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Abstract
The spatial dispersion of photoelements within a vegetation canopy, quantified by the 
clumping index (CI), directly regulates the within-canopy light environment and pho-
tosynthesis rate, but is not commonly implemented in terrestrial biosphere models 
to estimate the ecosystem carbon cycle. A few global CI products have been devel-
oped recently with remote sensing measurements, making it possible to examine the 
global impacts of CI. This study deployed CI in the radiative transfer scheme of the 
Community Land Model version 5 (CLM5) and used the revised CLM5 to quantita-
tively evaluate the extent to which CI can affect canopy absorbed radiation and gross 
primary production (GPP), and for the first time, considering the uncertainty and sea-
sonal variation of CI with multiple remote sensing products. Compared to the results 
without considering the CI impact, the revised CLM5 estimated that sunlit canopy 
absorbed up to 9%–15% and 23%–34% less direct and diffuse radiation, respectively, 
while shaded canopy absorbed 3%–18% more diffuse radiation across different biome 
types. The CI impacts on canopy light conditions included changes in canopy light ab-
sorption, and sunlit–shaded leaf area fraction related to nitrogen distribution and thus 
the maximum rate of Rubisco carboxylase activity (Vcmax), which together decreased 
photosynthesis in sunlit canopy by 5.9–7.2 PgC year−1 while enhanced photosynthesis 
by 6.9–8.2 PgC year−1 in shaded canopy. With higher light use efficiency of shaded 
leaves, shaded canopy increased photosynthesis compensated and exceeded the lost 
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1  |  INTRODUC TION

The terrestrial biosphere sequesters about 25%–30% of human-
emitted carbon dioxide (CO2; Le Quéré et al.,  2018; Schlund 
et al.,  2020). The gross terrestrial ecosystem carbon uptake by 
photosynthesis, gross primary production (GPP), is the largest com-
ponent of terrestrial fluxes in the global carbon cycle (Braghiere 
et al., 2019; Jian et al., 2022; Schlund et al., 2020). Compared to data-
driven models (Jung et al., 2009, 2011; Running et al., 2004; Zhang 
et al., 2014; Zhao et al., 2006), process-based terrestrial biosphere 
models (TBMs) have been playing a critical role in the coupled Earth 
System Models (ESMs) to prognostically estimate global carbon dy-
namics and future climate (Clark et al., 2011; Krinner et al., 2005; 
Lawrence et al., 2019; Piao et al., 2009). However, GPP remains a 
dominant uncertainty source in the current terrestrial carbon bud-
get with a wide range from 112 to 175 PgC year−1 (Anav et al., 2015; 
Baldocchi et al., 2016; Piao et al., 2013). Understanding and reduc-
ing uncertainties in GPP estimates is imperative to increase our 
confidence in historical simulations and future projections (Bodman 
et al., 2013; Collins et al., 2013; Schlund et al., 2020).

In TBMs, the upscaling of GPP from leaf to canopy scale has been 
demonstrated to be a major source of uncertainty. For example, with 
the same input datasets, Alton et al. (2007) showed globally and re-
gionally, up to 10% and 25% of the differences in estimated GPP when 
using a big-leaf model versus a sunlit–shaded leaf model, respectively. 
Given the conceptual limitation and practical biases of the big-leaf as-
sumption (Chen et al., 1999; Luo et al., 2018), the sunlit–shaded leaf 
stratification and shortwave direct-diffuse irradiance differentiation 
have been developed (Chen et al., 1999; De Pury & Farquhar, 1997; 
Luo et al., 2018; Norman, 1993; Wang & Leuning, 1998) and adopted 
in many regional or global TBMs (Bonan, 2019; Bonan et al., 2021; 
J. M. Chen et al., 2012; Chen & Zhuang, 2014; Loew et al., 2014). 
Sunlit leaves absorb both direct and diffuse solar radiation, while 
shaded leaves only receive diffuse radiation. Evidence from mod-
els and observations has shown that shaded leaves tend to have a 
relatively higher light use efficiency (LUE) under diffuse radiation 
conditions compared to that of sunlit leaves (Chen & Zhuang, 2014; 
Gu et al.,  1999; Knohl & Baldocchi,  2008; Mercado et al.,  2009; 
Still et al., 2009; Wang, Wu, et al., 2018; Williams et al., 2016; Yan 
et al., 2019). Therefore, even with the same incoming solar radiation 

at the top of the canopy, differences in the partitioning of direct 
and diffuse radiation, and subsequently the separation of sunlit and 
shaded leaves within the canopy, can significantly affect canopy 
photosynthesis estimation (Bonan et al., 2021; Braghiere et al., 2019; 
Braghiere, Quaife, et al., 2020; Braghiere, Yamasoe, et al., 2020; J. M. 
Chen et al., 2012; Durand et al., 2021).

The randomness of the vegetation spatial distribution, quanti-
fied by the clumping index (CI), affects canopy radiative transfer pro-
cesses, and thus the absorption of solar energy and photosynthesis. 
Leaves are generally clumped into different sub-canopy struc-
tures instead of being randomly distributed in the real world. With 
the same leaf area, fewer leaves are sunlit, while more leaves are 
shaded when the leaves in the canopy are more clumped (J. M. Chen 
et al.,  2012). The nonrandom spatial distribution of leaves modu-
lates canopy intercepted direct and diffuse radiation and sunlit and 
shaded leaf partitioning in the canopy (Bonan, 2019), with expected 
changes in estimated land surface energy–carbon–water fluxes 
(Bonan, 2019; Braghiere et al., 2019; Braghiere, Quaife, et al., 2020; 
J. M. Chen et al., 2012; B. Chen et al., 2016, 2021; Fang, 2021).

While ignoring CI can potentially bias estimated carbon fluxes, 
many TBMs (Table S1) have not yet included CI in their canopy radia-
tion transfer schemes. Previous studies showed that ignoring CI can 
cause 12% less canopy photosynthesis at a temperate rainforest site 
(Walcroft et al., 2005) and 50% less annual net ecosystem carbon 
sink (Baldocchi & Wilson, 2001) at a temperate broadleaved forest 
site. However, at the global scale, the impacts of CI on GPP are still 
under debate. For example, Ryu et al.  (2011) reported that CI re-
duced GPP by 1.5 PgC year−1 in the Breathing Earth System Simulator 
(BESS), and Chen et al. (2012) showed 15.88 PgC year−1 (~12%) less 
estimated annual GPP when including CI in the Boreal Ecosystem 
Productivity Simulator (BEPS). In contrast, Braghiere et al.  (2019) 
showed a net increase (~5.53 PgC year−1) in estimated GPP with the 
Joint UK Land Environment Simulator (JULES). Albeit the important 
role of CI on radiative transfer, the land modules (Table S1) in many 
ESMs that participated in the latest Coupled Model Intercomparison 
Project (CMIP6; Eyring et al.,  2016), such as CLM5 (Bonan, 2019), 
ELM (Golaz et al., 2019), LPJ-GUESS (Martín Belda et al., 2022; Smith 
et al.,  2001), and ORCHIDEE (Krinner et al.,  2005), still assumed 
that leaves are randomly arranged without considering CI effects 
(Bonan, 2019; Braghiere et al., 2019; Loew et al., 2014).

photosynthesis in sunlit canopy, resulting in 1.0 ± 0.12 PgC year−1 net increase in GPP. 
The uncertainty of GPP due to the different input CI datasets was much larger than 
that caused by CI seasonal variations, and was up to 50% of the magnitude of GPP 
interannual variations in the tropical regions. This study highlights the necessity of 
considering the impacts of CI and its uncertainty in terrestrial biosphere models.

K E Y W O R D S
canopy structure, clumping index, gross primary production, radiative transfer, terrestrial 
biosphere modeling
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Furthermore, the majority of recent studies derived CI from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) measure-
ments at 500 m spatial resolution (Braghiere et al., 2019; Fang, 2021; 
He et al., 2012; Jiao et al., 2018; Wei et al., 2019). However, large 
uncertainties can be induced by different CI products with different 
sets of bidirectional reflectance distribution function (BRDF) models 
and solar zenith angle (SZA) configurations in their algorithms (Wei 
& Fang, 2016). The across-data CI differences and their influences 
on GPP estimates remain unclear. Meanwhile, considerable seasonal 
variations of CI have been revealed in multiple studies (Fang, 2021; 
He et al., 2016; Jiao et al., 2018; Ryu et al., 2010; Wei et al., 2019), 
while the extent to which CI seasonal variations could affect global 
GPP remains underexplored.

Here we explored how CI affects radiative transfer, the sunlit/
shaded canopy absorbed direct/diffuse radiation, and photosynthe-
sis at the global scale with consideration of uncertainties from mul-
tiple CI products and CI seasonal variations. We (1) included the CI 
effects in the radiative transfer scheme of CLM5; (2) intercompared 
three mostly used and publicly available spatially resolved global CI 
products; and (3) evaluated the impact of CI on canopy absorbed 
direct/diffuse radiation, and sunlit/shaded canopy photosynthesis 
estimates.

2  |  METHODS AND DATA SETS

2.1  |  Model description and improvements

CLM5 is the land surface scheme of the Community Earth System 
Model version 2 (CESM2), which has been widely used to dynami-
cally simulate land surface energy, hydrologic, and biogeochemi-
cal cycles (Lawrence et al.,  2019). The canopy radiative transfer 
processes within CLM5 are represented using the two-stream ap-
proximation of Dickinson (1983) and Sellers (1985) as described by 
Bonan (1996) without considering the CI effects. When vegetation is 
clumped, vertical overlapping of leaves increases the radiation trans-
mission probability across the canopy (Chen et al., 2012). Radiation 
transmission follows the Beer–Bouguer–Lambert law but with 
its leaf area index (LAI) multiplied by a CI Ω (Chen & Black, 1992; 
Nilson, 1971), as shown in Equation (1).

where τ is the transmittance; K = G(μ)/μ is the optical depth of direct 
beam per unit area; μ is the cosine of the zenith angle of the incident 
beam; G(μ) is the relative projected leaf area in the direction cos−1(μ) 
(Ross, 1981); L is the true LAI; and Ω is the CI. When Ω = 1, vege-
tation elements are randomly distributed, while leaves are clumped 
when Ω < 1 and a lower value represents more clumped leaves (J. 
Chen et al., 2005; J. M. Chen et al., 2012; Chen & Black, 1992; Pisek 
et al., 2011).

The sunlit fraction of leaf area (Lsun) varies with the cumulative 
LAI x (Equation  2), and the total sunlit leaf area is its integration 

across the whole canopy described as Equation (3). The shaded leaf 
area (Lsh) is the difference between the total leaf area and sunlit leaf 
area (Equation 4).

CI alters transmittance, and further changes the upward and 
downward diffuse radiation scattered by leaves. According to 
Bonan  (2019), the core two-stream approximation equations 
(Dickinson, 1983; Sellers, 1985) in CLM5 become Equations (5) and 
(6) after accounting for CI.

where I↑ and I↓, respectively, are the upward and downward diffuse 
radiative fluxes per unit incident flux on top of the canopy; Kd is the 
diffuse optical depth per unit area; 𝜔 is a scattering coefficient given by 
the sum of leaf reflectance and transmittance; 𝛽 and 𝛽0, respectively, 
are the fraction of diffuse and direct radiation scattered in the back-
ward direction.

The optical parameters, including G(μ), 𝜔, 𝛽, 𝛽0, and Kd, were cal-
culated based on the work in Bonan (1996) and Sellers (1985). Given 
the direct beam and diffuse albedo of the ground, the fraction of 
absorbed photosynthetically active radiation (FAPAR), and absorbed 
direct beam and diffuse radiation in sunlit and shaded canopy can 
be calculated respectively with the canopy structure and leaf optical 
parameters. Details of the calculation are described in Bonan (2019). 
The maximum carboxylation rate at 25°C (Vcmax) of sunlit and shaded 
canopies as a whole was the integral of leaf nitrogen content-
based Vcmax over sunlit and shaded leaf areas in CLM5, respectively 
(Bonan, 2019; Luo et al., 2019). Specifically, the leaf nitrogen content 
N(x) decreased exponentially with the cumulative LAI x from the top 
canopy (Equation  7). Vcmax was modeled to vary linearly with leaf 
nitrogen content N(x) (Equation 8), and the sunlit and shaded canopy 
Vcmax was the integral of Vcmax(x) and the sunlit and shaded leaf area 
fraction (Bonan, 2019; Chen et al., 2012; Ryu et al., 2011), described 
as Equations (9) and (10), respectively.

(1)� = e−K�L

(2)fsun(x) = Ωe−K�x

(3)Lsun = ∫
L

0

fsun(x)dx =
1 − e−K�L

K

(4)Lsh = L − Lsun

(5)dI↑

dx
=
[

1 − (1 − �)�
]

KdΩI
↑ − ��KdΩI

↓ − �0�K�e−K�x

(6)dI↓

dx
= −

[

1 − (1 − �)�
]

KdΩI
↓ + ��KdΩI

↑ +
(

1 − �0
)

�K�e−K�x

(7)N(x) = e−Knx

(8)Vcmax(x) = Vcmax0N(x)

(9)Vcmax,sun =
Vcmax0 ∫ L0 N(x)fsun(x)dx

∫ L
0
fsun(x)dx

=

Vcmax0K�

(

1 − e−(Kn+K�)L
)

(

Kn + K�
)(

1 − e−K�L
)
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where Kn is the nitrogen extinction coefficient; Vcmax0 is the at the top-
of-canopy Vcmax.

Introducing CI directly changes absorbed direct and diffuse ra-
diation in sunlit and shaded leaves, and further the photosynthesis 
rates (Durand et al., 2021; Medlyn et al., 2011). Along with altered 
sunlit and shaded leaf areas (Equations  3 and 4), the canopy-level 
photosynthesis (Acanopy) was expected to be changed as well in the 
two-leaf photosynthesis model (Wang & Leuning, 1998) described 
as Equation (11).

where Asun and Ash are the sunlit and shaded leaf photosynthesis, 
respectively.

2.2  |  CI datasets

Three publicly available global CI datasets (Table 1) at 500 m spatial 
resolution that we can find were used in this study. The three CI 
products (UofT-CI, CAS-CI, and BNU-CI) were generated based on 
the empirical relationship between CI and the index of normalized 
difference in reflectance between the hotspot (the direction where 
solar radiation and view directions coincide and no shadows are 
observed) and darkspot (the direction where maximum shadowing 
and minimum reflectance are observed) (normalized difference hot-
spot and darkspot [NDHD]; Chen et al., 2005; Leblanc et al., 2005). 
However, differences were founded in the three datasets because of 
their used BRDF models and sun zenith angle (SZA) settings, which 
can cause substantial differences in calculated NDHD and thus CI 
(Fang, 2021; Wei et al., 2019; Wei & Fang, 2016). For UofT-CI, He 
et al. (2012) corrected and reproduced MODIS-derived hotspot re-
flectance based on the empirical relationship between MODIS and 
POLDER hotspot observations and used SZA values of 0° and 47.7° 
for estimating the hotspot and darkspot reflectance in the BRDF 
model of RossThick-LiSparse Reciprocal (RTLSR). For CAS-CI, Wei 
et al. (2019) corrected the hotspot of MODIS with the method in He 

et al. (2012), and used observed SZA to estimate NDHD through the 
RTLSR model. For BNU-CI, Jiao et al. (2018) adopted a backup algo-
rithm to reprocess potential outliers of CI with a prescribed physical 
range, and used the hotspot-adjusted version (i.e., RTCLSR) of the 
RTLSR model to estimate the hotspot and darkspot reflectance at 
45° both in the backward and forward directions for NDHD calcula-
tion. In addition, UofT-CI and BNU-CI datasets were based on the 
version 5 of MODIS BRDF product (MCD43A1), while CAS-CI data-
set was based on that of version 6 with improved inversion quality 
and ability to detect temporal changes (Wang, Schaaf, et al., 2018).

We scaled up each CI dataset to the resolution of the model 
run with CLM prescribed plant functional types (PFTs; Bonan 
et al., 2002). Using Google Earth Engine (Gorelick et al., 2017), we 
first derived 500 m resolution CLM PFT dataset from 500 m MODIS 
land cover type dataset (MCD12Q1; Friedl & Sulla-Menashe, 2015) 
and WorldClim V1 ~1 km (linearly interpolated to 500 m) monthly 
temperature and precipitation dataset (Hijmans et al., 2005) based 
on the described rules in Bonan et al. (2002) and Hao et al. (2022). 
Then we used the derived CLM–PFT dataset to upscale the CI data-
set from 500 m resolution to the resolution of model run by averag-
ing CI values at finer resolution with the same PFT (Hao et al., 2022). 
Given the temporal coverage of UofT-CI dataset and generally small 
interannual variation of CI (He et al.,  2016; Wei et al.,  2019), we 
used the CI in 2006 for subsequent analyses (Braghiere et al., 2019). 
Same to the UofT-CI dataset, we calculated the yearly median of 
the BNU-CI and CAS-CI datasets using their raw CI datasets. The 
CI information over space and different biome types was shown as 
Figure 1. We analyzed the across-data CI differences in Section 3.1, 
and analyzed the impacts of CI seasonal variations on GPP using 
monthly CAS-CI and BNU-CI datasets in Section 3.4.

2.3  |  Model setup and evaluation

We ran CLM5 with the prescribed satellite phenology (SP) mode at 
the 1.9° × 2.5° spatial resolution. The Global Soil Wetness Project 
(GSWP3) dataset (Dirmeyer et al., 2006) was used as climate forcing, 
including 3-h total incident solar radiation, incident longwave radia-
tion, total precipitation, surface air pressure, air temperature, wind 
speed, and specific humidity. In the SP mode, prescribed LAI from 
the MODIS LAI product (Myneni et al., 2002) is used (Lawrence & 
Chase, 2007). Albeit the uncertainty in MODIS LAI product when 

(10)

Vcmax,sha=
Vcmax0 ∫ L0 N(x)(1− fsun(x)

)

dx

∫ L
0

(

1− fsun(x)
)

dx

=

Vcmax0

(

1

Kn

(

1−e−KnL
)

−
Ω

Kn+K�

(

1−e−(Kn+K�)L
))

L−
1

K�

(

1−e−K�L
)

(11)Acanopy = Asun × Lsun + Ash × Lsh

TA B L E  1  Details of the three global CI products used in the study

Dataset BRDF model Solar zenith angle
MODIS BRDF 
product

Temporal 
coverage References

UofT-CI RTLSR (hotspot SZA = 0°) and 
(darkspot SZA = 47.7°)

MCD43A1 version 5 2006 He et al. (2012)

BNU-CI Hotspot adjusted, RTCLSR SZA = 45° MCD43A1 version 5 2000–2019 Jiao et al. (2018)

CAS-CI RTLSR Observed SZA MCD43A1 version 6 2001–2019 Wei et al. (2019)

Abbreviations: BRDF, bidirectional reflectance distribution function; CI, clumping index; MODIS, Moderate Resolution Imaging Spectroradiometer; 
SZA, solar zenith angle.
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compared with that of fields measurement, its retrieval algorithm 
considered CI (Knyazikhin,  1999; Knyazikhin et al.,  1998), and 
MODIS LAI is generally closer to true LAI rather than effective LAI 
(i.e., Ω × LAI) (Yan et al., 2016). Therefore, we considered CLM5-SP 
simulations with prescribed LAI but without CI as the baseline 
case that ignored CI effects. Hereafter, we referred to the original 
baseline model as CLM5 (Ω = 1) and the modified model using the 
prescribed annual median CI as CLM5-CI, respectively. Similar to 
previous studies (Braghiere et al., 2019; Chen et al., 2012), the CI 
impacts were calculated as the differences between the results from 
the two model versions (i.e., CLM5-CI—CLM5). To separate the im-
pacts on GPP due to changed canopy energy regime and nitrogen 
distribution, we also turned off the CI-induced nitrogen distribution 
changes in CLM5-CI (referred as CLM5-CI-noN). Therefore, the dif-
ference between results of CLM5-CI-noN and CLM5 was regarded 
as the CI impacts on GPP through changed canopy energy regime, 
and the difference between CLM5-CI and CLM5-CI-noN was re-
garded as the CI impacts on GPP through changed nitrogen distri-
bution and thus Vcmax. In addition, we also investigated the impacts 
of CI seasonal variations on GPP by calculating the differences be-
tween the estimated GPP using monthly varied and annual median 
CI information. For each experiment, model outputs were aggre-
gated to annual values as we focused on CI impacts on annual GPP 

estimates. Each model simulation was performed for 11 years from 
2000 to 2010, and we analyzed the last 5-year outputs from 2006 to 
2010 to eliminate the impacts of model initialization.

The uncertainty of CI and its impacts on canopy radiative trans-
fer and photosynthesis were evaluated over seven biome types, 
including evergreen broadleaf forest (EBF), deciduous broadleaf for-
est (DBF), evergreen needleleaf forest (ENF), deciduous needleleaf 
forest (DNF), shrubs, grasses, and crops. The uncertainty range of 
CI was defined as the difference between the maximum CI and the 
minimum CI among the three CI datasets. The uncertainty range of 
CI-induced impacts on canopy radiation and photosynthesis was 
defined as the difference between the maximum and minimum CI-
induced changes.

2.4  |  Benchmarking GPP dataset

We used the GOSIF-GPP (Li & Xiao, 2019) and FluxCom GPP (Jung 
et al., 2017; Tramontana et al., 2016) products as the benchmark-
ing datasets to evaluate the GPP estimates from CLM simulations. 
The GOSIF-GPP dataset is derived based on the solar-induced 
chlorophyll fluorescence (SIF) observed by the Orbiting Carbon 
Observatory-2 (OCO-2) and its linear relationship with GPP (Li 

F I G U R E  1  Multi-product mean CI (a) and uncertainty range of global CI (b); the latitudinal mean (lines) and standard deviation (shades) of 
three CI datasets (c), and the distributions of CI values over seven biome types over the globe (d). Map lines delineate study areas and do not 
necessarily depict accepted national boundaries. CI, clumping index.
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et al., 2018; Li & Xiao, 2019); while the FluxCom GPP is derived from 
multiple machine learning algorithms (i.e., Random Forest, Artificial 
Neural Network, and Multivariate Adaptive Regression Splines) 
trained on site tower-based carbon fluxes along with meteorologi-
cal measurements and satellite data as inputs (Jung et al.,  2017; 
Tramontana et al.,  2016). Both datasets have been widely used in 
terrestrial carbon budget estimates (Mohammed et al.,  2019; Ryu 
et al., 2019), and are purely data-driven products, thus avoiding any 
preset assumptions regarding canopy radiative transfer (i.e., with or 
without consideration of CI).

3  |  RESULTS

3.1  |  Considerable variations of CI over space and 
different biome types

Figure 1a showed the global distribution of multi-product mean CI. 
Statistics of three product ensemble mean showed that the most 
clumped biome types were EBF (0.64 ± 0.03) (mean ± 1SD) and ENF 
(0.63 ± 0.06), followed by DNF (0.66 ± 0.04) and DBF (0.69 ± 0.04), 
while shrub (0.81 ± 0.04) was the least clumped biome type. 
Generally, forests were more clumped than shrubs, grasses, and 
crops. Considerable uncertainty was observed across the three CI 
datasets over the globe (Figure 1b), and further intercomparison of 
three CI products revealed substantial differences in CI distribution 
over space (Figure 1c) and seven biome types (Figure 1d).

The three CI datasets showed similar latitudinal patterns but 
their magnitudes differed (Figure  1c). CAS-CI had the lowest CI 
values (0.66 ± 0.07) in tropical (23.5° S–23.5° N) regions compared 
with the values of BNU-CI (0.76 ± 0.03) and UofT-CI (0.71 ± 0.03). 
The CI values in temperate and frigid regions (northern of 23.5° N 
and southern of 23.5° S) were 0.72 ± 0.02 in UofT-CI, 0.80 ± 0.06 in 
BNU-CI, and 0.78 ± 0.02 in CAS-CI, respectively. Overall, the values 
of BNU-CI were higher than those of the two others particularly in 
tropical zones (Figure 1c). CI values of the three datasets all followed 
the order that forest was more clumped than other biome types (i.e., 
shrubs, crops, and grasses) (Figure 1d), however, in different forest 
types, significant differences (two-tailed t test, p < .05) were found 
among the three datasets. ENF and DNF were most clumped forest 
types in UofT-CI while EBF was the most clumped one in CAS-CI, 
and CI values showed relatively similar magnitude across EBF, DBF, 
ENF, and DNF in BNU-CI (Figure 1d). The impacts of those across-
dataset CI differences on canopy radiation transfer and photosyn-
thesis need to be explored.

3.2  |  Opposite impacts of clumping on light 
absorption in sunlit and shaded canopies

By definition, sunlit canopy absorbs direct and diffuse radiation, while 
shaded canopy only absorbs diffuse radiation. Introducing CI gener-
ally decreases (increases) sunlit (shaded) leaf area (Equations  3 and 

4, Ω < 1), which also adjusts sunlit and shaded canopy absorbed di-
rect and diffuse radiation. The FAPAR of sunlit and shaded canopy is 
closely linked to LAI and CI. Figure 2a–c respectively showed how the 
absorption of direct PAR in sunlit canopy, diffuse PAR in sunlit canopy, 
and diffuse PAR in shaded canopy (i.e., FAPARsun,dir, FAPARsun,dif, and 
FAPARsha,dif, respectively) changed with LAI in CLM5. FAPAR increases 
with LAI and saturates at some point (Figure  2a–c; Bonan,  2019; 
Myneni et al.,  2002). With the same LAI, a more clumped canopy 
(lower CI) will decrease sunlit LAI (Chen et al., 2012), and the absorbed 
direct and diffuse radiation on sunlit canopy (Figure 2a,b). In contrast, 
for shaded canopy, leaf clumping increases FAPAR of diffuse radia-
tion especially for high LAI biomes (e.g., tropical forest) (Figure 2c), 
because diffuse radiation can penetrate deeper than direct radia-
tion into the canopy where the leaves are light-limited (Braghiere 
et al., 2019). Compared to direct and diffuse radiation in sunlit can-
opy, absorption of diffuse radiation in shaded canopy increased and 
tended to be less saturated with larger LAI values (Figure 2c; Durand 
et al., 2021; Mercado et al., 2009; Williams et al., 2016).

At the global scale, after accounting for the CI effects, the mean 
FAPARsun,dir (Figure 2d) and FAPARsun,dif (Figure 2e) consistently de-
creased with three CI datasets, and the decreased values were up to 
9.4%–14.8% and 22.8–33.7% of their raw values across the different 
biome types (Figure S1a,b). Oppositely, FAPARsha,dif consistently in-
creased (Figure 2f) up to 3%–18% (Figure S1c) across different bi-
omes. The influence of CI on shaded canopy was most prominent 
in the tropical area (Figure 2f) for the EBF biome type, where the 
FAPARsha,dif values averagely increased by 14%–18% considering 
clumping effects (Figure S1c).

3.3  |  Contrasting changes in sunlit and shaded 
canopy photosynthesis

Accounting for CI decreased FAPAR in sunlit canopy resulted in 
~6% lower in canopy absorbed total PAR (Figure S2), and the de-
crease could be up to 18% in some regions. Meanwhile, decreased 
(increased) sunlit (shaded) leaf area fraction decreased (increased) 
nitrogen content allocated in sunlit (shaded) canopy and thus Vcmax 
(Equations 9 and 10). Consequently, through changing canopy ab-
sorbed energy, the incorporation of CI increased (decreased) shaded 
(sunlit) canopy GPP globally by 5.8 PgC year−1 (6.8 PgC year−1) 
(Figure  3a,b); through changing nitrogen distribution, GPP was 
increased (decreased) by 2.8 PgC year−1 (0.8 PgC year−1) in shaded 
(sunlit) canopy (Figure 3c,d). The impacts of CI-induced changes 
of energy absorption on GPP were ~2.1 and ~8.5 times as large as 
that caused by nitrogen distribution for shaded and sunlit canopy, 
respectively. In combination of energy and nitrogen distribution 
changes together, sunlit canopy photosynthesis decreased glob-
ally (Figure  3e) while shaded canopy photosynthesis increased, 
especially in tropical forests (Figure 3f). The degree to which pho-
tosynthesis of the entire canopy will change is contingent on the 
balance of increase in shaded canopy photosynthesis against the 
decrease in sunlit canopy photosynthesis.
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At the global scale, compared to the CLM5 without clumping, 
the amount of sunlit canopy photosynthesis with CI decreased by 
5.9–7.2 PgC year−1 while shaded canopy photosynthesis increased 
by 6.9–8.2 PgC year−1 (Figure 4). CI-induced increase in shaded can-
opy photosynthesis overwhelmed sunlit canopy decreased photo-
synthesis, likely due to the higher LUE of shaded canopy than that 
of sunlit canopy (Figure S3; Braghiere, Quaife, et al., 2020; Durand 
et al., 2021; Mercado et al., 2009; Williams et al., 2016). As a result, 
carbon uptake over the entire canopy with CI globally increased by 
1.0 ± 0.12 PgC year−1. CI-induced photosynthesis changes were the 
most prominent over the EBF biome type with greater LAI values 

(Figure  4). Specifically, the shaded canopy GPP increased by 3.4–
4.8 PgC year−1 and sunlit canopy GPP decreased by 2.3–3.6 PgC year−1 
in EBF, which dominated CI-induced global GPP changes.

3.4  |  CI-induced changes in canopy 
photosynthesis and its uncertainty

At the global scale, a systematic bias of ~1.0  PgC year−1 would be 
expected in estimated GPP if CI effects were ignored. The bias 
was most prominent in tropical regions (Figure 5a), and CI-induced 

F I G U R E  2  CI induced changes in FAPAR in relation to LAI for direct radiation (a) and diffuse radiation (b) in sunlit canopy, and diffuse 
radiation in shaded canopy (c). Mean changes of FAPAR for direct radiation in sunlit canopy (d), diffuse radiation in sunlit canopy (e), and diffuse 
radiation in shaded canopy (f) at the global scale. (a–c) are generated using the two-stream model in CLM5 but with prescribed LAI, CI, and 
optical parameter values (leaf reflectance and transmittance are 0.10 and 0.05, respectively; optical depth of direct beam and diffuse radiation 
are 0.58 and 0.70, respectively; upscatter parameter for diffuse and direct radiation are 0.54 and 0.46, respectively (Bonan, 2019). Deeper blue 
(red) color represents lower (higher) FAPAR after accounting for clumping in (d–f). Map lines delineate study areas and do not necessarily depict 
accepted national boundaries. CI, clumping index; FAPAR, fraction of absorbed photosynthetically active radiation; LAI, leaf area index.
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regional differences in estimates of GPP can be up to 10% (Figure 5b). 
Satellite-based observations of CI enable spatially varied represen-
tation of CI effects in CLM5, but CI itself is with considerable uncer-
tainties (Figure 1). The uncertainty of CI from the different products 
propagated to GPP estimates (Figure 5c), which is comparable with 
up to 50% of GPP interannual variations (tropical area in Figure 5d).

Considering CI but ignoring its seasonal variations can increase 
estimation of global GPP by ~0.14 PgC year−1, with the largest dif-
ferences (~4%) occurred in the boreal forest region (Figure 5e). The 
magnitude of CI seasonal variation induced GPP changes was much 
smaller than that of GPP changes in tropical forests induced by the 
across-data CI uncertainty (Figure 5f). Therefore, while leveraging 

satellite-derived observations of CI can reduce CI-induced bias in 
estimated GPP, the uncertainty of CI needs to be further narrowed.

3.5  |  Comparison with satellite-based observations

Model estimates of GPP with and without CI were respectively com-
pared with two benchmarking datasets: GOSIF-GPP and FluxCom-
GPP. Figure 6a showed the difference in the absolute bias (i.e., the 
absolute value of the reference GPP data minus the modeled GPP) 
between CLM5-CI and GOSIF-GPP, and CLM5 and GOSIF-GPP. 
Deeper blue (red) color represented lower (higher) bias between 

F I G U R E  3  CI induced GPP changes in sunlit and shaded canopy. (a, b) Are CI-induced GPP changes through changing energy absorption 
of sunlit and shaded canopy, respectively. (c, d) Are CI-induced GPP changes through changing nitrogen distribution in sunlit and shaded 
canopy, respectively. (e, f) Are CI-induced total GPP changes in sunlit and shaded canopy, respectively. Deeper blue (red) color represents 
lower (higher) GPP after accounting for clumping. Map lines delineate study areas and do not necessarily depict accepted national 
boundaries. CI, clumping index; GPP, gross primary production.
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modeled GPP and GOSIF-GPP after accounting for clumping. With 
clumping, the discrepancy between modeled GPP and GOSIF-GPP 
was generally smaller, especially for the tropical region (Figure 6a). 
Specifically, compared to the absolute bias between CLM5 and 
GOSIF, the mean absolute bias between CLM5-CI and GOSIF de-
creased mostly in EBF (Figure  6b) with bias decreased by 91.4–
115.5 gC m−2 year−1 (−19.3% to −24.4%). Similar results (Figure  S4) 
were acquired using the FluxCom-GPP as the benchmarking dataset.

4  |  DISCUSSION

Vegetation clumping is an integral part of canopy structure that de-
termines canopy radiation transfer (Bonan,  2019), photosynthesis 
(Braghiere et al., 2019; J. M. Chen et al., 2012), and hydrological pro-
cesses (B. Chen et al., 2016, 2021). Without accounting for clumping, 
sunlit leaf area and sunlit canopy absorbed radiation are overesti-
mated, while canopy radiation transmittance, shaded leaf area, and 
shaded canopy absorbed radiation are underestimated. This results in 
biases in estimated sunlit/shaded canopy GPP at regional and global 
scales. Satellite-based observations of CI enable spatially resolved 
representation of clumping in TBMs, however, CI is not considered 
in the state-of-the-art CLM5 (nor in other TBMs in Table  S1), and 
large uncertainty across existing CI datasets should also be consid-
ered. This study included CI in CLM5 and systematically analyzed the 
extent to which sunlit/shaded canopy absorbed direct/diffuse radia-
tion and photosynthesis will be changed when considering clumping 
and its uncertainty. We found CI-induced increase in GPP in shaded 
canopy overwhelmed the decreased GPP in sunlit canopy globally, 
and caused a net 1.0 ± 0.12 PgC year−1 increase in GPP.

4.1  |  Comparison with previous studies on 
clumping induced bias in GPP estimates

The CI impact on canopy photosynthesis found in our study is 
consistent with the results in multiple previous site-level studies. 

Walcroft et al. (2005) found a 11% decrease in canopy radiation ab-
sorption but 12% increase in canopy photosynthesis with a consid-
erable enhancement of canopy LUE after accounting for clumping 
at a rainforest site. Baldocchi and Wilson (2001) found a 12.5% in-
crease in canopy photosynthesis when involving CI at a broadleaved 
forest site and also showed amplified positive impacts of clumping 
on canopy photosynthesis when the leaf area increased. Similar re-
sults were also shown in Wang and Polglase (1995) and Braghiere, 
Quaife, et al.  (2020). Braghiere, Quaife, et al.  (2020) showed an 
increase in GPP with clumping in two forest sites. Our results also 
showed varied influence of clumping on canopy photosynthesis, and 
the most prominently positive impacts of clumping were in tropical 
regions or in the EBF with greater leaf areas (Figure 4). A few previ-
ous studies have reported their findings on the CI impacts on global 
GPP (Table S2). With a coarse resolution (~6 km) of POLDER derived 
CI dataset, Ryu et al. (2011) and Chen et al. (2012) showed reduced 
GPP values (1.5 vs. 15.88 PgC year−1) using the BESS and BEPS 
model, respectively. Using a higher-resolution (~500 m) CI dataset, 
Braghiere et al. (2019) showed increased GPP (5.53 PgC year−1) with 
the JULES model. Braghiere et al. (2019) explained the main reason 
for the opposite CI impacts on GPP was the greater penetration of 
light into lower layers that were light-limited and boosted photo-
synthesis. Our CLM5-based results were opposite to the Ryu's and 
Chen's results but consistent with Braghiere's results, as we have 
shown that the consideration of CI increased global GPP, mostly in 
the tropical forests. While it is challenging to reproduce Ryu's and 
Chen's model experiments, we could discuss their differences in the 
processes related to canopy energy absorption and distribution, as 
these are the first order and most direct impacts of CI.

Vegetation clumping firstly impacts global photosynthesis 
through adjusting canopy light environment which consequently al-
ters absorbed energy in sunlit and shaded canopies (Chen et al., 2012). 
Modeling analyses showed that the diffuse radiation fraction (DRF) 
of solar radiation, LAI, and CI all interactively affected the energy 
absorption and distribution in the canopy (Figure 7). When the DRF 
was high (e.g., DRF = 100%, Figure 7a) and LAI was large, the FAPAR 
of shaded canopy was generally larger than that of sunlit canopy 

F I G U R E  4  Gross primary production 
changes in sunlit and shaded canopy over 
different biome types.
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and increased faster with LAI when CI was small; at low LAI, CI-
induced changes of FAPAR in shaded canopy were limited and much 
smaller than that in sunlit canopy. At the medium level of DRF (e.g., 
DRF = 50%, Figure 7b), the impacts of CI on FAPAR in shaded canopy 
were weaker than that under high DRF conditions. When DRF was 
low (e.g., DRF = 0%, Figure 7c), CI showed limited positive impacts 
on FAPAR in shaded canopy but much stronger negative impacts on 
FAPAR in sunlit canopy. As a result, when DRF was low (Figure S5) 
and LAI is small (blue regions in Figure  5a,b), sunlit canopy domi-
nated canopy total FAPAR and thus CI decreased GPP. In contrast, 
with higher DRF (Figure 5a,b relative to that in Figure S5) and larger 

LAI (e.g., tropical forest in Figure 5a,b), CI increased FAPAR and GPP 
in shaded canopy dominated the GPP changes. Therefore, the use 
of different LAI [i.e., VEGETATION LAI product in Chen et al. (2012) 
versus different versions of MODIS LAI products in Ryu et al. (2011) 
and this study] and CI [i.e., ~6 km resolution POLDER CI in Chen 
et al. (2012) and Ryu et al. (2011) vs. ~500 m MODIS-based multiple 
CI products of this study] datasets could be an important reason for 
the inconsistencies among our study and previous studies.

Meanwhile, different diffuse versus direct radiation partition-
ing methods were applied in CLM5, BEPS (Chen et al., 2012), and 
BESS (Ryu et al., 2011). Therefore, the DRFs estimated by the three 

F I G U R E  5  CI induced changes in GPP in magnitude (a) and percentage (b). The uncertainty of GPP by using different CI datasets is shown 
in (c) and its relative values to GPP interannual variations is shown in (d). (e, f) Illustrate the impacts of CI seasonal variation on GPP changes 
and their spatial pattern in relative to (c). Deeper blue (red) color represents lower (higher) GPP after accounting for clumping in  
(a, b). Deeper blue (red) color represents lower (higher) GPP when considering CI seasonal variation relative to that of using CI median in 
(e), or lower (higher) than that of GPP changes induced by across-data CI uncertainty in (f). Map lines delineate study areas and do not 
necessarily depict accepted national boundaries. CI, clumping index; GPP, gross primary production.
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models could be different, resulted in different CI impacts on FAPAR 
(Figure 7) and thus GPP. For example, according to Chen et al. (2012), 
the DRF in BEPS could be ~5%–10% lower than site observations 
and its calculation method tended to underestimate DRF for air 
masses with large aerosol contents. The DRF of CLM5 was ~9%–10% 
higher than that of BEPS (Figure S6). A higher DRF would enhance 
the positive impact of CI on shaded canopy FAPAR (Figure 7) and 
GPP (Durand et al., 2021; He et al., 2018; Yan et al., 2019).

Another reason for the inconsistency could be the model-specific 
consideration of the leaf nitrogen distribution in vegetation canopy. The 
CLM5, BEPS, and BESS all assumed that the leaf nitrogen distribution 
in sunlit and shaded canopy was determined by the sunlit–shaded leaf 
area fraction (Bonan, 2019; Chen et al., 2012; Ryu et al., 2011). CI in-
creased shaded leaf area fraction and the nitrogen allocated on shaded 
canopy, which considerably increased shaded canopy GPP (Figure 3d). 
Such impacts were likely underestimated in Ryu et al. (2011) and Chen 
et al. (2012). Ryu et al. (2011) did not consider CI impacts on nitrogen 
distribution in sunlit–shaded canopy (see Eq. 33 in Ryu et al. (2011)), 
while the mean fraction of leaf nitrogen content on shaded canopy in 

Chen et al. (2012) was underestimated (see Eq. B6 in Chen et al. (2012)) 
relative to this study (Equation  10), which could underestimate the 
positive impacts of CI on shaded and thus entire canopy GPP. In ad-
dition, other differences can also be a part of the reasons for the dif-
ferences among studies, including the forcing datasets (e.g., NCEP vs. 
GSWP3 climate datasets), model structures (e.g., different canopy ra-
diative transfer schemes) (Bonan, 2019; Braghiere et al., 2019; Chen 
et al., 2012; Goudriaan, 1977; Norman & Welles, 1983), and model pa-
rameterizations (e.g., different nitrogen extinction coefficient settings) 
(Chen et al., 2012; Lawrence et al., 2019; Ryu et al., 2011).

4.2  |  Reducing clumping induced bias in past, 
present, and future model simulations

Our results along with previous studies (Braghiere et al., 2019; Chen 
et al., 2012; Ryu et al., 2011) suggested significantly systematic bias 
in estimated GPP when ignoring CI effects. The bias also likely exists 
in other TBMs (Table S1) that assume a random distribution of leaves 

F I G U R E  6  Difference of absolute bias in gross primary production between (CLM5-CI—GOSIF) and (CLM5—GOSIF) at the global scale 
(a) and over different biome types (b). Deeper blue (red) color represents lower (higher) bias after accounting for clumping in (a). Map lines 
delineate study areas and do not necessarily depict accepted national boundaries.

F I G U R E  7  The interactive impacts of diffuse radiation fraction, CI, and LAI on the fraction of absorbed photosynthetically active 
radiation in sunlit and shaded canopy. (a–c) Are generated using the two-stream model in CLM5 but with prescribed LAI, CI, diffuse radiation 
fraction, and optical parameter values (leaf reflectance and transmittance is 0.10 and 0.05; optical depth of direct beam and diffuse radiation 
is 0.58 and 0.70; upscatter parameter for diffuse and direct radiation is 0.54 and 0.46 (Bonan, 2019). CI, clumping index; LAI, leaf area index.
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within a vegetation canopy. We found substantial differences of CI 
magnitude within each biome type (Figure 1), implying that spatially 
resolved representation of CI is needed instead of a biome-specific 
CI value setting strategy (Loew et al., 2014). Without accounting for 
the clumping effects, the systematic bias in canopy radiation trans-
fer and photosynthesis should persist through past–present–future 
TBM and ESM simulations.

During the past two decades, smaller interannual variation 
(−0.007/decade) of CI was observed (Wei et al., 2019), and the clump-
ing induced bias in photosynthesis was most pronounced in tropical 
regions with high LAI values. However, future anthropogenic warm-
ing and CO2 fertilization-induced global greening (Piao et al., 2006, 
2020) may amplify the CI effects in forests with increased leaf area 
and absorbed diffuse radiation (Figure  2c). Meanwhile, long-term 
climate change and land use land cover changes may significantly 
alter land surface characteristics at a century scale (Hoffmann 
et al.,  2021), and consequently change the spatial distributions of 
CI and its impacts on photosynthesis. Mitigating CI-induced offset 
therefore, also requires reasonable representation of CI for past and 
future climate simulations when CI observations are not available.

4.3  |  Directions for future research

This study mainly focuses on the CI impacts on photosynthesis 
through changing canopy light conditions. Beyond that, CI also af-
fects surface water and energy cycle (B. Chen et al.,  2016, 2021) 
which could in turn exert indirect and longer term effects on GPP. For 
example, including CI into the model increased solar energy reach-
ing the ground (Baldocchi & Wilson,  2001; Braghiere et al.,  2019; 
Braghiere, Quaife, et al., 2020; Law et al., 2001) and thus enhanced 
the latent heat flux for evaporation broadly (Figure S7a). The tran-
spiration latent heat flux was enhanced mainly in tropical forests 
(Figure S7b), suggesting higher stomata conductance and photosyn-
thesis in the tropical forests (Chen & Zhuang, 2014; Yuan, Zhu, Riley, 
et al., 2022). Due to increased evaporation and transpiration, we ob-
served a total global net water loss through evapotranspiration with 
the most significant loss occurred in the tropical regions (Figure S7c). 
The water-stress factor β that linearly scales GPP (a smaller β would 
result in a smaller GPP) (Braghiere, Gérard, et al., 2020; Verhoef & 
Egea, 2014) in the model generally decreased at a very small magni-
tude due to the use of CI (Figure S8). Therefore, CI increased stoma-
tal conductance and GPP but also increased water loss which may 
limit photosynthesis especially under water-limited conditions (Yuan, 
Zhu, Riley, et al., 2022). The long-term impacts of CI on GPP need 
further exploration especially considering water-limited conditions.

Similar to many other models including those in Ryu et al. (2011) 
and Chen et al. (2012), CLM5 uses a single-layer canopy assumption. 
We found that incorporation of CI enhanced solar energy absorp-
tion and nitrogen allocation and thus photosynthesis in the shaded 
canopy, while the CLM5 did not represent the within-canopy turbu-
lent variation, heat and moisture transfer, and leaf stomatal controls 
across different canopy layers like that in the CLM-ML model (Bonan 

et al.,  2021). Although the integrated FAPAR in sunlit and shaded 
canopies simulated by CLM5 and CLM-ML generally agreed well with 
each other (Figure S9), the FAPAR varied across the vertical canopy 
depth in CLM-ML (Figure S10), and the estimated GPP by CLM5 and 
CLM-ML could be different because of the nonlinear relationship be-
tween GPP and FAPAR, since the multi-layer model calculates GPP 
in each layer and then integrates them over the vertical depth rather 
than integrates FAPAR first and then calculates GPP based on the 
integrated total FAPAR. For example, the CLM-ML showed increased 
FAPAR under lower layers of sunlit–shaded canopy after including CI 
(Figure S10). CI-induced increase in FAPAR in the lower canopy lay-
ers could increase GPP as photosynthesis is most light-limited in such 
situations (Braghiere et al., 2019) while the CLM5 did not represent 
the layer varied GPP with layer varied FAPAR. To date, the multi-layer 
scheme of CLM-ML has not been coupled into the current CLM5 re-
lease yet, making it challenging to examine the global impacts if the 
multi-layer scheme is used and leaving room for future exploration. 
Novel global remotely sensed vertical canopy profile data such as the 
observations from NASA's Global Ecosystem Dynamics Investigation 
(Hancock et al., 2019) may be needed and support such efforts given 
the considerable vertical heterogeneity of CI, LAI, and biophysical 
and biogeochemical processes across different layers of canopy 
(Bonan et al., 2021; Braghiere, Gérard, et al., 2020; Fang, 2021). The 
vertical canopy structure, the strong angular variations of CI, and 
the coupling between topographic and CI effects (Hao et al., 2018, 
2022), which may also significantly affect estimates of latent/sen-
sible heat, evapotranspiration, and solar-induced chlorophyll fluo-
rescence (Braghiere et al., 2021; Li, Lombardozzi, et al., 2022; Wang 
et al., 2021), and therefore also need to be further explored.

We showed that the incorporation of CI reduced the discrep-
ancy between the modeled GPP and that of two benchmarking data-
sets. This indicates the potential importance of CI, although does 
not imply that CI necessarily improves GPP estimation because we 
could get the correct answer with wrong reasons due to the uncer-
tainty of the model itself, and the benchmarking datasets (and other 
global GPP datasets) do not necessarily represent the truth as large 
uncertainties remain especially in tropical regions (Xie et al., 2020; 
Zhang & Ye, 2022) as well. Therefore, further comprehensive valida-
tion of the benefit of incorporating CI for GPP magnitude, seasonal 
variation, long-term interannual variations, and even related causal 
structures (Li, Zhu, et al.,  2022; Runge et al.,  2019; Yuan, Zhu, Li, 
et al., 2022; Yuan, Zhu, Riley, et al., 2022; Yuan et al., 2021) is needed 
when more reliable global GPP and CI data are available at the same 
spatial scale. In addition, we found that the CI impacts on GPP var-
ied with DRF in CLM5 (Figure  S5). However, limited observations 
are available to constrain global DRF (Chakraborty et al., 2022), and 
substantial uncertainty in diffuse radiation was identified among dif-
ferent global reanalysis datasets and different directive-diffuse radi-
ation partitioning methods, especially in tropical areas (Chakraborty 
et al.,  2022; Chakraborty & Lee,  2021). The uncertainty of DRF 
needs to be narrowed and the interactions among atmospheric con-
ditions, canopy structure, and land surface biophysical and biogeo-
chemical processes need further exploration.
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5  |  CONCLUSIONS

This study explored how CI affects the canopy radiation transfer 
and photosynthesis rate at a global scale considering the uncertainty 
from multiple satellite-derived global CI datasets and the seasonal 
variations of CI. We found significant differences existed among dif-
ferent CI datasets across different biome types, and up to 9%–15% 
FAPAR of direct radiation and 23%–34% FAPAR of diffuse radiation 
in sunlit canopy was overestimated and 3%–18% FAPAR of diffuse 
radiation in shaded canopy was underestimated. CI-induced changes 
of canopy energy absorption and nitrogen distribution resulted in a 
significant overestimation of sunlit canopy GPP (5.9–7.2 PgC year−1) 
and underestimation of shaded GPP (6.9–8.2 PgC year−1) with a 
net increase in GPP by 1.0 ± 0.12 PgC year−1. The uncertainty of CI 
products induced GPP variations was larger than that of CI seasonal 
variations, and up to 50% of GPP interannual variations at tropical re-
gions, which requires further narrowing of the CI uncertainty. Most 
TBMs do not account for clumping, therefore also have the clumping 
induced bias in canopy radiation transfer and photosynthesis, and 
such bias may be amplified by future global greening with increased 
leaf area and absorbed diffuse radiation. This study highlights the 
need to reduce CI uncertainty and represent vegetation clumping in 
TBMs to reduce the systematic bias in past–present–future canopy 
radiation transfer and photosynthesis simulations.
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