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Abstract 

The St. Petersburg Paradox (SPP), where people are willing to 
pay only a modest amount for a lottery with infinite expected 
gain, has been a famous showcase of human (ir)rationality. 
Since inception multiple solutions have been proposed, 
including the influential expected utility theory. Criticisms 
remain due to the lack of a priori justification for the utility 
function. Here we report a new solution to the long-standing 
paradox, which focuses on the probability weighting 
component (rather than the value/utility component) in 
calculating the expected value of the game. We show that a 
new Additional Transition Time (AT) based measure, 
motivated by both physics and psychology, can naturally lead 
to a converging expected value and therefore solve the 
paradox. 

Keywords: human judgment and decision making, 
probability, St. Petersburg Paradox,  
 
 
Fate laughs at probabilities. 
  -- E. G. Bulwer-Lytton 

Introduction 
Suppose you are offered the following gamble: 

• Toss a fair coin. If you get a head, you are paid $1 
and the game is over. Otherwise, toss again. 

• If you get a head in the second tossing, you are paid 
$2 and the game is over. Otherwise, toss again. 

• If you get a head in the third tossing, you are paid $4 
and the game is over. Otherwise, toss again. 

• … Game continues until you get a head. If you get a 
head in the nth tossing, you will be paid $2n-1. 

How much are you willing to pay to play this gamble?  
A simple calculation shows that the gamble’s expected 

value, S, is infinite: 

S = $ pn
n=1

∞

∑ 2n−1 = $ (1
2n=1

∞

∑ )n2n−1 = $(1
2
+
1
2
+...)  Eq. 1 

where n is the number of tosses to get the first head (i.e., 
after a steak of n-1 tails, one gets a head, and the game is 
over). 

The question is, are you willing to pay any price for a 
right to play this game? Probably not. More than three 
hundred years ago, in 1713, Nicolas Bernoulli, a young 
Swiss mathematician, first proposed this problem and 
pointed out that a sensible person would only be willing to 
pay very little to play the game. This constitutes a 
contradiction, which nowadays is called the St. Petersburg 
Paradox (SPP). 

A Little History 
The SPP was so named after the eponymous Russian city, 
where Daniel Bernoulli, a mathematician and Nicholas 
Bernoulli’s cousin, published his classical solution to the 
problem in 1738. However, the problem was initially 
proposed by Nicolas Bernoulli in 1713, who was clearly 
troubled by it. According to him, while the expectation of 
game gain was infinity, the player would be guaranteed to 
lose since it is “morally impossible” that one not achieve a 
head in a finite number of tossing. 

In 1728, Gabriel Cramer, another Swiss mathematician, 
wrote to N. Bernoulli and suggested a solution. In Cramer’s 
solution, money’s quantity was replaced by its “moral 
value”, representing the pleasure or sorrow money (or loss 
of money) could produce. In doing so Cramer showed the 
expectation would converge to less than $3 if “one wishes to 
suppose that the moral value of goods was as the square root 
of the mathematical quantities”.  

N. Bernoulli was not entirely satisfied with this solution. 
In his reply to Cramer, N. Bernoulli wrote that the pleasure 
difference “does not demonstrate the true reason” for why 
one should not pay infinity to play the game. Even Cramer 
himself thought his square-root assumption about money 
and pleasure was not just.  

Eventually in 1738, D. Bernoulli published his solution to 
the problem (Bernoulli, 1738). D. Bernoulli’s solution was 
similar to Cramer’s and based on the concept of utility, 
which measured the usefulness of values and was taken to 
be a logarithmic function of values. It was shown that while 
the expected value diverged the expected utility converged. 
D. Bernoulli’s solution was seminal and extremely 
influential, and has since shaped the whole field of 
economics and of the psychology of decision making. 

It was interesting to note that N. Bernoulli vigorously 
objected his cousin’s approach. A series of communication 
showed that the two had engaged in serious arguments. To 
N. Bernoulli, the concept of utility, similar to the “moral 
value” of Cramer, was arbitrary and, to a certain extent, 
irrelevant. Rather, the concern here was to find a more 
general way to show if a game was fair, regardless of who 
was playing the game. “For example a game is considered 
fair, when the two players bet an equal sum on a game under 
equal conditions, although according to your theory, and by 
paying attention to their riches, the pleasure or the 
advantage of gain in the favorable case is not equal to the 
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sorrow or the disadvantage that one suffers in the contrary 
case”. 

N. Bernoulli had his own insights on how to solve the 
problem. To him, the true reason had to do with those “cases 
which have a very small probability, [which] must be 
neglected and counted for nulls, although they can give a 
very great expectation”. Unfortunately, N. Bernoulli 
encountered great difficulty in deciding when a very small 
probability should be counted as zero. As a result, his 
approach was not fully developed at that time and was 
completely overshadowed by the utility-based solutions.  

In this paper we argue that N. Bernoulli might be correct 
and we provide a new and complete mathematical treatment 
that is consistent with his insights. Before we dive in, 
however, we would like to briefly review existing solutions 
to the St. Petersburg Paradox. 

The St. Petersburg Paradox 
The key puzzle behind the SPP is how a gamble with an 
infinite expected return could be valued so little to a human 
player. Over 300 years many solutions have been proposed, 
which can roughly be divided to three categories. 

The first line of solution attacks the realism of the 
gamble. Given that the expected gain for one player is 
infinite, the potential loss for the other player would be 
infinite as well. Since nobody has infinite payout, the game 
in its classical form is not realistic and will in no way be 
offered in the real world. Therefore, if we cap the potential 
payout in a revised game, the expected value would then 
converge.  

Even D. Bernoulli had thought this issue was important. 
In 1731 he wrote to his cousin, “I have no more to say to 
you, if you do not believe that it is necessary to know the 
sum that the other is in position to pay”. The wiki page on 
SPP (http://en.wikipedia.org/wiki/St._Petersburg_paradox) 
has a table listing the expected values with respect to a few 
interesting caps. For example, if the payout is capped with 
the total US GDP in 2007 (~$13.8 trillion), the expectation 
is merely $44.57. 

The second category of solution focuses on the value 
component of Eq. 1. The argument is that people are not 
interested in the monetary value per se, but more in the 
utility, goodness, or pleasure the money brings forth, which 
can be represented by a utility function. Therefore, if the 
value is replaced by a utility function, which is typically 
assumed to be concave, it can be shown that the expectation 
would converge. Cramer’s and D. Bernoulli’s solutions 
belong to this category.  

Utility is capable of capturing the time discounted value 
of wealth, and can simultaneously incorporate different risk 
preferences. The utility theoretical approach has since 
become a dominant solution to the game and has enjoyed a 
profound influence in the broad field of economics (von 
Neumann & Morgenstern, 1944). However, criticisms 
regarding the correct form of utility function remain. Note 
that both the square-root function and the logarithmic 
function, as well as many other concave functions, would 

work (in that the total sum converges). Should one solution 
be preferred to another? D. Bernoulli tended to believe the 
distinction was not important. He praised Cramer’s solution 
in his paper, “Indeed I have found his theory so similar to 
mine that it seems miraculous that we independently 
reached such close agreement on this sort of subject” 
(Bernoulli, 1738).  

Whereas it appears that it is an empirical issue and can 
only be answered by psychological investigations, Ole 
Peters, a physicist, recently proved, via a solid mathematical 
treatment, that the logarithmic function could be naturally 
derived based on the mathematics of time average of rate of 
return and was therefore necessary in the situation (Peters, 
2011). Peters argued that D. Bernoulli accidentally chose 
the correct function form for utility even though he was not 
aware of its underlying physics. However, it is important to 
note that while Peter’s treatment removes the arbitrariness 
in the utility functional form, it involves additional 
assumptions not in the original SPP such as repeated games 
(Buchanan, 2013). 

The third line of solution focuses on the probability 
weighting component of Eq. 1 and argues that people 
simply regard those extremely large payout cases having so 
small a probability that render them impossible to occur. As 
we mentioned above, N. Bernoulli was first advocate of this 
idea. In a 1728 letter to Cramer, he wrote, 

“with him a very small probability to win a great sum 
does not counterbalance a very great probability to lose a 
small sum, he regards the event of the first case as 
impossible, and the event of the second as certain. It is 
necessary therefore, in order to settle the equivalent justly, 
to determine as far as where the quality of a probability 
must diminish, so that it be able to counted null”. 

With this reasoning, he demonstrated, for example, that if 
one regarded probabilities less than 1/32 as null, then the 
expectation became merely $2. However, he recognized his 
difficulty and got stuck.  He continued to write, 

“but here is what which is impossible to determine, any 
assumption that one makes, one encounters always 
difficulties; the limits of these small probabilities are not 
precise”. 

On Subjective Probability of Rare Events 
N. Bernoulli’s difficulty has to do with the lack of a theory 
on how the human mind represents and processes rare 
events with very small probabilities. While it is certainly 
unsatisfying to set an arbitrary limit so that any smaller 
probabilities are treated as zero, it is important to recognize 
that the way in which the human mind represents 
probabilities may not be same as what the standard 
probability theory prescribes. 

At human scales, very small probabilities are often linked 
to impossibility. Emile Borel, an eminent French 
mathematician, introduced what he called the single law of 
chance in his 1943 book. The law, which nowadays is 
simply called Borel’s Law, says, “Events with a sufficiently 
small probability never occur”. Borel goes on to clarify 
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what he meant by “sufficiently small” probabilities, by 
distinguishing different scales, as shown in Table 1. 
According to Borel, therefore, probabilities smaller than 1 in 
a million should be regarded as small enough that for 
practical purposes a human can treat them as impossible. In 
the context of SPP, one in a million roughly corresponds to 
getting 20 tails in a row. By setting smaller probabilities to 
zero, the expectation for the gamble reduces to about $10. 

 
Table 1: Negligible probabilities according to Borel’s law  

 
Scale Limit Example 
Human 1 in 106 Any two chosen seconds 

in a year are same 
Terrestrial 1 in 1015 Any two chosen square 

foot on Earth are same 
Cosmic 1 in 1050 Any two chose atoms on 

Earth are same 
supercosmic 1 in 101,000,000,000 Any two particles in the 

universe are same 
 
That people distort probabilities from their standard 

values in a systematic way is also a critical claim in prospect 
theory, a descriptive theory of human decision making 
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). 
According to this theory, utilities should be weighted by the 
psychological correspondence of probabilities rather than 
the standard probabilities themselves, and the relationship 
between the two can be represented by a π function, as 
shown in Figure 1. Therefore, it seems that people are 
systematically underestimating large probabilities and 
overestimating small probabilities.  

The π  function has been used to explain many interesting 
phenomena such as the certainty effect. However, when 
applied in the SPP situation it works in the opposite 
direction - here small probabilities need to be further 
reduced rather than enlarged. Nevertheless, the π function is 
consistent with the general idea that subjective probabilities 
are not necessarily equal to objective probabilities. 

 

 
 

A B 
Figure 1: (A) The π function as described in prospect 

theory (based on Tversky and Kahneman, 1972); (B) 
Internal representations on a coarser scale have to be 
transformed to external probabilities on a finer scale, 

leading to distortion. 
 

Such distortion, despite the difference in specific forms, 
may result from the limited resolution of the mind in 
representing uncertainty. We (Sun, Wang, Zhang & Smith, 

2008) provided evidence supporting that the mind may 
adopt a probability scale much coarser than the one 
prescribed in probability theory. For example, the difference 
between p=0.0125 and p=0.00625 may be significant in 
probability theory (and in the standard SPP context), they 
may all be represented as “quite small”, “unlikely”, or 
“impossible” in the mind. This lack of resolution, in 
addition to other constraints such as anchor and adjustment, 
contributes to a distorted mental representational scheme of 
probabilities (see Figure 1B). 

Probability and Time 
It is desirable to develop a normative mathematical 
treatment that at the same time describes how the human 
mind perceives and represents probabilities. Hopefully, such 
a treatment can naturally lead to a solution to the SPP. 
Among other advantages, this treatment is consistent with 
N. Bernoulli’s original insights to the problem when he first 
proposed it, and avoids the inherent arbitrariness of the 
utility-based approach. 

In recent years we have advocated an approach that is 
based on the inherent connection between probability and 
time (Sun & Wang, 2010a; 2010b; 2013; Sun et al, 2015). A 
comprehensive treatment of the connection is still under 
development. In this paper we provide a concise and 
relevant narrative with a goal to demonstrate how it can be 
applied to solve the SPP.  

Although the concept of probability is often formally 
defined using a set theoretical axiom system (e.g. 
Kolmogorov, 1965), there exists an intriguing relationship 
between probability and time. In general, for a given event, 
its probability describes the relative frequency of its 
occurrence in the long run. In the context of time, the 
probability of an event corresponds to the mean inter-arrival 
time (MT) of the event, describing how long it takes for the 
same event to occur again.  

To facilitate, consider the situation of fair coin tosses, 
where Head (H) or Tail (T) can occur in each toss. We 
know, 

P(T)=1/2, P(TT)=1/4, P(TTT)=1/8, P(TTTT)=1/16. 

This is equivalent to say, in terms of the MT: 

MT(T)=2, MT(TT)=4, MT(TTT)=8, MT(TTTT)=16. 

That is, on average it takes 2 tosses for T to re-appear, 4 
tosses for TT (2 Tails in a row) to re-appear, 8 tosses for 
TTT to re-appear, 16 tosses for TTTT to re-appear. In fact, 
it can be proved that the standard probability is simply the 
reciprocal of mean time: 

p =1/MT      Eq. 2 

It turns out that there is another time statistic that is also 
associated with uncertain events, waiting time (WT). WT 
describes how long one has to wait for an event to occur for 
the first time (rather than to re-occur). Intuitively, one would 
think a more frequent event (i.e., an event with a short mean 
time) would occur soon (i.e., with a short waiting time), 
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however, it is not generally so. The MT and WT can be 
dissociated, especially for random sequences with length 
longer than 1. In particular, it can be shown that streak 
patterns have the longest WT among sequences with equal 
lengths: 

WT(T)=2, WT(TT)=6, WT(TTT)=14, WT(TTTT)=30. 

That is, if one starts to toss a fair coin, on average it takes 2, 
6, 14, and 30 tosses for T, TT, TTT, and TTTT to occur for 
the first time, respectively. This is different from these 
patterns’ MTs (2, 4, 8, and 16, respectively). More complete 
treatments of WT can be found here (Sun & Wang, 2010a; 
2010b; 2013).  

An intuitive explanation for why the WT for streak 
patterns is the longest is that when a streak is interrupted, it 
takes longer to get back to that streak. Therefore, given a 
random sequence, streaks have larger variances than non-
streaks. This statistical fact leads to another time-based 
statistic, which we call Additional Transition Time (AT).  

Formally, a flipped coin can be viewed as a Bernoulli 
process with the probability of heads pH (or probability of 
tails pT). We can then associate it with a Markov chain, 
whose states are patterns consisting of outcomes generated 
by consecutive tosses (Figure 2). We consider the AT, Ai,j, 
as the transition time (i.e., the number of tosses it takes in 
this case) for the Markov chain to first reach pattern j, given 
the current pattern i. 

 

 
 

Figure 2: A binomial tree representing the expected AT 
when an existing streak is either continued or discontinued 
by a single additional trial. φ represents the very beginning 
of the process (i.e., start anew with a time stamp of zero). 

The left figure is a special case of the right figure with k = 1. 
For a fair coin pH = pT = 1/2, given the current state T, the 
process has the same probability to branch into either TT 
(continuation) or TH (discontinuation). However, from 

time’s perspective, TH is more immediate (2 tosses away) 
than TT (4 tosses away). As the length of the initial streak k 
increases, the AT remains the same for a discontinuation of 
the streak (1/pH), but grows exponentially for a continuation 

of the streak (1/pT
k+1). 

 
Figure 2 illustrates a quite striking result. Given that we 

have observed TTT, for example, how much additional 
transition time it takes to reach TTTT? Standard probability 
theory tells us there is an equal probability (1/2) of H or T in 
the fourth toss. However, on average, it would take 
1/(1/2)=2 additional tosses to get TTTH, and 1/(1/24)=16 
additional tosses to get TTTT – TTTT has a much longer 
AT. Again, a simple explanation is that in waiting for the 
streak, if it goes awry, the wait would have to re-start from 
scratch. This is in contrast to TTTH, where a wrong 
outcome (i.e., expecting a final H but getting T) will not 

hurt much as the waiting (of a final H) can continue. Taken 
together, this is just another mathematical fact that justifies 
why streaks are rare and remarkable and why (kT,H) is more 
imminent than (kT,T). 

It can be shown that the AT is just another manifestation 
of the waiting time. Both statistics are affected by the same 
start-anew effect due to the self-overlapping property of the 
streak pattern. Instead of treating each pattern as a whole (as 
in calculating the waiting time), the AT allows temporal 
prediction by breaking the waiting time statistics into two 
parts, as follows, 

WT (kT,H ) =WT (kT )+MT (H ) =WT (kT )+1/ pH
WT (kT,T ) =WT (kT )+MT (kT,T ) =WT (kT )+1/ pT

k+1
 Eq. 3 

Thus, given a streak of k tails, the expected AT for the 
streak to be extended by one more tail is not the mean time 
of a single tail (MT(T)), but the mean time of k+1 tails 
(MT(kT,T)).  

While it appears counter-intuitive, WT and AT capture an 
essential environmental statistic describing when an event is 
to occur. They are certainly relevant to human cognition. In 
many everyday situations, it is likely that the question of 
when an event is to occur is more important than the 
question of how often an event is to occur. Therefore, it is 
plausible that the brain and the mind have developed 
mechanisms to be sensitive to WT and AT statistics. We 
have previously argued that human perception of 
randomness in general and the gambler’s fallacy in 
particular might be linked to the longer WT of streak 
patterns (Sun & Wang, 2010a; 2010b; 2013). More recently, 
we have shown how the brain could learn to capture the WT 
statistic through predictive neural learning (Sun et al., 
2015). 

Toward an AT Based Solution to SPP 
It is therefore quite plausible that the AT captures, both 
normatively and descriptively, people’s sensitivity to the 
rarity of streak patterns. In this account, TTTT is different 
from patterns such as TTTH not only in terms of the 
additional transition time it requires to complete the pattern, 
but also the fact that the difference increases quickly as the 
pattern length increases.  

The SPP inherently involves streak patterns. For the 
player to win big, he/she would wish to delay the first 
occurrence of H as much as possible, that is, to get the 
streak of Ts as long as possible. According to N. Bernoulli, 
it is these long streaks that should be rendered as impossible 
to ever occur due to their very small probabilities. 
Unfortunately, the standard mean time based probability 
theory does not distinguish between streak and non-streak 
patterns and treats them equally likely – both as a function 
of pattern lengths. We argue that that the concept of AT 
offers a new perspective to resolve N. Bernoulli’s difficulty 
and can lead to a more justified solution to the SPP. 

More specifically, we have shown that having already 
observed TTT, while the probability of getting the fourth T 
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is ½, the AT for getting TTTT is 16. Given the genuine 
relationship between probability and time, it is possible to 
derive another probability measure based on the AT as 
follows: 

!p =1/ AT      Eq. 4 

p’, therefore, measures a type of uncertainty associated with 
obtaining the final outcome required to complete the entire 
sequence. Different from p (Eq. 2), p’ is pattern structure 
dependent – different prefixes result in different p’. In 
essence, it is the local structures of patterns that differentiate 
patterns and make streaks special. Mean-time based p is 
blind to the structures and AT-based p’ highlights the 
difference.  

We have shown that the AT it takes for a streak of length 
(k-1) to be extended to length k is 1/pk. Thus, we can derive 
the following relationship:  

!p = pk      Eq. 5 

In the example above, to get the fourth T given TTT, we 
have p=1/2, p’=1/16. 

We can then replace the context-free p in Eq. 1 with the 
context-sensitive p’ to acquire another expectation measure 
as follows: 

!S = $ ( !pk
k=1

n

∏
n=1

∞

∑ )2n−1 = $ ( (12
k=1

n

∏
n=1

∞

∑ )k )2n−1   Eq. 6 

Different from S, which diverges, it can be proved that S’ 
converges.  

Figure 3 depicts S’ converging behavior as the number of 
trials increases. For comparison, we also plot the 
logarithmic utility solution by D. Bernoulli. It is clear that 
S’ converges very fast, to the asymptotic value as early as 
toss 5. In a sense this solution fits N. Bernoulli’s original 
insights almost perfectly. As mentioned above, he suggested 
that a sensible man should treat those cases with probability 
less than 1/32 as impossible, which corresponds to streaks 
of TTTTT and longer. However, our solution avoids N. 
Bernoulli’s difficulty and makes an otherwise arbitrary 
choice justifiable. According to this solution, long streak 
patterns occur with probabilities that decrease so fast that 
they over-compensate the rather large payouts in those 
situations. The net expectation converges, supporting the 
perceived limited value of the gamble. 

Another feature of the new AT-based solution is that it 
does not need a concave utility function to resolve the 
puzzle. N. Bernoulli criticized that focusing on utility rather 
than value was not the true reason for why people valued the 
gamble less. Although the logarithmic utility function has 
received much support in the past as a reasonable way 
describing how people conceive goodness of value, there is 
a lack of a priori justification for the choice. 

 

 
Figure 3. Converging expected payout in the SPP. DB: 

the logarithmic utility solution by Daniel Bernoulli. 
AT: new AT-based solution (Eq. 6). 

 

Discussion 
The St. Petersburg Paradox is an over 300-year old puzzle 
and still resides in the center of any formal understanding of 
human decision making. Why is a gamble with an infinite 
expected return valued so little? The classical solution, 
proposed by Daniel Bernoulli, resorts to the concept of 
utility. According to this account, humans do not value 
money at its face value, rather, its utility, measuring its 
usefulness or the pleasure it brings about, should be 
considered. Utility is apparently sensitive to, and therefore 
is capable of capturing the effect of, a range of factors, 
including individual difference, risk preferences, and time 
discount. The concept is so intuitively appealing and 
mathematically powerful that it has since become a 
cornerstone of modern economics. However, the lack of a 
priori analysis for choosing a specific form of utility 
function raises a problem. More recently, Ole Peters 
demonstrated that the logarithmic utility function is a 
mathematically necessary result if a probabilistic decision 
maker is assumed to maximize return over time.  

Nicolas Bernoulli, the original proposer of the puzzle, 
hypothesized that the culprit was those cases that carry large 
payouts but with very small probabilities. He suspected that 
to a sensible human those cases should be rendered as 
impossible to occur. Equipped with standard probability 
theory, however, he encountered great difficulty in deciding 
when a probability was small enough. 

In this paper we have suggested a different solution to the 
problem. The solution is consistent with N. Bernoulli’s 
probability weighting idea, but avoids its difficulty. 
Essentially, we have derived a different probability measure 
based on the waiting time, an environmental statistic that 
describes how soon an uncertain event is to occur. It can be 
shown that in tossing a fair coin, while patterns of equal 
length all have the same mean time, that is, the same 
probability, they may have different waiting times. We 
show that via the concept of Additional Transition Time, a 
different probability measure can be derived for patterns. In 
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particular, we show that streak patterns have a much longer 
AT than non-streak patterns, rendering them to be very rare 
to occur. We demonstrate that this probability weighting 
leads to a converged expected return and therefore solves 
the SPP. 

One advantage of our solution is that it eliminates 
arbitrary ad-hoc choices, for either the utility function form 
or the limit for sufficiently small probabilities. It is a 
normative solution based on mathematics, with fewer pre-
assumptions. The brain’s sensitivity to the waiting time has 
recently been demonstrated, which lends further credibility 
to the solution.  

In sum, the treatment presented in this paper is in contrast 
to almost all existing theories attempting to explain and 
rationalize human biases in judgment and decision making 
(Falk & Konold, 1997; Gigerenzer & Hoffrage, 1995; 
Gilovich, Griffin & Kahneman, 2002; Griffiths, Chater, 
Kemp, Perfors & Tenenbaum, 2010; Ma, Beck, Latham & 
Pouget, 2006). In spite of different details, these theories are 
all based on the assumption that human mind encodes mean-
time based probabilities or likelihoods. Here we argue that 
an accurate encoding of more complicated temporal 
structures (specifically, the wait time and additional 
transition time statistics) is at the core of how people 
represent uncertainty. 
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