
UC Berkeley
UC Berkeley Previously Published Works

Title
SOTER: A Runtime Assurance Framework for Programming Safe Robotics Systems

Permalink
https://escholarship.org/uc/item/78g5j78r

Authors
Desai, Ankush
Ghosh, Shromona
Seshia, Sanjit A
et al.

Publication Date
2019-06-24

DOI
10.1109/dsn.2019.00027

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78g5j78r
https://escholarship.org/uc/item/78g5j78r#author
https://escholarship.org
http://www.cdlib.org/

SOTER: A Runtime Assurance Framework for
Programming Safe Robotics Systems

Ankush Desai‡, Shromona Ghosh‡, Sanjit A. Seshia‡, Natarajan Shankar∗, Ashish Tiwari∗†
‡University of California at Berkeley, CA, USA, ∗SRI International, Menlo Park, CA, USA, †Microsoft, Redmond, WA, USA

Abstract—The recent drive towards achieving greater au-
tonomy and intelligence in robotics has led to high levels of
complexity. Autonomous robots increasingly depend on third-
party off-the-shelf components and complex machine-learning
techniques. This trend makes it challenging to provide strong
design-time certification of correct operation.

To address these challenges, we present SOTER, a robotics pro-
gramming framework with two key components: (1) a program-
ming language for implementing and testing high-level reactive
robotics software, and (2) an integrated runtime assurance (RTA)
system that helps enable the use of uncertified components,
while still providing safety guarantees. SOTER provides language
primitives to declaratively construct a RTA module consisting of
an advanced, high-performance controller (uncertified), a safe,
lower-performance controller (certified), and the desired safety
specification. The framework provides a formal guarantee that a
well-formed RTA module always satisfies the safety specification,
without completely sacrificing performance by using higher per-
formance uncertified components whenever safe. SOTER allows
the complex robotics software stack to be constructed as a
composition of RTA modules, where each uncertified component
is protected using a RTA module.

To demonstrate the efficacy of our framework, we consider
a real-world case-study of building a safe drone surveillance
system. Our experiments both in simulation and on actual drones
show that the SOTER-enabled RTA ensures the safety of the
system, including when untrusted third-party components have
bugs or deviate from the desired behavior.

I. INTRODUCTION

Robotic systems are increasingly playing diverse and safety-
critical roles in society, including delivery systems, surveil-
lance, and personal transportation. This drive towards au-
tonomy is also leading to ever-increasing levels of software
complexity, including integration of advanced data-driven,
machine-learning components. This complexity comes on top
of the existing challenge of designing safe event-driven, real-
time, concurrent software required for robotics applications.
However, advances in formal verification and systematic test-
ing have yet to catch up with this increased complexity [1].
Moreover, the dependence of robotic systems on third-party
off-the-shelf components and machine-learning techniques is
predicted to increase. This has resulted in a widening gap
between the complexity of systems being deployed and those
that can be certified for safety and correctness.

One approach to bridging this gap is to leverage tech-
niques for run-time assurance, where the results of design-
time verification are used to build a system that monitors
itself and its environment at run time; and, when needed,

switches to a provably-safe operating mode, potentially at
lower performance and sacrificing certain non-critical objec-
tives. A prominent example of a Run-Time Assurance (RTA)
framework is the Simplex Architecture [2], which has been
used for building provably-correct safety-critical avionics [3],
[4], robotics [5] and cyber-physical systems [6], [7], [8].

The typical RTA architecture based on Simplex [2] (see
Figure 1) comprises three sub-components: (1) The advanced
controller (AC) that controls the robot under nominal operat-
ing conditions, and is designed to achieve high-performance
with respect to specialized metrics (e.g., fuel economy, time),
but it is not provably safe, (2) The safe controller (SC) that
can be pre-certified to keep the robot within a region of safe
operation for the plant/robot, usually at the cost of lower
performance, and (3) The decision module (DM) which is
pre-certified (or automatically synthesized to be correct) to
periodically monitor the state of the plant and the environment
to determine when to switch from AC to SC so that the system
is guaranteed to stay within the safe region. When AC is in
control of the system, DM monitors (samples) the system state
every ∆ period to check whether the system can violate the
desired safety specification (φ) in time ∆. If so, then DM
switches control to SC.

Fig. 1. RTA Architecture

This Simplex-based
RTA architecture is a
very useful high-level
framework, but there
are several limitations
of its existing instan-
tiations. First, existing
techniques either apply
RTA [9], [10], [3] to a
single untrusted compo-
nent in the system or

wrap the large monolithic system into a single instance of
Simplex which makes the design and verification of the
corresponding SC and DM difficult or infeasible. Second,
most prior applications of RTA do not provide high-level
programming language support for constructing provably-safe
RTA systems in a modular fashion while designing for timing
and communication behavior of such systems. In order to ease
the construction of RTA systems, there is a need for a general
programming framework for building provably-safe robotic
software systems with run-time assurance that also considers
implementation aspects such as timing and communication.

1

Finally, existing techniques do not provide a principled and
safe way for DM to switch back from SC to AC so as to keep
performance penalties to a minimum while retaining strong
safety guarantees.

In this paper, we seek to address these limitations by
developing SOTER, a programming framework for building safe
robotics systems using runtime assurance. A SOTER program is
a collection of periodic processes, termed nodes, that interact
with each other using a publish-subscribe model of communi-
cation (which is popular in robotics, e.g., in Robot Operating
System, ROS [11]). An RTA module in SOTER consists of an
advanced controller node, a safe controller node and a safety
specification; if the module is well-formed then the framework
provides a guarantee that the system satisfies the safety speci-
fication. SOTER allows programmers to declaratively construct
an RTA module with specified timing behavior, combining
provably-safe operation with the feature of using AC whenever
safe so as to achieve good performance. SOTER provides a
provably-safe way for DM to switch back from SC to AC,
thus extending the traditional RTA framework and providing
higher performance. Our evaluation demonstrates that SOTER

is effective at achieving this blend of safety and performance.
Crucially, SOTER supports compositional construction of the

overall RTA system. The SOTER language includes constructs
for decomposing the design and verification of the overall
RTA system into that for individual RTA modules while
retaining guarantees of safety for the overall composite system.
SOTER includes a compiler that generates the DM node that
implements the switching logic, and which also generates C
code to be executed on common robotics software platforms
such as ROS [11] and MavLink [12].

We evaluate the efficacy of the SOTER framework by build-
ing a safe autonomous drone surveillance system. We show
that SOTER can be used to build a complex robotics software
stack consisting of both third-party untrusted components
and complex machine learning modules, and still provide
system-wide correctness guarantees. The generated code for
the robotics software has been tested both on an actual
drone platform (the 3DR [13] drone) and in simulation (using
the ROS/Gazebo [14] and OpenAI Gym [15]). Our results
demonstrate that the RTA-protected software stack built using
SOTER can ensure the safety of the drone both when using
unsafe third-party controllers and in the presence of bugs
introduced using fault injection in the advanced controller.
In summary, we make the following novel contributions:

1. A programming framework for a Simplex-based run-time
assurance system that provides language primitives for the
modular design of safe robotics systems (Sec. III);

2. A theoretical formalism based on computing reachable sets
that keeps the system provably safe while maintaining
smooth switching behavior from advanced to a safe con-
troller and vice-versa (Sec. III-C);

3. A framework for the modular design of run-time assurance
(Sec. IV), and

4. Experimental results in simulation and on real drone plat-

Fig. 2. Case Study: A Drone Surveillance System

forms demonstrating how SOTER can be used for guarantee-
ing correctness of a system even in the presence of untrusted
or unverified components (Sec. V).

II. OVERVIEW

We illustrate the SOTER framework for programming safe
robotics systems by using our case study of an autonomous
drone surveillance system.

A. Case Study: Drone Surveillance System

In this paper, we consider the problem of building a
surveillance system where an autonomous drone must safely
patrol a city. Figure 2 (left) presents a snapshot of the city
workspace from the ROS/Gazebo simulator [14] and Figure 2
(right) presents the corresponding obstacle map.

For our case study, we consider a simplified setting where
all the obstacles (houses, cars, etc.) are static, known a priori,
and that there are no environment uncertainties like wind. Even
for such a simplified setup the software stack (Figure 3) is
complex: consisting of multiple components interacting with
each other and uses uncertified components (red blocks).
Drone software stack. The application layer implements
the surveillance protocol that ensures the application specific
property, e.g., all surveillance points must be visited infinitely
often. The generic components of the software stack consists
of the motion planner and the motion primitives.

Fig. 3. Drone Software Stack

For surveillance, the ap-
plication generates the next
target location for the drone.
The motion planner com-
putes a sequence of way-
points from the current lo-
cation to the target location
– a motion plan. The way-
points w1 . . . w6 in Figure 2
represent one such motion
plan generated by the plan-
ner and the dotted lines rep-
resent the reference trajec-
tory for the drone. Once the
motion primitive library re-

ceives the next waypoint, it generates the required low-level
controls necessary to closely follow the reference trajectory.
The solid trajectory in Figure 2 represents the actual trajectory
of the drone, which deviates from the reference trajectory be-
cause of the underlying dynamics. Programming such robotics

2

software stack is challenging as it is composed of individual
components, each implementing a complicated protocol, and
continuously interacting with each other for accomplishing the
mission safely.

In our drone surveillance case study, we would like the
system to satisfy two safety invariants: (1) Obstacle Avoidance
(φobs): The drone must never collide with any obstacle. (2)
Battery Safety (φbat): The drone must never crash because of
low battery. Instead, when the battery is low it must prioritize
landing safely (e.g., in Figure 2 (right), low battery is detected
at w6 and the mission is aborted to land safely). φobs can be
further decomposed into two parts φobs := φplan ∧ φmpr; (a)
Safe Motion Planner (φplan): The motion planner must always
generate a motion-plan such that the reference trajectory does
not collide with any obstacle, (b) Safe Motion Primitives
(φmpr): When tracking the reference trajectory between any
two waypoints generated by the motion planner, the controls
generated by the motion primitives must ensure that the drone
closely follows the trajectory and avoids collisions.

In practice, when implementing the software stack, the pro-
grammer may use several uncertified components (red blocks
in Figure 3). For example, implementing an on-the-fly motion
planner may involve solving an optimization problem or using
an efficient search technique that relies on a solver or a third-
party library (e.g., OMPL [16]). Similarly, motion primitives
are either designed using machine-learning techniques like
Reinforcement Learning [17], or optimized for specific tasks
without considering safety, or are off-the-shelf controllers
provided by third parties [12]. Ultimately, in the presence of
such uncertified or hard to verify components, it is difficult to
provide formal guarantees of safety at design time. We assume
the state-estimators (green blocks) in Figure 3 are trusted and
accurately provide the system state within bounds.
Challenges and motivation: The robotics software (Figure 3)
must react to events (inputs) from the physical world as well
as other components in the software stack. These components
must therefore be implemented as concurrent event-driven
software which can be notoriously tricky to test and debug
due to nondeterministic interactions with the environment and
interleaving of the event handlers. In SOTER, we provide a
language framework for both implementing and systematic
testing of such event-driven software. In practice, for complex
systems, it can be extremely difficult to design a controller
that is both safe and high-performance. The AC, in general,
is any program or component designed for high-performance
under nominal conditions using either third-party libraries or
machine-learning techniques. We treat them as unsafe since
they often exhibit unsafe behavior in off-nominal conditions
and uncertain environments, and even when they do not, it
is hard to be sure since their complexity makes verification
or exhaustive testing prohibitively expensive. Furthermore, the
trend in robotics is towards advanced, data-driven controllers,
such as those based on neural networks (NN), that usually do
not come with safety guarantees. Our approach of integrating
RTA into a programming framework is motivated by the need
to enable the use of such advanced controllers (e.g., designed

using NN or optimized for performance) while retaining strong
guarantees of safety.

B. Programming Reactive Robotic Software

The Robot Operating System (ROS [11]) is an open-source
meta-operating system considered as the de facto standard for
robot software development. In most cases, a ROS programmer
implements the system as a collection of periodic processes
that communicates using the publish-subscribe model of com-
munication. SOTER provides a high-level domain specific lan-
guage based on a similar publish-subscribe model of commu-
nication. A program in SOTER is a collection of periodic nodes
(processes) communicating with each other by publishing on
and subscribing to message topics. A node periodically listens
to data published on certain topics, performs computation, and
publishes computed results on certain other topics. A topic is
an abstraction of a communication channel.
Topics. Figure 4 declares the topic targetWaypoint that can
be used to communicate messages of type coord (coordinates
in 3D space). In SOTER, a node communicates with other
nodes in the system by publishing messages on a topic (e.g.,
targetWaypoint) and the target nodes can consume these
messages by subscribing to it.

Fig. 4. Declaration of topics and nodes in SOTER

Nodes. Figure 4 also declares a node MotionPrimitive that
subscribes to topics localPosition and targetWaypoint.
Each node has a separate local buffer associated with each
subscribed topic. The publish operation on a topic adds the
message into the corresponding local buffer of all the nodes
that have subscribed to that topic. The MotionPrimitive

node runs periodically every 10 ms. It reads messages from
the subscribed topics, performs local computations, and then
publishes the control action on the output topic. For the
exposition of this paper, we ignore the syntactic details of
the node body, it can be any sequential program that performs
the required read → compute → publish step.

C. Guaranteeing Safety using Runtime Assurance

In practice, the motion primitives (e.g., MotionPrimitive
node in Figure 4) might generate control actions to traverse
the reference trajectory from current position to the target way-
point using a low-level controller provided by the third-party

3

robot manufacturer (e.g., [12]). These low-level controllers
generally use approximate models of the dynamics of the robot
and are optimized for performance rather than safety, making
them unsafe.

Fig. 5. Experiments with third-party and machine-learning controllers

To demonstrate this, we experimented with the low-level
controllers provided by the PX4 Autopilot [12] (Figure 5
(right)). The drone was tasked to repeatedly visit locations
g1 to g4 in that order, i.e., the sequence of waypoints g1, . . . g4
are passed to the MotionPrimitive node. The blue lines
represent the actual trajectories of the drone. Given the
complex dynamics of a drone and noisy sensors, ensuring
that it precisely follows a fixed trajectory (ideally a straight
line joining the waypoints) is extremely hard. The low-level
controller (untrusted) optimizes for time and, hence, during
high speed maneuvers the reduced control on the drone
leads to overshoot and trajectories that collide with obstacles
(represented by the red regions). We also conducted similar
experiment with a different low-level controller designed using
data-driven approach (Figure 5 (left)) where we tasked the
drone to follow a eight loop. The trajectories in green represent
the cases where the drone closely follows loop, the trajectories
in red represent the cases the drone dangerously deviates from
the reference trajectory. Note that in both cases, the controllers
can be used during majority of their mission except for a few
instances of unsafe maneuvers. This motivates the need for
a RTA system that guarantees safety by switching to a safe
controller in case of danger but also maximizes the use of the
untrusted but performant controller under nominal conditions.
Runtime Assurance module. Figure 6 illustrates the behavior
of a SOTER based RTA-protected motion primitive module.

Fig. 6. An RTA-protected Motion Primitive

We want the drone to move from its current location wi
to the target location wf , and the desired safety property
is that the drone must always remain inside the region
φsafe (outermost tube). Initially, the untrusted AC node (e.g.,
MotionPrimitive) is in control of the drone (red trajectory),
and since it is not certified for correctness it may generate
controls action that tries to push the drone outside the φsafe

region. If AC is wrapped inside an RTA module (see Figure 1)
then DM must detect this imminent danger and switch to SC
(blue trajectory) with enough time for SC to gain control over
the drone. SC must be certified to keep the drone inside φsafe
and also move it to a state in φsafer where DM evaluates
that it is safe enough to return control back to AC. The novel
aspect of an RTA module formalized in this paper is that it also
allows control to return back to AC to maximize performance.

Fig. 7. Declaration of an RTA module

Figure 7 presents the declaration of an RTA module
consisting of MotionPrimitive (from Figure 4)
and MotionPrimitiveSC as AC and SC nodes.
The compiler checks that the declared RTA module
SafeMotionPrimitive is well-formed (Section III-C) and
then generates the DM and the other glue code that together
guarantees the φsafe property. Details about other components
of the module declaration are provided in Section III-C.
Compositional RTA System. A large system is generally
built by composing multiple components together. When the
system-level specification is decomposed into a collection of
simpler component-level specifications, one can scale provable
guarantees to large, real-world systems.

Fig. 8. An RTA Protected Software Stack for Drone Surveillance

SOTER enables building a reliable version (Figure 8) of the
software stack with runtime assurance of the safety invariant:
φplan ∧ φmpr ∧ φbat. We decompose the stack into three
components: (1) An RTA-protected motion planner that guar-
antees φplan, (2) A battery-safety RTA module that guarantees
φbat, and (3) An RTA-protected motion primitive module that
guarantees φmpr. Our theory of well-formed RTA modules
(Theorem 3.1) ensures that if the constructed modules are
well-formed then they satisfy the desired safety invariant and

4

their composition (Theorem 4.1) helps prove that the system-
level specification is satisfied.

III. RUNTIME ASSURANCE MODULE

In this section, we formalize the SOTER runtime assurance
module and present the well-formedness conditions required
for its correctness. We conclude by informally describing the
behavior of a system protected by an RTA module.

A. Programming Model
Recollect that a program in SOTER is a collection of periodic

nodes communicating with each other by publishing on and
subscribing to message topics.
Topic. Formally, a topic is a tuple (e, v) consisting of a unique
name e ∈ T , where T is the universe of all topic names, and
a value v ∈ V , where V is the universe of all possible values
that can be communicated using topic e. For simplicity of
presentation: (1) we assume that all topics share the same set
V of possible values and (2) instead of modeling the local
buffers associated with each subscribed topic of a node; we
model the communication between nodes using the global
value associated with each topic.

Let N represent the set of names of all the nodes. We
sometimes refer to a node by its unique name, for example,
when Nac ∈ N and we say “node Nac”, we are referring
to a node with name Nac. Let L represent the set of all
possible values the local state of any node could have during
its execution. A valuation of a set X ⊆ T of topic names is
a map from each topic name x ∈ X to the value v stored at
topic (x, v). Let Vals(X) represent the valuations of set X .
Node. A node in SOTER is a tuple (N, I,O, T, C) where:
1. N ∈ N is the unique name of the node.
2. I ⊆ T is the set of names of all topics subscribed to by

the node (inputs).
3. O ⊆ T is the set of names of all topics on which the node

publishes (output). The output topics are disjoint from the
set of input topics (I ∩O = ∅).

4. T ⊆ L× (I → V)×L× (O → V) is the transition relation
of the node. If (l, Vals(I), l′, Vals(O)) ∈ T , then on the
input (subscribed) topics valuation of Vals(I), the local
state of the node moves from l to l′ and publishes on the
output topics to update its valuation to Vals(O).

5. C = {(N, t0), (N, t1), . . . } is the time-table representing
the times t0, t1, . . . at which the node N takes a step.
Intuitively, a node is a periodic input-output state-transition

system: at every time instant in its calendar, the node reads the
values in its input topics, updates its local state, and publishes
values on its output topics. Note that we are using the timeout-
based discrete event simulation [18] to model the periodic real-
time process as a standard transition system (more details in
Section IV). Each node specifies, using a time-table, the fixed
times at which it should be scheduled. For a periodic node with
period δ, the calendar will have entries (N, t0), (N, t1), . . .
such that ti+1 − ti = δ for all i. We refer to the components
of a node with name N ∈ N as I(N), O(N), T (N) and C(N)
respectively. We use δ(N) to refer to the period δ of node N .

B. Runtime Assurance Module

Let S represent the state space of the system, i.e., the set
of all possible configurations of the system (formally defined
in Section IV). We assume that the desired safety property
is given in the form of a subset φsafe ⊆ S (safe states). The
goal is to ensure using an RTA module that the system always
stays inside the safe set φsafe.
RTA Module. An RTA module is represented as a tuple
(Nac, Nsc, Ndm,∆, φsafe, φsafer) where:
1. Nac ∈ N is the advanced controller (AC) node,
2. Nsc ∈ N is the safe controller (SC) node,
3. Ndm ∈ N is the decision module (DM) node,
4. ∆ ∈ R+ represents the period of DM (δ(Nsc) = ∆),
5. φsafe ⊆ S is the desired safety property.
6. φsafer ⊆ φsafe is a stronger safety property.

Fig. 9. Decision Module Switching Logic for Module M

Given an RTA module M , Figure 9 presents the switching
logic that sets the mode of the RTA module given the current
state st of the system. The DM node evaluates this switching
logic once every ∆ time unit. When it runs, it first reads
the current state st and sets mode based on it. Note that
the set φsafer determines when it is safe to switch from Nsc
to Nac. ReachM (s, ∗, t) ⊆ S represents the set of all states
reachable in time [0, t] starting from the state s, using any
non-deterministic controller. We formally define Reach in
Section IV, informally, ReachM (st, ∗, 2∆) 6⊆ φsafe checks
that the system will remain inside φsafe in the next 2∆
time. This 2∆ look ahead is used to determine when it is
necessary to switch to using Nsc, in order to ensure that the
Nsc (δ(Nsc) ≤ ∆) will be executed at least once before
the system leaves φsafe. The SOTER compiler automatically
generates a unique DM node (Ndm) for each primitive RTA
module declaration.

For an RTA module (Nac, Nsc, Ndm,∆, φsafe, φsafer),
DM is the node (Ndm, Idm, ∅, Tdm, Cdm) where:
1. The local state is a binary variable mode : {AC,SC}.
2. Topics subscribed by DM include the topics subscribed by

either of the nodes; i.e., I(Nac) ⊆ Idm and I(Nsc) ⊆ Idm.
3. DM does not publish on any topic. But it updates a global

data structure that controls the outputs of AC and SC nodes
(more details in Section IV).

4. If (mode, Vals(Idm),mode′, ∅) ∈ Tdm, then the local state
moves from mode to mode′ based on the logic in Figure 9.

5. Cdm = {(Ndm, t0), (Ndm, t1), . . . } where ∀i|ti − ti+1| =
∆ represents the time-table of the node.
We are implicitly assuming that the topics Idm read by the

DM contain enough information to evaluate φsafe, φsafer, and
perform the reachability computation described in Section IV.
Given a declaration of the RTA module (Figure 7), the SOTER

compiler can automatically generate its DM.

5

C. Correctness of an RTA Module

Given a safe set φsafe, our goal is to prove that the RTA-
protected system always stays inside this safe set. We need the
RTA module to satisfy some additional conditions in order to
prove its safety.
Well-formed RTA Module. An RTA module M =
(Nac, Nsc, Ndm,∆, φsafe, φsafer) is said to be well-formed
if its components satisfy the following properties:
(P1a) The maximum period of Nac and Nsc is ∆, i.e.,
δ(Ndm) = ∆, δ(Nac) ≤ ∆, and δ(Nsc) ≤ ∆.
(P1b) The output topics of the Nac and Nsc nodes must be
same, i.e., O(Nac) = O(Nsc).
The safe controller, Nsc, must satisfy the following properties:
(P2a) (Safety) ReachM (φsafe, Nsc,∞) ⊆ φsafe. This prop-
erty ensures that if the system is in φsafe, then it will remain
in that region as long as we use Nsc.
(P2b) (Liveness) For every state s ∈ φsafe, there exists a
time T such that for all s′ ∈ ReachM (s,Nsc, T), we have
ReachM (s′, Nsc,∆) ⊆ φsafer. In words, from every state in
φsafe, after some finite time the system is guaranteed to stay
in φsafer for at least ∆ time.
(P3) ReachM (φsafer, ∗, 2∆) ⊆ φsafe. This condition says
that irrespective of the controller, if we start from a state
in φsafer, we will continue to remain in φsafe for 2∆ time
units. Note that this condition is stronger than the condition
φsafer ⊆ φsafe.

THEOREM 3.1 (RUNTIME ASSURANCE): For a well-
formed RTA module M , let φInv(mode, s) denote the
predicate (mode=SC ∧ s ∈ φsafe) ∨ (mode=AC ∧
ReachM (s, ∗,∆) ⊆ φsafe). If the initial state satisfies the
invariant φInv, then every state st reachable from s will also
satisfy the invariant φInv. (proof in [19])

The invariant established in Theorem 3.1 ensures that if the
assumptions of the theorem are satisfied, then all reachable
states are always contained in φsafe.

Remark 3.1 (Guarantee switching and avoid oscillation):
The liveness property (P2b) guarantees that the system will
definitely switch from Nsc to Nac (to maximize performance).
Property (P3) ensures that the system will stay in the AC mode
for some time and not switch back immediately to the SC
mode. Note that property (P2b) is not needed for Theorem 3.1.

Remark 3.2 (AC is a black-box): Our well-formedness
check does not involve proving anything about Nac. (P1a)
and (P1b) require that Nac samples at most as fast as Ndm
and generates the same outputs as Nsc, this is for smooth
transitioning between Nac and Nsc. We only need to reason
about Nsc, and we need to reason about all possible controller
actions (when reasoning with ReachM (s, ∗,∆)). The latter is
worst-case analysis, and includes Nac’s behavior. One could
restrict behaviors to Nac∪Nsc if we wanted to be more precise,
but then Nac would not be a black-box anymore.

Our formalism makes no assumptions about the code (be-
havior) of the AC node, except that we do need to know the set

of all possible output actions (required for doing worst-case
reachability analysis). Theorem 3.1 ensures safety as long as
all output actions generated by the code AC (like in Figure 4)
belong to the assumed set of all possible actions.

Definition 3.1 (Regions): Let R(φ, t) = {s | s ∈ φ ∧
ReachM (s, ∗, t) ⊆ φ}. For example, R(φsafe,∆) represents
the region or set of states in φsafe from which all reachable
states in time ∆ are still in φsafe.
Regions of operation of a well-formed RTA module. We
informally describe the behavior of an RTA protected module
by organizing the state space of the system into different
regions of operation (Figure 10). R1 represents the unsafe
region of operation for the system. Regions R2-R5 represent
the safe region and R3-R5 are the recoverable regions of the
state space. The region R3\R4 represents the switching control
region (from AC to SC) as the time to escape φsafe for the
states in this region is less than 2∆.

Fig. 10. Regions of Operation for an RTA
Module.

As the DM is guar-
anteed to sample the
state of the system
at least once in ∆
time (property (P1a)),
the DM is guaran-
teed to switch con-
trol from AC to SC
if the system remains
in the switching con-
trol region for at least
∆ time, which is the
case before system

can leave region R3. Consider the case where T1 represents a
trajectory of the system under the influence of AC, when the
system is in the switching control region the DM detects the
imminent danger and switches control to SC. (P1a) ensures
that Nsc takes control before the system escapes φsafe in
the next ∆ time. Property (P2a) ensures that the resultant
trajectory T2 of the system remains inside the safe region and
Property (P2b) ensures that the system eventually enters region
R5 where the control can be returned to AC for maximizing
the performance of the system. Property (P3) ensures that the
switch to AC is safe and the system will remain in AC mode
for at least ∆ time.

Remark 3.3 (Choosing φsafer and ∆): The value of ∆ is
critical for ensuring safe switching from AC to SC. It also de-
termines how conservatively the system behaves: for example,
large value of ∆ implies a large distance between boundaries
of region R4 and R5 during which SC (conservative) is in
control. Small values of ∆ and a larger R5 region (φsafer) can
help maximize the use of AC but might increase the chances
of switching between AC and SC as the region between the
boundaries of R4 and R5 is too small. Currently, we let the
programmer choose these values and leave the problem of
automatically finding the optimal values as future work.

From theory to practice: We are assuming here that the
checks in Property (P2) and Property (P3) can be performed.

6

The exact process for doing so is outside the scope of this
paper. The popular approach in control theory is to use
reachability analysis when designing an Nsc that always keeps
the system within a set of safe states. We used existing tools
like FastTrack [20] and the Level-Set Toolbox [21].

First, consider the problem of synthesizing the safe con-
troller Nsc for a given safe set φsafe. Nsc can be synthesized
using pre-existing safe control synthesis techniques. For exam-
ple, for the motion primitives, we can use a framework like
FaSTrack [20] for synthesis of low-level Nsc. Next, we note
that the DM needs to reason about the reachable set of states
for a system when either the controller is fixed to Nsc or is
nondeterministic. Again, there are several tools and techniques
for performing reachability computations [21]. One particular
concept that SOTER requires here is the notion of time to failure
less than 2∆ (ttf2∆). The function ttf2∆ : S × 2S → B,
given a state s ∈ S and a predicate φ ⊆ S returns true if
starting from s, the minimum time after which φ may not hold
is less than or equal to 2∆. The check Reach(st, ∗, 2∆) 6⊆
φsafe in Figure 9 can be equivalently described using the
ttf2∆ function as ttf2∆(st, φsafe). Let us revisit the boolean
functions PhiSafer_MPr and TTF2D_MPr from Figure 7,
these functions correspond to the checks st ∈ φsafer and
ttf2∆(st, φsafe) respectively.

IV. OPERATIONAL SEMANTICS OF AN RTA MODULE

In SOTER, a complex system is designed as a composition
of RTA modules. An RTA system is a set of composable
RTA modules. A set of modules S = {M0,M1, . . . ,Mn} are
composable if:
1. The nodes in all modules are disjoint, if N i

ac, N
i
sc, and

N i
dm represent the AC, SC and DM nodes of a module

Mi then, for all i, j s.t. i 6= j, {N i
ac, N

i
sc, N

i
dm} ∩

{N j
ac, N

j
sc, N

j
dm} = ∅.

2. The outputs of all modules are disjoint, for all i, j s.t. i 6= j,
O(Mi) ∩O(Mj) = ∅.
Note that only constraint for composition is that the outputs

(no constraints on inputs) must be disjoint as described by
traditional compositional frameworks like I/O Automata and
Reactive Modules [22], [23].
Composition. If RTA modules P and Q are composable then
their composition P ‖ Q is an RTA system consisting of the
two modules {P,Q}. Also, composition of two RTA systems
S1 and S2 is an RTA system S1∪S2, if all modules in S1∪S2
are composable.

THEOREM 4.1 (Compositional RTA System): Let S =
{M0, . . .Mn} be an RTA system. If for all i, Mi is a well-
formed RTA module satisfying the safety invariant φiInv then,
S satisfies the invariant

∧
i φ

i
Inv. (proof in [19])

Theorem 4.1 plays an important role in building the reliable
software stack in Figure 2c. Each RTA module individually
satisfies the respective safety invariant and their composition
helps establish the system-level specification.

We use dom(X) to refer to the domain of map X and
codom(X) to refer to the codomain of X . Given an RTA

system S = {M0, . . . ,Mn}, its attributes (used for defining
the operational semantics) can be inferred as follows:

1. ACNodes ∈ N → N is a map that binds a DM node n
to the particular AC node ACNodes[n] it controls, i.e., if
Mi ∈ S then (N i

dm, N
i
ac) ∈ ACNodes.

2. SCNodes ∈ N → N is a map that binds a DM node n
to the particular SC node SCNodes[n] it controls, i.e., if
Mi ∈ S then (N i

dm, N
i
sc) ∈ SCNodes.

3. Nodes ⊆ N represents the set of all nodes in the RTA
system, Nodes = dom(ACNodes) ∪ codom(ACNodes) ∪
codom(SCNodes).

4. OS ⊆ T represents the set of outputs of the RTA system,
OS =

⋃
n∈NodesO(n).

5. IS ⊆ T represents the set of inputs of the RTA system
(inputs from the environment), IS =

⋃
n∈Nodes I(n)\OS.

6. CS represents the calendar or time-table of the RTA
system, CS =

⋃
n∈Nodes C(n).

We refer to the attributes of a RTA system S as
ACNodes(S), SCNodes(S), Nodes(S), OS(S), IS(S),
and CS(S) respectively.

We next present the semantics of an RTA system. Note that
the semantics of an RTA module is the semantics of an RTA
system where the system is a singleton set. We use the timeout-
based discrete event simulation model [18] for modeling the
semantics of an RTA system. The calendar CS stores the
future times at which nodes in the RTA system must step.
Using a variable ct to store the current time and FN to store
the enabled nodes, we can model the real-time system as a
discrete transition system.
Configuration. A configuration of an RTA system is a tuple
(L,OE, ct, FN, Topics) where:

1. L ∈ Nodes→ L represents a map from a node to the local
state of that node.

2. OE ∈ N → B represents a map from a node to a
boolean value indicating whether the output of the node
is enabled or disabled. This is used for deciding whether
AC or SC should be in control. The domain of OE is
codom(ACNodes) ∪ codom(SCNodes).

3. ct ∈ R represents the current time.
4. FN ⊆ N represents the set of nodes that are remaining to

be fired at time ct.
5. Topics ∈ T → V is a map from a topic name to the value

stored at that topic, it represents the globally visible topics.
If X ⊆ T then Topics[X] represents a map from each
x ∈ X to Topics[x].

The initial configuration of any RTA system is represented
as (L0, OE0, ct0, FN0, T opics0) where: L0 maps each node
in its domain to default local state value l0 if the node is AC
or SC, otherwise, mode = SC for the DM node, OE0 maps
each SC node to true and AC node to false (this is to
ensure that each RTA module starts in SC mode), ct0 = 0,
FN0 = ∅, and Topics0 maps each topic name to its default
value v ∈ V .

We represent the operational semantics of a RTA system as

7

a transition relation over its configurations (Figure 11).

ITE(x, y, z) represents if x then y else z

(ENVIRONMENT-INPUT)
e ∈ IS v ∈ V

(L,OE, ct, FN, Topics)→ (L,OE, ct, FN, Topics[e 7→ v])

(DISCRETE-TIME-PROGRESS-STEP)
FN = ∅(dt1)

ct
′

= min({t | (x, t) ∈ CS, t > ct})(dt2)

FN
′

= {n | (n, ct′) ∈ CS}(dt3)

(L,OE, ct, FN, Topics)→ (L,OE, ct
′
, FN

′
, Topics)

(DM-STEP)
dm ∈ FN FN

′
= FN \ {dm} dm ∈ dom(ACNodes)

(l, {(STATE, st)}, l′, ∅) ∈ T (dm) ac = ACNodes[dm]

sc = SCNodes[dm] ITE(l
′

= AC, en = true, en = false)
(dm1)

(L,OE, ct, FN, Topics)→
(L[dm 7→ l

′
], OE[ac 7→ en, sc 7→ ¬en]

(dm2)
, ct, FN

′
, Topics)

(AC-OR-SC-STEP)
n ∈ FN FN

′
= FN \ {n}

n 6∈ dom(ACNodes) in = Topics[I(n)] (l, in, l
′
, out) ∈ T (n)

ITE(OE[n], Topics
′

= out ∪ Topics[T \ dom(out)], Topics′ = Topics)
(n1)

(L,OE, ct, FN, Topics)→ (L[n 7→ l
′
], OE, ct, FN

′
, Topics

′
)

Fig. 11. Semantics of an RTA System

There are two types of transitions: (1) discrete transi-
tions that are instantaneous and hence does not change the
current time, and (2) time-progress transitions that advance
time when no discrete transition is enabled. DM-STEP and
AC-OR-SC-STEP are the discrete transitions of the system.
ENVIRONMENT-INPUT transitions are triggered by the envi-
ronment and can happen at any time. It updates any of the
input topics e ∈ IS of the module to (e, v). DISCRETE-TIME-
PROGRESS-STEP represents the time-progress transitions that
can be executed when no discrete transitions are enabled (dt1).
It updates ct to the next time at which a discrete transition must
be executed (dt2). FN is updated to the set of nodes that are
enabled and must be executed (dt3) at the current time. DM-
STEP represents the transition of any of the DM nodes in the
module. The important operation performed by this transition
is to enable or disable the outputs of the AC and SC node
(dm2) based on its current mode (dm1). Finally, AC-OR-SC-
STEP represents the step of any AC or SC node in the module.
Note that the node updates the output topics only if its output
is enabled (based on OE(n) (n1)).
Reachability. Note that the state space S of an RTA system
is the set of all possible configurations. The set of all possible
reachable states of an RTA system is a set of configurations
that are reachable from the initial configuration using the tran-
sition system described in Figure 11. Since the environment
transitions are nondeterministic, potentially many states are
reachable even if the RTA modules are all deterministic.

Let ReachM (s,Nsc, t) ⊆ S represent the set of all states
of the RTA system S reachable in time [0, t] starting from
the state s, using only the controller SC node Nsc of the
RTA module M ∈ S. In other words, instead of switching
control between SC and AC of the RTA module M , the
DM always keeps SC node in control. ReachM (s, ∗, t) ⊆ S
represents the set of all states of the RTA system S reach-

able in time [0, t] starting from the state s, using only a
completely nondeterministic module instead of M ∈ S. In
other words, instead of module M , a module that generates
nondeterministic values on the output topics of M is used.
The notation Reach is naturally extended to a set of states:
ReachM (ψ, x, t) =

⋃
s∈ψ ReachM (s, x, t) is the set of all

states reachable in time [0, t] when starting from a state s ∈ ψ
using x. Note that, ReachM (ψ,Nsc, t) ⊆ ReachM (ψ, ∗, t).

We note that the definition of DM for an RTA module
M is sensitive to the choice of the environment for M .
Consequently, every attribute of M (such as well-formedness)
depends on the context in which M resides. We implicitly as-
sume that all definitions of M are based on a completely non-
deterministic context. All results hold for this interpretation,
but they also hold for any more constrained environment.

V. EVALUATION

We empirically evaluate the SOTER framework by building
an RTA-protected software stack (Figure 8) that satisfies
the safety invariant: φplan ∧ φmpr ∧ φbat. The goal of our
evaluation is twofold: (Goal1) Demonstrate how the SOTER

programming framework can be used for building the software
stack compositionally, where each component is guaranteed
to satisfy the component-level safety specification. Further,
we show how the programmable switching feature of an
RTA module can help maximize its performance. (Goal2)
Empirically validate using rigorous simulations that an RTA-
protected software stack can ensure the safety of the drone in
the presence of third-party (or machine learning) components,
where otherwise, the drone could have crashed.

The videos and other details corresponding to our exper-
iments on real drones are available on https://drona-org.
github.io/Drona/ .
SOTER tool chain. The SOTER tool-chain consists of three
components: the compiler, a C runtime and a backend sys-
tematic testing engine. The compiler first checks that all the
constructed RTA modules in the program are well-formed.
The compiler then converts the source-level syntax of a SOTER

program into C code. This code contains statically-defined
C array-of-structs and functions for the topics, nodes, and
functions declarations. The OE that controls the output of
each node is implemented as a shared-global data-structure
updated by all the DM in the program. The SOTER C runtime
executes the program according to the program’s operational
semantics by using the C representation of the nodes. The
periodic behavior of each node was implemented using OS
timers for our experiments, deploying the generated code on
real-time operating system is future work.

The compiler also generates C code that can be systemati-
cally explored by the backend testing engine. This part of the
SOTER framework is built on top of our previous work [24]
on the P [25], [26] language and the DRONA [27] robotics
framework. The systematic testing engine enumerates, in a
model-checking style, all possible executions of the program
by controlling the interleaving of nodes using an external
scheduler. Since a SOTER program is a multi-rate periodic

8

system, we use a bounded-asynchronous scheduler [28] to ex-
plore only those schedules that satisfy the bounded-asynchrony
semantics. When performing systematic testing of the robotics
software stack the third-party (untrusted) components that are
not implemented in SOTER are replaced by their abstractions
implemented in SOTER. The systematic testing backend details
is not provided as the focus of our paper is to demonstrate the
importance of runtime assurance after design-time analysis.
Experimental Setup For our experiments on the real drone
hardware, we use a 3DR Iris [13] drone that comes with
the open-source Pixhawk PX4 [12] autopilot. The simulation
results were done in the Gazebo [14] simulator environment
that has high fidelity models of Iris drone. For our simulations,
we execute the PX4 firmware in the loop.

A. RTA-Protected Safe Motion Primitives

A drone navigates in the 3D space by tracking trajectories
between waypoints computed by the motion planner. Given
the next waypoint, an appropriate motion primitive is used to
track the reference trajectory. Informally, a motion primitive
consists of a pre-computed control law (sequence of control
actions) that regulates the state of the drone as a function
of time. For our experiments in Figure 5, we used the motion
primitives provided by the PX4 autopilot [12] as our advanced
controller and found that it can lead to failures or collision.

To achieve RTA-protected motion primitive, there are three
essential steps: (1) Design of the safe controller Nsc; (2)
Designing the ttf2∆ function that controls switching from
the AC to SC for the motion primitive; (3) Programming the
switching from SC to AC and choosing an appropriate ∆ and
φsafer so that the system is not too conservative.

When designing the Nsc, it must satisfy the Property (P2),
where φsafe is the region not occupied by any obstacle.
Techniques from control theory, like reachability [29] can be
used for designing Nsc. We use the FaSTrack [20] tool for
generating a correct-by-construction controller for the drone
such that it satisfies all the properties required for a Nsc.

To design the switching condition from AC to SC, we need
to compute the ttf function that checks Reach(st, ∗, 2∆) 6⊆
φsafe (Figure 9) where st is the current state. Consider the 2D
representation of the workspace (Figure 2) in Figure 12b. The
obstacles (shown in grey) represent the φunsafe region and any
region outside is φsafe. Note that, Nsc can guarantee safety
for all locations in φsafe (P2). We can use the level set tool-
box [29] to compute the backward reachable set from φsafe
in 2∆ (shown in yellow), i.e., the set of states from where the
drone can leave φsafe (collide with obstacle) in 2∆. In order
to maximize the performance of the system, the RTA module
must switch from SC to AC after the system has recovered. In
our experiments, we choose φsafer = R(φsafe, 2∆) (shown
in green). Nsc is designed such that given φsafer, Property
(P2b) holds. DM transfers control to AC when it detects that
the drone is in φsafer, which is the backward reachable set
from φsafe in 2∆ time.

Choosing the period ∆ is an important design deci-
sion. Choosing a large ∆ can lead to overly-conservative

ttf2∆(st, φsafe) and φsafer. In other words, a large ∆ pushes
the switching boundaries further away from the obstacle. In
which case, a large part of the workspace is covered by red or
yellow region where SC (conservative controller) is in control.

We implemented the safe motion primitive as a RTA module
using the components described above. Figure 12a presents
one of the interesting trajectories where the SC takes control
multiple times and ensures the overall correctness of the
mission. The green tube inside the yellow tube represents the
φsafer region. The red dots represent the points where the DM
switches control to SC and the green dots represent the points
where the DM returns control back to the AC for optimizing
performance. The average time taken by the drone to go from
g1 to g4 is 10 secs when only the unsafe Nac is in control (can
lead to collisions), it is 14 secs when using the RTA protected
safe motion primitive, and 24 secs when only using the safe
controller. Hence, using RTA provides a “safe” middle ground
without sacrificing performance too much.

Figure 12b presents the 2D representation of our workspace
in Gazebo (Figure 2a). The dotted lines represent one of
the reference trajectories of the drone during the surveillance
mission. The trajectory in solid shows the trajectory of the
drone when using the RTA-protected software stack consisting
of the safe motion primitive. At N1 and N2, the Nsc takes
control and pushes the drone back into φsafer (green); and
returns control back to Nac. We observe that the Nac is in
control for the most part of the surveillance mission even in
cases when the drone deviates from the reference trajectory
(N3) but is still safe.

B. RTA-Protected Battery Safety

We want our software stack to provide the battery-safety
guarantee, that prioritizes safely landing the drone when the
battery charge falls below a threshold level.

We first augment the state of the drone with the current
battery charge, bt. Nac is a node that receives the current
motion plan from the planner and simply forwards it to the
motion primitives module. Nsc is a certified planner that safely
lands the drone from its current position. The set of all safe
states for the battery safety is given by, φsafe := bt > 0,
i.e., the drone is safe as long as the battery does not run out
of charge. We define φsafer := bt > 85%, i.e., the battery
charge is greater than 85%. Since the battery discharges at a
slower rate compared to changes in the position of the drone,
we define a larger ∆ for the battery RTA compared to the
motion primitive RTA.

To design the ttf2∆, we first define two terms: (1) Maxi-
mum battery charge required to land Tmax; and (2) Maximum
battery discharge in 2∆, cost∗. In general Tmax depends on
the current position of the drone. However, we approximate
Tmax as the battery required to land from the maximum height
attained by the drone safely. Although conservative, it is easy
to compute and can be done offline. To find cost∗, we first
define a function cost, which given the low-level control to
the drone and a time period, returns the amount of battery
the drone discharges by applying that control for the given

9

(a) RTA for Safe Motion Primitive (b) Safe Motion Primitives during Surveillance Mission (c) Battery Safety during Surveillance Mission

Fig. 12. Evaluation of RTA-Protected Drone Surveillance System built using SOTER

time period. Then, cost∗ = maxu cost(u, 2∆) is the maximum
discharge that occurs in time 2∆ across all possible controls,
u. We can now define ttf2∆(bt, φsafe) = bt−cost∗ < Tmax.
It guarantees that DM switches control to SC if the current
battery level may not be sufficient to safely land if AC were
to apply the worst possible control. DM returns control to
Nac once the drone is sufficiently charged. This is defined by
φsafer, which is chosen to assert that the battery has at least
85% charge before DM can hand control back to AC. The
resultant RTA module is well-formed and satisfies the battery
safety property φbat. We implemented the battery safety RTA
module with the components defined above. Figure 12c shows
a trajectory, where the battery falls below the safety threshold
causing DM to transfer control to Nsc which lands the drone.

C. RTA for Safe Motion Planner

We use OMPL [16], a third-party motion-planning library
that implements many state-of-the-art sampling-based motion
planning algorithms. We implemented the motion-planner for
our surveillance application using the RRT* [30] algorithm
from OMPL. We injected bugs into the implementation of
RRT* such that in some cases the generated motion plan can
collide with obstacles. We wrapped the motion-planner inside
an RTA module to ensure that the waypoints generated by
motion plan do not collide with an obstacle (violating φplan).

To summarize, we used the theory of well-formed RTA
module to construct three RTA modules: motion primitives,
battery safety, and motion planner. We leverage Theorem 3.1
to ensure that the modules individually satisfy the safety invari-
ants φmpr, φbat, and φplan respectively. The RTA-protected
software stack (Figure 2c) is a composition of the three
modules and using Theorem 4.1 we can guarantee that the
system satisfies the desired safety invariant φplan∧φmpr∧φbat.

D. Rigorous Simulation

To demonstrate that SOTER helps build robust robotics
systems we conducted rigorous stress testing of the RTA-
protected drone software stack. We conducted software in the
loop simulations for 104 hours, where an autonomous drone
is tasked to visit randomly generated surveillance points in the
Gazebo workspace repeatedly (Figure 2). In total, the drone

flew for approximately 1505K meters in the 104 hours of
simulation. We found that there were 109 disengagements,
these are cases where one of the SC nodes took control from
AC and avoided a potential failure. There were 34 crashes
during the experiments, and we found that in all these cases
the problem was that the DM node did switch control, but the
SC node was not scheduled in time for the system to recover.
We believe that these crashes can also be avoided by running
the software stack on a real-time operating system. We also
found that as the RTA module is designed to return the control
to AC after recovering the system, during our simulations, AC
nodes were in control for > 96% of the time. Thus, safety is
ensured without sacrificing the overall performance.

VI. RELATED WORK

We next situate SOTER with related techniques for building
robotics systems with high-assurance of correctness [31].
Reactive synthesis. There is increasing interest towards
synthesizing reactive robotics controllers from temporal
logic [32], [33], [34], [35]. Tools like TuLip [36], BIP [37],
[38], and LTLMoP [39] construct a finite transition system
that serves as an abstract model of the physical system and
synthesizes a strategy, represented by a finite state automaton,
satisfying the given high-level temporal specification. Though
the generated strategy is guaranteed to be safe in the abstract
model of the environment, this approach has limitations: (1)
there is gap between the abstract models of the system and its
actual behavior in the physical world; (2) there is gap between
the generated strategy state-machine and its actual software
implementation that interacts with the low-level controllers;
and finally (3) the synthesis approach scale poorly both with
the complexity of the mission and the size of the workspace.
Recent tools such as SMC [35] generate both high-level and
low-level plans, but still need additional work to translate these
plans into reliable software on top of robotics platforms.
Reachability analysis and Simulation-based falsification.
Reachability analysis tools [21], [40], [41] have been used to
verify robotics systems modeled as hybrid systems. Differ-
ently from our work, reachability methods require an explicit
representation of the robot dynamics and often suffer from

10

scalability issues when the system has a large number of
discrete states. Also, the analysis is performed using the
models of the system, and hence, there is a gap between the
models being verified and their implementation. Simulation-
based tools for the falsification of CPS models (e.g., [42])
are more scalable than reachability methods, but generally,
they do not provide any formal guarantees. In this approach,
the entire robotics software stack is tested by simulating it
in a loop with a high-fidelity model of the robot and hence,
this approach does not suffer from the gap between model
and implementation described in the previous approaches.
However, a challenge to achieving scalable coverage comes
from the considerable time it can take for simulations.
Runtime Verification and Assurance. Runtime verification
has been applied to robotics [43], [44], [45], [46], [47], [48],
[49] where online monitors are used to check the correct-
ness (safety) of the robot at runtime. Schierman et al. [3]
investigated how the RTA framework can be used at different
levels of the software stack of an unmanned aircraft system.
In a more recent work [10], Schierman et. al. proposed a
component-based simplex architecture (CBSA) that combines
assume-guarantee contracts with RTA for assuring the runtime
safety of component-based cyber-physical systems. In [6], the
authors apply simplex approach for sandboxing cyber-physical
systems and present automatic reachability based approaches
for inferring switching conditions. The idea of using an
advanced controller (AC) under nominal conditions; while at
the boundaries, using optimal safe control (SC) to maintain
safety has also been used in [50] for operating quadrotors in
the real world. In [51] the authors use a switching architecture
([52]) to switch between a nominal safety model and learned
performance model to synthesize policies for a quadrotor to
follow a trajectory. Recently, ModelPlex [53] combines offline
verification of CPS models with runtime validation of system
executions for compliance with the model to build correct
by construction runtime monitors which provides correctness
guarantees for CPS executions at runtime. Note that most prior
applications of RTA do not provide high-level programming
language support for constructing provably-safe RTA systems
in a compositional fashion while designing for timing and
communication behavior of such systems. They are all in-
stances of using RTA as a design methodology for building
reliable systems in the presence of untrusted components.
SOTER approach. In order to ease the construction of RTA
systems, there is a need for a general programming framework
that supports run-time assurance principles and also considers
implementation aspects such as timing and communication.
Our approach is to provide a high-level language to (1) enable
programmers to implement and specify the complex reactive
system, (2) leverage advances in scalable systematic-testing
techniques for validation of the actual implementation of the
software, and (3) provide language support for runtime assur-
ance to ensure safety in the real physical world. We formalize
a generic runtime assurance architecture and implement it
in programming framework for mobile robotic systems. We
demonstrate the efficacy of SOTER framework by building

a real-world drone software stack and conducted rigorous
experiments to demonstrate safety of autonomous robots in
the presence of untrusted components. Also, note that most of
the work done in the context of runtime assurance techniques
provide solutions where the switching logic in DM is only
configured to switch the control from AC to SC. In our
architecture, the programmer can also specify the condition
under which to transfer control back to AC, and maximize
the use of AC during a mission.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have presented SOTER, a new run-time as-
surance (RTA) framework for programming safe robotics sys-
tems. In contrast with other RTA frameworks, SOTER provides
(1) a programming language for modular implementation of
safe robotics systems by combining each advanced controller
with a safe counterpart; (2) theoretical results showing how to
safely switch between advanced and safe controllers, and (3)
experimental results demonstrating SOTER on drone platforms
in both simulation and in hardware.

Combining multiple RTA modules that have coordinated
(DM) switching is non-trivial. A system may have multiple
components with different guarantees. Our philosophy in this
paper is that each component must then use an RTA instance
to assure its guarantees, as this decomposition can help in
building complex systems. Let’s consider a system consisting
of two RTA modules M1 and M2, when M1 switches modes
(AC to SC), it may require M2 to switch as well so that it
can use the guarantee that M2’s new controller (SC) provides.
This kind of coordinated switching complicates the overall
architecture but is an interesting future work. We also plan
to extend the experimental evaluation for a broader class of
robotics platforms (e.g., multi-robot systems), safety specifi-
cations (e.g., probabilistic properties), and unknown environ-
ments (e.g., dynamic obstacles). Altogether, such extensions
will enable us to make further progress towards the goal of
verified intelligent autonomous systems [1].

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers and our shep-
herd Mohamed Kaaniche for their thoughtful comments. We
also thank Daniel Fremont for his valuable feedback and
suggested improvements on the previous drafts of the paper.
This work was supported in part by the TerraSwarm Research
Center, one of six centers supported by the STARnet phase of
the Focus Center Research Program (FCRP) a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA, by the DARPA BRASS and Assured Autonomy
programs, by NSF grants 1545126 (VeHICaL), 1739816, and
1837132, by Berkeley Deep Drive, and by Toyota under the
iCyPhy center.

REFERENCES

[1] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards Verified Artificial
Intelligence,” ArXiv e-prints, July 2016.

[2] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18,
no. 4, pp. 20–28, July 2001.

11

[3] J. D. Schierman, M. D. DeVore, N. D. Richards, N. Gandhi, J. K.
Cooper, K. R. Horneman, S. Stoller, and S. Smolka, “Runtime assurance
framework development for highly adaptive flight control systems,”
Barron Associates, Inc. Charlottesville, Tech. Rep., 2015.

[4] D. Seto, E. Ferriera, and T. Marz, “Case study: Development of a
baseline controller for automatic landing of an f-16 aircraft using
linear matrix inequalities (lmis),” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-99-
TR-020, 2000. [Online]. Available: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=13489

[5] D. Phan, J. Yang, R. Grosu, S. A. Smolka, and S. D. Stoller,
“Collision avoidance for mobile robots with limited sensing and limited
information about moving obstacles,” Formal Methods in System
Design, vol. 51, no. 1, pp. 62–86, Aug 2017. [Online]. Available:
https://doi.org/10.1007/s10703-016-0265-4

[6] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing
controllers for cyber-physical systems,” in 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, April 2011, pp.
3–12.

[7] M. Clark, X. Koutsoukos, R. Kumar, I. Lee, G. Pappas, L. Pike, J. Porter,
and O. Sokolsky, “Study on run time assurance for complex cyber
physical systems,” Air Force Research Lab, Tech. Rep. ADA585474,
April 2013, available at https://leepike.github.io/pubs/RTA-CPS.pdf.

[8] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in 2009 15th IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2009, pp. 99–107.

[9] B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer,
“Veriphy: Verified controller executables from verified cyber-physical
system models,” SIGPLAN Not., vol. 53, no. 4, pp. 617–630, Jun.
2018. [Online]. Available: http://doi.acm.org/10.1145/3296979.3192406

[10] D. Phan, J. Yang, M. Clark, R. Grosu, J. D. Schierman, S. A. Smolka,
and S. D. Stoller, “A component-based simplex architecture for high-
assurance cyber-physical systems,” arXiv preprint arXiv:1704.04759,
2017.

[11] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[12] “PX4 Autopilot,” https://pixhawk.org/, 2017.
[13] “3D Robotics,” https://3dr.com/, 2017.
[14] N. Koenig and A. Howard, “Design and use paradigms for gazebo,

an open-source multi-robot simulator,” in In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[16] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, 2012.

[17] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[18] B. Dutertre and M. Sorea, “Modeling and verification of a fault-tolerant
real-time startup protocol using calendar automata,” in Formal Tech-
niques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
Y. Lakhnech and S. Yovine, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 199–214.

[19] A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, and A. Tiwari, “Soter:
programming safe robotics system using runtime assurance,” arXiv
preprint arXiv:1808.07921, 2018.

[20] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J.
Tomlin, “FaSTrack: A modular framework for fast and guaranteed safe
motion planning,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), Dec 2017, pp. 1517–1522.

[21] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebel-
tel, R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scal-
able verification of hybrid systems,” in Computer Aided Verification,
G. Gopalakrishnan and S. Qadeer, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 379–395.

[22] R. Alur and T. A. Henzinger, “Reactive modules,” Formal methods in
system design, vol. 15, no. 1, pp. 7–48, 1999.

[23] N. A. Lynch and M. R. Tuttle, “An introduction to input/output au-
tomata,” 1988.

[24] A. Desai, S. Qadeer, and S. A. Seshia, “Programming safe robotics
systems: Challenges and advances,” in Leveraging Applications of
Formal Methods, Verification and Validation. Verification - 8th

International Symposium, ISoLA 2018, Limassol, Cyprus, November
5-9, 2018, Proceedings, Part II, 2018, pp. 103–119. [Online]. Available:
https://doi.org/10.1007/978-3-030-03421-4\ 8

[25] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey,
“P: Safe asynchronous event-driven programming,” in Programming
Language Design and Implementation (PLDI), 2013.

[26] A. Desai, A. Phanishayee, S. Qadeer, and S. A. Seshia, “Compositional
programming and testing of dynamic distributed systems,” Proceedings
of the ACM on Programming Languages (PACMPL) (OOPSLA), 2018.

[27] A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “DRONA:
A framework for safe distributed mobile robotics,” in International
Conference on Cyber-Physical Systems (ICCPS), 2017.

[28] J. Fisher, T. A. Henzinger, M. Mateescu, and N. Piterman, “Bounded
asynchrony: Concurrency for modeling cell-cell interactions,” in Formal
Methods in Systems Biology, J. Fisher, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 17–32.

[29] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp.
947–957, July 2005.

[30] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911406761

[31] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced
robots: A survey,” Robotics and Autonomous Systems, vol. 94, pp. 43
– 52, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0921889016300768

[32] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic based
reactive mission and motion planning,” IEEE Transactions on Robotics,
2009.

[33] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, 2009.

[34] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe ltl specifications.” IEEE, 2014, pp. 1525–1532.

[35] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli,
S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear temporal logic
motion planning for teams of underactuated robots using satisfiability
modulo convex programming,” in 56th IEEE Annual Conference on
Decision and Control (CDC), 2017, pp. 1132–1137.

[36] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic plan-
ning,” in International Conference on Hybrid Systems: Computation and
Control (HSCC), 2011.

[37] S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A verifiable and
correct-by-construction controller for robot functional levels,” arXiv
preprint arXiv:1309.0442, 2013.

[38] T. Abdellatif, S. Bensalem, J. Combaz, L. de Silva, and F. Ingrand,
“Rigorous design of robot software: A formal component-based
approach,” Robotics and Autonomous Systems, vol. 60, no. 12, pp.
1563 – 1578, 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921889012001510

[39] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2010.

[40] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An ana-
lyzer for non-linear hybrid systems,” in Computer Aided Verification,
N. Sharygina and H. Veith, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 258–263.

[41] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: a
verification tool for stateflow models,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 68–82.

[42] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” in NASA
Formal Methods - 9th International Symposium, NFM 2017, Moffett
Field, CA, USA, May 16-18, 2017, Proceedings, 2017, pp. 357–372.
[Online]. Available: https://doi.org/10.1007/978-3-319-57288-8\ 26

[43] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics
and Autonomous Systems, vol. 53, no. 2, pp. 73 – 88, 2005.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S092188900500134X

12

[44] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking and
runtime verification for safe robotics,” in Runtime Verification, S. Lahiri
and G. Reger, Eds. Cham: Springer International Publishing, 2017, pp.
172–189.

[45] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Formal
Methods in System Design, vol. 51, no. 1, pp. 5–30, Aug 2017.
[Online]. Available: https://doi.org/10.1007/s10703-017-0286-7

[46] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “ROSRV: Runtime verification for robots,” in Runtime
Verification, B. Bonakdarpour and S. A. Smolka, Eds. Cham: Springer
International Publishing, 2014, pp. 247–254.

[47] L. Masson, J. Guiochet, H. Waeselynck, K. Cabrera, S. Cassel, and
M. Törngren, “Tuning permissiveness of active safety monitors for
autonomous systems,” in NASA Formal Methods, A. Dutle, C. Muñoz,
and A. Narkawicz, Eds. Cham: Springer International Publishing, 2018,
pp. 333–348.

[48] H. X. Li and B. C. Williams, “Generative planning for hybrid systems
based on flow tubes,” in Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling, ICAPS 2008,
Sydney, Australia, September 14-18, 2008, 2008, pp. 206–213. [Online].
Available: http://www.aaai.org/Library/ICAPS/2008/icaps08-026.php

[49] A. G. Hofmann and B. C. Williams, “Robust execution of temporally
flexible plans for bipedal walking devices,” in Proceedings of
the Sixteenth International Conference on Automated Planning and
Scheduling, ICAPS 2006, Cumbria, UK, June 6-10, 2006, 2006, pp.
386–389. [Online]. Available: http://www.aaai.org/Library/ICAPS/2006/
icaps06-047.php

[50] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with gaussian
processes,” in 53rd IEEE Conference on Decision and Control, Dec
2014, pp. 1424–1431.

[51] A. Aswani, P. Bouffard, and C. Tomlin, “Extensions of learning-
based model predictive control for real-time application to a quadrotor
helicopter,” in 2012 American Control Conference (ACC). IEEE, 2012,
pp. 4661–4666.

[52] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, May 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.automatica.2013.02.003

[53] S. Mitsch and A. Platzer, “Modelplex: verified runtime validation of
verified cyber-physical system models,” Formal Methods in System
Design, vol. 49, no. 1, pp. 33–74, Oct 2016. [Online]. Available:
https://doi.org/10.1007/s10703-016-0241-z

13

