Title
Consistence of spin fluctuations and superconductivity in UPt3

Permalink
https://escholarship.org/uc/item/78g990t0

Journal
Physica B+C, 127(1-3)

ISSN
0378-4363

Authors
Stewart, GR
Fisk, Z
Willis, JO
et al.

Publication Date
1984-12-01

DOI
10.1016/s0378-4363(84)80073-x

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
CORRELATION OF SPIN FLUCTUATIONS AND SUPERCONDUCTIVITY IN UPt3

G.R. STIRWART, Z. FISK, J.O. WILLIS and J.L. SMITH
Molernal Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Heat capacity measurements on the heavy fermion superconductor UPt3 in an 11 T magnetic field show that above approximately 7 K, UPt3 behaves like the spin fluctuation compounds UA2 and TiBe2. Magnetoresistance measurements on UPt3 at 1.3 K also yield results similar to UA2, in contrast to the other heavy fermion superconductors, CeCu2Si2 and UBe11, which show a magnetoresistance effect of opposite sign. Thus, experimental results permit continued speculation of triplet superconductivity in UPt3.

Since our report on the superconductivity of UPt3 [1], which was already known to be a candidate for spin fluctuations [2], other workers have confirmed those results and measured the superconducting critical field [3, 4, 5]. Interest is high in UPt3 because it has joined CeCu2Si2 and UBe11 in the small family of heavy fermion superconductors [6], which have electron mass enhancements of about 200, but also because of its differences from them, particularly the T3 ln T term in its heat capacity. Speculation is rampant on the possibility of a triplet paired superconducting state in all of these compounds [7, 8]. For a recent review of heavy fermion systems, see ref. [9]. However, UPt3 is unique in the similarity of its heat capacity to that of 3He at much lower temperatures, which may make it the most likely candidate for p-state pairing [10]. Whatever the outcome of this particular speculation, the extreme properties of these compounds will remain a source of controversy for a while. For this reason we report here on an extension of our earlier heat capacity work [1] to heat capacity in an applied magnetic field of 11 T and on magnetoresistance measurements.

Fig. 1 shows the effect of the applied magnetic field on the heat capacity of UPt3. Above about 7 K, the data are consistent with the point of view that spin fluctuations are depressed by the field. This is the same as the results on UA2 [11] and TiBe2 [12], which are the only previously known compounds that showed a T3 ln T term in their heat capacities. At lower temperatures the two data sets cross. It is not clear how this might be interpreted. However, two points should be made. In the neighborhood of 7 K the thermal energy and the magnetic energy of the electrons in 11 T are comparable, which obscures a spin-fluctuation interpretation. Second, until there are candidates for a proper description (including anisotropy) of this Fermi liquid state that the heat capacity shows is developing below about 10 K, we can only say that it is not unexpected to observe that a field modifies that state.

Fig. 2 shows the effect of applied magnetic fields on the electrical resistivity of UPt3 at 1.2 K as measured with a standard 4-lead, ac technique. As in the heat capacity case, there is little theoretical guidance, but the data may be compared to those for related compounds. For UA2 the power law for the field has exponents of 1.45 (2 T to 15 T) and 1.3 (above 15 T) [13]. We measured an exponent of 1.25 (2 T to 11 T) which suggests either that UPt3 has a larger paramagnon contribution to the resistivity than does UA2 or that there are band structure effects. In contrast, the other heavy fermion superconductors show a negative magnetoresistance. For the same temperature and field UBe11 shows a -34% change and CeCu2Si2 shows approximately a -4.5% change [14] compared to the UPt3 results in fig. 2 of +41%. So magnetoresistance suggests that UPt3 is more like the other spin fluctuators than like the other heavy fermion superconductors.

The results shown in the figures confirm that UPt3 is unique amongst spin fluctuators and heavy fermion superconductors in that it is a member of both small groups. Because these
fluctuators are considered to show a ferromagnetic spin coupling, the experimental data suggest that UPt₃ remains the best current candidate for triplet superconductivity.

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy.

References