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A Separable Model for Dynamic Networks

Pavel N. Krivitsky∗ Mark S. Handcock†

August 21, 2012

Abstract

Models of dynamic networks — networks that evolve over time
— have manifold applications. We develop a discrete-time generative
model for social network evolution that inherits the richness and flex-
ibility of the class of exponential-family random graph models. The
model — a Separable Temporal ERGM (STERGM) — facilitates sep-
arable modeling of the tie duration distributions and the structural
dynamics of tie formation. We develop likelihood-based inference for
the model, and provide computational algorithms for maximum like-
lihood estimation. We illustrate the interpretability of the model in
analyzing a longitudinal network of friendship ties within a school.

Keywords: Social networks; Longitudinal; Exponential random graph model;
Markov chain Monte Carlo; Maximum likelihood estimation

1 Introduction

Relational phenomena occur in many fields and are increasingly being rep-
resented by networks. There is a need for realistic and tractable statistical
models for these networks, especially when the phenomena evolves over time.
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For example, in epidemiology there is a need for data-driven modeling of hu-
man sexual relationship networks for the purpose of modeling and simulation
of the spread of sexually transmitted disease. As Morris and Kretzschmar
(1997) show, spread of such disease is affected not just by the momentary
number of partnerships, but their timing. To that end, the models used must
have realistic temporal structure as well as cross-sectional structure.

Holland and Leinhardt (1977), Frank (1991), and others describe continuous-
time Markov models for evolution of social networks. (See Doreian and Stok-
man (1997) for a review.) The most popular parametrisation is the actor-
oriented model described by Snijders (2005) and Snijders, van de Bunt, and
Steglich (2010), which can be viewed in terms of actors making decisions to
make and withdraw ties to other actors. This model was then extended by
Snijders, Steglich, and Schweinberger (2007) to jointly model actors’ network-
related choices (“selection”) and the effects of neighboring actors on each
other’s attributes (“influence”).

Exponential-family random graph models (ERGMs) for social networks
are a natural way to represent dependencies in cross-sectional graphs and
dependencies between graphs over time, particularly in a discrete context.
Robins and Pattison (2001) first described this approach. Hanneke and Xing
(2007) and Hanneke, Fu, and Xing (2010) also define and describe a Temporal
ERGM (TERGM) (“Discrete Temporal ERGM” in the 2007 publication),
postulating an exponential family model for the transition probability from
a network at time t to a network at time t+ 1.

Most of the attention in modeling of dynamic networks has focused on
fitting the model to a network series (Snijders, 2001; Hanneke and Xing, 2007;
Hanneke et al., 2010) or an enumeration of instantaneous events between
actors in the network (Butts, 2008). In the former case, the dyad census of
the network of interest is observed at multiple time points. In the latter case,
each event of interest and its exact time of occurrence is observed.

A primary issue in modeling dynamic networks that has received limited
attention is that of attribution of prevalence. A snapshot of a network at
a single time point provides information about prevalence of the network
properties of interest — such as the total number of ties — as opposed to
properties of a dynamic network process that has produced it: incidence —
the rate at which new ties are formed — and duration — how long they tend
to last once they do. Multiple snapshots over the same set of actors (panel
data) contain information about incidence and duration, but, as we show
below, the model parametrisations presently in use do not allow convenient
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control over this attribution of prevalence.
In Section 2, we review discrete-time ERGM-based network models, and

in Section 3, we extend these network models to provide a more interpretable
and convenient parametrisation that separates incidence from duration. In
Section 4, we develop conditional maximum likelihood estimators (CMLE)
based on regularly-spaced network series data by extending the approach of
Hunter and Handcock (2006). In Section 5, we illustrate the methodology
with application to a longitudinal network of friendship ties within a school.
In Section 6, we consider some extensions that the model framework suggests
and allows.

2 Discrete-Time ERGM-Based Models for Net-

work Evolution

We first consider a discrete-time dynamic network model in which the net-
work at time t is a single draw from an ERGM conditional on the network
at time t− 1 (and possibly time t− 2, etc.), extending the Temporal ERGM
(TERGM) of Hanneke and Xing (2007) and Hanneke et al. (2010). In this
section we specify the model and discuss its fundamental properties.

2.1 Model Definition

Suppose that N is the set of n = |N | actors of interest, labeled 1, . . . , n,
and let Y ⊆ N × N be the set of potential ties among them — with pairs
(i, j) ∈ Y ordered for directed and unordered for undirected networks — and
let Y ⊆ 2Y be the set of possible networks of interest formed among these
actors. For a network realization y ∈ Y , define yi,j to be an indicator of a tie
from actor i to actor j, and further let yi,· be the set of actors to whom i has
a tie, y·,j the set of actors who have ties to j, and yi the set of actors with
undirected ties with i. Let Y t ∈ Y be a random variable representing the
state of the network at the discrete time point t and yt ∈ Y be its realization.

Following Hunter and Handcock (2006), let θ ∈ Rq be a vector of q
model parameters, and let η(θ) : Rq → Rp be a mapping from θ to natural
parameters η ∈ Rp, with q ≤ p. Let g : Y2 → Rp be the sufficient statistic
for the transition from network yt−1 at time t − 1 to network yt at time t.
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The one-step transition probability from yt−1 to yt is then defined to be

Prη,g(Y
t = yt|Y t−1 = yt−1;θ) =

exp (η(θ) · g(yt,yt−1))

cη,g(θ,yt−1)
, yt,yt−1 ∈ Y ,

(1)
or, with a k-order Markov assumption, and letting g : Yk+1 → Rp,

Prη,g(Y
t = yt|Y t−1 = yt−1, . . . ,Y t−k = yt−k;θ) =

exp
(
η(θ) · g(yt,yt−1, . . . ,yt−k)

)
cη,g(θ,yt−1, . . . ,yt−k)

, yt,yt−1, . . . ,yt−k ∈ Y , (2)

and

cη,g(θ,y
t−1, . . . ,yt−k) =

∑
y′∈Y

exp
(
η(θ) · g(y′,yt−1, . . . ,yt−k)

)
,

the normalizing constant.
TERGMs are a natural elaboration of the traditional ERGM framework.

They are essentially stepwise ERGM in time. Note that the definitions
of Robins and Pattison (2001) and Hanneke and Xing (2007) used linear
ERGMs only, where η(θ) ≡ θ and p ≡ q. To simplify notation, from this
point on we suppress reference to η and g.

2.2 Model Specification and Interpretation

The class of models specified by (1) is very broad and a key component
of model specification is the selection of g. Natural candidates are those
developed for cross-sectional networks, such as those enumerated by Morris,
Handcock, and Hunter (2008). However, the choices in this dynamic situation
are richer and can be any valid network statistics evaluated on yt especially
those that depend on yt−1. Hanneke and Xing (2007) focused on a choice of
g that had the property of conditional dyadic independence — that

Pr(Y t = yt|Y t−1 = yt−1;θ) =
∏

(i,j)∈Y

Pr(Y t
i,j = yt

i,j|Y t−1 = yt−1;θ), (3)

the distribution of Y t in which tie states are independent, but only condi-
tional on the whole of Y t−1.
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However, caution must be used in interpreting their parameters. Consider
the simplest such statistic, the edge count:

g(yt,yt−1) =
∣∣yt
∣∣ .

A higher coefficient on g will, for any yt−1, produce a Y t distribution in
which networks with more ties have higher probability. But, note that this
term would accomplish it in two ways simultaneously: it would both increase
the weight of those networks in which more ties were formed on previously
empty dyads and increase the weight of those networks in which more extant
ties were preserved (fewer dissolved). That is, it would both increase the
incidence and increase the duration.

Hanneke and Xing (2007) gave an example of a statistic that controls the
rate of evolution of the network: a measure of stability. This statistic counts
the number of tie variables whose states did not change between time steps,
which is then divided by the maximum number of ties an actor could have
(a constant):

g(yt
i,j,y

t−1
i,j ) =

1

n− 1

∑
(i,j)∈Y

(
yt
i,jy

t−1
i,j + (1− yt

i,j)(1− yt−1
i,j )
)
.

A higher coefficient on it will slow the evolution of the network down and a
lower coefficient will speed it up. From the point of view of incidence and
duration, however, it will do so in two ways: a higher coefficient will result
in networks that have fewer new ties formed and fewer extant ties dissolved
— incidence will be decreased and duration will be increased.

The two-sided nature of these effects tends to muddle parameter interpre-
tation, but a more substantial issue arises if selective mixing statistics, like
those described by Koehly, Goodreau, and Morris (2004), are used. Con-
sider a concrete example, with actors partitioned into K known groups, with
K ⊆ {1, . . . , K}2 being the set of pairs of groups between whose actors there
may be ties. (For example, in a directed network, K = {1, . . . , K}2.) Let
Pk be the set of actors who belong to group k and P (i) be the partition to
which actor i belongs. The model with transition probability

Pr(Y t = yt|Y t−1 = yt−1;θ) ∝

exp

θ0 ∑
(i,j)∈Y

(
yt
i,jy

t−1
i,j + (1− yt

i,j)(1− yt−1
i,j )
)

+
∑

(k1,k2)∈K

θk1,k2 |yPk1
,Pk2
|

 ,

(4)
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models stability, controlled by θ0, and mixing among the groups, controlled
by θk1,k2 . (Here, |yPk1

,Pk2
| is defined as the number of ties from actors in

group k1 to actors in group k2 for directed networks, and ties between actors
in those groups for undirected networks.)

Given yt−1, the probability that a given non-tied directed pair (i, j) will
gain a tie in a given time step is

Pr(Y t
i,j = 1|Y t−1

i,j = 0;θ) = logit-1(−θ0 + θP (i),P (j)),

and the probability that an extant tie (i, j) will be removed is

Pr(Y t
i,j = 0|Y t−1

i,j = 1;θ) = logit-1(−θ0 − θP (i),P (j)),

the latter leading to a duration distribution which is geometric with support
N and expected value (Casella and Berger, 2002, pp. 621–622)(

logit-1(−θ0 − θP (i),P (j))
)−1

= 1 + exp
(
θ0 + θP (i),P (j)

)
.

Thus, a higher value of coefficient θk1,k2 simultaneously increases the inci-
dence of ties between actors in group k1 and actors in group k2 and their
duration.

This coupling between the incidence of ties and their duration not only
makes such terms problematic to interpret, but has a direct impact on mod-
eling. Consider a sexual partnership network, possessing strong ethnic ho-
mophily, with ties within each ethnic category being more prevalent (relative
to the potential number of ties) than ties between ethnic categories. (A real-
world illustration of this effect was given by Krivitsky, Handcock, and Morris
(2011).) This structure could be a consequence of the within-ethnic ties be-
ing formed more frequently than between-ethnic ties, of the within-ethnic
ties lasting, on average, longer than between-ethnic ties, or some combina-
tion of the two. With cross-sectional data alone, it is impossible to tell these
apart and a model like (4) implies a dynamic process in which cross-ethnic
ties toggle unnaturally frequently, or “churn”. We refer to a model with this
dynamic pathology as a “churning model” as this stochastic property is un-
likely to be seen in real phenomena. Churning is related to the degeneracy
properties of ERGM (Handcock, 2003).

3 Separable Parametrisation

We now motivate and describe the concept of separability of formation and
dissolution in a dynamic network model, and describe the Separable Temporal
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ERGM (STERGM).

3.1 Motivation

Intuitively, those social processes and factors that result in ties being formed
are not the same as those that result in ties being dissolved. For exam-
ple, in the above-mentioned sexual partnership network, the relative lack of
cross-ethnic ties may be a result of racial segregation, language and cultural
barriers, racism, and population-level differences in socioeconomic status, all
of which have a strong effect on the chances of a relationship forming. Once
an interracial relationship has been formed, however, either because these
factors either did not apply in that case or were overcome, the duration of
such a relationship would likely not be substantially lower. Even if it were
lower, the differences in the probability of such a relationship ending during
a particular time interval would not, in general, be a perfect reflection the
differences in the probability of it forming during such a time interval.

Furthermore, it is often the case in practice that information about cross-
sectional properties of a network (i.e. prevalence) has a different source from
that of the information about its longitudinal properties (i.e. duration),
and it may be useful to be able to consider them separately (Krivitsky and
Handcock, 2008; Krivitsky, 2009).

Thus, it is useful for the parametrisation of a model to allow separate con-
trol over incidence and duration of ties and separate interpretation, at least
over the short run. (For any nontrivial process, formation and dissolution
would likely interact with each other in the long run.)

3.2 Model Specification

In this section, we introduce a class of discrete-time models for network
evolution, which assumes that these processes are separable from each other
within a time-step. We consider a sub-class of models based on the ERGM
family, which inherits the interpretability and flexibility of those processes.

3.2.1 General Separable Models

We represent networks as sets of ties, so given y,y′ ∈ Y , the network y ∪ y′
has the tie (i, j) if, and only if, (i, j) exists in y or y′ or both; the network
y∩y′ has (i, j) if, and only if, (i, j) exists in both y and y′; and the network
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Table 1: Possible transitions of a single tie variable
yt−1
i,j → (y+

i,j,y
−
i,j) → yt

i,j

0 → (0, 0) → 0
0 → (1, 0) → 1
1 → (1, 0) → 0
1 → (1, 1) → 1

y\y′ has tie (i, j) if, and only if, (i, j) exists in y but not in y′. The relation
y ⊇ y′ holds, if, and only if, y has all of the ties that y′ does (and, possibly,
other ties as well), and conversely for y ⊆ y′.

Consider the evolution of a random network at time t − 1 to time t,
and define two intermediate networks, the formation network Y +, consisting
of the initial network Y t−1 with ties formed during the time step added
and the dissolution network Y −, consisting of the initial network Y t−1 with
ties dissolved during the time step removed (with y+ and y− being their
respective realized counterparts). Then, given yt−1, y+, and y−, the network
yt may be evaluated via a set operation, as

yt = y+\(yt−1\y−) = y− ∪ (y+\yt−1). (5)

Since it is the networks yt−1 and yt that are actually observed, y+ and
y− may be regarded as latent variables, but it is possible to recover them
given yt−1 and yt, because a tie variable can only be in one of four states
given in Table 1. Each possibility has a unique combination of tie variable
states in yt−1 and yt, so observing the network at the beginning and the end
allows the two intermediate states to be determined as y+ = yt−1 ∪ yt and
y− = yt−1 ∩ yt.

If Y + is conditionally independent of Y − given Y t−1 then

Pr(Y t = yt|Y t−1 = yt−1;θ) =

Pr(Y + = y+|Y t−1 = yt−1;θ)× Pr(Y − = y−|Y t−1 = yt−1;θ) (6)

We refer to the two factors on the RHS as the formation model and the
dissolution model, respectively. Suppose that we can express θ = (θ+,θ−)
where the formation model is parametrised by θ+ and the dissolution model
by θ−.

Definition. We say that a dynamic model is separable if Y + is conditionally
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independent of Y − given Y t−1 and the parameter space of θ is the product
of the individual parameter spaces of θ+ and θ−.

We refer to such a model as separable because it represents an assumption
that during a given discrete time step, the process by which the ties form
does not interact with the process by which they dissolve: both are separated
(in the conditional independence sense) from each other conditional on the
state of the network at the beginning of the time step.

3.2.2 Generative Mechanism

Let some Y+(yt−1) ⊆ {y ∈ 2Y : y ⊇ yt−1} be the sample space, under the
model, of formation networks, starting from yt−1; and let some Y−(yt−1) ⊆
{y ∈ 2Y : y ⊆ yt−1} be the sample space of dissolution networks. The model
postulates the following process for evolution of a random network at time
t− 1 to a random network at time t:

1. Draw an intermediate network y+ from the distribution

Pr(Y + = y+|Y t−1 = yt−1;θ+), y+ ∈ Y+(yt−1).

2. Draw an intermediate network y− from the distribution

Pr(Y − = y−|Y t−1 = yt−1;θ−), y− ∈ Y−(yt−1).

3. Apply formations and dissolutions to yt−1 to produce yt by evaluating
(5).

Note that, as specified, this model is first order Markov, but Y t can be
further conditioned on Y t−2, Y t−3, etc, to produce higher order versions.
We do not develop these models here.

3.2.3 Separable Temporal ERGM (STERGM)

A natural family of models for the components of the separable model is the
ERGMs considered in Section 2.1. We focus on this rich class of models in
the remainder of the paper. Specifically, we model:

Pr(Y + = y+|Y t−1 = yt−1;θ+) =
exp

(
η+(θ+) · g+(y+,yt−1)

)
cη+,g+(θ+,yt−1)

, y+ ∈ Y+(yt−1)
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and

Pr(Y − = y−|Y t−1 = yt−1;θ−) =
exp

(
η−(θ−) · g−(y−,yt−1)

)
cη−,g−(θ−,yt−1)

, y− ∈ Y−(yt−1),

with their normalizing constants cη+,g+(θ+,yt−1) and cη−,g−(θ−,yt−1) sum-
ming over Y+(yt−1) and Y−(yt−1), respectively.

We now derive the probability of transitioning from a given network at
time t− 1, yt−1 to a given network at time t, yt. Based on (6), we have

Pr(Y t = yt|Y t−1 = yt−1;θ) =
exp (η(θ) · g(yt,yt−1))

cη+,g+(θ+,yt−1)cη−,g−(θ−,yt−1)
.

where η = (η+,η−) and g(yt,yt−1) = (g+(yt−1∪yt,yt−1), g−(yt−1∩yt,yt−1)).
As Pr(Y t = yt|Y t−1 = yt−1;θ) is, by construction, a valid probability mass
function,

cη+,g+(θ+,yt−1)cη−,g−(θ−,yt−1) = cη,g(θ,y
t−1),

where
cη,g(θ,y

t−1) =
∑
y′∈Y

exp
(
η(θ) · g(y′,yt−1)

)
.

This is the same form as (1). Thus, the STERGM class is a subclass of a first-
order Markov TERGM of Hanneke and Xing (2007), described in Section 2.1:
any transition process that can be expressed with g+, g−, η+ and η− can
be reproduced by a model in the TERGM class. However, the essential
issue is the specification of models within these classes, and the value of the
STERGM class is that it focuses specification on a viable and fecund region
in the very broad class. In the parametrisation in terms of formation and
dissolution, some flexibility is lost — the ability to have the formation and
dissolution processes interact within a given time step. What is gained is
ease of specification, tractability of the model, and substantial improvement
in interpretability.

3.3 Interpretation

In contrast to statistics like stability in Section 2.2, the STERGM’s sufficient
statistics and parameters have an implicit direction: they affect directly ei-
ther incidence or duration, but not both, and even statistics that do not
explicitly incorporate the previous time step’s network yt−1, incorporate it

10



via the constraint of the phase in which they are used. This allows famil-
iar cross-sectional ERGM sufficient statistics to be used, with their param-
eters acquiring intuitive interpretations in terms of the network evolution
process. We call these inherited terms, for which g+k (y+,yt−1) ≡ g+k (y+)
and/or g−k (y−,yt−1) ≡ g−k (y−), with no further dependence on yt−1, implic-
itly dynamic.

Such terms (and their corresponding coefficients) often have straightfor-
ward general interpretations for formation and dissolution phases. In par-
ticular, consider an implicitly dynamic statistic that counts the number of
instances of a particular feature found in the network y+ or y−. Exam-
ples of features that might be counted include a tie, an actor with exactly d
neighbors, or a tie between an actor in a set Pk1 and an actor in the set Pk2 .

3.3.1 Formation

A positive θ+k corresponding to a particular g+k increases the probability
of those y+ which have more instances of the feature counted by g+k —
greater values of g+k (y+). This affects the network process in two ways: the
probability of forming those ties that create new instances of the feature
counted by g+k is increased and the probability of forming those ties that
“disrupt” those instances would be reduced.

Conversely, negative θ+k would result in higher probabilities for those
networks with fewer instances of the feature counted by g+k , reducing the
probability of forming ties to create more instances of the feature counted
and increasing the probability of forming ties to “disrupt” the feature.

Notably, g+k counts features in the network y+ = yt∪yt−1, rather than in
the ultimately observed network yt. This means that for some features, par-
ticularly those with dyadic dependence, the dissolution process may influence
the feature so that it is present in y+ but not in yt−1 or yt. How frequently
this occurs depends on the specific model and the rate of evolution of the
network process: if a network process is such that the network changes little
(in both formation and dissolution) during each time step, such interference
is unlikely.

3.3.2 Dissolution

As in the formation phase, a positive θ−k corresponding to a particular g−k
increases the probability of those y− which have more instances of the fea-
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ture counted by g−k , thus tending to preserve more instances of that feature
(or dissolving ties to create more instances, as may be the case with dyadic-
dependent terms), while a negative θ−k will increase the probability of net-
works with fewer instances of the feature in question, effectively causing the
dissolution process to target those features, and also refrain from dissolving
ties whose dissolution would create those features. It is important to note
that the dissolution phase ERGM determines which ties are preserved during
the time step, and the parameters should be interpreted accordingly.

Again, it is y− = yt ∩ yt−1 on which statistics are evaluated, so the
formation process can interact with the dissolution process as well.

These principles mean that many of the vast array of network statis-
tics developed for ERGMs (Morris et al., 2008, for example) can be readily
adapted to STERGM modeling, retaining much of their interpretation. In
the Appendix, we develop and give interpretations to the fundamental edge
count, selective mixing by actor attribute, and degree distribution terms.

3.3.3 Explicitly Dynamic Terms

At the same time, some effects on formation and dissolution may depend on
specific features of yt−1. For instance, consider a social process in which an
actor having multiple partners (e.g., “two-timing”) is actively punished, so
having more than one partner in yt−1 increases the hazard of losing all of
one’s partners in yt. (Such an effect may be salient in a sexual partnership
network.) This dissolution effect cannot be modeled by implicitly dynamic
terms, because it cannot be reduced to merely increasing or reducing the
tendency of Y − to have particular features. For example, a positive coeffi-
cient on a statistic counting the number of actors with no partners (isolates)
would increase the weight of those y− that have more isolates, affecting the
dissolution of the sole tie of an actor with only one partner just as much as
it would affect the dissolution of ties of an actor with more than one partner.

On the other hand, an explicitly dynamic model term that counts the
number of actors with no partners in y− only among those actors who had
two or more partners in yt−1 would, with a positive coefficient, increase
the probability of a transition directly from having two partners to having
none. Beyond that, its interpretation would be no different than that of an
implicitly dynamic dissolution term.

12



3.4 Continuous-Time Markov Models

Although the focus of this paper is on discrete-time models for network evo-
lution, the separability paradigm can be applied to continuous-time network
evolution models such as those of Holland and Leinhardt (1977). There,
network evolution is modeled as a continuous-time Markov process such
that the intensity of transition between two networks that differ by more
than one dyad is 0, while the evolution of the network is controlled by
λ(yt;θ) : Y → RY

+, with each λi,j(y
t;θ) being the intensity associated with

toggling each dyad (i, j).
In that scenario, separation of formation and dissolution is realized by

formulating θ = (θ+,θ−) and

λi,j(y
t;θ+,θ−) =

{
λ+i,j(y

t;θ+) if yt
i,j = 0

λ−i,j(y
t;θ−) if yt

i,j = 1
,

with λ+i,j(y
t;θ+) and λ−i,j(y

t;θ−) being formation- and dissolution-specific in-
tensities. Indeed, Holland and Leinhardt (1977) use a formulation of this gen-
eral sort. Notably, unlike the discrete-time process, this separation requires
only separation of parameters and no additional independence assumptions.
This is because under the Markov assumption and with no chance of more
than one dyad toggling coincidentally at a specific time, dyads effectively
evolve independently in a sufficiently small interval (i.e., [t, t + h], h → 0),
and dyadic independence in network evolution a fortiori implies separability
between which ties form and which ties dissolve.

An exponential-family form for λi,j,

λη,g,(i,j)(y
t;θ) =

{
exp

(
η+(θ+) · g+(yt ∪ {(i, j)},yt)

)
if yt

i,j = 0

exp
(
η−(θ−) · g−(yt\{(i, j)},yt)

)
if yt

i,j = 1
,

may be viewed as the limiting case of the discrete-time STERGM, in which
the amount of time represented by each time step shrinks to zero.

4 Likelihood-Based Inference for TERGMs

In this section, we consider inference based on observing a series of T + 1
networks, y0, . . . ,yT . Hanneke and Xing (2007) proposed to fit TERGMs by
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finding the conditional MLE under an order k Markov assumption,

θ̂ = arg max
θ

T∏
t=k

Pr(Y t = yt|Y t−k = yt−k, . . . ,Y t−1 = yt−1;θ), (7)

computing a Method-of-Moments estimator (equivalent in their case to the
MLE) with a simulated Newton-Raphson zero-finding algorithm. We extend
the work of Hunter and Handcock (2006) and Geyer and Thompson (1992)
to compute the conditional MLE for curved exponential-family transition
models (that is, cases where η(θ) 6= θ).

For simplicity, we consider models with first-order Markov dependence.
There is no loss of generality, since as long as the order of Markov depen-
dence k is finite, we can define the depended-upon network yt−1 to implicitly
“store” whatever information about yt−1, . . . ,yt−k+1 is needed to compute
the transition probability.

The conditional MLE (7) can then be obtained by maximizing the log-
likelihood

l(θ) = η(θ) ·

(
T∑
t=1

g(yt,yt−1)

)
− log

(
T∏
t=1

cη,g(θ,y
t−1)

)
.

For any two values of the model parameter θ0 and θ, the log-likelihood-ratio
is

l(θ)− l(θ0) =
(
η(θ)− η(θ0)

)
·

(
T∑
t=1

g(yt,yt−1)

)
− log

(
T∏
t=1

cη,g(θ,y
t−1)

cη,g(θ
0,yt−1)

)
.

The main difficulty is in evaluating the ratio of the normalizing constants.
These conditional normalizing constants depend on networks at times 0, . . . , T−
1. However, these ratios can still be expressed as

T∏
t=1

cη,g(θ,y
t−1)

cη,g(θ
0,yt−1)

=
T∏
t=1

∑
y∈Y

exp
((
η(θ)− η(θ0)

)
· g(y,yt−1)

)
×

exp
(
η(θ0) · g(y,yt−1)

)
cη,g(θ

0,yt−1)

=
T∏
t=1

∑
y∈Y

exp
((
η(θ)− η(θ0)

)
· g(y,yt−1)

)
×Pr(Y t = y|Y t−1 = yt−1;θ0).

(8)
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The expression (8) is a product of expectations over the conditional distribu-
tion under the model of Y t given Y t−1 at θ0, each of which can be estimated
by simulation, allowing the algorithm of Hunter and Handcock (2006) to be
applied to fit a TERGM to network series data.

These results also make it possible to assess the goodness-of-fit of a model
via an analyses of deviance. Specifically, we can compute the change in log-
likelihood from the null model (η(θ) = 0) to the conditional MLE. To do
this, we extended the bridge sampler of Hunter and Handcock (2006) to this
setting.

5 Application to the Dynamics of Friendship

As an application of this model, we consider the friendship relations among 26
students during their first year at a Dutch secondary school (Knecht, 2008).
The friendship nominations were assessed at four time points at intervals of
three months starting at the beginning of their secondary schooling. The
friendship data are directed and were assessed by asking students to indicate
classmates whom they considered good friends. There were 17 girls and 9
boys in the class. The data included covariates collected on each student.
Here, we consider the sex of the student, as it is a primary determinant of the
friendship ties. We also consider a dyadic covariate indicating if each pair
of students had gone to the same primary school. These data were used to
illustrate the actor-oriented approach to modeling by Snijders et al. (2010)
(whom we follow). That paper should be consulted for details of the data
set and an alternative analysis.

Some of the data at time points two through four were missing due to
student absence when the survey was taken. These were accommodated using
the approach of Handcock and Gile (2010) under the assumption that the
unobserved data pattern was amenable to the model. One student left the
class after time point 1. This could have been accommodated in a number
of ways, depending on the assumptions one is willing to make. Here we
considered the networks with this student omitted both as a nominator and
nominee of friendships. As Snijders et al. (2010) note, each student was
allowed to nominate at most 12 classmates at each time point. In general,
inference needs to incorporate features of sampling design such as this one.
We discuss how in Section 6. However, its effect here is negligible: in the
(4× 25 =) 100 student reports, only 3 nominated the maximum number.
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Our objective is to explain the observed structural patterns of change in
the network over the course of the year. We build a model including both
exogenous and endogenous structural effects, following the same approach
and motivations as Snijders et al. (2010). For the formation component we
include terms for the propensity of students to choose friends of the same
or opposite sex (i.e., overall propensities to nominate friends that are ho-
mophilous on sex or not). We include a term to measure the propensity of
friendships to be reciprocal. We include information on the primary school
co-attendance via a count of the number of times students nominate other
students with whom they went to primary school. To capture any overall
propensity of students to nominate other students who are popular we in-
clude an overall outdegree popularity effect (Snijders et al., 2010, equation
(12)). To model transitivity effects we include two terms. The first is aggre-
gate transitive ties that aims to capture a tendency toward transitive closure
consistent with local hierarchy. The second is an aggregate cyclical ties term
to capture anti-hierarchical closure. The terms in the model are structurally
largely consistent with the terms chosen in Snijders et al. (2010). A similar
model was considered for the dissolution process. Specifics of these terms are
given in the Appendix.

We fit the model using the conditional MLE procedure of Section 4. Com-
putationally this is implemented using a variant of the MCMC approach of
Hunter and Handcock (2006). To monitor the statistical properties of the
MCMC algorithm we use the procedures by Hunter, Goodreau, and Hand-
cock (2008a).

Table 2 reports the estimates for the model assuming homogeneity of
parameters over time. The outdegree popularity effect had a correlation of
0.995 with the edges effect and was omitted from the model.

As for the standard ERGM, the individual θ coefficients can be interpreted
as conditional log-odds ratios. There is also a relative risk interpretation that
is often simpler. For example, the exponential of the primary school coeffi-
cient is the relative risk of formation or preservation (depending on the phase)
of friendship between two students from the same primary school compared
to two students from different primary schools with the same values of the
other covariates and structural effects. The probabilities involved are con-
ditional on these other covariates and structural effects. The interpretation
for non-binary and multiple covariates is similar: exp(θ∆) is the relative risk
of friendship between two students compared to two students with vector of
covariates differing by ∆ (and with the same values of the other structural
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Table 2: MLE parameter estimates for the longitudinal friendship network
Formation Dissolution

Parameter est. (s.e.) est. (s.e.)
Edges −3.336 (0.320)??? −1.132 (0.448)?

Homophily (girls) 0.480 (0.269) 0.122 (0.394)
Homophily (boys) 0.973 (0.355)?? 1.168 (0.523)?

F→M heterophily −0.358 (0.330) −0.577 (0.609)
Primary school 0.650 (0.248)?? 0.451 (0.291)
Reciprocity 1.384 (0.280)??? 2.682 (0.523)???

Transitive ties 0.886 (0.247)??? 1.121 (0.264)???

Cyclical ties −0.389 (0.133)?? −1.016 (0.231)???

Significance levels: 0.05? , 0.01?? , 0.001???

effects).
The standard errors of Table 2 are obtained from the information matrix

in the likelihood evaluated at the MLE to which we have added the (small)
MCMC standard error obtained using the procedure given by Hunter, Hand-
cock, Butts, Goodreau, and Morris (2008b).

The networks at the earlier time points are strongly sexually segregated,
and we see strong homophily by sex in the formation of ties. This effect is
mildly stronger for boys than for girls. We do not see an overall disinclination
for girls to nominate boys (relative to other combinations). In other words,
the boys are about as likely to form friendships as the girls. As expected, we
see a high degree of reciprocity in the formation of ties. There is a strong
transitive closure effect, with a positive coefficient on transitive tie formation
and a negative coefficient on cyclical tie formation. This suggests a strong
hierarchical tendency in the formation of ties. We see that students who
attended the same primary school are much more likely to form ties.

These structural terms have less influence on the dissolution of ties. There
is some modest evidence that boy to boy ties are less likely to dissolve than
other mixtures of sexes. (Recall that parameters represent a measure of per-
sistence, so that negative parameters are associated with shorter durations).
As expected, we see the dissolution of ties is strongly retarded by the presence
of a reciprocal tie. As in the formation process, there is a strong transitive
closure effect suggesting a strong hierarchical tendency in the dissolution of
ties. Once a hierarchical triad is formed it will tend to endure longer. Stu-
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Table 3: Analysis of deviance for the longitudinal friendship network, com-
paring time-homogeneous (hom.) and time-heterogeneous (het.) parametri-
sations

Formation Dissolution
residual explained residual explained

Model dev. (d.f.) dev. (d.f.) AIC dev. (d.f.) dev. (d.f.) AIC
Null 1838 (1326) 1838 459 (331) 459
Edges (hom.) 924 (1325) 915 ( 1)??? 926 431 (330) 28 ( 1)??? 433
Full (hom.) 819 (1318) 104 ( 7)??? 835 350 (323) 82 ( 7)??? 366
Full (hom.
except edges) 818 (1316) 2 ( 2) 838 344 (321) 6 ( 2) 364

Full (het.) 795 (1302) 23 (14) 843 314 (307) 30 (14)?? 362

Significance levels: 0.05? , 0.01?? , 0.001???

dents who attended the same primary school are not significantly more likely
to have persistent ties.

As the data measure a social process that is developing in time, we do not
need to assume that the process is in temporal equilibrium; thus we could
estimate separate parameters for the change between each pair of successive
time points. One such model specifies different overall rates of tie formation
or dissolution at each time point but retains homogeneous parameters for the
other terms. Another allows all the parameters to vary at each time point.

Table 3 gives the analysis of deviance for formation and dissolution mod-
els nested above and below those in Table 2. For the formation process we
see the full time-homogeneous model in Table 2 significantly improves on
the null and Erdős-Rényi model (Edges (hom.)). Specifying different overall
rates of tie formation at each time point does not significantly improve the
fit, nor does a full time-heterogeneous model with different structural param-
eters at each time point. For the dissolution process, we again see the full
time-homogeneous model significantly improves on the null and Erdős-Rényi
model. However, there is some evidence that specifying time-heterogeneous
versions improve the fit. An inspection of the time-heterogeneous models
indicates that most of the improvement is due to the increase in hierarchi-
cal tendency over time. Initially this transitive closure does not retard tie
dissolution, but it does over time.
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6 Discussion

This paper introduces a statistical model for networks that evolve over time.
It builds on the foundations of exponential-family random graph models for
cross-sectional networks and inherits the flexibility and interpretability of
these models. In addition, it leverages the inferential and computational
tools that have been developed for ERGMs over the last two decades.

As we showed in Section 2, parameters used in models currently in use
directly affect both the incidence of ties (at a given time point) and the
duration of ties (over time). STERGMs have one set of parameters control
formation of new ties and another control dissolution (or non-dissolution)
of extant ties. Such a separable parametrisation controls the attribution of
incidence and duration and greatly improves the interpretability of the model
parameters, all without sacrificing the ability to explicitly incorporate effects
of specific features of past networks, if needed.

It is important to emphasize that STERGMs jointly model the formation
and dissolution of ties. While the two processes are modeled as conditionally
independent within a time step, they are modeled as dependent over time.
More importantly, they allow the structure of the incidence to be identified
in the presence of the durational structure.

In addition, the model has computational advantages. The likelihood
function can be decomposed and the components computed relatively easily.
All computations in this paper were completed using the ergm (Hunter et al.,
2008b; Handcock, Hunter, Butts, Goodreau, Krivitsky, and Morris, 2012)
package from the statnet (Handcock, Hunter, Butts, Goodreau, and Morris,
2008) suite of libraries for social network analysis in R (R Development Core
Team, 2009).

The model is directly applicable to both directed and undirected net-
works. It can be easily tuned to applications by appropriate choices of terms
for both the formation and dissolution processes, as we show in Section 5. Be-
cause it is based on ERGMs, it will share in advances made on those models
as well. The model is very useful for simulating realistic dynamic networks.
This is because of the sequential specification, the tractable parameters and
the relatively light computation burden.

As illustrated in Section 5, missing data on the relational information can
be dealt with in likelihood-based inference using the approach of Handcock
and Gile (2010). If the longitudinal data are partially observed due to either
a sample design or a missing data process and is amenable to the model then
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their method is directly applicable.
The assumption of within-step independence of formation and dissolution

is an important one, and its appropriateness depends on the substantive
setting and the basic nature of the process. Some settings do not allow a
separable formulation at all. For example an affiliation network of players
to teams in some sports, with a realization observed during every game,
imposes a hard constraint that a player must belong to exactly one team
at a time, and no team can have more or fewer than a particular number
of players, so the basic unit of network change is teams trading players,
rather than a player joining or quitting a team. In settings that do allow
simpler atomic changes, separability may be a plausible approximation if
the amount of change between the discrete time steps is relatively small —
that each time step represents a fairly small amount of time. As the length
of the time step increases, the separability approximation may become less
and less plausible. For example, a marriage network, even though it has a
hard constraint of each actor having at most one spouse at a time, could be
plausibly approximated in a separable framework (using, e.g., Y+(yt−1) ≡
{y ∈ 2Y : y ⊇ yt−1 ∧ ∀i∈N |yi| ≤ 1}) if each discrete time step represented
one month (since relatively few people divorce and remarry in the same
month) but not if it represented ten years. More generally, the simpler the
formation and dissolution processes are within a time-step and the weaker the
dependence between them, the more plausible the assumption. (Of course,
continuous-time Markov models, to which these models asymptote, do not
require an independence assumption at all.)

As with the data used in Section 5, restriction on the number of alters
reportable is a common feature of network surveys. Other examples of this
censoring include the Add Health friendship networks (Harris, Florey, Tabor,
Bearman, Jones, and Udry, 2003) and Sampson’s monastery data (Sampson,
1968). To the extent that these are features of the sampling design, they
should be reflected in the likelihood. Per Section 3.2.3, a STERGM can be
represented as a TERGM (1), which allows the sample space Y of Y t to be
constrained to reflect this design. Changing Y only affects cη,g(θ) in l(θ)
— the kernel of the model remains separable. This situation is similar to
that with censored data in survival analysis where the likelihood is altered to
reflect the censoring while the model, and its interpretation, is unchanged.

Since assuming separability between formation and dissolution grants sig-
nificant benefits to interpretability, it would be useful to be able to test if
separability may be assumed in a given network process. Some avenues for
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such tests include comparing goodness-of-fit of a given model in modeling a
transition y0 → y2 to its modeling a transition y0 → y1 → y2 (with ho-
mogeneous parameters). Or, if only one transition is available, a transition

y0 → y1 to a transition y0 → Y
1
2 → y1, with a latent intermediate net-

work Y
1
2 . Development of such tests is beyond the scope of this work and is

subject for future research.
The STERGM framework allows a number of extensions to the model.

Over time, networks do not merely change ties: actors enter and leave the
network, and actors’ own attributes change. It is possible to incorporate
the network size adjustment developed by Krivitsky et al. (2011) into these
dynamic models. We have focused on longitudinal data. It is possible to
fit the model based on egocentrically sampled data when the data includes
durational information on the relational ties (Krivitsky and Handcock, 2008;
Krivitsky, 2009).
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A Separable TERGM Terms

In this appendix we derive and discuss some fundamental model terms that
can be used in a STERGM.

A.1 Edge Counts

A.1.1 Formation

Let g+(y+,yt−1) = |y+| . This is equivalent to g(yt,yt−1) = |yt ∪ yt−1|. If
yt−1
i,j = 1, yt

i,j ∨ yt−1
i,j = 1, so the state of yt

i,j has no effect on g(yt,yt−1),

but if yt−1
i,j = 0, yt

i,j ∨ yt−1
i,j = yt

i,j, and the change in g(yt,yt−1) is 1. This

means that, in the absence of other formation terms, θ+ represents the log-
odds of a given tie variable, that does not already have a tie, gaining a tie.
Then logit-1(θ+) is the expected fraction of tie variables empty at time t− 1
gaining a tie at time t. In the presence of other terms, these log-odds become
conditional log-odds-ratios.

A.1.2 Dissolution

Let g−(y−,yt−1) = |y−| , or, equivalently, g(yt,yt−1) = |yt ∩ yt−1|. If yt−1
i,j =

0, yt
i,j ∧ yt−1

i,j = 0, so the state of yt
i,j has no effect on g(yt,yt−1), but if

yt−1
i,j = 1, yt

i,j ∧ yt−1
i,j = yt

i,j, and the change in g(yt,yt−1) is 1. Then, in the

absence of other dissolution terms, θ− represents the log-odds of a given tie
that exists at t − 1 surviving to t, and logit-1(θ−) is the expected fraction
of ties extant at time t − 1 surviving to time t. Depending on the problem,
the interpretation of −θ− might be more useful: logit-1(−θ−) is the expected
fraction of extant ties being dissolved — the hazard.

The formation phase can only affect non-tied pairs of actors, so if the
dissolution phase statistics have dyadic independence, the formation process
has no effect on duration distribution: in the absence of other dissolution
terms, the duration distribution of a tie is geometric (with support N) with
expected value (Casella and Berger, 2002, pp. 621–622)(

logit-1(−θ−)
)−1

= 1 + exp
(
θ−
)
.
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A.2 Selective Mixing

Selective mixing in the formation model can be represented by a vector of
statistics g+(y+,yt−1) = |y+

Pk1
,Pk2
|, with notation described for (4). However,

in the context of a STERGM, they have a direction.

A.2.1 Formation

Let g+k1,k2(y
+,yt−1) = |y+

Pk1
,Pk2
| (equivalently, gk1,k2(y

t,yt−1) = |yt
Pk1

,Pk2
∪

yt−1
Pk1

,Pk2
|). The change in its value due to adding a tie (i, j) (absent in yt−1)

is 1i∈Pk1
∧j∈Pk2

, so θ+k1,k2 is the conditional log-odds-ratio due to the effect of i
belonging to group k1 and j belonging to group k2 of a dyad (i, j), that does
not already have a tie, gaining a tie. If the formation phase has no other
terms, then the odds that Y t

i,j = 1 given that Y t−1
i,j = 0 are

Oddsη,g(Y
t
i,j = 1|Y t−1

i,j = 0, i ∈ Pk1 ∧ j ∈ Pk2 ;θ
+
k1,k2

) = exp
(
θ+k1,k2

)
.

A.2.2 Dissolution

Similar to the formation case, selective mixing can be represented by a vector
of statistics g−(y−,yt−1) = |y−Pk1

,Pk2
|. Then, gk1,k2(y

t,yt−1) = |yt
Pk1

,Pk2
∩

yt−1
Pk1

,Pk2
|, and θ−k1,k2 is the conditional log-odds-ratio due to the effect of i

belonging to group k1 and j belonging to group k2 of an extant tie (i, j)
being preserved until the next time step.

A.3 Degree Distribution

Unlike the first two examples, degree distribution statistics — counts of ac-
tors with a particular degree or range of degrees — introduce dyadic depen-
dence into the model. As with many other such terms, closed forms for many
quantities of interest are not available, and conditional log-odds are not as
instructive, but the general results for implicitly dynamic terms from Sec-
tion 3.3 provide a useful heuristic, with the caveats discussed in that section.

In practice, these terms are often used in conjunction with other terms,
so we only discuss their effect on the formation and dissolution probabilities
conditional on other terms — their effect over and above other terms, with
those terms’ coefficients held fixed.
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A.3.1 Formation

Let yi be the set of neighbors to whom i has ties in y. A formation degree
count term has the form g+k (y+,yt−1) =

∑
i∈N 1|y+i |=d: the number of actors i

in y+ whose degree is d. The corresponding TERGM statistic gk(yt,yt−1) =∑
i∈N 1|yti∪yt−1

i |=d. We discuss the cases of d = 0 and d = 1, with the cases

for d > 1 being similar to the d = 1 case.

d = 0 By increasing the weight of those formation networks that have fewer
isolates, a negative coefficient on this term increases the chances of a
given actor gaining its first tie within a given time step. Conversely,
a positive coefficient reduces the chances of an actor gaining its first
tie. Because the term does not distinguish between different nonzero
degrees, it mainly affects transitions from isolation to degree 1, not
affecting further tie formation on that actor positively or negatively.

d = 1 Unlike the statistic for d = 0, which can only be decreased by adding
ties, the statistic for d = 1 can be both increased and decreased (by
making isolates into actors with degree 1 and by making actors with
degree 1 into actors with degree 2 and higher, respectively). Thus,
the effect of this term is two-sided: with a positive coefficient, it both
increases the chances of an actor gaining its first tie and reduces the
chances of an actor gaining its second tie, while having relatively little
effect on an actor with two ties gaining a third tie. A negative coefficient
reduces the chances of an actor gaining its first tie, but if an actor
already has one tie, it increases the chances that the actor gains a
second tie.

A.3.2 Dissolution

The analogous term in the dissolution model is g−k (y−,yt−1) =
∑

i∈N 1|y−i |=d:

same as formation, but applied to y−, and gk(yt,yt−1) =
∑

i∈N 1|yti∩yt−1
i |=d.

d = 0 A negative coefficient on this term in the dissolution phase increases
the weight of dissolution networks that have fewer isolates, and thus
reduces the chances of a given actor losing its only tie, while a positive
coefficient increases the chances of an actor losing its only tie. It may
also have a modest effect on actors with more than one tie, since there
is a positive probability of an actor losing more than one tie in the
same time step.
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d = 1 As in the case of formation, the effect of this term is two-sided: with a
positive coefficient — to preserve or create networks with more “monog-
amous” ties — the chances of an actor losing its only tie decrease while
the chances of an actor losing its second tie increase. (If an actor has
3 or more ties, the effect is weaker.)
A negative coefficient on this term both increases the chances that an
actor’s last tie will be dissolved and reduces the chances that an actor
with more than one tie has any ties dissolve.

A.4 Other Standard Statistics

Most statistics used in standard ERGM can be used in STERGM as implicitly
dynamic statistics. For example, standard formation statistics are

Reciprocity:
∑

(i,j)∈Y,i<j y
+
i,jy

+
j,i

Transitive ties:
∑

(i,j)∈Y y
+
i,j maxk∈N(y+

i,ky
+
k,j)

Cyclical ties:
∑

(i,j)∈Y y
+
i,j maxk∈N(y+

k,iy
+
j,k)

Outdegree popularity (sqrt):
∑

(i,j)∈Y y
+
i,j

√∣∣y+
·,j
∣∣

Edge covariate: For a covariate x ∈ Rn×n,
∑

(i,j)∈Y y
+
i,jxi,j

The corresponding dissolution statistics have the same form, with y+ re-
placed by y−.
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