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One sentence summary: Understanding how microbes interact is key to deciphering microbial community assembly and stability; approaches that span
whole communities to single isolate analyses, as well as sequence-function and synthetic approaches, lead to a deeper understanding of microbial
interactions.
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ABSTRACT

Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions
among microbes is critical for understanding how single species and complex communities impact their associated host or
natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new
and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships
and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches
investigators have taken within their areas of research to decode interspecies molecular interactions that occur between
microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments
and within synthetic consortia.
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INTRODUCTION

Microbial communities dominate every niche on our planet.
From oceans to soil to our own bodies, nearly all environments
are populatedwith diverse communities ofmicroorganisms that
drive earth’s biogeochemical cycles and influence plant and ani-
mal health. Diverse communities of microbes perform activities
that can be beneficial or harmful to their surroundings. They
form dynamic relationships with their environment, by both
shaping and being shaped by environmental fluctuations. The
collective metabolic activities of microbial communities have
been implicated in a wide range of phenomena, from the pro-
duction and sequestration of greenhouse gases to the protection
from disease in wildlife, crop plants and humans.

Until recently, methods of investigation limited our under-
standing of microorganisms, as experimental studies were pri-
marily performed on single organisms isolated from their en-

vironment and examined in the laboratory. The advent of new
DNA sequencing technologies in the last decade has revolution-
ized our understanding ofmicrobial communities. Coupledwith
advances in imaging and analyticalmethods, these technologies
have provided a new view of microbial diversity and composi-
tion, and have inspired new approaches for probing microbial
community structure and function (Box 1).

Box 1. Microbiome tool kit: techniques for investigat-
ing microbial communities.

Sequencing-based techniques

Metagenomics
Metagenomics assesses the genetic content of a commu-
nity. Next-generation sequencing platforms are used to gen-
erate the sequence data from either amplicon sequencing
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(16S rRNA for bacteria or internal transcribed spacer for
fungi) to assess phylogenetic diversity or whole genome
shotgun sequencing to examine the entire genetic content.
These data are then computationally analyzed to character-
ize communities based on relative sequence abundance and
predicted gene function (Mardis 2013; Jones et al. 2015).

Metatranscriptomics
Metatranscriptomic approaches utilize sequencing plat-
forms to measure the RNA levels in a given sample. This is
done by converting the RNA in a sample into cDNA, which is
then sequenced using a next-generation platform. The se-
quence data are computationally analyzed to identify genes
that are expressed in the sample by methods similar to
metagenomics analysis (Simón-Soro, Guillen-Navarro and
Mira 2014; Franzosa et al. 2015).

Metaproteomics
Metaproteomic approaches profile the protein content in a
microbial community sample. The proteins are enzymati-
cally digested and analyzed by liquid chromatography-mass
spectrometry. Mass data from protein fragments are then
mapped to the metagenome sequence to identify specific
gene products (Bergen et al. 2013).

Metabolomics
Metabolomics is the analysis of metabolites in communi-
ties. Metabolic products of community samples are ana-
lyzed by liquid or gas chromatography coupled with mass
spectrometry to profile the small molecules produced in the
community. Currently, the structures of only a fraction of
metabolites can be determined by this approach, but com-
parative analysis of multiple samples can identify differ-
ences in metabolite production between samples (Marcobal
et al. 2013; Ursell et al. 2014).

Single cell genome sequencing
To sequence the genome of single cells in the absence of
culturing, individualmicrobial cells are separated fromeach
other by microfluidics, and genomic DNA is amplified prior
to sequencing (Gawad, Koh and Quake 2016). Although the
genome sequences are often incomplete, this technique
provides sequence data for unculturedmicroorganisms and
provides links between a cell’s localization within the com-
munity, its cellular morphology, and the metabolic path-
ways encoded in its genome.

Imaging techniques

Fluorescence in situ hybridization
FISH utilizes fluorescently labeled oligonucleotide probes
that hybridize with target RNAs in permeabilized cells. The
use of FISH probes specific to bacterial 16S ribosomal RNA
is often used to provide spatial information for bacteria in
multispecies aggregates such as biofilms. The use of FISH in
combination with fractionation or PCR techniques can fur-
ther classify the organisms based on the presence of func-
tional genes and can aid in culture-independent isolation of
organisms (Nikolakakis et al. 2015).
Conventional FISH imaging has limitations in the number
of different bacterial taxa that can be discriminated from
each other. A modified technique called CLASI-FISH uses a
multifluorophore approach. By combining two or more la-
bels for a microbe of interest, an expansion of the label-
ing capabilities can be achieved (Valm et al. 2011; Valm,
Mark Welch and Borisy 2012; Mark Welch et al. 2016). An-

other approach, catalyzed reporter deposition (CARD)-FISH
uses a tyramide signal that is deposited using peroxidase
activity. This enables a higher level of FISH sensitivity. Us-
ing paramagnetic beads coated with an antibody targeting
the CARD-FISH epitope, magneto-FISH enables the physical
capture ofmicrobial complexes for further study (Pernthaler
et al. 2008; Orphan 2009). Another method called HCR-FISH
uses DNA strands that do not hybridize without exposure
to an initiator strand. This causes a chain reaction of hy-
bridization that builds a DNA structure (Dirks and Pierce
2004). Using a multiplexed approach, many different types
of microbes can be identified simultaneously (Yamaguchi
et al. 2015).

Imaging mass spectrometry
Imaging mass spectrometry approaches enable the detec-
tion of small molecules based on their mass paired with in-
formation on their spatial distribution. The image contains
a group of mass spectra that are obtained at spatial loca-
tions throughout a sample. MALDI-IMS and SIMS imaging
are two techniques that use this approach. These methods
are reviewed in detail elsewhere (Phelan et al. 2012; Bodzon-
Kulakowska and Suder 2016).

Secondary ion mass spectrometry
A primary ion beam is used to bombard the sample to
release secondary ions containing labeled isotopes, which
are measured by mass spectrometry. A mass spectrome-
ter capable of scanning over two dimensions is used to de-
tect compounds produced in a spatial pattern. A modified
version of SIMS called nanoSIMS enables the detection of
molecules at a finer scale (lateral resolution better than 100
nm) (Carpenter et al. 2013).

Stable isotope probing
Stable isotopes are added to a sample, and the incorpora-
tion of these isotopes into proteins and nucleic acids is sub-
sequently measured to track the metabolic activity of cells
(Bergen et al. 2013).

Nanospray desorption electrospray ionization (NanoDESI) mass
spectrometry
NanoDESI is a technique that enables detailed molecular
characterization of compounds from a specific location on
a sample. This technique enables the study of live cells in a
colonywithout damaging them (Traxler et al. 2013). Two cap-
illary tubes are used to form a solvent bridge that contacts
the sample and carries analytes to the mass spectrometer;
one capillary applies the solvent and the other transports
the dissolved analytes from the bridge to the mass spec-
trometer (Roach, Laskin and Laskin 2010).

As knowledge of microbial communities has grown, height-
ened interest has inspired studies of the mechanisms of in-
teractions between microbes in the laboratory. With the tech-
nological advances that have coincided with this recent surge
in interest, the scientific community is now uniquely po-
sitioned to make new discoveries about microbial commu-
nities and develop methods to manipulate them. Here, we
take an integrated view of the study of microbial communi-
ties (Fig. 1), highlighting examples of multifaceted approaches
that have led to novel insights and introducing the laboratory
techniques and technologies that serve as tools for ongoing
research.



650 FEMS Microbiology Reviews, 2016, Vol. 40, No. 5

Figure 1. Integrated, multilayered approaches needed to decode microbiomes.
Whole communities can be studied by culture-independent approaches per-

formed directly on environmental samples or on communities cultivated in the
laboratory. Culture-dependent approaches, in which defined consortia, cocul-
tures or single microbes are examined by a variety of methods in the labora-
tory, enable more detailed studies about molecular interactions in a subset of

the community.

DISSECTING MICROBIAL COMMUNITY
INTERACTIONS FROM THE TOP DOWN,
BOTTOM UP AND EVERYWHERE IN THE
MIDDLE

Integrated approaches to the study of microbial
communities

An ideal model community would be able to assemble repro-
ducibly in the laboratory, and every microbe (and the host, if ap-
plicable) would be cultured, sequenced and genetically tractable.
With such capabilities, the functions of individual microbes and
genes could be elucidated, and hypotheses about interactions
between organisms could be tested. Clearly, we are far from re-
alizing this ideal because of limitations in culturing and genetic
manipulation of the majority of microbes. However, the avail-
ability of fast, inexpensive sequencing of single genomes and
metagenomes, coupled with transcriptomics, proteomics and
metabolomics, has revolutionized the microbial ecology field
by enabling comprehensive community-level analysis, both in
situ and in laboratory settings. Such studies have led to valu-
able insights about microbial diversity and community struc-
ture, and have informed models of metabolic networks. In or-
der to make full use of these new technologies, however, these
top-down approachesmust be coupled with analyses of individ-
ual microbes from these communities, which enables the char-
acterization of their metabolic requirements and capabilities.
In addition, investigating metabolic interactions between indi-
vidual microbes in cocultures and larger consortia can reveal
the types of interactions that occur in a community. We pro-
pose that the most successful examples of microbial commu-
nity analysis are those in which multiple layers of approaches—
from culture-independent analysis of the whole community to
examination of individual genes—are employed to form a more

complete understanding of microbial interactions in the com-
munity. A schematic of this overall approach is presented in
Fig. 1, and we describe several examples of this multilayered ap-
proach below.

Gut communities

Analysis of the human gut microbiota
It is greatly appreciated by the scientific community, and more
recently by the general public, that the human gut microbiota
plays an important role in health and disease. Major advances
in our understanding of the composition and diversity of the
gut microbiota in healthy and diseased individuals have re-
sulted from comparative metagenomic analyses of fecal sam-
ples across populations and over time. These studies revealed
that the human gut harbors over a thousand microbial taxa,
largely composed of bacteria, and higher microbial diversity is
indicative of a healthy gut in many circumstances (Eckburg et al.
2005; Ley et al. 2006; Dethlefsen et al. 2008; Turnbaugh et al. 2008,
2009a; Human Microbiome Project Consortium 2012). We under-
stand now that an imbalance in the microbial composition—
termed dysbiosis—in the human gut is associated with obesity,
diabetes, neurological disorders, inflammatory bowel diseases
and cancer (Ley et al. 2005; Turnbaugh et al. 2008; Cryan and Di-
nan 2012; Schwabe and Jobin 2013; Goodrich et al. 2014; Hold et al.
2014; Lee andHase 2014;Moreno-Indias et al. 2014). Furthermore,
unlike other ecosystems, the human gutmicrobiota lacks awell-
defined core set of organisms that spans all human populations,
though at the phylum level Firmicutes, Bacteroidetes and Acti-
nobacteria typically dominate (Faith et al. 2013). Within individ-
uals, approximately 60% of the gut microbiota is projected to
remain stable for decades (Faith et al. 2013), yet rapid, tempo-
rary shifts in microbiota composition can be induced by lifestyle
changes or acute intestinal infection (David et al. 2014). In in-
flammatory bowel diseases, such as Crohn’s disease, shifts in
the microbiota and abnormal inflammatory responses are hall-
marks of disease progression (Hold et al. 2014; Buttó and Haller
2016). These insights highlight the power of metagenomics to
enhance our understanding of the complex ecosystem of the
gut. However, in order to understand the roles of individual
members of the community and themechanisms by which they
interact, it is necessary to perform laboratory manipulations of
the community.

Major advances in understanding the links between the hu-
man gut microbiota and diet, the immune system, obesity and
mental health have been made by using the gnotobiotic (germ-
free) mouse system, in which mice reared in a sterile environ-
ment are inoculated with a single bacterial strain, a defined con-
sortiumor a complete community (Gordon and Pesti 1971). Stud-
ies of germ-free mice inoculated with fecal samples from hu-
man donors, known as ‘humanized’ mice, have demonstrated
the effects of environmental factors such as diet on commu-
nity composition and host metabolism. For example, human-
ized mice reared on a ‘western’ diet (high fat and simple carbo-
hydrates with low fiber) experienced changes in microbial com-
munity composition, metabolome and gene expression, in addi-
tion to increased adiposity, in comparison to the microbiota of
mice fed a diet rich in plant-derived polysaccharides (Turnbaugh
et al. 2009b; Marcobal et al. 2013). Another recent study showed a
link between the western diet and reduction in diversity of the
gut microbiota. Humanized gut communities in germ-free mice
consuming awestern diet, but not those consuming a high-fiber,
plant polysaccharide-based diet, experienced a decline in bacte-
rial diversity over multiple generations (Sonnenburg et al. 2016).
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Transitioning the mice from a western diet to a high-fiber diet
only restored a subset of the original diversity, whereas a fecal
transplant from a donor reared exclusively on a high-fiber diet
resulted in the recovery of the lost microbes (Sonnenburg et al.
2016). These results suggest that some bacterial taxa are per-
manently lost from the population over generational time. It is
therefore tempting to speculate that the rise in obesity, autoim-
mune diseases and other afflictions in industrialized countries
is a consequence of reduced diversity in the gut microbiota that
results from the consumption of a western diet over numerous
generations (Sonnenburg et al. 2016). However, given that these
observations are in an animal model, continued research to ex-
plore the relationship between dietary shifts in human popula-
tions and loss of microbial diversity is needed.

Given the emergence of these and other links between the
composition of the gut microbiota and health, obvious ques-
tions are what constitutes a desirable microbiota and how a
dysbiotic microbiota can be converted to a healthy one. To ad-
dress these questions, it is crucial that we understand the ecol-
ogy, physiology and biochemistry of the community such that
the roles of individual members can be better understood. Al-
though culture-based studies can only provide mechanistic de-
tails about a small fraction of the population, they can reveal key
insights that lead to a better understanding of thewhole popula-
tion (Fig. 1). Recent improved techniques for culturing microbes
have been developed that maintain some of the metabolic in-
teractions by allowing the diffusion of nutrients between organ-
isms (Box 2). For example, a recent study challenged the notion
that large proportions of human gut bacteria are unculturable
by performing large-scale culturing of fecal samples with a sin-
gle growth medium (Browne et al. 2016). Over 70% of the species
in the original community were represented in the eight million
colonies that were collected. Interestingly, over half of the bac-
teria were found to produce spores, providing a possible mech-
anism for transmission of oxygen-sensitive organisms between
hosts (Browne et al. 2016).

Box 2. New approaches to culturing microbes.

The largest hurdle to overcome in examining the roles of in-
dividual members of a microbial community is the limited
ability to culture the majority of microbes; over 99% of envi-
ronmental microbes are thought to be unculturable (Li et al.
2014), leaving a tiny, non-representative fraction available
for controlled manipulations in the laboratory.
Conventional approaches to cultivating microbes involve
the enrichment and isolation of the organism from its en-
vironment. Media components such as the carbon and ni-
trogen source are optimized to encourage the growth of the
desired organisms. Even with the addition of numerous nu-
trients, trace elements, growth factors and biological ex-
tracts, this approach often does not satisfy the complete
nutritional requirements of the organism. Hence, multiple
methods have been developed to encourage growth by al-
lowing for exchange of nutrients between the isolate and
native community members, as described below.

� The isolation chip, or iChip, is comprised of several hun-
dred diffusible chambers. The use of agar plugs that con-
tain individual bacteria allows each cell to remain iso-
lated from its neighbors while still enabling the shar-
ing of metabolic compounds and nutrients that support
growth (Nichols et al. 2010).

� Similar to the iChip, a ‘mini-trap’ uses microchambers
with diffusiblemembranes embedded into an oral appli-

ance. In one study, the use of this device increased the
cultivable population by 11% (Sizova et al. 2012).

� Nutrient cross-feeding interactions can be preserved
even when isolating microbes on traditional agar plates.
Several studies have reported the successful isolation of
microbial colonies by plating a diluted sample such that
a high density of colonies emerges to allow for cross-
feeding of essential nutrients. In one study, this isola-
tion technique resulted in the capture of as many as 50%
of the bacterial OTUs present in a stool sample (Good-
man et al. 2011). Another study used soft agar to facili-
tate diffusion of small molecules and a membrane filter
to enable nutrient exchange (Tanaka and Benno 2015).
The nature of the metabolite exchange was identified in
another study in which isolates dependent on a ‘helper’
strain were found to require siderophores produced by
the helper (D’Onofrio et al. 2010).

A significant step toward understanding the metabolic ca-
pabilities of human-associated bacteria was the Human Micro-
biome Project, which provided genome sequences of hundreds
of cultured bacteria from the gut and other sites in the body (Hu-
man Microbiome Project Consortium 2012). In silico analysis of
metabolic pathways in these sequences, coupled with empiri-
cal data on the metabolic capabilities of the bacteria, led to the
development of models of the carbon and energy flow through-
out the gut community. These models show a metabolic hier-
archy (Fig. 2) in which a subset of the bacteria degrade com-
plex carbohydrates to sugars which are fermented by other or-
ganisms to form organic acids such as butyrate, acetate, propi-
onate, succinate and lactate (Fischbach and Sonnenburg 2011).
The H2, CO2 and formate formed in these reactions are further
converted to acetate by acetogens, and are also used as sub-
strates by methanogens and sulfate-reducing bacteria (SRB) in

Figure 2. Simplified model of carbon flow in the human gut. Complex carbohy-
drates obtained from the diet or host mucin are broken down by saccharolytic
primary fermenters, usually Bacteroides and Bifidobacterium spp (Willis et al. 1996).
Some end products of this fermentation (acetate, butyrate and propionate) are

absorbed by the host. Other products such as glucose (not shown) and lactate are
fermented to butyrate by bacteria such as Clostridium, Eubacterium and Fusobac-

terium spp. (Bourriaud et al. 2005; Belenguer et al. 2006). Consumption of formate,
CO2 and H2 by acetogens (like Blautia hydrogenotrophica andMarvinbryantia forma-

texigens) prevents their buildup and provides additional acetate. Methanogens
(such as M. smithii) and SRBs (such as D. piger), which are present in 30% and
50% of individuals (Hansen et al. 2011; Rey et al. 2013), also consume fermen-
tation products to generate methane and hydrogen sulfide, respectively (Loubi-

noux et al. 2002; Samuel and Gordon 2006).
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microbiota that harbor these organisms (Loubinoux et al. 2002;
Samuel and Gordon 2006) (Fig. 2).

Coculture studies of primary and secondary fermenters have
revealed the ability of some organisms to customize their
metabolism to complement the metabolic activities occurring
in their environment. The metabolism of the primary fermenter
Bacteroides thetaiotaomicron changes depending on which sec-
ondary fermenters are present in the gut. Co-association of B.
thetaiotaomicron with the methanogen Methanobrevibacter smithii
in germ-free mice resulted in higher adiposity compared to
mice monoassociated with B. thetaiotaomicron. Transcriptomics
and biochemical analysis of B. thetaiotaomicron showed that co-
association with M. smithii had a dramatic impact on the ex-
pression and activity of its fructofuranosidase enzymes (Samuel
and Gordon 2006). In contrast, co-association of B. thetaiotaomi-
cron and the SRB Desulfovibrio piger had no effect on adiposity or
fructofuranosidase expression (Samuel and Gordon 2006). Sul-
fate cross-feeding is an important component of the interac-
tion between these two bacteria, as growth of D. piger in the gut
was reduced when co-associated with a mutant B. thetaiotaomi-
cron that lacked sulfatase activity (Rey et al. 2013). These studies
demonstrate that associations with different partners can dra-
matically impact gene expression andmetabolism of bacteria in
ways that directly influence host metabolism and health.

Genetic analysis of model gut bacteria such as B. thetaio-
taomicron in conjunction with community interaction studies in
vitro and within the germ-free mouse has been instrumental in
identifying genes necessary for survival within the gut commu-
nity (Salyers, Pajeau and McCarthy 1988; Tancula et al. 1992).
In one approach—a modern version of signature-tagged mu-
tagenesis called INSeq—germ-free mice were inoculated with
a pooled collection of ∼35 000 transposon insertion mutants
to identify genes in B. thetaiotaomicron that influence competi-
tive survival within the gut (Goodman et al. 2009). The mutants
that dropped out of the population included those with defects
in importing vitamin B12 (cobalamin). Notably, these mutants
were more competitive when co-inoculated with a consortium
of cobalamin-producing bacteria and less competitive when co-
inoculated with cobalamin-scavenging bacteria (Goodman et al.
2009). Thus, examining mutants in the context of communities
with different compositions further demonstrates the effect of
metabolic interactions on competitive survival.

Other model systems
The human gut is a challenging system to investigate specific
microbe–microbe interactions because of its complexity, vari-
ability between individuals and costs associated with the germ-
free mouse model. Invertebrate gut systems with reduced com-
plexity and cost have emerged as models, though the com-
munity composition and host environment differ considerably
from the human gut. For example, the Drosophila melanogaster
(fruit fly) gut is orders of magnitude less complex than the hu-
man gut, harboring only 5–20 individual species in laboratory-
reared flies (Chandler et al. 2011; Wong, Ng and Douglas 2011).
With a less costly germ-free system and high percentage of the
organisms cultivable and genetically tractable, the fly gut can be
used to investigate ecological interactions in a natural gut com-
munity (Wong, Ng and Douglas 2011).

In contrast to the fly gut, whose simplicity, tractability and
culturability make it an attractive model microbial ecosystem,
some microbial communities that have proven to be far less
tractable are nevertheless appealing to study because of their
ecological or industrial importance. The wood-feeding termite
gut microbiota harbors numerous unusual microbes that are ca-

pable of degrading lignocellulose and are therefore of interest
for their potential cellulosic biofuel applications, yet very few
of the dominant organisms from this niche have been success-
fully cultured. Twonotable exceptions are the bacteria Treponema
primitia and T. azotonutricium, which were isolated from the ter-
mite Zootermopsis angusticollis and were found to colocalize in
the gut (Rosenthal et al. 2011). Physiological studies of monocul-
tures and cocultures, in conjunction with transcriptomics anal-
ysis, revealed metabolic codependence between these bacteria
and with the insect host (Rosenthal et al. 2011).

The gut tract of ‘lower’ termites such as Zootermopsis spp.
is home to a complex community consisting of microbes from
all three domains including phylogenetically unique protists
that themselves contain bacterial and archaeal endosymbionts
(Ohkuma 2008). The limited ability to culture these microbes
or manipulate the host has led to the development and use
of cutting-edge technologies to examine the roles of the mi-
crobes in situ (Box 1). For example, unculturable bacterial cells
from the termite gut were isolated and underwent single-cell
genome sequencing, which led to the metabolic characteriza-
tion of newphyla endemic to this niche (Hongoh et al. 2008a). Ad-
ditionally, functional imaging techniques including nanoscale
secondary ion mass spectrometry (nanoSIMS) and focused ion
beam-scanning electron microscopy were applied to examine
carbon flow in termites that were fed 13C-labeled cellulose (Hon-
goh et al. 2008b; Carpenter et al. 2013). This analysis showed an
enrichment of 13C within Oxymonad protist cells and, to a lesser
extent, in prokaryotic cells on the surface of the protist cells,
suggesting that the [13C]cellulose is first phagocytosed by the
protists, and degradation products are transferred from protist
to prokaryote cells within the gut (Carpenter et al. 2013).

Coupling in situ imaging and nanotechnology withmetatran-
scriptomics can create functional links between metabolic pro-
cesses and the organisms performing them in the absence of
culture-based analysis. In one study of termite gut metabolism,
an uncultured, unsequenced Deltaproteobacterium was found
to be the dominant producer of transcripts for the formate de-
hydrogenase and formyl-tetrahydrofolate synthetase enzymes,
which are markers of acetogenic and related metabolisms
(Rosenthal et al. 2013). The link between the transcripts and the
organism producing them was made by two methods. Microflu-
idicmultiplex digital PCRwas used to amplify both the 16S rRNA
gene and the functional genes, providing both phylogenetic and
metabolic information for individual cells. Hybridization chain
reaction (HCR)-fluorescence in situ hybridization (FISH) was also
used to visualize cells containing both the transcripts of interest
and phylogeneticmarker RNAs (Rosenthal et al. 2013). This study
further showed that the newly identified Deltaproteobacterium
is physically associated with protist cells, indicative of interdo-
main metabolic relationships between the two (Rosenthal et al.
2013).

Oral communities

Another example of a microbial community for which research
has spannedmultiple layers of complexity is the human oralmi-
crobiome. The study of oral microbial communities has a rich
history, beginning in 1684with the observations of dental plaque
by Leewenhoeck (1684). Since that time, a large body of work
on the oral microbiome has emerged. The oral cavity contains
several anatomically and chemically distinct niches including
the teeth, gum, tongue, palate, cheek and tonsils that each se-
lect for communities with distinct features (HumanMicrobiome
Project Consortium 2012). For example, microbes form biofilms
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on the tooth pellicle, a saliva-based glycoprotein that coats the
tooth surface, and are exposed to saliva, while a distinct dental
plaque community within the gingival (gum) crevice is exposed
to crevicular fluid, which is chemically distinct from saliva.

Sequence-based analysis of the microbes that inhabit
healthy and diseased human oral niches showed that these
environments are comprised of several hundred bacterial taxa
(Paster et al. 2001; Dewhirst et al. 2010; Griffen et al. 2012; Wade
2013). These studies also revealed that, in contrast to the gutmi-
crobiota where high bacterial diversity is associated with a state
of health, higher bacterial diversity in themouth correlates with
a higher frequency of dental caries and oral diseases such as pe-
riodontitis (Costalonga and Herzberg 2014). A temporal analysis
of the formation of dental caries showed that increased micro-
bial diversity is followed by a decrease in diversity at the site
of the caries due to acid production by Streptococcal species,
which both degrades the tooth’s enamel and inhibits the growth
of other microbes (Simón-Soro et al. 2013).

Dental plaque formation is an especially informative model
for the study of succession in microbial communities because
the community reassembles reproducibly following the cyclical
removal of oral biofilms with dental hygiene procedures. Ad-
ditionally, microbial succession can be analyzed by implanting
sterile disks into the oral cavity and removing them at different
time points to monitor the formation of a plaque community
on its surface. 16S amplicon sequencing of disk implants over a
7-day period demonstrated that facultative anaerobes of the
genera Streptococcus, Neisseria, Abiotrophia, Gemella and Rothia
were early colonizers of the plaque bacterial community
(Takeshita et al. 2015). Later colonizers consisted of obligate
anaerobes such as Porphyromonas, Fusobacterium, Prevotella and
Capnocytophaga (Takeshita et al. 2015). In plaque scraping sam-
ples, an ordered spatial distribution of specific bacterial taxa
was visualized by combinatorial labeling and spectral imaging
(CLASI)-FISH (Fig. 3) (Mark Welch et al. 2016).

The ability to culture microbes from enrichments from hu-
man plaque samples paved the way for the development of
model systems to investigate the assembly of oral biofilms in
vitro (Carlsson 1967; Socransky, Dzink and Smith 1985). These
studies revealed that initial colonizers such as Streptococci ex-
press adhesins that mediate attachment to the tooth pellicle
(HumanMicrobiome Project Consortium 2012). Interestingly, the
identity of the initial colonizing bacteria significantly influences
downstream health outcomes. For example, initial colonization
with Streptococcus mutans is correlated with cariogenic activity,
whereas the abundance of S. gordonii is positively correlated
with healthy teeth (Kolenbrander et al. 2010). If hygienic stan-
dards are not maintained, colonization by Streptococci allows
for the next wave of bacteria to adhere, one of which, Fusobac-
terium nucleatum, serves as a physical tether for multiple other
species (Kolenbrander, Andersen andMoore 1989). The quorum-
sensing molecule AI-2 is secreted by F. nucleatum, which induces
changes in expression of adhesion molecules in the ‘red com-
plex’ of bacteria—Porphyromonas gingivalis, T. denticola and Tan-
nerella forsythia—which are highly associated with chronic and
aggressive periodontitis (da Silva-Boghossian et al. 2011; Jang et
al. 2013). Later colonizers and oral pathogens, such as Aggregat-
ibacter actinomycetemcomitans, interact with F. nucleatum via their
O-polysaccharide (Rupani et al. 2008). The abundance of A. acti-
nomycetemcomitans and P. gingivalis is highly correlated with ag-
gressive periodontits (Casarin et al. 2010).

The metabolic characteristics of the commensal bacterium
S. gordonii and the pathogen A. actinomycetemcomitans in mono-
culture, as well as the molecular interactions between the two

Figure 3. Localization of oral microbial taxa in dental plaque. (A) CLASI-FISH
imaging of plaque microbial communities. (B) Schematic of the spatial distribu-
tion of bacteria based on CLASI-FISH images. (Reprinted with permission from

Mark Welch et al. 2016.)

organisms in coculture, have been examined in detail. Pure-
culture studies of A. actinomycetemcomitans determined that
lactate is its preferred carbon source (Brown andWhiteley 2007).
Streptococcus gordonii produces lactate as a by-product of its
metabolism of carbohydrates such as glucose, fructose, man-
nose and galactose, commonly available carbon sources in the
oral cavity (Tong, Zeng and Burne 2011).When cultured together,
lactate production from S. gordoniipromotes the growth ofA. acti-
nomycetemcomitans both in vitro and in a mouse abscess model
(Brown and Whiteley 2007; Ramsey, Rumbaugh and Whiteley
2011). Lactate cross-feeding is not unique to this pair or oral mi-
crobes; lactate produced by F. nucleatum or other Streptococci can
also support Veillonellae (Periasamy and Kolenbrander 2009).
Streptococcus gordonii is not purely beneficial to A. actinomycetem-
comitans; however, S. gordonii secretes hydrogen peroxide, an an-
timicrobial compound that prevents colonization of other mi-
crobes, at millimolar levels (Barnard and Stinson 1996, 1999; Liu
et al. 2011). In response,A. actinomycetemcomitans induces the ex-
pression of a catalase encoded by katA, which detoxifies hydro-
gen peroxide, and is necessary for survival in the presence of
high levels of this antimicrobial, via the transcriptional regulator
OxyR (Thomson et al. 1999; Ramsey and Whiteley 2009). Expres-
sion of another gene in A. actinomycetemcomitans, dspB, is also
induced by OxyR upon hydrogen peroxide exposure. dspB en-
codes a glycosyl hydrolase that is necessary for biofilm dispersal
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Figure 4.Model of A. actinomycetemcomitans (Aa) and S. gordonii (Sg) interaction in

a mouse infection model. Sg adheres to the tooth pellicle surface and produces
lactate, the preferred carbon source for Aa. Sg also produces hydrogen peroxide,
which kills Aa at higher concentrations and induces production of biofilm dis-
persant byAa (‘Flight’ zone). In the ‘Fight’ zone, catalase secreted byAa detoxifies

hydrogen peroxide effectively, and dispersant production is downregulated, al-
lowing biofilm formation. In this zone, Aa has access to lactate. In the starvation
zone, the lactate concentration is insufficient to promote growth of Aa (Stacy
et al. 2014).

(Kaplan et al. 2003; Stacy et al. 2014). Thus, exposure to hydro-
gen peroxide produced by S. gordonii induces a ‘fight or flight’
response in A. actinomycetemcomitans in which it seeks out a new
residence with less hydrogen peroxide while simultaneously
working to detoxify its environment (Stacy et al. 2014). However,
its reliance on S. gordonii for carbonmeans thatA. actinomycetem-
comitans cannot survive far from S. gordonii (Fig. 4). Streptococ-
cus gordonii does not encode its own catalase enzyme, and in
the mouse model, coinfection with the A. actinomycetemcomitans
katA mutant resulted in lower viability of S. gordonii, leading to
the interesting suggestion that this relationship is actually mu-
tualistic in nature (Stacy et al. 2014). This example underscores
the importance of culture-based studies and genetic manipula-
tion in elucidating the intricate molecular details of a naturally
evolved microbe–microbe interaction.

Marine ecosystems

The ocean is the largest ecosystem on our planet. Marine mi-
crobial communities account for approximately half of earth’s
photosynthetic biomass and the majority of carbon dioxide fix-
ation, oxygen production and geochemical cycling of nitrogen
(Field et al. 1998; Partensky and Garczarek 2010). Given that the
microbial communities in the ocean are involved in fundamen-
tal processes that affect all of the planet’s ecosystems, and that
climate change is predicted to result in decreased diversity of
marine phytoplankton, understanding the interactions between
marine microbes is imperative to maintaining the health of our
global environments.

Culture-independent, sequence-based approaches have un-
covered immense microbial diversity in the oceans, including
bacteria (Ferreira et al. 2014), fungi (Le Calvez et al. 2009) and
viruses (Hurwitz, Brum and Sullivan 2015). Ametagenomic anal-
ysis of 68 oceanic sites spanning all oceans except the Arctic
identified a core set of functional gene families found across all
sites. Additionally, temperature was identified as the most in-
fluential environmental factor on marine microbial community
composition (Sunagawa et al. 2015). Using culture-independent
approaches, over 35 000 operational taxonomic units (OTUs)
were found in the ocean, and were predominantly com-

prised of the bacterial phyla Proteobacteria and Cyanobacteria
(Sunagawa et al. 2015); the fungal phyla Chytridiomycota, Zy-
gomycota, Glomeromycota, Basidiomycota and Ascomycota (Le
Calvez et al. 2009); and the bacteriophage families Myoviri-
dae, Podoviridae and Siphoviridae (Sullivan, Waterbury and
Chisholm 2003; Hurwitz, Brum and Sullivan 2015).

Interestingly, substantial overlap between core functional
genes of ocean microbiomes and human gut microbiomes has
been observed (Sunagawa et al. 2015). Niche-specific gene func-
tions have also been found; for example, the ocean microbiome
has a higher abundance of genes for nutrient transport and
energy production, while functions enriched in the gut micro-
biome included host immune evasion, carbohydrate transport
and metabolism, and signal transduction (Sunagawa et al. 2015).
This comparison highlights the immense taxonomic diversity of
marine microbiota while revealing unexpected commonalities
between the communities of two very different habitats.

Microbial interactions in the epipelagic zone
Cyanobacteria are the major microbial source of dissolved oxy-
gen in marine ecosystems. These phototrophs are ubiquitous
in areas that are penetrated by sunlight and are predominantly
found in the upper layers (epipelagic zone) of the ocean (Parten-
sky and Garczarek 2010; Walsh et al. 2015). Small both in cell
and genome size, bacteria of the genus Prochlorococcus are the
most abundant photosynthetic organisms in the ocean and are
estimated to account for approximately 50% of the total chloro-
phyll (Partensky, Hess and Vaulot 1999; Partensky and Garczarek
2010). Remarkably, these tiny cyanobacteria fix four gigatons of
carbon each year (Biller et al. 2015). Single-cell sequencing from
environmental samples showed that hundreds of ecotypes of
Prochlorococcus exist in marine environments, and that all share
a set of core genes (Kashtan et al. 2014). These ecotypes can be
distinguished from one another based on their accessory genes,
which contribute to distinct physiologies (Johnson et al. 2006).
Culture-dependent studies of some of these ecotypes show that
they vary in their distribution across the water column. For ex-
ample, ecotypes adapted to high light are located at shallower
depths compared to low light adapted strains, and are affected
by factors such as latitude and temperature (Johnson et al. 2006).
These ecotypes also vary in their ability to grow in coculturewith
different heterotrophic partners (Sher et al. 2011). Although the
mechanistic details of these interactions have not yet emerged,
it is evident that interactions with heterotrophic microbes in
their environment impact the ecology of this influential group
of organisms.

Deep sea microbial interactions
In deep ocean environments, communities of microbes that re-
side in methane seeps are important for the biogeochemical
cycling of methane, a potent greenhouse gas. The anaerobic
methanotrophic archea (ANME) are responsible for at least 80%
of methane consumption in the ocean (Reeburgh 2007). The
methane oxidation pathway in ANME is believed to be a rever-
sal of the pathway used by methanogenesis archaea to produce
methane (Hallam et al. 2004). ANME rely on syntrophic interac-
tions with SRB partners for consumption of the electrons gener-
ated by methane oxidation. FISH studies revealed that in some
consortia a spherical aggregate of ANME is surrounded by an
outer layer of SRB, while other consortia have a mosaic distri-
bution of the two partners (Fig. 5A, B, D and E) (Strous and Jet-
ten 2004; Knittel et al. 2005; Dekas, Poretsky and Orphan 2009;
Vigneron et al. 2013).
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Figure 5. Imaging and metabolic profiling of ANME/SRB aggregates treated with
15N2. (A–C) ANME/SRB consortium with sulfate. (D–F) ANME/SRB consortium
with AQDS as the sole electron acceptor. (A and D) FISH images highlighting

AMNE in red and Desulfobacteriaceae in green. (B and E) NanoSIMS detection of
12C14N, indicating total cellular biomass. (C and F) NanoSIMS detection of 15N.
(Reprinted with permission from Scheller et al. 2016.)

The ability to conduct laboratory manipulations of these or-
ganisms is hampered by their metabolic codependence which,
together with their long generation time (2–7 months), is a
barrier to culturing them individually. These constraints on
traditional microbiological methods of probing the interactions
among ANME and SRB inspired the development of numerous
new culture-independent tools, some of which are described in
Box 1. One such approach, termed Magneto-FISH, enabled the
capture and sequencing of ANME/SRB consortia and showed
the presence of bacterial members of the Betaproteobacteria
(in the Burkholderiaceae) and Alphaproteobacteria (related to
Sphingomonas) (Pernthaler et al. 2008). Metagenomic analysis of
these consortia also revealed the presence of nitrogenase genes
necessary for nitrogen fixation in ANME (Meyerdierks et al. 2010).
Further metabolic studies showed that 15N2 was incorporated
into the biomass of ANME/SRB consortia (Pernthaler et al. 2008).
FISH-nanoSIMS imaging of the same aggregates showed that 15N
was incorporated at high levels into the ANME and could also be
detected in the SRB (Dekas, Poretsky and Orphan 2009).

Although the ANME and SRB cells in these consortia are
found in an ordered arrangement, it is possible to decouple
them metabolically. Previous studies suggested that the inti-
mate spatial association between the two organisms supports
direct electron transfer from ANME to SRB (Meyerdierks et al.
2010; McGlynn et al. 2015; Wegener et al. 2015). In support of
this proposed interaction, methanotrophy could be decoupled
from sulfate reduction by the addition of the artificial oxidant
9,10-anthraquinone-2,6-disulfonate (AQDS). In consortia treated
with AQDS, ANME incorporated 13C-methane into dissolved
inorganic carbon independently from sulfate reduction activ-
ity, indicating that direct electron transfer normally supports
methane oxidation by ANME (Scheller et al. 2016). Interestingly,
FISH-nanoSIMS analysis showed that fixed nitrogen produced by
ANME was no longer found in SRB when electron transfer was
decoupled (Scheller et al. 2016) (Fig. 5C and F). Thus, the use of
multiple functional imaging approaches in conjunction with se-
quencing and metabolic perturbations has led to the identifica-
tion of electron transfer and cross-feeding of fixed nitrogen as
two key mechanisms of metabolic interaction in this interdo-
main association.

Unifying principles that shape microbial communities

Though the microbial communities discussed above are dis-
tinct from one another in their metabolism, phylogenetic com-
position and habitat, they are not so unique in the metabolic
and physiological ‘rules’ that they follow. One unifying theme
is the division of labor in metabolic processes; rather than sin-
gle organisms interacting with their environment and fulfill-
ing all of their metabolic needs alone, microbes have distinct
roles that contribute to the metabolism of the community. For
instance, general patterns are apparent in the flow of carbon
across ecosystems; in all cases, a carbon input is converted
to carbon intermediates by a primary group of microbes, and
these intermediates are further processed to downstream prod-
ucts by other groups of microbes. Furthermore, the majority of
sequenced microbes lack some of the biosynthetic pathways
for metabolites that they require, underscoring the interdepen-
dence of microbes in their environments. It is perhaps because
of these interdependencies that microbial communities assem-
ble reproducibly in a given environmental condition. The eco-
logical principles and mechanisms of community assembly re-
main an ongoing question that can be addressed by examining
model ecosystems. For example, the microbiome of cheese rind
is a promising emerging model community that assembles re-
producibly de novo in a laboratory setting (Wolfe et al. 2014).

DISSECTING FUNDAMENTAL PRINCIPLES OF
COMMUNITY STRUCTURE

The examples described above illustrate the power of com-
bining whole-community analyses such as metagenomics with
culture-dependent studies of individual microbes and consortia
for understanding the interactions between microbes that con-
tribute to community structure and function. Despite these re-
markable advances in technology and knowledge, we are still
far from being able to predict the majority of functional interac-
tions betweenmicrobes. It is apparent that the establishment of
a microbial community throughmicrobe–microbe andmicrobe–
environment (or microbe–host) interactions is encoded in the
collective genome sequences of the community members. We
now are no longer limited by the ability to generate sequence
data for any organism or community, but we are still largely ig-
norant about how to ‘decode’ these sequences to understand
the suite of interactions that drive the assembly and stability
of a microbial community. In this section, we describe recent
efforts to decode the relationship between genome sequence
and community behavior by examining metabolic connections
between organisms and identifying the functions of unknown
genes involved in interspecies interactions. We additionally de-
scribe synthetic biology approaches that allow researchers to
dissect specific, often artificial interactions in such detail that
predictive mathematical models of the interactions can be con-
structed. By dissecting such mechanisms, we do not focus on a
particular community of interest; instead, we gain valuable in-
sights into the mechanisms of interactions that apply to many
different systems.

The corrinoid model for decoding microbial interactions

The era of facile genome sequencing has brought about a fun-
damental shift in our ability to understand the metabolic needs
of microbes. It is now possible to analyze putative nutritional
interactions between organisms based on metabolic pathway
predictions, as was highlighted in the examples described in
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the previous section. However, such predictions are only pos-
sible for known genes and pathways, and the mechanistic de-
tails of known interactions cannot be inferred based on se-
quence. Here, we present an example from our own research of
an approach that holds promise for decoding genome sequences
to uncover the mechanisms of a particular type of metabolic
interaction.

Developing model systems to study specific interactions in
detail has proven fruitful in understanding the mechanisms of
microbial interactions. One such model metabolite is the cobal-
amin (vitamin B12) family of cofactors, collectively termed cor-
rinoids. Genome sequence analysis clearly indicates that cor-
rinoids are shared metabolites; based on bioinformatic predic-
tions, over 70% of sequenced bacterial species use corrinoids,
while less than 25% synthesize them de novo (Zhang et al. 2009;
Degnan et al. 2014). Nearly all of the genetic, biochemical and
structural studies of corrinoids to date have focused on a sin-
gle type of corrinoid, cobalamin (also known as B12), because it
is thought to be the only corrinoid that humans can absorb and
use as a cofactor (Seetharam and Alpers 1982) (Fig. 6A). However,
it has long been known that over a dozen structurally distinct
corrinoids with variation in the lower axial ligand are produced
and used by various bacteria and archaea (Fig. 6B) (Renz 1999).
Although the ecological significance of these structural differ-
ences is not known, it is clear that the structure of the lower lig-
and influences the degree to which a particular corrinoid can be
used by a given organism (Mok and Taga 2013; Men et al. 2014)
(Box 3). Because of this specificity and the fact that corrinoids
are shared metabolites, corrinoid cross-feeding can be used as
a model for molecular specificity in interspecies metabolic in-
teractions (Seth and Taga 2014). The corrinoid model may con-
tribute to the understanding of other interactions such as cross-
feeding of amino acids and other primary metabolites, the use
of siderophores to compete for iron or the production of sec-
ondary metabolites that influence growth or behavior of other
organisms. Moreover, in addition to their utility as a model for
microbial interactions, corrinoids impact diverse areas of biol-
ogy because numerousmetabolic pathways in bacteria, archaea,
protists and animals rely on corrinoid cofactors (Roth, Lawrence
and Bobik 1996; Ryzhkova 2003).

Box 3. Corrinoid structure and function.

� Corrinoids are modified tetrapyrroles that contain a
cobalt center. The corrinoid biosynthetic pathway,which
involves approximately 30 genes, diverges from a path-
way common to other tetrapyrrolic cofactors such as
chlorophyll and heme (Warren and Scott 1990; Roth,
Lawrence and Bobik 1996).

� The cobalt ion can coordinate an upper and lower axial
ligand. In most corrinoid-dependent enzymes, catalysis
is achieved by fissure of the cobalt-carbon bond to the
upper ligand (labeled as R in Fig. 6). Corrinoids can facili-
tate radical-mediated reactions (R = 5′-deoxyadenosine)
or methyl group transfers (R = CH3), as well as reductive
chemistry that proceeds in the absence of a particular
upper ligand (Roth, Lawrence and Bobik 1996; Matthews
2009).

� Sixteen corrinoidswith structural variability in the lower
ligand have been described (Renz 1999). The lower ligand
is covalently tethered via the nucleotide loop, and most
can coordinate to the cobalt ion (Roth, Lawrence and Bo-
bik 1996; Matthews 2009). Corrinoids with a nucleotide

loop lacking the C177 methyl group have also been ob-
served. (Kräutler et al. 2003)

� Corrinoids are synthesized only by a subset of prokary-
otic species (Roth, Lawrence and Bobik 1996). Most
corrinoid-producing organisms produce only a single
type of corrinoid (that is, with one specific lower ligand)
(Renz 1999).

� Corrinoids are cofactors for mutases, methyltrans-
ferases, isomerases, ribonucleotide reductases and re-
ductive dehalogenases. Corrinoid-dependent enzymes
function in the utilization of propanediol, ethanolamine
and other carbon and nitrogen sources; degradation of
certain amino acids, odd chain fatty acids and choles-
terols; biosynthesis of methionine, deoxynucleotides
and antibiotics; tRNA modification; mercury methyla-
tion; acetogenesis; methanogenesis; and halogenated
solvent degradation (Matthews 2009).

� Corrinoids with different lower ligands are not function-
ally equivalent; an organism can only use a subset of
the corrinoids that may be present in its environment
(Tanioka et al. 2010; Yi et al. 2012; Mok and Taga 2013).

Significant progress has been made in decoding corrinoid
production by identifying and characterizing genes required
for the biosynthesis and incorporation of different lower lig-
ands (Table 1). Identifying the genes involved in lower lig-
and biosynthesis was a key component of decoding corrinoid
production. The genes required for the biosynthesis of 5,6-
dimethylbenzimidazole (DMB), the lower ligand of cobalamin,
were the last components of the cobalamin biosynthetic path-
way to be identified (Campbell et al. 2006; Hazra et al. 2015). The
discovery of the bluB gene encoding the oxygen-dependent DMB
synthase provided a useful marker gene for the biosynthesis of
cobalamin in organisms that reside in oxygen-containing envi-
ronments. The bluB gene was initially identified in Rhodobacter
capsulatus as a factor necessary for the production of photosyn-
thetic pigments, a process that requires cobalamin as a cofactor
(Pollich and Klug 1995). A bluB mutant of Sinorhizobium meliloti
was later isolated based on its inability to fix nitrogen in associ-
ation with plant root nodules, and the function of the BluB en-
zyme as a ‘flavin destructase’ that catalyzes the biosynthesis of
DMB from flavinmononucleotide was subsequently determined
(Campbell et al. 2006; Gray and Escalante-Semerena 2007; Taga
et al. 2007).

The recent discovery of the bzaABCDE operon, which encodes
the anaerobic biosynthetic pathway for DMB, makes it possi-
ble to predict DMB production in anaerobic microbes (Hazra et
al. 2015). Identifying the bzaABCDE genes additionally made it
possible to predict the biosynthesis of three other corrinoids,
as subsets of this operon are involved in the biosynthesis of
other lower ligands that are intermediates on the pathway to
DMB (Hazra et al. 2015). In contrast to bluB, which was discov-
ered serendipitously by researchers studying other biological
processes, the bzaABCDE geneswere first identified by a targeted
bioinformatic search of the genome of Eubacterium limosum, and
the functions of these genes were subsequently elucidated by
genetic and biochemical approaches (Hazra et al. 2015; Mehta
et al. 2015).

Unlike benzimidazoles, purines and phenolic compounds
have cellular functions apart from their roles as corrinoid lower
ligands, and therefore the production of these corrinoids can-
not be predicted based solely on the biosynthetic genes for
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Figure 6. Corrinoid structure. (A) The structure of cobalamin is shown with the lower ligand, DMB, boxed. R represents the upper ligand (see Box 3). (B) Structures of
commonly detected lower ligand bases.

Table 1. Marker genes for corrinoid biosynthesis.

Gene Function References

hemALBCD cysG
cobAIGJMFKLHBNSTOQDCPUV

Corrinoid biosynthesis (aerobic
pathway)

Warren et al. (2002)

hemALBCD cysG
cbiKXLHGFDJETCAPB
cobADUTSC

Corrinoid biosynthesis (anaerobic
pathway)

Warren et al. (2002)

bluB Cobalamin (DMB lower ligand;
aerobic)

Campbell et al. (2006); Gray and
Escalante-Semerena (2007); Taga et al.

(2007)
bzaABCDE or bzaFCDE Cobalamin (DMB lower ligand;

anaerobic)
Hazra et al. (2015)

bzaABCD or bzaFCD 5-Methoxy-6-methylbenzimidazolyl
cobamide

Hazra et al. (2015)

bzaABC or bzaFC 5-Methyxybenzimidazolyl cobamide Hazra et al. (2015)
bzaAB or bzaF 5-Hydroxybenzimidazolyl cobamide Hazra et al. (2015)
arsAB Phenolyl cobamide or p-cresolyl

cobamide
Chan and Escalante-Semerena (2011)

Absence of bluB, bzaAB (or
bzaF) and arsAB

Pseudocobalamin (likely) Crofts et al. (2013)

their lower ligands. Instead, substrate specificity in the CobT
enzyme, which catalyzes the phosphoribosylation of a lower
ligand base prior to incorporation into a corrinoid, can pro-
vide clues about the specific corrinoid produced by an or-
ganism (Trzebiatowski and Escalante-Semerena 1997; Cheong,
Escalante-Semerena and Rayment 1999, 2001, 2002). For exam-
ple, specific amino acids in the active site of CobT may be
markers for the incorporation of adenine (Cheong, Escalante-
Semerena and Rayment 2001; Crofts et al. 2013; Hazra et al. 2013).
Additionally, distinct sequences in the cobT homologs arsA and
arsB, which are found in bacteria of the Veillonellaceae family, di-
rect cells to incorporate phenolic compounds as corrinoid lower
ligands (Chan and Escalante-Semerena 2011; Newmister et al.
2012). Despite these advances, our ability to predict specificity
in corrinoid production is limited by the potential for cells to
take up and incorporate lower ligand bases produced by other
organisms from the environment (Crofts et al. 2013, 2014; Hazra
et al. 2013). Thus, the potential for lower ligand cross-feeding
makes it impossible to rely solely on genome sequence to pre-

dict function. However, corrinoid specificity occurs not only at
the level of biosynthesis, but also in corrinoid transporters (Deg-
nan et al. 2014), in enzymes involved in using corrinoids or mod-
ifying them intracellularly (Gray and Escalante-Semerena 2009;
Chan and Escalante-Semerena 2011; Mok and Taga 2013) and in
proteins or RNA elements that regulate corrinoid-related func-
tions (Fig. 7) (Gallo et al. 2008). Thus, examining the relationships
between sequence and the structures of preferred corrinoids in
all of these elements may make it possible to predict corrinoid
preferences on a whole-genome level.

Dissecting microbial interactions by establishing
synthetic cocultures coupled with mathematical
modeling

Synthetic biology approaches have revealed insights into the de-
tailed mechanisms of metabolic interactions betweenmicrobes.
Although synthetic approaches use artificial systems in which
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Figure 7. Decoding corrinoid specificity. (A) In corrinoid-requiring organ-
isms, specificity for particular corrinoid structures can be encoded in (I)
corrinoid transporters, (II) corrinoid adenosyltransferases (Ado represents 5′-
deoxyadenosine) and (III) corrinoid remodeling enzymes. (B) In corrinoid-
producing organisms, specificity can be encoded in (I) the regulation of corrinoid-
related genes (e.g. in corrinoid-binding riboswitches) and (II) the corrinoid
biosynthetic pathway. (C) Corrinoid-dependent enzymesmay also be specific for

particular corrinoids.

strains are genetically engineered to interact, such controlled
systems are often necessary to understand metabolic interac-
tions in sufficient detail to allow mathematical modeling of
metabolite exchange.

Creating an obligate synthetic coculture sounds simple in
principle, yet it is not as easy as mixing two microbes to-
gether. Often the culture is dominated by one microbe be-
cause the pair is unable to interact productively. A recent study
overcame this challenge by building a coculture based on the
exchange of metabolites that are naturally excreted, as iden-
tified by exometabolomics, a technique that measures the ex-
creted metabolome (Kosina et al. 2016). In that study, metabo-
lites excreted by Zymomonas mobilis were identified by ex-
ometabolomics, and auxotrophic strains of Escherichia coli that
depend on these metabolites were constructed. To generate Z.
mobilis strains that depend on E. coli for growth, a forward ge-
netic screen was conducted to identify mutants that have a fit-
ness benefit when cultured with E. coli. The construction of sta-
ble cocultures of genetically modified strains of the two species
confirmed the potential of this approach (Kosina et al. 2016).

Mathematical modeling in combination with experimental
studies can describe and predict metabolic interactions in mi-
crobial communities. For example, flux balance analysis is used
to calculate the movement of metabolites based on the known
metabolic pathways and enzymes encoded within them, pro-
viding information on the abundances of organisms and the
metabolic role they serve in their communities (Orth, Thiele and
Palsson 2010). An optimized flux balance algorithm was used to
predict the relative abundances of bacteria in a three-member
synthetic consortium containing E. coli, Salmonella enterica and
Methylobacterium extorquens (Harcombe et al. 2014). Interestingly,
this model successfully predicted that the slowest growing or-
ganism, M. extorquens, would dominate the triculture because
the faster growing organisms (E. coli and S. enterica) were engi-
neered to be dependent on it for nitrogen.

Synthetic approaches are also used to test and predict
metabolic interactions that rely on physical contact and spatial
patterning of microbes. In a recent study, ‘cooperator’ strains of
Acinetobacter baylyi and E. coli were generated which each strain
overproduced the amino acid that the other partner required,
and partner strains could reciprocally exchange essential amino
acids when grown in coculture (Pande et al. 2015). This inter-
action was contact dependent, and nanotubular structures be-
tween cells were observed when the pair of microbes was forced

Figure 8. Theoretical model and experimental evidence for spatial heterogene-
ity of cooperators and non-cooperators. (A) Modeling simulation and (B) growth

experiment of two ‘cooperator’ strains (labeled with red and green fluorescent
proteins, resulting in yellow color) indicate a high degree of intermixing. (C)
Modeling simulation and (D) growth experiment of the two ‘cooperator’ strains
(red) and a ‘non-cooperator’ strain (green) indicate spatial segregation of non-

cooperating bacteria. MALDI-TOF MS analysis of histidine and tryptophan con-
centrations in colonies illustrates the exclusion of these molecules from non-
cooperator regions (reprinted with permission from Pande et al. 2016).

to share amino acids (Pande et al. 2015). A mathematical model
generated for this coculture predicted that cooperatively inter-
acting strains would be spatially well mixed (Fig. 8A). This pre-
diction was verified experimentally, as strains marked with dif-
ferent fluorescent labels were observed to colocalize (Fig. 8B).
When non-cooperator strains that do not overproduce amino
acids were added to pairs of cooperating bacteria, the model
predicted that non-cooperating bacteria would become spa-
tially segregated from the cooperating strains (Fig. 8C). This too
was verified experimentally (Fig. 8D). Spatially resolved matrix-
assisted laser desorption ionization/ time of flight (MALDI-TOF)
mass spectrometry imaging of bacterial cocultures showed that
cooperator-rich regions had higher concentrations of the shared
amino acids, while these nutrients were sequestered away from
non-cooperators (Fig. 8D). Together, these results highlight that
spatial structure is an important factor in cooperative and com-
petitive interactions (Pande et al. 2016). The ability to generate
predictive models of these community behaviors demonstrates
the relative simplicity of engineered interactions and is a step
toward modeling more complex behaviors in natural settings.

MODULATING MICROBIAL COMMUNITIES

As we gain new insights about microbial interactions, promis-
ing handles for modulating communities emerge. Recent ef-
forts have focused on developing new techniques to modulate
the composition of microbial communities. For example, one
report demonstrated that introducing an Escherichia coli strain
that overproduces the quorum-sensing autoinducer AI-2 into
an antibiotic-treated humanized mouse gut community results
in a dramatic alteration in community composition (Thompson
et al. 2015). Additionally, corrinoids may be used to manipulate
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microbial communities; given that corrinoid composition can
vary with community composition and metabolism (Men et al.
2014), it may be possible to take advantage of the distinct corri-
noid specificity profiles of different organisms tomodulate com-
munity metabolism or composition using corrinoids (Degnan
et al. 2014; Seth and Taga 2014). More precise tools for ‘edit-
ing’ communities have also been developed, such as lytic phage
or CRISPR-Cas systems, that can be programmed to target spe-
cific bacterial taxa (Bikard et al. 2014; Citorik, Mark and Timothy
2014; Gomaa et al. 2014; Ando et al. 2015). With these new tech-
nologies and more on the horizon, we are now poised to make
exciting advances in understanding and manipulating micro-
bial communities that impact human, crop and environmental
health.

CONCLUSIONS AND FUTURE OUTLOOK

With a planet experiencing ecological shifts due to climate
change and a suite of human ailments linked to alterations
in the human gut microbiota, the need for new tools for ma-
nipulating microbial communities to restore ecological balance
is becoming increasingly urgent. Numerous decades dedicated
to the molecular genetic analysis of the best studied microbe,
Escherichia coli, have resulted in the elucidation of the functions
of only half of its genes; how, then, is it be possible to under-
stand a community comprised of thousands of distinct, un-
known organisms? Here, we have argued that a combination
of approaches is needed that span whole-community analysis,
studies of interactions in defined consortia and monoculture
studies, incorporating gene discovery, engineered interactions
andmathematical modeling to dissect interactions betweenmi-
crobes. Multiple layers of analysis are required because each
provides distinct information. Culture-independent studies of
complete communities providemetabolic, taxonomic and struc-
tural information of the whole community but lack mechanis-
tic detail, while studies of single organisms or defined consor-
tia provide needed mechanistic information for only a small
fraction of the community. Additionally, decoding the mecha-
nisms of interactions by investigating model metabolic inter-
actions and synthetic biology approaches could provide gener-
alizable paradigms applicable across systems. A greater under-
standing of microbial community interactions will be key to de-
veloping therapies that modulate community composition and
metabolism.
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