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Abstract

Understanding the distribution of life’s variety has driven naturalists and scientists for centu-

ries, yet this has been constrained both by the available data and the models needed for

their analysis. Here we compiled data for over 67,000 marine and terrestrial species and

used artificial neural networks to model species richness with the state and variability of cli-

mate, productivity, and multiple other environmental variables. We find terrestrial diversity is

better predicted by the available environmental drivers than is marine diversity, and that

marine diversity can be predicted with a smaller set of variables. Ecological mechanisms

such as geographic isolation and structural complexity appear to explain model residuals

and also identify regions and processes that deserve further attention at the global scale.

Improving estimates of the relationships between the patterns of global biodiversity, and the

environmental mechanisms that support them, should help in efforts to mitigate the impacts

of climate change and provide guidance for adapting to life in the Anthropocene.

Introduction

Empirical and theoretical approaches to understanding biodiversity have historically focused

on particular taxonomic groups, geographic domains, and explanatory variables and therefore

have not evaluated relationships at a truly global scale. Studies concentrating on birds and

mammals, on terrestrial or marine species, and on individual mechanisms such as latitude [1–

5] have produced critical knowledge that has advanced ecology and conservation. Today the

unprecedented availability of biological and environmental data, as well as machine learning

models useful for large and complex datasets, however, provide new opportunities to answer

questions about biodiversity. Aside from comparing and contrasting patterns across domains

of data, there is a greater chance to resolve the effects [6] of specific drivers [7, 8] on species

richness in a more robust way, and to describe the interaction and gradient [9] of multiple
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drivers and their functional forms. The resulting advances could not be more urgent as the

threats from climate change are increasingly destabilizing natural ecosystems, driving extinc-

tions, and subsequently disrupting human socioeconomic frameworks [10–12].

Patterns of species richness are the result of ecological and evolutionary processes acting

over geological time scales. Both on land and in the ocean–which we refer to as “domains”–the

tropics have notable peaks of biodiversity, presumably because they have housed a stable and

favourable confluence of diversity drivers for thousands of years [1, 3, 13, 14]. Of these drivers,

temperature and sunlight are considered broadly important, as is primary productivity (i.e.,

the species-energy hypothesis [15]). However, several domain-specific variables such as dis-

solved oxygen in the ocean and precipitation on land also uniquely influence the evolution

and ecology of species and their distributions in each domain [16, 17]. Improved spatiotempo-

ral resolution of these and a host of other variables are increasingly available, giving a chance

to better characterize and assess their variability and importantly their impact on biodiversity.

Corresponding advances in biodiversity monitoring [18] means the effect of environmental

forcing can be assessed across a more representative swath of taxonomic groups, and no longer

limited to the previously well-studied taxa. The substantial progress in both of these areas can

help to develop a fuller picture of the processes that drive species richness, which is in turn crit-

ical for understanding how these patterns may be impacted by climate change [19].

In this study, we assembled data on the distributions of 44,575 marine species (10,873 fishes,

9,582 macroinvertebrates, 7,663 arthropods, 5,753 microinvertebrates, 3,976 molluscs, 2,780 cni-

darians, 2,580 worms, 1,175 echinoderms, 126 mammals, 67 reptiles,) and 22,830 terrestrial spe-

cies (10,959 birds, 6,407 amphibians, 5,464 mammals). To constrain comparisons across

domains as much as possible, we conducted the formal analysis both with and without marine

invertebrates (see supporting information). We also assembled a suite of likely predictive envi-

ronmental variables. These variables characterized the central tendency, variation, and seasonal-

ity of abiotic and biotic drivers including primary production, temperature, solar energy,

biogeochemical resources, and the physical environment. As we hope to understand the influ-

ence of primary production [20, 21] on species richness patterns, we excluded primary producer

taxa (e.g. phytoplankton, macroalgae, trees) from the species richness calculation to avoid any

circularity in the modelling. Collectively, therefore, we have combined the two largest datasets on

biodiversity in the marine and terrestrial domains, recognizing that taxonomic representation

differs between land and sea. These taxonomic differences lead to comparable datasets that repre-

sent domain-specific biodiversity, even though they may vary when compared in terms of overall

composition. We have therefore limited our comparisons to consumers and feel this provides a

best-available approach towards understanding drivers of biodiversity on land and in the sea.

Aside from a more expansive approach to data, here we use artificial neural networks

(ANNs) to predict species richness in each domain as a function of the prevailing environmen-

tal features. The ANN approach is an improvement upon previous modelling methods for

three main reasons. The first and most obvious is that ANNs are more accommodating to big

data frameworks in terms of computational performance [22]. Here we analyze tens of thou-

sands of species distributions, resolved globally at a spatial resolution of 50x50 km (each data-

set containing a potential� 200,000 elements), using 30 sets similarly resolved environmental

drivers. While our approach may be modest by comparison to more traditional big data analy-

ses, the ANN framework we employ here is uniquely more scalable for when such datasets are

eventually available for our specific application here. Secondly, the ANN approach provides

new information about the modelled driver relationships using sensitivity analysis of variable

importance and variable interactions (known as multivariate partial dependencies). Thirdly,

ANNs use a permutative approach to weight the contribution of each variable in order to find

the best average or neural pathway to the output or response variable. Therefore, compared to
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more traditional modelling approaches like generalized linear models or generalized additive

mixed models, ANNs use the data to develop a robust weighting scheme over all the environ-

mental variables used to feed the model. Like ANNs, generalized additive mixed models also

use nonlinear splines [23, 24] to model ecological relationships, and therefore are an improve-

ment from linear approaches [25–27]. However, for the above reasons it makes sense to

explore ANNs for the added performance of big data scalability and emerging information on

driver interactions. Ultimately, combining comprehensive data streams and analytic tools

allows us to understand environmental drivers of biodiversity within and across domains and

reveal locations that defy expectations based on existing data.

Material and methods

Species richness

To train the models in the terrestrial domain we used publicly available species range data. In

the marine domain, we used high-volume, screened, and sampling-effort-corrected occur-

rence data that produced approximately 51 million records post-screen [28]. While the under-

lying datasets ultimately differ, we used this approach as it represents the best-available data

for each domain, it yielded extensive taxonomic representation, and is demonstrated to align

with other methods of estimating marine species richness [29]. By using this approach, we are

able to maximize the available taxa used for each domain, and characterize broad-scale species

richness patterns with the most data possible, at a relatively high resolution of 50x50 km [28–

30] for all environmental variables in the model.

For the terrestrial domain, we compiled species ranges using published methods and

sources [1]. Distribution data of birds (n = 10959), amphibians (n = 6407), and mammals

(n = 5464) were from the International Union for the Conservation of the Nature [31] and

BirdLife International [32], and are expert-reviewed and rigorously quality controlled [1].

These overlaid polygon range maps are drawn from expert consensus, and are the best-avail-

able data, at the global scale, for terrestrial biodiversity. We excluded polygons of all extinct or

non-native ranges (invasions and introductions arising from anthropogenic activity), as well

as seabird species. The final terrestrial richness layer consisted of 22,830 species.

For the marine domain, we queried marine richness data from the Ocean Biogeographic

Information System, the Global Biodiversity Information Facility, FishBase, the Jellyfish Data-

base Initiative, and the International Union for the Conservation of the Nature. From the

ensemble (>1 billion entries), we performed several quality control routines. We first cleaned

records of spatial NULL values, removed records with no definition to species level, expunged

duplicates, and assigned full (updated when necessary using the World Register of Marine Spe-

cies [33]) taxonomic information using the Taxize library [34]. Additional documentation and

justification for the vetting methodology used for marine records is described in detail else-

where [18, 30, 35–37]. Briefly here, we screened point observation occurrences and removed

extremely implausible values based on the ratio of the number of independent records in time

and space relative to the latitudinal and thermal range of the species [36, 37]. For each species,

a random (1 < n< 1000) number of records was selected and the thermal and latitudinal

range estimated. This was repeated 1000 times. We then confronted the simulated latitudinal

range and thermal range (1,000 simulations) to values obtained using all the occurrence rec-

ords gathered on the species. We computed a confidence interval of the known range by quan-

tifying the difference between the 1st and 99th percentile of observed latitude coordinates and

thermal value, assuming that the acceptable number of records to capture the latitudinal and

thermal range was obtained when more than 950 randomly selected records were comprised

within the confidence interval determined from the global records. The median number of
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points per species found to capture this computed latitudinal range was 33 (+/- 4) records, and

41 (+/- 3) records for computed thermal range. Species with less than 41 independent recorded

observations were removed from further analysis. We then checked for the potential influence

of systematic sampling bias by developing rarefaction curves [38] across latitudinal bins (see

S16 Fig).

The final marine biodiversity dataset comprised taxonomic information and filtered occur-

rences for 44,575 species (10,873 fish, 9,582 macroinvertebrates, 7,663 arthropods, 5,753

microinvertebrates, 3,976 molluscs, 2,780 cnidarians, 2,580 worms, 1,175 echinoderms, 126

mammals, 67 reptiles) for a total of 51,459,235 records. While this represents the largest spa-

tially-explicit dataset of marine species ever described [3, 35, 39], it remains a fraction (~18%)

of the named marine species [29, 33].

All species richness was ln(x+1) transformed and all data projected to a cylindrical equal

area 50 km × 50 km grid. The script for the R Code is provided in the online repository.

Considering the impact of marine invertebrate taxa on model interpretation. It is pos-

sible that the varied patterns between marine and terrestrial domains may emerge simply as a

result of including invertebrate taxa in one realm and not including it in the other (due to data

availability alone). To address this possibility, we ran an ancillary analysis and have supplied

the outputs in the supplementary material (see S10–S15 Figs). The comparisons presented in

the main text by including all marine species (with invertebrates) showed minor differences,

and no broad changes, to the results when invertebrates are excluded. Nonetheless, we provide

the additional analysis for comparison and to encourage and further exploration.

Environmental drivers

We gathered a suite of 21 globally distributed environmental datasets, spanning terrestrial and

marine domains, with an additional 18 data series representing domain-specific drivers. This

provided a total of 30 environmental driver input variables for the terrestrial and the marine

ANN. S1 Table and S1–S3 Figs provide more details on the series and their spatial and statisti-

cal distributions.

Normalized Difference Vegetation Index (NDVI) and chlorophyll-A (Chl-A). We

retrieved monthly means of NDVI and near-surface concentration of chlorophyll-A from

NASA Earth Observation servers from 2003–2017. This imagery was resampled, assembled,

and re-projected from georeferenced sinusoidal tile images gathered by the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) sensor. NDVI is the MOD13A2 product and chlo-

rophyll-A is MODIS-Aqua Level-3 Binned Chlorophyll Data Version 2014. We refer to

vegetation indices as proxies for net primary production throughout the manuscript [40, 41].

We did not use NPP products as methods for derivation are debated [20, 42]; however, this

framework is flexible enough to incorporate any NPP products in the future.

Elevation and depth. Terrestrial elevation data were from the 2015 release of the Shuttle

Radar Topography Mission [43]. Ocean depth is the General Bathymetry Chart of the Ocean, a

global 30-arc second interval grid [44]. The General Bathymetry Chart of the Ocean grid is a

continuous terrain model for the ocean that combines quality-controlled depth soundings

with interpolation between sounding points informed by satellite derived gravity measure-

ments. At a global scale, the marine driver data series (e.g., production, sunlight, oxygen) are

provided and only available from sensors of the ocean surface. Though these environmental

variables vary continuously with depth, at this time, we cannot include this as a model factor.

Therefore, the variable of depth may serve as a proxy until such data are resolved globally.

Temperature, precipitation, and dissolved oxygen. Temperature time series (2007 to

2017) are from the European Centre for Medium Range Forecasts. The SST and SAT products
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are a reanalysis of temperature based on satellite sensing and station measurement [45]. Pre-

cipitation data is Global Precipitation Climatology Centre 0.5-degree dataset. Measurements

are interpolated gauge based precipitation totals on a monthly time step from 2007 to 2017

from ~7,000 stations [46]. Dissolved oxygen is the integrated 30m data from the 2013 World

Ocean Atlas. The World Ocean Atlas is a 1-degree grid developed from in situ interpolated

surface measurements on a monthly time step.

Solar insolation. We obtained monthly insolation for 2006 to 2017. The Clouds and the

Earth’s Radiant Energy System sensor approximates surface solar insolation by measuring

escaping radiant energy while accounting for attenuation due to atmospheric conditions,

angle of incidence, and slope aspect [47].

Feature engineering

We developed a selection of features to describe the inter- and intra-annual central tendency,

variance, and seasonal phenology of the driver variables. Our dataset was composed of 29 indi-

vidual inputs. We used arithmetic mean to describe central tendency, while we described vari-

ability with standard deviation, range, and coefficient of variation. Upper tails of annual sums

of NDVI and Chl-A were truncated to 99% quantiles, and all features were truncated to 1%

and 99% quantile values. Elevation and depth data were input as described, without quantile

truncation. S1 Table provides further details on all of the input feature data.

Seasonal patterns of primary production can be important to the dynamics of food webs.

We utilized continuous wavelet transformation metrics to describe the phenology of primary

production and solar energy. This approach draws from earlier work on phytoplankton pro-

duction [18]. We describe 12-month and 6-month seasonal phenology intensity by calculating

the mean of the wavelet power spectrum of primary production and solar insolation. This pro-

cess was conducted for each cell in a raster through time, with the final estimate being a mea-

sure of 6-month and 12-month seasonal intensity. S5 Fig provides more details.

To facilitate training the ANN, all environmental driver datasets were rescaled 0–1 so that

all model inputs were on the same magnitude. While ANNs have the advantage over previous

approaches of not having to explicitly define parameter relationships or interactions, some

pre-processing of the model inputs is necessary.

Model development

We developed two discrete feed-forward neural networks to understand species richness in

the marine and terrestrial domains. Neural networks have shown incredible power at pattern

recognition, parameterizing nonlinearity, and identifying interactions [6]. However, they have

generally been regarded as a “black-box” with weak opportunities for model interpretation.

We argue against this and present several methods to better analyze the model’s interpretation

of the input-output relationship, which in our case here is the effect of environmental drivers

on species richness. Our approaches here include mapping the spatial distribution of model

residuals (Fig 1), approximating variable importance through perturbation and resampling

(Fig 2), and plotting multivariate partial dependency (Fig 3). This helps both to understand

where the models performed well, where opportunities for improvement lie, all couched

within nonlinear and multivariate (in our case 30 variables) models whose main interpretive

results (Figs 2 and 3) were attained with sensitivity analyses (see Variable importance sensitivity
below).

Model fitting. We used the MXNet library within an R package wrapper for the develop-

ment of the feed forward ANNs. MXNet is open-source ANN framework that is flexible, sup-

ports multiple programming environments, and is scalable [48]. We fit the ANNs on an 80%
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training subset of the data and tested performance on a 20% test split. Like more traditional

modeling approaches, spurious interactions can be parametrized (but not through user cura-

tion) in an ANN, but this tends to occur in situations where a model is trained on a small data-

set that is not a representative sample of a broader population. In the case of our dataset, and

the chosen parameterization of the ANN, our approach is resilient to spurious interactions

being trained in the model. To maximize generalizability, hyperparameters were selected to

minimize 5-fold cross validation root mean square error variance on the training set. Each

ANN was fitted with 0.2 dropout, rectifier activation for 3 hidden layers with 10 nodes each,

0.9 momentum, a batch size of 128, for 10 epochs.

Residual mapping. Fig 1A shows the observed species richness upon which the models

were trained. Fig 1B shows the predicted species richness given how the models interpret rela-

tionships between the feature inputs and the observed richness. Fig 1C spatially plots the resid-

uals of the observed versus the predicted species richness. Plotting the residuals acknowledges

where the model still cannot approximate richness given the features supplied. This difference

fosters insight into where species richness is unexpected relative to relationships estimated

with environmental variables.

Fig 1. Global terrestrial and marine biodiversity patterns. (a) Observed species richness derived from the distributions of 44,575

marine and 22,830 terrestrial species. Species richness is ln-transformed and rescaled within each domain (terrestrial and marine) and

plotted on a 50 km equal area grid. (b) Artificial neural network model predictions (ANNs) of species richness considering a suite of 29

environmental drivers. (c) Model residuals highlight areas that are particularly species-rich (underpredicted, blue) and species-poor

(overpredicted, red) regions relative to the underlying environmental drivers. These highlight locations of exceptional biodiversity such as

reef ecosystems of the (i) Coral Triangle and (ii) Marianas Archipelago and wet forests of the (iii) tropical Andes and (iv) Eastern Arc

mountains. It also identifies species-poor settings like isolated islands (v, Madagascar) and major biogeographic boundaries in the ocean

(vi, Andesite line). Arrows designate species-poor marine regions with high velocity boundary currents. (d) Latitude does not affect

model performance, as there are no systematic meridional differences between observed and modelled richness. The northern-

hemisphere bias of land, and the corresponding abundance of shallow ocean environments, generates a similar imbalance of marine

species richness. Chart area represents the average species richness, zonally, in 2˚ latitude bins.

https://doi.org/10.1371/journal.pone.0228065.g001
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Resampled pairwise comparison. Fig 2D shows the bivariate relationships for a select set

of features between domains (full feature set in supplement). We developed these plots by sub-

sampling 10000 points from each domain and fitting a loess through the subsample. This was

repeated 100 times and we calculated the 95% quantiles and median estimates of the models.

Variable importance sensitivity. We developed a sensitivity analysis to test variable

importance and improve insight into the modelled relationships. Fig 2A–2C is a summary of

this resampling results to estimate the variance of variable importance. We repeatedly fit

ANNs to subsets of the data and tested for model performance decline when individual vari-

ables are replaced with resampled noise. With this we can get distributions of variable impor-

tance rankings that better approximate the stochastic range of variable importance.

Multivariate partial dependence plots. ANNs can parametrize interactions between vari-

ables without having to explicitly define a term in the model. Therefore, we can explore all

Fig 2. Environmental drivers of species richness in marine and terrestrial domains. The ranked importance of the top 15 environmental

variables in the (a) terrestrial and (b) marine ANNs. Bootstrapped driver variable importance plots display the densities of change in explained

variance made when perturbing individual model factors. The process is repeated 500 times with a random subset of the data on which a new

ANN model is trained, generating a robust importance ranking by allowing multiple weight matrices to be evaluated as to how they learn the

driver-richness relationship. On the variable labels, “A” is measured within year, “B” is between years. (c) Inset plot shows these same

relationships on a log-linear scale, highlighting the steeper decline of variable importance and therefore greater effect of fewer variables in marine

systems. (d) Pairwise plots showing the effects from a subset of individual drivers on species richness. To alleviate overplotting, graphs display the

median ensemble (with 95% quantiles) of 100 local regression models fit from resamples of the global dataset. For (d) all variables are annual

means and rescaled to 0–1 without further transformation. Similar factors are plotted when the same do not exist in both domains. Supporting

information provide the full list of all modelled variables and their explanation.

https://doi.org/10.1371/journal.pone.0228065.g002
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potential multivariate relationships the model has approximated between the environmental

variables and species richness. Fig 3 is an example of this, where we visualize the relationship

between depth/elevation across temperature, primary production seasonality, and limiting

biogeochemical variables (H2O and O2).

Comment on spatial autocorrelation. Spatial autocorrelation (SAC) refers to the process

by which variation between values in space are affected by the relative spatial distances from

one another. It is important though to distinguish between the forms autocorrelation can take

[49]. SAC can manifest in the raw values of the response variable and in the values of the resid-

uals of a regression model itself. SAC in raw response data and/or the residuals is often reflec-

tive of underlying drivers and latent effects. However, it is the persistence of the appearance of

autocorrelation in model residuals that is reflective of bias or distortion in a model with unac-

counted for inputs [49]. There are several methods to absorb residual autocorrelation when

trying to estimate unbiased model parameters. Most common methods utilize some form of

an area weighted auto-covariate in the regression model. While the process of incorporating

Fig 3. Multivariate partial dependence plots offer a chance to better grasp driver interactions. These plots show the

neural networks’ approximation of driver richness relationships when two inputs co-vary. In this example, we see how

species richness is expected to respond across different temperatures (a), seasonality in primary productivity (b) and

limiting biogeochemical variables (c) in response to changing depth and elevation. This is an example of the power of

ANNs to approximate functions and the integration of interactions. This can be explored for any possible interaction.

https://doi.org/10.1371/journal.pone.0228065.g003
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these auto-covariates can improve prediction power, they can and often do underrepresent

included effects and mask unaccounted for underlying ecological process that may drive resid-

ual spatial autocorrelation (RSA). The RSA can reflect unexplained natural process. Therefore,

while we did investigate auto-covariate development and RSA quantification via semi-vario-

grams (see code repository), we believe the presentation of model residuals transparently

opens discussion around appropriate model inputs. We ultimately present the spatial distribu-

tion of the residuals of the model without an RSA covariate to facilitate the identification of

important processes that may not be accounted for in the full model, rather than mask those

latent processes.

Data and code repository

All models were run in the R environment [50] with visualizations created using ggplot2 [51]

and figures compiled and postprocessed using Adobe Illustrator [52]. All data, as well as mark-

down files with annotated and commented codes and scripts are available in a third-party

open-access repository (https://osf.io/jm7fn) through the Open Science Framework.

Results and discussion

The global patterns of species richness that we describe (Fig 1A) followed earlier published

findings [3, 11]. Given our selection of driver inputs, the ANN had reasonable accuracy in pre-

dicting the observed species richness (Fig 1B: Test set: R2
land = 0.81, R2

ocean = 0.69, RMSEland =

0.08, RMSEocean = 0.09).

Examining the difference between the observed and modelled richness, the model residuals,

revealed where the environmental drivers do not fully explain the observed patterns (Fig 1C).

These outliers, ‘bright’ and ‘dark’ spots [53] of diversity perhaps, are extremely informative in

understanding the underlying drivers as well as processes and data streams that may improve

the performance of future approaches. In the ocean, species richness was under-predicted (blue

in Fig 1C) in several coral reef ecosystems (e.g., the Coral Triangle, Marianas Archipelago and

Hawaiian Islands). On land, it was under-predicted in several montane forests (e.g., the Tropical

Andes, Eastern Arc Mountains). These hyper-diverse ecosystems offer structurally-complex

biogenic substrates [54, 55] that perhaps increase the available ecological niches and evolution-

ary pressures [8]. Regions where the model overpredicted biodiversity (red in Fig 1C) include

steep biogeographic boundaries (e.g., the Andesite Line in Melanesia) and isolated islands (e.g.,

Madagascar, New Zealand, Hawaii and the Greater Antilles). These regions include biologi-

cally-isolated islands [7] and subphotic depths that lack biogenic and structurally complex sea-

floor habitat, like coral reefs and kelp forests. In addition, western ocean boundary regions were

also poorer than predicted (arrows, Fig 1C). These regions are defined by the stable presence of

major, high-velocity current systems (e.g., Agulhas, Kuroshio, Gulf Stream and Northern Brazil-

ian) that facilitate the dispersal of waters and organisms to other regions [56, 57].

Latitudinal gradients have received significant attention in biogeography [2, 58], and as a

result they appear in our analyses. However, even without latitude as an input, our models

notably predicted the overall richness patterns well (Fig 1D). Were latitude important, then we

would likely see some systematic pattern in Fig 1C and 1D. More likely is that latitude only

provides a broad approximation of where there are favourable conditions for species richness,

conditions now better captured by other variables. The northern-hemisphere bias in marine

biodiversity in Fig 1D, for example, may not be a function of latitude, but rather the spatial

overlap of favourable conditions such as depth, sunlight, and temperature [59]. To put this

another way, latitude is not itself a mechanism, but a proxy that summarizes the confluence of

individual variables across space. Now that those variables are themselves more available at
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finer spatial resolutions and temporal scales, it makes sense to model the mechanisms them-

selves directly. A primary advantage of this approach is that while climate change will not

affect latitude, many of the underlying variables associated with that latitude are moving rap-

idly [60]. So while the single variable of latitude may have helped historically in describing pat-

terns of biodiversity, climate change is fundamentally altering what latitude itself has meant

for ecology and evolution. Therefore, the usefulness of latitude itself in forecasting the impact

of climate change is limited.

The data and model frameworks we used here importantly allowed us to quantify the con-

tribution of environmental drivers in shaping biodiversity. Marine biodiversity was largely

predicted by three variables while on land more variables are important (Fig 2A–2C). Sunlight

and temperature were the most important, represented in 2 of the top 3 drivers in each domain

(Fig 2A and 2B). In the ocean, depth was the dominant predictor as shallow marine regions

may support both vibrant benthic and water column communities. Primary production

exerted a stronger influence on terrestrial than marine species richness, seen in both the vari-

able ranks (Fig 2A and 2B) and the functional forms (Fig 2D). This may be explained as pri-

mary producers on land are more constrained by light and temperature, while marine

production is independently driven by nutrients and upwelling [21] in response to physical

oceanographic processes. Though the functional form varies, biodiversity decreased with

increasing vertical distance from sea-level, that is, at deeper depths and greater elevations (Fig

2D). Oxygen in the ocean and precipitation on land represented important, domain-specific

biochemical constraints that influence species distributions [Fig 2A, 16, 17]. A full suite of

pairwise relationships is presented in S4 Fig and S6 and S8 Figs present alternative compari-

sons and visualizations of this nature.

A strength of the ANN approach we used here is the ability to evaluate multiple drivers as

well as their interactions across driver gradients. This may allow for a more representative

understanding of any given location, where all the measured environmental variables coincide

and interact to influence species distributions and yields more biologically relevant insights.

We demonstrated this here in several shared as well as domain-specific drivers (Fig 3). Given

the same depth or elevation, for example, temperature had roughly the opposite impact on ter-

restrial and marine biodiversity (Fig 3A). This was evident as the highest modelled species

richness on land is mid-elevation locations with moderate temperatures. By contrast, in the

ocean shallow and warm locations were the most biodiverse (Fig 3A). This same example also

shows that the effect size of temperature on species richness is greater at both higher elevation

and at shallower ocean depths. The intensity of the phenology of primary production had a

strong effect on species richness across elevations. However, in the deep ocean biodiversity

was low regardless of how seasons affect productivity (Fig 3B) or when considering the vari-

ability of dissolved oxygen (Fig 3C). Taken together, however, the relative impact of elevation

on terrestrial biodiversity was negligible by comparison to the impact of depth on marine bio-

diversity. This was evident in the different scales of the y axes in the two columns of Fig 3A–3C

as well as in the variable importance plots (Fig 2B and 2C).

Our analyses highlight how advances in data streams and models can bear dividends in pre-

dicting the present and future distribution of biodiversity. We provide a step toward a global

model of biodiversity by focusing on the maintenance of species richness within a more robust

analytical framework of environmental drivers [9]. Future attempts to move away from reduc-

tionist theory must reflect the pool of available resources considered in past hypotheses, appre-

ciate the full empirical variability of the model drivers themselves, and assess the effect of

driver interactions. How the model outputs deviate from the observation inputs identifies

future areas in need of research development. Our ANN for marine biodiversity, for example,

did not perform as well as that for the terrestrial domain (Fig 1C). Even though many data
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sources have become more resolved in both space and time and more freely available [61], par-

ticularly for marine systems, there remains room for growth. Increased investments in biodi-

versity monitoring and earth observation systems are fundamental for advancing the analyses

presented here. These investments should maintain and upgrade existing data streams and

pipelines [e.g., remote sensing and biotelemetry, 62, 63], encourage promising emerging tech-

nologies [e.g., environmental DNA, 64, 65], and invest in autonomous and networked envi-

ronmental sensing [66–68]. In particular, mechanistic and probabilistic models of species

distributions will be improved by technological advances in biologging and tracking [63, 69,

70] that facilitate biodiversity monitoring and resolving the processes underlying species

movements. Resolving the continuous variability of environmental drivers across ocean depths

at a global scale will also improve the understanding of marine biodiversity.

Although a central goal of our approach here is to summarize data across terrestrial and

marine domains, our results may lead to progress in applied contexts. Climate change is rap-

idly shifting ecosystems across the globe, impacting entire economic sectors such as fisheries

and challenging their governance [12]. Ten of the top 15 terrestrial biodiversity drivers identi-

fied, and 6 of the top 15 marine biodiversity drivers, are directly mediated by climate (Fig 2A

and 2B). Resolving how these drivers themselves will shift under different scenarios of climate

change and applying this to forecasted models of future species distributions, may help us

more fully grasp the risks climate change brings. Such forecasts will be improved by focusing

on more direct drivers and deemphasizing distant surrogate variables such as latitude that

mask underlying mechanisms. Lastly, conservation priorities based on the mechanistic

approaches might focus on globally at-risk species [1, 71] as these groups have less adaptive

capacity and are more prone to extinction.

Supporting information

S1 Table. All remotely-sensed variables are modeled from fullest temporal extent of avail-

able data streams, described in the main text methods.

(DOCX)

S1 Fig. Geographical distribution of model predictors and response. All inputs are projected

in a cylindrical equal-area projection centered on 195-degree latitude. Equatorial resolution is

approximately 50 km × 50 km. Gray masks are where comparable metrics were used in sepa-

rate domains, i.e. SST/SAT or O2/H2O. All PP metrics are prefixed with ann for interannual

metrics and sub for intra-annual metrics, AMP prefixes refer to PP seasonal wavelet intensity

followed by the 6 or 12-month period. Twel_inten and six_inten refers to the seasonal wavelet

intensity of solar insolation. All biogeochemical constraints (O2 and H2O) are intra-annual

metrics. Variability and tendency are measured as labeled in each panel: mean, range, sd, CV.

See S1 Table for summary of metrics utilized in model training.

(DOCX)

S2 Fig. Distributions of model features and response for terrestrial biodiversity model. See

full methods for description of development.

(DOCX)

S3 Fig. Distributions of model features and response for the marine ANN biodiversity

model. See full methods for description of development.

(DOCX)

S4 Fig. Full compilation of model input pairwise relationships with species richness. Blue

lines refer to marine domain and green terrestrial. The x-axis is the labeled 0–1 scaled
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predictor, y-axis is always scaled ln(x+1) transformed 0–1 scaled species richness. Also see S9

Fig for raster visualization of all the features shown in this figure. See caption of S1 Fig for vari-

able naming conventions.

(DOCX)

S5 Fig. Example approximations of 6- and 12-month phenological wavelet power with

morlet wavelet power spectrum. Three examples of differing seasonal NDVI periodicities

and the associated power spectrum. The continuous wavelet transformation applied to raster

time series of Chl-A and NDVI is described in the methods and extensively in the annotated

reference material.

(DOCX)

S6 Fig. Ternary plots offer exploration beyond pairwise comparison of drivers. These are

ternary plots that show binned medians of species richness at varying row-scaled relative ratios

of the labeled drivers to one another. These plots highlight the converged or divergent nature

of global species richness relative to drivers. The gray areas are where particular combinations

of drivers are not observed in the dataset. Ann refers to interannual PP metrics and sub refers

to intra-annual metrics. All temperature metrics are summaries of intra-annual data. These

figures are offered as an alternative way to visualize Fig 3 in the main text.

(DOCX)

S7 Fig. Observed-versus-predicted for training and testing residuals. The top row are terres-

trial residuals, and the bottom are marine. On the left are the residuals of the full dataset with

the color ramp utilized in the Fig 1C residual map. On the right are the residuals on the test

set.

(DOCX)

S8 Fig. 2D surface representations of the partial dependency plots from the main text. This

is an alternative visualization of Fig 3. Each x and y axis now represents the two predictors (x is

always elevation/depth). To this plot we added a marginal rug of observed values on both axes

to show the distribution of raw data across the full domain of observations.

(DOCX)

S9 Fig. Alternative visualization of latitudinal gradient. Top row is observed, bottom is pre-

dicted. Left column is terrestrial, right is marine. All points are single points of richness from

the observed values and modeled predictions. These are the raw points by which the Fig 1D

estimates median richness in latitudinal bins. The color ramp is the same used in Fig 1A and

1B.

(DOCX)

S10 Fig. Observed global species richness without invertebrates. Species richness where the

marine data does not contain invertebrate taxa. It has been suggested that varied patterns

between domains may emerge if marine richness data does not contain invertebrate data in

the same way the terrestrial data does not currently. These are the outputs of the analysis pre-

sented in the manuscript but conducted on marine species richness data without invertebrate

taxa. The broad scale trends presented in the manuscript appeared to show little difference to

those observed here.

(DOCX)

S11 Fig. Full compilation of model input pairwise relationships with species richness

where marine richness does not contain invertebrate taxa. Blue lines refer to marine domain

without invertebrates and green terrestrial. The x-axis is the labeled 0–1 scaled predictor, y-
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variable naming conventions.
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S12 Fig. Partial dependency plots visualizing model input interactions with species rich-

ness, when marine invertebrates are not included in the marine ANN model. These plots

show the neural networks’ approximation of driver richness relationships when two inputs co-

vary–a key product and advantage of the ANN modelling framework. In this example, we see

how species richness is expected to respond across both different temperatures and seasonality

in primary productivity in response to changing depth and elevation. See main text for com-

parison to marine richness data with full suite of available taxa.

(DOCX)

S13 Fig. Histograms of predicted versus observed richness across domains facetted by

marine richness with or without invertebrates. The hashed area represents the marine

domain without invertebrate taxa. Here, (b) is identical to Fig 1D in the main text. The inclu-

sion, or exclusion, of marine invertebrates, does not systematically alter the results of our anal-

ysis that compares modeled to observed richness in the marine ANN. As a note, neither of

these issues affects the terrestrial analysis, which is separate, and for which no invertebrate

data are available at the global scale.

(DOCX)

S14 Fig. Map of residuals from the model that did not include marine invertebrates. The

terrestrial domain remains the same as the main text analysis, whereas the marine domain is

showing residuals of predicting marine richness without invertebrate taxa. The observed pat-

tern in Fig 1C, where there is an overlap of species-poor marine regions and high velocity

boundary currents is retained in this analysis.

(DOCX)

S15 Fig. Variable importance in marine domain without invertebrate taxa. The top four

most important variables remain the same as the model of the species richness data containing

invertebrate taxa.

(DOCX)

S16 Fig. Assessing the potential impact of sampling bias on the marine species distribu-

tions. The above figure shows rarefaction or species accumulation curves for each 20˚ latitude

bin for marine biodiversity when all species are included. Colors of 20˚ latitude bins corre-

spond to rarefaction plot symbology below, where northern and southern hemispheres are

split. This shows that sampling effort was not correlated with any spatial gradient of diversity.

Thus, sampling did not significantly influence the observed biodiversity gradient depicted in

Fig 1B and 1C.
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Supervision: Tyler O. Gagné, Kyle S. Van Houtan.
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