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Abstract

Recent advances that allow us to collect more data on DNA sequences and metabolites have

increased our understanding of connections between the intestinal microbiota and metabolites, at a

whole-systems level. We can also now better study the effects of specific microbes on specific

metabolites. Here, we review how the microbiota determines levels of specific metabolites, how

the metabolite profile develops in infants, and prospects for assessing a person’s physiological

state based on their microbes and/or metabolites. Although data acquisition technologies have

improved, computational challenges to integrating data from multiple levels remain formidable;

developments in this area will significantly improve our ability to interpret current and future

datasets.

Introduction

Rapid advances in sequencing technologies over the past decade have allowed researchers

worldwide to assess how the intestinal microbiome affects human health1. Humans develop

symbiotic relationships with microbes at a young age2. Factors such as the environment3,

proximity to other humans and animals4, diet5, 6, genetics7, and temporal variation8 affect

the assemblage of microbes on our skin, in our mouths, and in our guts9, 10. Our microbiota

has been compared to a previously unknown organ in terms of its effects; it has extensive
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metabolic capabilities, and carries ~150-fold more genes than the human genome. Microbes

provide the host with a range of otherwise inaccessible metabolic capabilities11.

Unlike the human genome, the microbiome is relatively plastic. It can be rapidly altered

through factors such as diet6, drugs, probiotics, and microbially produced metabolites.

Deliberate alterations in the microbiota and/or microbiome can therefore affect health. The

intestinal microbiota is viewed increasingly as an important target of pharmacologic agents

—specific microbes have been shown to deactivate or activate specific xenobiotics, which

can alter the effects of different therapeutic agents12. The systems-level effects of the entire

microbial community on the whole metabolite repertoire are just beginning to be

understood.

Metabolomics and metabolite profiling analyses have been widely used to identify disease

biomarkers. For example, quantification of triglycerides, glucose, and cholesterol in the

blood can be used to determine the risk of heart disease. Similarly, the first microbiome

studies sought to identify taxa that correlated with disease, physiological state, drug use, or

dietary intake. However, not all exposures can alter the composition of the microbial

community or its gene content; some can affect gene expression13, 14.

Humanized mice (created by transplanting human fecal microbiota into the mouse gut) have

metabolomes distinct from those of conventionally raised mice15. This observation indicates

that different gut microbes can produce changes in metabolites throughout their host. This

shift in focus from determining “who is there” toward understanding “what are they doing”

drives current studies of the human microbiota. Metabolomic studies will allow us to move

from observing patterns to understanding mechanisms.

Metabolomic analyses also help researchers to understand the effects of rare taxa, and taxa

with genomic variations that affect function. Organisms are considered to be of the same

species if they have greater than 97% identity in the 16S rRNA gene. However, genomes

from the same species can have large differences in DNA sequences outside the 16S rRNA

gene. Importantly, they often have different sets of gene clusters that regulate production of

specialized metabolites (e.g. antibiotics, virulence factors, siderophores, etc.) and the

composition of the microbial communities, as well as encode many antibiotic resistance

genes16. Rasko et al. determined that among 17 Escherichia coli isolates, the average

genome size of a single isolate was 5020 nucleotides (nt), although the pan-genome was

~13,000 nt17. Furthermore, rare taxa might have a large effect on the overall community

metabolome if they have important metabolic activities, perhaps acting as keystone species.

Although definitions of what constitutes a core microbiome in terms of membership is

elusive, there does seem to be at least a core functional profile for the gut microbiota.10

Identifying biologically important variations against this core remains a challenge.

Metabolomic analyses provide a partial picture of metabolism rather than the potential for

metabolism, and the expression of this core set of functions can change with alterations in

available substrates, such as xenobiotics, even if the microbial species membership and

abundance remain constant13. We review the intimate connections among animal hosts, their

microbiota, and the metabolites produced by either one.
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Different microbial communities metabolize xenobiotic agents and dietary components in

different ways to produce variable effects on many tissues in the host, including the brain18

(Figure 1). We discuss general metabolomic technologies and their implementation for study

of human health, assess cases in which changes in gut microbiota alter host metabolic

profiles, examine the ways in which gut microbiota process xenobiotics and nutritional

inputs, and examine the analytical limitations of associating microbial abundances with

metabolic profiles.

Metabolomics in Assessment of Metabolic Status

Metabolomic studies analyze complex systems, including the repertoire of small-molecule

metabolites in the gut, using high-throughput analytical methods. Mass spectrometry and

nuclear magnetic resonance spectroscopy allow robust and sensitive identification of

metabolites produced by microbes and host cells, in samples such as feces, urine, and tissue

(see comprehensive reviews in 19, 20). These tools allow researchers to determine the effects

that treatments or perturbations have on the host’s metabolic profile, by analyzing the

presence and quantity of thousands of metabolites simultaneously. Although it is a challenge

to assign spectral features, spectral networking platforms,21, 22 aided by open-source

metabolome databases such as HMDB23, METLIN24, LIPIDS MAPS25, MassBank26, and

NIST,27 allow for faster identification and annotation of known and unknown metabolites28.

By comparing pre- and post-perturbation metabolomic profiles using multivariate statistics,

metabolites that are significantly affected by experimental variables can be identified and

placed into the larger context of how the host was affected overall.

Effects of the Microbiome on the Metabolome

Metabolomic analyses allow for the metabolism of the gut microbiota to be directly

compared with metabolic outcomes in the host. Wikoff et al.29 directly tested the effect of

gut microbiota on the host by comparing the plasma metabolomic profile, obtained via

untargeted mass spectrometry, between germ-free and conventionally raised mice. They

found that concentrations of more than 10% of all metabolites detected in the plasma

differed by at least 50% between mice with and without gut microbes. Furthermore, many

metabolites were detected only in serum from conventionally raised mice (not germ-free

mice). For example, serum levels of tryptophan decreased 40% in serum from conventional

mice compared to germ-free mice—likely due to the presence of bacteria that produce

tryptophanases29.

Another detailed study evaluated the systemic effects of probiotics, prebiotics, and their

combination (termed ‘synbiotics’) in initially germ-free mice colonized with a combination

of microbes representing those found in a human infant (Bacteroides distasonis, Clostridium

perfringens, Escherichia coli, Bifidobacterium breve, Bifidobacterium longum,

Staphylococcus aureus, and Staphylococcus epidermidis)30. Dietary supplementation with

the probiotic Lactobacillus rhamnosus NCC4007 and the prebiotic galactosyl-

oligosaccharides significantly altered the relative proportions of the 7-member community,

and led to systemic changes in the metabolic profiles of different tissues from the mice. For

example, a prebiotic increased proportions of B breve, B longum, and B distasonis;
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decreased proportions of E coli and C perfringens; and altered lipid metabolism by reducing

plasma levels of glucose and hepatic levels of triglycerides. Probiotics also had systemic

effects, lowering plasma levels of lipoprotein, hepatic levels of glutamine, and glycogen

levels. Overall, prebiotics significantly altered the metabolome in the plasma, urine, feces,

liver, pancreas, renal cortex, renal medulla, and adrenal glands; probiotics produced

differences in all these compartments except the pancreas.

Interestingly, another study that evaluated the effects of probiotics and prebiotics in adults

found that neither significantly affected proportions of microbes in fecal samples, but RNA

sequencing data showed altered expression of microbial genes that control carbohydrate

metabolism14. It is possible that the relatively simpler communities that reside in infants are

more susceptible to probiotic and prebiotic manipulation than the more diverse and complex

communities found in adults. Prebiotics and probiotics might therefore have the largest

effects when administered early in life. However, this hypothesis requires testing in animal

models.

The dietary components that escape digestion in the upper gastrointestinal tract provide most

of the substrates for the intestinal microbiota. Fermentation of carbohydrates by the

intestinal microbiota leads to the production of short-chain fatty acids (SCFA) such as

butyrate, propionate, and acetate. Studies have shown that patients with inflammatory bowel

diseases such as ulcerative colitis have fewer butyrate producing bacteria (e.g., Roseburia

hominis and Faecalibacterium prausnitzii) in their intestine, resulting in lower levels of

butyrate31, 32. In addition to butyrate, propionate can potentiate de novo generation of T-

regulatory cells in the peripheral immune system. Modulation of butyrate- and propionate-

producing microbes might therefore be used to treat inflammatory bowel diseases such as

ulcerative colitis. However, the anti-inflammatory mechanisms of butyrate and other SCFA

remain poorly defined.

Predictive Microbial Metagenomes

Metagenomic information can been used to determine how metabolism is affected by

different disease states. Studies of obesity have shown that individuals with increased

adiposity have lower microbial diversity than lean individuals 33, 34. The more-diverse

microbiota of lean individuals contains significantly higher proportions of microbes

correlated with anti-inflammatory responses, such as Faecalibacterium prausnitzii. The less-

diverse microbiota of obese individuals contains higher proportions of Bacteroides sp. and

Ruminococcus gnavus, each of which could have inflammatory effects33. Gene content

analysis of these groups revealed the less-diverse microbiota appeared to produce lower

levels of butyrate, have increased potential for production of hydrogen sulfide, and have

reduced capability for management of oxidative stress. One poorly understood aspect of the

microbiome, and its potential to produce a variety of metabolites, is whether microbial

diversity itself has protective effects for the host, or whether low diversity is a side effect of

specific disorders (rather than a cause)35. This relationship can best be resolved in humans

by prospective longitudinal studies.
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Although it would be ideal to obtain metabolomic and metagenomic data for every sample

for which a 16S amplicon profile has been collected, these techniques are currently far more

expensive than 16S amplicon profiling. Fully matched datasets are therefore prohibitively

expensive and time consuming to produce. However, recent advances in software, including

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

(PICRUSt)36, that exploit the strong association between phylogeny and function now allow

researchers to estimate the metabolomic functional profile of a community using 16S

amplicon sequences. Briefly, PICRUST takes a phylogenetic tree where the gene profile of a

subset of nodes is known, and then uses ancestral-state reconstruction to estimate the

functional gene content for other uncharacterized nodes. PICRUSt was able to make strong

predictions (average Spearman r = 0.82) for inferred metagenomes from 16S marker genes,

compared against fully sequenced metagenomes obtained from the Human Microbiome

Project.

Another powerful computational tool is Predicted Relative Metabolic Turnover (PRMT),

which uses gene number to predict the relative consumption and production of metabolites

in a system; it can be used for modeling and hypothesis generation37. Tools such as

PICRUSt and PRMT could be cost-effective methods to determine whether additional

resources should be used for more comprehensive metabolic profiling and metagenomic

sequencing. However, findings must be validated with matched datasets, to assess the limits

of their performance.

Metabolomic Profiles of Infants

Changes to the microbiome and immune system during infancy may have lasting effects,

such as in contributing to the development of allergies14, 38, 39. Distinct changes in the

microbiota occur during the first 2 years of life, and correlate with changes in environment,

diet—these can be tracked by studying changes in infants’ fecal metabolomes. A study that

followed infants at risk for celiac disease showed that the metabolomes of infants less than 6

months old were dominated by sugars, including lactose and glucose. However, after 6

months, their metabolomes shifted, increasing concentrations of amino acids and SCFA.

Principal coordinates analysis showed that the metabolome of infants at 2 years of age

resembles more closely that of adults, due to increased levels of acetate and butyrate40.

These findings are supported by 16S amplicon studies showing that the infant microbiota

comes to resemble that of adults from the same community at 2 years of age 41. It is also

apparent that the intestinal microbiota of infants is specifically adapted to metabolize the

infant’s earliest nutrient source, breast milk. Specific Bifidobacterium species have genomes

enriched in genes that regulate processing of human milk-derived oligosaccharides. These

might have a competitive advantage that places them among the first colonizers of the

human intestine42.

Xenobiotic Metabolism

In addition to diet-derived macronutrients, the microbes residing in the gastrointestinal tract

may be exposed to a variety of xenobiotic compounds (antibiotics, other drugs, and diet-

derived bioactive compounds). Because the gut microbiome encodes so many enzymes with
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different activities, it is not surprising that many of xenobiotic compounds are often

metabolized by the gut microbiota. It has been at least 40 years since we began to appreciate

the contribution of microbes to xenobiotic metabolism43–45. However, we are only

beginning to uncover the mechanisms of this process. Adding to the complexity of these

interactions, xenobiotics can also modulate the expression and activity of the gut

microbiome13. Metabolites of microbial origin may interfere with host metabolism of

xenobiotics, and diet-derived nutrients can regulate microbial metabolism of xenobiotics.

One of the first studies to provide detailed evidence for the interaction between the gut

microbiota and metabolism of xenobiotics came from Clayton et al. in 200946. Their study

leveraged a powerful metabolomic analysis pipeline to correlate the presence of the

microbial metabolite, p-cresol, with a reduction in the ratio of sulfonated to glucuronidated

acetaminophen. Increased p-cresol production reduces the capacity of the liver to properly

metabolize this widely used analgesic drug, presumably because p-cresol competes with

sulfotransferase 46. Subsequent studies from this group showed that metabolites of microbial

origin could modulate expression and activities of a range of host enzymes, including those

of major xenobiotic-metabolizing cytochrome enzymes47. These seminal observations are

beginning to lay the foundation for a metagenomic approach to selection of therapy based on

microbial and host metabolism.

In addition to its interactions with metabolite production, the gut microbiota can also have a

more-direct role in xenobiotic metabolism, by catalyzing a multitude of reactions that

influence the fate of these compounds. Recent reviews have summarized the many processes

by which microbes metabolize xenobiotics12, 48, 49. Although these activities are largely

catalogued, there are only a few for which the exact mechanisms are being characterized.

For example, it has been known for decades that the cardiac drug digoxin can be inactivated

by Eggerthella lenta, a common gut bacterium within the Actinobacteria50. Researchers

have recently identified a cytochrome-encoding operon that is upregulated by digoxin and

other cardiac glycosides and is unique to strains capable of inactivating digoxin. Inactivation

of digoxin was blocked by increasing dietary protein intake by mice mono-associated with E

lenta51, likely due to the inhibitory effect of arginine52.

Wallace et al. studied how the microbiota can determine the effects of the colorectal cancer

drug irinotecan. Enzymes produced by microbes have long been known to deconjugate an

irinotecan metabolite in the gut, causing inflammation, diarrhea, and anorexia. After a

successful screen for a small-molecule inhibitor of the microbial β-glucuronidase enzyme

that mediates this deconjugation, Wallace et al. showed that the side effects of irinotecan

could be greatly reduced by co-administration with this β glucuronidase inhibitor53.

Interestingly, recent studies show that the presence of the microbiota increases the efficacy

of chemotherapeutic drugs, indicating that the microbiota have previously unappreciated,

but integral roles in mediating responses to these drugs 54, 55.

Computational Challenges to Discovering Correlations

Identifying statistically meaningful patterns in metabolite contingency tables (tables

recording the abundance of each metabolite count in each sample) is straightforward in
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theory but often conducted with mathematically unfounded techniques in practice. For

instance, analysis of variance and Student t test methods are frequently used to identify

significant differences in abundances of metabolites among sample groups without

establishing that the underlying data meet the distribution requirements. Normality, equality

of variance, and homogenous population characteristics are required for proper calculations

of statistical significance (either P values or false discovery rates). Although non-parametric

tests can be substituted to deal with the non-normality of the data, these approaches still

does not resolve 2 fundamental computational challenges: extraction of biologically

significant results from the mass of statistically significant results and the fact that

multivariate biological data are typically normalized to a sum—the simplex constraints this

imposes violate the Euclidean-space models assumed by most test statistics (see below).

The most widely applied method to reduce biologically irrelevant, but statistically

significant, results is to remove features (taxa, KEGG Orthology groups, Enzyme

Commission numbers, etc.) from the contingency table prior to testing on the basis of a

metric that assigns expected biological relevance to a feature. This ‘metric’ is usually as

simple as overall table abundance (e.g. remove feature i if i is less than 1% of all

observations) or overall sample representation (e.g. remove feature i if i is in less than 20%

of samples). This filtering approach is motivated by the intuition that more widely shared

features will be more biologically important, and has the additional attraction of reducing

the severity of multiple hypothesis test correction factors. Unfortunately, although

widespread, this approach has not yet been systematically benchmarked or evaluated for

sensitivity, specificity, or even false discovery control, particularly in fields combining

microbiome and metabolomic datasets.

A complementary approach to identifying differential representation of features among

groups is to look for interactions among features via co-occurrence analysis (Figure 2).

Traditional co-occurrence detection methods including Spearman or Pearson correlation

between feature vectors are not reliable when the data are ‘compositional’ (i.e. lie in a

simplex rather than Euclidean space)56, 57. Because compositionality is a feature of much -

omics data (16S amplicon surveys are inherently compositional because normalization for

unequal sampling effort in any contingency table introduces compositionality), methods

such as ‘SparCC’ and ‘CoNet’ have been developed to capture true correlations. Although

these methods are well-founded in mathematics, have been benchmarked and validated in

only limited circumstances and their performance has not yet been characterized for

metabolomic data in general.

Conclusion

The overall diversity and plasticity of the gut microbiota, in comparison to our human

genomes, provides exciting new prospects for personalized medicine—particularly for

studies to determine the mechanisms by which microbes affect production of metabolites

from drugs and diet. Although there is much work to be done, especially in terms of

computational methods, the experimental frameworks of metabolomics and microbial

community analysis that have emerged should allow for rapid host characterization followed

by subsequent analyses of clinical potential.
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Figure 1. Interactions Among Host, Microbiota, and Metabolites
In this simplified model, the gut microbiota metabolize substrate inputs from the host

including diet and xenobiotics into metabolites that can enter the host’s bloodstream and

affect the host peripherally. For example, therapeutic drugs can be inactivated, reducing

their efficacy. Alternatively, drugs may converted to derivatives with non-target and

possibly toxic effects. Changes in these input substrates, therefore, change the reservoir of

available microbial substrates and alter the metabolomic profile of the gut, yielding variable

effects on the host. The new host phenotype can, in turn, have a feedback effect on the

microbial community.
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Figure 2. Exploring the Interactions Between Metabolomics and the Microbiome
Both metabolomics and high-throughput sequencing produce a wealth of information.

Visualizing the interactions between these highly multivariate datasets is important for

elucidating relationships. In this example tripartite network, the large blue nodes represent

samples, which are connected to red diamonds (metabolites) with red edges, and connected

to black circles (OTUs) with black lines. The closer an OTU node or a metabolite node is to

a sample node, the larger the relative abundance of that metabolite or that OTU in that

sample. Therefore, OTUs and metabolites that are close together in the network tend to be

found in the same samples (and this suggests, but does not conclusively prove, that the

metabolite may be produced by that OTU). The tripartite network also demonstrates which

metabolites and OTUs are shared by samples, and which metabolites and OTUs are unique

to a given sample. As discussed in this review, methods are being developed to help separate
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out biologically important associations from amongst many statistically significant ones.

Once identified, we can visualize how biologically important metabolites are controlled by

the interaction between host and microbiome.
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