
Proximity Portability and In Transit, M-to-N
Data Partitioning and Movement in SENSEI

E. Wes Bethel1, Burlen Loring1, Utkarsh Ayachit4, Earl P. N. Duque5, Nicola
Ferrier2, Joseph Insley2, Junmin Gu1, James Kress3, Patrick O’Leary4, Dave
Pugmire3, Silvio Rizzi2, David Thompson4, Will Usher6,7, Gunther H. Weber1,
Brad Whitlock5, Matthew Wolf3, Kesheng Wu1

Abstract In high performance parallel in situ processing, the term in transit pro-
cessing refers to those configurations where data must be moved from M ranks of
a parallel data producer to N ranks of a parallel data consumer. One of the central
challenges in this setting is to determine a mapping of data from producer ranks to
consumer ranks. This is a challenging problem for several reasons, such as when
producer and consumer codes have different levels of concurrency, different scaling
characteristics, or different data models. The resulting mapping and movement of
data from M to N ranks can have a significant impact on aggregate application per-
formance, particularly when the data consumer requires only a subset of the overall
data for its task. This chapter focuses on the design considerations that underlie
SENSEI’s implementation to this challenging problem. These design considerations
extend the core SENSEI architecture and include ideas like the need to accommo-
date flexibility in the choice of different partitioning methods, the ability for a data
consumer to request and receive only the subset of data it needs for its particular
operation, and the ability to leverage any of several different data transport tools.
This idea of proximity portability, being able to use different data transport methods
as part of an in transitworkflow, is illustrated through the use of three different trans-
port layers where switching from one transport tool to another is accomplished with
only a configuration file change. The chapter also includes a performance analysis
summary showing the performance gains that are possible, in terms of multiple met-
rics, such as memory footprint, time to solution, and amount of data moved, when
using optimized partitioners in an in transit setting, gains that are made possible by
the implementation shaped by specific design considerations.

1Lawrence Berkeley National Laboratory · 2Argonne National Laboratory · 3Oak Ridge National
Laboratory · 4Kitware, Inc. · 5Intelligent Light · 6University of Utah · 7Intel Corporation

1

2 Bethel, Loring, et al.

1 Introduction and Overview

In the regime of in situ processing, one of many particular configurations entails
a scenario where data is moved across a network as it is produced to a separate
application running on a separate set of hardware resources for analysis or visual-
ization. In this scenario, data is produced on M simulation ranks then consumed on
N consumer ranks, where typically M >> N . We refer to this configuration as in
transit M-to-N processing, or more tersely as M-to-N processing, to capture both
these concepts: that data is moved from producer to consumer, and that producer and
consumer are running at different levels of concurrency.

In this configuration, a central challenge is the problem of M-to-N data redis-
tribution from producer ranks to consumer ranks. Data redistribution refers to the
process of determining how to map data from M ranks to N ranks, and also moving
the data from one place to another, and doing so in a reasonably efficient and plat-
form portable manner. One way the challenge arises is when producer and consumer
run at markedly different levels of concurrency resulting in no clear and obvious
mapping from one to another. Another is when producer and consumer each use a
different data models, which would entail some level of data model reconciliation.
Yet another way is when producer and consumer have vastly different scaling char-
acteristics, which in turn lead to different levels of concurrency M and N for a given
producer-consumer pairing on a given problem configuration. Finally, it is often the
case that the consumer ranks do not require the complete problem domain from the
producer, a situation that can occur during data reduction or subsetting operations,
such as slicing or isocontouring.

This chapter focuses on design, implementation, and performance analysis issues
of a general purpose solution to the M-to-N data redistribution problem encountered
in in transit processing scenarios. The design considerations (Section 2) include
topics related to SENSEI’s adaptor architecture that focus on in transit scenarios, the
central role of metadata, and how a partitioner uses metadata to compute a mapping
from M-to-N ranks. These design principles allow SENSEI’s implementation of
the M-to-N in transit data redistribution methods to achieve proximity portability,
whereby SENSEI-instrumented codes can make use of one of several different tools,
such as HDF5, libIS, and ADIOS, for moving data between in transit processing
stages with only a configuration file change (Section 3). A summary of an in-depth
performance study of SENSEI’s M-to-N in transit implementation at scale on a large
HPC platform with multiple applications (Section 4) includes use of a full-scale
physics code that uses adaptive mesh refinement (AMR), and analyzes performance
across a number of metrics that include runtime performance, amount of data moved,
time to solution, cost of solution, and memory footprint. The results show generality,
broad applicability across a set of different data producers, data consumers, levels
of concurrency, and varying partitioning algorithms.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 3

2 Data and Execution Model Design Considerations for M-to-N,
In Transit Processing

In transit processing is fundamentally different than in situ processing when consid-
ering how data is decomposed across the parallel ranks of producer and consumer.
For example, consider an in situ configuration where a simulation code running
at M-way parallel, which invokes in situ methods that are also run, by definition,
at M-way concurrency. The simulation’s data decomposition dictates what data is
processed by each of the in situ ranks: the in situ method’s data decomposition is
imposed by the simulation’s data decomposition. In contrast, in an in transit sce-
nario, while an M-way parallel simulation code uses one data decomposition, the
N-way parallel analysis code is likely to use a completely different problem and data
decomposition. The central challenge is to determine how to map from one data
decomposition to another in the M-to-N setting.

In this section, we discuss several design considerations that focus on different
aspects of this complex problem: defining a mapping of data from M-to-N ranks,
doing so in a way that can accommodate a variety of different producer/consumer
code pairs, run at varying concurrency, and using a number of different potential
mechanisms for moving data.

To begin, we present some background material about SENSEI’s endpoint (Sec-
tion 2.1) and adaptor design patterns (Section 2.2), which are foundational to the
ability to swap in and out different in situ methods without having to recompile
the simulation, or data producer, code. Then, we proceed to describe the metadata
needed to describe the producer’s data model to the in transit consumer ranks (Sec-
tion 2.3). The metadata is input to the partitioner (Section 2.4), which is responsible
for computing a mapping from M producer to N consumer ranks. These elements
are brought together to enable data movement (Section 3), which includes the idea
of proximity portability, or the use of multiple data transport tools with the ability
to switch between tools at runtime simply by changes to a configuration file.

2.1 Endpoint

The in transit configurations we focus on are those consisting of multiple MPI
parallel applications that run concurrently on HPC systems, where one parallel MPI
job is a data producer and the other parallel MPI job is a data consumer. We use the
term endpoint to refer to these parallel applications, which are compiled and linked
with SENSEI and other related libraries, and that consume and process data. Note
that in some circumstances, a data producer might be a data consumer, in which case
it would be considered to be an endpoint as well. Figure 1 shows a illustrative in
transit example, with the endpoint shown as Figure 1(f).

The challenge is to find a partitioning and to move data from a simulation with 5
blocks of data distributed on 5 MPI ranks to the endpoint which is running on 2 MPI
ranks. The endpoint is universal in the sense that it may be configured at run time to

4 Bethel, Loring, et al.

Fig. 1: SENSEI In Transit architec-
ture. A transport comprised of a pair
of adaptors moves data from the sim-
ulation running on M MPI ranks to
the end point running on N MPI
ranks. Data is processed by any of
the usual SENSEI analyses, via the
Configurable Analysis Adaptor. The
system is comprised of the follow-
ing components: (a) simulation, (b)
simulation specific data adaptor, (c)
transport specific analysis adaptor, (d)
partitioner, (e) transport specific data
adaptor, (f) endpoint, (g) configurable
analysis adaptor. As shown on the
left, the simulation has 5 blocks dis-
tributed on 5 ranks, and the par-
titioner has mapped these approxi-
mately evenly onto the end point’s 2
ranks. This image adapted from our
previous work [15].

receive and process data from any instrumented simulation without modifications to
either the endpoint or the simulation. This is achieved via XML files provided on the
command line, and any supported I/O or in situ data processing library may be used.
Simulations wishing to run in an in transit configuration only need supply these two
XML configurations.

2.2 Adaptor pattern

In our design there are only two actions: invoke and fetch. In situ processing —
including analysis, visualization, and I/O— is periodically invoked by a simulation.
In response to the invoke action, data processing code fetches data to process.

This design pattern is realized by two fundamental SENSEI adaptor types, the
analysis adaptor, which is used to invoke processing, and the data adaptor, which is
used to fetch the needed data. The adaptors define APIs that enable the invocation of
a specific action without the need for the invoking code to know anything about the
underlying implementation. The adaptor pattern allows for a change in the under-
lying implementation without the need to modify the code that invokes the adaptor
methods.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 5

The data adaptor is used to fetch data in both in situ and in transit configurations.
Any consumer of data, whether it be for I/O, visualization, or analysis, makes use
of the data adaptor to fetch data. Every simulation needs to provide a simulation
specific data adaptor (Figure 1(b)) that is passed as a part of the invocation of in
situ processing. Similarly the fetch operations of every I/O library are exposed to the
system via an I/O library specific data adaptor (Figure 1(e)) that is passed as part
of the invocation of processing. Through the use this adaptor design pattern, data
processing codes that consume data need not be modified when run either in an in
situ or an in transit configuration. A detailed figure illustrating these relationships
appears in other publications (c.f., [15], Figure 4).

To copewith the additional complexities of the in transit configuration, I/O library
specific data adaptors are derived from the in transit data adaptor (Figure 1(e)),which
is itself derived from the DataAdaptor type. The in transit data adaptor adds, to
the adaptor API, the APIs for use by the endpoint for management and control of
connection and data movement from the simulation as well as APIs for interfacing
with our partitioning mechanisms (Figure 1(d) and Section 2.4).

The analysis adaptor is used to invoke processing, both in in situ and in transit
configurations. New analysis and I/O capabilities are exposed to simulators through
the introduction of transport specific analysis adaptors (Figure 1(c)). The role of
transport specific analysis adaptors is to initialize and configure an in situ or I/O
library for some user-specified processing or movement. For example, in response
to invocation by the simulation, the transport specific analysis adaptor will fetch and
transform data, and then potentially provide that data to another library for processing
or movement to the endpoint.

In both in situ and in transit configurations the simulation initiates the invocation.
In the in transit configuration, this invocation initiates a data movement phase where
data is transferred to the endpoint for processing. In the endpoint, an I/O library
specific in transit data adaptor (Figure 1(e)) listens for the invocation, and forwards
it into a library specific analysis adaptor.

The system implements runtime configurability through a process of runtime
delegation. Configurable adaptor implementations create and initialize a library-
specific adaptor instance from a user-provided XML configuration file (Figure 1(g)
and SENSEI’s Configurable Analysis Adaptor. Calls made to a configurable analysis
adaptor are forwarded directly to the library-specific instance. Therefore, a simulation
instrumented to use the configurable analysis adaptor gains access to all available I/O
and in situ libraries. The endpoint gains access to all available I/O, data movement,
and in situ processing capabilities through a single interface.

2.3 Metadata

In the context of in situ and in transit processing, the term metadata refers to “infor-
mation about data” that is shared and exchanged between producer and consumer.
This metadata includes values like the size and dimensionality of the mesh on the

6 Bethel, Loring, et al.

sender side. It also includes much more detailed information that spans four dif-
ferent categories, including: data sets, arrays, data blocks, and where appropriate,
AMR-specific information.

The role of metadata is central to managing data in support of M-to-N redis-
tribution for in transit use scenarios. It is used to describe simulation data and its
mapping onto the simulation’s M MPI ranks. Partitioners (Section 2.4) use the sim-
ulation metadata to compute the desired mapping of data onto the endpoint’s N MPI
ranks. Data transports use metadata frommultiple sources— the simulation and par-
titioner — to coordinate data movement between producer and consumer. The rich
metadata object in SENSEI, which includes 34 different metadata values [15], en-
ables transports to perform in-flight data transformations such as mapping one mesh
onto another, and enables partitioners to implement a number of load balancing
strategies.

2.4 Partitioner

Data partitioning in an M-to-N in transit scenario refers to the process of defining a
mapping from an M-way parallel data producer to an N-way parallel data consumer.
The process of partitioning may be straightforward, such as when M == N in
the case of traditional in situ processing, or it may be substantially more complex.
Consider for example how some global parallel FFT implementations may require
“pencil” or “slab” domain decomposition [17], or how two common approaches for
parallelizing streamline computations — parallelize over blocks or parallelize over
seeds — each require a different type of data partitioning [3]. Given the diversity
of potential ways data may need to be transformed and redistributed in in transit
use cases, one of our design objectives is to make it straightforward to use any of a
number of different potential partitioning methods.

One implementation result of this design objective is that the partitioner is separate
and distinct from both data producer and data consumer so that different partitioning
methods may used with different combinations of producer and consumer. Similarly,
the partitioner is separate and distinct from the data transport so that it is possible
to use of any of a number of potential implementations of in transit data movement
tools (Section 3).

A later section that examines the performance of in transitM-to-N configurations
at scale (Section 4) makes use of two types of partitioners: a default partitioner and
an optimized partitioner. A default partitioner will move the entire dataset regardless
of how much is needed by the consumer. The default partitioner simply invokes a
default block-based equipartitioning algorithm over the entire simulation domain. In
contrast, optimized partitioners are provide only the subset of data actually needed
by the consumer. These optimized partitioners use the metadata provided by the
simulation to determine the minimum subset of data blocks needed for a particular
operation.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 7

bridge

data
adaptor

analysis
adaptor

simulation analysis

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit

Read

In Transit

Write

Data
Transport

Tools

Data
Transport

Tools
SENSEI

SENSEI

Fig. 2: An M-way parallel simulation sends data to an N-way parallel data consumer
over one of several different potential data transport tools: HDF5, libIS, or ADIOS.
Image courtesy W. Bethel and B. Loring.

For these two partitioner types, default and optimized, we will examine two use
scenarios where only a subset of data is needed to complete the operation. The first
is a slice extract, which takes a 2D slice from a 3D volume, and the second is an
isosurface extract, which is computing an isosurface from a 3D volume. In the case
of the slice extract, per-block bounding box metadata is tested for intersection with
the slice plane. Only those blocks intersecting the plane are needed to compute the
extract. In the case of the isosurface extract, per-block array range metadata are
tested for intersection with the set of isocontouring values. Only those blocks where
the data range brackets an an isocontouring value are needed to compute the extract.
Blocks not needed in the calculation are not assigned to any rank and as a result
are not moved to nor processed by the consumer. Once the needed set of blocks
are identified the block-based equipartitioning algorithm assigns them to available
endpoint ranks.

3 Proximity Portability and SENSEI’s Use of Multiple Data
Transport Tools

One of SENSEI’s design objectives is to enable a “write once, run everywhere”
approach. In this approach, the key idea is the addition of SENSEI instrumentation
code to a data producer, like a numerical simulation, then enables use of multiple
potential in situ endpoints and tools without the need for any further instrumentation
code changes on the data producer side. In other words, once a simulation is instru-

8 Bethel, Loring, et al.

mented with SENSEI, selection of a variety of different in situ tools is accomplished
by changes to a configuration file.

This concept of tool portability extends to the notion of in transit processing as
well, where a SENSEI-instrumented data producer code can run either in situ or
in transit without any instrumentation changes, and may also take advantage of a
growing collection of tools that perform data movement, a concept we refer to as
proximity portability. This design objective is shown in Figure 2, where we have an
M-way parallel simulation producing data that is sent over one of several potential
transports to an N-way parallel endpoint that is performing visualization, analysis, or
some other data-intensive operation. The subsections that follow present information
about the SENSEI’s in transit proximity portability through its use of three different
mechanisms for moving data between producer and consumer: HDF5, ADIOS, and
libIS.

3.1 HDF5 In Transit Data Transport

HDF5 is a mature parallel I/O library and file format that is widely deployed and
used on HPC systems around the world [8] for projects ranging from parallel I/O
for some of the world’s largest computer codes, to use as a storage format for
long-lived data from observations and experiments. Its prevalence as a parallel I/O
library motivated recent work aimed at cultivating a better understanding of design
and performance issues that would arise when leveraging HDF5 for in transit data
staging and movement.

The work byGu et al., 2019 [10] studied use of HDF5 for in transit datamovement
and staging, and specifically with a configuration that uses NVRAM Burst Buffers
presented as a filesystem on an HPC platform. The resulting design and implemen-
tation is an HDF5-based mechanism for in transit data transport that is accessible
to SENSEI-instrumented codes. This data transport capability for M-to-N, in transit
processing is accessible as one of several potential in transit transport mechanisms
that can be selected through an XML-based configuration file.

Figure 3 shows a block diagram of the SENSEI-HDF5 transport mechanism,
where HDF5 in this case uses NVRAM-based Burst Buffers (BB) for data staging.
Following the design patterns used by other data transport mechanisms in SENSEI,
the SENSEI-HDF5 transport mechanism consists of two related adaptors, the Anal-
ysis Adaptor and the Data Adaptor. The Analysis Adaptor implements the SENSEI
interface for outputting data from data producers, and the Data Adaptor implements
the input interface for consumers to ingest data. As of the time of this writing,
SENSEI uses the VTK data model as a bridge between Analysis and Data adaptors.
Therefore, in the SENSEI-HDF5 transport, the Analysis Adaptor receives VTK data,
and stores to HDF5, while the Data Adaptor reads from HDF5 and returns VTK data
for SENSEI.

In our HDF5-based in transit data transport, we are able to leverage specialized
hardware, such as BBs, for data staging. When the BB is presented as a filesystem

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 9

analysis

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit In Transit

 Write

 Read

Burst Buffer/NVRAM

SENSEI

SENSEI

SENSEI

Fig. 3: The HDF5 transport layout. This particular illustration shows a configuration
where Burst Buffers serve to stage data as it is moved from parallel producer to
consumer. This image adapted from our previous work [10].

to users, then our HDF5-based transport can make use of the BB when the filename
in the HDF5-SENSEI configuration file points to a location on the BB-resident
filesystem. One benefit of using BBs for in transit data transport is that this staging
mechanism may provide a larger maximum data footprint than is possible with
conventional DRAM, memory-based methods. In other words, the total amount of
BB on an HPC system often exceeds the total distributed memory footprint. When
using a BB presented as a filesystem, one might expect that their use for data staging
would be slower than a purely memory-based approach for staging, one that does
not involve writes and reads to a BB-resident filesystem.

Recent studies [10] measure and compare the performance of the SENSEI-HDF5
in transit data transport over BBwith one that uses a socket-based, memory-memory
copy from one node to another. What is unexpected is that the BB configuration
often completes the analysis use cases in less time than the socket-based transport
mechanism as seen in both sets of tests reported in Figure 4. When compared to
using a traditional disk-based filesystem for staging, both socket- and BB-based
approaches are significantly faster, as is visible in the left image of Figure 4.

The right of Figure 4 shows only two data transport options: socket and BB,
but with more test configurations than in the chart on the left. At the outset of this
experiment, we expected the socket-based option to run more quickly than the BB
configuration because it uses memory-memory transfers. However, these particular
experiments show the opposite: the BB configurations run more quickly than the
memory-memory configuration; this result was a surprise. The most likely reason
for this performance difference is that HPC systems architects and developers tend
to optimize for file-based I/O, as opposed to socket-based operations. In this case,

10 Bethel, Loring, et al.

Fig. 4: Left: Time to solution for socket-based (ADIOS-FLEXPATH),
NVRAM/Burst Buffer (HDF5), and disk (HDF5) approaches. Right: Time to so-
lution for socket-based(ADIOS-FLEXPATH) and Burst Buffer (HDF5) approaches.
These images are reprinted from our previous work [10].

<sensei>
<analysis type="hdf5"
filename="/burst/buffer/file"
method="stream" enabled="1" />

</sensei>

(a) Configuration file for specifying HDF5 as
the data transport mechanism for in transit data
movement. Here, the filename path points to the
NVRAM/Burst Buffer.

<sensei>
<analysis type="adios1"
filename="./test"
method="FLEXPATH" enabled="1 "/>

</sensei>

(b) Configuration file for specifying ADIOS-
FLEXPATH as the data transport for in transit
data movement.

Fig. 5: Configuration files that show how to use HDF5 (left, (a)) or ADIOS-Flexpath
(right, (b)). Changing from one transport to the other requires no coding changes,
only a different configuration file.

the NVRAM/BB, file-based approach is faster than a socket-based approach due to
system software architecture and its optimizations for file-based I/O.

In addition to runtime as a performance measure, this same work also examines
other metrics, such as memory consumption. One interesting observation is that the
memory footprint requirements of the memory-based staging approach in these tests
are significantly larger than the memory footprint of the HDF5/BB-based approach.
On the simulation side for the memory-based staging, data is buffered in memory
pools, the size of which grows as a function of how quickly the data can be moved
to the in transit method. In contrast, the HDF5/BB approach does not exhibit these
same memory requirements. See Gu et al., 2019 [10] for more details.

Switching between data transports is a simple as changing a configuration file. For
the test configurations in these studies, Figure 5 shows two configuration files: one
for HDF5/BB, and the other for ADIOS-Flexpath. In the HDF5 configuration file, the
pathname points to a location on the BB filesystem. In the ADIOS configuration file,
the “method” of FLEXPATH requires a unique name, which in this case, is encoded
into the filename field of the configuration file.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 11

analysis

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit In Transit

 Server

 Client SENSEI HPC

System
Network

SENSEI

Fig. 6: libIS in transit architecture with SENSEI. Image courtesy S. Rizzi, N. Ferrier,
and W. Bethel.

3.2 libIS In Transit Data Transport

libIS [19] is a lightweight library for in transit data transport. It uses a client-
server model where clients (consumers) can request data from servers (producers)
on an as-needed basis. libIS has been specifically designed for asynchronous, in
transit analysis, where the simulation and analysis run decoupled from one another.
The simulation-side library, coupled to the simulation either through our SENSEI
interface or directly, exposes the simulation as a data server. The client-side library
queries this server for new timesteps (Figure 6). Simulation and analysis can run on
the same nodes, separate nodes, or within the same MPI launch command.

With in transit intrumentation, the simulation and visualization can each run
in parallel and asychronously, or “loosely coupled.” This allows for interactive in
situ visualization without blocking the simulation. This configuration is in contrast
to tightly-coupled interactive visualization approaches where the simulation blocks
while the visualization method runs. Furthermore, by using libIS’s connect and
disconnect support, such interactive viewers can be used sporadically, e.g., to check
in on a long running simulation, or to begin monitoring after some event without
requiring that additional nodes be set aside for the entire run.

libIS has been demonstrated at scale on Theta (Argonne National Laboratory)
and Stampede 2 (Texas Advanced Supercomputing Center) supercomputers [19].
Use cases include molecular dynamics simulations in LAMMPS instrumented with
SENSEI and an interactive ray tracing viewer. At the time of this writing there is
work in progress to integrate libIS as an additional transport in the SENSEI M:N
data and execution model.

Usher et al., 2018 [20] explored interactive in transit visualization of molecular
dynamics simulations, the visual results of which appear in Figure 7. They used the
LAMMPS simulation code instrumentedwith SENSEI and the libIS in transit library
to move simulation data over the network to a set of nodes running OSPRay, a high

12 Bethel, Loring, et al.

Fig. 7: Interactive in transit visualization of a 172k atom simulation of silicene
formation with 128 LAMMPS ranks sending to 16 OSPRay renderer ranks, all
executed on Theta in the mpi-multi configuration. This image is reprinted from our
previous work [20].

performance ray tracer for CPUs [21]. The libIS performance study used a simulation
input deck that is part of an active scientific research project at Argonne National
Laboratory that performs atomic-level simulations of the formation of silicene [4].

In study’s configuration, the analysis and render components both run on the
same HPC resource. The render side uses libIS to query data from the simulation,
while the OSPRay data-distributed API is used to ray trace the data. The renderer
continues to query for data as the simulation runs, thus enabling the user to monitor
the simulation state while it evolves over time. Along with rendering the data, the
render side also supports running some local VTK pipelines to process the data, e.g.,
to compute bonds between atoms.

3.3 ADIOS In Transit Data Transport

ADIOS is a parallel I/O library with a POSIX-like API [13]. The API requests to
write/read (or put/get) are separated from the engines that perform the requested
services, allowing for a variety of optimizations for functionality and performance,
such as in transit implementations utilizing RDMA interconnect hardware when
available. SENSEI has implementations based on the 1.X and 2.X versions of the
ADIOS API. The ADIOS 2.X series has a complete redesign of the internals in
order to better prepare for exascale computing needs [14], so some terminology
changes between these release versions. In ADIOS 1.X, in transit processing through
memory-based staging methods is provided by several transports: FLEXPATH [6],
Dataspaces [7], andDIMES [22]. Similarly, in ADIOS 2.X there are different engines
that provide both in transit and in situ solutions: SST, SSC, and Inline.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 13

bridge

data
adaptor

analysis
adaptor

simulation analysis

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit

Read

In Transit

Write

SENSEI

Transports:
RDMA
TCP

Burst Buffer
Files

SENSEI

Fig. 8: The ADIOS transport layout in a SENSEI in transit use scenario. Image
courtesy M. Wolf and W. Bethel.

From a SENSEI perspective, these differences only show up as slight differences
in the configuration. A simple cartoon of this process and how ADIOS serves
to connect them within SENSEI can be seen in Figure 8. ADIOS supports data
movement and I/O through a number of engines1. When using ADIOS, SENSEI
selects and configures the ADIOS engine based on settings in user provided XML.

<sensei>
<transport type="adios1"
filename="data_iso_has.bp"
method="FLEXPATH" />

</sensei>

(a) The XML file used with both the simula-
tion and the end-point to configure the ADIOS
adaptor to use ADIOS 1.X API with the Flex-
path transport.

<sensei>
<transport type="adios2"
filename="iso_has.sst"
engine="sst" buffer_size="1">

</transport>
</sensei>

(b) The XML file used with both the simula-
tion and the end-point to configure the ADIOS
adaptor to use ADIOS 2.X API with the SST
transport.

Fig. 9: SENSEI XML used to select and configure ADIOS.

Figure 9 shows an example of utilizing the 2.X version of the ADIOS library
with the SST transport for in transit. ADIOS provides both metadata queries and
data selection methods. An ADIOS reader sees a global summary of all of the
data available from all of the M writers without respect to who originally wrote it.
By default, when moving data between a simulation and an analysis job, SENSEI
applies an equipartitioning algorithm mapping from the simulation’s P data blocks
decomposed on the simulation’s M MPI ranks to the N ranks of the analysis.

1 called transports in ADIOS 1.x

14 Bethel, Loring, et al.

Fig. 10: ADIOS provided buffering hides the cost of a slow analysis from the
simulation. Gantt charts from the simulation and analysis ranks with the largest
resident set size (RSS) high water mark. Black line above the Gantt chart shows
memory usage. Labels indicate: (a) time spent in the simulation computing one
time step; (b) time spent in the analysis processing one time step; (c) simulation
completes; and (d) ADIOS internally serves buffered data as fast as the analysis can
consume it. Image courtesy B. Loring.

SENSEI’s data model incorporates lightweight metadata that describe both the
simulation data available and its mapping onto the simulation’s MPI ranks. The
availability of compact, cheap to move, metadata in in transit applications facilitates
load balancing and re-meshing operations and makes it possible to improve the per-
formance of in transit execution through judicious data downselection as described
in Section 4.

Among a number of useful features, such as easily switching between conventional
disk based I/O and network based data movement, ADIOS also includes advanced
features such as dynamic disconnection and reconnection and a number of buffering
controls. An example of the benefit of ADIOS buffering is shown in Fig. 10. Here,
ADIOS hides the time spent by a slow analysis from the simulation by buffering
data until the analysis can catch up. After each time step is buffered, control returns
immediately to the simulation. The simulation completes in less than 400 seconds
(label (c)) while the analysis continues well passed 1400 seconds. Were it not for
ADIOS’s buffering scheme, the simulation would run substantially slower.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 15

4 Performance Analysis of SENSEI’s M-to-N In Transit
Infrastructure

We present summaries of two studies that evaluate the performance of the SENSEI
M-to-N, in transit design and implementation. The main focus of the studies is to
quantify the performance gains that can result when leveraging metadata so that
only the data needed to solve a particular problem is moved from the producer
to consumer. These studies were conducted at scale on an HPC system using a
benchmark miniapplication from the SENSEI distribution (Section 4.1), and also
using a state-of-the-art production science code that uses adaptive mesh refinement
configured for a Rayleigh-Taylor instability calculation (Section 4.2). These studies
reveal the types of significant performance gains that are made possible by having the
data partitioning step being able to leverage metadata and consumer-side knowledge
to make data requests from the consumer. The complete studies appear in other
publications [15].

4.1 Data Source: Oscillators Miniapplication

One of the design objectives for our M-to-N architecture and implementation is to
make it possible to move only the data that is needed for a particular operation. This
section is a summarization of a study [15] that focuses on the cost savings that result
when leveraging metadata to move only the relevant data needed to solve a problem.

The study focuses on two types of in transit operations where only a subset of
data is required. One operation is a slice extract: in this case only those mesh cells
or data blocks that intersect the slice plane are required to be moved to the in transit
data consumer. The other operation is an isosurface extract: in this case, only those
mesh cells that intersect the isosurface are required to be moved to the in transit data
consumer. These operations are representative of two classes of methods that need
only a subset of the original domain: one is based on some geometric constraints,
in this case, a slice plane; the other is a data-dependent criteria, in this case, an
isocontour.

The data producer is one of the SENSEI miniapplications, oscillators, which
was run on NERSC’s Cori Cray XC40 supercomputer. The code was configured to
perform its computations on a 40963 mesh, which was decomposed into 8192 blocks
onto 8192 MPI ranks. Both oscillators and endpoints were configured to use the
ADIOS 1.13.1 I/O library with the FLEXPATH staging method for data movement.

For each of the two extract operations, the study examines four different perfor-
mance measures under varying levels of endpoint concurrency when using default
and optimized partitioners. In this battery of tests, we wish to better understand a
broad set of performance metrics and at varying levels of concurrency. The slice
plane value and three isocontour levels are intended to result in non-trivial extracts,
which are shown in the top portion of Figure 11. The left column shows the extracted
geometry, the middle column shows the set of blocks that were used in the calcula-

16 Bethel, Loring, et al.

Fig. 11: Optimized partitioners deter-
mine which blocks are needed by the
consumer and assign them to endpoint
ranks while excluding all other blocks
from the dataset. Top row: isosurface
extract.Middle row: planar slice extract.
Left column: extracted geometry. Cen-
ter column: blocks needed to compute
the extract. Right column: all blocks.
Line plot: the fraction of simulation
cells moved as a function of simulation
time. This image is reprinted from our
previous work [15].

tion, and the right columns shows all the blocks. When the optimized partitioner is
in use, the white colored blocks were not moved from the simulation to the endpoint
nor processed by the endpoint.

In the bottom portion of Figure 11, the chart shows, at varying simulation time
steps, the fraction of total data moved from producer to consumer in each of the
optimized partitioner configurations. For the three isosurfaces computed, only about
25% of the data contributes to a solution, and needs to be moved. An exception is
at the first timestep, where the simulation has not evolved the computation to the
point where the output has any cells that contain the isovalue. In the case of the slice,
only about 10% of the mesh cells intersect the slice plane and contribute to the final
solution.

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 17

The original study goes into much greater depth, examining multiple metrics at
varying concurrency for the endpoints and using default and optimized partitioners.
The study metrics include the amount of data moved from producer to consumer in
bytes, the maximum memory footprint across all endpoint ranks, time to solution
(which is akin to runtime), and cost of solution in terms of CPU hours.

Two of the lessons learned from that study are that different ratios of M-to-N
produce vastly different results in terms of performance, and that the ratio of M-to-N
varies depending on the problem. For example, with the isosurface endpoint, many
more data blocks intersect the isocontour when compared to the slice extract, about
25% vs. 10%, as shown in Figure 11. As a result, when increasing the concurrency
level of an endpoint, one encounters diminishing returns at different concurrencies,
depending on the nature of the problem. There is no “one-size-fits-all” ratio that
works best in all settings.

4.2 Data Source: AMReX-based IAMR Code

Continuing the summarization of an earlier study [15], we wish to examine the
potential cost savings that might result when using an optimized rather than a
default partitioner when using with a full-scale scientific simulation, as opposed to
a miniapplication.

We instrumented the AMReX framework [23] for use with SENSEI. This gives us
access to a wide variety of block structured adaptive mesh refinement (AMR) sim-
ulations for testing. In these experiments we made use of the AMReX-based IAMR
compressible Navier-Stokes code [1] configured for the simulation of a Rayleigh-
Taylor instability modeling the mixing of two fluids of different densities under
the influence of gravity. The Rayleigh-Taylor instability produces a set complex
isosurfaces that evolve in time.

In these runs, we configured IAMR for a base level of 10242 x 2048 cells, one
level of refinement, and ran on M=8192 ranks, with 4 OpenMP cores per rank, on
1025 KNL nodes of NERSC’s Cori system. The total number of cores used by IAMR
was 32768. The endpoint was run on 9 nodes with N=128 MPI ranks. We chose this
ratio of M to N based upon the results of the miniapplication study in Section 4.1,
which showed better performance gains for the optimized partitioner when M >> N .

One challenge in processing AMR data is that data blocks from refined levels
duplicate and cover, either partially or fully, data blocks from coarser levels. Care
must be taken when computing metadata and applying partitioning algorithms. For
instance, in the calculation of per-block array minimum and maximum we use to
determine if an isosurface intersects a block, we must not make use of data from
the cells of that block that are covered by cells from a block in a more refined level.
The reason is that covered cells are duplicated in the refined level and hence the
isosurface will be duplicated as well. Our AMReX-specific data adaptor handles this
aspect of the metadata calculation and as a result the optimized isosurface partitioner

18 Bethel, Loring, et al.

Fig. 12: Top: Isosur-
face extracted in tran-
sit from the AMR
mesh produced by
the IAMR code. Mid-
dle: Blocks, colored
by block identifier,
from the AMR mesh
that contain the iso-
surface. These images
are reprinted from our
previous work [15].

can run without modification. The ability to handle complex dataset types such as
AMR meshes, illustrates the flexibility of our approach.

The isosurface extracted at time step 420 is shown in Figure 12 in the top panel,
along with the 4771 level-1 blocks that intersect this isosurface in the bottom panel.
Figure 13 shows the amount of the data moved at each time step for isosurface
extraction with the optimized partitioner (red line) compared to the total data size
(blue line). In the worst case, the optimized partitioner moved less than 40% of the
data.

The original study goes into more depth, including additional performance mea-
sures such as maximum memory footprint, time to solution, and cost of solution in
terms of CPU hours [15]. Both the original study, and the summarization presented
here, show consistency with those presented earlier in Section 4.1. Collectively,
these studies show both the flexibility and performance gains that can result when
leveraging rich metadata when solving a complex M-to-N data mapping problem.

5 Related Work

The idea of processing data as it is generated has been around for decades, with some
of the earliest work consisting of a direct-to-film recording process from the 1960s.
That work, along with a thorough survey of work in the in situ and in transit space
is in a 2016 Eurographics STAR report [2].

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 19

Fig. 13: Data moved during initial runs of the IAMR Rayleigh-Taylor problem. The
data moved when the optimized partitioner is used (red line) is substantially less
than the data that would be moved if a default partitioning algorithm is used (blue
line). This image is reprinted from our previous work [15].

Early work on in transit infrastructure in the HPC space includes the CUMULVS
project, which is middleware for coupling codes running at different levels of con-
currency and for moving data between them in a M-to-N fashion [9]. A more recent
CUMULVS report from 2006 [11] includes a survey of related projects focusing on
M-to-N data partitioning and distribution on HPC platforms, some of which go back
to the mid 1990s.

Over the years, several efforts have studied whether an in situ or in transit con-
figuration will produce lowest cost, typically time-to-solution, for a given problem
configuration. Oldfield et al., 2014 [18] evaluate post hoc, in situ, and in transit in
the context of analysis and tracking of features in simulation output. They identify
situations in which in transit or in situ approaches are more or less advantageous,
such as in transit being advantageous when analysis computations are more com-
plex and time consuming. Morozov and Lukić, 2016 [16] examine in situ and in
transit configurations of a cosmological simulation coupled with a two-stage anal-
ysis pipeline, and find that when the analysis and simulation codes have different
scaling properties, that it is advantageous to use in transit configurations. Kress et
al., 2019 [12] study scalable rendering and aim to find the best balance of M to N
producer and consumer ranks across different levels of concurrency by considering
cost models for both in situ and in transit configurations.

The focus of our work here is on the design, implementation, and performance
evaluation of a method for performing robust, flexible, and general purpose M-to-
N data redistribution for use in an in transit setting at scale on HPC platforms.
In particular, we are interested in understanding the performance gains that can
result when leveraging metadata for partitioning and moving data from producer
to consumer ranks in an in transit configuration. A similar idea appears in Childs

20 Bethel, Loring, et al.

et al., 2005 [5], which describes the “contract” system in the VisIt application
that results in optimizations of data movement through the visualization pipeline:
downstream processing stages inform upstream stages of the data subsets needed
to perform a specific computation. Our performance study uses some of the same
use scenarios from that work, namely planar slicing and isocontouring, to illustrate
the gains that result from optimizing data partitioning and movement. Whereas
that earlier work measured and reported runtime improvement in the setting of an
interactive GUI based post processing visualization application where the stages
of their pipelines ran in the same process address space and data was provided by
disk based I/O, our work here investigates similar approach applied in a setting
where the data produced by a simulation is immediately moved to and processed
in a separate application running at a different level of concurrency. In our work,
fast interconnects move data and as such it never hits the disk: we look beyond just
runtime to examine deeper levels of performance analysis. For each of the default and
optimized partitioner configurations, we measure and report, in addition to runtime,
the amount of data moved between producer and consumer ranks, and the memory
footprint of producer and consumer ranks. These additional measurements beyond
runtime provide significantly deeper insight into the benefit of the optimizations for
in transit data partitioning and placement.

6 Conclusion and Future Work

In in transit processing, one of the central challenges is moving data from the M
producer ranks to the N consumer ranks. We present a design pattern for a flexible,
general purpose solution to this challenging problem. Our implementation adds new
in transit capabilities to the SENSEI generic in situ interface, and we demonstrate
its use and study its performance in a 32K-way parallel run of a production scientific
simulation code, AMReX/IAMR, on a large HPC platform. Our performance eval-
uation measures runtime, amount of data moved, and time to solution to help reveal
the nature of performance gains possible when using an optimized partitioner that
moves only those portions of the data needed by the consumer.

A central theme of the design objectives is the idea of proximity portability,
which means having the ability to run either in situ or in transit, and if run in
transit, to be able to leverage any number of different potential tools for moving
data between producer and consumer ranks. SENSEI’s adaptor design pattern makes
this possible, and this work shows use of three different mechanisms for moving
data between in transit producers and consumers: HDF5, libiS, and ADIOS. This
capability opens new avenues of research for furthering the advantages offered by an
in transit approach, namely being able to overlap computation and communication,
and being able to better load balance between M simulation ranks and N simulation
ranks.

The combination of being able to repartition data from M-to-N producers and
consumers and being able to perform runtime switching between different transports

Proximity Portability and In Transit, M-to-N Data Partitioning and Movement 21

is a critical building block that will accelerate further development and use of in situ
and in transit methods for scientific computing. We anticipate an explosive growth
in applications of methods for doing learning, analysis, and cooperative computing
when science code teams are easily able to couple codes in a flexible way as shown
by the design principles, examples, and performance studies we have presented in
this chapter.

References

1. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive
projection method for the variable density incompressible navier–stokes equations. Journal of
Computational Physics 142(1), 1 – 46 (1998). DOI https://doi.org/10.1006/jcph.1998.5890.
URL http://www.sciencedirect.com/science/article/pii/S0021999198958909

2. Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., Moreland, K., O’Leary,
P., Vishwanath, V., Whitlock, B., Bethel, E.W.: In SituMethods, Infrastructures, and Applica-
tions on High Performance Computing Platforms, a State-of-the-art (STAR) Report. Computer
Graphics Forum (Special Issue: Proceedings of EuroVis 2016) 35(3) (2016). LBNL-1005709

3. Camp, D., Garth, C., Childs, H., Pugmire, D., Joy, K.I.: Streamline integration using mpi-
hybrid parallelism on a large multicore architecture. IEEE Transactions on Visualization and
Computer Graphics 17(11), 1702–1713 (2011). DOI http://doi.ieeecomputersociety.org/10.
1109/TVCG.2010.259

4. Cherukara, M.J., Narayanan, B., Chan, H., Sankaranarayanan, S.K.R.S.: Silicene growth
through island migration and coalescence. Nanoscale 9, 10186–10192 (2017). DOI
10.1039/C7NR03153J. URL http://dx.doi.org/10.1039/C7NR03153J

5. Childs, H., Brugger, E., Bonnell, K.S., Meredith, J.S., Miller, M.C., Whitlock, B., Max, N.L.:
A Contract-Based System for Large Data Visualization. In: Proceedings of IEEE Visualization
(Vis05). Minneapolis, MN (2005)

6. Dayal, J., et al.: Flexpath: Type-based publish/subscribe system for large-scale science analytics.
In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
pp. 246–255. IEEE (2014)

7. Docan, C., Parashar, M., Klasky, S.: Dataspaces: an interaction and coordination framework
for coupled simulation workflows. Cluster Computing 15(2), 163–181 (2012)

8. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the HDF5 technol-
ogy suite and its applications. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pp. 36–47. ACM (2011). Software at http://www.hdfgroup.org/HDF5/

9. Geist, G.A., Kohl, J.A., Papadopoulos, P.M.: CUMULVS: Providing Fault-Tolerance, Visu-
alization and Steering of Parallel Applications. International Journal of High Performance
Computing Applications 11(3), 224–236 (1997)

10. Gu, J., Loring, B., Wu, K., Bethel, E.W.: HDF5 as a Vehicle for in Transit Data Movement.
In: Proceedings of the SC19 Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, ISAV ’19, p. 39–43. Association for Computing Machinery, New
York,NY,USA (2019). DOI 10.1145/3364228.3364237. URL https://doi.org/10.1145/
3364228.3364237

11. Kohl, J.A., Wilde, T., Bernholdt, D.E.: Cumulvs: Interacting with high-performance scientific
simulations, for visualization, steering and fault tolerance. The International Journal of High
Performance Computing Applications 20(2), 255–285 (2006)

12. Kress, J., et al.: Comparing the efficiency of in situ visualization paradigms at scale. In:
International Conference on High Performance Computing, pp. 99–117. Springer (2019)

13. Liu, Q., et al.: Hello ADIOS: the challenges and lessons of developing leadership class I/O
frameworks. Concurrency andComputation: Practice andExperience 26(7), 1453–1473 (2014)

http://www.sciencedirect.com/science/article/pii/S0021999198958909
http://dx.doi.org/10.1039/C7NR03153J
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1145/3364228.3364237
https://doi.org/10.1145/3364228.3364237

22 Bethel, Loring, et al.

14. Logan, J., Ainsworth, M., Atkins, C., Chen, J., Choi, J.Y., Gu, J., Kress, J.M., Eisenhauer, G.,
Geveci, B., Godoy,W., et al.: Extending the publish/subscribe abstraction for high-performance
i/o and data management at extreme scale. Bulletin of the Technical Committee on Data
Engineering 43(1) (2020)

15. Loring, B., Gu, J., Ferrier, N., Rizzi, S., Shudler, S., Kress, J., Logan, J.,Wolf,M., Bethel, E.W.:
Improving performance of m-to-n processing and data redistribution in in transit analysis and
visualization. In: EuroGraphics Symposium on Parallel Graphics and Visualization (EGPGV).
Norrköping, Sweden (2020)

16. Morozov, D., Lukić, Z.: Master of puppets: Cooperative multitasking for in situ processing.
In: Proceedings of the Symposium on High-Performance Parallel and Distributed Computing
(HPDC), pp. 285–288 (2016)

17. Mortensen, M., Dalcin, L., Keyes, D.: mpi4py-fft: Parallel fast fourier transforms with mpi for
python. Journal of Open Source Software 4, 1340 (2019)

18. Oldfield, R.A., et al.: Evaluation of methods to integrate analysis into a large-scale shock shock
physics code. In: Proceedings of the 28th ACM International Conference on Supercomputing,
ICS ’14, pp. 83–92 (2014)

19. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E.,
Pascucci, V.: Libis: A lightweight library for flexible in transit visualization. In: Proceedings of
theWorkshop on InSitu Infrastructures for EnablingExtreme-ScaleAnalysis andVisualization,
ISAV ’18, p. 33–38. Association for ComputingMachinery, New York, NY, USA (2018). DOI
10.1145/3281464.3281466. URL https://doi.org/10.1145/3281464.3281466

20. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka,
M.E., Pascucci, V.: libis: A lightweight library for flexible in transit visualization. In: 2018
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV) (2018)

21. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navrátil,
P.: Ospray-a cpu ray tracing framework for scientific visualization. IEEE transactions on
visualization and computer graphics 23(1), 931–940 (2016)

22. Zhang, F., et al.: In-memory staging and data-centric task placement for coupled scientific
simulation workflows. Concurrency and Computation: Practice and Experience 29(12), e4147
(2017)

23. Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan, C., Day, M., Friesen, B.,
Gott, K., Graves, D., Katz, M.P., Myers, A., Nguyen, T., Nonaka, A., Rosso, M., Williams,
S., Zingale, M.: Amrex: a framework for block-structured adaptive mesh refinement. Journal
of Open Source Software 4(37), 1370 (2019). DOI 10.21105/joss.01370. URL https:
//doi.org/10.21105/joss.01370

https://doi.org/10.1145/3281464.3281466
https://doi.org/10.21105/joss.01370
https://doi.org/10.21105/joss.01370

	Proximity Portability and In Transit, M-to-N Data Partitioning and Movement in SENSEI
	E. Wes Bethel1, Burlen Loring1, Utkarsh Ayachit4, Earl P. N. Duque5, Nicola Ferrier2, Joseph Insley2, Junmin Gu1, James Kress3, Patrick O'Leary4, Dave Pugmire3, Silvio Rizzi2, David Thompson4, Will Usher6,7, Gunther H. Weber1, Brad Whitlock5, Matthew Wolf3, Kesheng Wu1
	Introduction and Overview
	Data and Execution Model Design Considerations for M-to-N, In Transit Processing
	 Endpoint
	Adaptor pattern
	 Metadata
	 Partitioner

	Proximity Portability and SENSEI's Use of Multiple Data Transport Tools
	HDF5 In Transit Data Transport
	libIS In Transit Data Transport
	ADIOS In Transit Data Transport

	Performance Analysis of SENSEI's M-to-N In Transit Infrastructure
	Data Source: Oscillators Miniapplication
	Data Source: AMReX-based IAMR Code

	Related Work
	Conclusion and Future Work
	References
	References

