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Abstract 

 

This paper evaluates strategies for operating buses on signal-controlled arterials using special lanes that 

are made intermittently available to general traffic. The advantage of special bus lanes, intermittent or 

dedicated, is that they free buses from traffic interference; the disadvantage is that they disrupt traffic.  

 We find that intermittent lanes, unlike dedicated ones, do not significantly reduce street capacity.  

Intermittence, however, increases the average traffic density at which the demand is served, and as a 

result increases traffic delay. These delays are more than offset by the benefits to bus passengers as long 

as traffic demand does not exceed by much the maximum flow possible on the non-special lanes; the 

smaller the excess the better.  

 The main factors determining whether an intermittent system saves time are: the traffic saturation 

level; the bus frequency; the improvement in bus travel time achieved by the special lane; and the ratio of 

bus and car occupant flows. In some scenarios where a dedicated bus lane could not be operated, an 

intermittent lane can save to bus and car occupants together as much as 20 persons-min of travel per bus-

km. The required conditions for this to happen are quite particular. Typical savings are smaller.  Formulae 

are given. 



INTRODUCTION 
 

Urban traffic congestion severely impairs the effectiveness and attractiveness of bus systems. As a result, 

and despite their limited resources, transit agencies have to spend a considerable amount of time and 

effort implementing workarounds to the problem. Inexpensive solutions that do not involve new 

infrastructure are the most desirable.  

 One low-cost option is transit signal priority (TSP).  With TSP, buses can extend the green phase 

of traffic signals to claim the right-of-way and proceed unimpeded through an intersection. A handful of 

studies have documented the benefits of TSP implementations.  [Balke et al, 2000; Banerjee, 2001;  Cima 

et al, 2000; Duerr, 2000; Furth et al, 2000; Garrow et al, 1998; Hunter-Zaworski et al, 1995; Janos et al, 

2002; Kloos et al, 1995; Lin, 2002; Nash et al, 2001; Skabardonis, 2000] Unfortunately, TSP loses 

effectiveness with heavy traffic because the signals have to accommodate, not just to the bus, but also the 

traffic in which it is embedded. 

 Dedicated bus lanes (DBLs) are another option.  They may be combined with TSP to increase 

their impact. Unfortunately, DBLs remove one lane from general use and therefore reduce capacity.  

Obviously, DBLs are only appropriate for low traffic flows. This limitation can be partly overcome by 

opening the bus lane to general traffic intermittently when not in use by a bus.  

 Viegas et al, [2001, 2004] seem to have been first in proposing and analyzing the concept of an 

intermittent bus lane (IBL). The system in these references restricts automobiles from changing into the 

bus lane ahead of the bus, but does not request those vehicles already there to leave the lane. It relies on 

signal adjustments (TSP) to flush the queues at traffic signals and clear the way for the bus.  These signal 

adjustments may increase the amount of green time allocated to the arterial at times when the arterial 

demand is low, and this could reduce capacity and increase delay to side streets.  

 The IBL variant proposed here, termed “BLIP” (which is short for bus lanes with intermittent 

priority), forces traffic out of the lane reserved for the bus with variable message signs (VMS). BLIPs do 

not require changes to the signal settings. Therefore, they should be efficient and easy to evaluate. BLIPs 

can be combined with TSP, if desired. 

 This paper uses deterministic analysis techniques of traffic flow (kinematic wave) theory to study 

the feasibility, costs and benefits of BLIPs. We recognize that IBLs and BLIPs will not eliminate any 

problems currently experienced with DBLs, such as accommodating right turns and dealing with 

pedestrian interference. If these problems are pressing, infrastructure-intensive solutions such as bus-

rapid-transit (BRT) may be required. Comparisons to BRT are not in the scope of our analysis. Therefore, 

BLIPs will only be compared to the DBL and “do-nothing” (mixed-traffic operation) alternatives. Section 

1, below, evaluates the automobile carrying capacity of BLIP systems, and Section 2 shows how to 
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estimate the travel time savings to both the automobile and bus occupants of an under-saturated BLIP 

system. Section 3 discusses the results and describes the proper domain of application for BLIPs.  
 

1 CAPACITY ANALYSIS 

A BLIP is essentially a set of rolling spatial cocoons (bus-lane sections) in which buses travel to the 

exclusion of other traffic. Each cocoon starts at the rear bumper of its bus and extends a fixed distance 

ahead. This zone is kept clear of non-bus traffic to ensure that the bus does not experience any delay. For 

practical reasons, the exclusion zone is assumed not to travel continuously along the roadway, but to 

advance discretely one block at a time. VMSs, possibly combined with in-pavement lights, would 

announce the changes. These changes would create temporary bottlenecks at the locations where lanes are 

dropped. These bottlenecks are the critical BLIP feature that an analysis should dissect. 

 Shaheen et al [2005] presents a preliminary analysis of BLIPs, which uses a number of 

assumptions about cycle lengths, signal offsets and level of service constraints. They limit its generality. 

Our approach will yield rougher but simpler results and more general insights.  

 The proposed approach pertains to large systems, with so many blocks and bus stops that the 

street on which the bus moves can be treated as a homogeneous road without signals—i.e., where the 

disturbances of the traffic signals can be averaged in time and space.  Buses are then modeled as slow 

vehicles that interfere with the flow of traffic, as “moving bottlenecks.” The presence of buses reduces 

capacity and creates delay, but not as much as if a lane had been dedicated to the bus. This macroscopic 

idealization will reveal the main factors affecting performance, and simple formulae quantifying their 

effects. The next three subsections introduce supporting concepts and notation from kinematic wave 

theory (Sec 1.1); describe the operation in more detail (Sec 1.2); and estimate capacity (Sec 1.3). 
 

1.1 Kinematic Wave Theory 

This analysis uses concepts of the kinematic wave (KW) theory proposed by Lighthill and Whitham 

[1955] and Richards [1956]. This theory provides tested techniques for modeling traffic flow and 

queuing.  It informs us on phenomena describing the dynamics of queue growth and discharge, the 

formation of stationary states in space-time, traffic response to signals and moving bottlenecks. The 

theory has limitations but can predict reasonably well average trip times over long distances, which is the 

metric of interest in our analysis.  

 One component of KW theory is a fundamental diagram (FD) that describes the relation between 

flow and density in the steady state.  Our analysis assumes a triangular FD for all lanes combined, as 

displayed in Figure 1.  This is both simple and experimentally justified.  
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 The flow at any given point on the diagram (a stationary “traffic state”) will be expressed as a “q” 

with a subscript matching the label of the point on the diagram.  For example, the flow at point E will be 

qE.  Figure 1 depicts two curves.  The outer, larger curve pertains to the full roadway, when all lanes are 

open to traffic.  The inner, small curve describes the “reduced” roadway—when one of the lanes has been 

reserved for the bus and is therefore no longer available to private vehicles.  Figure 1 displays the 

following traffic states, which will turn out to be of interest: 

A Generic uncongested  
J Full roadway, jam density 
C Full roadway, capacity 
F Reduced roadway, jam density 
E Reduced roadway, capacity 
B Full roadway, congested conditions with same flow as state E 
G Reduced roadway, congested conditions with same speed as B  

 

Kinematic wave theory describes how a road in any initial condition (characterized by a distribution of 

states along its length), and with any feasible input flow, evolves over time. Of particular relevance for 

this paper are the moving bottleneck models in Gazis and Herman [1992], and Newell [1993].   
 

1.2 The BLIP operation and its effect on traffic 

Figure 2 is a time-space diagram constructed with KW theory of a BLIP system operating at capacity--

with maximum entering flow from upstream. The states displayed in dotted shades of grey (E2 and F) are 

restricted, i.e., correspond to the inner diagram with one less lane. The states displayed with solid shades 

are unrestricted. Traffic in restricted states cannot delay a bus. The diagrams assume that the restriction is 

announced by variable message sign (VMS) postings at every intersection.  These postings create a space-

time region of (dotted) restricted states that allows the bus to travel unhindered by traffic—and vice versa. 

A hypothetical bus trajectory is depicted by a dashed line. Notice how the bus is allowed to pass the 

vehicles queued at the signal in state F, and how traffic is allowed to pass the bus, when in state E2. 

 Our diagram assumes: (i) that postings last for a full cycle,1 and (ii) that vehicles to have seen a 

posted restriction must obey it for the full length of the block until passing the VMS at the next 

intersection. Although the figure does not explicitly show the postings, the reader can verify that it is 

based on (i) from the result: note that the restriction must obviously be “on” at an intersection whenever 

its “world line” touches from below a restricted state E2 during a green period; and “off” when the 

downstream state is unrestricted. 

                                                 

1  Shaheen et al (2005) also examine a less restrictive approach where postings can change in mid-phase, but find 
that the benefit of this generalization is small. Since the generalized approach is more complicated to implement, 
and could create confusion among drivers, it is not considered here. 
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 Figure 2 shows how disturbances grow and propagate when upstream traffic demand is large. The 

reduced queue discharge rates caused by VMS signs create queues of state B traffic at some signals that 

do not completely dissipate. Remnants propagate back to the upstream boundary, and manifest 

themselves as spillovers that block access.  
 

1.3 Analysis of BLIP Capacity 

As the above analysis has indicated, a BLIP creates long-lasting queues that propagate upstream when 

traffic demand is at capacity—or close to capacity.  Considering that subsequent buses can be delayed by 

these queues, further analysis is necessary to determine the collective effect of all the buses. 

 To this end, we consider a long bus route with many stops operated on a homogeneous road with 

many signals.  The signals run with the same cycle, c, and green phases, g, but arbitrary offsets. (More 

generality would cloud the issues at hand; therefore, extensions will be discussed at the end of the paper.) 

We zoom out to a large scale of analysis, where the impacts caused by the signals can be averaged out 

and the street treated as if it was roughly homogeneous.  

1.3.1 Macroscopic methodology 

The fictitious road should have a set of stationary states that closely match the spatially and temporally 

averaged states of the real road.  We assume that the intersections are sufficiently separated to guarantee 

that the capacity of the system is unaffected by the offsets. This is reasonable in any setting where a BLIP 

may be considered. The system capacity (maximum flow with signals) is then qM = qC g/c. 

 The maximum flow can be sustained on a street with signals in more than one way; see Newell 

[1981] for some discussion. At the least congested end of the spectrum we have a pattern (“M”) achieved 

when an upstream queue discharges into an initially empty system. Figure 3(a) illustrates this for the case 

where the offsets are all zero. At the most congested end is the pattern (“N”) obtained when an initially 

jammed system dissipates from downstream. Figure 3(b) illustrates this case. These patterns are 

macroscopic states, and can be plotted as points M and N on the density-flow plane. Note that pattern M 

has a higher average density than pattern N, although both exhibit the same flow.2 We postulate that the 

set of states that can arise and be sustained on this street can be approximated by a trapezoid with corners 

at points O (the origin), M, N and the jammed state, J; see Fig. 4(a).  

This is reasonable. Patterns with average densities between kM and kN arise for example if parts of 

a street are in state M and other parts in state N; this dichotomous state of affairs is stable and sustainable. 

                                                 

2 The relative position of points M and N depends in a complicated way on the timing plan. For some plans, M = N; 
for others they are far apart. 
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Hence, the horizontal line containing points M and N will be called the capacity line. The slope of the 

rising (left) branch of the trapezoid, denoted u, is the average speed of traffic in state M. Linearity implies 

that this speed is assumed to be the same for all uncongested states, although in reality the average traffic 

speed declines with flow. To capture this effect we introduce a separate parameter for the speed when the 

road is empty, vo, which should be greater than u. [A better approximation would recognize that the rising 

branch of the trapezoid is concave, since speed declines with flow, but the shape of this branch depends 

on details of the signal settings that are cumbersome to specify. The effort would be of little value 

because the uncongested states that arise in our analysis are usually close to M.]  We also use a linear 

dropping branch, since its shape is even less important. Note that the slope of this branch must be 

shallower than the slope of the FD for the road without signals. There is a reason for this: since the 

coordinates of point N are generalized averages in the sense of Edie [1963], point N must be at the center 

of gravity of points O, C and J, when they are weighted by their areas on the time-space plane; obviously, 

point N must be interior to triangle OCJ.  

 By definition, the new FD matches the stationary states observed on the real road. We propose 

that this FD can also be used with KW theory to describe the macroscopic dynamics of the road with and 

without BLIPs. To see that this is reasonable let us examine the backward wave speed of the modified 

road. The backward wave speed is an important determinant of dynamic behavior, since it is the speed at 

which disturbances propagate inside queues, which helps determine their length. Note from Fig. 4(a) that 

the wave speed of the new FD (the slope of the dropping branch) is significantly less than the original, as 

we have already discussed. Reassuringly, we see that the disturbances “B” of Fig. 2 are delayed at the 

traffic signals; they travel with the original wave speed between signals, but experience delays and indeed 

travel with a lower average speed. The reader can verify that their average speed is indeed the wave speed 

of the modified FD. Thus, we can be confident that treating the road as we are suggesting is reasonable, 

even in the dynamic case.   This is convenient because buses and their cocoons can then be modeled as 

KW moving bottlenecks. 

1.3.2 Effect of a single bus on a long street 

For ease of explanation we initially treat these bottlenecks as points (neglecting the spatial extent of the 

cocoons) and generalize the results later. Moving bottlenecks can create different traffic conditions 

upstream and downstream of their locations—when they hold back a queue. When this happens, upstream 

traffic is in a congested state (U) and downstream traffic in a freely flowing state (D). The flow of state D 

(the bottleneck capacity) is assumed to be the capacity of the reduced system (minus one lane) including 

the effect of signals, qD  = qM(n-1)/n, in agreement with Gazis and Herman [1992] and Newell [1993]. 
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Conservation of flow past the bottleneck implies that the interface between states D and U (the bus), 

which travels at an average speed of vB, is expressed in the FD by a line with slope vB from state D to state 

U.  Thus, the position of state U on the FD is completely determined; see Fig. 4(a). Note that state U has 

higher flow than D. If the speed of the bus is sufficiently high, as occurs in the figure, qU = qM.. For 

typical values of the parameters, even if U is on the dropping branch, qU ≈ qM.  

 According to KW theory, if the road was infinitely long and there was an infinite demand waiting 

to enter, the introduction of a single BLIP bus would result in the pattern of Fig. 4(b) in the neighborhood 

of the bus. Consideration also shows that the same pattern would apply if the dimensions of the bus 

cocoon are non-zero but too small to be discernible in the picture. Thus, the figure applies to cocoons of 

any size when used to examine the evolution of the system for an indefinitely long time.  We see that the 

beginning of the roadway would switch from state D to state U after the bus passage. Hence, qU is the 

maximum flow that could be sustained; i.e., the capacity (qmax) of the single-bus BLIP system on an 

infinitely long street. Thus, qmax = qU  ≈ qM.  This shows that the introduction of a single BLIP bus does 

not significantly reduce the street capacity, which was qM to begin with. By comparison, a dedicated bus 

lane reduces street capacity by 100/n % from qM  to qD.  This suggests that BLIPs should have the most to 

offer when traffic demand exceeds qD because then a dedicated lane is infeasible. 

1.3.3 Multiple buses 

 Extending the analysis to more than one bus is easy. Figure 5 illustrates the situation where the 

BLIP lane makes up a portion of length L of the roadway in question and buses follow each other with 

headway H.  We assume that buses are not coordinated with the signals and (momentarily) that the time-

dimension of the cocoon (the signal cycle c) is small compared with the headway (i.e., c << H.)  The 

fundamental diagram for this situation, Figure 5(a), indicates that the traffic demand is in a state A with 

flow qA ∈ [qD, qU]. The time-space solution in Fig. 5(b) shows that the state introduced by each bus 

downstream of itself, D, meets with the congested upstream traffic state U from the previous bus, 

canceling out a wedge of state A. The wedge may be truncated if the road is very short. In either case, the 

average flow across any point on the road is qA,, independently of L and H, and this flow can be sustained 

for any number of headways. Thus, any flow qA ≤ qU can be sustained. We also see from the analysis that 

demands qA greater than qU cannot be accommodated. Thus, qU (≈ qM) continues to be the car-carrying 

capacity of the system, provided H >> c.  

 For smaller H (but H ≥ c) the bus trajectories of Fig. 5(b) would become bands of time-width c in 

which state D would prevail. The geometric pattern between the bands would be similar to the original, of 
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time duration H-c instead of H, and the maximum possible demand in the inter-band portions would 

continue to be qU.  By prorating the maximum flows in the band and inter-band regions we obtain the 

following formula for the automobile-carrying capacity of the system: 

   qmax = qD,(c/H) + qU(1−c/H) ;    for H ≥ c.    (1) 

We assumed in the construction of Fig. 5 that state U is on the capacity line. If the bus speed is so low 

that U is on the declining branch of the FD, the diagram of Fig 5(b) would look only slightly different. A 

picture would reveal that in this case too, a flow equal to qU can always be accommodated, and that qU ≈ 

qM , as we have already mentioned. If we make this substitution in (1), and also use the relation qD = 

qM(n-1)/n , we find: 

   qmax  ≈  [1−c/(nH)] qM  ;    for H ≥ c.    (2) 

The ratio c/(nH) appearing in this formula is the fractional reduction in a street’s car-carrying capacity 

caused by a BLIP.  Values on the order of just a few percent should be typical—the reduction is 5% if n = 

4, c = 1 min, and H = 5 min.  

To summarize, we have shown that a BLIP can accommodate a car flow up to a level close to qM 

independently of the BLIP’s length if the street has three lanes or more and the BLIP headways are 

considerably longer than the signal cycle. Under these conditions, BLIPs do not significantly reduce road 

capacity.  However, as should be clear from Figure 4, BLIPs do change the character of capacity traffic 

by increasing the average density at which capacity is achieved. This change in character affects level of 

service, and this is examined next. 
 

2 LEVEL OF SERVICE ANALYSIS 

We consider in this section the delay imposed by a BLIP on a traffic stream, assuming that the demand 

does not exceed capacity. We will express the results in terms of “average pace”; that is the average 

number of minutes required to travel a mile.  We will do this, first for the traffic stream and then for the 

bus. We will compare the change in pace for both modes before and after the BLIP.   
 

2.1 The effect of BLIP on automobile delay 

We first consider the asymptotic case of a very long bus line, with L → ∞, and then examine the 

corrections due to end effects.  We assume that the bus average speed is such that qU ≈ qM and that the 

demand is in the range qA ∈ [qD, qU].  
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2.1.1 Long Roads 

Assume to begin with that H >> c and neglect the width of the cocoon. The diagram of Figure 5(b) 

applies. If for a given FD, L is allowed to grow while H is held constant, the wedge of state A stays 

pinned to the upstream end of the diagram without any change, but the interface between states U and D 

will grow.  For very large L, the diagram consists of alternating parallel bands of states U and D, with a 

negligible wedge of state A at the bottom. We assume here that the bands extend from the beginning to 

the end of the road. The correction due to the wedges will be presented later; it is negligible for large L.  

 Let HU and HD denote the time span of each band, such that 

HU + HD = H.        (3a) 

Since the average flow in one headway must be qA at all locations, we have:  

qUHU + qDHD = qAH,     where  0 ≤ qD  ≤ qA  ≤  qU  = qM.   (3b) 

This determines the relative width of each band. 

The total number of vehicle-minutes spent by drivers between two consecutive buses can be 

written using Edie’s generalized (average) density for the time-space region between buses, which is:  

kS = (kUHU + kDHD)/H.         (4a) 

The expression for vehicle-minutes of travel per bus is (see e.g., Daganzo 1997),  

Total time per bus = LHkS  .      (4b) 

Recall now that Edie’s generalized flow for the time-space region between buses is qS = (qUHU + 

qDHD)/H ≡ qA.  Thus, the generalized average state between buses is point (kS, qA) of the density-flow 

plane. As shown by Fig. 5(a), this is the point at which the horizontal line for flow qA intersects segment 

DU. The speed associated with point S is the average speed of traffic. The length of segment AS, denoted 

⎟AS⎜, is proportional to the increase in travel time caused by the BLIP.  Figure 5(a) shows at a glance that 

this penalty increases linearly with both, the demand, qA, and the average bus pace, 1/vB. In fact, letting ∆ 

denote the increase in the vehicle-minutes of automobile travel induced by one bus-kilometer we have: 

∆ = ⎟AS⎜H  = (kS – kA)H = (qA –qD)(1/vb – 1/u)H ;    for  H >> c.  (5a) 

If the physical dimension of the cocoon is incorporated into the analysis, bands of state D replace the bus 

trajectories of Fig. 5(b), and the overall portion of the diagram covered by state D increases. Thus, traffic 

speed increases, and (5) is an upper bound to the penalty imposed by a BLIP. The actual penalty can be 

easily derived by repeating the analysis; it turns out to be (1- c/H) times smaller; i.e., 

∆ = (1- c/H)(qA –qD)(1/vb – 1/u)H ;    for  H ≥  c.    (5b) 
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The correction makes sense: if c = H the BLIP would behave like a dedicated lane, which does not delay 

traffic as long as demand stays below capacity (2)—just as predicted by (5b).  

2.1.2 Short Roads 

If the road is short equation (5) overestimates the BLIP penalty because it assumes that the initial 

triangular wedge is in state S when it is actually in state A (with no delay). The spatial extent of the 

wedge, xo, is easily obtained from the slopes of its sides and the dimension of its base (H−c). We find: 

xo = (1 – qA / qM)n(H−c) / (1/vb – 1/u).     (6) 

The vehicle-hour penalty in the first xo miles of road only applies to ½ of the band between buses; i.e., the 

part not covered by the wedge. Thus, to be precise, penalty (5) should be applied to a road that is 

shortened by xo/2 distance units; i.e., the exact formula is: 

Total VHT penalty per bus = ∆(L -½xo);   if L ≥ xo.   (7a) 

If L ≤ xo the wedge reaches the downstream end of the road, and the penalty per bus is fixed, independent 

of the headway. This penalty should increase with the square of L/xo and equal the value of (5a) for L = xo. 

Thus, we have: 

Total VHT penalty per bus = ½∆L2xo;    if L ≤ xo.    (7b) 
 

2.2 The effect of BLIP on bus pace: cost-benefit comparisons 

The bus performance results are clearer if expressed in terms of pace. Thus, we introduce p = 1/u,  po = 

1/vo and pf as the prevailing, traffic-free and signal-free automobile paces, respectively. The last 

parameter corresponds to the speed limit. Typical values for an arterial street are: p = 1.9, po = 1.7 and pf 

= 1.3 min/km. The bus paces should be roughly equal to the auto paces plus the bus stop-time per 

kilometer, τ. If we use the letter b with the same set of subscripts to denote bus paces (in mixed traffic, 

with a BLIP and with a BLIP/TSP), we have: b ≈ p + τ, bo ≈ po + τ and bf  = pf  + τ.  We actually expect b 

to be slightly greater than (p + τ) if the signal system is designed to accommodate the prevailing traffic 

without regard for the bus stops; perhaps on the order of 0.2 min/km.5 If  τ ≈ 1 min/km (a reasonable 

value for a line with infrequent stops) then the bus paces on our hypothetical arterial could well be: b = 

3.1,  bo = 2.7 and bf = 2.3 min/km. 

                                                 

5 If turning traffic interferes with bus performance significantly, bo should also be increased. 
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 A BLIP implementation should reduce the bus pace from b to bo ; i.e., by about 0.4 min/km. If the 

number of passengers in the average bus is O (pax) then the passenger-minutes saved per bus-km 

traveled,  δ, is:  

   δ = O(b - bo).  (pax-min/bus-km)    (8) 

If O ≈  30 pax then δ ≈ 12 pax-min/bus-km in our hypothetical scenario.  

 Society should decide the criteria for implementation of a BLIP, but a critical factor in this 

decision should be the relative magnitude of  δ (capturing the benefit to transit patrons) and ∆ (capturing 

the disbenefit to drivers). Assuming that automobile occupancies are close to 1, society should probably 

not consider BLIPS if δ is much smaller than ∆. In terms of pace (5) is  ∆ = (qA –qD)(b – p)H.  In our 

typical example, (b – p) = 1.2 min; then, if we take H ≈ 5 min (at the lower end of the values reasonable 

for a BLIP) we find ∆ = 6(qA –qD), where flows are expressed in veh/min. This value should be 

comparable or smaller than δ = 12 (min) for a BLIP to be appealing; i.e., the traffic demand should satisfy 

(qA –qD) < 12/6 = 2 veh/min, or 120 veh/hr.  This is the value by which traffic demand for a BLIP can 

exceed the capacity of a system with a dedicated lane and still be of some benefit.6  

 Of course, this conclusion depends on the values of the parameters we have chosen for the 

comparison. A quick test can be based on the inequality δ/∆  > 1, which, after grouping terms of (5b) and 

(8), reduces to:  

  [O/HqA] [(b - bo)/τ] > [1 – qD / /qA] [1-c/H]     (9) 

The first term of (9) is the ratio of bus-passenger to car-flow (modal split); the second the ratio of bus 

travel time reduction to bus-stop delay (improvement in bus service); the third (on the right side) the 

fractional amount by which traffic flow exceeds the capacity of the arterial with a dedicated bus lane 

(traffic saturation level); and the fourth the fraction of traffic cycles unaffected by the BLIP (a 

dimensionless measure of bus frequency).  If the inequality is not satisfied, it is most efficient in terms of 

people’s cumulative time savings to operate the bus in mixed traffic. Note that the inequality is most 

likely to be satisfied when τ is small, suggesting that BLIPs should be most successful when used for 

express bus service.  

 The comparison we have made assumes that qA > qD  but BLIPS can also be considered if the 

demand is lower. In this case, the analysis methodology of this paper would show that introduction of a 

BLIP does not disrupt traffic significantly. But if demand is significantly lower than qD (say 400 veh/hr 

less for n = 3 or 4), one should also be able to introduce a dedicated lane without much disruption. 

                                                 

6  In actuality, the limit should be slightly larger because we did not account for the benefit of added reliability. 
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Therefore, a BLIP has a distinct advantage over other alternatives only if the demand is close to qD ; e.g.,  

qA  ∈ (qD – 400, qD + 120) veh/hr in our hypothetical scenario.  This range of flows can be expanded if the 

BLIP is combined with TSP. 
 

2.3 BLIP/TSP systems  

The advantage of a BLIP/TSP operation is that it further reduces the bus pace to bf. The benefit to bus 

passengers can be quantified with (8), which continues to apply with bf substituted for bo. The 

disadvantage of a BLIP/TSP operation is that it is more complex and potentially disruptive of automobile 

traffic. Fortunately, as we shall soon see, the increased disruption is usually small. 

 We assume that buses preempt signals by shortening the red phase in which they would otherwise 

arrive, and that they do so by the least amount necessary to receive a green phase. We also assume that 

buses arrive at a signal immediately downstream of a stop independently of its cycle—due to the random 

necessity for stopping.  Under these assumptions, the probability of a bus arriving during the red phase 

(needing preemption) is r/c. To accommodate such arrivals, the red phase will on average have to be 

reduced by ¼ of its length—by terminating it earlier or starting it later; i.e., by ¼r. Thus, the 

unconditional expected reduction in red time per bus arrival should be: (r/c)(¼r) = ¼r2/c.  

 To leave side streets as unaffected as possible, we further assume that the reduction in their green 

time due to the passage of a bus is canceled in ensuing cycles with an offsetting increase of the same 

magnitude. Thus, the arterial red time will increase in the headway following the passage of a bus by an 

amount averaging ¼r2/c.  The decrease in red time (increase in green time) occurs when the discharge rate 

is reduced by one lane, but the decreased green time occurs when it is not.  Thus, there is a net loss of 

arterial capacity at the intersection. The loss equals:  

  Capacity loss due to TSP = [¼r2/cH][qM /n] .     (10) 

Fortunately, this is usually a small number.  If we take (conservatively) r/c = ½ and r/H = 0.1 the first 

factor is 0.0125. But it should be smaller in most cases. Thus, we see that TSP, if implemented properly, 

imposes a capacity penalty roughly equivalent to (at most) 1% of the capacity of a single lane. This is 

insignificant. Furthermore, a (small) capacity reduction has no discernible effect on the approximate 

traffic analysis of section 2.2. Thus, (5) continues to apply.  

 It follows that (9) can also be used to assess the suitability of a BLIP/TSP if bf substituted for bo. 

We find for the same data of Sec. 2.2 that δ = 24 instead of 12 (pax-min/bus-km). Thus, the range of 

applicability is expanded to (qA –qD) < 24/6 = 4 veh/min, or 240 veh/hr above the system capacity with a 

dedicated lane. We expect the competitive advantage of a BLIP/TSP over a dedicated lane with 

preemptive bus priority to decline quickly as in the case of a pure BLIP.  Roughly speaking, a BLIP/TSP 
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doubles the maximum excess demand where intermittence reduces time in the system, and also doubles 

the maximum possible reduction—from about 10 to about 20 pax-min/bus-km. Reductions of this 

magnitude, however, can only be expected when traffic demand is very close to the system capacity with 

a dedicated lane. 
 

3 DISCUSSION 

We have examined in this paper the effects of BLIPs, with and without TSP, but have not commented on 

the benefits of signal priority without a dedicated lane. Pure TSP strategies are not real competitors with 

BLIP or BLIP/TSP when the latter can be used. If we were running a signal preemption system without 

reserving a lane, but the lane could be reserved without significant disruption to traffic, then converting 

the preemption system to a BLIP/TSP would yield some improvement since the bus would avoid all 

queues and the preemption times could be shortened. Therefore, we conclude that pure preemption should 

only be used when the demand exceeds the upper limit of the BLIP/TSP range of applicability. Thus, we 

suggest the following (rough) domains of application for the transit management strategies in the scope of 

this paper:  

 (1) DBLs and DBL/TSP: demand less than 80% or 90% of qD;  
 (2) BLIP or BLIP/TSP: demand close to qD; and  
 (3) Pure TSP, with queue jump lanes if possible7: demand larger than 120% of qD.  
 

This ranking is mostly qualitative, but it shows that BLIPs have a definite niche in the ecosystem of bus-

friendly transportation management strategies. Sharper boundaries can be defined with the formulae of 

this paper for specific system configurations. Equation (9) for example shows that the benefits are likely 

to be most pronounced for express bus service (when τ is small). The formulas, however, are only 

approximations; they should be complemented with more detailed study if an implementation is being 

considered. 

 The formulas in this paper assume that the lane-changes created by the VMS signs do not reduce 

the saturation flow per lane at the signals. But this is optimistic if significant lane changes are allowed to 

occur near the signals. To avoid this problem, VMS restrictions should be put in place, not at the 

intersection threshold, but many tens of meters upstream. Since any such restriction could not apply to 

right turners, the suggested placement essentially creates a long but temporary “right-turn-only” pocket.  

                                                 

7  A queue jump lane is a shoulder-side flare on the upstream side of an intersection that is reserved for buses and 
right-turning vehicles [Rosinbum et al, 1991; TRB, 2000; Mirabdal et al, 2002]. The extra lane allows buses to 
"jump” the traffic queues at the signal. These lanes often have special signalization that allows the bus to pull into 
the intersection before the vehicles in the other lanes, giving the bus priority as it returns to the through-traffic lane.  
This is attractive but BLIPs do the same without the expense of additional right-of-way.    
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It may also be useful from a human factors perspective to forewarn drivers elsewhere on the block that a 

restriction is in force at the downstream end. Eichler [2005] discusses design issues in more detail. 

 The formulas of the paper also assume that the system is homogeneous, has little turning 

traffic and is time-independent. This is sufficient to derive some insights, but the formulae should be 

modified if these effects are important. We propose that the traffic dynamics of a BLIP, including all 

these complications, can be roughly described by the KW model with a truncated FD typified by the 

truncated trapezoid ODUNJ of Figure 5(a).  This is reasonable because the macroscopic steady states of 

the system (on a scale of observation large compared with the bus headway and the bus spacing) fall on 

the truncated trapezoid. Since the traffic stream is modeled as a homogeneous stream with no-passing, 

kinematic waves make sense. The BLIP FD has four wave speeds, and the reader can verify (with some 

effort) that indeed the transitions between regimes propagate with the required wave speeds.  For 

example, transitions between states on branch DU can be shown always to be contained between two 

consecutive buses, and therefore to propagate with speed vB, as required. The kinematic wave model 

allows one to examine a system with entering and exiting traffic very quickly and to analyze it 

numerically with very little effort.  The results are, of course, only approximate, but can be obtained 

without the tedium and potential for large execution errors arising when setting up a micro-simulation.  

 We have not attempted in the above to quantify all the benefits of BLIP/TSP service. In 

addition to the estimated time reduction, BLIP/TSP can also reduce random fluctuations in travel 

and arrival times, which should further enhance the appeal of the service. These added benefits 

can perhaps be a deciding factor in cases where total user time in the system is not significantly 

changed. 
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Figure 1:  Fundamental  diagram illustrating full and reduced roadways. 
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    Figure 2:  Time-space diagram of a BLIP operating at capacity. 

 

  



 

 

Figure 3:Time-space diagram of an arterial operating at capacity: (a) light average density; 
(b) heavy average density. 
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Figure 4: Macroscopic diagrams of a BLIP system: (a) Fundamental diagram showing 
moving bottleneck; (b) Time-space diagram showing effect of a single bus. 
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Figure 5: Macroscopic diagrams for a multi-bus BLIP system (a) Fundamental diagram (b) 
Time-space diagram with multiple buses. 
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