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ABSTRACT OF THE THESIS

HPC-Enabled Optimization and Scaling of QCxMS for Accelerated Mass Spectrum
Prediction

by

Yunshu Wang

Mastser’s of Science, Graduate Program in Computer Engineering
University of California, Riverside, March 2024

Dr. Mingxun Wang, Chairperson

Mass spectrometry (MS) is a foundational element in contemporary analytical

chemistry, facilitating biomolecule identification and playing a pivotal role in deciphering

the intricacies of biological systems. Within the MS field, tandem mass spectra (MS/MS)

are vital in the process of identifying molecules in untargeted approaches. MS/MS pro-

vides the fragmentation pattern of the molecules under study, providing more information

about the molecule and enhancing the proper identification. Nevertheless, the availability

of experimental MS/MS from compounds is limited due to the lack of time, money, and/or

availability of reference standards. In those cases, the prediction of mass spectra enables

the identification of molecules that have not been experimentally analyzed before, and they

are especially important for de-novo identification. However, the current prediction meth-

ods still have limitations. QCxMS (Quantum Chemical Mass Spectrometry), the sole tool

for predicting mass spectra using dynamic molecular methods, is a promising alternative

for improving the predictions of fragmentation patterns of molecules. The current exper-

iments using QCxMS have shown limited results. QCxMS has long grappled with issues
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of time inefficiency and accuracy. This thesis introduces an innovative approach to mit-

igate these challenges by employing a Nextflow workflow to parallelize computations on

clusters. The workflow reduces the computation time and facilitates the execution of large-

scale experiments and evaluations, thus enabling the possibility of improving the precision

and recall predictions of QCxMS by tuning the setup of the simulations. Beyond efficiency

enhancements, extensive experiments were conducted to assess the predictive capabilities

of QCxMS, identifying the parameters that outperform the default settings of QCxMS.
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Chapter 1

Introduction

1.1 Metabolomics

Metabolomics, a pivotal facet of systems biology, delves into the study of small

molecules (< 1500Da) within biological systems, offering profound insights into cellular

processes, biomarker identification, and disease understanding [1], [15]. Metabolites serve as

intermediate or end products of metabolism, influenced by the action of multiple enzymes.

The metabolome undergoes constant changes, influenced by internal factors such as the

proteome and genome, as well as external factors like the environment, lifestyle, medications,

and diseases. It is regarded as the most accurate reflection of the phenotypic response,

allowing researchers to monitor subtle organismal changes [17].

Metabolomics finds applications in diverse fields, including plant biology, nutrition,

animal breeding, drug discovery, and the study of human diseases. One common application

is biomarker discovery, identifying metabolomic differences between groups in response to

specific conditions [16].
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Metabolomic experiments follow either a targeted or untargeted approach. Untar-

geted studies involve the simultaneous measurement of all metabolites in a sample, aiming

to identify and potentially discover new ones without a prior hypothesis. Targeted exper-

iments, on the other hand, are hypothesis-driven, focusing on specific predefined groups

of known metabolites related to a particular metabolic reaction. Targeted metabolomics

offers high precision and accuracy, using internal standards and controlled conditions, often

serving to validate untargeted analysis.

What sets metabolomics apart is its ability to conduct studies comparing two

groups of metabolomics without establishing a prior hypothesis. Untargeted metabolomic

analyses allow scientists to collect data to analyze global metabolic changes. As of now,

two main measurement techniques for metabolomics data acquisition are Nuclear Magnetic

Resonance (NMR) and Mass Spectrometry (MS), coupled with various separation tech-

niques such as Liquid Chromatography (LC), Capillary Electrophoresis (CE), Ion Mobility

Spectrometry (IMS), among others [1].

1.2 Mass Spectrometry

MS is a widely employed analytical technique that detects the mass-to-charge ratio

(m/z) and abundance of ions to identify and quantify molecules in simple or complex mix-

tures [14]. The advent of high-resolution mass spectrometers has significantly enhanced our

understanding of metabolites in cellular and biological pathways, catalyzing advancements

in metabolomics [12]. The process involves ionizing molecules in the gas phase, followed by

the separation and detection of ions based on their m/z [14].
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Figure 1.1: Mass Spectrometer Components

A Mass Spectrometer comprises the ion source, mass analyzer, and detector, as

shown in Figure 1.1. Samples, introduced in liquid or gas form, undergo vaporization and

ionization in the ion source, as the mass spectrometer exclusively measures charged particles.

The formed ions gain kinetic energy, moving towards the mass analyzer. Electric and/or

magnetic fields from the mass analyzer deflect individual ions’ paths based on their m/z

and propel them toward the detector. The detector records induced charge or produced

current when ions pass by or hit a surface. The mass spectrometer is linked to a computer

with specialized software for data analysis, generating a mass spectrum—a plot of intensity

vs. m/z representing the outcomes [14].

Several ionization sources, such as electron ionization (EI), electrospray ioniza-

tion (ESI), and matrix-assisted laser desorption/ionization (MALDI) exist [16]. Various

Mass Analyzers, including Time-Of-Flight (TOF), orbitraps, quadrupoles, and ion traps

are commonly used, each with its own characteristics [16].

Time-of-flight mass spectrometry (TOF-MS) utilizes a TOF mass analyzer to de-

termine an ion’s m/z based on its TOF to the detector. This method relies on the principle

that ions with the same energy will travel at different velocities based on their mass. After

ionization, an electrostatic field accelerates ions so that those with the same charge acquire
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the same kinetic energy. Consequently, the velocity of each ion, and thus the time it takes

to reach the detector through the flight tube, can be used to determine its m/z [7].

However, MS has a limitation in that it can only identify the mass of a molecule

and not its structure. This means that there can be multiple molecules with the same mass,

making it difficult to determine the exact identity of a molecule based solely on its mass.

Therefore, there is a need for an approach that can accurately identify the structure of

molecules, going beyond just their mass.

1.3 Tandem Mass Spectrometry

Tandem Mass Spectrometry (MS/MS) is a powerful analytical technique that ex-

tends the capabilities of traditional mass spectrometry [11]. As shown in Figure 1.2, MS/MS

involves the sequential use of two mass analyzers to obtain additional information about the

structure and composition of molecules [4]. The first mass analyzer selects a specific m/z

window and optionally a separation time unit window and collects all ions within those two

windows from the sample in a collision cell. Those ions are then fragmented into smaller

fragments by applying a voltage and a gas, usually dinitrogen [4]. Those fragments are then

released under the MS detector that provides the m/z and abundance tuples of the ions

coming from the collision cell, providing a more detailed understanding of the molecular

structure [4].

MS/MS is particularly valuable for identifying and characterizing small molecules,

providing insights into their fragmentation patterns and structures. When identifying

molecules with the same m/z, MS/MS can provide information about fragmentation pat-
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Figure 1.2: Tandem Mass Spectrometry

terns that aid in identification. In proteomics, MS/MS is widely used for peptide sequencing

and post-translational modification analysis. This technique enhances the specificity and

sensitivity of mass spectrometric analysis, enabling researchers to elucidate the intricate

details of molecular structures [4].

1.4 Molecular Dynamics

Molecular Dynamics (MD) is a computational technique used to simulate the move-

ments and interactions of atoms and molecules over time [10]. By solving Newton’s equa-

tions of motion, MD simulations provide insights into the dynamic behavior of biological

macromolecules, such as proteins and nucleic acids. This allows researchers to study how

these molecules evolve and interact under different conditions [10].

MD simulations are crucial for understanding the structural dynamics of biomolecules,

including their folding, unfolding, and conformational changes [10]. The simulations take
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into account forces between atoms, allowing for the observation of molecular behavior at

the atomic level [9]. This computational approach has become an integral tool in structural

biology, drug discovery, and materials science [10].

1.5 QCxMS

Current databases do not contain MS/MS fragmentation of most of the molecules

due to the time and money limitation to experimentally analyze the complete set of molecules,

especially for those molecules that have not been discovered yet [6]. One alternative to

overcome the lack of MS/MS fragmentation data in databases is the prediction of mass

spectra. Two prominent approaches have emerged to address this gap: machine learning

and QCxMS.

While machine learning techniques have demonstrated efficacy in predicting mass

spectra for compounds closely resembling those in the training set, they face limitations.

These include challenges in identifying novel peptides and the considerable effort required

to generate project-specific libraries [3]. In response, the computational modeling for elec-

tron ionization MS (QCxMS) has arisen. QCxMS is an advanced program building upon

the Quantum-Chemical Electron Ionization Mass Spectra (QCEIMS) specifically tailored

for electron ionization (EI) and collision-induced dissociation (CID) modes [8]. It utilizes

Born-Oppenheimer ab initio molecular dynamics (BO-AIMD) simulations [2] to automat-

ically compute EI mass spectra and introduces a groundbreaking CID module. In CID,

QCxMS achieves chemical activation through collisions of precursor ions with neutral gas

atoms, providing the capability to simulate controllable fragmentation rates for detailed
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structural characterization. This innovation positions QCxMS as a key tool in MS fragmen-

tation prediction, enabling the routine calculation of CID spectra based solely on molecular

structures as input, thereby advancing substance identification and chemical research. This

unique approach provides detailed insights into collision kinetics, fragmentation pathways,

and temperature-induced decomposition reactions. Notably, QCxMS is the first standalone

Molecular Dynamics (MD)-based program capable of predicting mass spectra solely based

on molecular structures [8].

However, the computational demands of QCxMS present significant challenges

due to prolonged processing times. Recognizing the necessity to address this constraint,

our research embarks on a strategic solution: we introduce a meticulously crafted Nextflow

workflow by systematically exploring methods to overcome the computational hurdles. This

innovative workflow leverages parallelization techniques, targeting the most time-consuming

processes of QCxMS, thereby substantially reducing computation times and enabling sys-

tematic experiments to tune the parameters of QCxMS. The subsequent evaluation of

QCxMS performance and the formulation of parameter tuning recommendations become

pivotal components of our research, aiming to enhance the efficiency of this promising ana-

lytical approach. This thesis shows a dedication to improving how we use QCxMS workflow

to predict mass spectrometry data. The results suggest a future where we tackle computa-

tional challenges, making accurate mass spectrometry predictions a reality.
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1.6 Goals of the Thesis

The objectives of this thesis encompass a comprehensive examination of the ex-

isting state of Quality Control by Mass Spectrometry (QCxMS). The primary aims are as

follows:

1. Evaluation of Current QCxMS Practices:

Conduct survey and an assessment to analyze the primary impediment within QCxMS,

focusing on the computational costs involved.

2. Workflow Development:

Propose and establish a robust architectural workflow tailored to facilitate systematic

and efficient analyses within the QCxMS domain. This workflow will serve as a

structured foundation for the subsequent phases of the research.

3. Evaluation of QCxMS Performance:

Use the workflow to perform systematic QCxMS analysis to find its current perfor-

mance.

4. Refinement of QCxMS Parameters:

Engage in a meticulous process of fine-tuning QCxMS parameters. This involves

optimizing the various aspects of the methodology to enhance precision, accuracy,

and overall efficacy.
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Chapter 2

Methodology

2.1 The Current Stage of QCxMS Practices

The current phase of QCxMS computation time assessment involves addressing

a significant computational challenge inherent in QCxMS, which remains relatively unex-

plored in existing research. To elucidate the extent of this challenge, our initial focus is

on quantifying the computational demands imposed by QCxMS. To achieve this, we have

systematically selected molecules spanning a range of 3 to 77 atoms. Subsequently, our

workflow is employed to compute the comprehensive calculation time required for QCxMS

predictions across these molecules.

The results show that in the context of Collision-Induced Dissociation (CID) in

QCxMS, the CPU-hours usage is modeled using a quadratic function, as depicted in Figure

2.1. The high R2 score of the fitting line (0.987) indicates a strong correlation, suggesting

that the CPU-Time growth follows a polynomial pattern.
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Figure 2.1: Original QCxMS computation time
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During our investigation into the accuracy of QCxMS, we found only one paper

that evaluates this aspect, reporting an accuracy of 0.68. However, we identified a method-

ological issue with this study. Firstly, the paper’s analysis is limited to small molecules with

fewer than 15 atoms, which may not provide a comprehensive benchmark as molecule size

increases. Furthermore, the paper fails to address the exclusion of m/z values close to the

precursor or those less than 50 Da. This omission is noteworthy as these m/z values can

significantly impact the cosine score, a key measure of similarity.

To illustrate, in Figure 2.2, we use caffeine as an example. The bottom mass

spectrum represents the simulated result, while the upper mass spectrum represents the

experimental result. As shown in Figure ??. a, the high cosine similarity observed between

these spectra is primarily due to the matching precursor m/z, leading to an artificially

inflated cosine score. However, the presence of a precursor m/z indicates that the molecule

has not undergone fragmentation and therefore lacks MS/MS (tandem mass spectrometry)

data. As mentioned earlier, the Orbitrap method cannot provide much information when

the m/z is less than 50 Da. Therefore, to ensure the best setting for all experimental

conditions, it is essential to remove m/z values less than 50 Da. Additionally, removing

m/z values greater than m/z - 17 Da. is crucial for an accurate assessment.

In this thesis, we will address this by incorporating the removal of these m/z values

in our methodology to ensure a more accurate evaluation of QCxMS results.

11



Figure 2.2: Current stage of QCxMS accuracy

2.2 QCxMS Workflow

In addressing the computational challenges posed by the time-intensive nature of

QCxMS, the project is focused on optimizing the simulation of collision molecular dynamics

(MD) for each trajectory. Traditionally, this involves employing a single core for trajectory

simulation, leading to significant time overhead due to limitations in available cores on

standard computers.

To overcome this challenge, we have developed a strategic approach leveraging a

computer cluster for expedited calculations. This entails distributing the simulation tasks

across multiple cores within a specialized computer cluster, mitigating the time constraints

associated with single-core simulations. This innovative methodology significantly enhances

the computational speed and overall efficiency of QCxMS analysis, making it more feasible

for large-scale experiments and real-time applications.
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Our meticulously designed workflow provides a user-friendly solution for MS/MS

data analysis. Users can input a file containing molecules along with the specific conditions

(parameters) they wish to apply to each molecule. The workflow parses these molecules

and initiates QCxMS simulations, taking into account their conditions. Subsequently, the

workflow invokes the respective QCxMS execution programs for each molecule to calculate

the MS/MS.

A key feature of our workflow is the automatic deployment of each QCxMS simu-

lation on a computer cluster. This strategic use of parallel processing significantly enhances

the efficiency of the simulations, making it feasible for large-scale experiments. After the

experiment, the results are consolidated into a single Mascot Generic Format (mgf) file

and a .tsv file. The MGF file contains the predicted MS peaks and intensities and the

.tsv file contains the substructures related to each MS signal predicted. Each molecule is

represented as a scan within this file, providing a well-organized and comprehensive output

for further analysis. The overall architecture of the workflow is shown in Figure 2.3 Below

we show each process of our workflow.

Molecule Preparation

On one hand, the workflow parses an input file containing molecular structures in

SMILES notation and their corresponding experimental conditions. Through a systematic

parsing mechanism, the workflow organizes these molecules into distinct folders, facilitating

subsequent processes. This transformation converts the molecular structures into .mol files,

a widely recognized format for chemical structures representing the actual elements of the

13



Figure 2.3: Workflow architecture
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molecule as a graph. On the other hand, the experimental parameters are documented in a

separate file, enabling QCxMS to recognize and utilize them as experiment conditions. The

workflow adeptly identifies the parameters shown in Table 2.1.

This process ensures that each molecule is well-prepared and associated with the

necessary experimental parameters for further analysis and experimentation.

Protonation

Protonation is a crucial step in predicting mass spectra, we have implemented two

protonation methods to enhance our prediction accuracy:

• Original Protonation Method (CREST): This method begins by identifying the

optimal protonation isomer for each molecule. We achieve this by utilizing the proto-

nation tool CREST. The results of this process are saved in .xyz files, which are text-

based files containing the three-dimensional coordinates of atoms within the molecule.

This format facilitates the representation and analysis of molecular structures that can

be recognized by the QCxMS software.

• Alternative Protonation Method using RDKit: In our quest for improved mass

spectrum prediction, we’ve developed an alternative protonation approach with the

assistance of RDKit, an open-source cheminformatics toolkit widely used in compu-

tational chemistry and molecular analysis. With RDKit, we identify all the potential

heteroatoms (N, O, S) in the molecule and assign charges to them. Subsequently,

RDKit is used to generate the structure of the protonated form, and this information

is stored in .tmol files, which are employed in subsequent processes.

15



Table 2.1: Parameters recognized by the workflow

Parameter
Name

Default
Value

Required
Type

Purpose

SMILES N/A String This is a notation used to de-
scribe the structure of a chem-
ical compound in a simple line
format.

Energy 30 Integer This parameter indicates the
collision energy or the center
of mass energy intended for
use in the experiment.

Trajectories 25 Integer This parameter controls the
number of trajectories, where
a trajectory represents the
path that ions follow as
they are accelerated, sepa-
rated based on their mass-
to-charge ratio, and detected
within the instrument.

Gas n2 String This parameter specifies the
neutral gas atom to be used,
with options including argon
(ar), neon (ne), krypton (kr),
xenon (xe), and dinitrogen
(n2).

Temperature 500 Integer This parameter sets the sim-
ulation temperature in Kelvin
(K).

Energy
type

elab String This parameter specifies the
type of energy for the exper-
iment, with options for Colli-
sion Energy (CE) and Energy
of Center of Mass (ECOM).

16



These protonation methods aim to enhance the accuracy of our mass spectrum

predictions by considering different approaches and leveraging the capabilities of specialized

tools and software like CREST and RDKit.

Preparing for Production Runs

Following the preparation of the protonated ion structure, the workflow is initiated

to generate ground state (GS) trajectories using the QCxMS software. These GS trajec-

tories, representing the initial state of the simulation, furnish fundamental information for

subsequent stages. Subsequently, a second iteration of QCxMS is executed to create indi-

vidual production run trajectories, each organized within its designated folder. As shown

in Figure 2.4, these production trajectories offer a comprehensive exploration of varied pa-

rameters or configurations, contributing to a more in-depth analysis and experimentation

of the molecular simulations. 2.3 Below we show each process of our workflow.

4. Parallelized Computation of Production Run Trajectories The methodical stor-

age of trajectory data from each production run within dedicated folders is a fundamen-

tal aspect of our computational strategy. This organizational framework streamlines the

implementation of a computer cluster for concurrent trajectory computations. Each tra-

jectory undergoes processing by an individual core, and our workflow employs QCxMS for

Born–Oppenheimer molecular dynamics (MD) simulations. As illustrated in Figure 2.5,

we employ the molecule “C12=C(C=CC(=C1)OC(F)(F)F)N=C(S2)N” to exemplify how a

cluster can enhance calculation speed. The MD simulations process contains a simulation

of hundreds of trajectories and each trajectory is calculated by a core.
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Figure 2.4: Preparation of trajectories
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Figure 2.5: Trajectories in cores
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Figure 2.6: Result aggregation

Result Aggregation and Merged Mass Spectra

After the conclusion of collision Molecular Dynamics (MD) simulations, the work-

flow smoothly transitions to result aggregation. The specific outcomes for each molecule are

consolidated within the corresponding folder. Subsequently, we compute the average of all

the predicted mass spectra for each molecule and encapsulate it in a JSON file, facilitating

organized and efficient data collection. The aggregation process is shown in Figure 2.6.
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The JSON results subsequently undergo integration into a unified MGF file, thereby

establishing a consolidated repository of mass spectra data derived from the analysis of

various molecules. To enhance user readability and comprehension of the fragmentation

process, a supplementary .tsv file is provided, documenting all fragment structures associ-

ated with identified peaks where substructures are discernible. Additionally, a JSON file is

included, detailing the original chemical SMILE, the adduct for the experiment, the charge

of the ion, the predicted mass spectrum, and substructures SMILES for each m/z that can

be matched to a substructure, offering comprehensive insights into the corresponding sub-

structures. This deliberate structuring of the workflow serves to alleviate the time-intensive

nature of QCXMS, thereby facilitating the execution of large-scale experiments and enabling

real-time data analysis.

By structuring the workflow in this manner, we have effectively addressed the time-

consuming aspect of QCXMS, enabling large-scale experiments and real-time data analysis.

The use of a computer cluster, coupled with the parallelization of tasks, has significantly

expedited the simulation of collision MD, making it a practical solution for high-throughput

MS data analysis.

2.3 Evaluation Data Set

We randomly selected a set of 20 molecules from the GNPS-SELLECKCHEM-

FDA-PART2 library, deliberately chosen to exhibit a gradation in the number of atoms.

The atom count spans from 20 to 39, with each successive molecule containing one additional

atom compared to its predecessor. For clarity and reference, we formally designate this set
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as ”set 1.” A detailed listing of these molecules and their respective atom counts is provided

in Table 2.2

Table 2.2: Set 1

Molecule Atoms

C12=C(C=CC(=C1)OC(F)(F)F)N=C(S2)N 20
C1=CC=C2C(=C1)C(C(=CC2=O)C)=O 21
C1N(C(N(C=1)C)=S)C(=O)OCC 22
C1(CC(N(N=1)C2=CC=CC=C2)=O)C 23
C1C(OC2=C(C=1)C=C3C(=C2OC)OC=C3)=O 24
C1=CC=C(C(=C1F)CN2N=NC(=C2)C(=O)N)F 25
C1=C(C=CC(=C1)[C@@H](CC(O)=O)CN)Cl 26
C1=C(C=CC(=C1)S(NC2SC(=NN=2)C)(=O)=O)N 27
C1=CC(=C(C=C1)OCC(CO)O)OC 28
C1(N(C(C2C=CC=CC1=2)=O)C3C(NC(CC3)=O)=O)=O 29
C1(=CC2=C(C(=C1)O)C(C(=CO2)C3=CC=C(C=C3)O)=O)O 30
N1(C2=C(C(CC3=C1C=CC=C3)=O)C=CC=C2)C(N)=O 31
C1=CC(=C2C(=C1)C(N(C2)C3C(NC(CC3)=O)=O)=O)N 32
C1(=CC=C2C(=C1)NC(=N2)NC(OC)=O)SCCC 33
N1(C2CC2)C3=C(NC(C4=C1N=CC=C4)=O)C(=CC=N3)C 34
C1(C(=O)C2=CC3=C(C=C2)N=C(N3)NC(=O)OC)=CC=C(C=C1)F 35
C1=C(C=C2C(=C1)N3C(CN(C2=O)C)=C(N=C3)C(=O)OCC)F 36
C(/C(=C/C1C=C(C(=C(C=1)[N+](=O)[O-])O)O)CN)(=O)N(CC)CC 37
C1=C(C=CC(=C1)C(=O)O)S(N(CCC)CCC)(=O)=O 38
C(C[C@@H](C(N[C@H](C(OC)=O)CC1=CC=CC=C1)=O)N)(O)=O 39

In our pursuit of identifying the optimal trajectory, we selected five molecules

of varying sizes from the GNPS-SELLECKCHEM-FDA-PART2 library. We call these

molecules “set 2” and they are presented in Table 2.3.

Table 2.3: Set 2

Molecule Atoms

N1=CSC=C1C2NC3=C(N=2)C=CC=C3 21
C1=CC=C(C(=C1F)CN2N=NC(=C2)C(=O)N)F 25
C1CCN(CC1)C2=CC(=[N+](C(=N2)N)[O-])N 30
C1(C(=O)C2=CC3=C(C=C2)N=C(N3)NC(=O)OC)=CC=C(C=C1)F 35
C(C[C@@H](C(N[C@H](C(OC)=O)CC1=CC=CC=C1)=O)N)(O)=O 39
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Table 2.4 shows the SMILES representation of the molecules we used to evaluate

the CPU time. We call these molecules “set 3”.

Table 2.4: Set 3

Molecule Atoms

O 3
C 5
CC 8
CCC 11
CCCC 14
CCCCC 17
CCCCCC 20
CCCCCCC 23
CCCCCCCC 26
CCCCCCCCC 29
CCCCCCCCCC 32
CCCCCCCCCCC 35
CCCCCCCCCCCC 38
CCCCCCCCCCCCC 41
C1=CC(=C(C(=C1)Cl)Cl)C(=O)N 16
C(C(C1C(=C(C(=O)O1)O)O)(O)Cl)O 20
O=C(O)C[C@H](NC(=O)c1ccc([N+](=O)[O-])c(OCc2ccc(Cl)cc2)c1)C(=O)O 44
CCCCC[C@H](O)/C=C/[C@H]1C(=O)C=C[C@@H]1C/C=C(=O)O 54
CCC(=O)n1c(=O)n(C2CCN(CCC(CN)(c3ccccc3)c3ccccc3)CC2)c2ccccc21 69
C1(=C(C=C(C(=C1)C(NCC2OCCN(C2)CC3=CC=C
(C=C3)F)=O)OCC)N)Cl.OC(CC(CC(O)=O)(C(=O)O)O)=O

75

C1(=C(C(C(=C(N1)C)C(=O)OC(C)C)C2C=C(C=CC=2)[N+](=O)[O-
])C(=O)OC3CN(C3)C(C4C=CC=CC=4)C5C=CC=CC=5)N

77

2.4 Hardware Resources

The efficiency of QCxMS is contingent upon robust computational resources and

substantial RAM allocation. The evaluation of QCxMS performance is facilitated through

the streamlined workflow outlined earlier, optimizing execution on diverse computer clus-

ters. Our experimental endeavors primarily unfolded within the following environments:
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GCP (Google Cloud Platform):

• Configuration and Resources: In total 400 nodes, each equipped with 2 of the

fastest cores, resulting in a total of 800 cores. Each node possesses a memory limit of

approximately 15.12 GB.

• Utilization: To manage power consumption effectively, we have restricted the num-

ber of nodes to 248, providing access to around 500 cores for experimentation

HPCC (High-Performance Computing Cluster):

• Configuration and Resources: A robust and stable platform provided by UCR

that is configured with a RAM limit of 8 GB per core, granting continuous access to

128 cores.

• Utilization: We can access up to a total of 128 cores on HPCC.

Own Slurm Cluster:

• Configuration and Resources: Independently designed and implemented Slurm

cluster with a total of 128 cores.

• Utilization: Typically, we leverage 100 cores from this cluster for our experiments.

In aggregate, we have access to a computational infrastructure comprising over

700 cores, each with 8 GB of RAM, enabling the execution of comprehensive experiments.

These resources are instrumental in advancing our understanding of QCxMS processes and

their performance characteristics.
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After designing, implementing and testing the platforms to run QCxMS, our goal

now is to evaluate QCxMS’s performance and identify and fine-tune parameters that can

significantly enhance the fragmentation prediction, surpassing the default configurations.

2.5 Data Processing Techniques

After determining the most time-efficient trajectory, our next objective is to iden-

tify the key parameters that significantly influence the simulation results. To achieve this,

we must compare the simulation results to the experimental data. This process necessitates

thorough data preprocessing to ensure meaningful and accurate comparisons.

In our analysis of simulation results, we implement noise reduction techniques for

both experimental and predicted data. These techniques are designed to enhance the quality

and clarity of the data we work with, ultimately leading to more precise results.

• For Experimental Results: In the context of our experimental results, we imple-

ment a denoising method, filtering out peaks with intensities less than three times

the smallest intensity in the spectrum. Additionally, we exclude peaks with mass-to-

charge ratios (m/z) greater than the precursor mass minus 17 Da and those with m/z

less than 50 Da. The decision to set the denoising threshold above 50 Da is rooted in

careful consideration of instrument limitations. This strategy aims to eliminate noise

or unreliable signals in regions where mass spectrometers, such as the Orbitrap, may

experience reduced sensitivity or operational constraints. By doing so, we ensure the

reliability and accuracy of the detected signals [9]. This meticulous process guarantees

the utilization of clean and dependable experimental data.
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• For Prediction Spectrum: Data processing for predicted spectra is more extensive.

In addition to excluding peaks with mz values exceeding the precursor mass minus 17

Da, we further eliminate peaks with mz values less than 50 Da. These data processing

steps are vital to ensure the quality and relevance of our evaluation datasets, which

are essential for achieving accurate and meaningful mass spectrum analysis.

Additionally, when processing the predicted spectra, we adjust the peaks to match

the lowest peak count (k) among all experimental conditions after noise reduction. This

ensures that we select the best parameter based on the one that maximizes the highest-

quality peaks in the spectrum, rather than merely increasing the number of peaks.

2.6 Tune-up Parameters

In real-world mass spectrometry experiments, various experimental parameters

can be subject to manipulation, encompassing factors such as Collision Energy (CE), gas

type, gas pressure, experiment temperature, chamber length, and other relevant variables

[3]. The primary objective of our investigation is to assess the predictive capabilities of

QCxMS under default parameter settings. Additionally, we aim to explore the potential for

optimization by identifying alternative parameter configurations that yield superior results

compared to the default settings. This exploration is integral to enhancing the precision

and reliability of the QCxMS predictions, ultimately contributing to the refinement of mass

spectrometry methodologies and analytical outcomes in practical applications.
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Table 2.5: Experiment Parameters

Experiment Gas Trajectories Energy

Default Ar 25*# of Atoms 40 eV
Gas Ar/N2 200 70 eV
Trajectory N2 25*#of Atoms/[20 - 500] 70 eV
Collision Energy N2 200 40/[30 - 100] eV
ECOM N2 200 (N/A)/3-7
Multiple Proteomers N2 200 * n proteomers 70 eV

Gas

In our experiments with QCxMS, we discovered that the default neutral gas used

is Ar. However, as mentioned in the previous section, in real-world experiments, N2 is

more commonly used. To investigate if using the more common gas can improve accuracy,

we conducted the first experiment where we replaced the default gas with N2. In this

experiment, we set the energy of the gas at 60 eV with 200 trajectories per molecule.

Optimal Trajectory

Optimizing trajectories is a crucial step in our quest to accelerate computation

further. It is worth noting that, prior to our experiments, the default trajectory calculation

relied on a fixed factor—multiplying the number of atoms in the ion by 25. For instance, a

molecule with just 20 atoms would simulate a substantial 500 trajectories for computation.

Our research aims to refine this approach and uncover parameters that outperform the

default settings, contributing to a more efficient and streamlined computational process.

We use the molecules in set 2 for this experiment. These molecules vary in the number

of atoms they contain, spanning from 21 to 39. This variation provides an opportunity to

explore how the size of a molecule affects its trajectory requirements. In each instance, we
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used the CREST software to predict a single proteomer. Subsequently, we employed QCxMS

to predict the mass spectra of that same proteomer. We conducted ten experiments under

consistent conditions, utilizing N2 as the neutral gas and setting the collision energy to 70

eV. The sole parameter manipulated in these experiments was the number of trajectories,

ranging from 20 to 500 trajectories. Following each experiment, we computed the pairwise

cosine score—a metric of similarity—for each of the ten runs.

Collision Energy

With the optimal trajectory and data processing method in place, our next exper-

iment is dedicated to finding the ideal CE of its profound impact on results [4]. Recognizing

that the QCxMS typically sets a default CE at 40 electron volts (eV), our aim is to deter-

mine whether we can pinpoint an optimal CE that performs effectively for all predictions.

To find the optimal CE, we predicted the mass spectra under consistent conditions, using

dinitrogen as the neutral gas and employing 200 trajectories. The sole variable we altered

was the simulation CE, which ranged from 30 eV to 100 eV, incrementing by 10 eV each

time.

ECOM

During the course of our experimentation, a noteworthy observation emerged in

the context of QCxMS. Specifically, we identified a transformation of collision energy to the

Energy of the Center of Mass (ECOM) as an initial step. However, we realized that the

allocation of collision energy to different molecular masses led to variations in ECOM. This

fluctuation in ecom raised concerns regarding its potential impact on prediction accuracy.
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To address this concern, we embarked on a systematic investigation to determine whether

maintaining a consistent ECOM energy level could yield improved accuracy. In conducting

this investigation, a meticulous approach was applied to select five distinct energy levels

within the ECOM spectrum, ranging from 3 to 7 with incremental steps of 1. The experi-

mental parameters maintained a consistent framework, incorporating elements such as the

utilization of dinitrogen gas and 200 trajectories.

Multiple Proteomers

In practice, the protonation of a molecule is not a unique process. [2] A single

molecule may exhibit multiple protonation sites, leading to various proteomers following

protonation. However, the default approach employed by the QCxMS method utilizes

Crest software to identify the most probable proteomer, thereby imposing constraints on

the predictability of the outcomes. Exploring the potential improvement in predictions by

considering a broader range of possible proteomers becomes crucial. We systematically pro-

tonate the molecule considering all possible proteomers by introducing H+ ions in Atoms N,

O, and S. This expands the proteomic landscape, and noteworthy, each proteomer requires

an equivalent computation time for analysis.
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Chapter 3

Results and Discussion

In this section, we present the experiment outcomes and engage in a comprehensive

discussion of the discerned findings.

3.1 Gas Comparison

The experimental results comparing the use of dinitrogen and argon are depicted

in Figure 3.1. The findings indicate that the use of dinitrogen yields results similar to

those of the simulation. Given that dinitrogen is more commonly utilized in real-world

experiments, we have chosen to set dinitrogen as the default gas for further analysis.

3.2 Optimal Trajectories

To visually present the results of the optimal number of trajectories, we utilized the

molecules in set 1 to plot a line graph depicting the median cosine score with the increasing
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Figure 3.1: Result aggregation
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Figure 3.2: Reproducibility

number of trajectories. This analytical approach offers valuable insights into the influence

of trajectories on reproducibility.

Figure 3.2 represents the reproducibility of mass spectra predictions. When there

are only 20 trajectories, the result shows a median cosine score for 3 molecules that fall

below 0.5. This score is considered low in the context of mass spectrum analysis [15].

As we increase trajectories from 20 to 500, we observe a rapid improvement in the cosine

similarity between all pair-wised molecules. By the time we reach a trajectory count of 100,

all of the molecules achieve a similarity score exceeding 80%, and when the trajectory count

reaches 200, all five molecules exhibit a median cosine similarity above 0.9. This indicates

a high degree of similarity and consistency in the predictions [15]. Based on this finding,
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we decided to use 200 trajectories for the remaining experiments, as they provide stable

predictions for the molecules.

3.3 Computation Time Result

We compare the computation time between the QCxMS’s default parameter and

our proposed parameters in Figure 3.3. As mentioned above, our analysis indicates that the

current computational time of QCxMS adheres to a cubic function or a quadratic function.

This noteworthy observation serves as a foundation for our ongoing efforts to enhance the

efficiency of QCxMS predictions. Notably, through our investigation of 200 trajectories,

we have identified a point of convergence in QCxMS predictions. This pivotal finding

motivates our continued exploration, as illustrated in Figure 3.3, where we present the

CPU hours associated with the utilization of 200 trajectories, demonstrating a quadratic

growth pattern. This strategic approach underscores our commitment to comprehending

existing computational patterns and implementing targeted enhancements, ensuring a more

streamlined and effective QCxMS.

3.4 Tune-up Parameters

3.4.1 Collision Energy

To evaluate the spectra predictions, we conducted a comparative analysis between

the predicted spectra and the experimentally obtained spectra, utilizing cosine scores as the

basis for comparison. The results were visualized in a heat map, illustrated in Figure 3.4.
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Figure 3.3: CPU hours comparison
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Figure 3.4: Cosine similarity of CE test

This heat map provides a comprehensive view of how varying Collision Energy (CE) values

influence the accuracy of our predictions, enabling us to pinpoint an optimal CE setting

that ensures reliable results across all molecules.

Upon reviewing the results, we observed a significant issue with the cosine simi-

larity scores. There is not an absolute ”best” score, and most of the cosine scores fall below

0.7, some even registering as completely white. This prompted us to investigate the factors

contributing to this low similarity [15].
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Figure 3.5: Raw EI

We sought to understand whether the issue arose from QCxMS’s ability to predict

the correct mz (mass-to-charge ratio), or if it was primarily due to poor intensity predic-

tion. To address this question, we used a new metric called ”Explained Intensity” (EI).

We calculated EI by summarizing the intensities of the peaks in the experimental data that

were successfully predicted by QCxMS and then dividing this sum by the total intensities

in the experimental data. This metric serves as an additional means to assess the accuracy

of the simulation results by the ability to predict high-intensity peaks.
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Figure 3.6: Number of peaks

The analysis of CE testing reveals a direct correlation between the increase in CE

and the corresponding elevation in EI results. Specifically, the median EI value surpasses

60% across a set of 20 molecules when the CE attains 100 eV as shown in Figure 3.5.

Subsequently, a detailed inquiry focuses on the number of peaks predicted by QCxMS,

revealing an augmentation that correlates with the increased CE, as illustrated in Figure

3.6.

To discern whether the observed increase in EI is attributable to an enhancement

in prediction quality or simply a consequence of a greater number of predicted peaks, a
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further analysis is conducted. In this investigation, we introduce the concept of a minimum

peak threshold, denoted as k, which represents the minimum number of peaks among all

energies for all molecules. Subsequently, we select the top k peaks for instances where the

predicted peaks exceed this threshold. This approach allows us to evaluate the increase in

EI concerning the quality of predictions, thus providing a more nuanced understanding of

the interplay between CE adjustments and the predictive capabilities of QCxMS.

In the pursuit of establishing the optimal minimum peak threshold (k), an ex-

tensive preprocessing procedure was executed employing the aforementioned techniques.

Subsequent analysis revealed that, under a CE of 30 eV, 11 out of the 20 molecules con-

sidered exhibited an absence of informative peaks. This number reduced to 7 out of 20

molecules under a CE of 40 eV, where these molecules demonstrated a complete absence

of informative peaks. Upon increasing the CE to 50 eV, a noteworthy shift occurred, with

all molecules manifesting a minimum of 14 informative peaks. This observation led to

the inference that the simulation energy should be selected from energies exceeding the

50 eV threshold, ensuring the availability of informative peaks across all molecules under

investigation.

Our investigation revealed a consistent trend across all molecules, indicating that

a higher collision energy (CE) consistently results in a greater number of predicted peaks.

As a result of this observation, we have opted to select the number of peaks (k) based

on simulations conducted at a collision energy of 50 eV for all molecules in our study.

This decision ensures a uniform and standardized criterion for peak selection, facilitating a

comprehensive and comparative analysis across the dataset.
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Figure 3.7: EI result after aligning to k peaks

Following the peaks alignment process utilizing an identical number of peaks, the

EI results exhibit a more discernible and clarified outcome, as illustrated in Figure 3.7 The

result shows there is no significant best collision energy.

We further compare the prediction result with a Compound Annotation Soft-

ware(CAS) that can predict all the possible substructures by a given molecule’s SMILE.

We show the result of the CAS by breaking different bonds in Figure 3.8.
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Figure 3.8: EI of CAS breaking bonds (before alignment)
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However, the outcomes of the CAS and QCxMS currently exhibit disparities in

the predicted peaks. Consequently, a direct assertion regarding the superior performance

of QCxMS cannot be made. To establish a meaningful comparison between the predictions

of QCxMS and CAS, a peak alignment technique is employed, which ensures both methods

yield an equivalent number of predicted peaks. For each molecule under consideration,

the smaller number of peaks (k’) between the two methods is selected. Subsequently, the

top k’ peaks in the QCxMS prediction are chosen based on intensities, while for CAS, k’

peaks are randomly selected, as CAS lacks intensity information. This method ensures a

fair and standardized comparison, allowing for a comprehensive evaluation of the predictive

capabilities of QCxMS and CAS in metabolite identification.

Figures 3.9 and 3.10 depict the EI result of QCxMS and CAS. The findings indicate

that QCxMS can predict EI similar to CAS when the Collision Energy (CE) exceeds 50

eV. However, since CAS is chosen randomly, our analysis reveals that QCxMS does not

significantly outperform random selection in terms of overall simulation quality.

3.4.2 Intensities Analysis

To gain deeper insights into predictive quality, we conducted a comprehensive

analysis by segmenting the data based on the intensities of the predicted spectra, resulting

in the creation of five groups with an equal number of peaks in each group. This division

was instrumental in our efforts to evaluate whether the higher intensities of the predicted

spectrum are more likely to be the highest intensity peaks in the experimental spectrum.

41



Figure 3.9: EI of QCxMS with k’ peaks
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Figure 3.10: EI of CAS breaking bonds (Aligned to k’ Peaks)
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Figure 3.11: Intensities analysis with m = 5

Our initial procedure involves ranking the intensities of the predicted spectrum.

Subsequently, we distributed an equal number of peaks among each group. The first group is

allocated the highest ”m” peaks, followed by an increment of ”m” peaks for each subsequent

group. This ensures a systematic arrangement with the highest peaks assigned to the initial

group and a gradual decrease towards the final group. If a molecule does not have 5m peaks,

we simply discard the molecule. With this approach, each group is methodically saved as an

individual mgf file, facilitating a comprehensive comparison with the experimental spectrum.

When m = 5, the outcomes and insights derived from the group analysis are

presented in Figure 3.11. As mentioned above, when CE is less than 40 eV, the resulting

spectrum is not informative. Therefore, we removed the energies that are less than 40 V.
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Figure 3.12:

EI result of Ecom test without filtering

In Figure 3.11, the initial group exhibits a superior EI compared to the subsequent

groups, indicating that higher intensity in the predicted MSMS spectra corresponds to

higher EI. Moreover, no significant differences were observed in the energy range from 50

eV to 80 eV, suggesting a consistent trend in EI across this range.

3.4.3 ECOM

The comprehensive outcomes of this experiment, presented in Figure 3.12, offer

valuable insights into the EI trends corresponding to the increasing number of peaks with

ascending ECOM values.

When assessing the effectiveness of EI with ECOM as the energy type, we employed

peak alignment to ensure that the number of peaks corresponded to the same peaks obtained

with CE. This process ensured a standardized dataset for comparison. The aligned results,
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Figure 3.13: EI result of ECOM vs.CE after peaks alignment k’ peaks

as illustrated in Figure 3.13, were subsequently compared with those obtained using CE

as the energy type. The comparison indicated no significant differences between the two

approaches.

In examining the intensities analysis results, as depicted in Figure 3.14, the con-

sistent trend reveals that the first group consistently exhibits superior EI compared to the

other groups when the ECOM is equal to 3 and 4. Despite the absence of improvement

in the results with using ECOM as the energy type, this reaffirms our earlier observation

regarding the enhanced EI information in the first intensity group compared to the results

of the other groups.

3.4.4 Multiple Proteomers

Based on the CE test results, it was observed that the range between 50 eV and

100 eV does not exhibit a significant variance in EI prediction accuracy. To further explore
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Figure 3.14: Intensities analysis of using ECOM

this finding, we opted for 70 eV as the testing energy while introducing the concept of

employing multiple likely proteomers under constant conditions, with the exception being

the protonation technique. Following the experimental phase, the mass spectra of the

individual proteomers for a given molecule were amalgamated into a unified mass spectrum.

The merging process entailed combining identical m/z values, aggregating their intensities,

and subsequently dividing the total intensity by the number of potential proteomers. For

peaks with sole existence, a straightforward addition of the peak intensity divided by the

number of possible peaks was performed.

We then limit the number of peaks for each molecule to the same peak number k”

as in the Collision Energy test. As the result shown in Figure 3.15, we observed that there

is no significant improvement in EI with using multiple proteomers.
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Figure 3.15: EI result of multiple proteomers after alignment of k” peaks.
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Figure 3.16: Overall CPU Hours improvement

3.5 Overall Improvement

Having finalized our parameter tuning, we proceeded to compare the overall per-

formance of our tuned parameters with the default settings. When using set1, the CPU

cost with the default setting was 8901 CPU hours, whereas the CPU cost with the proposed

parameters was 2373 CPU hours, representing a 73% reduction in CPU cost, as illustrated

in Figure 3.16.
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Figure 3.17: Overall CPU accuracy improvement

Additionally, as depicted in Figure 3.17, the simulation accuracy improvement

is evident, with the median EI score of the top 5 intensities of the Simulated Spectrum

increasing from 4.6 to 11.6, reflecting a 152% improvement. .
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Chapter 4

Conclusions

The biggest contribution of this thesis is that we designed and implemented a

workflow that could reduce the computation time of QCxMS. Utilizing the workflow de-

signed for accelerating QCxMS, we have achieved a noteworthy reduction in mass spectrum

analysis duration—from days to hours. Capitalizing on this computational efficiency, we

conducted comprehensive experiments to assess the performance of QCxMS, identifying

parameters that outperform the original defaults.

In our initial attempt to address the substantial computation time cost, we con-

ducted an analysis of the reproducibility of QCxMS. Our findings indicate that selecting

a trajectory count of 200 yields highly consistent results. Further escalation of the tra-

jectory count would impose a considerable demand on computational resources without

proportionate additional benefits. Consequently, we have chosen a trajectory count of 200

as it represents a balance between computational efficiency and prediction accuracy. For a

molecule with 54 atoms, we found the default setting of QCxMS would use 864 CPU hours,
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which would use at least 3.5 days on a computer with 8 CPU cores. But by running the

workflow with 200 trajectories, this molecule would only take 131 CPU hours and should

take 16 - 24 hours to finish the entire calculation process. Furthermore, if a cluster is used

for the simulation, the actual execution time can be reduced according to the number of

cores used.

Upon thorough evaluation, we assert that while QCxMS may not excel in accu-

rately predicting mass spectra due to a low cosine score in comparison to the actual exper-

imental spectrum, it exhibits a commendable capability in predicting the highest intensity

peaks. Notably, the accuracy of QCxMS’s predictions surpasses that of CAS, underscoring

that the results generated by QCxMS are not arbitrary.

Our observations also indicate that the intensities of the predicted spectrum by

QCxMS can serve as reliable indicators of m/z predictions. Notably, the top five intensities

demonstrate a higher EI, adding a valuable dimension to the assessment of the reliability

of the predictions.

To enhance prediction accuracy, we propose the use of dinitrogen as the gas and

recommend elevating the CE to the range of 50 eV to 100 eV. While we explored the

utilization of ECOM as the energy type and tried using multiple possible proteomers to

improve prediction accuracy, our findings indicated no significant enhancement through

this approach.

52



Chapter 5

Future Directions

We have successfully built a QCxMS image that installs QCxMS from the source

code, which fundamentally enables the modification of QCxMS. This opens a door to mod-

ifying the source code of QCxMS and solving the computation cost in a fundamental way.
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metabolomics: state of the art in 2015. Frontiers in bioengineering and biotechnology,
3:23, 2015.

[2] Robert N Barnett and Uzi Landman. Born-oppenheimer molecular-dynamics simu-
lations of finite systems: Structure and dynamics of (h 2 o) 2. Physical review B,
48(4):2081, 1993.

[3] Jürgen Cox. Prediction of peptide mass spectral libraries with machine learning. Nature
Biotechnology, 41(1):33–43, 2023.

[4] Bruno Domon and Ruedi Aebersold. Mass spectrometry and protein analysis. science,
312(5771):212–217, 2006.

[5] GA Nagana Gowda and Danijel Djukovic. Overview of mass spectrometry-based
metabolomics: opportunities and challenges. Mass Spectrometry in Metabolomics:
Methods and Protocols, pages 3–12, 2014.

[6] Jian Guo, Huaxu Yu, Shipei Xing, and Tao Huan. Addressing big data challenges in
mass spectrometry-based metabolomics. Chemical Communications, 58(72):9979–9990,
2022.

[7] George Kaklamanos, Eugenio Aprea, and Georgios Theodoridis. Mass spectrometry:
principles and instrumentation. In Chemical analysis of food, pages 525–552. Elsevier,
2020.

[8] Jeroen Koopman and Stefan Grimme. From qceims to qcxms: A tool to routinely
calculate cid mass spectra using molecular dynamics. Journal of the American Society
for Mass Spectrometry, 32(7):1735–1751, 2021.

[9] Libretexts. 6.4: Mass analyzer orbitrap, November 2022.

[10] Raimund Mannhold, Hugo Kubinyi, and Hendrik Timmerman. Molecular Modeling:
Basic Principles and Applications. John Wiley & Sons, 2008.

54



[11] Anca-Narcisa Neagu, Madhuri Jayathirtha, Emma Baxter, Mary Donnelly,
Brindusa Alina Petre, and Costel C Darie. Applications of tandem mass spectrom-
etry (ms/ms) in protein analysis for biomedical research. Molecules, 27(8):2411, 2022.

[12] Farhana R Pinu, David J Beale, Amy M Paten, Konstantinos Kouremenos, Sanjay
Swarup, Horst J Schirra, and David Wishart. Systems biology and multi-omics inte-
gration: viewpoints from the metabolomics research community. Metabolites, 9(4):76,
2019.

[13] PPREMIER Biosoft. Mass spectrometry: Introduction, principle of mass
spectrometry, components of mass spectrometer, applications. Retrieved
June 24, 2021, from http://www.premierbiosoft.com/technotes/mass −
spectrometry.html, n.d.Premierbiosoft.comwebsite.

[14] Thermo Fisher Scientific. Overview of mass spectrometry for metabolomics.
Retrieved from https://www.thermofisher.com/es/es/home/industrial/mass-
spectrometry/mass-spectrometry-learning-center/mass-spectrometry-
applications-area/metabolomics-mass-spectrometry/overview-mass-spectrometry-
metabolomics.html. Accessed: Insert date accessed.

[15] Daniel GC Treen, Mingxun Wang, Shipei Xing, Katherine B Louie, Tao Huan, Pieter C
Dorrestein, Trent R Northen, and Benjamin P Bowen. Simile enables alignment of
tandem mass spectra with statistical significance. Nature Communications, 13(1):2510,
2022.

[16] Waters. What is ms and how does it work? Retrieved June 24, 2021, from
https://www.waters.com/waters/enCA/What− is−MS − and−How − does− it−
WorkWaters.comwebsite.

[17] Jun Feng Xiao, Bin Zhou, and Habtom W Ressom. Metabolite identification and
quantitation in lc-ms/ms-based metabolomics. TrAC Trends in Analytical Chemistry,
32:1–14, 2012.

[18] Naythan Yeo, Dillon Tay, and Shi Jun Ang. Benchmarking tandem mass spectra of
small natural product molecules via ab initio molecular dynamics. 2023.

55




