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Research Submission

No Gastrointestinal Dysmotility in Transgenic Mouse Models 
of  Migraine

Adam S. Sprouse Blum, MD; Brigitte Lavoie, PhD; Melody Haag, BS; Seamus M. Mawe, BA;  
Else A. Tolner, PhD; Arn M.J.M. van den Maagdenberg, PhD; Shih-Pin Chen, MD, PhD ;  

Katharina Eikermann-Haerter, MD; Louis Ptáček, MD; Gary M. Mawe, PhD; Robert E. Shapiro, MD, PhD

Objective.—To determine whether transgenic mouse models of migraine exhibit upper gastrointestinal dysmotility comparable 
to those observed in migraine patients.

Background.—There is considerable evidence supporting the comorbidity of gastrointestinal dysmotility and migraine. 
Gastrointestinal motility, however, has never been investigated in transgenic mouse models of migraine.

Methods.—Three transgenic mouse strains that express pathogenic gene mutations linked to monogenic migraine-relevant 
phenotypes were studied: CADASIL (Notch3-Tg88), FASP (CSNK1D-T44A), and FHM1 (CACNA1A-S218L). Upper gastro-
intestinal motility was quantified by measuring gastric emptying and small intestinal transit in mutant and control animals. 
Gastrointestinal motility was measured at baseline and after pretreatment with 10  mg/kg nitroglycerin (NTG).

Results.—No significant differences were observed for gastric emptying or small intestinal transit at baseline for any of 
the 3 transgenic strains when compared to appropriate controls or after pretreatment with NTG when compared to vehicle.

Conclusions.—We detected no evidence of upper gastrointestinal dysmotility in mice that express mutations in genes linked to 
monogenic migraine-relevant phenotypes. Future studies seeking to understand why humans with migraine experience delayed gastric 
emptying may benefit from pursuing other modifiers of gastrointestinal motility, such as epigenetic or microbiome-related factors.

Key words: migraine, headache, gastroparesis, gastrointestinal motility

Abbreviations: �CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, 
FASP familial advanced sleep phase, FHM familial hemiplegic migraine, IBS irritable bowel syndrome, 
IG idiopathic gastroparesis, NTG nitroglycerin

(Headache 2020;60:396-404)

INTRODUCTION
Migraine is a prevalent episodic brain disorder 

characterized by severe headaches as well as sensory, 

cognitive, and autonomic disturbances.1 Symptoms 

vary between attacks and between individuals. About 
22% of patients with migraine reports gastrointestinal 
symptoms during the premonitory phase of migraine,2 
and up to 96% report symptoms with migraine attacks 
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that may reflect the dysfunction of the gastrointestinal 
system, including nausea, vomiting, abdominal dis-
comfort, and diarrhea.3

Mothers with migraine are more likely to have 
a baby with colic.4 In children and adolescents,  
abdominal migraine and cyclic vomiting syndrome 
may occur in the absence of abnormal gastrointestinal 
examinations (or of headache), but are associated with 
the development of migraine later in life.5,6 Functional 
gastrointestinal disorders, such as irritable bowel syn-
drome (IBS) and idiopathic gastroparesis (IG), are 
more prevalent in adults with migraine and vice versa. 
Patients with IBS are ~2.7  times more likely to have 
migraine7 and those with migraine are ~2.0 times more 
likely to have IBS.8 IG is defined as “a chronic motility 
disorder of the stomach that involves delayed empty-
ing of solids and liquids, without evidence of mechani-
cal obstruction.”9 Both migraine and IG have a higher 
prevalence in women than men (3-fold higher and 
4-fold higher, respectively).10,11 Symptoms typically  
reported with migraine are often the symptoms of 
IG, including nausea (92% of IG subjects), vomiting 
(84%), and early satiety (60%).12 In a survey of 243  
patients with IG from gastroenterology specialty clin-
ics, 41% also reported having migraine, whereas, 59% 
of those patients with severe IG symptoms reported 
migraine vs 32% with mild IG symptoms.13

Kaufman and Levine14 were the first to report an 
association between transient IG and migraine attacks. 
They reported “a tremendously dilated stomach” and 
a failure to empty orally administered contrast agent 
as shown by abdominal X-rays in a patient during a 
migraine attack that was accompanied by nausea and 
vomiting, whereas no such radiological abnormality 
was observed after the attack. Patients with migraine 
retain orally administered medication in their stomach, 
limiting passage into the small intestine, and its sub-
sequent detection in serum, consistent with IG. Oral  
salicylate administered during migraine attacks resulted 
in lower serum drug levels, compared to administra-
tion either between attacks15 or during attacks pre-
treated with prokinetic agents (eg, metoclopramide), 
though this study was limited by failure to use subjects 
as their own controls.15,16 However, similar findings 
have been reported with the administration of parac-
etamol and tolfenamic acid.17-19 Slower rates of gastric 

emptying have also been correlated with greater headache  
severity in migraine.20 Migraine-associated gastropare-
sis has been confirmed with both liquid and solid gas-
tric scintigraphy.21-23

The etiology of gastroparesis in patients with 
migraine is unclear. Calcitonin gene-related peptide 
(CGRP) has effects on gastrointestinal motility and 
has been implicated in migraine pathophysiology.24 
In some25,26 but not all27 human studies, CGRP is  
elevated in jugular venous blood. CGRP receptors are 
located throughout the gastrointestinal system includ-
ing the stomach, and small and large intestines.28 In 
mice, CGRP has been shown to induce diarrhea, which 
can be prevented with concurrent anti-CGRP receptor 
antibodies, but the mechanisms that cause this effect 
are not known.29 Constipation has been reported with 
anti-CGRP receptor antibodies in humans.30,31 An  
animal model of migraine-related gastroparesis would 
be useful to further elucidate the mechanisms underly-
ing this finding.

Mutations in several genes have been linked to rare 
monogenic migraine-relevant phenotypes. Cerebral 
autosomal dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy (CADASIL) is a 
heritable cause of migraine, stroke, and dementia in 
humans. CADASIL is a consequence of specific mis-
sense mutations in the NOTCH3 gene that encodes a 
transmembrane receptor protein primarily expressed 
in arterial smooth muscle.32 Familial advanced sleep 
phase (FASP) is syndromic with migraine with or 
without aura in members of 2 identified families.33 
The FASP-migraine syndrome in these families is  
associated with missense mutations in the CSNK1D 
gene encoding casein kinase 1δ, a serine-threonine 
kinase that phosphorylates circadian clock protein 
Per2, among other substrates. Familial hemiplegic 
migraine (FHM) is a variant of migraine with aura 
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characterized by transient motor weakness during  
attacks. Several mutations have been linked to FHM, 
including the CACNA1A gene (FHM1) that encodes  
the pore-forming α1A subunit of neuronal voltage- 
dependent CaV2.1 (P/Q-type) calcium channels.34 
Migraine attacks in patients with mutations in the 
CADASIL (NOTCH3), FASP (CSNK1D) and FHM 
(CACNA1A, ATP1A2, SCN1A) genes exhibit most of 
the clinical features also seen in those with the common 
forms of migraine,33,35,36 but no study has evaluated 
the presence of IG in these patients.

For pathogenic mutations identified in the genes 
NOTCH3, CSNK1D, and CACNA1A, transgenic 
knock-in or conventional overexpressor mouse 
strains have been generated that consistently repro-
duce features of  the respective migraine-associated 
phenotypes (such as increased susceptibility to cor-
tical spreading depolarization and increased pain 
response when exposed to nitroglycerin [NTG]).33,37-

40 Gastrointestinal motility, however, has not been 
investigated in any of  these well-established mouse 
models of  migraine. We investigated whether these 
transgenic mutant mice exhibit delays in gastrointes-
tinal motility reminiscent of  what has been observed 
in patients with migraine.

METHODS
Mice.—Three transgenic mouse models carrying 

monogenic migraine gene mutations were studied: (1) 
CADASIL: male and female mice that overexpressed the 
rat Notch3 cDNA, driven by the SM22 alpha-smooth 
muscle cell gene promoter that contained the R169C mis-
sense mutation that causes CADASIL (TgNotch3R169C; 
line 88 mice).41 (2) FASP: male and female mice that 
overexpressed the human CSNK1D gene that con-
tained the T44A missense mutation that causes FASP 
(CSNK1D-T44A; line 827).33 (3) FHM1: female knock-
in mice that expressed the S218L missense mutation 
(in the endogenous Cacna1a gene) that causes FHM1 
(CACNA1A-S218L).42 For the FHM1 strain, only  
females were studied as they have been shown to express 
a more severe phenotype than male mutant mice; only 
mice homozygous for the S218L mutation were studied 
due to higher genetic load.10,42

For the genotypic comparison, age- and sex-
matched mice of the respective strains were used.  

For CADASIL and FASP strains, because the mutant 
animals overexpressed the mutant gene, overexpres-
sors of the wild-type gene (TgNotch3WT; line 12941 and 
CSNK1D-WT; line 433, respectively) were used as con-
trols. FHM1 (CACNA1A-S218L) mutants were com-
pared to wild-type littermates.

Mouse ages ranged from 13 to 19 weeks. Animals 
were group-housed with a 12-hour-light/12-hour-dark 
cycle and water and food ad libitum. The University of 
Vermont Institutional Animal Care and Use Committee 
approved all care and experimental procedures.

Gastrointestinal Motility Measures and Experi-
mental Groups.—Animals were divided into 3 groups 
to test different conditions: (1) baseline (no pretreat-
ment); (2) pretreatment with nitroglycerin (NTG); and 
(3) pretreatment with vehicle.

Animals that underwent pretreatment were  
administered 10  mg/kg NTG, which came diluted 
in 5% dextrose (100  mg/250  mL) (Baxter Healthcare 
Corp., Deerfield, IL), or corresponding vehicle  
(5% dextrose) subcutaneously at the nape of the neck 
by tenting the skin. CADASIL and FASP animals  
received serial NTG injections on Days 0, 2, 4, 6, and 
8 (the day of the gastrointestinal motility procedure), 
similar to prior reports in mice43 and rats,44,45 with the 
intent to maximize the effects of pretreatment with 
NTG. FHM1 animals were injected only once (to limit 
the handling of the animals) on the day of the proce-
dure given the higher risk for mortality in homozygous 
CACNA1A-S218L mice.46

The night prior to the gastrointestinal motility 
procedure, food and cage bedding were removed. In 
animals that underwent pretreatment, animals were 
weighed and then administered NTG or vehicle sub-
cutaneously 4  hours prior to dissection. In all ani-
mals, water was removed 3 hours prior to dissection. 
Fifteen minutes prior to euthanasia, 100 µL of a non-
absorbable fluorescent solution containing 2.5 mg/mL 
of Rhodamine B Dextran (MW: 70KDa: Invitrogen 
Corp. Carlsbad, CA) and 2% methylcellulose (Sigma-
Aldrich, St. Louis, MO) in tap water was administered 
via gastric gavage. Two minutes prior to euthanasia, 
animals were placed in an induction chamber where 
they underwent an overdose of isoflurane anesthesia 
followed by euthanasia by decapitation. Next, the ab-
domen was opened along the midline and hemostats 
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were placed at the gastroesophageal and gastroduode-
nal junctions. The stomach was removed and placed 
into a conical tube containing 4 mL of 0.9% saline. A 
third hemostat was placed at the ileocecal valve. The 
small intestine was removed and divided into 10 seg-
ments of equal length (~35-45 mm), and subsequently 
placed into numbered conical tubes, also containing 
4 mL of 0.9% saline. The tissues were then homoge-
nized and centrifuged (15  minutes, 500  g, 4°C) and 
subsequently, 250  µL of the fluorescence containing 
supernatant was pipetted into black bottom 96-well 
plates. Fluorescence was quantified at 450 nm absor-
bance using a BioTek Synergy H4 Hybrid Microplate 
Reader (BioTek, Winooski, VT).

The primary endpoints were: (1) gastric emptying: the  
percentage of tracer bolus that progressed from the  
stomach into the small intestine at 15 minutes and (2) 
geometric center: the distance that the fluorescent tracer 
bolus traveled through the small intestine calculated as the 
∑

(Percentage of total fluorescent signal in each segment

×The segment number) ∕Total intestinal fluorescence. 
Geometric center has been validated as a measurement 
of intestinal transit in rat.47 Both endpoints have been 
used by our laboratory and others in mice.48,49

Statistics.—For each group of data, a Kruskal-Wallis  
one-way ANOVA with Dunn post hoc test was used for 
P value calculations with P ≤ .05 considered significant. 
GraphPad Prism (version 7.0, GraphPad Software, La 
Jolla, CA) was used for statistical analysis.

RESULTS
In experiments with CADASIL (TgNotch3R169C vs 

TgNotch3WT) mice, no genotypic differences were ob-
served for either the gastric emptying or geometric center 
endpoints, neither at baseline nor after serial NTG in-
duction in either sex (Fig. 1). Also for experiments in 
FASP (CSNK1D-T44A vs CSNK1D-WT) mice, no 
genotypic differences were observed for any of the end-
points whether at baseline or after serial NTG induc-
tion in either sex (Fig. 2). Finally, also for experiments in 
FHM1 (CACNA1A-S218L vs WT littermates) mice, no 
differences between genotypes were observed for gastric 
emptying or geometric center endpoints after a single 
NTG injection in female mutant animals compared to  
(1) vehicle-pretreated female mice of the same genotype or 
(2) NTG-pretreated female WT control animals (Fig. 3).

DISCUSSION
Gastroparesis is a well-recognized feature of  

migraine attacks in humans, but the etiology of this  
comorbidity is poorly understood. The current study 
was designed to investigate whether 3 monogenic mouse 
models of migraine (ie, CADASIL, FASP, or FHM1) 
also exhibit a gastroparesis phenotype. We recognized 
that findings in transgenic animals may not be gener-
alizable to common (polygenic) forms of migraine but 
elected to study transgenic animals as a first attempt to 
increase the chance of observing the signs of gastroin-
testinal dysmotility. If the gene mutations (which con-
fer increased susceptibility to migraine) also increased 
susceptibility to gastroparesis, this finding would have 
added weight to the concept that gastroparesis is a pri-
mary feature of migraine, rather than an associated 
trait. While neither gastroparesis nor delayed small 
intestinal motility were observed in any of the mutant 
mouse strains at baseline or after induction with NTG, 
the failure to identify gastroparesis in this study does 
not negate prior evidence linking gastroparesis to mi-
graine, nor does it suggest further studies of gastropare-
sis in animal models of migraine should not be pursued.

There are multiple explanations for why we did 
not detect gastrointestinal dysmotility in mutant mice. 
First, patients with CADASIL, FASP, or FHM1 may 
not experience gastroparesis, in which case the mouse 
models of these phenotypes would not be expected to 
do so either. While many patients with CADASIL,50 
FASP (unpublished observations), and FHM151  
experience nausea and/or vomiting with attacks, such 
symptoms may not arise from or be associated with 
gastroparesis. Second, it is possible that gastrointesti-
nal dysmotility is present in humans with monogenic 
migraine phenotypes but not captured in mouse models 
with the gene mutations as some gastrointestinal mo-
tility behaviors are not observed in rodents (eg, vomit-
ing)52 and autonomic dysfunction may not be prevalent 
in these genetic models. Third, other modifiers of gas-
trointestinal motility may be critical in the expression 
of its pathophysiology, such as epigenetic factors53 or 
altered microbiome54 that may require a specific type 
of exposure to which the mutant mice have not been 
exposed. Fourth, the protocol we employed for NTG 
administration via repeated subcutaneous injections 
may have limited our ability to detect gastrointestinal 
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Fig. 1.—Gastric emptying and geometric center measurements in male and female CADASIL (TgNotchR169C) overexpressor mutant 
mice and their respective controls (TgNotch3WT; line 129). Measurements were performed at baseline and after serial induction with 
NTG or vehicle. Data are represented as mean ± SEM and analyzed by Kruskal-Wallis one-way ANOVA P values: Gastric Emptying: 
Total, P = .17; Male, P = .15; Female, P = .61. Geometric Center: Total, P = .64; Male, P = .54; Female, P = .66. [Color figure can 
be viewed at wileyonlinelibrary.com]

Fig. 2.—Gastric emptying and geometric center measurements in male and female FASP (CSNK1D-T44A) overexpressor mutant 
mice and their respective controls (CSNK1D-WT; line 433). Measurements were taken at baseline and after serial induction with 
NTG or vehicle. Data are represented as mean ± SEM and analyzed by Kruskal-Wallis one-way ANOVA P values: Gastric Emptying: 
Total, P = .29; Male, P = .36; Female, P = .25. Geometric Center: Total, P = .14; Male, P = .09; Female, P = .31. [Color figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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dysmotility. Preliminary studies in our laboratory in 
which intraperitoneal injections were used showed 
that direct (external) application of NTG to the small  
intestine altered motility in WT mice (data not shown). 
In support of this finding, nitric oxide has previously 
been shown to have a direct inhibitory effect on gas-
trointestinal smooth muscle.55 Therefore, we used sub-
cutaneous injection of NTG in this study. We did not 
independently confirm the subcutaneous NTG induc-
tion protocol leads to similar findings as observed in 
mice with intraperitoneal NTG injections (eg, mechan-
ical and thermal hyperalgesia or cFos-activation in the 
trigeminal nucleus caudalis).56 Previous studies in rats 
demonstrated an increase in spontaneous trigeminal 
neuronal firing, trigeminal neuronal hypersensitivity,57 
and cFos and calmodulin-dependent protein kinase II 
(CamKII) activation 4 hours after subcutaneous NTG 
administration.58-61 Finally, the ability of nitric oxide 
to induce migraine attacks in humans with FHM1 is 
an unsettled question.10,62 Due to the unavailability 
of mice, our studies did not include a comparison of 
gastrointestinal motility between vehicle and NTG in 
female wild-type littermates of FHM1 S218L mice. 
However, the female mice homozygous for the FHM1 
S218L mutation did not demonstrate any gastrointesti-
nal dysmotility following NTG injections.

CONCLUSIONS
We found no evidence of gastroparesis or de-

layed small intestinal motility at baseline or following  
repeated subcutaneous NTG administration in any of 

the 3 investigated monogenic mouse models of migraine, 
that is, in CADASIL (Notch3-Tg88), FASP (CSNK1D-
T44A), and FHM1 (CACNA1A-S218L) mice. Future 
studies seeking to understand why humans with  
migraine experience gastrointestinal dysmotility may 
benefit from studying other animal migraine models63 
or investigating potential modifiers of gastrointestinal  
motility, such as epigenetic or microbiome-related factors.

Acknowledgements: None.
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