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Abstract

Machine Learning Applications to Robot Control

by

Omar Abdul-hadi

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ruzena Bajcsy, Co-chair

Professor Masayoshi Tomizuka, Co-chair

Control of robot manipulators can be greatly improved with the use of velocity
and torque feedforward control. However, the effectiveness of feedforward control
greatly relies on the accuracy of the model. In this study, kinematics and dynamics
analysis is performed on a six axis arm, a Delta2 robot, and a Delta3 robot. Velocity
feedforward calculation is performed using the traditional means of using the kine-
matics solution for velocity. However, a neural network is used to model the torque
feedforward equations. For each of these mechanisms, we first solve the forward and
inverse kinematics transformations. We then derive a dynamic model. Later, unlike
traditional methods of obtaining the dynamics parameters of the dynamics model,
the dynamics model is used to infer dependencies between the input and output
variables for neural network torque estimation. The neural network is trained with
joint positions, velocities, and accelerations as inputs, and joint torques as outputs.
After training is complete, the neural network is used to estimate the feedforward
torque effort. Additionally, an investigation is done on the use of neural networks for
deriving the inverse kinematics solution of a six axis arm. Although the neural net-
work demonstrated outstanding ability to model complex mathematical equations,
the inverse kinematics solution was not accurate enough for practical use.
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Chapter 1

Introduction

1.1 Background

Neural networks [18] are increasingly making their way into practical robotics appli-
cations, because of improvements in computing power [19]. A challenge with using
neural networks is that they are often slow and impractical for high speed applica-
tions [9]. In our work, we investigate the use of neural networks in learning complex
nonlinear functions in relation to various types of robots. The functions we attempt
to learn are the inverse kinematics and dynamics equations.

Literature review

Much of the prior work on machine learning for kinematics has been on simpler
mechanisms such as 3 DOF (Degree of Freedom) manipulators [14] and [31]. On the
other hand, work done on 6 axis inverse kinematics such as [2] does not solve the
most general 6 axis configurations that we attempt to solve.

The closest work that we were able to find on machine learning for dynamics was
the use of a neural network to model a 2 DOF robotic arm [23]; however like other
work in this area [22] and [3], it lacks emphasis on runtime performance limitations
of neural networks.

Embedded robot controllers have limited CPU power, but are expected to keep
up with high update rates (usually above 250 Hz). This means a neural network must
run in less than 100 µs before it can even be considered for an industrial controller.

Although it may be easy to model a system using a large neural network, with
multiple hidden layers, the challenges lie in training a small enough neural network
such that it meets the performance limitations, yet is still capable of capturing the
complexities of a nonlinear dynamic system.
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Other work on neural networks for dynamics such as [10] and [13] only test the
performance in simulation mode and have no testing on physical mechanisms. As for
[16], only the performance of the neural network torque predictions are discussed.

The focus of our work is to not only predict the estimated torque efforts us-
ing a neural network, but to also improve the tracking performance on the actual
mechanism. As we will see later on, these are two completely different problems.

1.2 Motivation

Neural Networks for Kinematics

In the case of serial manipulators, it is easy to obtain the forward kinematics solutions
using Denavit Hartenberg parameters. However, the inverse kinematics solution is
much harder to solve. In the case of 6 axis mechanisms, they may be of two types,
either spherical wrist (i.e. last three axes intersect at a single point) or they can be
of a general configuration. The spherical wrist robot has a trivial inverse kinematics
solution, which we present in appendix A. However, the inverse kinematics solution
of a non spherical wrist mechanism is far harder to solve, and is very computationally
expensive. Thus an attempt is made at using the forward kinematics equations to
generate data, and then to train a neural network to learn the inverse kinematics
mapping. A challenge is that a six axis general manipulator has 16 possible solutions
[17]. For an idea of what the different solutions look like please see A.2, which shows
the 8 different possible solutions in the case of a spherical wrist manipulator. Given
the inverse kinematics problem has different solutions, a different neural network
must be trained for each solution. However, when we use the forward kinematics
equations to randomly produce the data, we need to separate the data into the dif-
ferent solutions. Another type of machine learning is considered which is clustering.
The type of clustering considered is K-means. This type of clustering works out for
us, because we only need to specify the number of clusters, which is 16 in our case,
and the learning algorithm will group the data automatically. K-means clustering is
a type of non supervised learning, because we have no labels for any of the configu-
rations. We only know that certain configurations are different from others. Given
that different inverse kinematics solutions are situations in which the world position
is the same, but joint values are very different, as can be seen in A.2, the clustering
problem attempts to separate the data based on the joint and world position values.
Thus, different data points that have very similar joint and world position values
will belong to the same configuration, while those that have different world and joint
position values will belong to different configurations.
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Neural Networks for Dynamics

Robot control is usually divided into two categories, either MIMO (Multiple Input
Multiple Output) control [27], or SISO (Single Input Single Output) control. Tra-
ditionally, in MIMO control, a single controller generates multiple control efforts
(torque/force) to all the robot. On the other hand, SISO control involves separate
controllers generating control efforts to each axis to set the output at the target value
(usually position).

Yaskawa servos run at high internal update rates. Thus, the plan for this research
is to rely on the Yaskawa servos for closing the position control loop (ie. SISO
control), yet the controller will assist the servos by providing velocity and torque
feedforward estimates.

Accurate velocity and torque feedforward estimates will improve the trajectory
following performance of the servos.

A dynamics model is critical for accurate torque estimation. A dynamics model
of a system can be expressed as τ = f(p, v, a), where τ , p, v and a are the torque,
position, velocity and acceleration of the joints respectively. f is normally a nonlinear
function, and each variable can be a vector of arbitrary length. For the purpose of
this project, research will be done on 2 and 3 DOF Delta robots and a 6 axis robot
which are all provided by Yaskawa.

The purpose of this project is to find the function f , not by dynamics modeling,
which usually suffers from inaccuracies due to simplifications, but by training a neural
network on data generated on the actual mechanism.

Once a neural network is trained, its accuracy can be evaluated by how closely
it estimates joint torque efforts for a given position, velocity, and acceleration of the
joints. This is done by comparing the neural network torque estimate values against
actual torque feedback values.

SISO Control with Velocity and Torque Feedforward

Feedforward control can greatly improve the performance of a control system [28]. As
such, Yaskawa servo drives which support feedforward control will be used to control
each axis on the mechanisms. Each servo will implement the control loops seen in
figure 1.1. The controller will be responsible for generating the values pff , vff , and
tff in this diagram which are the quantities for the target position, and velocity and
torque feedforward values respectively.
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Cp
-

+pff M+ +

vff

vfb
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Figure 1.1: Control schematic

1.3 Neural Networks and the Back Propagation

Algorithm

The neural network presented in figure 1.2 has only one hidden layer, and is based
on using the sigmoid function on both matrices. However, this is just one example.
Research will involve using various numbers of hidden layers with various dimensions.
Additionally, research will explore other functions besides the sigmoid function such
as the tanh function.

Details about the neural network and the back propagation algorithm [33] for
updating the matrices during learning are given below:

Note that in our case the input variable x will contain the position, velocity, and
acceleration of all the joints, while z will contain the predicted torque values. We also
note that the cost function has this particular logarithmic form, because it is well
suited for the sigmoid function. As we will see shortly, this cost function simplifies
the derivation of the gradients.

s(Vx) s(Wh)

WV
h

-Σ(yjln(zj)+(1-yj)ln(1-zj))
Lzx

Figure 1.2: Neural network model
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x is the input variable.
y is the actual output variable.
z is the predicted output variable.
d is the dimension of the input variable x.
k is the dimension of the output variable y.
n is the number of training samples.

X is d x n and is the input training data.
Y is k x n and is the output training data.
x is (d+1) x 1 and is the input layer.
h is (m+1) x 1 and is the hidden layer.
z is k x 1 and is the output layer.
L is 1 x 1 and is the cost function.
z is the predicted value for a given input x.
y is the actual value for a given input x.

V is (m+1) x (d+1) and maps the inputs to the hidden layer.
W is k x (m+1) and maps the hidden layer to the outputs.

x =


x1
x2
.
.
xd
1

 , h =


h1
h2
.
.
hm
1

 , z =


z1
z2
.
.
.
zk

 , y =


y1
y2
.
.
.
yk

 , V =


V1
V2
.
.
Vm
Vm+1

 ,W =


W1

W2

.

.

.
Wk



s(γ) =
1

1 + e−γ
, s′(γ) = s(1− s), h = s(V x), z = s(Wh)

∂L

∂zj
= −

(
yj
zj
− 1− yj

1− zj

)
= −yj − yjzj − zj + zjyj

zj(1− zj)
=

zj − yj
zj(1− zj)

∇Wj
L =

∂L

∂zj
∇Wj

zj =
∂L

∂zj
zj(1− zj)hT = (zj − yj)hT
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∇WL = (z − y)hT

∇hL = Σ
∂L

∂zj
∇hzj = Σ

∂L

∂zj
zj(1− zj)W T

j = ΣW T
j (zj − yj) = W T (z − y)

∇ViL =
∂L

∂hi
∇Vihi =

∂L

∂hi
hi(1− hi)xT

∇VL = W T (z − y) ∗ h ∗ (1− h)xT

Note that * represents element wise multiplication. Additionally, 1 is a vector
of ones of appropriate size. Also note that canceling the term zj(1 − zj) in the
numerator and denominator of the derivation above is safe, because zj is the output
of a sigmoid function, and thus we have zj 6= 0 and zj 6= 1.

Finally, learning is performed using the update rule below for gradient descend:

W = W − ε∇WL

V = V − ε∇VL

where ε is the learning rate.

1.4 Six Axis Robot System

The six axis robot system was entirely composed of Yaskawa products. The diagram
in figure 1.3 shows the connectivity between the various components. The control
panel can be seen in figure 1.4. Table 1.1 contains all the joint specification and
setup information. The complete system consisted of the following:

• Yaskawa MP3300iec PLC (Programmable Logic Controller)

• 6 Yaskawa Sigma 7 Mechatronlink Servos

• Yaskawa Motoman MHJ six axis arm

• Windows PC
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Mechatrolink III
Ethernet

Motor Pwr
Encoder Sgnl

 3 Phase Pwr

Legend

240V 3 Phase 
Power Outlet

Development PC

Yaskawa
MP3300iec PLC

Controller

6x Yaskaw SGD7S 
Mechatrolink Servo 

Drives

Yaskawa MHJ 
6DOF Arm

Figure 1.3: Six axis system diagram
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Figure 1.4: Six axis robot control panel
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Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5
Motor Rated Torque (N.m) 0.159 0.159 0.159 0.159 0.159 0.159
Motor Rated Speed (RPM) 3000 3000 3000 3000 3000 3000

Motor Power (Watts) 50 50 50 50 50 50
Encoder Resolution (tics/rev) 217 217 217 217 217 217

Gear Ratio 1:120 1:275 3:400 1:120 1:90 1:50
Polarity Neg Neg Neg Pos Neg Pos

Zero Position Offset (tics) 249536 74560 618464 -38176 73696 -520320
Min limit (Degrees) -160 -90 -45 -180 -130 -180
Max limit (Degrees) 160 110 210 180 130 180

Table 1.1: MHJ robot joint specification and setup
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Chapter 2

Six Axis Kinematics

2.1 Analytical Forward and Inverse Kinematics

Derivation

The first requirement for robot control is to obtain the solutions for the forward and
inverse kinematics problems. The six axis robot used for experiments in this study
is the Motoman MHJ [20] seen in Figure 2.1 This robot is a spherical wrist robot,
meaning that the last three axes of the robot intersect at a single point. This property
makes the inverse kinematics solution much easier to solve. The complete forward
and inverse kinematics derivation can be found in appendix A. This derivation
closely follows the techniques used in [32]. The kinematics model used for this
class of six axis robots can be seen in figure A.1. Additionally, table A.1 contains
the Denavit Hartenberg parameters [8]. The Euler angle convention followed for
three dimensional rotations is the commonly used Roll-Pitch-Yaw convention. This
convention is defined by various texts [32] and [29] in the same manner.

2.2 Machine Learning Inverse Kinematics

solution

As previously outlined in section 1.2, the proposed plan for solving the inverse kine-
matics solution for a general serial manipulator is as follows:

1. Generate a random mechanism by obtaining random values for the DH param-
eters α, a, and d for each of the six joints in table A.1

2. Solve forward kinematics equations
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Figure 2.1: Yaskawa Motoman MHJ robot

3. Randomly generate joint and world position values using the forward kinemat-
ics equations

4. Use K-means clustering to separate the data into the different solutions

5. Train a different neural network on each clustered dataset to learn the inverse
kinematics solution

2.3 Forward Kinematics for a Generalized

Manipulator

The forward kinematics solution was obtained using the Denavit Hartenberg conven-
tion. Equations A.1 and A.11 work for any serial manipulator with six revolute joints
even if it is not a spherical wrist mechanism. We note that for a general mechanism
that is of non spherical wrist, none of the Denavit Hartenberg parameters in table
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A.1 will be zero. However, table A.1 contains many zeros, because it is for the model
in figure A.1 which is a spherical wrist robot.

2.4 K-means Clustering

K-means clustering [12] is a commonly used unsupervised learning algorithm. Its
purpose is to separate a set of data points into a given number of clusters based on
the distances between the data points. The method chosen for clustering is random
initialization and iterative update using the Lloyd-Forgy algorithm [1]. The initial
step is to assign the data points to random clusters given the number of clusters to
be formed. The next step is to iteratively update the mean of each cluster and later
update which cluster each data point belongs to. The sequence is below:

1. Calculate the centroid of each cluster using the mean of all the data points in
that cluster

2. Reassign each data point to the cluster whose centroid has the least euclidean
distance to that data point

The algorithm above is repeated until the solution converges. Convergence is
reached when no more data points can be reassigned to different clusters.

2.5 Neural Network Training of Each Kinematic

Solution

Given the complexity of the inverse kinematics solution, we have chosen neural net-
works for the regression algorithm. The input to the neural network in this case
is the world position of the end effector of the robot, while the output is the joint
positions of the robot. We note that a different neural network is trained for each
inverse kinematics solution according to different clusters that were previously ob-
tained. As usual, training is done on 80 percent of the data, while 20 percent of the
data is reserved for validation after training is complete. The accuracy of the inverse
kinematics solution is evaluated based on how close the joint position output values
are to the real solution.
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2.6 Challenges and Simplifications

Given the joint position vector is a 6x1 vector and given the world position vector
is also a 6x1 vector, the clustering problem presented here attempts to separate
data in a 12 dimensional space. This is a very high order system, which means an
extremely large amount of data is needed to yield accurate results. In addition, a
large amount of data would mean a long runtime until the clustering of the data
converges. Moreover, convergence is not guaranteed. In many occasions convergence
is never achieved.

Given the analytical solution for the spherical wrist robot is already solved in
appendix A, we thus do know how to separate the kinematics solutions into their
different configurations, based on the joint values. Thus we choose to use the spher-
ical wrist model for clustering, because we are able to validate the performance of
our clustering solution. We note that in the spherical wrist problem, there are 8
solutions, thus each solution is of configuration 0 through 7.

2.7 Identifying Robot Configurations from Joint

Positions

The inverse kinematics solutions given in appendix A easily allow us to choose the
solution for the joint position given the configuration we want. However, the opposite
problem is to identify the current robot configuration given a robot joint position.
This problem can be solved by analyzing figure A.2 and the multiple solutions for
θ0, θ2, and θ4.

The equations for the solutions of θ0 are A.23, A.24, and A.25. The multiple
solutions in θ0 are called the Front Reach and Back Reach configurations. Front
Reach is when the difference between θ0 and φ0 is zero, while Back Reach is when
the difference between θ0 and φ0 is π. Given that θ0 is the angle of joint L relative
to the origin, and given φ is the angle of joint B relative to the origin, we now know
that if joints L and B are on the same side relative to the origin, then we are in
Front Reach, otherwise we are in Back Reach configuration. The forward kinematics
equations can give us the x and y coordinates of joints L and B as follows:[

pLx
pLy

]
=

[
a0cosθ0
a0sinθ0

]
(2.1)

[
pBx
pBy

]
=

[
px
py

]
=

[
cos(θ0)(a0 + a1cos(θ1) + a2cos(θ2−1)− d3sin(θ2−1))
sin(θ0)(a0 + a1cos(θ1) + a2cos(θ2−1)− d3sin(θ2−1))

]
(2.2)
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By inspecting the equations for the forward kinematics in x and y coordinates for
joints L and B above, and given the term a0 is always positive, we can see that the
term (a0+a1cos(θ1)+a2cos(θ2−1)−d3sin(θ2−1) is responsible for making joint B have
an angle with respect to the origin opposite from that of joint L’s angle with respect
to the origin. Thus, we conclude that if the term (a0 + a1cos(θ1) + a2cos(θ2−1) −
d3sin(θ2−1) is positive then we are in front reach, otherwise we are in Back Reach.

As for the dual solution in θ2, when the angle formed between joints L, U and B
is smaller than 180 degrees then we are in Upper Arm configuration, otherwise we
are in Lower Arm configuration. We note that when the angle of joints L, U and B
is 180 degrees then the robot arm is positioned for maximum reach. We note that
geometrically one can easily obtain that θ2MaxReach = arctan(a2/d3) + π

2
. Thus if

θ2 < arctan(a2/d3) + π
2

then we are in Upper Arm configuration, otherwise we are
in Lower Arm configuration.

As for the dual solution in θ4, which is given in equation A.66, when θ4 < 0 we
are in No Flip configuration, otherwise we are in Flip configuration. This is the case,
because the function cos−1 always returns a positive angle.

In summary, the configuration flags for a spherical wrist robot are given as:

• if (a0 + a1cos(θ1) + a2cos(θ2−1)− d3sin(θ2−1) > 0 then Front Reach, otherwise
Back Reach

• if θ2 < arctan(a2/d3) + π
2

then Upper Arm, otherwise Lower Arm

• if θ4 < 0 then No Flip, otherwise Flip

Given we have 2 possibilities for each configuration, we obtain a total of 2∗2∗2 = 8
solutions.

2.8 Machine Learning for Inverse Kinematics

Results

One million data points were generated using the forward kinematics equations for
the spherical wrist robot. The K-means clustering algorithm never converged on the
dataset, and it wasn’t possible to find a mapping between the clusters assigned at the
end of the training and joint configurations obtained analytically. A workaround for
this problem was that we collected data for only configuration 0, and trained various
types of machine learning algorithms to learn the inverse kinematics solution. Two
possible approaches to training were identified, the first was to train with only one
machine learning algorithm to find all the joint values, and the second was to train a
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Algorithm All joints
Linear regression 0.13

10 Nearest neighbors 0.48
Neural network 0.56

Table 2.1: R2 accuracy of regression: Training one machine learning algorithm for
all 6 joints simultaneously

Algorithm θ0 θ1 θ2 θ3 θ4 θ5
Linear regression 0.39 0.28 0 0 0 0

10 Nearest neighbors 0.73 0.33 0.70 0.50 0.42 0.20
Neural network 0.98 0.33 0.76 0.75 0.47 0.30

Table 2.2: R2 accuracy of regression: Training separate machine learning algorithms
without propagation

Algorithm θ0 θ1 θ2 θ3 θ4 θ5
Linear regression 0.39 0.37 0 0 0 0

10 Nearest neighbors 0.73 0.64 0.70 0.65 0.98 0.59
Neural network 0.99 0.94 0.77 0.87 0.99 0.80

Table 2.3: R2 accuracy of regression: Training separate machine learning algorithms
with propagation

separate machine learning algorithm for each joint. The results are shown in tables
2.1, 2.2, and 2.3. Three types of machine learning algorithms were tested, which
are linear regression, 10 nearest neighbors, and neural networks. We note that as
demonstrated in [2] using elements of the end effector rotation matrix as inputs to the
neural network outperforms using Euler angles as inputs. This however should come
as no surprise given the analytical inverse kinematics solution is in fact a function of
elements of the rotation matrix, and not the Euler angles directly.

We note that the results that used propagation are based on feeding in solutions
for joint values into neural networks of subsequent joints. The dependencies of the
joint solutions to one another were obtained from the analytical solution to the
inverse kinematics problem in appendix A. The map of these dependencies can be
seen in figure 2.2.
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Figure 2.2: Neural network solution propagation

As evident from the results, the best performance was from the neural network,
and in particular when solution propagation was used.

The parameters used for the neural networks were:

• Number of layers: 2-4

• Hidden layer size: 43

• Activation function: Logistic

• Step Size: 0.01

• Batch Size: 200-300

• Maximum Number of iterations: 1,000,000
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Chapter 3

Six Axis Dynamics

3.1 Analytical Dynamics Derivation

In this section, we will go over the analytical derivation of a simplified six axis
dynamics model. The model is reduced to a 3 DOF serial manipulator [21]. The fact
that the robot is a spherical wrist mechanism does not only simplify the kinematics
derivation, but it also simplifies the dynamics model. The dynamics model presented
in figure 3.1 is for obtaining the torque estimates of the first three joints and makes
the following assumptions:

• a0 and a2 in figure A.1 are zero, note that this is the case for an MHJ robot

• Rotations in T joint have negligible effects on inertia of upper limb. This is an
accurate assumption given the T joint has negligible inertia.

• Rotations in R and B joints have negligible effects on the inertia of the upper
limb. This is an accurate assumption given this robot is normally targeted for
pick and place applications such that there are no rotations in the R joint, and
rotations in the B joint are only done in order to keep the end effector oriented
down.

• Robot links are approximated as uniform rods of negligible diameter

• Rated payload on an MHJ (1 Kg) is negligible relative to the weight of the
MHJ (15 Kg)

An important note about figure 3.1 is that −θ1 is simply the negative of θ1 which
is from the DH parameters in table A.1. The dynamics equations can be obtained
using Lagrange’s equation of motion [15].
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Figure 3.1: MHJ dynamics model

Lagrangian:

L(θ, θ̇) = KE(θ, θ̇)− PE(θ) (3.1)

Lagrangian says:

d

dt

∂L

∂θ̇i
− ∂L

∂θi
= τi − sign(θ̇i)Fri (3.2)

Kinetic energy:

KE(θ, θ̇) =
1

2
θ̇TM(θ)θ̇ = Σ(KEtran) + Σ(KErot) (3.3)

Potential energy:

PE(θ) = mTh(θ)g (3.4)

Dynamics equation:

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) + sign(θ̇)Fr = τ (3.5)

Below is a definition of terms:
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• LL : Length of Lower link

• LU : Length of Upper link

• θ : 3x1 vector of joint angles [θ0, θ1, θ2]

• θ̇ : 3x1 vector of joint velocities [θ̇0, θ̇1, θ̇2]
T

• θ̈ : 3x1 vector of joint accelerations [θ̈0, θ̈1, θ̈2]
T

• M(θ) : 3x3 Inertia matrix

• C(θ, θ̇) : 3x3 Coriolis matrix

• G(θ) : 3x1 Gravitational forces

• Fr : 3x1 Dynamic friction forces [Fr0, F r1, F r2]
2

• m : 2x1 vector of link masses [mL,mU ]T

• h(θ) : 2x1 vector of height of links [hL, hU ]T

• g : Acceleration due to gravity

• KE(θ, θ̇) : Kinetic Energy

• PE(θ) : Potential Energy

• L(θ, θ̇) : The Lagrange of the system

• KEtran : Translational Kinetic Energy of the center of mass

• KErot : Rotational Kinetic Energy about the center of mass

• τ : 3x1 vector of joint torques [τ0, τ1, τ2]

PE(θ) = mLhLg +mUhUg

= −mL
LL
2
sθ1g +mU(−LLsθ1 +

LU
2
sθ2−1)g

(3.6)

KEtranL(θ, θ̇) =
1

2
mL(ẋ2cmL + ẏ2cmL + ż2cmL)

=
mLL

2
L

8
(c2θ1θ̇0

2
+ θ̇1

2
)

(3.7)
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KEtranU(θ, θ̇) =
1

2
mU(ẋ2cmU + ẏ2cmU + ż2cmU)

=
mU

2

(
L2
Lθ̇1

2
+
L2
U

4
(θ̇2 − θ̇1)2 − LLLUcθ2(θ̇2 − θ̇1)θ̇1

+
(
LLcθ1 +

LU
2
cθ2−1

)2
θ̇0

2
) (3.8)

KErotL(θ, θ̇) =
1

2
ωTLILωL =

mLL
2
L

24
(θ̇1

2
+ c2θ1θ̇0

2
) (3.9)

KErotU(θ, θ̇) =
1

2
ωTUIUωU =

mUL
2
U

24
((θ̇2 − θ̇1)2 + c2θ2−1θ̇0

2
) (3.10)

Substituting equations 3.6, 3.7, 3.8, 3.9, and 3.10 into 3.1 and 3.2 then combining
with equation 3.5 yields the terms of the Matrices M(θ) and C(θ, θ̇), and the vector
G(θ) as follows:

M11 =
mLL

2
L

3
c2θ1 +

mUL
2
U

3
c2θ2−1 +mu(L

2
Lc

2θ1 + LLLUcθ1cθ2−1)

M12 = M13 = M21 = M31 = 0

M22 =
mLL

2
L

3
+
mUL

2
U

3
+mUL

2
L +mULLLUcθ2

M23 = M32 = −mUL
2
U

3
− mULLLU

2
cθ2

M33 =
mUL

2
U

3

Given that for our purposes the the individual terms of the matrix C(θ, θ̇) are not
important, we shall define C∗(θ, θ̇) = C(θ, θ̇)θ. Thus C∗(θ, θ̇) is now a 3x1 vector:
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C∗1 = − 2
mLL

2
L

3
cθ1sθ1θ̇1θ̇0 − 2

mUL
2
U

3
cθ2−1sθ2−1(θ̇2 − θ̇1)θ̇0

− 2mu

(
L2
Lcθ1sθ1θ̇1 +

LLLU
2

(
cθ1sθ2−1(θ̇2 − θ̇1) + sθ1cθ2−1θ̇1

))
θ̇0

C∗2 =
mLL

2
L

3
cθ1sθ1θ̇0

2 − mUL
2
U

3
cθ2−1sθ2−1θ̇0

2
+mULLLUsθ2θ̇2

(
θ̇2
2
− θ̇1

)

+ mu

(
L2
Lcθ1sθ1 +

LLLU
2

(−cθ1sθ2−1 + sθ1cθ2−1)

)
θ̇0

2

C∗3 =
mULLLU

2
sθ2θ̇1

2
+
mUL

2
U

3
cθ2−1sθ2−1θ̇0

2
+
mULLLU

2
cθ1sθ2−1θ̇0

2

G1 = 0

G2 = −
(
mL

LL
2

+mULL

)
cθ1g −mU

LU
2
cθ2−1g

G3 = mU
LU
2
cθ2−1g

3.2 Machine Learning Dynamics

As evident in the dynamics model derived in section 3.1, many simplifications had to
be made in order to make the dynamics model solvable without excessive complexity.
Specifically, parameters for the inertia of the links as well as the frictional terms can
be difficult to obtain accurately. Thus in this section we propose a machine learning
approach to obtaining the dynamics equations. The strategy is to move the actual
robot through random movements in space, and to collect feedback data for positions,
velocities, accelerations, and torques from each joint. After this data is collected,
a neural network can be trained on the position, velocity, and acceleration data as
inputs and the torque data as outputs. This is consistent with the dynamics equation
given in 3.5. Given the data is generated on the actual mechanism, frictional terms
will automatically be accounted for by the neural network.
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3.3 Machine Learning Dynamics Offline Training

As a first step, the offline training approach was used. Specifically, we move the
robot, collect the data, and then train the neural network. Given the neural network
is targeted to run on an embedded real time controller, emphasis was made on the
size of the neural network, such that it does not consume too much time to run on
the controller. Thus, various sizes of neural networks were tested, and a trade off was
seen between neural network runtime and neural network accuracy. Not surprisingly,
a very large neural network can be very accurate, yet it will take a very long time
to both train and/or run. On the other hand, a very small neural network can be
very fast, yet it will be inaccurate. Figure 3.2 shows how the accuracy of the neural
network eventually plateaus even if the size of the hidden layer keeps being increased.
We note that we only used one hidden layer.
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Figure 3.2: Neural network accuracy vs hidden layer size

Figure 3.3 shows the estimated computational runtime of the neural network on
the 1.2 GHz processor being used in our case. As the figure shows, runtime is fairly
linear with the size of the hidden layer. This is expected, because as figure 1.2 shows,
x and z which are input and output prediction values respectively are constant in
size, while h is varied. As h is varied each of the weight matrices V and W will
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grow linearly in h, thus the amount of matrix multiplication operations as well as
additions will also grow linearly.
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Figure 3.3: Neural network runtime vs hidden layer size

Data Acquisition

Training and validation data on the MHJ was collected by moving the robot along
each edge of a prism back and forth, left and right, and up and down. Motion was
done, while the end effector orientation was constantly pointing vertically downwards.
We note that this movement results in motion in all the joints except joint 4 on
the robot. This was done, because emphasis in this work is placed on pick and
place applications where the end effector orientation will remain pointed vertically
downwards. The dimensions of the prism are given in table 3.1. The data collected
was only for the first three joints, because as previously discussed in section 3.1,
these joints have the largest effects on the inertial, Coriolis, and gravitational forces
on the system. Position, velocity, acceleration, and torque data was collected for each
joint. Inputs for the neural network were the position, velocity, and acceleration of
the three joints, and output for the neural network was the torque for each joint.
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Training limits x y z
min [mm] 270 -100 150
max [mm] 330 100 250

Table 3.1: MHJ Cartesian coordinate training limits

As usual, four fifth of the data was split for training and one fifth was reserved for
validation. The size of the entire data set was about 10,000 points. An important step
was that only the training data was shuffled. This makes testing of the validation
data more representative of the true performance, because we will be verifying a
complete movement profile as opposed to discrete random sample points from the
entire motion profile.

Single Neural Network for all Joints Results

Plots of the actual and predicted torque values for the first three joints when the
hidden layer is of size six can be seen in figure 3.4. In this scenario one neural network
was used for all the joints. The R2 accuracy obtained was 0.75

Separate Neural Networks with Independent Variable
Elimination Results

In the previous section every single joint’s position, velocity, and acceleration was
used as an input, and all the torques were used as outputs. This however can confuse
the neural network, because as previously derived in section 3.1, the torque output
is not always a function of all the variables. Upon a closer inspection of the terms in
the inertial, Coriolis, gravitational, and frictional forces obtained in section 3.1, we
can infer the dependencies below:

We note that although θ̇2 does not appear in the inertial, Coriolis, or gravitational
terms for τ2, it does appear in the frictional term.

τ0 = f(θ1, θ2, θ̇0, θ̇1, θ̇2, θ̈0)

τ1 = f(θ1, θ2, θ̇0, θ̇1, θ̇2, θ̈1, θ̈2)
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(c) Joint 2

Figure 3.4: Actual and predicted torque values on MHJ using one neural network

τ2 = f(θ1, θ2, θ̇0, θ̇1, θ̇2, θ̈1, θ̈2)

By eliminating independent variables and training a separate neural network for
each joint, we obtain the actual and predicted torque values in figure 3.5. The R2
accuracies obtained for the first three joints were 0.90, .88, 0.87 respectively.

Neural Network Parameters

All neural networks used had a hidden layer of size 6, and used a sigmoid activation
function. As demonstrated in [11], the inputs were scaled to a mean of zero and
standard deviation of 1, and a decaying learning rate was used. The decay in the
learning rate protects against over fitting.
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Figure 3.5: Actual and predicted torque values on MHJ using separate neural net-
works with independent variable elimination

Discussion

Clearly, using separate neural networks for each joint with independent variable elim-
ination outperformed using only one neural network for all the joints. Additionally,
runtime below 10 µs was achievable with neural networks that resulted in an ac-
curacy of approximately .90 for each joint. These results are very suitable for an
embedded PLC controller, and can greatly improve performance. Our assumption
that movement in the last three joints has negligible effects on the torques of the first
three joints appears to have been a reasonable assumption given the positive results
we obtained without using them.
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Chapter 4

Delta3

4.1 Delta3 Used for Experiments

The Codian D4-650 was used for experiments [26]. It can be seen in figure 4.1. The
control panel can be seen in figure 4.2. Table 4.1 contains all the joint specification
and setup information. This mechanism has 3 axes for 3 DOF in x, y, and z Cartesian
space. Additionally, it has a fourth axis for rotating the end effector. This class of
robots was invented by Reymond Clavel [4], and is normally called a Delta robot.

Joint 0 Joint 1 Joint 2 Joint 3
Motor Rated Torque (N.m) 4.9 4.9 4.9 1.27
Motor Rated Speed (RPM) 3000 3000 3000 3000

Motor Power (Watts) 1500 1500 1500 400
Encoder Resolution (tics/rev) 224 224 224 224

Gear Ratio 2:77 2:77 2:77 1:10
Polarity Neg Neg Neg Pos

Zero Position Offset (tics) 249536 74560 618464 -38176
Min limit (Degrees) -30 -30 -30 -∞
Max limit (Degrees) 88 88 88 ∞

Table 4.1: D4-650 robot joint specification and setup
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Figure 4.1: Codian D4-650

4.2 Analytical Kinematics

A model and an analytical solution for the position, velocity, and acceleration for-
ward and inverse kinematics solutions can be found in appendix B. The kinematics
derivation uses the loop closure equations in vector form. Note that the derivation
ignores the fourth axis on the D4-650, because it is merely a trivial rotation of the
end effector.

4.3 Machine Learning Dynamics

In our dynamics analysis, we will be ignoring the fourth axis on the system used for
rotating the end effector, because its dynamics are decoupled from the rest of the
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Figure 4.2: Codian D4-650 Control Panel

Training limits x y z
min [mm] -400 -400 900
max [mm] 400 400 1100

Table 4.2: Delta3 Cartesian coordinate training limits

system.
Given a Delta3 mechanism is a parallel manipulator and dynamics of the first

three joints are highly coupled, it is safe to a assume that unlike the case with the
six axis arm, torques of the first three joints are dependent on the position, velocity,
and acceleration of each of the first three joints. Thus no Delta3 analytical dynamics
derivation is presented in this work.

Data Acquisition

Similar to what was done with the six axis robot, the Delta3 robot was moved within
a prism of dimensions found in table 4.2. Additionally, the fourth axis which rotates
the end effector was not used. The number of data points was approximately 67,000.
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Single Neural Network for all Joints Results

Plots of the actual and predicted torque values for the first three joint when the
hidden layer is of size six can be seen in figure 4.3. In this scenario one neural
network was used for all the joints. The R2 accuracy obtained was 0.93
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Figure 4.3: Actual and predicted torque values on D4-650 using one neural network

Discussion

The performance of the neural network is clearly very good. The predicted values
followed the actual values very closely. We would also like to note that just as in
the case of the six axis arm, the validation data was not shuffled, and no training
was done on it. This is very good confirmation that the neural network is able to
predict the required torques on movements it has not trained on. We would also
like to mention that movement profiles were run using a limited range of velocities
and accelerations, thus our expectation is that the neural network will have better
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performance within that range. Nevertheless, this is acceptable, because under usual
circumstances, the motion being performed for pick and place applications is highly
repetitive and will only span a limited range of joint positions, velocities, and accel-
erations. Additionally, given we obtained such strong prediction results using one
neural network for the whole system, this places confidence in our earlier assumption
that all position, velocity, and acceleration values affect all the torques.
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Chapter 5

Delta2

5.1 Delta2 used for Experiments

The Codian D2-800-Rz was used for experiments [25]. It can be seen in figure 5.1.
The control panel can be seen in figure 5.2. Table 5.1 contains the joint specification
and setup information. This mechanism has two axes for 2 DOF in x and z Cartesian
space. Additionally, it has a third axis for rotating the end effector. Ultimately, a
Delta2 mechanism is a simplified version of a Delta3 mechanism. Given that the
dynamics equations will be of less complexity, we thought it would be worthwhile
to include the Delta2 mechanism to see if the neural network can have even better
performance.

Joint 0 Joint 1 Joint 3
Motor Rated Torque (N.m) 3.18 3.18 1.27
Motor Rated Speed (RPM) 3000 3000 3000

Motor Power (Watts) 1000 1000 400
Encoder Resolution (tics/rev) 224 224 224

Gear Ratio 1:31 1:31 1:10
Polarity Neg Pos Pos

Zero Position Offset (Degrees) 31.1314 14.2819 0
Min limit (Degrees) -30 -30 -∞
Max limit (Degrees) 85 85 ∞

Table 5.1: D2-800-Rz robot joint specification and setup
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Figure 5.1: Codian D2-800-Rz

Figure 5.2: Codian D2-800-Rz Panel

5.2 Analytical Kinematics

A model and an analytical solution for the position, velocity, and acceleration forward
and inverse kinematics solutions can be found in appendix C. Again, the kinematics
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Training limits x z
min [mm] -300 510
max [mm] 300 700

Table 5.2: Delta2 Cartesian coordinate training limits

derivation uses the loop closure equations in vector form. Note that the derivation
ignores the third axis on the D2-800-Rz, because it is merely a trivial rotation of the
end effector.

5.3 Machine Learning Dynamics

In our dynamics analysis, we will again be ignoring the third axis on the system used
for rotating the end effector, because its dynamics are decoupled from the rest of the
system.

As in the case of the Delta3 mechanism, we will be assuming that position,
velocity, and acceleration of each of the first two joints will have effects on the
torques of the first two joints. This is because again, the mechanism is a parallel
manipulator.

Data Acquisition

Similar to what was done with the six axis robot, the Delta2 robot was moved within
a square of dimensions found in table 5.2. Additionally, the third axis which rotates
the end effector was not used. The number of data points was approximately 26,000.

Single Neural Network for all Joints Results

Plots of the actual and predicted torque values for the first three joints when the
hidden layer is of size three can be seen in figure 5.3. In this case, one neural network
was used for all the joints. The R2 accuracy obtained was 0.89

Discussion

As in the case of the six axis arm and the Delta3 mechanism, the neural network
was capable of capturing the dynamics of the system and was able to closely predict
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Figure 5.3: Actual and predicted torque values on D2-800-Rz using one neural net-
work

the torque outputs. The reason the accuracy was slightly less than that of Delta3,
is because more data was used during training for Delta3.
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Chapter 6

Delta3 On-line Neural Network
Torque Estimation

6.1 PLC Controller Architecture

The Delta3 system was composed similarly to the six axis system in figure 1.3. The
PLC controller is responsible for generating a world position, velocity and accelera-
tion trajectory profile given a target position and a profile velocity, and acceleration.
The controller then translates the world trajectory profile into a joint trajectory pro-
file using the inverse kinematics equations given in appendix B. Finally, the neural
network that was trained off line using feedback data in chapter 4 is run on the
controller using joint position, velocity, and acceleration values as inputs in order to
generate torque feedforward estimates as outputs. The controller architecture can be
seen in figure 6.1. The PLC controller generates joint position, velocity, and torque
feedforward commands, which are then sent to the servo drives controlling the mo-
tors. The servo drives use both feedforward and feedback control loops to control
the torque, velocity, and position of the motors as shown in figure 1.1.

6.2 System Overview and PLC Controller and

Servo Drive Update Rates

Given the PLC controller is designed to run PLC code in real time, it is required to
perform a great deal of processing. PLC motion controllers are normally expected
to conform to IEC-61131-3 [5] and PLCOpen Part 4 [24]. This is a high level pro-
gramming language and requires a lot of computational power to be run. Thus PLC
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Figure 6.1: PLC controller architecture

controller update rates are typically slower than those of the servos. On the other
hand, the servo drives, which are mostly running feedforward and feedback control
loops, are capable of running at much higher update rates. In our system the PLC
controller is running at 1 ms, and the servo control loops in figure 1.1 are running at
faster update rates.

6.3 Experimentation Results

In order to reduce the impact of the inaccuracies in the neural network, a highly
optimized neural network was trained on feedback data generated by seven back and
forth moves between the two world position in table 6.1. The size of the data set was
approximately 4000 points. The on-line torque feedforward prediction had excellent
tracking of the feedback torque. This can be seen in figure 6.2. The R2 accuracy was
0.96. Motion trajectory was a trapezoidal velocity profile, and the profile velocity
was 5 m/s, while the acceleration was 5 g’s.

The same test move was run with and without the neural network torque feed-
forward, and position errors reported by each servo drive were plotted. Figure 6.3
contains the position error plots.
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x y z
Start [mm] 0 400 1000
End [mm] 0 -400 1000

Table 6.1: Delta3 world move limits
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Figure 6.2: Actual and predicted torque values on D4-650 using optimized neural
network

Given Yaskawa currently employs a far simpler solution for torque feedforward
estimation called Pass Through, we have also included results while running the same
moves using the Pass Through torque feedforward method in Figures 6.5 and 6.4 for
comparison purposes. We note that the Pass Through method uses the equation
τff = Cθ̈, where C is the Pass Through coefficient and is manually tunned such
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Figure 6.3: Joint position errors on D4-650 using optimized neural network

that position errors are minimized during motion. In the case of the delta3 robot
that we used C was 0.00755 for each of the three joints. We note that the Pass
Through method assumes there are no Coriolis, gravitational, or frictional terms in
the dynamics. Additionally, it assumes that the inertia of the system is constant.

6.4 Discussion

Although the neural network clearly predicted the torque values far better than the
Pass Through method, the overall improvement in position errors was clearly better
with the use of the Pass Through method.
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Figure 6.4: Actual and predicted torque values on D4-650 using optimized pass
through coefficients
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Figure 6.5: Joint position errors on D4-650 using optimized pass through coefficients
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Chapter 7

Simulation Analysis

7.1 Discrete Time Simulation of Simple Mass

System

In order to better interpret the results seen with neural network torque feedforward, a
simple test simulating the system in diagram 7.1 was run. The system was discretized
using zero order hold. Simulation was done using python. The filters in the diagram
are low pass filters for filtering out high frequency noise. Model error used was 10%.
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Figure 7.1: Simple mass system with feedforward control

Simulation results for position errors vs time without and with feedforward can
be seen in figure 7.2. We note that the position error signals are wide due to noise.
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Figure 7.2: Joint position errors vs time without and with feedforward

7.2 Continuous Time Simulation of a MIMO

System

Given the use of a neural network for torque feedforward is essentially equivalent to
plant inversion, simulation was performed using matlab in continuous time of a 2
input 2 output system. Tests were run with and without feedforward and with and
without modeling error. Additionally tests were run with and without the M matrix
being ill-conditioned. The plant constituted of the M matrix and an integrator. The
system can be seen in figure 7.3. We note that K is a diagonal matrix, while M is
randomly generated. When M is ill-conditioned, the condition number used was 900.
The condition number was achieved using singular value decomposition in matlab
and using eigenvalues of 30 and 1

30
. When modeling error was present, 10% was used.

Diagonal elements of K were found iteratively such that the closed loop system was
stable without feedforward control.

Simulation results for a step response with and without feedforward, plant un-
certainty, and the plant being ill-conditioned, can be seen in figures 7.4, 7.5, 7.6,
and 7.7. The ill-conditioned matrix used for the plant is given in equation 7.1. A
summary of whether feedforward or no feedforward had better performance for all
the scenarios can be seen in table 7.1.

M =

[
10.1345 13.7001
14.6362 19.8843

]
(7.1)
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Figure 7.3: Continuous time MIMO system with plant inversion

Figure 7.4: Ill-conditioned MIMO system step response with model uncertainty and
without and with feedforward

7.3 Discussion

The simple mass system clearly demonstrated improved performance with the use
of feedforward control. This is not surprising, because the effectiveness of feedfor-
ward control is already well established [28]. However, simulation results of the
ill-conditioned plant with feedforward showed degraded performance. Settling time
of both the inputs and the outputs of the system increased considerably when feed-
forward control was added, despite modeling error only being at 10%. This is the
case, because according to [30], inverting an ill-conditioned plant yields bad perfor-
mance if there is model uncertainty. Not surprisingly, the only situation where no
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Figure 7.5: Non ill-conditioned MIMO system step response with model uncertainty
and without and with feedforward

Figure 7.6: Ill-conditioned MIMO system step response without model uncertainty
and without and with feedforward

feedforward outperformed feedforward is when the plant is ill-conditioned, and mod-
eling error is present. In all other scenarios, adding feedforward control improved
the overall performance of the system.
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Figure 7.7: Non ill-conditioned MIMO system step response without model uncer-
tainty and without and with feedforward

Model error No Model error
Plant ill-conditioned No feedforward Feedforward

Plant not ill-conditioned Feedforward Feedforward

Table 7.1: Summary of whether feedforward or no feedforward had improved step
response
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Chapter 8

Concluding Remarks and Future
Work

8.1 Concluding Remarks

As seen in this work, neural networks were capable of learning robot inverse kine-
matics solutions as well as robot dynamics equations. However, they were highly
dependent on training with large amounts of data. Additionally, removal of indepen-
dent variables from the input training data highly improved performance as seen with
the six axis robot dynamics. In the case of robot inverse kinematics, the accuracies
obtained with the neural networks are not sufficient for accurate robot positioning.
However, in the case of robot dynamics modeling, the accuracies obtained with neural
networks were sufficient for improving robot tracking performance. Neural networks
were able to produce good estimates of torque efforts on multiple types of paral-
lel and serial manipulators. Training on actual feedback data from the mechanism
eliminates the need for traditional methods of modeling and estimation that suffer
from many inaccuracies. Traditional methods of dynamics modeling require many
simplifications in the model to make the equations practical for analytical derivation.

We conclude that small but highly optimized neural networks can still accurately
capture the dynamics of nonlinear systems. The neural networks used for dynamics
in this work only had one hidden layer of length 6. These neural networks ran in
approximately 5 µs. However, as we saw while looking at the position error plots,
the neural network had mediocre improvement in performance. We attribute this to
the plant dynamics equations being ill-conditioned. This was clearly the case with
simulation results. Plant inversion degraded the performance when the plant model
was ill-conditioned.
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On the other hand, the simple Pass Through method for torque feedforward
estimation had better performance improvement in position errors although it in
fact had worse prediction of the torque values. This is because the Pass Through
method is a much milder attempt at inverting the plant, and it thus did not suffer
from the plant being ill-conditioned.

8.2 Future Work

The performance of clustering robot configurations may be increased by either using
a simpler mechanism such as a SCARA (Selective Compliance Assembly Robot Arm)
[7] robot which only has two configurations and 3 DOF, or by drastically increasing
the number of data points. This is still a very interesting problem to solve, and can
make the neural network inverse kinematics solution far more practical in the case
of a generalized manipulator.

Testing the neural network torque feedforward strategy on a different system with
faster response times such as a SCARA mechanism would be highly desirable. Since
SCARA mechanisms are normally built with direct drive motors [6], they do not
have gear boxes but have very fast response times. Direct drive motors are motors
that are large enough to provide necessary torques for motion without the use of
a gear box. As such, little torque effort goes to friction, since gear boxes normally
consume the majority of the friction. Such systems may be far more suited for neural
network torque feedforward control, because of their higher bandwidth.

Another highly desirable benefit of neural networks for torque estimation is the
potential to have the robot perform the training online. For example, as the robot
moves around, the neural network weights could be updated based on the feedback
data it receives from the motors. Thus the mechanism could continuously improve
its performance. This would require that the neural network training algorithm be
implemented on the PLC controller firmware.
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1811. url: https://books.google.co.uk/books?id=Q8MKAAAAYAAJ.

[16] Jer-Junn Luh et al. “Isokinetic elbow joint torques estimation from surface
EMG and joint kinematic data: using an artificial neural network model”. In:
Journal of Electromyography and Kinesiology 9.3 (1999), pp. 173–183. issn:
1050-6411. doi: https://doi.org/10.1016/S1050-6411(98)00030-3. url:
http://www.sciencedirect.com/science/article/pii/S1050641198000303.

[17] D. Manocha and J. F. Canny. “Efficient inverse kinematics for general 6R
manipulators”. In: IEEE Transactions on Robotics and Automation 10.5 (Oct.
1994), pp. 648–657. issn: 1042-296X. doi: 10.1109/70.326569.

[18] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(Dec. 1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259. url:
https://doi.org/10.1007/BF02478259.

[19] E. Mollick. “Establishing Moore’s Law”. In: IEEE Annals of the History of
Computing 28.3 (July 2006), pp. 62–75. issn: 1058-6180. doi: 10.1109/MAHC.
2006.45.



BIBLIOGRAPHY 51

[20] Yaskawa Motoman. Motoman MHJ Robot. url: https://www.motoman.com/
industrial-robots/mhjf.

[21] R.M. Murray et al. A Mathematical Introduction to Robotic Manipulation. Tay-
lor & Francis, 1994. isbn: 9780849379819. url: https://books.google.com/
books?id=D%5C_PqGKRo7oIC.

[22] K. S. Narendra and K. Parthasarathy. “Identification and control of dynamical
systems using neural networks”. In: IEEE Transactions on Neural Networks 1.1
(Mar. 1990), pp. 4–27. issn: 1045-9227. doi: 10.1109/72.80202.

[23] H. C. Nho and P. Meckl. “Intelligent feedforward control and payload esti-
mation for a two-link robotic manipulator”. In: IEEE/ASME Transactions on
Mechatronics 8.2 (June 2003), pp. 277–282. issn: 1083-4435. doi: 10.1109/
TMECH.2003.812847.

[24] PLC Open. PLC Open Part4. Dec. 2008. url: http://www.plcopen.org/
pages/tc2_motion_control/downloads/part4_coordinatedmotion_v10.

pdf.

[25] Codian Robotics. Codian D2 Robots. url: http://www.codian-robotics.
com/en/d2-robots/.

[26] Codian Robotics. Codian D4 Robots. url: http://www.codian-robotics.
com/en/d4-robots/.
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Appendix A

Six Axis Kinematics Derivation

A.1 Kinematics Model

This appendix goes over the forward and inverse kinematics derivation for a 6 DOF
Yaskawa Motoman robot. Figure A.1 has assigned frames of references that match
Yaskawa joint movement conventions. The frames of reference are also assigned to
match Denavit Hartenberg conventions.

a0
a1

-d3 -d5

a2

S

L

U

R B T

Z0=MCS Y0=MCS

X0=MCS

Z6=TPCS

Y6=TPCS

X6=TPCS

Z1

Y1

X1

Z2

Y2

X2

X3
Y3

Z3

Z4

Y4

X4

Z5

Y5
X5

Figure A.1: 6 DOF arm kinematics model
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Joint α a d θ
0 −π

2
a0 0 θ0

1 π a1 0 θ1
2 −π

2
a2 0 θ2

3 π
2

0 d3 θ3
4 −π

2
0 0 θ4

5 π 0 d5 θ5

Table A.1: DH parametrization

Given the defined model, the Denavit Hartenberg parameters are presented in
table A.1

The transformation from joint n-1 to n using the Denavit Hartenberg parameters
is done using the transformation matrix in equation A.1

n−1An =


cosθn −sinθncosαn sinθnsinαn ancosθn
sinθn cosθncosαn −cosθnsinαn ansinθn

0 sinαn cosαn dn
0 0 0 1

 (A.1)

A.2 Position Forward Kinematics

To simplify the equations the following convention shall be used:
cosθ = cθ
sinθ = sθ
cos(θ0 + θ1) = cθ0+1

cos(θ0 − θ1) = cθ0−1
Evaluating equation A.1 for joints 1 through 6 yields:

0A1 =


cθ0 0 −sθ0 a0cθ0
sθ0 0 cθ0 a0sθ0
0 −1 0 0
0 0 0 1

 , (A.2)
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1A2 =


cθ1 sθ1 0 a1cθ1
sθ1 −cθ1 0 a1sθ1
0 0 −1 0
0 0 0 1

 , (A.3)

2A3 =


cθ2 0 −sθ2 a2cθ2
sθ2 0 cθ2 a2sθ2
0 −1 0 0
0 0 0 1

 , (A.4)

3A4 =


cθ3 0 sθ3 0
sθ3 0 −cθ3 0
0 1 0 d3
0 0 0 1

 , (A.5)

4A5 =


cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 0
0 0 0 1

 , (A.6)

5A6 =


cθ5 sθ5 0 0
sθ5 −cθ5 0 0
0 0 −1 d5
0 0 0 1

 , (A.7)

0A6 =


ux vx wx qx
uy vy wy qy
uz vz wz qz
0 0 0 1

 , (A.8)

It follows that:
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0A3 = 0A1
1A

2
2A3

=


cθ0 0 −sθ0 a0cθ0
sθ0 0 cθ0 a0sθ0
0 −1 0 0
0 0 0 1



cθ1 sθ1 0 a1cθ1
sθ1 −cθ1 0 a1sθ1
0 0 −1 0
0 0 0 1



cθ2 0 −sθ2 a2cθ2
sθ2 0 cθ2 a2sθ2
0 −1 0 0
0 0 0 1



=


cθ0 0 −sθ0 a0cθ0
sθ0 0 cθ0 a0sθ0
0 −1 0 0
0 0 0 1



cθ2−1 0 −sθ2−1 a1cθ1 + a2cθ2−1
−sθ2−1 0 −cθ2−1 a1sθ1 − a2sθ2−1

0 1 0 0
0 0 0 1



=


cθ0cθ2−1 −sθ0 −cθ0sθ2−1 cθ0(a0 + a1cθ1 + a2cθ2−1)
sθ0cθ2−1 cθ0 −sθ0sθ2−1 sθ0(a0 + a1cθ1 + a2cθ2−1)
sθ2−1 0 cθ2−1 −a1sθ1 + a2sθ2−1

0 0 0 1


(A.9)

3A6 = 3A4
4A

5
5A6

=


cθ3 0 sθ3 0
sθ3 0 −cθ3 0
0 1 0 d3
0 0 0 1



cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 0
0 0 0 1



cθ5 sθ5 0 0
sθ5 −cθ5 0 0
0 0 −1 d5
0 0 0 1



=


cθ3cθ4 −sθ3 −cθ3sθ4 0
sθ3cθ4 cθ3 −sθ3sθ4 0
sθ4 0 cθ4 d3
0 0 0 1



cθ5 sθ5 0 0
sθ5 −cθ5 0 0
0 0 −1 d5
0 0 0 1



=


cθ3cθ4cθ5 − sθ3sθ5 cθ3cθ4sθ5 + sθ3cθ5 cθ3sθ4 −d5cθ3sθ4
sθ3cθ4cθ5 + cθ3sθ5 sθ3cθ4sθ5 − cθ3cθ5 sθ3sθ4 −d5sθ3sθ4

sθ4cθ5 sθ4sθ5 −cθ4 d5cθ4 + d3
0 0 0 1


(A.10)

The complete forward transformation matrix is given by:

0A6 = 0A3
3A6 (A.11)

Substituting equations A.9 and A.10 into A.11 and equating to A.8 gives:
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
ux vx wx qx
uy vy wy qy
uz vz wz qz
0 0 0 1

 =


cθ0cθ2−1 −sθ0 −cθ0sθ2−1 cθ0(a0 + a1cθ1 + a2cθ2−1)
sθ0cθ2−1 cθ0 −sθ0sθ2−1 sθ0(a0 + a1cθ1 + a2cθ2−1)
sθ2−1 0 cθ2−1 −a1sθ1 + a2sθ2−1

0 0 0 1



cθ3cθ4cθ5 − sθ3sθ5 cθ3cθ4sθ5 + sθ3cθ5 cθ3sθ4 −d5cθ3sθ4
sθ3cθ4cθ5 + cθ3sθ5 sθ3cθ4sθ5 − cθ3cθ5 sθ3sθ4 −d5sθ3sθ4

sθ4cθ5 sθ4sθ5 −cθ4 d5cθ4 + d3
0 0 0 1

 (A.12)

Which yields the forward transformation equations below:

ux = cθ0cθ2−1(cθ3cθ4cθ5 − sθ3sθ5)− sθ0(sθ3cθ4cθ5 + cθ3sθ5)− cθ0sθ2−1sθ4cθ5

uy = sθ0cθ2−1(cθ3cθ4cθ5 − sθ3sθ5) + cθ0(sθ3cθ4cθ5 + cθ3sθ5)− sθ0sθ2−1sθ4cθ5

uz = sθ2−1(cθ3cθ4cθ5 − sθ3sθ5) + cθ2−1sθ4cθ5

vx = cθ0cθ2−1(cθ3cθ4sθ5 + sθ3cθ5)− sθ0(sθ3cθ4sθ5 − cθ3cθ5)− cθ0sθ2−1sθ4sθ5

vy = sθ0cθ2−1(cθ3cθ4sθ5 + sθ3cθ5) + cθ0(sθ3cθ4sθ5 − cθ3cθ5)− sθ0sθ2−1sθ4sθ5

vz = sθ2−1(cθ3cθ4sθ5 + sθ3cθ5) + cθ2−1sθ4sθ5

wx = cθ0cθ2−1cθ3sθ4 − sθ0sθ3sθ4 + cθ0sθ2−1cθ4

wy = sθ0cθ2−1cθ3sθ4 + cθ0sθ3sθ4 + sθ0sθ2−1cθ4
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wz = sθ2−1cθ3sθ4 − cθ2−1cθ4

qx = −d5cθ0cθ2−1cθ3sθ4+d5sθ0sθ3sθ4−cθ0sθ2−1(d5cθ4+d3)+cθ0(a0+a1cθ1+a2cθ2−1)

qy = −d5sθ0cθ2−1cθ3sθ4−d5cθ0sθ3sθ4−sθ0sθ2−1(d5cθ4+d3)+sθ0(a0+a1cθ1+a2cθ2−1)

qz = −d5sθ2−1cθ3sθ4 + cθ2−1(d5cθ4 + d3)− a1sθ1 + a2sθ2−1

A.3 Position Inverse Kinematics

Solution for S, U, and L Joint Angles

Let p denote the position of the wrist center, where the wrist center is the intersection
point of Axis 4, 5 and 6.

Using figure A.1, it follows that the position of point p in coordinate frame 6 is:

6p =


0
0
d5
1

 (A.13)

Thus:

0p =


ux vx wx qx
uy vy wy qy
uz vz wz qz
0 0 0 1




0
0
d5
1

 =


qx + d5wx
qy + d5wy
qz + d5wz

1

 =


px
py
pz
1

 (A.14)

Also using figure A.1, it follows that the position of point p in coordinate frame
3 is:
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3p =


0
0
d3
1

 (A.15)

Using the matrix transformation, we have:

0p = 0A3
3p (A.16)

Left multiplying both sides of equation A.16 by the inverse of 0A1 yields:

(
0A1

)−1 0p = 1A2
2A3

3p = 1A3
3p (A.17)

Note that for a general transformation matrix T with a 3 x 3 rotation R and a 3
x 1 translation vector V:

T =

[
R V
0 1

]
The inverse is given by:

T =

[
RT −RTV
0 1

]
Given 0A1 is of the form:

0A1 =

[
0R1

0V1
0 1

]
Then 0A1 inverse can be computed using:

(0A1)
−1 =

[
(0R1)

T − (0R1)
T 0V1

0 1

]
where:
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(
0R1

)T
=

 cθ0 sθ0 0
0 0 −1
−sθ0 cθ0 0


and:

−
(
0R1

)T 0V1 = −

 cθ0 sθ0 0
0 0 −1
−sθ0 cθ0 0

 ∗
a0cθ0a0sθ0

0

 =

−a00
0


Thus the inverse of 0A1 is:

(
0A1

)−1
=


cθ0 sθ0 0 −a0
0 0 −1 0
−sθ0 cθ0 0 0

0 0 0 1

 (A.18)

Substituting equations A.18, A.14, A.3, A.4, and A.15 into equation A.17 yields:


cθ0 sθ0 0 −a0
0 0 −1 0
−sθ0 cθ0 0 0

0 0 0 1



px
py
pz
1

 =


cθ1 sθ1 0 a1cθ1
sθ1 −cθ1 0 a1sθ1
0 0 −1 0
0 0 0 1



cθ2 0 −sθ2 a2cθ2
sθ2 0 cθ2 a2sθ2
0 −1 0 0
0 0 0 1




0
0
d3
1



=


cθ1 sθ1 0 a1cθ1
sθ1 −cθ1 0 a1sθ1
0 0 −1 0
0 0 0 1



−d3sθ2 + a2cθ2
d3cθ2 + a2sθ2

0
1



=


−d3(sθ2cθ1 − cθ2sθ1) + a2(cθ2cθ1 + sθ2sθ1) + a1cθ1
−d3(cθ2cθ1 + sθ2sθ1)− a2(sθ2cθ1 − cθ2sθ1) + a1sθ1

0
1



=


−d3sθ2−1 + a2cθ2−1 + a1cθ1
−d3cθ2−1 − a2sθ2−1 + a1sθ1

0
1


(A.19)
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Which yields:

pxcθ0 + pysθ0 − a0 = a1cθ1 + a2cθ2−1 − d3sθ2−1 (A.20)

−pz = a1sθ1 − a2sθ2−1 − d3cθ2−1 (A.21)

−pxsθ0 + pycθ0 = 0 (A.22)

Equation A.22 yields the solutions:

θ0 = φ0 (A.23)

or:

θ0 = φ0 + π (A.24)

where:

φ0 = Atan2(py, px) (A.25)

The first solution shall be denoted as the ”Front” configuration, while the second
solution shall be denoted as the ”Back” configuration. This is illustrated in Figure
A.2a.

Summing the squares of equations A.20, A.21, and A.22 yields:

(pxcθ0 + pysθ0 − a0)2 + (−pz)2 + (−pxsθ0 + pycθ0)
2 =

(a1cθ1 + a2cθ2−1 − d3sθ2−1)2 + (a1sθ1 − a2sθ2−1 − d3cθ2−1)2 (A.26)

Expanding and simplifying equation A.26 yields:

p2x + p2y + p2z − 2pxa0cθ0 − 2pya0sθ0 + a20 = a21 + a22 + d23 +m1 +m2 +m3 (A.27)
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where:

m1 = 2a1a2(cθ1cθ2−1 − sθ1sθ2−1)
= 2a1a2(cθ(2+(3−2)))

= 2a1a2cθ2

(A.28)

m2 = 2a1d3(−sθ1cθ2−1 − cθ1sθ2−1)
= − 2a1d3(sθ1cθ2−1 + cθ1sθ2−1)

= − 2a1d3(sθ(2+(3−2)))

= − 2a1d3sθ2

(A.29)

m3 = 2a2d3(−cθ2−1sθ2−1 + sθ2−1cθ2−1)

= 0
(A.30)

Substituting equations A.28, A.29 and A.30 into equation A.27 yields:

p2x+p2y +p2z−2pxa0cθ0−2pya0sθ0 +a20 = a21 +a22 +d23 +2a1a2cθ2−2a1d3sθ2 (A.31)

Rearranging equation A.31 yields:

k1sθ2 + k2cθ2 = k3 (A.32)

where:

k1 = −2a1d3 (A.33)

k2 = 2a1a2 (A.34)

k3 = p2x + p2y + p2z − 2pxa0cθ0 − 2pya0sθ0 + a20 − a21 − a22 − d23 (A.35)

Dividing both sides of equation A.32 by
√
k21 + k22 yields:
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sθ2
k1√
k21 + k22

− cθ2
−k2√
k21 + k22

=
k3√
k21 + k22

(A.36)

which is equivalent to:

sθ2cφ2 − cθ2sφ2 = sω2 (A.37)

where:

φ2 = Atan2(−k2, k1) = tan−1
(
−k2
k1

)
= tan−1

(
−2a1a2
−2a1d3

)
= tan−1

(
a2
d3

)
(A.38)

ω2 = sin−1

(
k3√
k21 + k22

)
(A.39)

This is equivalent to solving:

s(θ2 − φ2) = sω2 (A.40)

which yields:

θ2 = φ2 + ω2 (A.41)

or:

θ2 = φ2 + π − ω2 (A.42)

If

∣∣∣∣ k3√
k21+k

2
2

∣∣∣∣ > 1, then the position is unreachable. If

∣∣∣∣ k3√
k21+k

2
2

∣∣∣∣ = 1, then there is

one solution, which corresponds to the robot arm extended for maximum reach. If∣∣∣∣ k3√
k21+k

2
2

∣∣∣∣ < 1, then there are two unique solutions. The solution θ2 = φ2+ω2 shall be

denoted as the ”Upper Arm” configuration, while the solution θ2 = φ2 +π−ω2 shall
be denoted as the ”Lower Arm” configuration. This is illustrated in Figure A.2b.
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The simplification done in equation A.38 is only accurate because the x compo-
nent of the Atan2(y,x) function is positive. Specifically, k1 > 0 since a1 > 0 and
d3 < 0.

We also note that:

√
k21 + k22 =

√
(−2a1d3)2 + (2a1a2)2 = 2a1

√
d23 + a22 (A.43)

Now that θ0 and θ2 are known, θ1 can be solved for by expanding and rearranging
equations A.20 and A.21, which yields:

a1cθ1 + a2cθ2cθ1 + a2sθ2sθ1 − d3sθ2cθ1 + d3cθ1sθ2 = pxcθ0 + pysθ0 − a0 (A.44)

a1sθ1 − a2sθ2cθ1 + a2cθ2sθ1 − d3cθ2cθ1 − d3sθ2sθ1 = −pz (A.45)

Rearranging gives:

µ0cθ1 + ν0sθ1 = γ0 (A.46)

µ1cθ1 + ν1sθ1 = γ1 (A.47)

where:

µ0 = a1 + a2cθ2 − d3sθ2 (A.48)

ν0 = a2sθ2 + d3cθ2 (A.49)

γ0 = pxcθ0 + pysθ0 − a0 (A.50)

µ1 = −a2sθ2 − d3cθ2 (A.51)
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ν1 = a1 + a2cθ2 − d3sθ2 (A.52)

γ1 = −pz (A.53)

Solving equations A.46 and A.47 for cθ1 and sθ1 yields:

cθ1 =
ν1γ0 − ν0γ1
ν1µ0 − ν0µ1

(A.54)

sθ1 =
µ0γ1 − µ1γ0
ν1µ0 − ν0µ1

(A.55)

We note that:

ν1µ0 − ν0µ1 = (a1 + a2cθ2 − d3sθ2)2 + (a2sθ2 + d3cθ2)
2 (A.56)

Thus the quantity ν1µ0 − ν0µ1 is greater or equal to zero for all values of θ2.
Additionally, with the use of some simple algebraic manipulation, it can be shown
that the quantity ν1µ0 − ν0µ1 is zero if and only if the robot dimensions satisfy the
following equation a21 = a22 +d23 and joint B is coincident with joint L. This condition
is mechanically not possible.

Thus we obtain a unique solution:

θ1 = Atan2(sθ1, cθ1) = Atan2((µ0γ1 − µ1γ0), (ν1γ0 − ν0γ1)) (A.57)

Solution for R, B, and T Joint Angles

Once θ0, θ1, and θ2 are solved for, 0A3 is completely known. The remaining joint
angles can be found by left multiplying both sides of equation A.11 by (0A3)

−1:

3A6 = (0A3)
−1 0A6 (A.58)

Following the same procedure for obtaining (0A1)
−1 in equation A.18, (0A3)

−1

can be obtained as such:
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0A3 =

[
0R3

0V3
0 1

]

(0A3)
−1 =

[
(0R3)

T − (0R3)
T 0V3

0 1

]
Where:

(
0R3

)T
=

 cθ0cθ2−1 sθ0cθ2−1 sθ2−1
−sθ0 cθ0 0

−cθ0sθ2−1 −sθ0sθ2−1 cθ2−1


and:

−
(
0R3

)T 0V3 = −

 cθ0cθ2−1 sθ0cθ2−1 sθ2−1
−sθ0 cθ0 0

−cθ0sθ2−1 −sθ0sθ2−1 cθ2−1

cθ0(a0 + a1cθ1 + a2cθ2−1)
sθ0(a0 + a1cθ1 + a2cθ2−1)
−a1sθ1 + a2sθ2−1


= −

 cθ2−1(cθ
2
0 + sθ20)(a0 + a1cθ1 + a2cθ2−1) + sθ2−1(−a1sθ1 + a2sθ2−1)

0
−sθ2−1(cθ20 + sθ20)(a0 + a1cθ1 + a2cθ2−1) + cθ2−1(−a1sθ1 + a2sθ2−1)


= −

 a0cθ2−1 + a1cθ1cθ2−1 + a2cθ
2
2−1 − a1sθ1sθ2−1 + a2sθ

2
2−1

0
−a0sθ2−1 − a1cθ1sθ2−1 − a2sθ2−1cθ2−1 − a1sθ1cθ2−1 + a2sθ2−1cθ2−1


= −

a0cθ2−1 + a1cθ2+(3−2) + a2
0

−a0sθ2−1 − a1sθ2+(3−2)


=

−a0cθ2−1 − a1cθ3 − a20
a0sθ2−1 + a1sθ3



Thus the inverse of 0A3 is:

(
0A3

)−1
=


cθ0cθ2−1 sθ0cθ2−1 sθ2−1 −a0cθ2−1 − a1cθ3 − a2
−sθ0 cθ0 0 0

−cθ0sθ2−1 −sθ0sθ2−1 cθ2−1 a0sθ2−1 + a1sθ3
0 0 0 1

 (A.59)
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Substituting equations A.10, A.59, and A.8 into equation A.58 yields:


cθ3cθ4cθ5 − sθ3sθ5 cθ3cθ4sθ5 + sθ3cθ5 cθ3sθ4 −d5cθ3sθ4
sθ3cθ4cθ5 + cθ3sθ5 sθ3cθ4sθ5 − cθ3cθ5 sθ3sθ4 −d5sθ3sθ4

sθ4cθ5 sθ4sθ5 −cθ4 d5cθ4 + d3
0 0 0 1

 =


cθ0cθ2−1 sθ0cθ2−1 sθ2−1 −a0cθ2−1 − a1cθ3 − a2
−sθ0 cθ0 0 0

−cθ0sθ2−1 −sθ0sθ2−1 cθ2−1 a0sθ2−1 + a1sθ3
0 0 0 1



ux vx wx qx
uy vy wy qy
uz vz wz qz
0 0 0 1


(A.60)

Using equation A.60, if we equate the left and right hand side of the (3,3) (3,1)
(3,2) (1,3) and (1,2) elements of the matrices, we obtain:

−cθ4 = −wxcθ0sθ2−1 − wysθ0sθ2−1 + wzcθ2−1 (A.61)

cθ3sθ4 = wxcθ0cθ2−1 + wysθ0cθ2−1 + wzsθ2−1 (A.62)

sθ3sθ4 = −wxsθ0 + wycθ0 (A.63)

sθ4cθ5 = −uxcθ0sθ2−1 − uysθ0sθ2−1 + uzcθ2−1 (A.64)

sθ4sθ5 = −vxcθ0sθ2−1 − vysθ0sθ2−1 + vzcθ2−1 (A.65)

Which yields:

θ4 = ±cos−1(wxcθ0sθ2−1 + wysθ0sθ2−1 − wzcθ2−1) (A.66)

We note that equation A.66 has a positive and a negative solution. The positive
solution shall be denoted as the ”Flip” configuration, while the negative solution
shall be denoted as the ”No Flip” configuration. This is illustrated in Figure A.2c.
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Unless θ4 is 0 or π which is a singularity position, the last 2 angles can be
computed as follows:

cθ3 =
wxcθ0cθ2−1 + wysθ0cθ2−1 + wzsθ2−1

sθ4
(A.67)

sθ3 =
−wxsθ0 + wycθ0

sθ4
(A.68)

θ3 = Atan2(sθ3, cθ3) (A.69)

cθ5 =
−uxcθ0sθ2−1 − uysθ0sθ2−1 + uzcθ2−1

sθ4
(A.70)

sθ5 =
−vxcθ0sθ2−1 − vysθ0sθ2−1 + vzcθ2−1

sθ4
(A.71)

θ5 = Atan2(sθ5, cθ5) (A.72)

We conclude that there is a total of 8 possible solutions corresponding to the
”Front”/”Back”, ”Upper Arm”/”Lower Arm”, and ”Flip”/”No Flip” configurations
as can be seen in Figure A.2 below.
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Figure A.2: Robot configurations
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Appendix B

Delta3 Kinematics Derivation1

B.1 Definitions and Kinematics Model

o origin
hi hip
ki knee
ai angle
p tool position

φi leg angle
θi motor angle

rb base radius
ob base offset
lb base leg length
lp platform leg length
op platform offset
rp platform radius

ı̂ x-direction
̂ y-direction

k̂ z-direction

base

3

1

2

ki

θi

lb

ai
rp

platformop

lp

ob hi
φi

o

p

i

k

j

i

j

k

i

k

j

rb

Figure B.1: Delta3 kinematics model

1Authored by Dr. Fernando L. Garcia Bermudez at Yaskawa America, Inc.
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B.2 Equations of Motion

lp = ‖ai − ki‖2

=

∥∥∥∥∥∥p +

rp cosφi
rp sinφi
op

− hi −Rk̂ (−φi)Rî (90◦)

lb cos θi
lb sin θi

0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥p +

rp cosφi
rp sinφi
op

−
rb cosφi
rb sinφi
−ob

−
cosφi − sinφi 0

sinφi cosφi 0
0 0 1

1 0 0
0 0 1
0 −1 0

lb cos θi
lb sin θi

0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
pı̂ + (rp − rb) cosφi − lb cosφi cos θi
p̂ + (rp − rb) sinφi − lb sinφi cos θi

pk̂ + op + ob + lb sin θi

∥∥∥∥∥∥
2

Defining r = rp − rb and o = op + ob and writing out the `2-norm we get:

l2p = (pı̂ + r cosφi − lb cosφi cos θi)
2 + (p̂ + r sinφi − lb sinφi cos θi)

2 + (pk̂ + o+ lb sin θi)
2

= p2ı̂ + 2r cosφipı̂ − 2lb cosφi cos θipı̂ + r2���
�cos2 φi − 2lbr��

��cos2 φi cos θi + l2b��
��cos2 φi
XXXXcos2 θi+

p2̂ + 2r sinφip̂ − 2lb sinφi cos θip̂ + r2����sin2 φi − 2lbr��
��sin2 φi cos θi + l2b��

��sin2 φi
XXXXcos2 θi+

p2
k̂

+ 2opk̂ + 2lb sin θipk̂ + o2 + 2lbo sin θi + l2b
XXXXsin2 θi

0 = p2ı̂ + p2̂ + p2
k̂

+ r2 + o2 + l2b − l2p+
2 (r (cosφipı̂ + sinφip̂) + opk̂ − lb ((cosφipı̂ + sinφip̂ + r) cos θi − (pk̂ + o) sin θi))

Further simplifying by defining q = r2 + o2 + l2b − l2p we get:

0 = p2ı̂ + p2̂ + p2
k̂

+ q

+ 2(r(cosφipı̂ + sinφip̂) + opk̂
− lb((cosφipı̂ + sinφip̂ + r) cos θi − (pk̂ + o) sin θi))

(B.1)

B.3 Position

Inverse

Defining u = cosφipı̂+sinφip̂, v = p2ı̂ +p2̂ +p2
k̂

+q+2(ru+opk̂), and w = 2lb (u+ r)
for brevity:

0 = v − w cos θi + 2lb (pk̂ + o) sin θi
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We then apply the tangent half-angle formula where cos θi =
1−tan2 θi

2

1+tan2
θi
2

and sin θi =

2 tan
θi
2

1+tan2
θi
2

and multiply the equation by the common denominator:

0 = v

(
1 + tan2 θi

2

)
− w

(
1− tan2 θi

2

)
+ 4lb (pk̂ + o) tan

θi
2

= (v + w) tan2 θi
2

+ 4lb (pk̂ + o) tan
θi
2

+ (v − w)

The above quadratic equation with a = v+w, b = 4lb (pk̂ + o), and c = v−w yields:

θi = 2 tan−1
(
−b±

√
b2 − 4ac

2a

)
(B.2)

Forward

Starting from (B.1), we define k = p2ı̂ + p2̂ + p2
k̂

+ q and rearrange it as:

0 = k+2 ((r − lb cos θi) (cosφipı̂ + sinφip̂) + (o+ lb sin θi) pk̂ − lb (r cos θi − o sin θi))

Writing it out for all values of i:

0 = k + 2 ((r − lb cos θ1) (cosφ1pı̂ + sinφ1p̂) + (o+ lb sin θ1) pk̂ − lb (r cos θ1 − o sin θ1))

(B.3)

0 = k + 2 ((r − lb cos θ2) (cosφ2pı̂ + sinφ2p̂) + (o+ lb sin θ2) pk̂ − lb (r cos θ2 − o sin θ2))
(B.4)

0 = k + 2 ((r − lb cos θ3) (cosφ3pı̂ + sinφ3p̂) + (o+ lb sin θ3) pk̂ − lb (r cos θ3 − o sin θ3))
(B.5)

Combining (B.3) and (B.4):

((r − lb cos θ2) cosφ2 − (r − lb cos θ1) cosφ1) pı̂ + ((r − lb cos θ2) sinφ2 − (r − lb cos θ1) sinφ1) p̂ =

lb (r (cos θ2 − cos θ1)− o (sin θ2 − sin θ1))− (Ao+ lb sin θ2 − Ao− lb sin θ1) pk̂
(B.6)

Combining (B.3) and (B.5):

((r − lb cos θ3) cosφ3 − (r − lb cos θ1) cosφ1) pı̂ + ((r − lb cos θ3) sinφ3 − (r − lb cos θ1) sinφ1) p̂ =

lb (r (cos θ3 − cos θ1)− o (sin θ3 − sin θ1))− (Ao+ lb sin θ3 − Ao− lb sin θ1) pk̂
(B.7)
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We can rewrite (B.6) and (B.7) in matrix form by defining:

A =

[
(r − lb cos θ2) cosφ2 − (r − lb cos θ1) cosφ1 (r − lb cos θ2) sinφ2 − (r − lb cos θ1) sinφ1

(r − lb cos θ3) cosφ3 − (r − lb cos θ1) cosφ1 (r − lb cos θ3) sinφ3 − (r − lb cos θ1) sinφ1

]
=

[
a11 a12
a21 a22

]
Where its inverse is defined as:

A−1 =
1

a11a22 − a12a21

[
a22 −a12
−a21 a11

]
Thus,[

pı̂
p̂

]
= lbA

−1
(
r

[
cos θ2 − cos θ1
cos θ3 − cos θ1

]
− o

[
sin θ2 − sin θ1
sin θ3 − sin θ1

])
− lbA−1

[
sin θ2 − sin θ1
sin θ3 − sin θ1

]
pk̂

(B.8)

Defining m and n such that:[
pı̂
p̂

]
= m− npk̂ =

[
m1

m2

]
−
[
n1

n2

]
pk̂

and substituting these into (B.3):

0 = (m1 − n1pk̂)
2 + (m2 − n2pk̂)

2 + p2
k̂

+ q +

2 ((r − lb cos θ1) (cosφ1 (m1 − n1pk̂) + sinφ1 (m2 − n2pk̂)) +

(o+ lb sin θ1) pk̂ − lb (r cos θ1 − o sin θ1))

= m2
1 − 2m1n1pk̂ + n2

1p
2
k̂

+m2
2 − 2m2n2pk̂ + n2

2p
2
k̂

+ p2
k̂

+ q − 2lb (r cos θ1 − o sin θ1) +

2 ((r − lb cos θ1) (cosφ1m1 − cosφ1n1pk̂ + sinφ1m2 − sinφ1n2pk̂) + (o+ lb sin θ1) pk̂)

=
(
1 + n2

1 + n2
2

)
p2
k̂
− 2 (m1n1 +m2n2 + (r − lb cos θ1) (cosφ1n1 + sinφ1n2)− o− lb sinφ1) pk̂+

m2
1 +m2

2 + q + 2 ((r − lb cos θ1) (cosφ1m1 + sinφ1m2)− lb (r cos θ1 − o sin θ1))

With quadratic coefficients defined as such:

a = 1 + n2
1 + n2

2

b = − 2 (m1n1 +m2n2 + (r − lb cos θ1) (cosφ1n1 + sinφ1n2)− o− lb sinφ1)

c = m2
1 +m2

2 + q + 2 ((r − lb cos θ1) (cosφ1m1 + sinφ1m2)− lb (r cos θ1 − o sin θ1))

We can solve for pk̂ using:

pk̂ =
−b±

√
b2 − 4ac

2a
where we choose the pk̂ < 0 (B.9)
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B.4 Velocity

0 = p2ı̂ + p2̂ + p2
k̂

+ q + 2 (r (cosφipı̂ + sinφip̂) + opk̂)

− 2lb ((cosφipı̂ + sinφip̂ + r) cos θi − (pk̂ + o) sin θi)

= 2pı̂ṗı̂ + 2p̂ṗ̂ + 2pk̂ṗk̂ + 2 (r (cosφiṗı̂ + sinφiṗ̂) + oṗk̂)

− 2lb

(
(cosφiṗı̂ + sinφiṗ̂) cos θi − (cosφipı̂ + sinφip̂ + r) sin θiθ̇i − ṗk̂ sin θi − (pk̂ + o) cos θiθ̇i

)
= (pı̂ + r cosφi − lb cosφi cos θi) ṗı̂ + (p̂ + r sinφi − lb sinφi cos θi) ṗ̂ + (pk̂ + o+ lb sin θi) ṗk̂

− lb (− (pk̂ + o) cos θi − (cosφipı̂ + sinφip̂ + r) sin θi) θ̇i

= Jpṗ− Jθθ̇

Inverse

θ̇ = J−1θ Jpṗ (B.10)

Forward

ṗ = J−1p Jθθ̇ (B.11)

B.5 Acceleration

0 =
(
ṗı̂ + lb cosφi sin θiθ̇i

)
ṗı̂ +

(
ṗ̂ + lb sinφi sin θiθ̇i

)
ṗ̂ +

(
ṗk̂ + lb cos θiθ̇i

)
ṗk̂

+ (pı̂ + r cosφi − lb cosφi cos θi) p̈ı̂ + (p̂ + r sinφi − lb sinφi cos θi) p̈̂ + (pk̂ + o+ lb sin θi) p̈k̂

− lb

(
−ṗk̂ cos θi + (pk̂ + o) sin θiθ̇i − (cosφiṗı̂ + sinφiṗ̂) sin θi − (cosφipı̂ + sinφip̂ + r) cos θiθ̇i

)
θ̇i

− lb (− (pk̂ + o) cos θi − (cosφipı̂ + sinφip̂ + r) sin θi) θ̈i

= J̇pṗ + Jpp̈− J̇θθ̇ − Jθθ̈

Inverse

θ̈ = J−1θ

(
J̇pṗ + Jpp̈− J̇θθ̇

)
(B.12)

Forward

p̈ = J−1p

(
J̇θθ̇ + Jθθ̈ − J̇pṗ

)
(B.13)
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Appendix C

Delta2 Kinematics Derivation

C.1 Kinematics Model

This document goes over the forward and inverse kinematics derivation of a Delta2
robot. Figure C.1 below has assigned frames of references that match Yaskawa
conventions. Additionally, joint angle measurements match Yaskawa conventions:

 

rplp

rbS LZMCS

YMCS

XMCS

ZTPCS

YTPCS

XTPCS

lb

oz

θs θL

ox

+ +

+

T
+

ks

as

kL

p

aL

Figure C.1: Delta2 kinematic model
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C.2 Equations of Motion

We denote p as the position of the TPCS (Tool Plate Coordinate System) relative
to the MCS (Machine Coordinate System). We therefore have:

p =

[
px
pz

]
Given that the TPCS remains horizontal due to mechanical constraints, and given

that link lp has fixed length, we obtain the equations:

lp = ‖aS − kS‖2

=

∥∥∥∥[px − ox + rp
pz − oz

]
−
[
rb + lbcos(θs)
lbsin(θs)

]∥∥∥∥
2

=

∥∥∥∥[px − ox + (rp − rb)− lb cos(θS)
pz − oz − lb sin(θS)

]∥∥∥∥
2

lp = ‖aL − kL‖2

=

∥∥∥∥[px − ox − rppz − oz

]
−
[
−rb − lbcos(θL)

lbsin(θL)

]∥∥∥∥
2

=

∥∥∥∥[px − ox − (rp − rb) + lb cos(θL)
pz − oz − lb sin(θL)

]∥∥∥∥
2

Defining x = px − ox, z = pz − oz, and r = rp − rb and writing out the `2-norm
we obtain:

l2p = ((x+ r)− lb cos(θS))2 + (z − lb sin(θS))2 (C.1)

l2p = ((x− r) + lb cos(θL))2 + (z − lb sin(θL))2 (C.2)
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C.3 Position

Inverse

Expanding equations C.1 and C.2 we obtain:

l2p = (x+r)2−2(x+r)lb cos(θS)+ l2b cos(θS)2 +z2−2zlb sin(θS)+ l2b sin(θS)2 (C.3)

l2p = (x−r)2 +2(x−r)lb cos(θL)+ l2b cos(θL)2 +z2−2zlb sin(θL)+ l2b sin(θL)2 (C.4)

Simplifying and rearranging we obtain:

z sin(θS) + (r + x) cos(θS) =
(r + x)2 + z2 + l2b − l2p

2lb
(C.5)

z sin(θL) + (r − x) cos(θL) =
(r − x)2 + z2 + l2b − l2p

2lb
(C.6)

Equations C.5 and C.6 are of the form:

k1sθS,L + k2cθS,L = k3 (C.7)

where:

k1 = z; k2 = r ± x; k3 =
(r ± x)2 + z2 + l2b − l2p

2lb

We now scale the quantities k1 and k2 in equation C.7 by 1√
k21+k

2
2

such that they

represent a sin and a cos of a given angle, this yields:

sin(θ2)
k1√
k21 + k22

+ cos(θ2)
k2√
k21 + k22

=
k3√
k21 + k22

which is equivalent to:
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sin(θS,L)cos(φS,L) + cos(θS,L)sin(φS,L) = sin(ωS,L)

where:

φS,L = Atan2(k2, k1) = Atan2(r ± x, z)

ωS,L = sin−1

(
k3√
k21 + k22

)

This is equivalent to solving:

sin(θS,L + φS,L) = sin(ωS,L)

which yields:

θS,L = −φS,L + ωS,L

or:

θS,L = −φS,L + π − ωS,L

If

∣∣∣∣ k3√
k21+k

2
2

∣∣∣∣ > 1, then the position is unreachable. If

∣∣∣∣ k3√
k21+k

2
2

∣∣∣∣ = 1, then there

is one solution, which corresponds to the robot leg extended for maximum reach. If∣∣∣∣ k3√
k21+k

2
2

∣∣∣∣ < 1, then there are two unique solutions. The solution θS,L = −φS,L +ωS,L

shall be denoted as the ”Knee Out” configuration, while the solution θS,L = φS,L+π−
ωS,L shall be denoted as the ”Knee In” configuration. This is illustrated in Figure
C.2. We note that Knee In configuration for leg L is mechanically not reachable.
Additionally, delta2 mechanisms are normally operated while both legs are in Knee
Out configuration.
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Forward

Taking the difference of equations C.5 and C.6 we obtain:

z(sin(θS)− sin(θL)) + r(cos(θS)− cos(θL)) + x(cos(θS) + cos(θL)) =
2rx

lb

which yields:

x = mz + n (C.8)

where:

m =
lb(sin(θS)− sin(θL))

2r − lb(cos(θS) + cos(θL))
; n =

lb(cos(θS)− cos(θL))

2r − lb(cos(θS) + cos(θL))
r

Substituting (C.8) into (C.5) yields:

z sin(θS) + (r +mz + n) cos(θS) =
(r +mz + n)2 + z2 + l2b − l2p

2lb

which yields:

az2 + bz + c = 0

such that:

a = 1 +m2

b = 2m(r + n)− 2lb(mcos(θS) + sin(θS))

c = (r + n)2 + l2b − l2p − 2lb(r + n)cos(θS)

which yields:
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z =
−b±

√
b2 − 4ac

2a
We note that although we obtain two solutions for z, we will only accept the one

using the positive sign. The reason the second solution was introduced is because the
original equations of motion were squared to yield equations C.1 and C.2. Squaring
the equations was necessary for eliminating the square root, but lead to introducing
a second solution for z which is always negative. As seen from figure C.1, z is never
negative.

C.4 Velocity

Differentiating equations C.1 and C.2, and rearranging into matrix form, we obtain:

0 = 2((x+ r)− lbcos(θS))(ẋ+ lbsin(θS)θ̇S) + 2(z − lbsin(θS))(ż − lbcos(θS)θ̇S)

0 = 2((x− r) + lbcos(θL))(ẋ− lbsin(θL)θ̇L) + 2(z − lbsin(θL))(ż − lbcos(θL)θ̇L)

which can be rearranged into:

0 = Jpṗ− Jθθ̇ (C.9)

such that:

ṗ =

[
ẋ
ż

]
, θ̇ =

[
θ̇S
θ̇L

]

Jp =

[
x+ r − lbcos(θS) z − lbsin(θS)
x− r + lbcos(θL) z − lbsin(θL)

]

Jθ =
[
Jθ1 Jθ2

]
Jθ1 =

[
−(x+ r − lbcos(θS))lbsin(θS) + (z − lbsin(θS))lbcos(θS)

0

]

Jθ2 =

[
0

(x− r + lbcos(θL))lbsin(θL) + (z − lbsin(θL))lbcos(θL)

]
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Forward

ṗ = J−1p Jθθ̇ (C.10)

We note that the Jacobian matrix J = J−1p Jθ is by definition the matrix that
takes us from joint velocities to world velocities.

Inverse

θ̇ = J−1θ Jpṗ (C.11)

C.5 Acceleration

Differentiating equation C.9 once more yields:

0 = J̇pṗ+ Jpp̈− J̇θθ̇ − Jθθ̈ (C.12)

J̇p =

[
ẋ+ lbsin(θS)θ̇S ż − lbcos(θS)θ̇S
ẋ− lbsin(θL)θ̇L ż − lbcos(θL)θ̇L

]

J̇θ =
[

˙Jθ1 ˙Jθ2
]

˙Jθ1 =

−(x+ r − lbcos(θS))lbcos(θS)θ̇S − (ẋ+ lbsin(θS)θ̇S)lbsin(θS)

−(z − lbsin(θS))lbsin(θS)θ̇S + (ż − lbcos(θS)θ̇S)lbcos(θS)
0


=

[
−(x+ r)lbcos(θS)θ̇S − ẋlbsin(θS)− zlbsin(θS)θ̇S + żlbcos(θS)

0

]

˙Jθ2 =

 0

(x− r + lbcos(θL))lbcos(θL)θ̇L + (ẋ− lbsin(θL)θ̇L)lbsin(θL)

−(z − lbsin(θL))lbsin(θL)θ̇L + (ż − lbcos(θL)θ̇L)lbcos(θL)


=

[
0

(x− r)lbcos(θL)θ̇L + ẋlbsin(θL)− zlbsin(θL)θ̇L + żlbcos(θL)

]
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Forward

p̈ = J−1p (−J̇pṗ+ J̇θθ̇ + Jθθ̈) (C.13)

Inverse

θ̈ = J−1θ (J̇pṗ+ Jpp̈− J̇θθ̇) (C.14)

 

S L

ZMCS

YMCS

XMCS

ZTPCS

YTPCS

XTPCS

T
+

kS

as

kL

p

aL

kS

Knee In
Knee Out

Figure C.2: Knee Out vs. Knee In configurations




