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Hybrid Orbital and Numerical Grid Representation for Electronic Continuum

Processes: Double Photoionization of Atomic Beryllium
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1Lawrence Berkeley National Laboratory, Chemical Sciences,

and Ultrafast X-ray Science Laboratory, Berkeley, CA 94720 USA
2Departments of Applied Science and Chemistry,

University of California, Davis, CA 95616 USA

(Dated: April 20, 2010)

A general approach for ab initio calculations of electronic continuum processes is described in
which the many-electron wave function is expanded using a combination of orbitals at short range
and the finite-element discrete variable representation(FEM-DVR) at larger distances. The orbital
portion of the basis allows the efficient construction of many-electron configurations in which some
of the electrons are bound, but because the orbitals are constructed from an underlying FEM-
DVR grid, the calculation of two-electron integrals retains the efficiency of the primitive FEM-DVR
approach. As an example, double photoionization of beryllium is treated in a calculation in which
the 1s2 core is frozen. This approach extends the use of exterior complex scaling (ECS) successfully
applied to helium and H2 to calculations with two active electrons on more complicated targets.
Integrated, energy-differential and triply-differential cross sections are exhibited, and the results
agree well with other theoretical investigations.

I. INTRODUCTION

Numerical grid methods combining the Finite-Element
Discrete Variable Representation (FEM-DVR) approach
with Exterior Complex Scaling (ECS) [1] have allowed
effectively exact calculations of electron impact ioniza-
tion [2] and double photoionization cross sections for
two electron atomic [3] and molecular targets [4] over
the last decade. The FEM-DVR approach has formed
the basis of numerically accurate solutions of the time-
dependent Schrödinger equation for such systems under
the influence of ultrashort radiation pulses [5–7]. On the
other hand the success of atomic and molecular electronic
structure calculations on many-electron systems depends
on expressing those wave functions in terms of configu-
rations with orthogonal orbitals. The configuration in-
teraction (CI) method and its variants are orbital based,
and that is the standard approach and the natural lan-
guage of electronic structure theory.

Here we describe a method that has the advantages
of both approaches. It exploits the finite element as-
pect of the FEM-DVR to allow the construction of or-
bitals from only the DVR polynomial basis in the first
few finite elements, to describe electrons in bound or-
bitals. The remainder of DVR grid representation is left
untouched and describes the continuum portions of the
wave function. We have previously demonstrated that
a particular advantage of the DVR approach is that the
two-electron integrals in the DVR basis are given by sim-
ple formulas and are diagonal in the two pairs of indices
that label them. That fact results in remarkable sim-
plifications even when the DVR basis is transformed to
atomic or molecular orbitals, as we will discuss below.

As a demonstration of this numerical method we
choose the relatively simple case of double photoioniza-
tion (DPI) of the beryllium atom in which the orbital in

the 1s2 core remains frozen. Since the 1s2 core electrons
lie energetically far below the 2s valence shell and the
mean value 〈r〉 of the 1s and 2s orbitals are very differ-
ent [8], correlation effects between electrons occupying
different shells are likely to be minimal. Thus, a rea-
sonable approximation to double photoionization from
beryllium allows for the valence electrons to be corre-
lated separately from the closed-shell core electrons, and
recent theoretical investigations on Be that have followed
this approach to produce fully differential DPI cross sec-
tions include convergent-close coupling (CCC) [9], time-
dependent close coupling (TDCC) [10], and the hyper-
spherical R-matrix method with semiclassical outgoing
waves (HRM-SOW) [11]. Integral DPI cross sections
have also been computed more recently using B-spline
basis methods [12] as well as with the R-matrix-with-
pseudostates (RMPS) method [13]. Each of these meth-
ods has been modified to account for the presence of the
core electrons in some way in order to apply these tech-
niques to beryllium. Only limited experimental investi-
gations of DPI from beryllium have been conducted [14–
16].

In this work, we calculate cross sections for DPI from
beryllium at 20 eV above the double ionization thresh-
old, and compare the resulting triply differential cross
sections with those of other theoretical approaches using
different core potential approximations and methods of
solving DPI problem. In Section II we describe the hybrid
orbital and FEM-DVR basis numerical method and the
resulting implementation of the ECS approach to solving
the double ionization problem. The method used previ-
ously in ECS calculations on two-electron systems [2, 3] of
extracting the amplitudes pertaining to double ionization
from the scattering wave function must be modified in the
presence of the field of the frozen core, and these details
are also given in Section II. Section III presents the calcu-
lated cross sections for DPI from beryllium, including the
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integral, energy-differential, and triply-differential cross
sections. Finally, some brief conclusions and future work
are discussed in Sec. IV.

II. THEORETICAL APPROACH

The amplitude for double photoionization is con-
structed from a solution of the driven equation for the
first-order wave function that is obtained when the radi-
ation field is treated as a perturbation:

(E0 + ω −H)Ψ+
sc = (ǫ · µ)Ψ0 , (1)

where H is the atomic Hamiltonian, ω is the photon fre-
quency, ǫ is the photon polarization vector, µ is the elec-
tronic dipole operator and Ψ0 is the wave function de-
scribing the initial state of the atom with energy E0.
Equation (1) must be solved with outgoing-wave bound-
ary conditions. Those boundary are rigorously applied,
as discussed for example in [2], by transforming the ra-
dial coordinates of the electrons according to the exte-
rior complex scaling (ECS) transformation, which scales
those coordinates by a phase factor beyond some radius
R0:

r →

{
r, r ≤ R0

R0 + (r −R0)e
iθ, > R0.

(2)

This transformation causes wave functions with pure out-
going boundary conditions to decay exponentially beyond
the exterior complex scaling radius R0, thereby allowing
the problem to be treated on a finite grid while preserving
the true physical wave function inside of R0.

For two-electron problems we can solve Eq.(1) using an
FEM-DVR description of the radial motion of the elec-
trons (a radial DVR basis of functions χi(r)) and a spher-
ical harmonic basis, Ylm(Ω), to describe angular motion.
The resulting description of electron-electron repulsion
in this product basis is remarkably simple and efficient,
because the radial two-electron integrals, as we shall see
explicitly below, are diagonal in pairs of their four in-
dices. That is the central reason why full CI in this large
product basis is a practical computational approach to
double ionization problems.

To treat double continuum processes in a many-
electron atom one would ideally like to expand the wave
function in configurations in which two electrons are rep-
resented by the FEM-DVR product basis, and the rest
are represented by atomic orbitals. For a four-electron
system, for example, we would have (suppressing the spin
functions) an expansion of the form,

Ψ =
∑

n,i,j

Cn,i,j

∣∣ϕn1
(1)ϕn2

(2)χi(r3)Ylimi
(Ω3)χj(r4)Yljmj

(Ω4)
∣∣ .
(3)

Immediately the question arises of how to construct a
combined orbital and DVR basis such that all functions
are mutually orthogonal, and how to perform the result-
ing two-electron integrals between the orbital and DVR
basis functions. That question is present even if the same
set of orbitals, {ϕni

}, appears in all the configurations,
as would be the case in a frozen core calculation, and
without loss of generality that is the case we treat here.

A. Hybrid orbital and FEM-DVR representation

of the core and valence electrons

Treating an atomic problem with two active electrons
and the rest occupying frozen orbitals requires a pro-
cedure to account for the interaction of the two valence
electrons with the core. Two methods that have been pre-
viously utilized for double photoionization of beryllium
include: (1) model potentials that represent the combined
effects of core polarization and nuclear screening with a
semi-empirical local potential and and (2) pseudopoten-

tials which alter the one-electron residual ion (core + 1
electron) orbitals to force orthogonality back to the core
orbitals. A more detailed description of the advantages
and disadvantages of these two frameworks can be found
in ref. [11]. Briefly, the limitations on model potentials
are the need to remove contributions to the wave function
from unphysical states (see below) while the limitation of
pseudopotentials is the arbitrary but incorrect behavior
of the node-less valence orbital in the core region result-
ing in inaccurate cross sections calculated in gauges that
emphasize the region near the nucleus.

The present treatment uses neither model nor pseu-
dopotentials, but rather constrains the core electrons to
doubly occupy a set of orbitals, {ϕo}, and then prop-
erly accounts for direct and exchange interactions with
the valence electrons. The doubly occupied orbitals are
obtained from a Hartree-Fock calculation on the neutral
target atom and then reexpanded in an FEM-DVR ba-
sis, using only the DVR functions in the first two or three
finite elements. The idea is sketched in Fig. 1.

In the case of beryllium there is only one such orbital
and we note in passing that the it is quite insensitive to
whether it is derived from a Hartree-Fock treatment of
Be++, Be+ or neutral Be, indicating that the properties
of the 1s2 closed shell are dominated by the nuclear at-
traction and insignificantly polarized by the 2s orbital
penetration into the core region.

With the orbital restriction on the core electrons, the
effective Hamiltonian for the two active electrons can be
written (atomic units throughout unless otherwise indi-
cated):

H = h(1) + h(2) +
1

r12
, (4)

where 1/r12 is the Coulomb repulsion between the active
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FIG. 1: (Color online) Sketch of hybrid basis constructed
from DVR-based orbitals and the primitive Finite-Element
Discrete Variable Representation

electrons and the one-body operator h is

h = T −
Z

r
+

∑

o

2Jo −Ko, (5)

where T is the one-electron kinetic energy operator, Z/r
the nuclear attraction (with Z = 4 in the present case)
and 2Jo and Ko are the direct and exchange components
of the core interaction with the valence electrons, respec-
tively. Explicitly, the Coulomb operator for orbital ϕo is
given by

Jo(r) =

∫
|ϕo(r

′)|
2

|r − r′|
dr′ , (6)

while the non-local exchange operator acting on an or-
bital χ(r) is

Ko(r)χ(r) = ϕo(r)

∫
ϕ∗

o(r
′)χ(r′)

|r − r′|
dr′ . (7)

In our previous studies of DPI in helium [17] and
H− [3], the two-electron Hamiltonian was diagonalized
in a product basis of primitive FEM-DVR radial func-
tions times spherical harmonics for each electron, which
gives a full configuration-interaction (CI) treatment of
the problem in the underlying basis. In the present case,
however, using an unconstrained primitive basis with the
effective two-electron Hamiltonian in Eq.(5) would lead
to the appearance of unphysical (bosonic) states that re-
sult from over-population of the doubly occupied orbitals
by more than two electrons and so the formulation must
be modified to impose strict orthogonality between the
core and valence electrons.

An obvious way to accomplish this would be to carry
out the calculation in an atomic orbital (AO) basis, where
the AOs are expressed as linear combinations of DVR
functions, and simply exclude the doubly occupied core
orbitals from all configurations. Such an approach, how-
ever, fails to take advantage of a key simplification in the
calculation of two-electron integrals when using FEM-
DVR basis functions, namely, as mentioned above, that
the radial portion of the electron-electron repulsion ma-

trix elements are diagonal in the DVR index of each elec-
tron [2], i.e.

〈ij|Vλ|kl〉 ≡

∫
drdr′χi(r1)χj(r1)

rλ
<

rλ+1
>

χk(r2)χl(r2)

= δijδklf(i, l) ,

(8)

when χ(r) is a DVR function and f(i, l) is given in [2].
In the present context of a calculation on Be, we can
use primitive DVRs for all basis functions with ℓ 6= 0,
since there are no restrictions in those symmetries. In
general for closed shell cores, we can use primitive DVRs
for all the angular momenta not appearing in doubly oc-
cupied core orbitals. In the case of Be, for the ℓ = 0
functions, we first make use of the fact that the 1s or-
bital is non-zero only over a limited range near the nu-
cleus, so we can choose a finite element boundary beyond
which φ1s is effectively zero and form a set of orthonor-
mal s-type AOs φα using only primitive DVR functions
(χi, i = 1, · · · ,M) that lie within the relevant range,

ϕα(r) =

M∑

j=1

Uαjχj(r). (9)

as indicated in Fig. 1. Because the DVR functions are
orthogonal the orbitals created out of the first M DVR
functions by this unitary transformation are not only or-
thogonal to each other they are orthogonal to all the
remaining primitive FEM-DVR functions in the basis.

〈ϕα|χk〉 = 0 k > M (10)

If we consider, for example, two-electron matrix ele-
ments where all four basis functions have ℓ = 0, then
they can be grouped into six classes:

1. 〈χiχj ||χkχl〉 – all primitive DVR,

2. 〈ϕαϕβ ||ϕγϕδ〉 – four orbitals,

3. 〈 χiχj ||φαϕβ〉 – two orbitals,

4. 〈χiχj ||χkϕα〉 – one orbital,

5. 〈ϕαχi||ϕβϕγ〉 – three orbitals

6. 〈ϕαχi||ϕβχj〉 – two orbitals.

Classes (4)-(6) are zero because they pair an atomic or-
bital, with index less than or equal to M, with a primitive
DVR which, by construction, has index greater than M.
The class (1) matrix elements are those given by Eq. (8).
The class (2) integrals are written, using Eqs. (8) and
(9),

〈ϕαϕβ ||ϕγϕδ〉 =
M∑

i,j=1

UαiUβif(i, j)UγjUδj . (11)

Because the primitive integrals are diagonal in the DVR
indices for each electron, there are only two sums needed



4

to evaluate the class (2) matrix elements directly. The
class (3) matrix elements involve only a single sum in
their evaluation. Matrix elements involving both s-type
and higher ℓ-type orbitals can be similarly calculated
and never involve sums over more than two indices.
The “four-index transformation” familiar from electronic
structure theory is reduced in this approach to an effec-
tive two-index transformation.

These simplifications are a result of the compact sup-
port of the primitive DVR polynomial basis functions,
χi(r), within the finite element boundaries and will lead
to an efficient CI representation of many electron systems
in which two electrons can be in the continuum.

B. Calculation of the double photoionization

amplitudes

The scattered wave (as well as the initial target state)
is expanded in a product basis formed from FEM-DVR
functions and spherical harmonics:

Ψ+
sc =

∑

l1m1

∑

l2m2

ψl1m1,l2m2
(r1, r2)

r1r2
Yl1m1

(r̂1)Yl2m2
(r̂2) .

(12)
In the case of beryllium, having projected the 1s orbital
(but not the other ϕα orbitals) from the basis, we di-
agonalize the effective two-electron Hamiltonian in 1S
symmetry to obtain the Be ground state and then con-
struct the Hamiltonian in 1P symmetry to solve Eq. (1).
The scattered wave Ψ+

sc is then used to compute the am-
plitudes for double photoionization. As described ear-
lier [2, 4, 17], this can be accomplished by using a test-
ing function that not only extracts the double ionization
amplitude, but also removes any spurious contributions
from single ionization at the same photon energy that
could contaminate the desired result. For helium, the
appropriate testing functions are simply the continuum
Coulomb wave functions Φ+

(c)(k, r) with Z = 2, while for

H2, the testing functions are continuum states of H+
2 .

Following a similar logic, the testing functions that will
separate the double ionization continuum from the other
energetically open channels must be continuum states of
Be+, which are orthogonal to the bound states of the
singly charged ion produced by single ionization. To con-
struct these states, we follow a procedure similar to the
one used to treat DPI of H2 [4]. The full testing function
Φ+(k, r) is decomposed as the sum

Φ+(k, r) = χ(k, r) + Φ+
(c)(k, r) (13)

of a scattered part χ(k, r) and a long-range Coulomb
wave function Φ+

(c)(k, r) with asymptotic charge Z = 2

because the long-range behavior of the direct operator for
the occupied 1s2 core is to screen the the Z = 4 nucleus
of beryllium,

2J1s(r) −→
ri→∞

2

r
. (14)

Because the exchange operatorK1s in Eq. 5 has the range
of the 1s orbital, there is no complication in solving a
driven-Schrödinger equation of the form

(
k2

2
− h

)
χ(k, r) =

(
h−

k2

2

)
Φ+

(c)(k, r)

=

(
−

2

r
+ 2J1s −K1s

)
Φ+

(c)(k, r),

(15)
where k2/2 is the energy of the electron. To be able to
describe the amplitude for an arbitrary direction of the
momentum, we expand the testing function as well as the
Coulomb function in partial waves,

Φ+(k, r) =
∑

ℓ,m

ϕk
ℓ (r)

r
Y ∗

ℓm(k̂)Yℓ′m(r̂), (16)

Φ+
(c)(k, r) =

(
2

π

)1/2 ∑

ℓ,m

iℓeiηℓ

kr
φ

(c)
ℓ,k(r)Yℓm(r̂)Y ∗

ℓm(k̂),

(17)

where φ
(c)
ℓ,k(r) is a radial Coulomb function behaving

asymptotically as

φ
(c)
ℓ,k(r) → sin(kr + (Z/k) ln 2kr − ℓπ/2 + ηℓ(k)), (18)

for r → ∞ with Coulomb phase ηℓ

ηℓ(k) = argΓ(ℓ+ 1 − iZ/k), (19)

and Z = 2. This decomposition leads to a radial driven
Schrödinger equation for each partial-wave component of
the testing function:

(
k2

2
− hℓ)ϕ

k
ℓ (r) = (−

2

r
+ 2J1s −K1s)

φ
(c)
ℓ,k(r)

kr
. (20)

The double photoionization amplitude to produce out-
going electrons with momenta k1 and k2 is expressed as
the coherent sum of partial-wave amplitudes [3, 17]

f(k1,k2) =
∑

l1,m1

∑

l2,m2

(
2

π

)
i−(l1+l2)eiηl1

(k1)+iηl2
(k2)

× Fl1,l2,m1,m2
(k1, k2)Yl1m1

(k̂1)Yl2m2
(k̂2),

(21)

where the radial amplitudes Fl1,l2,m1,m2
(k1, k2) are eval-

uated along a hypersphere ρ0 in the (r1, r2)-plane just
inside the ECS turning point R0. The radial ampli-
tudes are computed using a surface-integral formulation
that amounts to the integration of the Wronskian be-
tween the scattered wave decomposition of the full solu-
tion ψl1m1,l2m2

(r1, r2) and the partial-wave testing func-
tions [2, 3, 17]

Fl1,l2,m1,m2
(k1, k2) =

ρ0

2

∫ π/2

0

[
ϕk1

l1
(r1)ϕ

k2

l2
(r2)

∂

∂ρ
ψl1m1,l2m2

(r1, r2)

− ψl1m1,l2m2
(r1, r2)

∂

∂ρ
ϕk1

l1
(r1)ϕ

k2

l2
(r2)

]∣∣∣∣
ρ=ρ0

dα.

(22)
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C. Definition of the cross sections from the radial

amplitudes

The triply-differential cross section (TDCS) for dou-
ble photoionization is computed from the amplitudes in
Eq. 21 by

d3σ

dE1dΩ1dΩ2
=

4π2ω

c
k1k2

∣∣f(k1,k2)
∣∣2 , (23)

in the length gauge. Integration of the TDCS over the
angles Ω1 and Ω2 of the electrons yields the singly dif-
ferential cross section (SDCS) which describes the cross
section as a function of the energy sharing E1 + E2 = E
alone. This is given simply by

dσ

dE1
=

4π2ω

c
k1k2

(
2

π

)2 ∑

l1m1

∑

l2m2

|Fl1,l2,m1,m2
(k1, k2)|

2
.

(24)
With this definition of the SDCS, the total integrated
cross section for double photoionization at photon energy
ω with excess energy E = ω + E0 is

σ =

∫ E

0

dσ

dE1
dE1. (25)

Since the SDCS is symmetric about E/2, previous exper-
imental and theoretical treatments have often scaled the
SDCS according to

dσ̃

dE1
= 2

dσ

dE1
, (26)

so that the total DPI cross section is computed by in-
tegrating the scaled cross section over half the available
energy range,

σ =

∫ E/2

0

dσ̃

dE1
dE1. (27)

To compare with the previous theoretical calculations on
beryllium, we continue to use the latter definition of the
SDCS here.

III. DOUBLE PHOTOIONIZATION OF

BERYLLIUM

A. Computational details

The driven Schrödinger equation in Eq. 1 was solved
with a radial grid using 15-th order DVR with real FEM
boundaries at 2.0, 7.0,12.0, 20.0, 30.0 and 40.0 bohr, fol-
lowed by two complex finite elements with the end of the
grid located at r = 70.0 bohr. The ECS rotation angle
in Eq. 2 was 30.0 degrees. The atomic s-type orbitals
used in the construction and projection of the 1s orbital,
as outlined in Sec. II A, were built using DVR points
only from the first two elements, i.e., up to r=7.0 bohr.

To construct the Be ground state, we used all radial grid
points out to r=20.0 bohr, along with an angular basis
consisting of all lm pairs for both electrons consistent
with the 1S symmetry of the initial state up through
lmax = 7. With these parameters, the double ioniza-
tion potential of ground-state beryllium is calculated here
to be 1.00790 a. u. , compared to the calculated value of
1.01180 a. u. [18, 19]. For the final state 1P continuum,
we of course use the full ECS grid. To connect the fi-
nal state with the bound state via the dipole operator,
lmax = 8 was chosen for the final 1P continuum.

B. Convergence tests

Convergence data for various parameters of the beryl-
lium DPI calculation is presented in Fig. 2. The TDCS
plotted in these figures show the cross section for a partic-
ular energy-sharing with one electron fixed as the other
is varied in plane defined by the fixed electron and the
polarization vector. In Fig. 2, the fixed electron energy
and direction are E1 = 30 eV and θ1 = 20◦, respectively.
All angles are measured relative to the linear polarization
direction of the photon.

The upper-left panel of Fig. 2 shows convergence with
respect to the angular basis. The cross sections appear
to be converged with lmax = 7, being graphically indis-
tinguishable from the lmax = 8 results. The upper-right
panel shows the gauge dependence of the calculated cross
sections. We note that the height of the dominant peak
varies by a few percent between the length and veloc-
ity gauges. This differs from our earlier calculations on
helium, which gave identical results in length, velocity
and acceleration gauges [17]. The small differences seen
here are due to the emphasis that a particular gauge se-
lection places on the inner region of the wave function,
and the fact the core electrons are restricted to doubly
occupy the same orbital. Calculations performed with
model potentials [9–11], which do not represent the short-
range dynamics near the nucleus with any fidelity, show
a much larger gauge dependence in the calculated cross
sections. Evidently, our particular representation of the
core-valence interaction impacts the results only slightly.
For consistency with comparisons to other theoretical cal-
culations of DPI from beryllium, all results subsequently
presented are shown in the length gauge.

The lower-left panel of Fig. 2 shows the calculated
TDCS does not depend on the location of the arc ρ
along which the partial wave amplitudes in Eq. 22 are
extracted. The lower-right panel also exhibits that the
cross sections computed do not vary as the size of the
radial grid is increased by extending the ECS turning
point R0. Taken together, these panels indicate that a
suitable radial and angular basis has been selected and
produces results that do not change, thus signaling con-
vergence of the results with respect to the parameters of
the calculation.
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FIG. 2: (Color online) Convergence tests for DPI of beryl-
lium. The TDCS above were calculated with one outgoing
electron fixed with 65% energy sharing of 20 eV available ex-
cess energy at angle θ1 = 20◦. Clockwise from upper-left
panel show (a) convergence with respect to the angular ex-
pansion basis lmax, (b) gauge representation of the dipole op-
erator, (d) size of the purely-real ECS radial grid R0, and
(c) extraction radius ρ for evaluation of the DPI partial-wave
amplitudes. Cross section in units of barns (b) per eV per
steradian (sr). 1 b = 10−24 cm2. R0 and ρ in units of a0.
1a0=0.529 × 10−8 cm.

C. Total cross section

Most of the data in the literature for DPI of beryllium
concerns the integral cross section. Figure 3 presents
much of the existing theoretical and experimental data.
Present results (stars) are shown along with fitted RMPS
results [13] (solid curve), CCC results [9] (solid circles),
TDCC results [10] (solid squares), B−spline results [12]
(solid triangles), and experimental results [16] (solid dia-
monds). For clarity, results calculated by the HRM-SOW
method [11] in various gauges are not shown, but gener-
ally agree with these results, differing only by slightly
larger magnitudes closer to threshold as has been ob-
served before [20]. Overall agreement between the differ-
ent theoretical treatments and between theory and the
few experimental values is good. The data indicates that
the maximum in the cross section occurs in the range of
∼ 12 eV above the DPI threshold. The results calculated
in the present work agree very well with the calculation
of Laulan and Bachau [12] over the energy range above
the maximum in the cross section, differing most on the
rising shoulder of the cross section near 5 eV.

D. SDCS results at 20eV above threshold

The single differential cross section (SDCS) for DPI of
beryllium at 20 eV above threshold is shown in Fig. 4.
Also displayed are SDCS calculations from TDCC [10]
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FIG. 3: (Color online) Total DPI cross section from beryllium
at various energies. Stars: present results, solid curve: poly-
nomial fit to RMPS calculation [13] of Griffin, et. al., solid
circles: CCC results of Kheifets and Bray [9], solid squares:
TDCC results of Colgan and Pindzola [10], solid triangles:
B−spline results of Laulan and Bachau [12], solid diamonds
with error bars: experimental measurements of Wehlitz, et.

al. [16]. 1 kb = 10−21 cm2.
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FIG. 5: (Color online) Triply-differential cross section
(TDCS) results for DPI of beryllium at 20 eV excess pho-
ton energy. The electrons share equal amounts of energy
E1 = E2 = 10 eV. Each of the panels shows a different
fixed value of the direction of the first electron θ1. Solid
curve: present results; dashed curve: results of Colgan and
Pindzola [10].

and HRM-SOW [11] treatments, both calculated in the
length gauge. The present results are in better agreement
with the TDCC results, differing only in the depth of the
“smile” in the cross section at equal energy sharing. In
contrast to the present and the TDCC results, the HRM-
SOW calculation gives an SDCS that is relatively flat.

E. TDCS results at 20eV above threshold

For the triply-differential cross sections that are pre-
sented in the following section, we compare our length
gauge results directly with TDCC results calculated in
the same gauge [10]. We note that length-gauge results
from the HRM-SOW study [11], while close in shape to
the present results, are generally 10-20% higher at the
major peaks.

Figure 5 shows TDCS at 20 eV excess photon energy
for equal energy sharing between the ejected electrons.
This case represents the highest degree of electron cor-
relation in the final state. Each of the panels displays
the TDCS for a fixed direction of one of the electrons
θ1 = 0◦, 30◦, 60◦ and 90◦, with all angles measured rela-
tive to the linear polarization direction and in the same
plane. The angular distributions that result for DPI of
beryllium bear a remarkable similarity to those observed
for helium, both showing a similar pattern in the loca-
tion and relative heights of the major and minor peaks,
indicating that the gross features of the angular patters
arise mostly as a consequence of the atomic state sym-
metry [21]. The relative widths of the TDCS peaks in He
and Be, however, show considerable differences, the latter
being considerably narrower. It has been argued [9, 11]
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FIG. 6: (Color online) Triply-differential cross section
(TDCS) results for DPI of beryllium at 20 eV excess pho-
ton energy. The angle of the first electron is fixed along the
polarization direction θ1 = 0◦. Each panel displays results as
the energy sharing is varied: from top to bottom, the fixed
electron carries 15%, 50% and 85% of the available energy, re-
spectively. Solid curve: present results; dashed curve: results
of Colgan and Pindzola [10].

that these differences can be related to the stronger effect
of initial state electronic correlations in the case of beryl-
lium, as reflected in the behavior of the parametrized
gerade component of the DPI amplitudes for the two
systems [22]. An alternative explanation has also been
given [23], which states in essence that the strength of
the angular correlation in DPI comes primarily from the
momentum distribution of the corresponding orbital of
the singly ionized target, which is considerably narrower
for the 2s orbital in Be+ than for the 1s orbital in He+.

The present results are seen to agree very well with the
TDCC results, both in magnitude and in the angular dis-
tribution profile. Furthermore, both theoretical results
exhibit the signature of a parity selection rule whose con-
sequence at equal energy sharing prohibits the electrons
from being ejected back-to-back [24], as can be seen in
each of the four panels of Fig. 5. It is noteworthy that the
length gauge results from both studies agree almost ex-
actly despite different representations of the valence-core
interaction, indicating that at this excess photon energy
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FIG. 7: (Color online) Triply-differential cross section
(TDCS) results for DPI of beryllium at 20 eV excess photon
energy. The angle of the first electron is fixed at θ1 = 30◦.
Each panel displays results as the energy sharing allocated
to the first electron is varied from E1 = 5% in the upper-
left panel through E1 = 95% in the lower-right panel. Solid
curve: present results; dashed curve: results of Colgan and
Pindzola [10].

the dynamics of double photoionization are mostly dom-
inated by the accuracy of the 2s orbital in the valence
region and not over the range of the 1s orbital.

Figure 6 shows TDCS results at 15%, 50% and 85%
energy sharing, with the fixed electron aligned with the
photon polarization direction. There is again excellent
agreement with the TDCC results. Furthermore, the
cross sections again bear a striking similarity to DPI from
helium considered under similar conditions.

The final set of results displayed in Fig. 7 shows the
TDCS for nine energy sharings when the angle of one
electron is fixed at θ1 = 30◦. Once again, the angular
distributions and relative peak heights of the cross sec-
tions are very similar to those for helium DPI. Agreement
with the TDCC results is again very good, with only
small differences visible in the maximum peak heights at
the energy-sharing extremes. The best agreement occurs
at equal energy sharing, similar to the results in Fig. 6.

IV. CONCLUSIONS

The triply-differential, singly-differential and integral
cross sections for double photoionization from beryllium

presented here agree very well with those previously pub-
lished [9–13]. The results indicate that beryllium DPI
produces angular distributions and relative cross section
magnitudes that are quite similar to those for helium DPI
at the same excess photon energy.

Comparison with the results of other theoretical stud-
ies that employed model potentials to replace the core
electrons shows that the calculated cross sections are sim-
ilar, provided the length gauge is used in the compari-
son. This further supports the notion that the core and
valence electrons are truly distinct with correlation be-
tween the inner and outer shells being negligible. Thus,
DPI from the valence shell proceeds much like in helium.

While the differential DPI cross sections from the
gound-states of He and Be are found to be very similar,
one expects to see much bigger differences in the cross
sections when starting from excited states. For example,
in the case of the 1,3P states, the two valence electrons
in Be have the same principal quantum number, simi-
lar radial extent and are thus more strongly correlated
than the 1s and 2p electrons in the 1,3P states of he-
lium. Morever, as shown in a recent experiment [25] on
atomic lithium, the particular symmetry of the target
initial state can profoundly impact the consequences of
double photoionization. These considerations offer new
opportunities to study DPI from non-spherical atomic
targets with the robust methods presented here. Work
on DPI from excited Be is underway and will be report
in a future publication.
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