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Abstract

Objectives: Optical coherence tomography (OCT) can noninvasively visualize in vivo tissue 

microstructure with high spatial resolution that approaches the histologic level. Currently, OCT 

studies in gynecology are few and limited to a conventional 1.3 µm center wavelength swept light 

source which provides high spatial resolution but limited penetration depth. Here, we present a 

novel endoscopic OCT system to provide improved penetration depth with high resolution.

Methods: A novel IVOCT system was developed based on a 1.7 μm swept source laser, which is 

capable of deeper tissue penetration due to its longer wavelength. To evaluate the performance of 

this novel OCT system, we imaged human vaginas in vivo with both conventional 1.3 µm and 1.7 

µm endoscopic OCT systems.

Results: With the 1.7 µm endoscopic OCT system, imaging depth was improved by more than 

25%, allowing better visualization of the lamina propria and clear contrast of the epithelium layer 

from the surrounding tissues.

Conclusion: The significantly improved performance of the novel 1.7 um OCT imaging system 

demonstrates its potential use as a minimally-invasive monitor of vaginal health in gynecologic 

practice.
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Introduction:

The vagina is a dynamic, tubular structure made up of an epithelium, lamina propria, 

muscularis and adventitia layer [1]. The vaginal epithelium is non-keratinized, stratified 

squamous epithelium and contains three layers: an active basal layer, superbasal layer, and 

superficial layer [2]. These layers are estrogen receptor sensitive such that post-menopausal 

epithelium demonstrates a decreased proportion of superficial epithelial cells on histologic 

evaluation [3]. The lamina propria is composed of fibroblasts, which produce collagen and 

elastin, and houses small vessels and nerves. Despite knowledge that collagen contributes to 

epithelial tensile strength and elastin provides elasticity, pathologic changes associated with 

conditions like Genitourinary Syndrome of Menopause (GSM) are not well understood [4]. 

While studies looking at collagen and elastin density before and after menopause have 

varying results, the leading hypothesis is that diminishing estrogen levels affect normal 

degradation and regeneration of the extracellular matrix [5]. Estrogen deficiency promotes 

structural and functional changes in the urogenital tissue which relates to reduced 

vascularization, decreased elasticity and thinning of vaginal epithelium [6]. A substantial 

decline in glycogen production promotes changes in vaginal pH, decreased lactobacilli and 

increased susceptibility to inflammation. Subsequent symptoms of GSM include: dryness, 

dyspareunia, itching, and lower urinary track symptoms.

To date, studies to evaluate the epithelium mainly rely on invasive biopsies for histologic 

evaluation. Therefore, there is a need for non-invasive techniques capable of evaluating the 

vaginal wall clinically. In recent years, more and more noninvasive imaging technologies, 

such as fluorescence, OCT, Doppler OCT, ultrasound, and photoacoustic imaging, have been 

developed to provide morphology and molecular contrast of biological tissue [7–11]. Among 

them, OCT has the advantage over histologic tissue analysis (obtained by biopsy) in 

acquiring high resolution, microscopic images with a non-invasive approach [12]. This 

technique has already demonstrated success in dermatology, ophthalmology, breast surgery 

and cardiology but limited use in gynecology. For example, Vincent et al. validated epithelial 

thickness measurement with OCT using a sheep model and subsequently demonstrated 

consistent visualization of the epithelial-lamina propria interface and changes in epithelial 

thickness after treatment with nonoxynol-9 [13, 14]. Despite these novel findings, OCT 

imaging of the human vagina in vivo has not been reported. Recently, Li et al. published 

results of a novel OCT system with a 1.7 µm center wavelength swept light source by 

imaging coronary arteries ex vivo [8], which penetrates deeper into tissue based on the 

utilization of a longer wavelength. Thus, more structural information can be obtained. When 

extrapolating this technology to gynecology, we hypothesized that 1.7 µm endoscopic OCT 

system can better characterize the vaginal wall for evaluating laser treatment compared with 

current methods [15–17]. Therefore, we developed a 1.7 μm endoscopic OCT technology to 

visualize the morphology of the vaginal wall in vivo to demonstrate capability for disease 

diagnosis and treatment evaluation. In addition, in vivo imaging of human vagina from a 1.7 

μm endoscopic OCT system is compared with a 1.3 μm endoscopic OCT system to 

demonstrate the advantages of the 1.7 μm endoscopic OCT system.
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Materials and Methods:

System setup and imaging probe

The novel OCT system consists of a fiber optic-based Mach-Zehnder interferometer (MZI) 

with a 1.7 μm center wavelength swept light source (Santec, Inc. HSL-40–90-B, 90 kHz, 120 

nm bandwidth) as shown in Figure 1(a). The output energy is split by a 90:10 coupler. The 

reference arm (low energy), which consists of a collimator, lens and mirror, has a fixed 

delay. The sample arm (high energy) includes a fiber optics rotary joint and imaging probe 

for transmitting the light to the tissue. Two circulators with a center wavelength of 1650 nm 

are used to separate the illumination light and back scattered/back reflection light. The 

collected light from the sample arm and reference arm generates interference in a 50/50 

coupler with a center wavelength of 1650 nm. The interference signal is detected by a 

balanced photodetector which is able to remove the noise by subtracting the two optical 

input signals from each other. In order to better evaluate the performance of this novel 

endoscopic OCT system, another MZI-based OCT system with a 1.3 μm center wavelength 

vertical-cavity surface-emitting laser (VCSEL) swept source (Thorlabs Inc., 100 kHz, 100 

nm bandwidth) was built to perform the same experiments. A 12 bit data acquisition board is 

used to detect and record the interference signal. The software is written entirely in C++ for 

data acquisition, image processing, and display in real-time using a graphics processing unit. 

A logarithmic transform is applied to the OCT signal in all of the figures to make low-

reflective layers visible.

A 1.2-mm-diameter proximal scanning flexible endoscopic OCT imaging probe was 

developed. Figure 1(b) shows the schematic of the imaging probe. The OCT laser beam 

propagates through the single mode fiber, is focused by a gradient index (GRIN) lens, and 

then reflected towards the tissue surface by a mirror. All of the elements are housed in a 

metal cap and fixed by epoxy. The cap is connected to a double-wrapped torque coil to 

transmit the torque from the rotary motor to drive the imaging probe for performing cross-

sectional imaging. The 3D scanner consists of a fiber optics rotary joint (Princetel Inc., 

MJXA-FAPB-131-DC-FA), rotary motor (MicroMo Electronics, Inc.), and translation stage 

(Zaber Technologies Inc.).

In vivo human experiment

This was a prospective pilot study to evaluate the vagina using OCT on healthy women. 

Women were recruited from the Division of Female Pelvic Medicine and Reconstructive 

Surgery at UC Irvine and participated voluntarily. A brief history was obtained to confirm 

pre-menopausal status. Before performing OCT, a vaginal lavage with 60ml of sterile water 

was performed to minimize the presence of transudate. Participants were placed in the dorsal 

lithotomy position while obtaining OCT images. The imaging probe within a sterile sheath 

was placed in the vagina to the level of the uterine cervix and withdrawn at a standard speed 

of 1mm/s. A single operator performed all procedures. Imaging was done using the 1.7 μm 

and 1.3 μm endoscopic OCT systems.

All methods were carried out in accordance with the University of California, Irvine (UCI) 

Institutional Review Board (IRB) under protocol HS# 2017–3686.
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Results

Two pre-menopausal female subjects were enrolled in the study. Figure 2 shows the cross-

sectional OCT images and penetration depth from two endoscopic OCT systems. Figures 2 

(a)-2(c) show the OCT vagina cross-sectional images and quantitative analysis of 

penetration depth from subject 1. In Figures 2 (a) and 2 (b), the epithelium and lamina 

propria are clearly identified; however, less of the lamina propria is obtained by the 1.3 μm 

endoscopic OCT system. Figure 2 (c) is a quantitative analysis that shows the penetration 

depth of both OCT systems from the areas indicated by the red dashed lines demonstrating a 

deeper penetration depth obtained by the 1.7 μm endoscopic OCT system. Figures 2 (d)-2 (f) 

represent the OCT vagina cross-sectional images and quantitative analysis from subject 2. 

Again, the vaginal epithelium and lamina propria are clearly identified and the deeper 

penetration depth for the 1.7 μm endoscopic OCT system is demonstrated.

In order to better evaluate the performance of the 1.7 μm endoscopic OCT system, a 

quantitative analysis of penetration depth was performed. The penetration depth is 

determined by calculating the imaging depth in which the signal to noise ratio of the OCT 

signal is above −25 dB (noise level of OCT images). The corresponding results are shown in 

Figure 3. Around 1000 cross-sectional images from each subject were collected, and 50 

equally spaced cross-sectional images were used to calculate the averaged penetration depth 

of each cross-sectional image which was obtained by averaging the penetration depth of all 

of the A-line signals of each cross-sectional image. Figure 3 shows the averaged penetration 

depth from two subjects with the two endoscopic OCT systems. From the figure, it can be 

found that the averaged penetration depth is 1.65 mm with the 1.7 µm endoscopic OCT 

system and 1.3 mm with the 1.3 µm endoscopic OCT system. A more than 25% 

improvement in the penetration depth is demonstrated, allowing better visualization of the 

lamina propria and clear contrast of the epithelium layer from the surrounding tissues.

Figures 4 shows representative OCT images obtained by both endoscopic OCT systems 

from two subjects. Comparing the OCT images from the two endoscopic OCT systems, 

much more information can be obtained along the axial direction with the 1.7 μm endoscopic 

OCT system. Video is available online that shows real time cross-sectional OCT images 

(Video 1).

Figure 5 shows 3D OCT images of the human vagina. Figures 5 (a), 5 (b), 5 (d) and 5 (d) are 

3D OCT images with different views. Figures 5 (e) and (f) are cross-sectional OCT images 

of a longitudinal view (indicated by the blue and green dashed squares, respectively) 

obtained by the 1.7 μm endoscopic OCT system in which typical layers can be identified. 

For some areas, the vaginal epithelium and lamina propria cannot be clearly separated. 

There are two possible reasons. First, due to vaginal folding, the OCT beam hits the tissue 

surface at a slightly different imaging distance from the OCT probe. When the tissue is not 

at the focal plane, SNR of the vaginal image may decrease which can cause an unclear 

boundary between the epithelium and lamina propria. In addition, transudate in the vagina 

scatters and absorbs OCT light which also explains the reason of decreased SNR at some 

locations. In the future, we will apply an axicon lens to generate an extended focal plane.
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To obtain the microstructure of the vagina at different depths, an en face OCT image was 

rendered and is depicted in Figures 6 (d)-(g). Sheath distortion is due to pressure from the 

vaginal wall. An algorithm was performed to find the edge of the sheath and flatten the edge, 

as shown in Figures 6 (a) and (b). In Figure 6 (d), the unfolded 3D image depicts the 

different layers of the vagina. Figures 6 (e), (f) and (g) show 2D longitudinal cross-sectional 

images from varying depths, indicated by green arrows in Figure 6 (d). Video is provided 

online to show OCT longitudinal cross-sectional images through the whole imaging depth 

(Video 2).

Discussion

To our knowledge, this pilot study represents the first demonstration of endoscopic OCT 

imaging and the first attempt to evaluate the 1.3 μm and 1.7 μm endoscopic OCT systems for 

in vivo imaging of human vagina. In comparing our OCT images to vaginal histology 

available in the literature, both endoscopic OCT systems demonstrate the vaginal epithelium 

and lamina propria [18, 19]. This is inferred from the density and depth of the visualized 

layers. The 1.7 μm endoscopic OCT system penetrates deeper than the 1.3 μm OCT system 

and may provide more information within the layers of the vagina.

There are many potential clinical uses for 1.7 μm endoscopic OCT imaging on vaginal 

tissue. Currently, pathologic changes in the vagina are determined by gross physical 

examination and histologic evaluation. While areas that are suspicious for malignancy 

warrant biopsy and histologic evaluation, other conditions, such as GSM, pelvic organ 

prolapse or stress urinary incontinence (SUI), do not. It is hypothesized that abnormal, 

progressive remodeling of collagen, elastin and vascularity within the extracellular matrix 

lead to altered architecture and decreased support [20]. Hypoestrogenic states, such as a 

GSM, exacerbate this abnormal remodeling. Jackson et al. hypothesized that estrogen should 

increase the quantity of collagen; however, their results showed decreased concentrations of 

collagen [5]. This highlights the remaining uncertainty about what happens at the 

microscopic level to cause these medical conditions.

Non-invasive techniques like ultrasound and OCT are promising tools to further delineate 

the pathophysiology of abnormal tissue remodeling at the microscopic level. Ultrasound 

represents an imaging system that is commonly used in gynecology. Panayi et al. attempted 

and validated the use of ultrasound to evaluate the vagina; however, this technique provides 

little information beyond vaginal wall thickness due to poor axial resolution [21]. OCT can 

also be used as a point of care test: its spatial resolution and ability to detect images on a 

micrometer scale are far superior to ultrasound. Our study was able to demonstrate high 

resolution images of the vagina, in vivo, and show deeper penetration depth with the 1.7 μm 

versus 1.3 μm endoscopic OCT systems. These findings highlight the potential for 1.7 μm 

imaging to evaluate changes in the vaginal extracellular matrix of human subjects over time. 

In addition, 1.7 μm OCT may be able to visualize more blood vessels at the deeper region of 

laminar propria. Since the blood vessel plays an important role in maintaining tissue 

function, the 1.7 um OCT system may provide more accurate evaluation of treatment effects 

by visualizing more vasculatures. However, there are a number of challenges we need to 

overcome before translating the 1.7 um OCT system into gynecology clinics, including 
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further improvement of penetration depth and spatial resolution for visualizing more 

morphological features of the vaginal wall, implementation of a swept light source with 

sufficient phase stability and an advanced image processing algorithm for imaging 

microvasculature, and automation of image analysis for accurate and rapid diagnosis. Future 

studies will focus on system improvement and quantification of microvasculature. We will 

also validate our findings with hematoxylin and eosin histology. Quantitative changes in 

collagen, elastin, glycogen enriched epithelial cells, and vascular density within the lamina 

propria may provide answers to how the vagina changes with various medical conditions and 

their subsequent treatments.

Conclusion

We have developed a 1.7 μm endoscopic OCT system and demonstrated the first in vivo 
imaging of human vagina. The significantly improved performance of the novel 1.7 um OCT 

imaging system demonstrates its potential use as a minimally-invasive monitoring of vaginal 

health in gynecologic practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic of the 1.7 μm OCT system.
(a) System and (b) the imaging probe. 3D scanner consists of a fiber optics rotary joint, 

rotary motor, and translation stage.
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Figure 2: OCT images of human vagina and quantitative analysis of penetration depth.
(a) and (d) OCT images with the 1.7 μm endoscopic OCT system. (b) and (e) OCT images 

with the 1.3 μm endoscopic OCT system. (c) and (f) Quantitative analysis of penetration 

depth for the two endoscopic OCT systems.
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Figure 3: 
Quantitative analysis of penetration depth with the 1.7 μm endoscopic OCT system and the 

1.3 μm endoscopic OCT system.
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Figure 4: OCT images of human vagina with two OCT systems.
(a) and (c) OCT images obtained from subject 1 with the 1.7 μm OCT system. (b) and (d) 

OCT images obtained from subject 1 with the 1.3 μm OCT system. (e) and (g) OCT images 

obtained from subject 2 with the 1.7 μm OCT system. (f) and (h) OCT images obtained from 

subject 2 with the 1.3 μm OCT system. Green arrow: sheath. Yellow arrow: epithelium. Red 

arrow: lamina propria.
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Figure 5: 3D OCT images.
(a), (b), (c) and (d) show 3D OCT images with different views from the 1.7 μm endoscopic 

OCT system. (e) And (f) Corresponding longitudinal OCT images (*: transudate).
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Figure 6: En face 3D OCT image of human vagina.
(a) Original cross-sectional OCT images. (b) Calibrated cross-sectional OCT image. (c) 

OCT images. (d) En face 3D OCT image. (e), (f) and (g) Cross-sectional OCT images at 

different depths, indicated by green arrows in (d). Scale bar: 1mm.
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