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ABSTRACT OF THE THESIS 

Abstract 

Diffraction Gratings in Ray Tracing 

 

by 

 

Andre James Watson 

 

Master of Science in Computer Science 

 

University of California, San Diego, 2009 

 

Professor Henrik Jensen, Chair 

 

Diffraction has been relatively untapped so far in the rendering environment.  

By making some tweaks to an existing renderer, specifically its light handling ability, 

an effective diffraction grating can be simulated and used.  Previous approaches to the 

problem have been computational heavy or produced unrealistic results, and all of 

them were focused solely on simulating optical disks.  This approach creates a usable 

ray tracing component that allows for general diffraction, which can be applied in 

numerous ways, including optical media.   
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Introduction 

 

Computer generated images have started to approach a level where they are 

almost indistinguishable from real photos.  This has led to their use in both movies and 

video games, sometimes with the observer not even realizing they are looking at a 

produced image rather than a recording of reality.  This trend towards realism 

continues and has always been desired in the arena of graphics research.  It has come 

such a far way that some of the finer details of a rendered scene are being looked at.  

One of these details is diffraction.   

While there are not a great number of naturally occurring examples of 

diffraction, the effect is nonetheless something that does appear.  Most notable, the 

data side of a CD or DVD is an example of diffraction and something that almost 

everyone encounters on a daily basis.   

So far, only a few attempts have been made at trying to reproduce diffraction 

in any sort of graphical environment.  As presented later, these attempts all contain 

certain drawbacks.  Either they are too computationally intensive for practical use, 

they do not look very realistic in the end, or they rely too heavily on one specific 

environment for their use.  One common drawback to all the previous work is that it is 

all focused specifically on reproducing a CD or DVD.  There is no attempt as simply 

doing general diffraction as any physics student would see in their introductory 

classes. 
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I propose that diffraction can be done using basic methods of ray tracing, and 

done without a huge computational overhead.  By applying this kind of methodology, 

diffraction could be easily loaded into almost any renderer, and be used for surfaces 

other than optical disks. 
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Background Theory 

 

The research paper for light diffraction was originally published in 1665 from 

the work of Francesco Maria Grimaldi.  In 1803, Thomas Young conducted 

experiments and found that the only way he could explain his results was to interpret 

light as having wavelike properties.  A few years later, Augustin-Jean Fresnel also 

conducted diffraction research and further argued towards the wave theory of light.  

This wave theory of light has long since been considered fact among the physics 

community and is the main reason for the observable diffraction effect. 

Diffraction is caused when light is incident upon a very small opening whose 

width is smaller than the wavelength of the given light.  This opening is usually 

referred to as a “slit”.  The light exiting from the other side of this slit emits in all 

directions in a half circular pattern.  This pattern would be analogous to watching 

water ripple when something is dropped into it.  The water ripples propagate away 

from the perturbation point and carry the impact energy away in all directions.  This is 

exactly what is happening through a diffraction slit, except that the waves only emit in 

a half circle as opposed to a full circle, and the phase of the light is determined by the 

distance from the slit, whereas the water phase is determined by time. 

The description so far would imply that after going through a slit, light is 

visible in all directions on the other side, but this is not the case.  There is more is at 

work here.  Because light is wavelike, and the slit has to have a width in order to allow 

light to pass through, the width of the slit causes the slit itself to be the source of 

multiple starting waves.  Thing about this as if you were pouring water into a funnel.  
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Wherever you start pouring the water into the funnel, the water travels into the bottom, 

but if you pour it in a different spot, it comes out of the bottom slightly different but 

no less on the same course.  The same is true for the slit, in which case the light 

incident more the left emits slightly differently than light that is incident more the 

right.  To see a visible explanation of this, see Figure 1 where each wavelength along 

the aperture is emitting its own wave. 

This effect of multiple emissions, even from one single slit, creates an 

interference situation.   Imagine dropping to rocks into a body of water at a distance 

from each other.  Each rock would create ripples in the surface that traveled outwards 

in all directions.  But, where these ripples started to cross, you would begin to see 

interference.  Wherever two high points in the ripples happened to be, the wave would 

be twice as high.  Wherever two low points in the ripples met, there would be a large 

dip.  And, wherever and high point from one ripple met a low point from the other 

ripple, the water would appear unperturbed.  This is exactly the type of effect we can 

visibly see from diffraction.  In Figure 1, you can see where certain angles of the 

diffracted emission appear normally waved, but other areas become grayed out as 

different phases of the emitted light from the different sources in the aperture 

effectively cancel each other out. 
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Figure 1: A four wavelength wide slit [13].  Each wavelength along the slit emits its 

own light waves, creating points of interference as the waves propagate outwards.  The 

black and white represent the up phase and down phase of the emitted light wave.  

This is constant for a given position as opposed to a water ripple which oscillates.  The 

grayed areas represent a region where an up phase from one emitting point combines 

with the down phase from another emitting point, canceling out the emitted light. 

 

 

On the emitting side of a slit, there appear bright bands of light that fade out to 

no light at all, and then reappear again to form another bright band.  This effect comes 

from having multiple maxima and minima at different angles relative to the slit 



 

 

6

normal.  The effect creates full construction and destruction interference, so the 

destructive points literally show no visible sign of any incident light, whereas the 

constructive points fully show the light incident the slit. 

Because the phase of light is determined by distance and is constant for a given 

distance, the aperture of the slit determines where the interference angles of the light 

exist.  By taking the angle relative to the normal of the slit, the amount of interference 

can be calculated and the intensity of light for that angle can be found. 

The base case for diffraction comes from single slit diffraction.  This type of 

slit contains one vertical slit and will be discussed more in the next section.  This 

“single slit” experiment is the basis of the diffraction concept.  Even when more slits 

are added and more interference points are caused, the maxima will always fall within 

the maxima of the single slit.  This effect can be seen in Figure 2. 
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Figure 2: Double Slit maxima will fall within the maxima of a single pattern and have 

minima in the same locations as well [14]. 

 

 

This is also why CDs create the diffraction pattern.  The data burned into the 

surface of the disk creates a groves in what was originally a shiny, smooth, metallic 

surface.  These burned tracks of data are written circularly at even intervals around the 

disk.  This means there are bands of very small reflective grooves right next to each 

other.  This creates the diffraction effect when light shines on the CD.  Note though, 

that the data is burned into the CD in a digital fashion.  This means that not all parts of 

the data track are burned into the surface of the disk.  That is why the CD still appears 
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very reflective like a mirror, even though diffraction is occurring because of the data 

rings. 

It should also be very carefully recognized that the diffraction process is 

wavelength dependant.  Each wavelength has, obviously, a different wavelength.  This 

means the effect of the aperture is different relative to each spectrum of light.  This 

will essentially give a prism effect any time any time white light is incident upon a slit.  

This is also why CDs appear to have a large hue of colors.  This also changes where 

the constructive and destructive interference regions occur in the output pattern.  

Therefore, the area that red light constructively interferes will be at a different point 

than where blue light constructively interferes.   

The other important thing to note is that it is assumed that the light coming into 

the diffraction slit is coherent.  That is, that the light coming into the slit is in-phase 

with itself.  If the light coming into the slit has interference going on already, the 

behavior of the slit is undefined as far as I can tell.  I was unable to find any 

information regarding what happens in this case. 

For the purposes of everyday, normal situations, the incoming light is 

essentially coherent with itself.  This is why CDs and things like butterfly wings 

appear so iridescent under light. 

Besides the angle from the slit, the shape of the slit is also important in 

predicting the visible diffraction pattern.  The most common type of slit usually 

encountered is a vertical slit or a series of vertical slits called a grating.  This type of 

slit is essentially a one-dimensional slit because it has infinite height, relative to the 

wavelength of the incident light anyways, but a narrow width aperture that causes the 
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diffraction.  The pattern that emerges from this is also one dimensional in change and 

creates a band of light that shows the diffraction pattern.  An example of this can be 

seen in Figure 3 on both of the left side images. 

When the slit becomes narrow enough to cause diffraction in two dimensions, 

other interesting patterns emerge.  A square pattern, for instance, creates a cross of 

sorts with some other patterning in between the arms.  Circular patterns emit 

something that looks exactly like a water ripple frozen in time.  A hexagonal pattern 

creates six spokes of maxima lines.    All of these can been seen in Figure 3. 

For the purposes of a CD, it is essentially a circular grating of vertical slits.   

What I mean by this is that the slits on the CD are really just a series of many veritical 

slits.  Any slice taken out of the CD from the center along the radius is really a series 

of straight veridical slits that compose a grating.  However, when looked at on the 

whole, they appear to be circularly oriented.  This means the CD can be treated as a 

much simpler problem by looked at it on the small scale. 
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Figure 3: Types of slits [15].  Top-left: Single vertical slit.  Bottom-left: Double 

vertical slit.  Top-right: Square slit.  Bottom-right: Hexagonal Slit. 

 

Experimentally, the minima and maxima locations have been known almost 

since the beginning of diffraction research.  These can be derived relatively easily 

simply by looking at the pattern produced by a single slit experiment. 

The basis for the maxima comes primary from determining the phase angle 

from the given angle relative to the slit normal.  The phase angle δ is dependant on the 

light wavelength and is displayed by the following equation where a is the aperture of 

the slit, θ is the angle of the light incident upon the resulting surface from the 

diffraction grating normal, and λ is the wavelength of the light.  What this really 
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shows is the superposition any light waves will be in when they travels in the direction 

specified by θ.  This is directly related to the aperture width a. 

 

λ
θπ

δ
sin2 a

=  

 

After determining the phase angle δ, the resulting intensity along that angle θ is 

determined by the following equation where I0 is the incident light upon the slit. 

 

( )
( )22

2
2

0
sin

δ

δ

II =  

 

This intensity equation only works, however, for a single slit.  Because a 

multiple slit grating is actually composed of a bunch of single slits, the equation needs 

another term to describe the phase shift, or the interference from all combined slits, 

between the slits themselves.  This is done by taking the phase angle of the slits 

relative to each other. 

 

λ
θπ

ξ
sin2 b

=  
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The phase angle equation looks exactly like the one above, except that this 

time b is the distance between the slits.  Let’s call this new phase angle ξ to avoid 

confusion.  The intensity for multiple slits interfering with each other look likes the 

single slit equation, except it account for the number of slits N. The intensity for N 

slits then becomes: 

 

( )
( )2

2
2

2

0
sin

sin
ξ

ξN
II =  

 

What this equation shows is essentially how the different slits interfere with 

each other’s output.  But, this does not take into account the individual slits which 

affect I0 already.  Each individual slit has its own constructive and destructive 

interference.  To account for this, we multiple the new intensity equation by the 

interference pattern of a single slit.  Adding in the individual slits gives the overall 

multiple slit intensity equation. 

 

( ) ( )
( ) ( )2

22

2

2
2

2
2

0

sin

sinsin
ξδ

ξδ N
II =

 

 

This equation solves for the majority of cases I will be testing in this paper.  

Note that this equation only works in the case that a and b, the widths of the apertures 

and distance between the apertures respectively, remains constant.   
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At the present time, I must note that I have had some difficulty in finding 

accurate descriptions of the intensity patterns caused by any other two dimensional slit 

besides the circular slit.  While it would be straight forward to just run a simulation, 

this is impractical from the approach that I will be starting from, though it could be 

expanded to use from the ideas presented in this paper. 
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Related Work   

 

 Surprisingly little work has been done in the realm of diffraction in a graphics 

environment of any kind.  Some of the main works so far in this area I will discuss in 

this section. 

Diffraction Shaders was one of the first attempts at simulating diffraction and 

was a paper that took a rather unique approach to the problem.  Instead of relying on 

classical light dynamics for their calculation methods, they instead turned to quantum 

mechanics specifically to be able to exploit the wave nature of light to create an 

accurate model.  The results were appealing, but I do not believe they were very 

realistic, and the algorithm has a couple of drawbacks.  Firstly, using quantum 

mechanics and Fourier transforms is incredibly expensive.  It is understood that ray 

tracing is, of course, an expensive process, but throwing multiple layers of integrals, 

transforms, and partial differentials into the process is even more expensive.  If most 

rendering environments were physical simulations, this would be very appropriate.  

But, for most normal graphics uses, this is almost certainly overkill.  Their assertion 

that they were able to implement their algorithm in Maya proves the algorithm is 

worth its expense is a bit of a stretch to claim considering the simplicity of their test 

scenarios versus most rendering contexts.  This is further seen by their use of Rayleigh 

scattering in their approach.  While this effect is definitely part of the physical world 

and is used to explain why the sky is blue, this effect is virtually unseen in most day to 

day scenarios.  Let alone, the sky is usually better simulated with participating 
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medium algorithms.  Again, this comes down to the fact most environments are not 

intended to be physically realistic but to look physically realistic.  Another interesting 

aspect of this approach is the disappearance of the Fresnel term.  It would seem that 

this should remain despite the anisotropic argument they make.  During the time 

period of this paper, it may very well be true that most views of the physical world 

were isotropic, but this is not the case anymore.  Anisotropic surfaces are seen in many 

places and produce very nice results now.  I will come back to their anisotropic view 

shortly.  Their approach to use quantum mechanics to have access to the wavelike 

properties of light is definitely a novel approach.  Diffraction is based off of the 

interfering of light waves, and they do a good job of differentiating interference versus 

diffraction.  Though, it should be noted, the two essentially are very different versions 

of the same effect.  Both are superimposing wave values onto each other, but the effect 

is seen different in both cases.  For this reason, I would argue that using quantum 

mechanics to simulate the diffraction effect is completely unnecessary, only because 

the interference effect can be simulated without trouble using classical methods.  That 

said, they model diffraction through the modern physics approach.  However, they 

tend to focus on the anisotropic nature of the surface to produce the effect.  I feel this 

is somewhat misleading, because the surface itself is not really causing the effect.  As 

stated before, the effect is created by the emission of light in all directions from the 

diffraction grating.  Their model assumes that only certain light reflects in a very 

standard BRDF kind of method.  This is certainly a novel approach, but it ignores the 

real core of what is happening at the heart of the diffraction equations.  That said, their 

simulating of the metal brush surface looks amazing, as seen in Figure 4.  The CD 
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from Figure 5, however, appears distorted from a real CD, mainly in that their color 

bands appear too wide.  I would attribute this to their surface based approach to the 

problem. 

 

 

Figure 4: The brushed metal cube from Diffraction Shaders. 
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Figure 5: The rendered CD from Diffraction Shaders. 
 

 

Not long after Diffraction Shaders came Tsingo’s geometric approach to 

rendering diffraction.  Mainly, this paper was commentary to the popular opinion, at 

the time, that rendering diffraction was not possible in a traditional ray tracing 

environment.  This opinion persisted because modeling the wavelike properties of 

light to achieve certain modern physics effects either requires modeling the quantum 

nature of light which is vastly complicated, or it requires some clever approach to 

remove the underlying complication of the quantum mechanics involved.  No such 

approach to the latter existed yet, so the opinion was widely true.  This was also 
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further complicated by the fact that all existing regular ray tracing methods were 

heavily relying upon BRDFs to create their surface properties.  Trying to create a 

BRDF to model a modern physics effect could be difficult, if not impossible.  To show 

that a regular ray tracing environment could be used to model diffraction, Tsingo’s 

approach relied mainly upon the Geometrical Theory of Diffraction.  This allowed him 

to avoid using modern physics equations to solve for the wavelike qualities of light.  

This, however, was not enough for a complete solution to model diffraction and still 

required some major assumptions about the surface to allow the diffraction simulation.  

His novel approach was to treat the surface of a CD as a series of pointy wedges 

sticking up off the surface. This makes sense as a place to start because as stated in the 

paper, modeling interference and diffraction takes places a very small scale, much 

smaller that a typical ray tracing environment takes into effect.  Because of this, 

certain assumptions need to be made as to the nature of the surface in a way that can 

be calculated without forcing the ray tracer to get down to wavelength wide distances 

in its calculations.  He even mentions how some approaches sought to use Snell’s law 

and carry phase information with the traveling light in the scene, which almost sounds 

a little similar to photon mapping.  This approach is almost a hybrid to using quantum 

mechanics and ray tracing, but again complicates the calculations considerably 

because normal ray tracing does not operate on this small scale.  For these reasons, 

Tsingo assumes wedges for the surface of the CD.  However, this would appear on the 

surface to essentially suffer the same argument of scale scoping.  I seriously question 

the wedge approach not because it does not model the problem, but because it does not 

accurately model the problem.  A CD surface is flat and contains and large number of 
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square grooves.  To treat these grooves at point wedges is automatically assuming the 

surface is something other than what is really is.  Which, combined with the real 

physics being used to simulate the diffraction effect, seems to hint that the simulation 

will already not appear as it should.  This is, however, a good start to the problem.  

This statement can be seen very clearly when the results are viewed.   

 

 

Figure 6: Tsingo’s rendered CD. 
 

 

The CD, as seen in Figure 6, looks very unrealistic.  Whereas Diffraction 

Shaders had somewhat wide color bands, Tsingo has even wider bands; so much that 
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the color spectrum disperses across the entire CD surface.  This is definitely not how a 

CD appears in the everyday world.  The other major problem with this approach is the 

calculation time involved.  For the small images in the results section, the calculation 

is astronomical compared to a normal scene.  If the scene were very complicated the 

calculation would be exponential a normal ray tracing environment.  Most of this 

stems from the problem of finding the shortest path from a point through the CD 

surface to a light source and then back calculating the diffraction involved.  The 

assumptions that go into this are novel, especially in their ability to a reduce an NP-

complete problem down to one that can be solved with relative speed, but it is still a 

huge hit compared to regular ray tracing.  He mentions toward the end of the paper 

that using distributed methods may be able to produce a better result by storing certain 

information and using a large number of passes.  But, again, this almost sounds like 

photon mapping, and it would seem more appropriate to modify photon mapping to 

incorporate diffraction rather than partially recreate it using the approach specified in 

this paper.  This paper made a solid step forward in making the point that diffraction 

can be modeled in a normal ray tracing environment.  However, in terms of a realistic 

model, it took a step backwards with the CD wide color bands. 

 Though somewhat aside from the point of this research, I find it interesting that 

Tsingo later applied this same approach to model sound diffraction.  The desire was to 

spatialize sound so that it was more realistic to the observer.  Sound diffraction is 

actually much more common than diffraction of light because the wave lengths of 

sound are so much closer to the order of normal everyday objects.  This explains why 

you can hear sounds from long distances, around corners, and sometimes get sound 
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voids and spikes as you change observing location.  Tsingos approach would work 

very well for the every day macroscopic objects we see because most of them are 

comprised of right angles.  For example: hallways, doors, buildings, desks, cars, 

ceilings, etc.  Simulating these environmental objects as wedges is not really too far 

off from how they actually look.  For this reason, I believe Tsingo’s approach would 

do a very good job of simulating, as one example, an ambulance driving through a 

downtown with where you can hear the sound and where you can’t hear the sound 

because of the interference that occurs. 

 The next attempt to improve diffraction simulation was the paper Rendering 

Iridescent Colors of Optical Disks.  One of the best aspects of this paper is the 

excellent description of the diffraction effect towards the beginning.  It is clear from 

their description of diffraction that the authors had a very concise understanding of the 

problem and how they were going to approach a new solution.  Their novel approach 

was to treat the surface of the CD as a series of consecutive spheres that constitute the 

different tracks on the surface of the disk.  Each of these tracks then partially 

superimposes itself on the surrounding tracks, giving the surface a slightly bumpy, but 

relatively flat, overall surface.  To differentiate between the lands and grooves of the 

CD surface, some of these spheres were considered to be diffraction capable surfaces, 

and the other spheres would simply provide the spectral component of the CD surface, 

as the entire surface does not immediately create diffraction.  Determining the guess 

for this spectral component was derived by looking at a vinyl disk, since these types of 

old records do not produce diffraction and merely spectrally reflect.  This allowed 

them to create a guess as to how many of their spheres should reflect and how many 
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should diffract.  They were they able to model partial periodicity of the surface for the 

different tracks.  These items combined create a very usable CD surface simulation, 

especially because the individual little spheres are invisible to the observer due to their 

small size.  The actual algorithmic diffraction used in this paper was also interesting 

because it relied on a modified diffraction equation using the delta function to create 

the interference spikes.  While the logic behind their equations is sound, I do question 

why they seem to have avoided using any of the standard diffraction equations.  That 

said, their results in Figure 7 look pretty good, and are close to the photographic 

images of optical disks.   
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Figure 7: The results page taken directly from Iridescent Colors of Optical Disks. 
 

 This approach was even able to capture both the major and minor strips of light 

on the disk surface.  Mainly this is seen in that the brightest stripe shows the color 
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spectrum developing in one direction while the two secondary stripe how their 

spectrum develop the opposite direction.  One of the major drawbacks to this approach 

is the energy conversation.  As they state: 

 

“Finally, in this paper we will focus on relative light intensity distributions 

because calculating the absolute values of light intensities involves more low-level 

physical information such as exact pit shapes, which deviates too much from our main 

interest – generating iridescent strips of optical disks. Thus in rendering, we will adjust 

the relevant intensity constants to obtain the appropriate visual effect (including proper 

relative intensities among the major strip, minor strips and the rest area). But in 

principle it is possible to determine these intensity constants from low-level physical 

information such as the percentage area covered by pit grooves, exact pit shapes etc.” 

  

 Because of this, whenever the emitting energy exceeded their threshold, they 

simply clipped the value.  This may or may not be adding more energy to a 

complicated scene, making it possibly unusable in conjunction with other algorithms.  

Though, in their results, they were able to render in a multiple object environment, I 

question how complex this environment really was.  Another nice aspect of this 

approach is their description of the coding implementation.  Using this method did not 

require a completely dedicated renderer to allow testing.  They simply switching out 

the shader for the CD material surface and modeled everything from there.  This 

allows for nice integration into almost any rendering environment which is highly 

desirable.  



 

 

25

 One of the most recent papers to talk about diffraction was Physically Based 

Real Time Diffraction Using Spherical Harmonics.  The main aim of this paper was to 

be able to render diffraction in a real time manner.  Obviously, one of the biggest 

hurdles to achieve this was that any of the previous approaches took a large amount of 

time.  Their solution was to precalculate a scene’s lighting and diffraction 

characteristics using spherical harmonics for the spectral lighting.  This was 

accomplished by using a full hemisphere of lights in the scene and then calculating the 

light values around the scene.  Another hurdle they had to overcome was that all 

current graphics pipelines for real time rely almost solely upon RGB values.  This 

meant that they needed to use some other method to keep the entire color spectra 

available during their calculations which is key to modeling diffraction correctly.  

They chose to use the composite model because it allowed them to keep track of the 

spikes in the color bands caused by diffraction and also because using spherical 

harmonics somewhat amplifies this spiking effect.  Using other methods of coloring 

could easily gloss over these diffraction values and lose some of the calculated data.  

Specifically, as they mention in the paper, “diffraction requires a more sophisticated

 sampling and color representation approach than interference in order to 

capture these spiky peaks”.   While I do believe this is a very elegant approach to 

solving the real time diffraction problem, I do have some issues with their approach.  

Firstly, and most importantly, their description of diffraction in the paper is not quite 

well developed enough.  This bothers me mainly because it implies the approach taken 

could have been better or have been misled due to a poor understanding of the 

problem space.  I was somewhat surprised by this.  Secondly, I have a hard time 
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believing that this approach would work well in a true real time environment.  I do not 

see their approach being applied to Quake or Unreal Tournament any time soon, and if 

not, what real time environment are they really solving for?  Doing this level of 

simulation seems like something more appropriately suited towards the ray tracing 

environment.  That being said, their statement that computer graphics is going to 

transition over to wavelength-based phenomena system is something I do not agree 

with.  Modern graphics pipelines are highly optimized to produce high frame rates in 

extremely large polygon environments.  The ability to simulate certain ray-tracing-like 

effects, such as dynamic shadowing, has been made available through scripting 

enhancements such as HLSL.  But, this does not imply that that a wavelength level 

clarity in a game environment is something anyone cares about.  How many effects as 

this level are actually used or seen in our day to day world anyway.  Many of them can 

be hacked around for that matter.  So, with that view, if the real time graphics 

direction is not really going in the wavelength direction, why would using composites 

and spherical harmonics be something that is highly desired?  I do applaud their 

approach for being an elegant solution to the problem space they laid out, but I do not 

believe that space to be completely correct, nor do I believe it could truly be used in 

the environment they set out for.  This paper seems far ahead of its time. 
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Figure 8:  The results of real time diffraction. 
 
 
 
 These papers show some of the gains and shortcomings of the work done in 

this area.  Most of them suffer from the problem of being very heavyweight in terms 

of calculation load.  Others simply suffer from lack of realism.  I believe there is much 

more simplistic approach to the problem.   
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Approach 

 

 While almost all of the previous work attempted to use very new and novel 

approaches to try and solve the diffraction simulation problem, I propose to go the 

opposite direction, and in fact, only use resources already available in a typical 

renderer.    

I further propose that it’s best to take a step back from trying to approach a CD 

or DVD right from the beginning.  Trying to tackle the complicated situation right 

from the get go seems like a trap into getting focused on a specific solution.  Rather 

than do this, I want to create a general solution that can be applied to more than one 

situation.  Say, for example, the next Pixar movie wants to create a hero with a special 

suit that diffracts all incoming light.  This would not be possible if using a specific 

optical disk based approach. To accomplish all of this, I’m going to rely upon the 

general ray tracing concept of a light. 

 In most college level physics programs, light and diffraction are taught 

alongside the introduction to modern physics.  This is best for students because it 

allows them to start looking the very nature of everything as wave based at the same 

time.   

One of the interesting experiments used to teach and show diffraction is to use 

a sodium based laser and a diffraction grating of known slit width and distance.  

Usually this grating has a slit width on the order of yellow light (relatively near the 

center of the visible spectrum) and a very small distance between gratings.  This 
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means there a very few maxima, that a very far apart, and very large stretching minima 

areas. 

What this allows for is the ability to determine, from the known diffraction 

equations using the grating constants, the exact wavelengths that comprise the color of 

sodium light.  This is done by measuring the angle from the grating to the first 

maxima, and then back calculating what that wavelength must be to appear at that 

location.  This allows students to calculate the spectrum that a sodium laser produces. 

For the purposes of my research, this was essentially the approach I took.  

Instead of taking the optical disk as my base case, I essentially assume no base case, 

but instead a situation where you could literally repeat the sodium laser experiment. 

To avoid making an overly complicated experimental situation out of this at 

the start, I make some assumptions.  Firstly, the light incident upon the diffraction 

surface will essentially be like a laser.  This means no stray light around the edges, and 

a relatively circular incident pattern.  Secondly, only one dimensional vertical slits will 

be used for the grating to start.  Having two dimensional slit patterns creates a difficult 

problem because the normal physics literature does not give nice equations for 

evaluating two dimensional slits.  However, I will propose a way this can be done later 

in the discussion section.   

Next, in order to actually make the diffraction possible using regular 

components, the diffraction surface will be treated like a point light source.  This may 

seem like a strange way to approach the problem, but it actually works out rather 

nicely, and allows for some easy modifications to the normal ray tracing pipeline.   
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 Specifically, any time a ray is cast into the viewing plane for a given pixel, it 

intersects somewhere in the scene.  If this surface is just any regular old surface in the 

scene, its light output towards the camera is determined by iterating over the lights in 

the scene and determining their contribution to that surface point. 

With this approach, the output from the diffraction grating is also calculated 

specifically for that point.     

This is a very large jump from the previous work done in this area, because 

most of the previous works, while able to render a CD, did not appear to be able to 

interact with the environment they were in.  This is a major shortcoming that the 

optical surface can only be described in terms of the incident light, but that the output 

light cannot be incident on the rest of the scene.  In fact, it appears that more than one 

of the approaches would be incapable of modifications to even make this possible. 

The ability to render an optical disk using this method, or any surface for that 

matter, will also be described in the discussion section because it goes beyond the core 

idea of this approach. 

It can appear odd that this approach is targeted initially towards using a point 

light.  However, because the diffraction surface is so small relative to the size of 

scene, it is somewhat irrelevant that the diffraction grating has any size at all.  A lot of 

the dimensional components are actually handled by the algorithm itself, which will 

now be discussed.  
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Algorithm 

 

The biggest consideration for rendering diffraction was the ability to accurately 

represent the slits in the grating.  Numerical approaches could be taken to determine if 

the wavelength and the aperture are of appropriate size to cause diffraction, but this 

quickly runs into the over complications of some of the previous work.   

After some thought, the process could be simplified down to treating the actual 

diffraction grating as a light source.  This immediately removes a great deal of the 

complication and allows the diffraction to be placed directly within the typical 

rendering coding solution.  This approach is also nice because it allows for easy future 

expansion in the more complex direction. 

The first step in treating the diffraction grating as its own light source is to 

define the constants needed for the grating. 
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Figure 9: Defining constants for the diffraction grating. 
 
  

The main constants involved are the normal to the grating plane n, and the 

grating direction defined in the direction of the slits p.  This can be seen in Figure 9 

where the grating is defined by n and p.  The other parameters needed for the light 

source are the number of grating slits s and the diameter of the incoming light over 

these slits.  The diameter becomes part of a special hack later, but is actually not 

relevant to the diffraction equations.   

For the purposes of rendering the diffraction pattern in the paper, this approach 

also helps because the grating and the incident light can be completely ignored.  They 

can simple be assumed.  The discussion section will talk more about using lights in the 

scene to specifically dynamically adjust this value. 
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Figure 10: Runtime calculation begins to render the diffraction pattern. 
 
 
  

Because this is all that is necessary to define the grating, the next step is to 

actually render the scene.  As with a traditional rendering environment, each pixel in 

the output picture is traced into the environment.  Wherever this ray hits then runs 

through all the possible light sources and determines each of their individual 

contributions as in Figure 10.   

One of the things that makes this a little easier is that a diffraction grating only 

shows a pattern on the outgoing side of the grating, so any time the dot product of the 

shadow ray direction and the grating normal n is negative, we can safely assume the 

grating adds no contribution.   
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Trying to figure out where in this hemisphere the grating lies is somewhat 

more complicated, however. 

 

 

Figure 11: Breaking down the hemisphere into useful components. 
 

 

Firstly, the shadow ray direction needs to be broken down into what are 

essentially the origin components of the grating constants.  Firstly this is done by 

calculating the missing orthogonal parameter that defines the grating origin.   

As in Figure 11, this is defined as the cross product of grating values n and p 

which I will call x.  The shadow ray direction dot product is then taken against n, p 

and x.  This allows the individual components that define the shadow ray relative to 

the diffraction grate to be combined into new plane dependant vectors. 

 



 

 

35

 

Figure 12:  The plan dependant vectors. 
 

 

This can be seen in Figure 12.  The previously calculated dot products are now 

used to recreate θ and φ.  θ is the vector defined by the shadow ray direction mapped 

into the plane defined by n and x.  φ is the vector defined by the shadow ray direction 

mapped into the plane defined by p and n. 

  θ is the single most important part of this process because it is the main 

parameter dictating the diffraction equations and the pattern they produce.  Similarly 

to the diameter of the incoming light beam to the grating, φ is going to be used for a 

form of hack to create realism in the resulting diffraction pattern. 
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Figure 13: Finally narrowing down if the pixel traced into the scene is contained with 

the diffraction band created by the grating.  

 
 
 

At this time, all the necessary variables are available to finally make the 

calculations as to the contribution of the diffraction grating to the given pixel in the 

final image. 

First, the overall vector describing the difference in position between the 

diffraction grating and the scene intersection point is use in a dot product with the 

grating normal.  This gives the distance to the plane defined by the scene intersection 

point and the grating normal from the grating.  This distance is then used to calculate 

the point in front of the normal that lies in the previously described scene position 

plane that I will call t. 
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The distance from t to the scene position is then used in a dot product with the 

normal defining the slit direction p.  This value, as seen in Figure 13, gives the 

distance away from the central plane of the diffraction grating definition.  This allows 

the diffraction pattern to have a width that is determined by the value of the incoming 

beam. 

At this point, θ can be used in the traditional diffraction equations to determine 

the output pattern. 

 

 
Figure 14: A repeat of Figure 3, showing real world diffraction patterns [15] 

 

One thing that is not accounted for in any physics textbook I could get a hold 

of is the way real diffraction patterns actually appear, as shown in Figure 14.  The 
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equations and algorithm described so far tends to appeared very squared off at the 

edges of the diffraction regardless of parameters.  This is because the problem is 

essentially only defined for two dimensional space.  The three dimensional solutions 

almost instantly become too complicated for use with this approach.  However, the 

two dimensional equations produce a highly accurate result that looks nearly identical 

to reality. A sample of output from the algorithm, which appears very square, is shown 

in Figure 15 and accurately represents the standard physics equations.  What was 

causing this elliptical edging? 

None of the advanced physics reference books or journals I searched through 

included any reasoning or explanation for why the diffraction patterns always appears 

to be elliptical in reality rather than square.  The equations were obviously correct, but 

the real output was doing something extra that took quite a while to indentify.   
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Figure 15: Output from the algorithm based off the straight physics description. 

 

What I realized, was that the diffraction pattern was attenuating for decreased 

intensity based of the incident light assumption.  This means that the farther up or 

down from the center of the incident light beam, the less intensity was being incident 

on the grating, and therefore attenuating the pattern in a three dimensional way. 

To account for this, I assume that the incoming light to the grating is circular.  

This allows intensity at the distance offset from the 1-D diffraction grating calculation 

to be attenuated by the amount of width present at that same offset up or down on a 

circle.   This attenuated intensity can then be further attenuated by using φ if desired, 

but for the purposes of my results images, this will not be done. 

This method works well for any sort of one dimensional vertical slit grating. 
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Code 
Code 
 
 

This code is added to the shader function for any rendering material and occurs 

for each light source.   Any regular light would fall into the ‘else’ of the initial ‘if’ 

statement. 

 
if( pLight->dif ) // determine if the light is a diffraction grating 
{ 

// if on the outside of the grating 
 if( dot(shadowray.d,pLight->m_normal) < 0 ) 

{ 
        // determine the contributing dot values of the ray in the direction of 
               // the hit 
  Vector3 x = cross(pLight->m_normal,pLight->m_pattern); 
  float a = abs(dot(shadowray.d,x)); 
  float b = abs(dot(shadowray.d,pLight->m_normal)); 
  float c = abs(dot(shadowray.d,pLight->m_pattern)); 
 
  // map the shadow ray onto the normal/pattern plane 
  Vector3 phi = b*pLight->m_normal+c*pLight->m_pattern; 
  phi.normalize(); 
 
  // map the shadow ray for the theta for the diffraction calculation 
  Vector3 theta = a*x+b*pLight->m_normal; 
  theta.normalize(); 
 
             // determine where this line intersection with the view plane for 
             // attenuating the pattern 
  Vector3 t1 = hit.P-pLight->m_position; 
  float diffractiont = dot(t1,pLight->m_normal); 
  Vector3 planePoint = pLight->m_position + pLight->m_normal*diffractiont; 
  t1 = planePoint-hit.P; 
  float splinedistance = abs(dot(t1,pLight->m_pattern)); 
 
  // narrowing the band 
  if( splinedistance <= pLight->diameter/2.0 ) 
  { 

float sintheta = dot(theta,pLight->m_normal)/(theta.length()*pLight-> 
m_normal.length()); 

   sintheta = sqrt(1-sintheta*sintheta); 
  
   for(int color=0; color<3;color++) 
   { 
    float a = 0.000001;     // hard coded slit width in meters 
    float b = 0.000002;     // hard coded slit spread in meters 
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    float lambda; 
    if( color==0 ) 
     lambda = .000000450;    // red light 
    else if (color==1) 
     lambda = .000000550;    // green light 
    else 
     lambda = .000000700;    // blue light 
 
    float delta = 2*PI*sintheta*a/lambda; 
    float intensity = sin(delta/2); 
    intensity = (intensity*intensity)/((delta/2)*(delta/2)); 
 
    if(pLight->slits>1) 
    { 
     float xi = 2*PI*sintheta*b/lambda; 
     float multiintensity = sin(xi/2*pLight->slits); 
     multiintensity =  

(multiintensity*multiintensity)/(sin(xi/2)*sin(xi/2 
)); 

     intensity *= multiintensity; 
    } 
 
                               // the integral this creates makes for interesting discussion. 
                               // for now, clamp it 
    if( intensity > 1.0 ) 
    { 
     intensity = 1.0; 
    } 
 
    float circlex = sqrt(1-pow(splinedistance/(pLight-> 

diameter/2.0),2)); 
    float ratio = pow(circlex,2) ;//* pow(dot(phi,pLight->m_normal),4); 
  
                               // some previous attempts that look slightly different 
    //float circlex = sqrt(1-pow(splinedistance/(pLight-> 

// diameter/2.0),2.0)); 
    //float ratio = ((circlex)*2.0)/pLight->diameter; 
    //float ratio = 1.0-splinedistance/(pLight->diameter/2.0); 
 
    Vector3 colorvec; 
    if( color==0 ) 
     colorvec = Vector3(1.f,0.f,0.f); 
    else if (color==1) 
     colorvec = Vector3(0.f,1.f,0.f); 
    else 
     colorvec = Vector3(0.f,0.f,1.f); 
 
    L += ratio*intensity*pLight->color()*pLight->wattage()*colorvec; 
   } 
  } 
 } 
} 
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Similarly, the next code segment is for the CD.  The algorithm is essential 

identical.  Many values are hardcoded here for example purposes. 

 

Vector3 Point(4.0, 3.5, -3.0); 
Vector3 Normal(-2.0, 1.0, 1.0);//(-1.0, 10.0, 5.0); 
Normal.normalize(); 
 
Vector3 axis = hit.P-Point; 
Vector3 patterN = cross(axis,Normal); 
patterN.normalize(); 
 
Vector3 x = axis.normalize(); 
float a = abs(dot(ray.d,x)); 
float b = abs(dot(ray.d,Normal)); 
float c = abs(dot(ray.d,patterN)); 
 
// map the shadow ray for the theta for the diffraction calculation 
Vector3 theta = a*x+b*Normal; 
theta.normalize(); 
 
float sintheta = dot(theta,Normal)/(theta.length()*Normal.length()); 
sintheta = sqrt(1-sintheta*sintheta); 
 
for(int color=0; color<3;color++) 
{ 

int slits = 4; 
float a = 0.000006; 
////////////123456789 
float b = 0.0000083; 

 
float lambda; 
if( color==0 ) 

lambda = .000000450; 
else if (color==1) 

lambda = .000000550; 
else 

lambda = .000000700; 
 

float delta = 2*PI*sintheta*a/lambda; 
float intensity = sin(delta/2); 
intensity = (intensity*intensity)/((delta/2)*(delta/2)); 

 
if(slits>1) 
{ 

float xi = 2*PI*sintheta*b/lambda; 
float multiintensity = sin(xi/2*slits); 
multiintensity = (multiintensity*multiintensity)/(sin(xi/2)*sin(xi/2)); 
intensity *= multiintensity; 

} 
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if( intensity > 1.0 ) 
{ 

intensity = 1.0; 
} 

 
   Vector3 colorvec; 
   if( color==0 ) 
   colorvec = Vector3(1.f,0.f,0.f); 
  else if (color==1) 
   colorvec = Vector3(0.f,1.f,0.f); 
  else 
   colorvec = Vector3(0.f,0.f,1.f); 
 
   L += intensity*colorvec*pLight->color(); 
  } 
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Results 

 

First, note that because of the values involved for ξ and δ, the slit width and 

distance can make a very pronounced effect on what the resulting diffraction pattern 

appears like.   

To run tests, a simple Cornell box was used with some diffraction gratings 

present.  These results were taken by looking at the wall in the direction of the 

diffracted light. 

 

  

Figure 16: The original multiple diffraction gratings where the results appeared very 

squared off.  The top is a single slit, followed by 2, 3, 4, and 5 slits. 
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Figure 17: The attenuated multiple diffraction gratings where the results now appear to 

be elliptical.  The top is a single slit, followed by 2, 3, 4, and 5 slits. 

 



 

 

46

 

Figure 18: (From un-attenuated output) Here the minima from a single slit are 

highlighted so that the multiple slit minima and maxima can be seen to align to the 

same points.  It can also be seen the intensity issue that arises from having multipliers 

greater than 1.0.  Even though the multiple slits intensity should always be less than 

the single slit intensity for a given point, this isn’t quite always the case.  The 5 slit 

pattern is still quite bright right up to the minima edge, whereas the single slit is quite 

faded out in this region. 

 



 

 

47

 

Figure 19: Similarly, this was an erroneous output but actually displayed the minima 

lining up very well.  Each increasing set of minima lines up with the minima of a 

lesser order slit value. 
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Figure 20: Red value. 
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Figure 21: Green Value 
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Figure 22: Blue value. 
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Figure 23: The RGB values combined. 

 
 

The implemented algorithm produced some good images that demonstrate 

multiple slit diffraction.  In Figure 16, the results are displayed form a straight on 

view.  There are a few artifacts along the edges of the diffraction, but these are no 

related to the diffraction algorithm and instead come from the viewing angle of the 

scene.  Figure 17 shows the same diffractions with the attenuation of the incident light 

source shown.  Figuring this out was one of the most difficult parts of this research. 

One good indicator that the simulation went well is evident in Figure 18, where 

the minima are the same for all the different diffractions.  The maxima for all the 

gratings also fall within the maxima of the single slit as well.  Looking at Figure 19 
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shows this even better by showing that the minima consistently go through all the slit 

orders from one on up. 

 Looking at Figure 20, Figure 21, and Figure 22 shows exactly what we would 

expect with different wavelengths.  As the wavelength increases towards the blue end 

of the spectrum, the diffraction pattern begins to widen.   This is where the prism-like 

effect that one sees on an optical disk comes from.  To show this more clearly, Figure 

23 uses all three color channels as independent calculations and accumulates their 

results.  This would be where using spectral light values would achieve more realistic 

results.  But, for the purposes of this paper, this adequately demonstrates the 

algorithm. 

 

 

Figure 24: The diffraction pattern dynamically rendering onto the scene. 
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 The other big thing to note in the results is that the algorithm renders itself onto 

the scene by its intersection point as a dynamic calculation.  This can be seen in Figure 

24 where the side wall is calculated on the fly differently that the back wall where the 

grating is pointed. 

For comparison sake, I also tried a test rendering of a CD with some interesting 

results.  In order to render the CD, the algorithm required almost no changes, though a 

few assumptions could be make that deviated from the code listed previously.  Firstly, 

you can always assume that the CD surface is diffracting, secondly, there is no band 

narrowing, and thirdly, I made the assumption that any point you view on the surface 

of the CD is comprised of a small diffraction grating. 

Rather than treating the whole CD as one large diffraction grating, treating the 

intersection point on the CD surface as one individual diffraction grating origin greatly 

simplifies the overall calculation.  This may not necessarily be the optimal approach, 

but it avoids the huge pitfall of some previous work that not viewing each calculation 

point as a smaller section of the whole CD then requires an approximation of how the 

entire CD surface works together at one time.  This occurs even though the viewing 

area, or one pixel in the end, is only a very small part of the surface.  I believe this to 

be a good and safe assumption on my behalf. 

One thing that prevented a direct comparison with previous work was the lack 

of parameters listed in any of the papers.  To do a side by side comparison would 

require knowing the parameters the previous papers used.  For the purposes of my 

work: each picture was 600x600, the CD surface was assumed to have a 12 centimeter 
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diameter with a 2.5 centimeter inner hole, 0.6 micrometer groves, 0.83 micrometer 

lands, 4 grating slits per intersection point, a 60% reflection at all spectrums, red light 

was 450 nanometers, green light was 550 nanometers, and blue light was 700 

nanometers. 

One to note on these pictures is that there is a string of artifacts along the main 

maxima line.  I have not yet isolated the source of this. 

  
 

 

Figure 25: A test rendering of a CD using the same algorithm with a light to the side. 
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Figure 26: A test rendering of a CD using the same algorithm with a light to the top 
and relatively far away. 
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Figure 27: A test rendering of a CD using the same algorithm with a light to the top 
and relatively close to the CD. 

 
 

 In Figure 25, Figure 26, and Figure 27 you can see the banding of colors that 

occurs along the grooves of the CD.  These figures appear relatively realistic, but 

suffer from some slightly odd banding and not quite as much color shift on the surface 

as I had hoped for.  However, that being said, changing the parameters only slightly 

creates a noticeable difference in the CD appearance.  Perhaps my parameters are only 

slightly off from the true physical model or my slits assumption is glazing over some 

aspect of the CD, but this seems very close. 

 After these samples were made of the CD, I tried for a very long time to go 

back and improve upon their appearance.  I tried changing some of the math to 

situations that were tweaked from realistic and situations that were completely 
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unrealistic.  I tried altering the size and surface parameters of the CD.  I tried moving 

the light source around.  I tried looking for the banding problem.  Almost everything I 

did ended up making the CD appear less realistic.  The one exception to this was 

keeping the algorithm as described in this paper and modifying the parameters used 

for the diffraction.  That had the greatest effect of all.  However, the effect for even the 

smallest change was so profound that I am left wondering if my somewhat realistic 

results are falling outside of a very slim band of parameters that produces 

photorealistic results.   

 I can only hypothesize that this may be the case, because every after a few 

hundred attempts, the best results have already been shown.  Due to the fact my 

approach was significantly different than all previous attempts, I am left somewhat 

stuck and without a direction to move forward with.  My approach may very well be 

correct, but at least for its application directly onto a CD surface, I am not seeing the 

tweak necessary for photorealistic results. 

 However, compared to previous results, I am looking slightly better than most 

of the examples from previous work.  The main contribution that I can offer is that my 

approach not only contributes to the scene itself, but also relies on the basic physics 

principles of diffraction and does not use anything that wouldn’t already be in a 

normal rendering program anyway. 
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Discussion 

 

The results show very realistic simulations of diffraction in a practical context.  

Because of the simplicity of using existing elements to create the simulation, the 

method can be extended to simulate a number of more complicated situations without 

too much hassle.  For its realism, however, there are certain drawbacks and certain 

unanswered questions regarding this method, though.  All of the extensions, 

drawbacks, and questions will be covered. 

One of the most significant items of note is that this method contributes to the 

overall rendering environment.  This was a major drawback of the previous work done 

in this area.  This is easily seen in that the results pictures show the output of the 

diffraction on the wall of the scene.  Because of this calculation method, any number 

of lights and gratings can be present in the scene and contribute to each other.   

To do so would only require that for every grating that can contribute to a 

surface, that grating iterates over all other lights in the scene and accumulates their 

contributions, whether they be lights or gratings themselves, into the scene point 

contribution.  Any cross contribution between gratings is easily handled in the same 

way that a ray bouncing between two mirrors stops recursing after a certain number of 

reflections.  The only downside to this is that the output of the original grating is not 

factored into the contributions of the other gratings, though this could be handling by 

doing a single round of precalculated contributions from any grating to all other 

gratings. 
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Another big item to mention is the color of the diffraction.  In order for the 

color to be correctly represented, a spectral trace would need to occur.  This is because 

the diffraction pattern is highly wavelength dependant.  One final scene points have 

been computed, they can easily be converted back to typical RGB values.  This would 

allow for the full simulation of diffraction to be correctly shown. 

Of special note, and specifically the thing that started this research, is how one 

would achieve simulating an optical disk.  This is actually not a big step from the work 

already done.  The key to doing this is to treat, for example, a CD surface as a 

dynamic point calculated surface.  What this means is that any intersected point on the 

surface of the CD is calculated as being the given CD’s diffraction parameters with the 

grating direction using the radial angle of the intersection point with the CD.  This 

allows to entire CD to be calculated without having to define any sort of special 

system for just the CD.  It’s just like a traditional volumetric light. 

The other interesting benefit of this is that the scene can now use the CD in the 

same way.  Using the same methods that a point light would use, the CD would be 

sample many times, and the appropriate pattern would appear on the surfaces of the 

scene.   

Note though, that with using this, it must still be factored in that the CD 

surface still reflects a large significant portion of the incoming light in a spectral 

manner. 

The intensities using this method are a source of concern for me, and possibly 

one of the drawbacks.  The intensity equation, while providing the entire ability to 

simulate diffraction, gives intensity multipliers that are at times very large.  This 
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means that the intensity of the resulting point of light can actually be over a factor of 

10 brighter than the original light source.  

To determine the correct weight necessary to properly light the diffraction 

emission, the following integral would need to be solved across the spectrum, and 

across the emission area.  But, the question is whether of not this weight should be 

constant among all points or changing due to the emission angle. 
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Is this equation correct?  I’m not sure.   

How this would integrate over a banded hemisphere becomes a confusing 

equation.  It also becomes more convoluted by there not being a distinct equation to 

describe why the non-primary maxima are not as wide as the primary maxima.   

Most of the problem here is caused by the fact that none of the physics 

textbooks I could get a hold of gave any indication as to how to handle real incident 

light onto the grating, which never has a two dimensional shape.  Because of this, 

extra shapes and ellipses are caused in the diffraction output which then makes 

attempting the overall intensity integral a no nonsense problem. 

It is possible that implementing a two dimensional diffracting grating could get 

closer to solving this problem.  However, since the incident light is rarely shaped in 
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that same squarish manner that most of the gratings are shape, the problem would 

likely resurface in a different way.  This would not be a big issue, except that this 

method could theoretically be extended to photon mapping. 

For the purpose of this paper, a clamp was used that simply checked if the 

intensity value was greater that 1.0 and brought it back down to 1.0 as the maximum 

allowed intensity.  This is not completely seen in the output however, because RGB 

can only support a certain spectrum and intensity of light.  But, with a brighter surface, 

the center areas of the resulting maxima would appear almost burned out. 

One performance note is that I used math library sines in order to calculate the 

desired interference and intensity levels.  While this is great because the interference is 

relatively constant along a given angle, this is horribly inefficient from a performance 

perspective.  If a given scene had a lot of diffraction information present, this would 

become a bottleneck very quickly. 

It is possible to avoid using these sines, but it comes at a cost that most 

physicists don’t even mention in these equations.  In order to take the sine out, the 

offset from center over the distance is used as an approximation.  This seems fine at 

cursory glance, but it is really using a small angle approximation.  This means that 

only a narrow gap in front of the diffraction surface normal is really accurate to the 

interference present.  It also means that if the receiving surface it complicated, 

meaning multiple surfaces, or if the surface is at an angle, each point is going to have 

to recalculate the distance and offset from center to use this approximation.  One 

cannot simply use the hypotenuse because that hypotenuse is relative to the emitting 

phase angle.  Only the sides of this triangle are constant.  
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This is good for efficiency purposes and would be something that would go by 

unnoticed, but to properly simulate the diffraction effect, sines must be used.  This is 

obviously a very heavy operation, but there is no way around it for any non-trivially 

small angle from the diffraction normal.  This does create a concern for any scene in 

which a significant portion of the scene is comprised of diffraction.  Especially if 

multiple spectra are being used, since each individual spectra is going to need its own 

sine calculations.  If the scene is being rendered with a real visible spectrum, this 

could get very computationally intensive, very quickly. 

Future work continuing from this point would include the following: 

  

• Figuring out the intensity weighting!  As discussed, this may or may not be a 

simple calculation.  By my guess, the value will not be constant and will 

depend on the angle of the interaction.  This value will also be especially 

sensitive to the incident light shape. 

• Creating circular slits.  This could potentially be a small modification to the 

existing algorithm as the circular slit is the simplest two dimensional slit since 

it is shaped the same in all directions. 

• Implementing two dimensional slits.  This may or may not have a general 

equation to help describe.  Likely, the only way to simulate this properly would 

be through photon mapping since the geometry of the slit would need to be 

taken into account to properly simulate the effect and this may be too 
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complicated for a back traced calculation.  In fact, I will suggest that this will 

be too heavy for normal ray traced calculation. 

• Photon mapping the diffraction grating.  This would be tricky because very 

precise measurements would need to be make of where the photon is in the slit.  

Phase angles would then be combined on relevant surfaces.  These could also 

be precomputed by combining local phase interactions and summing them into 

one point of overall interference which would then be used at runtime to 

determine contributing value.  Essentially, this would be an extension to the 

caustic mapping. 
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Conclusion 

 

The results came out pretty nicely.  One thing that I did not show is that the 

technique used to implement this simulation allows for any distance, any number of 

receiving surfaces, and any angle of the diffraction.  This is partially seen by the 

nature of the dynamic calculations against the surfaces of the scene.  This flexible 

nature is crucial for this to be a viable algorithm. 

Compared to previous work in the area, this algorithm provides some much 

needed extensions and also takes a necessary step back to create a generalized 

diffraction which could then be applied to just about any surface or situation.  It is also 

much different than previous work in that it is not computationally intensive, but 

instead, relies upon tried and true standard physics equations to model the diffraction 

output.  This is what allowed the standard rendering environment to be usable in 

creating this algorithm.  It also means there is no question as to the accuracy of the 

model. 

I’m happy with the progress made so far, but there is still a lot of work to be 

done.  One of the major things is to extend this algorithm to photon mapping.  

However, for this to be possible, the overall intensity equation needs to be solved in a 

way that conserves energy.  At the moment, it is difficult to tell exactly what is 

happening with the energy, though it clear that energy is be added and clamped.  Once 

photon mapping and has been figured, this will have become a viable algorithm to 
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include in any renderer.  At the moment, the rendering of diffraction will have to 

remain in the on the fly portion of the calculations. 
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