaptive response to
radiation stress [24]. These results further confirm the concept that
healthy mitochondria are indeed required for normal cell functions,
deficiency or over function will cause different pathological conditions
in cells such as cell transformation and tumor aggressiveness.
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In this review, we aim to illustrate the cyclin B1/CDK1-modulated
mitochondrial activities in cell cycle progression and proliferation.
Taking a backward approach, we want to reveal a potential mechanism
on how mitochondrial energy metabolism coordinates with cell cycle
such as G2/M transition and tumor aggressive phenotype. Further
elucidation of the mechanisms underlying mitochondria-regulated cell
behaviors will help to understand the network on energy generation
and consumption within a cell and define unknown mechanisms in
balancing energy consumption in normal and tumor cells.

2. CDK1-DRP1 pathway in regulation of mitochondrial dynamics

Mitochondrial proliferation origins from existing mitochondria via
complementary fission and fusion events [29], these two opposing
processes dynamically and harmoniously coordinated to maintain the
average size of mitochondria, plays critical roles in maintaining mi-
tochondria function and cell division, and closely links with human
diseases [25–28]. An optimal balance between fission and fusion could
be critical in maintaining mitochondrial membrane dynamics and dif-
ferent cellular functions [30,31]. The fusion events are carried out by a
mitochondrial transmembrane GTPase known as Mitofusin (Mfn) [32]
whereas dynamin related protein 1 (DRP1) is responsible for mi-
tochondrial fission events [33], which is dependent on the commu-
nication between DRP1 and GTPase. It has been shown that DRP1 de-
termines GTPase activity during mitochondrial fission [34,35]. DRP1
contains at least 5 phosphorylation sites at serine residues including
Ser585 (in rat cells), Ser616, Ser637, Ser656 and Ser693 (in human cells),
etc. These sites were suggested to be modified by different kinases, in
which only Ser585 and Ser616 can be modified by cyclin B1/CDK1. Ta-
guchi et al. has demonstrated that in addition to chromatid segregation,
cyclin B1/CDK1 regulates the mitotic mitochondrial fragmentation, a
cell cycle-regulated mitochondrial fission [36]. Interestingly, phos-
phorylation of DRP1 by cyclin B1/CDK1 at Ser-585 residue during
mitosis is found to be required to translocate DRP1 from cytosol to the
mitochondrial outer membrane which is required for mitochondrial
fission [36,37]. The activated DRP1 then punctuates spots on the mi-
tochondrial membrane to proceed with membrane constriction and
fission directed by Fis1 [38,39]. The energy-sensing adenosine mono-
phosphate (AMP)-activated protein kinase (AMPK) is also involved in
mitochondrial fragmentation when mitochondrial respiration via elec-
tron transfer chain is inactivated. Recently, a specific substrate of AMPK
is identified as mitochondrial fission factor (MFF) that is identified to be
the outer-membrane receptor for DRP1 required for DRP1-mediated
fission process [40]. DRP1 mediated mitochondrial fragmentation is
believed to allow equal distribution of the mother mitochondria into
two daughter cells as the fission events occur during the cell cycle.
Deficiency of DRP1 causes elongated mitochondrial filaments with re-
duced mitochondrial fragmentation [36,41], and leads to mitochondrial
dysfunction, loss of mtDNA and decrease of cellular ATP generation
[42,43]. As such the dynamic equilibrium between fission and fusion in
mitochondrial dynamic plays critical roles in maintaining mitochondria
function and cell division [44]. The cyclin B1/CDK1-mediated activa-
tion of DRP1 and mitochondrial fission which contribute to the balance
between fission and fusion and may coordinate with cyclin B1/CDK1-
mediated mitochondrial bioenergetics is to be further elucidated.

Another proof in cyclin B1/CDK1-mediated mitochondrial dynamics
is supported by Ras-related protein Ral-A (RALA) and its effector RalA-
binding protein 1 (RALBP1). The mitotic kinase, Aurora A, phosphor-
ylates RALA at Ser-194 to enhance the translocation of RALA into mi-
tochondria, in which RAPLA concentrates RALBP1 and promotes mi-
tochondrial localization of DRP1 [45]. RALBP1 binds to cyclin B1/
CDK1 to enhance DRP1 phosphorylation and activation at Ser-616,
which controls the fission and proper segregation of mitochondria
during cell division and maintains appropriate mitochondrial and cel-
lular function [45,46]. However, in addition to DRP1-guided mi-
tochondrial fragmentation linked with reduced mitochondrial

bioenergetics, DRP1 is also required for mitochondrial metabolic acti-
vation, supported by the report that ATP production is severely im-
paired in DRP1 deficient cells [43]. Phosphorylation at Ser-637 of DRP1
by cAMP-dependent protein kinase (PKA) blocks its GTPase activity by
reducing the intra-molecular interaction that drive GTP hydrolysis
[46,47], which can be lifted by the phosphatase Calcineurin [48]. Data
discussed in the following sections on CDK1-mediated mitochondrial
bioenergetics in cell cycle progression and tumor cell behavior will
highlight the concept that an enhanced mitochondrial bioenergetics is
required for G2/M transition and cell proliferation. Further elucidating
the precise mitochondrial dynamics linked with metabolic activity may
reveal more insights on CDK1/DRP1-mediated mitochondrial functions
that drive different cell behaviors.

3. CDK1 regulates mitochondrial functions

A specific subset of CDKs with their corresponding partner cyclins
orchestrate the precise cell cycle progression [49]. CDK1, among the
well-defined cell cycle check point proteins, is involved in regulation of
an array of fundamental cellular functions for cell proliferative growth
[50,51]. Mouse embryos lacking CDK2, CDK3, CDK4, and CDK6 are still
able to undergo organogenesis whereas fail without CDK1. CDK1 is able
to bind to different cyclins and is sufficient to regulate all the steps
required for cell division [52]. This report together with many other
results indicates that CDK1 is the most critical cell cycle element for cell
proliferation and organ development. CDK1 is involved not only in
mitochondrial dynamics as mentioned above [36,45], but also in mi-
tochondrial protein influx and bioenergetics [22,54,55], targeting
CDK1 initiates mitochondria-initiated apoptosis [53]. Another cell
cycle-related complex, cyclin D1/CDK4 is also found relocating to mi-
tochondria and phosphorylate the major antioxidant enzyme MnSOD at
Ser-106, whereby enhancing MnSOD enzymatic activity to promote
mitochondrial homeostasis and prevent cellular genotoxic stress [20].
Further elucidating how mitochondrial bioenergetics is differently
regulated by varied complexes of cyclins/CDKs during progression of
different cycle phases may reveal more unknown mechanisms under-
lying cell cycle-related mitochondrial adjustment.

Cyclin B1 and its catalytic partner CDK1 belong to the fundamental
kinase machinery regulating the progression from G2 to mitosis. Also
known as the mitotic promoting factor (MPF), cyclin B1/CDK1 phos-
phorylation governs key steps for mitotic entrance featured by the
nuclear envelope breakdown, spindle formation, and chromatin con-
densation [56]. However, the mitochondrial transition of cyclin B1/
CDK1 seems to be dependent on the total levels of cellular cyclin B1 and
CDK1 [57]. Under normal growth conditions, mitochondrial localiza-
tion of cyclin B1/CDK1 is attenuated during G1 phase due to a lack of
cyclin B1 accumulation.

3.1. Mitochondrial translocation of CDK1

The mitochondrial matrix localization of cyclin B1/CDK1 complex
has recently been identified in multiple human cells, especially shows
increase in those experiencing cell cycle transition or exposed to DNA-
damaging stress conditions [22,57]. Under genomic toxic conditions
such as anti-cancer chemotherapy and radiotherapy, cyclin B1/CDK1
expression is induced to cause the cell cycle G2/M arrest, which is
believed either to extend the time period for cells figuring and fixing
DNA damages to survive or to warrant a time required to initiate and
process apoptosis [58,59]. Following genotoxic stress such as ionizing
radiation (IR), mitochondrial translocation of cyclin B1/CDK1 is en-
hanced [57]. As shown in Fig. 1, relocation of cyclin B1/CDK1 to mi-
tochondria could results from an increased overall level of cyclin B1/
CDK1 in cytoplasm at the peak time of cell cycle progression during G2/
M transition, or leaded by a specific mechanism to allow mitochondria
to sense the increased demand of energy consumption needs. Since
present and being activated at the prophase of mitosis [60],
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mitochondrial CDK1 phosphorylates substrates to promote mitosis. The
activation of CDK1 in mitochondria is supported by the report that
Cdc25c, the phosphatase activator of CDK1 [61], is identified by
mapping of the mitochondrial intermembrane space [62]; both reports
support that cyclin B1/CDK1 can be fully activated to boost ATP gen-
eration whereas the CDK1 proteins in cytoplasm and nucleus remain
inactive for progression into prophase although the mechanism causing
such segregations is to be revealed.

Proteins and polypeptides with mitochondrial leading sequences are
transported into mitochondria by the translocase of the outer mi-
tochondrial membrane (TOM) complex and translocase of mitochon-
drial inner membrane 23 (TIM23) complex [63]. However, like many
other mitochondrial proteins, CDK1 does not hold the leading sequence
for mitochondrial translocation. Many other proteins without mi-
tochondrial leading sequences are translocated to mitochondria by
chaperons [64]. The translocation of cyclin B1/CDK1 is possibly con-
ducted with chaperons such as HSP70, HSP-90, and Cdc37 [65–68].
Harbauer et al. show that clb3-activated CDK1 is able to phosphorylate
the cytosolic Tom6 precursor to enhance the import of Tom6 into mi-
tochondria, which accelerates Tom40 assembly and mitochondrial
protein influx [54,55]. Additionally, 14-3-3 family proteins, well-de-
fined as mitochondrial chaperons with mitochondrial targeting se-
quences in their ligands [69–71], can dynamically balance cyclin B1/
CDK1 inhibition and activation to control G2/M checkpoint main-
tenance and release [72]. 14-3-3ζ binds and transports Cdc25c to mi-
tochondria to activate CDK1. Both 14-3-3ζ and cyclin B1 are upregu-
lated in radiation-resistant breast cancer cells [16] and knockdown of
14-3-3ζ enhances radiosensitivity and radiation-induced apoptosis in
CD133 (+) liver cancer stem cells [73]. Further elucidation is appre-
ciated to reveal the mechanistic insight underlying cyclin B1/CDK1
mitochondrial translocation in normal and tumor cells.

3.2. CDK1 substrates in mitochondria

Reversible protein phosphorylation is a fundamental post-transla-
tional modification required to guide different mitochondrial functions
[74,75]. CDK1 belongs to the serine/threonine (S/T) kinase family
catalyzing the transfer of phosphate from ATP to proline (P)-oriented
serine (S) or threonine (T) residues. Its substrates contain either an
optimal (S/T*eP-x-K/R; x, any residue) or a minimal (S/T*eP) con-
sensus motif. It is well-defined that in mammals the oscillations in ac-
tivation of different CDKs govern cell reproduction by catalyzing the
transfer of phosphate from ATP to specific protein substrates. Ubersax
et al. has identified 200 substrates in whole-cell extracts of budding

yeast that are directly phosphorylated by CDK1 [76]. However, CDK1 is
shown to phosphorylate mitochondrial proteins isolated from G0/G1
cells that possessed low endogenous cyclin B1/CDK1 activity and
dozens of mitochondrial proteins contain at least one consensus site or
motif that can be directly phosphorylated by CDK1. These substrates
involve in multiple bio-functions including electron transport (CI-CV),
tricarboxylic acid cycle, amino acid, and lipid metabolism (Table 1)
[22]. A cluster of CI subunits is identified to be the CDK1 substrates in
OXPHOS (NDUFV1 at T-383, NDUFV2 at T-164, NDUFV3 at S-530,
NDUFS2 at S-364, NDUFAF1 at S-450, NDUFA12 at T-142, NDUFB5 at
S-128 and NDUFB6 at S-550), and CIII subunit (UQCRC1 at T-266).
Expression of mitochondria-targeted cyclin B1/CDK1 increases CI ac-
tivity and ATP generation and G2/M-associated mitochondrial en-
hancement is deficient by expression of mitochondria-targeted mutant
CDK1 [22]. MnSOD, the primary mitochondrial antioxidant in detox-
ifying superoxide for mitochondrial homeostasis is found to contain
CDK1 phosphorylation consensus (Serine/Threonine-proline [Ser/
ThrPro]) at Ser-106 [24,77] and cyclin B1/CDK1-mediated MnSOD
phosphorylation is required for MnSOD tetrameric conformation, en-
zymatic activity, and protein stability [24]. Interestingly, another cri-
tical substrate of mitochondrial cyclin B1/CDK1 is the tumor suppressor
p53 that is identified at Serine-315 [57] which is to be discussed below.
Cyclin B1/CDK1 also phosphorylate SIRT3, an essential NAD+-depen-
dent deacetylase for mitochondrial functions and homeostasis [78], at
Thr-150 and-Ser159 [23]. An array of SIRT3-modified proteins in-
cluding AceCS2 (K642) [79], LCAD (K42) [80], IDH2 (K413) [81],
SOD2 (K53/89) [82], FOXO3 (K271/290) [83], and HMGCS2 (K310/
447/473) [84] have been identified and suggested to govern mi-
tochondrial metabolism via SIRT3 regulation (Fig. 1). The cyclin B1/
CDK1-mediated SIRT3 activation is another example how cyclin B1/
CDK1 is applied to adjust mitochondrial activity and homeostatic
status. Since SIRT3 activity is well-defined to play a key role in pre-
venting mitochondria-associated carcinogenesis and aging [85], this
link between cylcin B1/CDK1 and SIRT3 further supports the close
relation of cell cycle events causing aging and cell transformation.

3.3. CDK1 enhances OXPHOS in G2/M progression

Metabolic activity and energy supply are believed to be a crucial
determinant for cell division and proliferation. However, the exact
mechanism how mitochondria sense the increased cellular energy de-
mands by different cycling phases was unknown [86]. ATP is generated
in mitochondria by the electron transport chain (ETC) carried by the
respiratory chain complexes I–IV transferring electrons in a stepwise

Fig. 1. A model of nuclear and mitochondrial
cooperation in regulating mitochondrial
bioenergetics for G2/M transition. Cyclin B1/
CDK1 relocates to mitochondria during G2/M
phase to phosphorylate and activate an array of
substrates including multiple subunits of mi-
tochondrial CI to enhance mitochondrial func-
tion and energy production which drives energy-
sensitive G2/M transition. In addition, cyclin
B1/CDK1 activates p53, MnSOD, and SIRT3 to
eliminate ROS and maintain mitochondrial
homeostasis. CDK1-SIRT3-mediated fatty acid
metabolism and mitochondrial homeostasis re-
main to be further elucidated. Cyc B1, cyclin B1.
Also see other mitochondrial substrates of cyclin
B1/CDK1 in Table 1.
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pattern until they finally reduce oxygen to form water. Mitochondria
are in charge of processing both the tricarboxylic acid cycle (TCA) and
OXPHOS whereby providing the major cellular energy source. OXPHOS
supplies more than 90% of cellular ATP required for eukaryotic cells
[87], and it is irrefutably critical for the progression of cell cycle as the
level of ATP determines whether cells are ready for division [88]. It is
assumed that G1/S and G2/M phases are energy-sensitive processes in
which pronounced energy supply is demanded for increasing biomass
for cell cycle transition [89]. For this function, all of five large protein
complexes (CI-CV) must be functional in the respiration chain [90,91]
and many mitochondrial function-related diseases are linked to the
status of OXPHOS [92–95]. CI is the largest complex containing 46
subunits, and serves as the major entry point of electrons into OXPHOS.
A functionally efficient CI is required for OXPHOS function [96] and for
successful cell-cycle progression [97]. As reported. The D-type cyclins
and CDKs are associated with the metabolic crosstalk [86]. By searching
mitochondrial protein databases for the CDK1 consensus phosphoryla-
tion motif (S/T*eP-x-K/R) [98] among all the subunits of mitochon-
drial respiration chain (Complex I – V), interestingly, 12 subunits, in-
cluding 8 components from CI (NADH ubiquinone oxidoreductase)
[99], can be potentially phosphorylated by cyclin B1/CDK1 (Table 1)
[22], indicating that cyclin B1/CDK1 functions as a switcher to control
the surge of ATP output. A cluster of other mitochondrial factors are
also targeted by cyclin B1/CDK1-phosphorylation that includes proteins
in carbohydrate and lipid metabolism of mitochondria including TCA
cycle. The dual functions of cyclin B1/CDK1 in both the nucleus and the
mitochondria mark a tight connection between cell cycle progression
and mitochondrial cooperation, and raise the question of whether this
coordination is linked in the different metabolisms in normal and
cancer cells.

4. Cyclin B1/CDK1 in mitochondria-associated apoptosis

Mitochondria-regulated apoptosis plays a key role in tumor re-
sponse to anti-cancer therapies. Although several studies report that
cyclin B1/CDK1 is responsible for initiating mitochondria-mediated
apoptosis under cell damage conditions by its phosphorylation of sev-
eral pro- (Bcl-2, BAD and Bcl-xL cytosol [100,101]) and anti-apoptotic
proteins (Mcl1 [102]) in normal and cancer cells, more emerging evi-
dence demonstrate that cyclin B1/CDK1 is pivotal in inhibition of
apoptosis in tumors. Cyclin B1/CDK1-mediated phosphorylation of pro-
caspase-9 and survivin (BIRC5) lead to inhibition of apoptosis
[103,104] and Intact cyclin B1 with mutant CDK1 is shown to com-
promise CDK1-mediated substrates phosphorylation, mitochondrial
function as well as cell viability [22,57]. Cyclin B1, as the most im-
portant catalytic partner of CDK1, has been unearthed to be abnormally
activated and aberrantly expressed in a number of human cancers in-
cluding esophageal squamous cell carcinoma, laryngeal squamous cell
carcinoma, and colorectal carcinomas [105–107]. Besides, cyclin B1 is
linked with anti-apoptosis and tumor resistance in head and neck
cancer [108,109], one of the most aggressive cancers [110], triggers
tumor proliferation and links with poor prognosis in esophageal squa-
mous cell carcinoma [111], non-small cell lung cancer [112], and col-
orectal carcinoma [113]. Consistently, deficiency of cyclin B1 causes
inhibition of cell proliferation and activation of apoptosis [114] and
activated cyclin B1 leads to a pro-survival machinery mediated by the
NF-κB signaling network [115]. These different results suggest that
mitochondrial energy is required for both cell death and cell cycle.
Cyclin B1/CDK1 not only regulates mitochondrial fuel output for
normal cell cycle progression but also can initiate mitochondria-medi-
ated apoptosis by modifying several pro-apoptosis proteins and anti-
apoptotic proteins when cells exposed to excessive damage stresses.

4.1. CDK1-mediated mitochondrial bioenergetics for DNA repair

Radiation-generated ROS induces mitochondrial and nuclear DNATa
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strand break [116] and potentially leads to cell apoptosis [117]. In this
process, cellular energy supply, DNA repair capacity, and apoptosis
play important roles in determining cell fate [118]. Timely and efficient
DNA repair, an energy-consuming process [119–121], is necessary for
cell survival [122]. However, it remains unclear how cellular energy
supplement is coordinated in DNA repair. A study in Jurkat cells in-
dicates that both glycolysis and OXPHOS provide the energy supply of
apoptosis [123]. A group of stress responsive proteins including
MnSOD, cyclin B1/CDK1, cyclin D1/CDK4, and survivin [20,124,125]
(Fig. 2) inflow into mitochondria to induce cellular adaptive protection.
The CI in the respiration chain is identified to be a key cyclin B1/CDK1
target in mitochondria [22]. Mitochondrial relocation of cyclin B1/
CDK1 and nuclear DNA repair is correlated with oxygen consumption
and ATP production in normal human cells after radiation [126]. The
basal and radiation-induced mitochondrial ATP generation is reduced
significantly in cells harboring CDK1 phosphorylation-deficient mutant
CI subunits. Similarly, mitochondrial ATP generation and nuclear DNA
repair are also compromised severely in cells harboring mitochondria-
targeted, kinase-deficient CDK1 [126]. Together, these results implicate
that cyclin B1/CDK1 functions to deliver signals to mitochondria to
boost ATP generation for DNA repair and cell survival under genotoxic
stress conditions.

4.2. CDK1- p53 pathway in anti-apoptosis

The p53 protein is well-characterized to regulate mitochondria-
mediated apoptosis at protein and mRNA levels [127,128]. p53 initiates
the apoptotic cascade by inducing the expression or interacting directly
with cytoplasmic Bcl-2 family proteins [129]. Mitochondrial function of
p53 has been associated with mtDNA transcription, DNA repair, mi-
tochondrial bioenergetics [130–132], as well as ATP production since
p53 also regulates mitochondrial respiratory gene, SCO2 and GLS-2
[133]. It is generally believed that localization of p53 to mitochondria
resembles a major starting signal for mitochondria-mediated apoptosis
[134]. However, it has been proposed that mitochondrial p53 may not
necessarily induce apoptosis [135]. Activation of CDK via Spy1 is in-
dicated for the anti-apoptotic response via p53 induced by intrinsic
DNA damage response such as in cell division [136]. Mice that lack of
critical effectors of p53-induced apoptosis do not develop tumors
spontaneously [137]. Therefore, the role of mitochondria-localized p53
should be considered broadly, depending on its cooperative and dif-
ferential phosphorylation in addition to its apoptotic signal [138]. p53

can also be phosphorylated by mitochondrial cyclin B1/CDK1 [57].
Mitochondrial p53, cyclin B1 and CDK1 are elevated after radiation
treatment, enhancing the phosphorylation of mitochondrial p53 at Ser-
315, the only putative site for cyclin B1/CDK1 phosphorylation [139].
In contrast with p53-mediated pro-apoptotic signaling, this phosphor-
ylation suppresses the mitochondrial apoptosis by sequestering p53
from binding to Bcl-2 and Bcl-xL [57]. This finding reinstates the role of
cyclin B1/CDK1 in non-cell cycle functions. The pattern of cyclin B1/
CDK1-mediated p53-apoptotic inhibition demonstrates a feedback sig-
naling pathway for mitochondria-initiated apoptosis. The decision of
pro- or anti-apoptotic response may be made based on the degree of
DNA damage in the nucleus and the length of period cell arrested.

5. Mitochondrial bioenergetics in reprogramming energy
metabolism in tumor cells

Increasing interests have been attracted in cancer energy metabo-
lism [140]. The high acidity in tumor tissues due to enhanced lactate
generation even under oxygenated condition suggests that tumor cells
generate ATP via glycolysis (aerobic glycolysis, Warburg Effect). Al-
though ATP generation via glycolysis is less efficacious compared to
OXPHOS, glycolysis generates fundamental elements for cellular func-
tion and proliferation such as pyruvate and NADPH that are required
for ribose production and protein glycosylation [141–143]. The War-
burg assumption is that mitochondria are damaged, and glycolysis is
primarily used as the major energy-supply for cellular proliferation and
survival even under oxygenated conditions. However, this theory was
challenged by a series of evidence since 1950s [144–148], which in-
dicate that mitochondria in some cancer cells remain intact structure
and function [149], and mitochondria are actively involved in tumor
response to anti-cancer therapy. This apparent contradiction between
glycolysis-dominated energy reprogramming and the OXPHOS-acti-
vated bioenergetics in tumor cells may reflect unknown dynamics of the
flexible re-/deprogramming energy metabolism in cancer cells which is
required to adapt and survive under different genotoxic conditions.

5.1. Mitochondria are still active and have potential role in tumor cells

Contrasted to the prevailing thoughts of aerobic glycolysis, in-
creasing results demonstrated functional mitochondria exist in tumors.
Heat-shock-protein-90 (HSP90)-involved mitochondrial protein folding
is required for cellular bioenergetics in tumor cells [150]. By using the

Fig. 2. Cyclin B1/CDK1-mediated mitochon-
dria bioenergetics in DNA repair and tumor
resistance. DNA-damaging agents including
chemotherapy and radiotherapy enhance the
translocation of cyclin B1/CDK1 to mitochon-
dria causing phosphorylation and activation of
OXPHOS leading to enhanced ATP output re-
quired for DNA damages repair and cell survival.
CDK1 also directly phosphorylates MnSOD to
eliminate ROS, activates p53 to promote energy
generation and maintain mitochondrial DNA
integrity, or indirectly enhances the activity of
MnSOD and p53 via SIRT3-mediated deacetyla-
tion, which as a whole improve mitochondrial
homeostasis and function. NDUFA9, one of the
subunits of CI, can also be deacetylated by SIRT3
to promote OXPHOS. Thus, our model applies to
the situation in which under non-stressful con-
ditions tumor cells may relay on the energy
generated by predominant oxidative glycolysis,
whereas under genotoxic crisis such as che-
motherapy and radiotherapy, cyclin B1/CDK1-
mediated OXHPOS is activated to meet the extra
energy demands for repairing damages and en-
hancing cell survival.
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isotopically labeled glucose, lactic acid, and palmitic acid, Weinhouse
et al. show that oxidation of glucose and fatty acid in tumors is similarly
to normal tissues [147]. Similarly, Wenner et al. observe that enzyme
activities of the TCA cycle in tumor cells are at a similar active level in
normal tissues [148]. In an in-vivo study, Whitaker-Menezes report that
epithelial cancer cells enhance OXPHOS for generation of high amounts
of ATP. The transcriptional upregulation of genes in mitochondrial
OXPHOS is identified in a report with over 2000 breast cancer patients
[151]. Others also report that mitochondrial bioenergetics may be re-
activated to provide additional energy supply in the maintenance and
function of cancer stem cells [18,152–155], hematopoietic cells, as well
as lymphoma and leukemia cells [155,156]. However, the exact me-
chanism guiding such mitochondrial activation is yet to be elucidated.
Other studies also reveal that cancer cells remain OXPHOS capacity to
provide the vital amount of cellular fuels for energy consumption re-
quired for the fast proliferation of cancer cells [157,158] and adaption
of metabolic stress such as nutrient deficiency and hypoxia [159,160].
On the other hand, pharmacological glycolysis inhibitors such as 2-DG,
fail to provide significant therapeutic benefits in vivo test [161,162].
These results together suggest that mitochondria in cancer cells can
dynamically activate or inactivate its functions with different cellular
energy consumption conditions and in different cancer types. Such
plasticity in adjusting mitochondrial bioenergetics of tumor cells chal-
lenges the anticancer modalities that aim to inhibit tumor growth by
blocking glycolysis.

5.2. Mitochondrial bioenergetics in tumor resistance to therapies

Mitochondrial metabolism has been linked with tumor therapeutic
resistance [18,150,163–169]. Mitochondrial bioenergetics is enhanced
when cellular energy demand is increased for repairing DNA damages
to allow cancer cells to survive from therapeutic genotoxicity [23,167].
Overexpressing MnSOD, a key enzyme for maintaining mitochondrial
homeostasis, induce radioresistance in breast cancer MCF7 cells
[16,170]. The mammalian target of rapamycin complex 1 (mTORC1)
that serves as a sensor of extracellular nutrient levels and intracellular
bioenergetics [171], maintains cellular bioenergetics under glucose
deficiency [172]. mTOR, as the core element in mTORC1 enhances
OXPHOS with reduced glycolysis for tumor cells to survive IR [167].
The apparent “quiet” mitochondria in tumor cells can function as a
backup line to boost up cellular fuel supply under genotoxic anticancer
modalities such as ionizing radiation and chemotherapy (Fig. 2 legend).
This “backing-up” mechanism proposed here is to demonstrate a flex-
ible feature in the energy metabolism of cancer cells under genotoxic
and “normal” growth conditions. In addition, mitochondrial metabo-
lism is identified in tumor cells and actively involved in tumor metas-
tasis [173–175]. These observations are further supported by findings
that reprogramming the mitochondrial trafficking can help to fuel the
tumor cell invasion [14,176]. Most importantly, mitochondrial energy
metabolism is recently linked with the aggressive phenotype of triple-
negative breast cancer (TNBC) [174]. Therefore, further elucidation on
the dynamic alterations in mitochondrial energy metabolism in tumor
cells especially IR-associated energy dynamics will provide critical in-
formation on invention of effective metabolic targets to treat cancer
cells.

5.3. CDK1-mediated mitochondrial bioenergetics in cancer cells plays a
pivotal role in tumor radiation response

As discussed above, in addition to cyclin B1/CDK-mediated mor-
phological alterations via DRP1 regulation and mitochondrial fission
[36,177], CDK1 is able enhance mitochondrial metabolism in cell cycle
progression of normal cells and in radiation-induced stress. Cyclin B1/
CDK1 promotes the activity of OXPHOS to induce anti-apoptotic re-
sponse in human colon cancer HCT116 cells via cyclin B1/CDK1-
mediated SIRT3 activation together with phosphorylation of p53 at Ser-

315 leading to an increased mitochondrial ATP production and reduced
mitochondrial apoptosis [23,57]. Besides, cyclin B1/CDK1 are found to
specifically modify MnSOD that can enhance resistance of breast cancer
cells in genotoxic conditions such as IR [15,16] and increase mi-
tochondrial homeostasis, biosynthesis, and signaling aggressive phe-
notype of cancer cells [10,178–180]. MnSOD, located in mitochondria,
is important in balancing the ROS (reactive oxygen species) and pro-
tecting mitochondrial function [116]. Down-regular of MnSOD ex-
pression or inhibit of its enzymatic activity in normal cells have been
proven leading to a high risk of cell transformation [181,182]. In-
creased expression of MnSOD may be beneficial to cancer cells to sur-
vive from radiation therapy [183], as well stimulate metastatic beha-
vior [184–187]. When exposed under ionizing radiation, mitochondria
recruit cyclin B1/CDK1 in cancer cells enhancing MnSOD activity and
stability along with improved mitochondrial function and cellular
adaptive response [24]. Similarly, CDK4, the key kinase for G1/S pro-
gression, activates MnSOD to improve mitochondrial function and serve
as an important pathway in cellular adaptive protection [20]. There-
fore, a cluster of mitochondrial proteins post-transcriptionally modified
by cyclin B1/CDK1 can instantly upregulates mitochondrial energy
output for tumor cell survival under genotoxic cancer therapy (Fig. 2).
However, it is currently unknown how such cyclin B1/CDK1-boosted
mitochondrial energy supply could be mechanistically associated with
specific tumor cells such as cancer stem cells under anti-cancer therapy.
Future exploring in cyclin B1/CDK1-mediated mitochondrial bioener-
getics in different therapeutic modalities may invent effect targets to
timely block the cellular energy reprogramming to eliminate resistant
tumor cells.

6. Concluding remarks

We illustrate here that mitochondrial energy metabolism is critically
regulated in cell proliferation and tumor growth [188–190]. Beside
their direct functions in regulation of cell cycle progression, the com-
plex of cyclin B1/CDK1 is able to coordinate the cell cycle events with
enhanced mitochondrial bioenergetics. Such cyclin B1/CDK1 regulated
mitochondrial metabolism is highlighted in this review to demonstrate
how the two genomes are functionally cooperated to control the bal-
ance of energy supply with the timely demanded cellular fuel con-
sumption. However, it remains unclear how cyclin B1/CDK1-mediated
mitochondrial homeostasis orchestrates different cell cycle phases. It is
also to be further elucidated whether the mitochondrial bioenergetics is
required for tumor cell survival under anti-cancer treatments such as
chemotherapy and radiation. In addition to mitochondrial targets, cy-
clin B1/CDK1-controlled cytoplasmic components for cell cycle pro-
gression must coordinate timely with mitochondrial functions, and way
around, the oscillation for mitochondrial bioenergetics should meet the
specific requirements of cell division and proliferation. To define spe-
cific metabolic targets in tumor cells, outstanding questions still need to
be addressed. First, it remains unclear if a specific cluster of cyclin B1/
CDK1-regulated metabolic enzymes is required for the different meta-
bolic status in normal and cancer cells [86,191,192]. Second, cross-
talking among the cyclin B1/CDK1-targeted proteins may guide the
mitochondrial bioenergetics based on the different stages of cell cycle
progression and tumor growth status such as tumor metastasis. Since
different CDKs are required in transition of each cell cycle stage, it
would be highly appreciated if mitochondrial energy metabolism can be
precisely oscillated with each cycle phase. In addition, the mechanistic
insights guiding the signaling traffics between the nucleus and mi-
tochondria under physiological and pathological conditions needs to be
further deciphered. These studies will help to understand the flexible
mitochondrial bioenergetics in cancer cells under different stress con-
ditions and thus to invent new metabolic targets to treat cancer.
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