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Computational principles underlying the evolution of cultural learning
mechanisms

Xavier Roberts-Gaal (xavierrobertsgaal @g.harvard.edu) and
Fiery Cushman (cushman@fas.harvard.edu)
Department of Psychology, Harvard University
William James Hall, 33 Kirkland Street, Cambridge MA

Abstract

Cumulative culture requires efficient learning mechanisms
that can withstand environmental change across generations.
We unify two competing theories of the learning mechanism
supporting cumulative culture in a common computational
framework, distinguishing model-based from model-free so-
cial learning. We describe and analyze evolutionary models
that explain when and why model-based and model-free social
learning are each optimal, and in particular how environmental
volatility determines which strategy succeeds. Strikingly, we
find that model-based social learning can succeed even in high-
volatility environments. These results yield novel predictions
concerning cultural variation in social learning mechanisms.

Keywords: social learning; model-based learning; evolution-
ary models; cultural learning; imitation; emulation

Introduction

Cumulative culture, the accretion over generations of im-
provements in practices, artifacts, and technologies, is a
distinctive ingredient in human success (Henrich, 2017).
Through culture, people can rapidly learn useful behav-
iors so complex that no individual could invent them from
scratch, and then transmit them accurately to future genera-
tions (Tomasello, Kruger, & Ratner, 1993).

Currently two models of cultural learning predominate
(Heyes & Moore, 2021). One view posits cultural learning
is pure imitation: copying others’ behaviors precisely, like a
baker’s apprentice who is given an exact recipe (Heyes, 2018;
Henrich, 2021). From a computational perspective, imitation
could be described as a model-free (MF) form of social learn-
ing: it represents the value of actions, but doesn’t provide a
causal model of why they are valuable. This makes it fast and
easy to implement, but inflexible when circumstances change.

Another view posits the transmission relies on rich causal
models of goals, values, and the world, like an apprentice
baker who aims to replicate a supervisor’s signature sour-
dough, who understands that yeast needs warmth and sugar,
and who knows that a strong rise makes softer bread. Com-
putationally, this is a model-based (MB) strategy (Kleiman-
Weiner et al., 2020; Shafto, Goodman, & Griffiths, 2014;
Caldwell & Millen, 2009), and it is cognitively demanding
but offers flexibility when circumstances change (e.g., sugar
is out, but honey is on hand).

Although these have sometimes been regarded as compet-
ing theories of social learning, by now there is ample evi-
dence that humans do both (Wu, Vélez, & Cushman, 2022).
The next key challenge for the field, then, is to understand the
principles that determine which we use, and when.

In this study, we present a new model that explains how en-
vironments dictate the optimality of a MF or MB social learn-
ing strategy. This model predicts populations coordinate on
an optimal social learning strategy, which is expressed at an
individual level as a preference for MF or MB social learning.
We relate this social learning strategy preference to environ-
mental volatility, or instability resulting in a certain probabil-
ity of change.

Computational Model

Our model aims to determine when social learners should
copy behaviors exactly (model-free) and when they should in-
stead extract people’s goals and beliefs to devise their own tai-
lored solution (model-based). The core insight of this model
is that social learning is fragile when environments change:
intuitively, what worked for the last generation won’t work
in the present, so individual learning is required. However,
spending the cognitive effort to fit and use a rich causal model
can partially immunize MB social learners against environ-
mental change. Therefore, MB and MF social learning are
optimal in different environments, namely environments at
different levels of volatility—which can be construed here as
the expected change per generation.

A broad tradition of cultural evolutionary modeling (Boyd
& Richerson, 1980; Rogers, 1988) describes how environ-
mental volatility can influence choice of learning strategy.
Prior models (Giuliano & Nunn, 2021) have identified equi-
libria between individual learning and social learning in a
continuous, deterministic, infinite-population setting called
the replicator process (Taylor & Jonker, 1978; Schuster &
Sigmund, 1983).

Here, we draw on a related class of models that de-
scribe stochastic dynamics in discrete, fixed-size populations
(Nowak, Sasaki, Taylor, & Fudenberg, 2004) to introduce
a general setting that enables us to make novel predictions
about the cultural evolution of MB and MF social learning.

Setting The setting consists of a finite population, with
each person choosing an action from two possible options
A € {aj,az}. Our setting introduces novel environmental
dynamics, allowing us to distinguish various types of social
learning. An action results in one of two observed outcomes
O € {o1,02}. Which outcome the action results in depends
on the state of the world S € {s1,s2}. If the state is si,
then action a; results in outcome o; and ap results in o;.
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If the state is s, then the action-outcome mappings are in-
stead {a; — 02, a, — 01 }. For simplicity, we model people as
choosing only once and we consider the deterministic map-
ping, where an action always achieves only one outcome.

Outcomes, in turn, generate payoffs: o; yields a payoff
R =B > 0 and o, yields a negative payoff —f. Outcomes
always yield the same payoff regardless of the world state.

Crucially, the environment can change across generations,
disrupting payoffs. In each generation, with probability A €
[0,1] there is a shock resulting in a new draw of the state from
a uniform distribution. People do not initially know the state
of the world, so at the beginning of their lives they are uncer-
tain which action is best.

In our model, we explore the relative success of distinct
types of learning strategies as a function of (i) parameters in-
fluencing how effective each type of strategy is on its own,
and (ii) the prevalence of each type in society.

To do this, we rely on the Moran process, a canonical
agent-based model of biological evolution in finite popula-
tions (Ewens, 2004). In this process, individuals belong to
one of a set of types, each with their own distinct payoff func-
tion. Between each generation, an individual dies at random
and an individual is chosen to reproduce with probability pro-
portional to their payoff. We assume that descendants do not
choose their type; instead, they inherit it. Our model does
not assume a specific biological or cultural inheritance mech-
anism. Thus, the type with a higher payoff will tend to in-
crease in its population proportion, and types with lower pay-
offs will tend to decrease. We explore the dynamics of the
Moran process for various types of social learning strategies
under different environmental conditions.

Model 1: Social vs. individual learners Our model allows
us to recapitulate, in a stochastic and more general frame-
work, results from Giuliano and Nunn (2021, hereafter GN)
identifying when people would engage in social learning at
all. We begin by demonstrating that our agent-based simula-
tion of evolutionary dynamics in a finite population recreates
their results from the analysis of a replicator process. Then,
we proceed to our generalization of this framework to capture
the distinction between MF and MB social learning.

In GN there are two types of people: individual and so-
cial learners. Social learners (SL) copy the action of a ran-
domly chosen member of the previous generation, allowing
for vertical and oblique transmission. Social learners there-
fore reproduce, in expectation, the distribution of actions of
the previous generation. Individual learners (IL) do not copy
others, instead they learn for themselves what the best action
is through trial-and-error. Although they learn the best action
with certainty, they pay a cost of learning k € [0,[].!

Since we are interested in learning strategy preferences
that evolve over generational timescales, we consider only the
steady state population proportion of each learning strategy.
To determine these proportions, we can examine the payoffs

' As GN point out, if k > B then there are no individual learners
since the cost of learning is prohibitively high.

of each strategy. Since individual learners pay a fixed learn-
ing cost to identify the optimal action, their payoff is fixed
at:

Rip=B—x

Social learners, in contrast, depend on previous generations
for their payoff. If a shock occurs between the learner’s and
teacher’s generations, then the learner’s expected payoff is 0
as the learner’s action will be optimal with probability 0.5.
So, an SL can obtain a positive payoff only if they copy the
correct action and if a shock does not disrupt the state of the
world anywhere along the chain of teachers and learners.

Table 1: Social learning chains resulting in positive payoff

Learning chain P(No shocks occurring)

IL — SL 1-A
IL — SL — SL (1-A)?
IL—SL—SL—SL (1-A)3
IL—[nxSL|—SL (1—-A)"

Following GN, table 1 lists several possible ways a social
learner could obtain positive reward, along with their associ-
ated probabilities. Extrapolating from this, the expected pay-
off of a social learner is  times the sum of a sequence of
probabilities (representing all the ways a SL could learn the
correct action). In the deterministic case, this resolves to:

S . B1-SL)(1-A)

RSL:BXZSLi—l(l—SL)(l_A)l: l_SL(l_A)
i=1

where SL denotes the population proportion of social learners
(Giuliano & Nunn, 2021). In equilibrium, social and indi-
vidual learners are both present when their payoffs are equal.

Setting Rg; = Ry and solving for SL, we get the equilibrium
proportion of social learners:

—A
It — K(liﬁjz; for A€ [0,5)
0 forA e [g,l]

This equilibrium is stable: if SL increases above equilib-
rium, social learners are less likely to copy from an individual
learner who has obtained the optimal action with certainty.
But if SL decreases below equilibrium, then marginal social
learners are more likely to copy from an individual learner
without needing to pay a learning cost. Moreover, this equi-
librium depends crucially on the learning cost ¥ and envi-
ronmental stability (1 — A). Intuitively, the equilibrium pro-
portion of social learners increases as environmental stabil-
ity increases. In more stable environments, the world is less
likely to change between the previous and current generation.
Social learners are thus more likely to copy an action which
remains optimal for the present circumstances, regardless of
their population proportion. As stability decreases, the slope
of Ry, with respect to SL decreases too, yielding a lower equi-
librium proportion of social learners.
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Figure 1: Model 1, relationship between the population pro-
portion and relative payoff of social learners, at varying shock
probabilities (A). Positive y values indicate SL. > IL payoff.
Points represent SL averages over 2500 gens from a popula-
tion of 120 under moderate learning conditions (k = 0.4).

We identify the same major result by using a Moran pro-
cess to model stochastic dynamics. Figure 1 shows the av-
erage long-run proportion of social vs. individual learners at
varying values of environmental volatility. The long-run pro-
portion of social learners varies directly with the average pay-
off of social learners relative to individual learners. More-
over, as the shock probability decreases, the expected payoff
of social learning increases relative to individual learning and
the long-run proportion swings to favor social learners. There
are inevitable differences in the dynamics of our model, as the
selection mechanism differs and we directly simulate the pay-
offs of each agent—but overall, the pattern of results holds.

Model 1 allows us to predict that individuals from an en-
vironment with greater cross-generational instability should
have, on average, reduced preference for social learning, as
compared to individual learning. The consistency of our re-
sults in the stochastic setting with prior analytical results in
the deterministic setting gives us confidence in extending our
approach to consider model-based social learning.

Model 2: Extension to model-based social learning
Model 1 assumes that all social learning is model-free social
learning; that is, social learners merely copy the action of a
randomly-chosen member of the previous generation. Since
they copy actions aimlessly, unlike individual learners they
cannot detect when the environment changes and therefore
cannot adapt. But, there is a wealth of evidence that peo-
ple also rely on model-based social learning to understand
others’ goals, environmental dynamics, and then devise their
own best approach to novel tasks. MB social learning, unlike
MF learning, can partially immunize social learners against
environmental change.

Copying another’s goal rather than simply their action af-
fords MB social learners the ability to detect when behav-
ior that worked in the past no longer succeeds in the present.
Moreover, having a causal model of their environment en-

ables MB social learners to adapt to the change effectively.
For example, if you copy the goal of a sourdough boule’s tex-
ture or flavor, and you learn an understanding of the basic pro-
cess and ingredients—instead of memorizing precise quanti-
ties of flour, water, yeast, mother, temperature, and time—
then you can adjust to a higher altitude by baking the bread
hotter or longer. If you only followed the bread recipe me-
chanically, you would not be able to adjust as effectively.

The impact of environmental variability on MB social
learning is different from its impact on MF social learning,
so we need to develop its payoff function. On top of IL and
SL (which we rename MF), we introduce a new type: MB,
or model-based social learning. Model-based social learn-
ers can copy the goal of the person they observe, rather than
the action. To achieve this they pay a learning cost A, corre-
sponding to the difficulty of fitting a model of the environ-
ment and the agent’s intentions. For example, if they ob-
serve A = ay, 0 = o1, then they can reliably achieve o even
if the state of the world changes. MB social learners have a
model of the environmental dynamics and the observed per-
son’s goal such that they are immune to environmental shocks
occurring in the immediate past.

However, MB social learners are still vulnerable to copying
the wrong goal. For example, a MB social learner in genera-
tion ¢ can copy a MF social learner in generation (r — 1) who
copied from an individual learner in (# —2). If a shock occurs
between (f — 1) and ¢, the MB social learner will still copy
the correct outcome and achieve an optimal payoff. But if
a shock occurs between (t —2) and (¢ — 1), then the MF so-
cial learner has an expected payoff of 0 and so does the MB
social learner. Copying someone else’s goal guarantees only
that you achieve their goal, not necessarily the right one.

By construction, MF social learners have a payoff that de-
pends on the relative frequencies of each type in the popula-
tion as well as the probability of shock. The payoff of MB
social learners similarly depends on the population propor-
tions of each type as well as the probability of shock (to a
reduced degree) and the model-fitting cost. In the following
section we empirically investigate the dynamics of each type.

Having laid out Models 1 and 2, we now analyze Model
2. This enables us to generate testable predictions about the
relationship between environmental volatility (A) and likeli-
hood of preferring MF, MB, or IL learning strategies on novel
tasks.

Results

Inspecting the design of Model 2, we expect the relative
prevalence of MF and MB in equilibrium to depend on the re-
lationship between environmental variability (A) and model-
fitting learning cost (A). In variable environments, it may
prove safer to learn a basic strategy from someone else and
tailor it to one’s own purposes. However, if it is very hard
to fit a causal model of one’s environment and to identify the
correct goal (A >> 0), then a simpler MF learning strategy
works best.
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In Model 1, the expected evolutionary equilibria can be
characterized analytically, as shown by GN. In contrast, we
use an agent-based approach to explore Model 2’s evolu-
tionary dynamics, employing a Moran process for selection
(Ewens, 2004).

As in Model 1, for Model 2 there exist negative feedback
dynamics between social and individual learning. A plethora
of individual learners lowers the risk of failure to both social
learner types, ensuring they can find the correct action more
cheaply than individual learners in their own generation. But,
if there are too many social learners, then the risk of copying
from someone who has not themselves acquired the correct
action increases. In that case, individual learners will have a
higher payoff, restoring the equilibrium.

Our key addition in Model 2 is the inclusion of different
social learning strategies. As we are interested in understand-
ing when societies would coordinate on these distinct social
learning strategies, the evolutionary dynamics of Model 2 are
the primary target of our analysis.

We characterize the relative success of individual learning,
model-based social learning, and model-free social learning
in terms of three parameters: A, A, and ¥, each of which can
take values in [0, 1]. Therefore, we exhaustively explore this
parameter space to identify interesting regions where we can
make novel predictions.

First, we initialize a population of size 120 randomly dis-
tributed among learning types.> Next, for each value of A,
A, and ¥ we allow the model to cycle 2,500 generations of
births and deaths. At each generation, we kill one agent ran-
domly and reproduce one agent in proportion to the softmax
of its payoff before allowing agents to choose actions and re-
ceive payoffs according to their type. Then, we measure the
concentration of each type: its average frequency over gen-
erations 2,500-5,000, divided by the population size. Finally,
we reinitialize and repeat for a new set of parameter values.>

We selected this measurement window to allow enough
time for populations dynamics to stabilize. To prevent fix-
ation due to drift, we introduce a probability of mutation of
0.05 for each new individual born.

Using this setup, we can understand when environmental
volatility, in this case modeled as shock probability, deter-
mines the success of different learning strategies. We explore
how types’ concentrations change as a function of increas-
ing shock probability, A, for a given set of model-fitting and
individual learning costs—A and ¥, respectively.

We begin by inspecting a case where the cost of individual
learning is moderate (K = 0.4) and the cost of model-based
learning ranges below this value (0.1 <A < 0.3). Figure 2
shows how volatility affects the concentrations of each type.

Several expected results are immediately evident. First, un-
der increased volatility, the concentration of individual learn-
ing increases and that of model-free social learning decreases.

ZWe find similar results using different random seeds.

3Reproducible code and data are available at github .com/
xavierrobertsgaal/cogsci-23-computational-culture
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Figure 2: Concentrations of types as shock probability (A)
increases, for different values of model-based social learning
cost (A). Each collection of three points with the same x-
intercept represents the equilibrium of one simulation; lines
for each type display linear least-squares trend of concentra-
tion with respect to shock probability. All simulations oc-
curred in a moderate learning cost regime with individual
learning cost ¥ = 0.4.

In the limit, as A approaches 1, MF concentration approaches
the mutation floor. Second, the relationship between A and K
influences the concentrations of MB and IL. When x is very
high compared to A, MB fares better compared to IL.
Moreover, comparing the panels of Figure 2, we find that
the effect of volatility (A) on concentrations itself depends on
the values of A and x. That is, as the ratio of MB to individual
learning costs % decreases (favoring MB social learning), the
slope of the MB concentration curve increases relative to the
slope of the IL concentration curve, as does its absolute value.
Thus, volatile environments favor MB social learning more
strongly when social model-fitting costs are lower; they favor
individual learning more when it is harder to fit a model.
Counterintuitively, we find that increasing environmental
volatility leads to an increase in model-based social learn-
ing. From Model 1, we might expect that increased volatility
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Figure 3: Comparison of social learner concentrations gener-
ated by different models as a function of increasing volatility,
(A). Social learner concentrations for Model 1 use the analyt-
ical solution (GN). Social learner concentrations for Model 2
are calculated as the empirical sum of MB and MF, simulated
under moderate learning conditions (A = 0.3, x = 0.4).

leads to monotonically decreasing social learning of any kind,
model-based or model-free. After all, both are susceptible to
copying social learners who themselves perform the wrong
action. Indeed, we find that the proportion of model-free
learners dramatically reduces when volatility is large com-
pared to the model-based social learning cost (A > A > 0).
But, since model-based learners are partially immunized from
environmental shock, they benefit more when the population
shifts to predominantly individual learners. Therefore, the
social learning mix shifts to almost exclusively model-based
learners, but remains high.

To see this point more clearly, it helps to adopt a coarse-
grained division between individual learning and “social
learning”, comprising both MF and MB approaches. This
way, we can compare the fate of social learning when the
MB strategy is available (as in our novel model, Model 2)
versus when it is not (as in the original GN model, Model
1). As shown in Figure 3, environments in a moderate learn-
ing regime (A = 0.3, ¥ = 0.4) have a high concentration of
social learners regardless of environmental volatility. This re-
sults from the model-based social learners’ distinctive advan-
tage: partial immunity to environmental shock, in exchange
for a small, though not trivial, learning cost. In Model 2,
as in Model 1, there are many social learners when environ-
mental volatility is low, and these social learners are mostly
model-free. High levels of environmental volatility drive
these model-free learners to the mutation threshold of near-
extinction. However, model-based social learners can survive
even very high levels of environmental volatility, since they
can reliably identify optimal behavior in a new world state
just so long as they have acquired the right goal. For some
parameter settings, like those described in Figure 3, model-
based social learners can outnumber individual learners on
average, even under extremely high volatility.

Model-free social learner domination

Moderate learning regime

Our model (MB + IL)

GN model (MF +IL)

Model-based social learner domination

Individual learner domination

Individual learning cost -

Model-based learning cost -

Figure 4: Conceptual framework illustrating distinct learn-
ing regimes produced by Model 2 under various social and
individual learning conditions. Extreme learning conditions
yield populations dominated by one agent type (orange, blue,
green). Moderate learning conditions yield populations sensi-
tive to environmental volatility. As volatility increases, agents
converge on MB + IL (cyan), or MF + IL (yellow).

So far we have investigated key regions of our parame-
ter space in detail. Next, we offer a broad characterization
of Model 2 across the full parameter space. We observe the
model converges to one of several distinct regimes, depend-
ing on the parameter settings. Figure 4 shows these regimes.

Sometimes, only one type will dominate regardless of envi-
ronmental volatility. In these cases, all other types remain at
the mutation floor. When individual learning costs are trivial,
for example, the population will consist principally of indi-
vidual learners, who are not susceptible to shocks and thus
never make errors (green region).

When individual and model-based social learning costs are
both extreme (e.g., K = A = 1), the population converges
on model-free social learning regardless of volatility as less
error-prone strategies are prohibitively costly (orange region).

When model-based social learning costs are trivially cheap
and individual learning is non-trivially expensive, MB learn-
ers predominate because they mitigate the risks of shock at a
relatively small cost (dark blue region). These extreme learn-
ing regimes occur at the boundaries of our parameter space.

However, in less extreme learning regimes, no one type
predominates. Instead, both social learners and individual
learners coexist, in proportions that are sensitive to environ-
mental volatility. One region of the moderate learning regime
encompasses GN’s model (Model 1, yellow region in Figure
4). There, the population is almost entirely MF social learn-
ers or individual learners, as it has higher model-based than
individual learning costs, selecting against MB learners.

Finally, the preceding figures have analyzed a “moderate
regime” where model-based learners coexist with model-free
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and individual learners (cyan region). As shown previously,
in this region, increased volatility drops the concentration of
model-free learners to the mutation floor. This region is char-
acterized by parameter values (0 <A < K < 1).

Although these regimes are not sharply delineated due to
Model 2’s nonlinear dynamics, this conceptual framework re-
veals a unique finding of our model: that under moderate con-
ditions, social learning can occur in different forms (MB or
MF) and concentrations sensitive to environmental volatility.

Discussion

When is individual learning versus social learning favored?
Prior work identifies environmental volatility as a key vari-
able, with higher levels favoring individual learning. How-
ever, by enriching the space of social learning strategies con-
sidered, we drive more nuanced predictions about how varia-
tions in environmental volatility dictate not only the competi-
tion between individual and social learning, but also between
alternative forms of social learning. Specifically, we find that
when learners are able to copy others’ goals while innovating
their own means to attain those goals—a variety of “model
based” social learning—this expands the range of environ-
ments in which social learning can be favored by a sizable
portion of the population.

We began by replicating analytical results of a model by
Giuliano and Nunn (2021) that contrasts individual learning
with non-causal (“model-free”) social learning. Our repli-
cation shows that its main qualitative findings emerge in
an agent-based simulation of evolutionary dynamics as well
(Model 1). Examining this model, in contexts character-
ized by high levels of environmental volatility we find fewer
model-free social learners.

However, Model 1 indicated that, all else being equal, en-
vironments with more frequent shocks would see a relatively
greater proportion of individual learners. Strikingly, we find
that sophisticated social learning strategies, such as model-
based social learning, can outpace individual learning in some
regions of parameter space characterized by high volatility.
Specifically, when it is costly to discover which of several
goals to pursue, but relatively easy to determine what others’
goals are and plan one’s own strategy to attain them, social
learning can thrive even in the face of environmental change.

Thus, Model 2 allows us to predict that we will (1) ob-
serve variation in social learning strategies across human pop-
ulations that have experienced different levels of historical
volatility, and that (2) cultures that have had to adapt to mod-
erate levels of volatility are more likely to adopt a model-
based mechanism for social learning, as compared to cul-
tures that have experienced low historical volatility. Future
work should test this prediction using data on environmen-
tal volatility, such as historical climate variation (Giuliano &
Nunn, 2021). Recently, experimental paradigms have been
developed to explore the extent to which people engage in
goal emulation or action imitation in a social learning task
(Charpentier, Iigaya, & O’Doherty, 2020). Fusing these dis-

parate methods may enable us to shed light on systematic
variation in preferences for social learning strategy across
cultures.

In Model 2, individual learners must be present for cultural
learning to succeed. Otherwise, model-based and model-free
social learners could copy the wrong goals or actions, re-
spectively. This dynamic is not unlike the Baldwin Effect,
whereby learned adaptations to environmental change can ac-
quire a genetic basis (Baldwin, 1896; Simpson, 1953; Heyes,
Chater, & Dwyer, 2020). Of course, there are also other ways
in which cultural selection, absent individual learning, could
nevertheless lead to cultural evolution (e.g., prestige bias,
Henrich & Gil-White, 2001; Henrich, 2017).

One important limitation of our current modeling approach
is our choice to instantiate environmental shocks by altering
the transition structure between actions and observed out-
comes when the world state changes. Embedded in this
approach is the assumption that shocks change the map-
pings from actions to outcomes, but not the rewards of out-
comes themselves. This allows model-based learners to cor-
rect for shocks intervening between the individual they have
observed and their own behavior. If, alternatively, shocks
changed the unobserved reward values associated with ac-
tions, model-based learners of the kind formalized here would
have no opportunity to observe or correct for it. Future work
should explore the effects of more complicated environmen-
tal dynamics—including, for example, weakening or revers-
ing the reward attaching to a specific outcome.

Future work should also seek to test this model’s predic-
tions empirically by assessing whether human social learning
converges on model-free or model-based formats depending
on environmental volatility (Wu et al., 2022).

A second key opportunity for future research is extending
our setup to probabilistic mappings between actions and out-
comes. Extensive study of model-based social learning has
shown that people can invert a Bayesian model to infer a
probability distribution over goals and beliefs based on ob-
served behavior (Vélez & Gweon, 2021; Shafto et al., 2014,
Baker, Saxe, & Tenenbaum, 2009). Moreover, models in the
RL setting are construed as probability distributions over state
transitions (Hassabis, Kumaran, Summerfield, & Botvinick,
2017; Dayan & Daw, 2008). Exploring the evolutionary dy-
namics of cognitive adaptations to probabilistic tasks may
therefore illuminate the mechanisms of social inference and
cultural learning in an uncertain and changing world.

Conclusion

The present work charts a first step to understanding why,
and when, we employ each element of our arsenal of social
learning strategies.

Using an evolutionary model, we show that sophisticated
social learning strategies—such as model-based inference
and Bayesian theories of mind—may play a crucial role in in-
sulating social learners from environmental volatility, thereby
enabling cultural advances in one generation to crystallize
and form the foundation for further progress in the next.
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