
UC Irvine
UC Irvine Previously Published Works

Title
Genotype determination for polymorphisms in linkage disequilibrium

Permalink
https://escholarship.org/uc/item/7894w5c6

Journal
BMC Bioinformatics, 10(1)

ISSN
1471-2105

Authors
Yu, Zhaoxia
Garner, Chad
Ziogas, Argyrios
et al.

Publication Date
2009

DOI
10.1186/1471-2105-10-63

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7894w5c6
https://escholarship.org/uc/item/7894w5c6#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


BMC Bioinformatics

Methodology article
Genotype determination for polymorphisms in linkage
disequilibrium
Zhaoxia Yu*1, Chad Garner2, Argyrios Ziogas2, Hoda Anton-Culver2

and Daniel J Schaid3

Address: 1Department of Statistics, University of California, Irvine, CA, USA, 2Epidemiology Division, Department of Medicine, University of
California, Irvine, CA, USA and 3Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA

E-mail: Zhaoxia Yu* - yu.zhaoxia@uci.edu; Chad Garner - cgarner@uci.edu; Argyrios Ziogas - aziogas@uci.edu;
Hoda Anton-Culver - hantoncu@uci.edu; Daniel J Schaid - schaid@mayo.edu
*Corresponding author

Published: 20 February 2009 Received: 24 September 2008

BMC Bioinformatics 2009, 10:63 doi: 10.1186/1471-2105-10-63 Accepted: 20 February 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/63

© 2009 Yu et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Genome-wide association studies with single nucleotide polymorphisms (SNPs)
show great promise to identify genetic determinants of complex human traits. In current analyses,
genotype calling and imputation of missing genotypes are usually considered as two separated tasks.
The genotypes of SNPs are first determined one at a time from allele signal intensities. Then the
missing genotypes, i.e., no-calls caused by not perfectly separated signal clouds, are imputed based
on the linkage disequilibrium (LD) between multiple SNPs. Although many statistical methods have
been developed to improve either genotype calling or imputation of missing genotypes, treating the
two steps independently can lead to loss of genetic information.

Results: We propose a novel genotype calling framework. In this framework, we consider the
signal intensities and underlying LD structure of SNPs simultaneously by estimating both cluster
parameters and haplotype frequencies. As a result, our new method outperforms some existing
algorithms in terms of both call rates and genotyping accuracy. Our studies also suggest that jointly
analyzing multiple SNPs in LD provides more accurate estimation of haplotypes than haplotype
reconstruction methods that only use called genotypes.

Conclusion: Our study demonstrates that jointly analyzing signal intensities and LD structure of
multiple SNPs is a better way to determine genotypes and estimate LD parameters.

Background
Recent advances in genotyping technologies have greatly
improved genotype call rates and accuracy. This conse-
quently enhances our understanding of genetic varia-
tions that are responsible for complex human traits. In
particular, studies with SNPs show great promise to
identify genetic determinants of complex disorders.
Despite these achievements, the large number of SNPs
in today's genome-wide studies poses a number of
serious challenges. For example, one important issue is

how to handle missing genotypes. Simply excluding
subjects that have any missing genotypes is impractical
in many situations, as most subjects usually have one or
more missing genotypes in large genotyping efforts.
Consequently, ignoring missing genotypes may lead to
huge loss of genetic information.

Genotypes of SNPs are usually determined one at a time
based on signal intensities of alleles. And depending on
the availability of training data, the assignment of
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genotypes is often treated as a clustering or classification
problem. When the allele signal intensities of a SNP are
not well separated, currently available genotype calling
algorithms make no calls (so called missing values) on
data points that are not assigned to a genotype cluster
with a high posterior probability. Many strategies have
been exploited to reduce the impact of missing
genotypes on association analyses. One of them is to
take genotype uncertainties into account when conduct-
ing association tests. For example, Plagnol et al. [1]
treated posterior probabilities as weights of genotype
assignments and used a weighted score statistic, and
Kang et al. [2] incorporated genotype uncertainties into
their haplotype estimation algorithm. Another strategy is
to impute missing genotypes from called genotypes. For
example, Souverein et al. [3] modelled a SNP and
markers that are in LD with the SNP using the
polytomous logistic regression model, and Dai et al.
[4] used a classification tree method. A detailed
comparison of several of those imputation methods
can be found in Yu and Schaid [5]. Imputation of
missing genotypes can also be a by-product of haplotype
reconstruction, which estimates missing genotypes and
unknown haplotype phase simultaneously [6-18]. All
those imputation strategies are based on the fact that
when SNPs are in LD, the unobserved genotypes can be
imputed accurately based on genotypes observed at
other SNPs.

Essentially, the above described approaches try to use
information from two different perspectives: incorporat-
ing genotype uncertainty into association tests focuses on
making full use of information from the signal intensities
of each SNP, and imputing missing genotypes based on
LD focuses on borrowing information from neighbouring
SNPs. As each of them uses only partial information from
the data, we would expect that genotype determination
can be greatly improved in an approach that takes
advantage of both "fuzzy" call and imputation of missing
values on called genotypes. Here, we propose a new
method that uses both signal intensities and LD
information, with the two parts connected by jointly
estimating the underlying cluster parameters and haplo-
type frequencies for multiple markers.

To show better the motivation for combining signal
intensities and LD information, let's examine the
clustering results of the signal data from Illumina
BeadArray platform for about 1500 individuals at a
SNP. Figure 1 shows the normalized signal intensities of
two alternative alleles: A and C. Using the genotype
calling algorithm illuminus [19], most data points can be
clustered into one of three genotype groups: AA, AC, or
CC. However, there are several data points that are
located between two clusters. These data points are

usually treated as missing values and their genotypes
have to be imputed by some statistical methods. Despite
the genotype uncertainty, the positions of these data
points nevertheless provide some information for
genotyping. For example, if the posterior probability
for a data point to have genotype AA is 0.8, then it will
be treated as a missing value when the threshold to
assign genotype calls is set to 0.95; however, in the case
that it is in LD with a neighbouring SNP, this partial
genotype information, together with the LD between the
two SNPs, can help to identify its underlying genotype.

Methods
Notation
N: number of subjects.

M: number of markers.

H: number of distinguishable haplotypes.

Xi = (Xi1, ..., XiM): vector of signal intensities for subject i,
i = 1, ..., N.

Gi = (Gi1, ..., GiM): genotype for subject i, i = 1, ..., N.

hj = (hj1, ..., hjM): the j th haplotype, j = 1,...,H. hjm is 1 for
the rare allele and 0 for the common allele at SNP m.
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Figure 1
The clustering results based on a one-marker-at-a-
time method. Values on the X-axis and Y-axis are
normalized signal intensities of two alternative alleles (A and
C). Estimated genotypes "AA", "AC", and "CC" are indicated
by symbols "0", "1", and "2", respectively. Question marks
represent missing values (i.e. no calls).
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Yi = (hi1/hi2): phased genotype (haplotype pairs) for
subject i, where hi1 Œ {h1,...,hH} and hi2 Œ {h1,...,hH} are
the haplotypes. i = 1, ..., N.

hj(Yi): number of copies of haplotype hj in Yi.

θS = (μmt, Σmt, πmt)m = 1,...,M : cluster parameters, where
μmt, Σmt, πmt are the mean, covariance matrix (or variance
for one-dimensional data), and probability of genotype
cluster t at SNP m, respectively.

θH = (θh1,...,θhH): LD parameters, where θhj is the
frequency of haplotype hj.

In the notation,Xi is observed, andGi and Yi are unobserved.
Xi = (Xi1, ..., XiM) denotes signal intensities that are after
proper normalization or transformation. Different normal-
ization or transformation methods may be used for data
generated by different platforms. For example, for signal
data from Illumina BeadArray, Xim is the contrast variable at
SNP m. Similar to the algorithm illuminus by Teo et al [19],
we define contrast as the ratio of the difference to the sumof
the normalized signal intensities of two alternative alleles.
For data from Affymetrix GeneChip 500 K arrays, Xim is a
two dimensional variable, with each dimension corre-
sponding to the normalized signal of one allele, as in the
Chiamo [20] software.

Our new method
In our method we partition parameters into two sets: the
cluster parameters θS, and the LD parameters θH.
Although they contain redundant information, i.e., all
πmt are known when θH is given, we adopt this
parameterization to simplify the presentation of our
algorithm. Our algorithm correlates the signal intensities
of multiple markers by jointly estimating cluster para-
meters and LD parameters (i.e., haplotype frequencies).
We assume signal intensities of different markers are
independent, conditional on given genotypes. In addi-
tion, we make three reasonable assumptions:

(1) Conditional on phased genotypes and cluster para-
meters, the distribution of signal intensities does not rely
on LD parameters θH i.e., f(Xi|Yi, θS, θH) = f(Xi|Yi, θS);

(2) Conditional on LD parameters θH the distribution of
Yi does not depend on cluster parameters θS, i.e., f(Yi|θS,
θH) = f(Yi|θH);

(3) SNPs are in Hardy-Weinberg equilibrium (HWE).

The complete data likelihood is then:

f(Xi, Yi | θS, θH) = f(Xi | Yi, θS, θH)f(Yi | θS, θH)

= f(Xi | Yi, θS)f(Yi | θH)

We use the EM algorithm to estimate parameters in our
method [21]. With some algebraic manipulation, we can
show that the E step is equivalent to calculating the
genotype posterior probability for the ith subject to have
genotype t at the mth locus, given estimated parameters
and observed signal intensities. Based on the relation
between phased and unphased genotypes, the genotype
posterior probability can be expressed as

w G t X f Y Ximt im i S H i i S H

Y G ti im

= = =
=

∑Pr( | , , ) ( | , , )
:

q q q q

This is essentially a sum of probabilities of phased
genotypes, conditional on estimated parameters and
observed signal intensities. The probability of a phased
genotype conditional on estimated parameters and
observed signal intensities is

f Y X
f Xi Yi S f Yi H
f Xi Yi S f Yi H

Yi

i i S H( | , , )
( | , ) ( | )

( | , ) ( | )
q q q q

q q
=
∑

where

f X Y f X Y

f Y I h h

i i S im i S

m

M

i H h h
i i

i i

( | , ) ( | , )

( | ) ( (

q q

q q q

=

= + =
=
∏

1

1 2
1 2 1 )))

For given Yi and θS, we assume that the signal intensities
at different markers are independent, and they follow a
distribution suitable to the normalized signal data, such
as Gaussian distribution or t-distribution.

The M step in the EM algorithm calculates the set of θS
and θH that maximizes the expected log-likelihood. The
estimate for the frequency of haplotype hj is

q q qh j i i S H

Yi

j i

i

n

n
f Y X h Y= ∑∑

=

1
2

1

( | , , ) ( )

Since θS and θH contain redundant information, there is no
need to update the πmt's in θS once θH is updated; as a result,
we only need to estimate themean and covariancematrix of
each genotype cluster. In the M step of the conventional EM
algorithm, the means and covariance matrices are updated
by the set of values that maximizes the expected log-
likelihood. For Illumina BeadArray data, our estimators for
cluster parameters are based on data points with large
genotype posterior probabilities (for example, greater than
0.95), since our study shows they are more robust than the
estimators in the M step of the conventional EM algorithm.
This strategy is also used in [19]. For data generated by the
Affymetrix GeneChip 500 K arrays, we first obtained
the regular estimates for the mean and covariance matrix
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of the tth cluster at SNP m, then estimated the cluster mean
μmt by using the (N × πmt/2) data points that have the
smallest Mahalanobis distances, and finally updated the
covariance matrix Σmt by a weighted estimator based on
estimated μmt and all data points.

In our method, once the EM algorithm converges, we
make genotype calls based on the genotype posterior
probabilities and a predetermined threshold δ. Specifi-
cally, for a subject at a given SNP, if the posterior
probability for the subject to have genotype t is greater
than δ, we assign t to the corresponding data point; if the
posterior probabilities for all of the three genotypes are
less than δ, then the data point is labelled as missing and
no call is assigned.

We emphasize that our method is different from treating
signal intensities of different markers as a multi-
dimensional variable. To show the difference, here we
consider the case of two SNPs. The number of possible
genotypes is nine for two SNPs. If we treat the contrast
variable of the two SNPs as a bivariate t-distribution with
known degrees of freedom, then we need to estimate 53
parameters, including nine two-dimensional means,
nine two-by-two covariance matrices (three parameters
in each covariance matrix), and eight cluster probabil-
ities. By contrast, we only need to estimate 15 parameters
in our method: six means, attributed to three genotype
clusters for each SNP; six variances, attributed to three
genotype clusters for each SNP; and three haplotype
frequencies, attributed to four possible haplotypes. In
addition, the cluster parameters in our method are
estimated marker by marker; as a result, the difficulty
brought by a SNP with a rare allele or low signal quality
has little effect on the cluster parameters of other SNPs.

To assess the performance of our method (denoted as
M3), we compared it with two other methods: the one-
SNP-at-a-time method M1 and the LD based method
M2. The method M1 models the cluster parameters θS,
and the method M2 models the LD parameters θH. M1
and M2 use only part of the information from data:
either the signal intensities of individual SNPs, or LD
structure of multiple SNPs. By contrast, our method M3
uses both signal intensities of individual SNPs and LD
structure between SNPs. In the method M1, we used the
algorithm illuminus [19] for data from Illumina BeadAr-
ray and the algorithm Chiamo [20] for data from
Affymetrix GeneChip 500 K arrays. Those two algorithms
are used because they outperform other existing algo-
rithms for their respective platforms [19, 20]. The
illuminus algorithm assumes that the contrast and
strength (the natural logarithm of the sum of normalized
signal intensities) follow a t-mixture model and it uses
the EM algorithm to estimate cluster parameters; the

Chiamo algorithm uses a Bayesian hierarchical mixture
model to call genotypes from normalized signal inten-
sities. In the method M2, we first computed the posterior
genotype probabilities for the missing genotypes based
on the LD structure of genotypes assigned by illuminus or
Chiamo, then assigned genotype calls to the missing ones
based on whether the calculated posterior probabilities
were greater than a threshold. The posterior genotype
probabilities are calculated by using the EM algorithm
[6] for our simulated data with two SNPs, and they are
calculated by using the algorithm fastPHASE [11] for the
two real data sets considered in the paper, due to the
large number of SNPs in the real data sets.

Simulated data
To evaluate the performance of different methods, we
simulated data by mimicking signals generated by
Illumina BeadArray. In our simulation, the cluster
parameters were based on SNPs in a real data set; the
allele frequencies and LD levels were pre-determined to
reflect different data structures. We considered two SNPs
with the same allele frequencies. The minor allele
frequency was chosen to be 0.05, 0.1, or 0.3, and the
LD was chosen at a variety of levels, with the square of
the Pearson's correlation (r2) being about 0, 0.3, 0.5, or
0.8. HWE was assumed for both SNPs. The threshold for
assigning calls or no calls, δ, was chosen to be 0.85, 0.90,
0.95, or 0.975. The signal intensities (contrast and
strength) for a given marker were assumed to have a
three-component t-mixture distribution (bivariate), with
six degrees of freedom. Contrast and strength were
assumed to be independent from each other. To study
the effect of signal quality, we considered three sets of
cluster parameters:

(1) high quality, with means for contrast being -0.9, 0.2,
0.9, means for strength being -1.2, -1, -0.8, standard
errors for contrast being 0.09, 0.09, 0.06, and standard
errors for strength being 0.37, 0.22, 0.27;

(2) low quality, with means for contrast being -0.5, 0.3,
0.9, means for strength being -1.4, -1.2, -0.8, standard
errors for contrast being 0.22, 0.15, 0.06, and standard
errors for strength being 0.56, 0.64, 0.48;

(3) mixed quality, a situation with one SNP in high
quality and the other one in low quality.

These parameters were taken from two SNPs in real data,
representing SNPs with high or low genotype call rates.
The sample size was 1500.

To quantify the performance of the methods, two
quantitative metrics are computed: call rate and
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genotyping error rate. The call rate was the number of
non-missing calls divided by the total number of calls,
and the genotyping error rate was the proportion of
incorrectly called genotypes among all assigned calls. For
a set of chosen parameters, we used 1000 replicates to
estimate the two metrics. As both the LD based method
M2 and our method M3 estimate haplotype frequencies,
it is interesting to investigate whether one method gives
more accurate estimation for haplotype frequencies. And
for two SNPs, the accuracy of haplotype frequencies of
the two methods can be reflected by the square of the
Pearson's correlation (r2) based on estimated haplotype
frequencies.

Real data
We considered two sets of real data from two different
genotyping platforms.

The first data set consists of 1599 unrelated case-control
subjects (one third cases and two thirds controls) from a
breast-cancer candidate-gene study conducted in the
University of California at Irvine. For each subject, 1455
SNPs in 148 candidate genes were genotyped by
Illumina BeadArray. Normalized signal data were
obtained from BeadStudio. We used the algorithm
illuminus to make genotype calls in the one-SNP-at-a-
time method M1. In the LD based method M2, due to
the large number of SNPs, we used the algorithm
fastPHASE to compute the posterior probabilities for
the missing genotypes (no calls) assigned by the
algorithm illuminus. Jointly analyzing the signal data of
all the 1455 SNPs is computationally prohibitive. To
solve that problem, for each SNP, we searched all other
SNPs to find the one with the maximum r2 with the
given SNP, then analyzed the two SNPs jointly if their r2

is greater than 0.3. A t-mixture model with fixed degrees
of freedom was then used to cluster the contrast of two
alternative alleles for each SNP. In all the three methods
(M1, M2, and M3), we used 0.95 as the threshold to
assign genotype calls.

The second data set consists of signal data from
Affymetrix GeneChip 500 K arrays for 1504 unrelated
controls from the 1958 British Birth Cohort [20],
obtained from the Wellcome Trust Case Control Con-
sortium (WTCCC). We focused our study on the 6277
SNPs in chromosome 22. We chose the algorithm
Chiamo as the one-SNP-at-a-time method M1, since it
outperforms other genotype calling methods [20]. This
method uses a Bayesian hierarchical mixture model to
cluster quantile normalized data, and its default thresh-
old of posterior probabilities for making a call is 0.9. For
the no-calls assigned by Chiamo, we imputed them using
the algorithm fastPHASE. The joint analysis of signal and

LD was similar to that applied to the first real data set,
except that here we used a Gaussian mixture model for
the two-dimensional signal data. To compare the
performance of different methods, we downloaded the
Illumina Infinium 15 K data from the WTCCC. Among
the 1504 subjects with Affymetirx 500 K data, 1457 of
them were also genotyped by the Illumina Infinium 15
K. And the number of common SNPs on chromosome
22 in the two platforms was 31. For direct comparison,
in each method, we computed the discordance rates
between the most probable calls at the 31 common
SNPs. The reason why we use the most probable call for
each data point is that the thresholds for different
methods and platforms are not comparable.

Results
Simulated data
The results for the simulated data are reported in Tables
1 to 4. They are mean values from 1000 replications.
Tables 1, 2, and 3 show the call rates and genotyping
error rates of the three methods when (1) both of the
two SNPs were in high quality, (2) both of the two SNPs
were in low quality, and (3) SNP1 was in high quality
while SNP2 was in low quality, respectively. Table 4
reports the estimated r2 and mean square errors. Since
the patterns of the results for different allele frequencies
p were similar, here we only show the results for p = 0.1.
Our study indicates that different thresholds δ led to very
similar conclusions, thus only those of δ = 0.95 are

Table 1: Call rate and genotyping error for two SNPs in high
quality

call rate (%) error rate (%)

r2 0.802 0.500 0.304 0.802 0.500 0.304

M1 99.75 99.75 99.75 0.05 0.05 0.05

M2 99.87 99.75 99.75 0.06 0.05 0.05

M3 99.87 99.82 99.80 0.04 0.05 0.05

M1: the one-SNP-at-a-time method; M2: imputation based on estimated
genotypes from M1 and LD structure; M3: our method that jointly
analyzes the signal of two SNPs.

Table 2: Call rate and genotyping error for two SNPs in low
quality

call rate (%) error rate (%)

r2 0.802 0.500 0.304 0.802 0.500 0.304

M1 97.96 97.97 97.95 0.53 0.54 0.54

M2 98.90 97.97 97.95 0.64 0.54 0.54

M3 98.75 98.35 98.16 0.32 0.44 0.50
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described. And the results for r2 = 0 are not shown,
because when r2 was close to 0, the performance of all
the three methods were very similar, as expected.

The call rates of the two LD based methods (M2, and M3)
depend significantly on the LD level between the two SNPs.
As themethodM1 (illuminus) calls one SNP at a time, the LD
level does not affect its call rates, which can be seen from the
almost identical call rates at all LD levels. When the two
SNPs were independent from each other, as expected, the
call rates of the three methods were very similar (data not
shown). When the two SNPs were in LD, our method M3
consistently improved the call rates of M1, and with the
increase of LD, its advantage became more considerable.
When LD was not very strong, such as when r2 was below
0.5, the increment brought by M2 over M1 was very small;
in contrast, our method still improved the call rates in the
same situation.

Now we examine the effect of signal quality on the call
rates. When the signal quality of both SNPs was high, all
the three methods gave very high call rates and our
method gave the highest, as illustrated in Table 1. When
the signal quality of both SNPs was low, although the
call rates of all methods were lower, as shown in Table 2,

the benefit of using our method was more noticeable. To
study if our method would improve the genotype calling
of one SNP but deteriorate that of the other, we tested it
on the simulated data of mixed quality, and the results
are shown in Table 3. Here, because the two SNPs were
assumed to have the same rare allele frequency, the
signal intensities of the SNP in low quality were more
difficult to cluster than those of the SNP in high quality.
As a result, the call rates of M1 for SNP2 were much
lower than those of SNP1 for all three methods.
However, by jointly modelling signal intensities and
LD, our method significantly increased the call rates of
SNP2. In addition, the call rates of SNP1 were also
increased. This might seem implausible at the first sight,
but it can be explained by the fact that, although the
signal intensities of SNP2 were noisy, they were never-
theless useful to help cluster the signal intensities of the
associated marker SNP1. Consequently, jointly calling
the two SNPs increased the call rates for both of them.

Now let's examine the other important metric – the
genotyping error rate. For a given method with different
thresholds, genotyping accuracy and call rates are often
trade-off of each other. It is therefore important for an
algorithm not to gain higher value of one at the cost of
the other. The results in Tables 1, 2, and 3 illustrate that
our method not only achieved greater call rates than M1,
but also achieved higher genotyping accuracy, which is
most obvious when LD was moderate or strong. By
contrast, although the method M2 increased the call
rates when LD was strong, this increase was gained at the
sacrifice of genotyping accuracy. For example, when both
SNPs were in low quality and r2 was about 0.8, both M2
and our method have higher call rates than M1; however,
the genotyping error rate of M2 was 0.64%, which was 2
times of the error rate of our method (0.32%) and 1.2
times of that of M1 (0.53%).

When the signal intensities of a SNP are in low quality,
the estimated genotypes are prone to genotyping errors.
This error was amplified by the method M2 (Tables 2
and 3), because M2 is directly based on called genotypes.
By contrast, our method achieved higher genotyping
accuracy. This is because, for a SNP whose signal
intensities are not well separated, its genotype assign-
ments can be improved by the LD between itself and
other SNPs. Strikingly, in the situation of mixed quality,
when the two SNPs were in high LD, our method
improved the genotyping accuracy for both SNPs over
the method M1. Again, this can be attributed to the fact
that although the signal of SNP2 was noisy, it still
provided some clustering information for SNP1.

Table 4 shows the estimated r2 and mean square errors.
With all LD levels and signal qualities, our method

Table 3: Call rate and genotyping error for two SNPs in mixed
quality

call rate (%) error rate (%)

r2 0.802 0.500 0.304 0.802 0.500 0.304

M1 SNP1 99.75 99.75 99.74 0.05 0.05 0.05
SNP2 97.96 97.98 97.97 0.54 0.54 0.53

M2 SNP1 99.87 99.75 99.74 0.06 0.05 0.05
SNP2 98.89 98.02 97.97 0.63 0.56 0.53

M3 SNP1 99.87 99.82 99.79 0.04 0.05 0.05
SNP2 98.81 98.37 98.19 0.30 0.43 0.49

SNP1 was in high quality and SNP2 was in low quality.

Table 4: Comparison of M2 and our method M3 on the
estimation of r2

r2 0.802 0.500 0.304

high quality M2 .798 (4e-5) .497 (3e-5) .302 (2e-5)
M3 .799 (3e-5) .498 (2e-5) .303 (1e-5)

low quality M2 .757 (.002) .469 (.001) .283 (6e-4)
M3 .770 (.001) .478 (6e-4) .291 (3e-4)

mixed
quality

M2 .775 (8e-4) .482 (4e-4) .293 (2e-4)

M3 .784 (4e-4) .488 (2e-4) .297 (1e-4)

The first row shows true values of the square of Pearson's correlation.
Numbers in parentheses are mean square errors.
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outperformed the method M2 by providing estimated
correlations that were much closer to their true values,
with smaller mean square errors. This is because our
method gave better call rates and genotyping accuracy,
and as a result, it provided more accurate estimation of
r2 and haplotype frequencies.

Real data
For the data set of the breast-cancer candidate-gene
study, we computed the call rates of the 1455 SNPs using
all the three methods. The median call rates of M1
(illuminus), M2 (fastPHASE), and our method M3 were
98.75%, 98.87%, and 99.44%, respectively. Compared
to the one-marker-at-a-time method illuminus, our
method increased the call rates of 294 SNPs for at least
1%, and 13 SNPs for at least 5%. By contrast, fastPHASE
increased the call rates of only 57 SNPs for at least 1%,
and only 4 SNPs for at least 5%. Although there is no
additional data to compare the genotype accuracy, the
results here show convincingly that our method sig-
nificantly improves the call rates of the other two
methods.

In the WTCCC data, 6277 SNPs on chromosome 22 were
genotyped for 1504 unrelated controls using the
Affymetrix 500 K platform. Here we computed the
discordance rates between the calls from the three
methods and the calls from the Infinium 15 K. The
discordance rates were 0.85% for Chiamo, 0.41% for
fastPHASE, and 0.27% for our method. Those discor-
dance rates were calculated based on the most probable
calls. Among the data points with Chiamo scores below
0.9, i.e., the data points with "no calls" by Chiamo with
its default threshold 0.9, the discordance rates of
fastPHASE and our method were 27.74% and 14.23%,
respectively. Note that the discordance rates for data
points with low Chiamo scores were much higher than
the overall discordance rates. We examined the pattern of
Chiamo scores, and found that most of the data points
with low scores were in a few SNPs that have relatively
low call rates, which is likely an explanation for the high
discordance rates. All those discordance rates indicate
that our method increases the genotyping accuracy.

Discussion and Conclusion
In existing analyses, genotype calling and imputation of
missing genotypes are usually considered as two separate
problems. In this paper, using simulated data and real
data, we have demonstrated that it is advantageous to
treat the two problems simultaneously. Currently,
approaches based on LD between SNPs have been
widely used to impute missing genotypes. Those
approaches, however, might decrease genotyping accu-
racy, when comparing to the traditional one-marker-at-a-

time genotype calling method. By contrast, our method
outperforms the traditional one-marker-at-a-time
method in the respects of both call rate and genotyping
accuracy. Besides genotype calls, our method also yields
a weight matrix consisting of genotype probabilities.
This weight matrix can be used in association analyses, in
a similar way described by Plagnol et al [1].

Although in our method SNPs are assumed to be in
Hardy-Weinberg equilibrium, we found our method still
improves the results of call rate and genotyping accuracy
for data with moderate departure from HWE (data not
shown). Another assumption we made is that subjects
are from a random sample of a population, which means
subjects are unrelated and there is no population
stratification. In the future, we plan to modify our
method so that related subjects with known pedigree
structure and population substructure can also be taken
into account.

Our method does not put any constraint on the number
of SNPs that can be called jointly. However, because the
number of haplotypes increases exponentially with the
number of jointly-analyzed SNPs, it is computationally
demanding for the traditional EM algorithm to process a
large number of SNPs. To solve this problem, what we
have done in the application of our method to the real
data is that, for each SNP, we made genotype calls by
using another SNP that had the highest Pearson's
correlation with the original SNP. Although this sig-
nificantly mitigates the computation requirement, it
might not be the best strategy. An alternative way is to
use a sliding window method to fix the number of SNPs
that are called together; however, here we decide not to
do that, because LD between SNPs is usually a localized
phenomenon and the number of SNPs that are analyzed
together should be determined by local LD structure.
Other alternatives include several recently proposed
methods that can provide rapid and accurate estimation
of haplotypes [11, 13-15].

What we considered here are signal intensities obtained
from two different platforms: the Illumina BeadArray
and the Affymetrix GeneChip 500 K arrays. There is
no reason, however, to limit the method to those
platforms. In fact, the idea of jointly analyzing
signal intensities of multiple markers is quite general.
It can be applied to other platforms, such as multiple
inversion probe technology [22], and other DNA
variations, such as copy number variants. The advantage
of combining signal intensities and LD is confirmed by a
few recent publications [23, 24], where the signal data
and dependence between neighbouring markers are
integrated to infer copy numbers and loss of
heterozygosity.
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