
UC Irvine
ICS Technical Reports

Title
A software classification scheme

Permalink
https://escholarship.org/uc/item/78j2r3c4

Author
Díaz, Rubén Prieto

Publication Date
1985
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78j2r3c4
https://escholarship.org
http://www.cdlib.org/


Notice: This .Material 
·may be protected 
by Copyright Law 
(Title 17 U.S.C.) 

A Software Classification Scheme 

Ruben Prieto-Diaz 

Technical Report· 85-19 

Information and Computer Science 

University of California 

Irvine, California 92717 

1985 





Contents 

List of Tables . . . . 

List of Figures . . 
Acknowledgments 

Abstract ..... . 

Chapter 1: Introduction 

General Problem ., . 

Why Classify Code Fragments? 

Plan of Presentation 

Chapter 2: Code Reuse ..... . 

Motivation . . . . . . . . . . . 

Use of Existing Software Inventories 

Im.prove Software Productivity ..... 

Reusability . . . . . . . . . . . . . . . . . . 

Reusability in Established Disciplines 

Reusability in Software .......... . 

Characterization of the Reusability Problem .. 

Models of Code Reuse . . . _. . . . . . . 

Functional Collections . · 

Module Interconnection 

Code Fragments .. 

Proposed Model _. . 

Problems in Code Reuse . . . 

Large Collections . . . 

Component Descriptors 

Retrieval ........ . 

Program Understanding 

Selection ... 

Adaptation . . . . . . . 

Conclusions . . . . . . . . . . 

Chapter 3: Classification Related Wqrk 

What is Classification . . . . . . . . 

Syntactical and Hierarchical Relationships . 

ii 

v 

vi 

vii 

viii 

1 

1 

4 

6 

8 

8 

8 

g· 

12 

12 

16 

25 

26 

26 

28 

29 

31 

35 

35 

36 

37 

38 

39 

40 

43 

44 

44 

46 



Enumerative and Faceted Schemes 

Citation Order . . . . . . . . . . . 

Notation ............ . 

Use of a Classification Scheme . 

Making a Faceted Scheme 

Surilmary ......... . 

Library Classification . . . . . . 

Dewey Decimal Classification 

Library of Congress . . . . . 

Universal Decimal Classification 

Bibliographic Classification 

Colon Classification 

Summary ......... . 

Software Classification ...... . 

Computer Program Libraries 

Software Catalogs 

Summary ......... . 

Conclusion . . . . . . . . . . . . 

Chapter 4: A Classification Scheme 

Flexible Facets in Software Classification . 

A Formal Classification Model . . . . . . 

Component Descriptors ...... . 

Measuring Relevance Using Facets . 

Measuring Closeness Between Attributes . 

Example ..... ·-............. . 

Discussion . . . . . . . . . . . . . . . . . . 

Chapter 5: Classification of Software Components 

Descriptor Synthesis 

Functionality ... 

Environment . . . 

Schedule Construction 

Vocabulary Control .... 

Implementation . . . . . . . 
Computing Conceptual Distances . . 

Conclusions . . . . . . . . . . . . . . . . . 

Chapter 6: Evaluation of Selected Components 

iii 

48 

49 

52 

53 

54 

54 

55 

57 

60 

62 

64 
66 

68 

70 

71 
74 
76 

77 

78 

78 

80 

82 

84 

86 

89 

93 

95 

95 

98 

100 

102 

107 

110 

115 

116 

117 



Reuaability Related Attributes 

Program Size . . . . 
Program Structure . . . 

Documentation . . . . . 

User Experience . . . . 
Multi-dimensional Evaluation . . 
Dimensional Normalization with Fuzzy Sets 

Fuzzy Logic Concepts 

Fuzzy Modifiers . . . . . . . . . 

Conclusion . . . . . . . . . . . . . . 

Chapter 7: Library System Evaluation . 

Retrieval Effectiveness . . . 
Making the Key . . . . . . . . 

Retrieval Evaluation . . . . . 

The Effect of Citation Order 
The Effect of Conceptual Ordering 

Experiment Conclusion 

User Classification . . . . . . . . . . . . 

Classification Difficulty . . . . . . . 

Classification Consistency and Accuracy . 
Test Results . . . . . 

Reuse Effort Estimation . . . 

Experiment Results. 

Conclusion . . . . . . . . . . . . . . . 

Chapter 8: Summary, Future Work, and Conclusions .. 

Summary .............. . 

Recommendations for Future Work .......... . 
Suggested Problems ............. . 

Testing the Prototype in a Real Environment 

Conclusions . . . . . . . . . . . . . . . . . . . . . . 

References . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . 

Appendix A: A Preliminary Schedule for Application Programs in Commu
nication and Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix B: Partial Classification Schedules for Software Components . 

Appendix C: A Classification Example . . -. 

Appendix D: Sample Library System Entry 

iv 

119 
120 
123 
126 
130 
135 
137 
140 
141 
143 
148 
150 
151 
152 
154 
156 
158 
159 
160 
162 
166 
167 
167 
172 
174 
176 
176 
180 
181 
182 
184 
185 

195 

197 

204 
206 



List of Tables 

4.1 An Ordered List of Descriptors . . . . . . . . . . . . . . . . 92 

6.1 A Programming Language Closeness Matrix . . . . . . . . 134 

7.1 Summary Programs for Classification Test . . . . 161 
7.2 Reuse Metrics of the First Experimental Sample 170 
7.3 Ranked Components for First Sample . . . . . . 170 
7.4 Reuse Metrics of the Second Experimental Sample 172 
7.5 Ranked Components for Second Sample . . . . . . . . . . . . . . . . 172 

v 



List of Figures 

2.1 An RC Circuit . . . . . . . . . . . . . . . . 

2.2 Tension in Software Reusability ....... . 

2.3 A Simplified Physical Model of Reusability 

3.1 A Demonstration Faceted Scheme [BUCH79] 

3.2 A Demonstration Enumerative Scheme [BUCH79] 

14 

18 

23 

49 

50 

4.1 Measuring Conceptual Distance in a Tree Hierarchy 86 

4.2 Measuring Conceptual Distance in a DAG . . . . . . . 87 

4.3 Labeling the Nodes in a DAG Hierarchy . . . . . . . 88 

4.4 A Partial Conceptual Weighted Graph for the Function Facet.. . 90 

4.5 A Partial Conceptual Weighted Graph for the Objects Facet . 91. 

5.1 A Preliminary Faceted Schedule for Compiler Components . . . 104 

5.2 SADT Context Actigram for The Library System. . 111 

5.3 SADT Level 0 Actigram for The Library System 113 

6.1 Relative Closeness to Target Language Pascal . 135 

6.2 Two Hypothetical Utility Functions . . . . . 138 

6.3 Two Reuse Effort Utility Functions . . . . . . 139 

6.4 Fuzzy Functions for Young and Old with Some Modifiers [ZADE84] 143 

6.5 Reuser Experience as Modifier for Small Component . . . . 144 

6.6 Programming Language as Modifier for Small Component 145 

6. 7 User Experience as Modifier for Attribute Functions 145 

6.8 Membership as Function of Reuser Experience 147 

7.1 Recall and Precision in Retrieval ....... . 156 

7.2 Use of Recall and Precision to Compare Retrieval Systems . 157 

7 .3 Specification for a Simple Payroll Program . . . . . . . . . . 171 

vi 



Acknowledgments 

Going· through graduate school is analogous to a climbing expedition. The 

doctoral candidate is the climber selected to reach the summit. However, the feat 

cannot be accomplished without the support of the other members of the expedi

tion. This support may take the form of route planning, infrastructure logistics, 

or stimulating friendships. All this is also true of a Ph.D. program, and this thesis 

could not have been possible without the support and friendship of many people. 

All of them deserve more than just an acknowledgment. 

I am indebted to my advisor Peter Freeman for his guidance and support· 

during my years of study. His patience has been invaluable to the success of this 

work. I would like to thank my committee, Rob Kling and Dennis Kibler, for their 

support and reading of my work and for their valuable comments and suggestions. 

My special thanks to my colJeagues of the REUSE Project, Guillermo Arango, 

Ira Baxter, and Chris Pidgeon for their persevering encouragement, intellectual 

nurturing, and elightening discussions. Their comments and ideas through the slow 

refinement of the several drafts of this thesis were most worthy. 

The enduring moral and personal support of my wife Haydee was of utmost 

importance. She was always behind me and ready to help in the most difficult times 

and happy to celebrate any successes. Thank you. 

Finally, I would like to thank Joan Isenbarger for her help in proof reading 

the thesis, Frank Murgolo for his comments on formal notations, and the graduate 

students of the ICS Department that participated in the classification experiments. 

This work was supported by the National Science Foundation under grant 

MCS-83-04439 and by the Consejo Nacional de Ciencia y Tecnologfa, Mexico. 

vii 



ABSTRACT 

Reusing code is one approach to software reusability. Code is the end product 

of the software lifecycle. It is delivered in a low level representation that is difficult to 

reuse unless an almost perfect match exists between available features and required 

specifications. There is a need to organize large inventories of software such that 

reusable code is easy to locate and exchange. The relative success in the reuse of 

code fragments reported by some software factories is due in part to their capacity to 

encapsulate domain specific functions and create specialized libraries of components 

classified by these locally standardized functions. 

A general software classification scheme that organizes reusability related at

tributes and common functions from different domains is proposed as a partial 

solution to the software reusability problem. For the problem of selecting from 

similar, potentially reusable. components, a partial solution based on evaluation of 

common characteristics is also proposed. A library system is presented that inte

grates the proposed classification scheme with an evaluation mechanism based on 

inherent component attributes, programming languages characteristics and reuser 

experience. 

The fundamental contribution of this dissertation is a formal treatment of 

a faceted scheme for software classification leading to better understanding of 

reusability at the code level. This approach has been prototyped in a library sys

tem for the semi-automatic classification of software components. Analysis were 

performed to evaluate the classification scheme. The results show the potential of 

the scheme in organizing collections of code fragments, in improving retrieval, and 

in simplifying the classification process. Tests of the evaluation mechanism showed 

positive correlation with evaluations conducted by potential reusers. 

viii 



Abstract of the Dissertation 

A Software Classification Scheme 

by 

Ruben Prieto Dfaz 

Doctor of Philosophy in Computer and Information Science 

University of California, Irvine, 1985 

Professor Peter Freeman, Chair 

Reusing code is one approach to software reusability. Code is the end product 

of the software lifecycle. It is delivered in a low level representation tha~ is difficult to 

reuse unless an almost perfect match exists between available features and required 

specifications. There is a need to organize large inventories of software such that 

reusable code is easy to locate and exchange. The relative success in the reuse of 

code fragments reported by some software factories is due in part to their capacity to 

encapsulate domain specific functions and create specialized libraries of components 

classified by these locally standardized functions. 

A general software classification scheme that organizes reusability related at-
·-

tributes and common functions from different domains is proposed as a partial 

solution to the software reusability problem. For the problem of selecting from 

similar, potentially reusable components, a partial solution based on evaluation of 

common characteristics is also proposed. A library system is presented that inte

grates the proposed classification scheme with an evaluation mechanism based on 

inherent component attributes, programming languages characteristics and reuser 

experience. 

The fundamental contribution of this dissertation is a form.al treatment of 

a faceted scheme for software classification leading to better understanding of 

xvi 



reusability at the code level. This approach has been prototyped in a library sys

tem for the semi-automatic classification of software components. Analysis were 

performed to evaluate the classification scheme. The results show the potential of 

the scheme iri organizing collections of code fragments, in improving retrieval, and 

in simplifying the classification process. Tests of the evaluation mechanism showed 

positive correlation with evaluations conducted by potential reusers. 

xvii 



CHAPTER 1 

Introduction 

General Problem 

The goal of this dissertation is to propose a classification scheme for code 

fragments that permits easy location and exchange of reusable code. One of the 

essential problems in reusing code fragments is to be able to locate an appropriate 

piece of code that is stored in a large collection of fragments. Code reuse in this 

context is the use of an existing code fragment as a component for a new software 

system. Reusability implies the process of modifying or adapting an existing code 

fragment into a new system. 

A classification scheme is a domain knowledge structure that organizes col

lections of items to satisfy the needs of the users of the collections. In the domain 

of code fragments, a classification scheme should organize the collection to satisfy 

the needs of the reusers. It is necessary to identify the factors involved in the code 

reuse process and use them in designing a scheme that will maximize the utility of 

the collection. 

In order for code reuse to be attractive the overall effort of reusing code must 

be less than the effort of creating new code. The code reuse process involves three 

steps: access the code, understand the code, and modify the code. A classification 

scheme is central to code accessibility, code understanding depends on both reuser 

experience and program characteristics, and modification effort is related to the 

difference between requirements and features offered by existing components. 

Code understanding effort and modification effort can be reduced by proper 

classification of the collection. Understanding a group of very similar code fragments 

1 



2 

implies ·relatively less effort than understanding a group of different code fragments. 

Once the effort is invested to understand one of the group, the effort required to 

understand the remaining members belonging to the same class is minimal assuming 

a certain degree of similarity between members of the same class. IT the collection is 

organized by attributes used to define software requirements, then the probability of 

retrieving components that are different from the given requirements is very small. 

This reduces modification effort. 

Classification and organization of the collection is a necessary condition to 

make code reusability an attractive approach to the software development process. 

However, an organized collection is of no use if it does not provide the mechanisms 

to use it. A search and retrieval mechanism is necessary to access the collection 

and a well defined classification structure is essential to the design of an effectiy~· 

retrieval system. IT the retrieval system has knowledge about the collection, its 

retrieval performance is improved. Another consideration is that the classification 

structure-based retrieval sy~tem just proposed (call it library system) needs to help 

its users discriminate amorig very similar items in the collection. 

A typical retrieved sample may consist of several very similar components 

differing only in minor implementational details. A reuser is faced with the problem 

of selecting the components that would require the least adaptation effort. An 

inspection of each element in the sample is needed to select the best. This process 

alone may discourage a potential reuser from using the collection, especially if the 

number of elements in the sample is large. A system to conduct an evaluation 

of very similar components is therefore needed to assist reusers in selecting the 

components that would require the least conversion effort. 

A proper classification scheme requires, therefore, an integral (holistic) view 

of the problem of code reusability. All factors involved during the code reuse process 

must be considered. 



3 

The contribution of this dissertation is the derivation of a software classifica

tion scheme as the result of a comprehensive analysis· of the code reuse problem. 

This approach calls for an integrated solution-a classification scheme embedded 

in a retrieval system and supported by an evaluation mechanism. 

The main features of the proposed classification scheme are expandability, 

adaptability, and consistency. Expandability means that new classes can be added 

with minimal disturbances to the present collection, that is, with a minimum of 

reclassification problems. Adaptability means that the scheme can be customized 

to a particular environment. Consistency means that components from different 

collections in the same class share the same attributes. This feature will allow 

different organizations to share their collections. 

This holistic approach resulted in a prototype library system that was used to 

evaluate the proposed classification scheme in particular and the code reuse problem 

in general. 

The approach taken by the author was to study the problem of code reuse and 

survey the domain of classification in order to identify feasible classification schemes 

that could be applied to software. A special scheme for software code fragments 

resulted. Next, the domain of software metrics was researched to identify reuse 
-. 

related metrics that could be used to estimate reuse effort. An evaluation technique 

to compare similar components based on reuse related attributes was selected. The 

classification scheme was integrated with the evaluation technique into a prototype 

system built around a data base management system and including a retrieval front 

end. The resulting prototype library system was then tested and evaluated. 



4 

Why Classify Code Fragments? 

In 1968, at the NATO Software Engineering meeting in Germany, Mcilroy 

[MCIL69] proposed the idea of a software components catalog from which one 

could order software parts which could be assembled, much as we do mechanical or 

electronic components. 

Software components, to be widely applicable to different machines and 
users should be available in families arranged according to precision, robust
ness, generality and time space performance .... software production in the 
large would be enormously helped by the availability of spectra of high quality 
routines, quite as mechanical designs are abetted by the existence of families 
of structural shapes, screws or resistors. 

It is believed that this idea and similar approaches taken by the softwar~. 

publication industries have not flourished because individual concrete programs 

are too specialized to be reused in most cases-they contain too many detailed 

representational choices to be adaptable to new circumstances of potential use. 

Other researchers [PRY~79, NEIG80, SWAR82] proposed effective meth

ods for expressing software abstractions and for generating particular instances by 

transformation or refinement. This most recent approach, however, is considered a 

long term alternative to the software reuse problem in particular [FREE83], and 

to the software development process in general [BALZ83]. 

As a short-term alternative to improving the software development process, 

reuse of software components from available collections has shown some success. 

Lanergan and Poynton [LANE 7 9] at Raytheon report significant gain in productiv

ity by reusing available components. They identified and classified a large number 

of pieces of code and a few standard control schemes that could be used in many 

of their applications. They established libraries and tools to facilitate the reuse of 

these code fragments, management procedures to encourage and control their reuse, 



5 

and training procedures to teach new programmers how to use this approach. They 

report reusability figures on the order of 60%. 

Following a similar approach, Japanese software factories report high improve

ment in programmer productivity through an integration of known techniques from 

different disciplines like resource management, production engineering, quality con

trol, software engineering, and industrial psychology [MATS80, KIM84, TAJI84]. 

A significant part of this productivity improvement is due to code reuse. Frequently 

used programming structures, including parametric parts, are standardized and cat

aloged in libraries as "reusable pattern modules." These structures can be recalled 

and combined with parametric variables and other pattern modules to generate new 

programs. 

These cases, although very successful, are limited in number. They deal with 

very specialized domains of applications where certain programming structures are 

readily identified and easily standardized. Relatively few categories of programs 

are needed to fill the small number of programming structures resulting in easy

to-access collections. 

One of the factors preventing a wider use of software component collections in 

software development is the problem of locating the components within the collec

tion. When the number of' program categories increases along with the size of the 

collection, collection access becomes difficult. A specialized classification scheme 

is necessary to organize a collection for the needs of the users thus facilitating the 

location of the appropriate components. The resulting classification scheme must 

be easily expandable to support growing collections, it must be adaptable to be 

· used by different organizations working on different domains of applications, and it 

must be consistent to serve the needs of a broad variety of users. 

Another important aspect of classifying software components is its potential in 

identifying what kinds of programs recur sufficiently often that it would be advisable 



6 

to develop reusable versions of them. Work by Goodell [GOODS 3] from Burroughs 

Corp. is the first reported in classifying components for this purpose. The need to 

classify existing collections has recently been recognized by some industries1 . Their 

interest includes both direct reuse and component standardization. 

Alan Perlis expressed clearly to the author2 the need for a software classifica

tion scheme. He indicated that a classification of software is necessary to properly 

address the problem of software reusability. It should identify the software at

tributes that are considered during reusability. 

Plan of Presentation 

Chapter 2 motivates the reuse of code as an approach to improve software pro-:. 

ductivity. It contrasts reusability as conducted in other disciplines with reusability 

in software. A detailed analysis of the software reuse process is conducted and a 

model is presented t~at provides a more flexible approach to code reuse. 

Chapter 3 surveys classification related work, in particular, classification in 

library science and the existing schemes used in software classification. An outline 

on how to construct a faceted scheme is presented indicating the advantages of this 

approach to classifying code fragments. 

Chapter 4 presents the development of a coherent scheme for organizing de

scriptive terms for classifying and retrieving of software components. The advan

tages of using a flexible-facet classification scheme are discussed, cind some examples 

are presented to illustrate the use of the scheme. 

Chapter 5 describes how the classification scheme is implemented to classify 

software components, how to start a collection of software component descriptors, 

1 In particular, Intermetrics Corp. of Huntington Beach, Ca. and GTE Laboratories Inc. from 
Boston, Ma. 

2Personal communication, Irvine, 1983 



7 

and how the scheme and collection are implemented in a library system. 

Chapter 6 presents a detailed analysis of selecting the appropriate component 

after retrieval. The inherent attributes used to discriminate among similar compo-

nents are defined. These same attributes are used to estimate reusability effort. An 

approach to evaluate similar components is introduced. The approach is based on 

attribute weighting and dimension normalization using concepts from fuzzy logic. 

Chapter 7 reports on an evaluation of the proposed classification scheme and 

the prototype library system. Tests on retrieval effectiveness, on classification eff ec

tiveness, and on reuse effort estimation were conducted to demonstrate the potential 

of the approach. The results of these tests confirm some of the arguments that were 

used as a basis for the construction of the library system. 

Chapter 8 concludes the dissertation with a summary of the contributioris 

of this research. Limitations of the proposed approach are discussed with some 

suggestions for future research. 



CHAPTER 2 

Code Reuse 

This chapter offers reasons for the reuse of code. It contrasts reusability as 

conducted in other disciplines with reusability in software. Reusing software com

ponents involves certain variables not considered when reusing physical artifacts. 

Besides internal characteristics, reuser skills and environment may determine the 

degree of reusability of a software component. Deficiencies in some successful mod

els of code reuse are discussed, and a model is present.ed that provides a more 

flexible approach to code reuse. Some of the problems in implementing this model 

are discussed in the final section. 

Motivation 

There are at least two m~jor reasons of a strong economic nature. One is 

the need to take advantage of exiSting software inventories in the construction and 

development of new software systems to improve software productivity. The second 

is the need, specially in the software industry, to improve quality. In both cases 

code reuse is a key factor. This section discusses both reasons. 

Use of Existing Software Inventories 

Software has been recognized as a very valuable asset. It is an owned resource 

that contributes to the means of production. It is costly to acquire and even more 

costly to replace. The typical size of a software inventory for Fortune 500 corpora

tions is on the order of tens of millions of lines of code [LYONS 1]. At an average 

cost of $10 per line of code, that brings the investment bill close to the billion dollar 

mark. 

8 



9 

According to Morrisey and Wo [MORR79], six languages (Cobol, RPG, For

tran, PL/1, Basic, and APL) account for 90% of these inventories, and Cobol alone 

accounts for over 1/2 of this figure. Most of that available code was produced dur

ing the early· stages of software development technology and has been considered 

untouchable because of its obscure structure and unreliable documentation. 

There is a trend, among large corporations in particular, to organize these 

inventories of programs for reuse in the construction of new systems. The use of 

techniques such as Structured Retrofit [BALB75, GOME79, MILL80, LYONSOJ 

to automatically improve the structure of existing programs is stimulating the con

version of old inventories into better structured and documented programs that are 

easy to understand, maintain, and, above all, modify. This trend, although moti

vated mainly by maintenance needs, shows ari enormous potential of reusability ... 

As more potentially reusable code becomes available, either by retrofit of old 

inventories or by generation of new software systems, new approaches to organize 

large collections of components for effective classification, cataloging, and retrieval 

are needed. This need creates a fertile ground for research in code reusability and 

software classification. 

Improve Software Productivity 

Another source of motivation for the reuse of code is the strong economic 

need to reduce the cost of software development. Some of the major reasons for the 

extraordinary growth in the cost of software are the growing complexity of software 

systems, the increased demand for qualified software professionals, and the lack of 

appropriate software development tools and methodologies. 

A bottleneck exists in the software development process caused mainly by 

the slow rate of improvement in the software creation proce8s. Morrisey and Wo 

[MORR79J report an increment in the software production process of only 3% to 



10 

8% per .year during the last 20 years while the total installed processing capacity 

has increased at a rate greater than 40% per year. 

The future does not look any better. Software demand is increasing by at 

least 12% per year while the supply of software professionals is increasing at about 

4% per year [BOHE83]. The current shortfall between the supply and demand 

of programmers is estimated at 50-100,000 and it may rise to 1.2 million by 1990 

[STANS 3]. There is a definite need to improve software productivity. Reusability 

is one of the alternatives being explored. The potential of reusability in improving 

the software production process is significant . 

. . . we believe [the reuse concept] has the potential for increasing software 
productivity by an order of magnitude or more. [HOR083A] 

Significant improvement in software productivity by enforcing code reuse 

has been reported by software factories. Software Factories [LANE79, MATS80, 

MACN83, KIM84, TAJI84] show reusability figures on the order of 50% to 85% 

and report substantial improvement in development time, reduced cost, increased 

product reliability, and more efficient use of manpower. Management strategies, 

quality control, and special training are used as supporting factors for achieving 

these figures. 
~ 

Functional collections have proved successful in improving programming pro-

d uctivi ty of non-programmers in certain domains of application, in particular, in 

the field of scientific programming where problems are usually weli-defined and 

encapsulated. Functional collections are large groups of functionally cohesive com

ponents designed for the solution of very specific problems. Although functional 

· collections are not usually utilized by programmers or software designers to con-

struct software systems, they are used by engineers, scientists, and technicians as 

tools to solve domain specific problems. As problem solving tools, functional col

lections have significantly improved the productivity of non-programmers. SPSS, 



11 

for example, is considered an essential tool in statistical problem solving. Courses 

on how to use SPSS are taught in most American universities. 

Software development systems that rely on the Module Interconnection Lan

guage (MIL) paradigm have shown limited success in the reuse of code. MILs have 

been successfully integrated in some research and industrial software development 

systems [PRIE82]. Some MIL-based environments such as the GANDALF System 

[ HABE81] are capable of generating complete systems out of available components 

by specifying, through a ~L, how to "knit" them together. The GANDALF system 

demonstrates the potential of the MIL paradigm in the generation of new systems 

from available modules. 

Recent proliferation of commercially available software packages is another 

indication of the trend for using available code instead of developing in-house sys

tems. The software publishing industry has experienced a remarkable growth in 

the recent years. Software directories for application packages have been the main 

contributors. 

As indicated in a recent study on Reusable Software Implementation Technol

ogy conducted at Hughes Aircraft Co. [ GRAB84], current software development 

methodologies, unfortunately, do not emphasize the reusability paradigm. In this 

study 19 current software development methodologies were evaluated. The method-

ologies evaluated covered a cross section of three categories: research, commercial, 

and industrial. The first three conclusions of this study are: 

1. No credible methodology was examined which purported to provide the 
reuse of source code between dissimilar application areas. In fact, where 
sourcEH:ode reuse occurs at all, it happens within narrow application 
areas. 

2. None of the methodologies used in large-scale development efforts provide 
a reliable way of storing and retrieving items from a code-level library. 
Some methodologies were able to implement libraries, but the retrieval of 

I 
I 

. I 



the correct item from the library was a manual process which was often 
so difficult that it was easier to code a new item than to look for one to 
reuse. 

3. Within industry, the prime means of reusing software products is via the 
reuse of the personnel who created the products. Much of the knowledge 
which advanced methodologies attempt to capture is already resident 
within these knowledgeable personnel. 

Motivation for code reuse can be summarized in the following points: 

• Know-how on code reuse is needed to reuse current software inventories. 

12 

• Code reuse has proven to be, in some areas, an effective technique to improve 
software production. 

• There is a need to improve current code reuse techniques. 

• There is evidence that, even in 'state of the art' software industries, code 
reuse is conducted informally. 

Reusability 

In this section we add!!ess the following questions: What is reusability? How 

is reusability conducted in other disciplines? What is reusability in software? Two 

trends in software reusability research are described, and a characterization of the 

software reusability problem is presented. 

Reusability in Established Disciplines 

Reusability is usually construed to be the use of previously acquired concepts 

or .objects in a new situation that is similar to the one that triggered the original 

use of those concepts or objects. Two problems arise when a situation of potential 

reusability appears: 1) how to recognize when the new situation is similar to a 

previous situation and 2) how to modify the previously acquired concept to fit the 

new situation. Answering these two questions is beyond the scope of this thesis. 

They are mainly related to problems of learning, knowledge representation, and 



13 

psychology. There are, however, two concepts that attempt to simulate the answer

ing of these questions. The concept of storage of past situations or facts, known 

as knowledge base, and the concept of search and retrieval of stored situations to 

match and explain a new situation. Reusability could be considered as the pro

cess of matching new situations to old situations, and, if the matching succeeds, 

duplicating the same actions in the new situation. 

This is a vety general view of reusability. Terms like experience, practice, or 

skills could be identified with the term reusability. Even if we restrict reusability to 

objects or concepts that are the result of an activity, the term remains very general. 

The term reuse has the connotation that one may use a workproduct in a 
situation other than the original one for which it was created with less efFort 
than would be required to create a new workproduct. [FREE83] 

Reuse then, may have several interpretations as Wegner [WEGN83] illustrates with 

the following analogy: 

We have as many words for different kinds of reusability as there are words 
for different kinds of snow ~ the language of the Eskimo. 

Regardless of its gener~lity, reusability implies that knowledge has been coded at 

different levels of abstraction and stored for future reuse. 
~ 

In well established disciplines like civil or electrical engineering, reusability is 

based on the existence of previously coded knowledge. There are two different levels 

of reusability to consider: the reusability of ideas or knowledge and the reusability of 

particular artifacts or workproducts either as new components or as complete mod

ified assemblies. In civil engineering, for example, reuse of ideas consists of applying 

general engineering concepts such as stress analysis, truss analysis, or mechanics 

and applying standard design equations to particular problems like determining the 

dimensions and materials of a beam, a column, or a wall. An example of the reuse 

of particular workproducts, on the other hand, would be determining from a set 



14 

V(O) i-=-
r R c 

t=O 

1 
V(t) 

I 
Figure 2.1: An RC Circuit 

of standard beam shapes, cross sections, and materials what would best meet the 

established design criteria. 

A design is typically based on availability of standard components. Electrical 

engineers, for example, consult component catalogs continuously during the desi~· 

process. Before making a design decision, they check what available part best fits 

the design constraint. In most cases, the original design requirements are modified 

to take advantage of existing components. 

The example below illustrates the typical design process. Assume the design 

specification of an RC circuit, like the one shown in figure 2.1, is given by: 

V(t) = 5 e-t/s.2sx10-1 

The general equation for that RC circuit is given by: 

V(t) = V(O) e-t/RC (2.1) 

V(O) is the initial condition and the product RC is called the time constant r. The 

design asks for a circuit that damps an initial 5 volts load to its RMS value (36.8%) 

in 3.25 microseconds. Assume that the catalog only lists the following components 



15 

for avaiiable resistors (R) and capacitors ( C): 

R c 

a) 1.5 n A) 2 x 10-6 I 
b) 1x108 n B) 17.5 x 10-6 f 
c) .2 n C) .5 x 10-3 f 

The designer is now faced with a selection problem. There are only two 

feasible combinations of R and C that come close to the design requirement of 

r = 3.25 x 10-6 sec.: a-A and c-B. Combination a-A results in r = 3 x 10-6 sec. 

Combination c-B results in r = 3.5 x 10-6 sec. Now the designer has to go back 

to the drawing board and 'make a concession' on the design requirements. The 

'concession' is based on which of the two alternatives has the best trade-off on the 

requirements of the problem: a longer r or a shorter r. In real design problems, the 

number of alternatives is usually large. Several combinations of components may 

give feasible solutions, and the designer normally increases the number of design 

requirements to reduce the number of alternatives. 

From this example we can make the following observations: 

• Design constraints are usually modified. 

• Design implementation be-comes a selection problem. 

• Components are usually acquired rather than created. 

• Components are described by standard units that capture their functional 
characteristics. 

In the next section, these observations are considered when reusing code. 

Designing with standard components has been practiced more in physical 

· assemblies where the creation of customized parts is expensive. In software systems 

construction, standard components have not been widely used mainly because of the 

generally accepted belief that customizing software is not as difficult as customizing 

material objects. This may be true as long as the components remain relatively 



16 

simple.· When complexity of the component is considered, the software designer 

can create or reuse. In the case of physical artifacts, the reuse option is usually 

assumed. 

Returning to the reuse of ideas, the circuit example also illustrates the reusabil

ity of ideas or concepts. Equation (2.1) is the solution to the differential equation 

dV V c-+-=o 
dt R 

with initial condition V(O) at t = 0. This equation is a mathematical model of 

the physical circuit and is considered the standard representation of RC circuits. 

Engineers use the solution for this equation and plug in the required values rather 

than solve the model equation each time. To reuse this concept, the design.er must 

search in catalogs, books, or the designer's own knowledge base (memory) for th.e 

RC circuit solution formula given by equation (2.1). 

Reusability in Software 

In software engineering, as in civil or electrical engineering, there are two views 

of reusability: the reuse of software components, analogous to the reuse of artifacts 

in the other disciplines, and the reuse of software workproducts, equivalent to the 

reuse of established models or procedures discussed above. A software component 

usually refers to an executable image of a module or body of code or to a module 

or body of code written in a high level-language which can be ·compiled into an 

executable image. In this thesis, we use code fragment and software component 

interchangeably. A software workproduct, on the other hand, is considered to be 

any piece of software, code, or documentation. 

The reuse of components in software is considered the "typical" [FREE80] 

view of reuse, and the reuse of workproducts is considered the "new" view of reuse. 

The typical view of software reuse is that of reusing executable programs from 



17 

available collections. Back in 1968, Mcilroy [MCIL68] proposed the creation of a 

"software components manufacturing facility" to generate standard interchangeable 

software components. This idea is still very attractive and continuously mentioned 

as feasible [BOWL83, ICHB83, STAN83] but very little has been accomplished 

to date. The high potential for variability in implementation and performance 

of the usually complex software components has precluded their use as standard 

components in the construction of software systems. Another contributing factor 

to this impediment is the nature of software. It is relatively easy to modify, in 

contrast with physical objects, thus tempting the implementor to make rather than 

reuse. 

The new view of software reusability may be defined as: 

... use of non-executable workproducts (e.g. a requirements definition, a 
design, a test plan) in the lifecycle of a piece of software other than the one for 
which it was originally produced. [FREE80] 

According to this view, the objects of reuse are not only the executable code 

which is the end product of the. software lifecycle but the reuse of the intermediate 

workproducts as well. The term workproduct is defined as: 

... the result of performing an activity like analysis, design, or construction; 
we will always mean a tangible result that can be read and about which we can 
ask questions (e.g., a requirements definition containing certain information 
or a design specifying the modules of a system and their interconnections). 
(FREE80] 

This view of reusability has been recognized by researchers as a very important 

area of research with short and long range objectives [ITT83]. Wegner [WEGN83] 

agrees with the need to broaden the research in software reusability. 

The term reusable software was initially introduced to describe off-the
shelf software components reusable as building blocks of larger systems. . . . 
But it excludes many important kinds of reusability, such as the reusability of 
concepts and tools. 



MORE u1. LESS Reusable Components: 

High 

Low 

Low 
Abstraction Level 

High 

Optimally reusable components are at 
medium level of abstraction 

LARGE vs. SMALL Components: 
High 

Low 
Small Large 

Size 

reusabili ty 

ease of reuse 

reusability 

Optimally reusable code is of medium size 

Figure 2.2: Tension in Software Reusability 

18 

Another problem in software reusability is the tension that exists in the levels 

of abstraction and in the granularity of potentially reusable components. This 

tension problem is illustrated in figure 2.2 and discussed below. 

More vs. Less Reusable Components 

There exists certain controversy between the degree of reusability of software 

workproducts and the degree of reusability of software components. It is often ar

gued that software representations at high levels of abstraction (e.g., analysis and 

design) are more reusable than software representations at lower levels of abstraction 

(e.g., code). Analysis and designs are, however, more difficult to reuse [WEGN83]. 

The specialization process of going from a general {reusable) design to a particular 



19 

implementation is no different than implementing a design from scratch. Special

izations (e.g., code), on the other hand, may be less reusable, because of the large 

number of implementation constraints, but they are easier to reuse because there is 

no specialization process involved. Optimally reusable components are at a medium 

level of abstraction. 

Some researchers, [NEIG80, PRYW79, SWAR82], see reusing analysis and 

design as more effective, even though more difficult than reusing code. They argue 

that the production of code is only a small portion of the total software development 

cycle and that, eventually, code generation will be automated. Other researchers, 

[ICHB83, STAN83, BOWL83], see the reuse of code as a feasible alternative and as 

a significant factor in reducing software development costs using current technology. 

Both approaches to software reuse are important and are not exclusive of 

each other. Research in both areas is necessary. These two areas of research are 

placed into perspective by the concept of Reusable Software Engineering [FREE83], 

a discipline concerned with the study of software engineering activities that: 

• "use reusable information" -and 

• "produce reusable information." 

Freeman presents two distinct research perspectives in this new discipline: 

"Reusable-Software Engineering" and "Reusable Software-Engineering". 

Reusable-Software Engineering can be identified with the "typical" view of 

reuse. Its focus is in the development of tools, techniques, and methodologies 

to improve the reuse of components. It is concerned as well with management 

procedures to implement them. 

Reusable Software-Engineering relates to the "new" view of reuse. The ob

jective here is in the different types of information that can be reused during the 

development of software systems. 



20 

Iri this frame of reference, the focus of the thesis is in an aspect of Reusable

Software Engineering concerned with reusing medium size components at a medium 

level of abstraction. These components are usually source code fragments written 

in high level languages. 

Large vs. Small Components 

One major problem in Reusable-Software Engineering is the definition of gran

ularity of the components to be reused. At one extreme of the granularity spectrum, 

small granules are characterized by single programming language instructions while 

at the other extreme large granules consist of complete systems. Neither extreme 

is an issue in Reusable-Software Engineering. 

Reusing very small components is no different than programming, and very 

large components are not reusable unless they can be combined with other com

ponents in some interesting composition paradigm to make yet bigger components. 

Use 'as-is' is the common approach for large components. The area of interest in 

code reuse is thus in the middle of the spectrum (not-too-small and not-toe>-large 

components) and in components that can be used to create other components. 

In this middle range of component size, we see that, by observing the behavior 

at the extremes, ease of reuse is monotonically related to component size. Smaller 

components are usually easier to reuse than larger components. On the other 

hand, effectiveness of reuse is inversely related to size. The larger the component 

successfully reused, the more time and effort is saved. Optimally, reusable code is 

of medium size. 



21 

Supporting Environment and Reuser Qualifications 

Size is only one of the factors. The environment provided to the reuser and 

the qualifications of the reuser are two additional factors that contribute to the 

reusability effort. The following analogy would help in visualizing the interaction 

of these and other factors when reusing code: 

When editing texts, for example, previously written words are not reused; 

they are rewritten. The effort (even with a very powerful editor) to pick an existing 

word in our manuscript and use it in a different place overcomes the effort of just 

writing it from scratch. Notice that words are very much context free and the 

trade-off is merely one of mechanical effort: search for the word using the first few 

letters, pick, return to our place in the text, and deposit. 

In contrast, if someone is composing a manuscript and wants to reuse a major 

section from another text, he or she either modifies the context of the paper so 

that the section will fit without major modifications and become part of the text, 

or keeps the context rigid cµid tries to modify the existing section. Here the major 

component in effort is not meehanical but cognitive. The same mechanical process 

is conducted as in selecting a word, but it is considerably less significant than the 

effort to understand the s~ction, modify it to match the new context, and change 

the style. 

Midway between these two examples would be moving paragraphs, with a few 

context dependencies, around in the text. Here the components in mechanical and 

cognitive effort are more even, making reusability more attractive. There are so 

many ways to express an idea in writing that defining a standard paragraph for each 

idea is unrealistic. Instead, the idea is captured from reading a few keywords from 

the paragraph, then the text is modified to express that idea, perhaps in a different 

form. Searching for 'reusable' paragraphs is usually conducted informally by looking 



22 

for key\vords that provide a clue on the required idea. A more formal approach 

would be to establish a library of paragraphs and classify them by clue-providing 

key words. A problem would arise if the library is used by a different person, and 

for a different topic. The classification scheme may not be as cost effective. A key 

word defined by the original user may not be as relevant or meaningful for the new 

user. A better approach would be to classify them by the ideas they represent. 

Extract the attributes that represent the idea and use them for classification. 

In this example, the circumstances of reuse play an important role as well. 

H the language used requires long complicated words and the user is unskilled at 

typing but an excellent editor-hacker, then reusing words would make sense. In the 

case of reusing sections, if we are composing a paper that is only a new version of 

an existing one, then context would not be much of a problem. 

Reusability at the ends of the spectrum may therefore be effective if the 

setting and conditions of the reuse environment are considered. What remains 

to be discussed are the trade-offs made in reusing middle size components (e.g., 

paragraphs.) 

Reusing paragraphs also depends on the setting and conditions of the reuse 

environment. The size dimension of the objects being reused form a continuum 

between large and small, and the reuser moves along this continuum as the con

ditions demand. The reuser may reuse words, paragraphs, or complete sections 

and the trade-offs would be determined at the point of reuse. If the reuser is very 

knowledgeable about the area of discourse, capturing the idea from a given para

graph or section may not be a problem. H the reuser is skilled in composition, then 

modifying the paragraphs may not be a problem either. In both cases, the skilled 

reuser may be more capable than others at reusing larger size paragraphs. 

From this analogy it becomes clear that the effective reuse of code is dependent 

upon the particular characteristics of the components, the environment provided 



23 

Figure 2.3: A Simplified Physical Model of Reusability 

for the reuser, and the qualifications of the reuser. 

Code Reuse Effort 

The model below illustrates some of the factors involved in the code reuse 

process and how these factors may influence the code reuse effort. Lack of standard 

software metrics is a major constraint in measuring reuse effort. The effort in 

reusing code can be seen as analogous to the work required to move a heavy object 

a given distance up an inclined plane. A physical representation of this model is 

shown in figure (2.3). 

In this model: 

Where: 

W=S·F and 

W =Work done 
F = force applied to block 
S = distance block is moved 
µ = coefficient of friction 
m = mass of the object 
g = gravity constant 

F > µ mgCos(J + mgSin(J 

(3 = angle of inclination of the plane 



24 

The equation is an exact representation of the work performed on the block by 

force F to move it up the inclined plane a distance S. In reusing code, the following 

analogy is observed: 

F ·,_ reuser proficiency (experience and determination) 
S - extent of conversion . 
µ - effectiveness of reuse tools and infrastructure 
mg - size and complexity of program 
f3 - documentation, code expressiveness, and refinement process 

The equation is valid after replacing the analogies, only if it can express each side 

in the same units. Meaningful units of work (e.g., ft-lb) result from this equation 

only if compatible standard units of measurement are used. (e.g., Sin ft, Fin lbs, 

m in slugs, g in ft/ sec2, and /3 in degrees or radians). 

In reusing code however, we do not have such standard units. This model 

could be a truly representative model of conversion effort (work) but we do not 

have standard units to verify it. Halstead did a pioneer work in describing software 

through standard units of measurement (HALS77J. Boehm (BOEH81J has shown 

that some units of measurement (lines of code) are good predictors in estimating 

software development effort. Their contribution although significant, is far from 

being standard or universally accepted. 

The objective of presenting this model is mainly to illustrate the major ob

stacles in reusing code. It helps to visualize the relationships among the various 

parameters involved. Reuse effort can significantly be reduced by decreasing /3 and 

improving µ. Even with ideal values of /3 and µ (- 0 in both) some F > 0 is still 

required to move the block. To make /3 and µ as close as possible to their ideal 

values implies a need to improve the effectiveness of reuse tools and the infrastruc

ture and to provide guidelines for better organization and expressiveness of code 

and documentation. 



25 

Characterjzation of the Reusability Problem 

Freeman [FREE76, FREE80, FREE83] characterizes thereusability problem 

as the problem of "successfully answering the five reusability questions." A model 

of software development must be assumed first to include the following aspects: 

• A need to create software and the availability of resources to develop it in
cluding human and economic as well as existing workproducts. 

• A well~efined methodology to carry on the development process that would 
allow for the effective reusability of the existing workproducts as well as for 
creating new reusable workproducts. 

The five reusability questions are: 

1. Does there exist a workproduct that may be considered for reuse at this 
point in the development process? 

2. In what ways does an existing workproduct not meet our specific needs? 

3. In what ways can the workproduct be changed so that it does meet our 
needs? 

4. What side-effects (unintended changes in the workproduct characteris
tics) will these changes induce? 

5. What effects will these changes have on the work products that are de
rived later in the development chain from this workproduct? [FREES 3] 

These reusability questions "capture the essence of the reuse problem." In this 

thesis a library system is proposed that concentrates on the solution of the first 

three questions when the workproducts are code fragments. These questions help 

us formalize the code reuse process implemented in the library system. 

The following conclusions are derived from this discussion on reusability: 

• Reusability of software components is a special case of the reusability of arti
facts, as conducted in other disciplines. 

• Code reuse takes into consideration three important factors: 

1. Complexity of the component. 

2. User ability to modify a component. 

3. Environmental support to carry on the modification. 



26 

Models of Code Reuse 

This section discusses the difference between use and reuse of software compo

nents. Three models on reusing software components are presented and analyzed. 

The idea of reuse explored in this thesis is introduced. 

Instrumental use of software components is of no interest here. Such is the 

case of the repetitive use of application programs, the repetitive use of software 

development tools, and the portability of complete systems to other environments. 

The type of code reuse pertinent here concerns integrating existing components into 

a new system. Components do not have to fit precisely and some adaptation may 

be necessary. 

Repetitive execution of software packages, such as payroll or inventory control 

programs, are of no interest here because there is no software development process 

involved. Repetitive use of software tools such as compilers and loaders, although 

used for software development, are not used as components of new systems. Soft

ware portability such as moving a compiler to a new hardware may involve a myriad 

of adaptation problems, but it is not used as a component of a new system. 

There are three successful models of reuse that meet our criteria: functional 

collections, Module Interconnection Language-based systems, and the reuse ofcode 

fragments as conducted in some software factories. 

Functional Collections 

Functional collections consist of large groups of functionally cohesive com

ponents such as subroutines, functions, or subprograms designed for the solution 

of very specific problems. Functional collections have been very successful in the 

field of scientific programming where problems are usually well-defined and encap

sulated. By and large, the most popular and widely used are the International 



27 

Mathematics Scientific Library [IMSL83] and the Statistical Package for the Social 

Sciences [SPSS84]. IMSL consists of a collection of FORTRAN subroutines for 

numerical analysis mainly used by physicists and engineers. SPSS is a collection of 

statistical analysis programs with a high-level job control language to facilitate in

tegration. There are several other collections aimed at different specialized scientific 

and technical areas. 

What characterizes the success of functional collections is their functional 

cohesion, excellent information hiding, and good documentation with illustrative 

examples and well-defined boundary conditions. Components of these collections 

have well-defined parameterized interfaces. For an effective application, the user 

needs to know the performance characteristics with different values of the parame

ters, the limitations, and, in some cases, the algorithm used. The implementatio~ 

details are of no concern since the typical user is not interested in modifying its 

internals for adaptation. 

It is important to note that components in functional collections are not in

tended to be modified. Functional collections are organized for this objective, and 

usually, no information on component internals is provided. Reusability is thus 

restricted to a function or subroutine call. 

A major limitation of functional collections is the small number of domains 

where they have been used. There is a need to extend functional collections to 

other areas of application. In domains that are not as formal and well-defined 

as mathematics, statistics, or numerical methods, it is difficult to collect some 

significant number of standard procedures. Such is the case of business applications 

and several other domains. 

Research on domain analysis is ·needed to identify common features among 

comp?nents to help organize code fragments in domains with less standard proce

dures. Common features could then be used to define standards. 



28 

Module Interconnection 

Most of the current software development methodologies follow the 'successive 

decomposition' paradigm for reducing problem complexity. Programming activity 

is usually r~duced to coding small well-defined modules that are integrated later 

into the originally planned system. Programming-in-the-large is the term used to 

describe the activity of 'knitting' those modules together. Programming-in-the

small deals with individual module implementation, for which typical programming 

languages are used. 

Module Interconnection Languages (MILs) are languages for programming

in-the-large. Their development can be traced to four primary sources: [DERE76, 

THOM76, COOP79, and TICH79]. MILs have a formal syntax for the descri~. 

tion of module interfaces, interconnection operations, and resource flow. MILs ate 

used to describe complete system structure and to specify and verify interconnec

tion requirements between modules. MILs are also used as management tools to 

encourage structuring before co~ing and as design tools to verify designs. 

MILs have been successfully integrated in some research and industrial soft

ware development systems [PRIE82]. The objectives of MILs in these systems are, 

typically, version control ~d system description. In the GANDALF [HABE8 l] en

vironment in particular, MIL capabilities are extended to perform other functions. 

A system generation sub-system is used to generate new system versions from MIL 

descriptions. A system description "coded" in a MIL is given to the system. Source 

code is "compiled" to verify interface compatibility, and, if correct, it is "executed". 

Execution consists of retrieving required modules from a data base and integrat

ing them in the format specified by the source code. A complete, fully integrated 

system is returned. 

The GANDALF environment, however, is limited to generation of versions 



29 

of the same system. It can not integrate modules from different systems. Re

search in the area of standard interfaces is needed to extend the capabilities of the 

MIL paradigm. Research in component interfaces is currently conducted to free 

interfaces from syntactic dependencies and concentrate on semantic interfaces, but 

preliminary results indicate that semantic interfaces may have as many dependen

cies as their syntactic counterparts [RICES 3]. An alternative approach such as 

flexible or modifiable interfaces may be the answer. Basic research on reusability 

effort is needed to determine how flexible interfaces can be. How much effort is 

required to modify an interface? H an exact match is not found, how much devia

tion is allowed before modification effort overcomes coding effort? Extension of the 

MIL paradigm also requires research on module descriptions and on techniques for 

module selection and evaluation. 

Code Fragments 

The best example of reuse of code fragments is the approach taken by several 

software factories, especially those in Japan. The core of their success lies in the 

creation of a library and a catalog of "reusable" components and the selection of 

certain common "logic structures" for standardization (LANE 79]. Programmers 

are then trained to reuse -what is in the library rather than code from scratch. 

Programs with common structures are generated by filling the skeletons of the 

established logic structures with library components. Management strategies focus 

mainly on providing the right tools for library use and the right environment to 

promote reuse. Approaches such as changing productivity indicators from lines of 

code to numbers of modules reused are typical. 

One reason for their success is that they usually concentrate on a single domain 

of application. An advantage of concentrating on a single domain is that, once 

logic structures are standardized for a particular domain, reusability of components 



30 

within that domain is carried on very effectively. This, however, is a limitation on 

their scope of reusability. Reusability across domains is not practiced in software 

factories. 

Reusing software components across domain boundaries presents difficult prob

lems. Context dependencies, implementation constraints, and application-specific 

functions are some of the problems that have discouraged software designers from 

reusing components in new application domains. Reusing code under this mode 

requires some extra information. There is a need, therefore, to conduct research 

in the problem of reusing code across domains in order to answer questions about 

describing components, measuring the reusability effort, and determining what in

formation is required to capture domain information. 

Another limitation of reusability as practiced in software factories is the adop

tion of a single programming language. A single programming language improves 

reusability within the organization but limits its scope. Available reusable compo

nents in other programming languages outside the organization may not be worth 

using because of the effort needed to solve their incompatibilities. There is a need, 

therefore, to research the problems of reusing components written in different lan

guages, such as, how to measure or estimate the conversion effort from one language 

to another. 

A third limitation of the software factories is that programmers are trained 

to be library users, not library contributors. From the software factory perspective, 

this measure is designed to improve productivity within the organization. From a 

broader perspective, however, if software factories were to share their libraries to 

· increase overall productivity, a large staff of librarians would be required to provide 

services to a wide range of contributors. Research on how to requce software library 

overhead is therefore needed. Problems on software classification~ and cataloging 

must be addressed. 



31 

Proposed Model 

The model of reuse proposed in this thesis is very similar to code reuse in software 

factories~ Emphasis is placed on the assumption that available code fragments 

usually do not match the requirements perfectly and adaptation is the rule rather 

than the exception. 

Code fragments do not have to exist isolated in a library. All that is needed, 

in the proposed model, is a pointer to indicate their location inside some work

ing system, although isolated standard components, like the ones used in software 

factories, may be available. Also, components are not restricted to a particular 

language. The objective in this approach, is to provide an environment that helps 

locate components and offers an estimation of the adaptation and conversion eff or~. 

by proper evaluation of attributes related with reusability. 

The idea of creating new code by searching in a library of code fragments 

is supported by this model. In this approach, workproducts such as requirement 

analysis, specifications, an~ designs are used as intermediate means to reuse code 

where code reuse is the final objective. The role of intermediate workproducts here 

is merely instrumental, as documentation and code understanding aids. 

The reusability scencu-io advocated is, thus, one in which a new software sys

tem is to be built from available components which may be part of systems intended 

for applications or functions other than those desired in the new-system. 

Collection organization is a key issue in this model. Code fragments must 

be classified so that similar components are grouped together and the component 

descriptions must serve as discriminating aids in selecting the best among similar 

components. The importance of these factors is evident when going through the 

process of reusing code. 



32 

Code· Reuse Process 

Reusing code where modification is one of the activities, can be described by 

the following process: A set of functional specifications is given. The reuser then 

searches a library of available components to find a group of candidates that satisfy 

the specifications. ff a program that satisfies all the specifications is available, then 

reusing it becomes trivial. More typically, several candidates exist, each satisfying 

some specifications. In this case, the problem becomes one of selecting and ranking 

the available candidates based on the effort required to modify the non-matching 

specifications to the desired requirements after considering degree of relevance. This 

implies that certain specifications are more relevant than others, and the candidates 

must be ranked accordingly. 

The following algorithm illustrates the code reuse process proposed in thiS 

model. The paragraphs below explain in detail what is involved in each step. 

given a set of specs 
begin 

end 

search library 
if identical match then terminate 
else 

ft 

collect similar components 
for each component {evaluate} 

compare features to requirements 
[modify specs] 

end 
rank and select best 
modify component 

The order of relevance for specifications is a function of several factors. Spec

ifications of essential requirements come first and are usually few. Essential re

quirements are those that 'must' be met. Optional or weak requirements are next 



33 

and usually numerous. Optional requirements come in the form of adjustable spec

ifications. The order of relevance of these adjustable specifications is determined 

by the reuser upon examination of each available candidate through weighting and 

matching available features, defined requirements, and personal factors like experi

ence and bias or preference. The function performed by a component is the most 

relevant factor. Thus, a functional description is defined first and all matching com

ponents are selected. The original sample of functionally equivalent components 

is kept all through the selection process and is ordered and reordered iteratively 

through each stage of the process. In going through each reordering step, the reuser 

needs more information about each component until a point is reached where any 

new information about a component does not alter its position in the ranked list. 

At this point the selection process stops and the component at the top is inspected 

first. 

The initial ordering of the original sample is considered a 'coarse' ordering 

that is 'refined' as more features are considered for comparison. The order in which 

these features are incorporated· into the selection process is by order of relevance; 

more relevant features enter the process first. 

The problem of matching available features with requirements has been re

ported in program maintenance (CURT79A, GORD79, BASI84, SELB85], in 

code understanding (WEIS74, LOVE77, JEFFS!, SOL083B], and in software 

reusability [CURT83, SOL083A]. The software component selection problem has 

been recognized by Neighbors (NEIG80] and the approach to ordering alternatives 

by relevance is used in decision making theory [HOGA80, KAHN82] and in systems 

theory [ ATHES 2). 

It was observed, as reported in Chapter 5, that function and environment 

are usually the most relevant attributes considered when attempting to reuse a 

code fragment. Adjustable requirements consist of those attributes related to per-



34 

formance, economics, complexity, size, development effort, and others. They are 

compared against the reuse effort of the available components by the question: Can 

I neglect these requirements if by reusing this component I save or improve else

where? Thus, relevance of adjustable requirements may change for each reusable 

component considered. 

Once a small sample of properly ranked candidates is available, the reuser is 

faced with the problem of understanding the contents of each item in the sample in 

order to determine which is better suited for conversion. This may be a time con

suming process unless relevant attributes are properly abstracted and structured. 

Here proper documentation on intermediate workproducts plays a catalytic role in 

the process. Then comes the actual conversion effort where the selected component 

must be adapted to the new environment. A measure of estimation for the conver~· 

sion effort would significantly help in the decision process and, consequently, in the 

effectiveness of the reuse paradigm. 

The estimation problem has been handled in an oversimplified fashion in the 

MetaCAD System [COOP82] by defining a single reusability index called "Cost". 

This cost reduces to a single number all code attributes needed to determine 

reusability. Under different circumstances, however, some reusable attributes may 

be more relevant than others thus forcing the same component to have different 

costs for different reusability instances. 

The model presented here provides a more :flexible and complete approach to 

evaluate all relevant attributes each time to determine reusability. Several problems 

must be addressed before the described code reuse model can become feasible. Some 

of these problems are discussed below. 



35 

Proble·ms in Code Reuse 

In this section we address the problems of creating and managing large collec

tions of components, defining component descriptors, component retrieval, program 

understanding, selection of the 'most' reusable component, and conversion or adap

tation for integration. 

Large Collections 

Creating a pool of available components requires well-defined guidelines to 

determine which parts of available systems should be considered for reusability. 

Poorly structured systems are difficult to separate into functionally definable mod

ules. Structured retrofit is sometimes used to restructure old systems. Systems d~. 

veloped with structured methodologies are usually easier to separate into reusable 

components. However, defining the boundary between any two components may 

not be a simple task. 

Functionally characterized modules are not always easy to isolate from com

plex systems, and, it is even more difficult, to save them as separate components 

in a library. An approach to this problem is to leave the potentially reusable com

ponent attached to its sy~tem and use a pointer for access and a descriptor for 

relevant reusable information. The collection becomes a collection of descriptors 

and pointers. The problem is shifted to the definition of effective descriptors. With 

this approach, precise boundary definition is not required. 

Not all components of any system should be expected to be 'reusable'. Some 

may have too many dependencies, or may be too large and monolithic, or too small 

to be worth marking for reuse. On the other hand, some may be reused either 

alone or together with others as members of a subassembly,' and subassemblies 

may be reused alone or as parts of an integrated system. This is one advantage 



36 

of this ·approach over the standard components approach where components are 

isolated from their assembly and generalized for multiple reuse. Another problem 

of the standard components approach is that true standard components, unless very 

small, require a myriad of configuration parameters and suffer from performance 

inefficienciea [RICH 8 3] . 

Managing large collections of documents is a recognized problem in library 

science. It is directly related to how the collection is organized and, consequently, 

the classification scheme used is essential to the organization of the collection. In 

library science, different approaches to classification are used for different types of 

documents. While there are some general schemes (e.g., Library of Congress) that 

are used to classify almost any kind of document, specialized libraries, generally 

depend on their own specialized classification schemes. 

Component Descriptors 

Component descriptors deal with the problem of how to represent the minimal 

information required to determine the reusability of an available component. Code 

descriptions may be many times more extensive than code itself [NEIG83]. A 

complete description must include information at all levels of abstraction available, 

from requirements and specification at the highest level to code and operation at 

the lowest. Development information is also needed to understand the final state 

of a given software component. 

For reusability to be attractive, however, the reuser should spend as little 

time as possible inspecting a candidate component. Size and descriptive capacity 

are conflicting goals. Short descriptors are desirable, but, at the same time, a 

complete description of the components is critical. Both requirements are met 

only in the extreme situation where descriptors are pointers only, making source 

code the detailed description of the component. Reuse in this extreme situation is 



37 

impractical. 

A practical approach could be to define all the 'reusability factors' that can be 

assigned to components and use them as a standard vocabulary for describing each 

component. The assigned terms for reusability factors would bec?me the reusability 

descriptor of a particular component. Other types of descriptors could be defined 

in the same way. A software catalog would list these factors for each component in 

a proper form.at. 

Retrieval 

A library system is central to code reusability. It is based on a knowledge 

structure called a classification scheme. A classification scheme consists of an index 

language and a vocabulary of terms that can be used for making queries. Compo

nent retrieval is only as effective as the queries. A classification scheme is a key 

factor in the effectiveness of a library system. 

Although a reusable software library can be implemented as a data base sys

tem, with all its benefits regarding data retrieval, it should be noted that software 

retrieval is different from both data retrieval and document retrieval. According to 

Blair [BLAI84], data retrieval systems are essentially deterministic whereas docu-
-. 

ment retrieval systems usually have only a probabilistic relation between the formal 

request and the likelihood that the user will be satisfied with the response. Soft-

ware components are neither as specific as data nor as general as documents. If 

software components are described at their lowest level of detail (i.e., code) they 

can be treated as deterministic pieces of data. For example: list all components 

that have the instruction X = X + 1. On the other hand, if software components 

are described using only a few abstra.Ct terms, they resemble document abstracts 

and are treated like documents. For example: retrieve all programs that compress 

files. 



38 

An increased hit ratio may result from probabilistic queries, even with a lim

ited vocabulary, if the terms used are semantically rich, unambiguous, and describe 

attributes relevant to the objects in the collection and to the intention of the user. 

Program Understanding 

Program understanding is a key problem in code reuse. Reusability effort is 

usually related to the reuser's capacity to understand code. H the time required to 
I 

understand a program is reduced, the overall reusability effort is reduced. However, 

a program that is easy to understand is not necessarily simple. Some complex 

programs may be easy to understand but difficult to modify. 

The problem of understanding programs is a field of research in itself. Despite 

the effort of researchers (WEIS 7 4, LOVE 7 7, B ROO 7 6, S HNE 7 7], very little has 

been formalized to determine the degree to which a person understands a program. 

In works by Curtis [CURT79a] and Evangelist [EVAN83], a strong correlation be

tween software complexity measures (e.g., Halstead's and McCabe's) and program 

comprehension is shown while Shen [SHEN83) cautions their use for that purpose. 

Coulter [COUL83], on the other hand, presents evidence that Software Science 

Metrics do not reflect and can not predict program understanding behavior. Sev

eral variables are involved; and work is still being done to isolate (and hopefully 

control) all pertinent variables [ M OHE 81]. 

A recent study [SOL083] shows evidence that reusers use "schemes" to rec

ognize (by abstraction) familiar structures in programs. More experienced pro

grammers use more complex schemes in their understanding processes. This evi-

dence is also supported (at the design level) by Jeffries et.al. [JEFF 81]. Curtis 

[ CURT83] advocates the idea that "reusers" understand code by extracting con

ceptually bounded "chunks" of code which they can abstract and use as conceptual 

units in their understanding process. 



39 

A ·software library may provide the reuser with a means to speed up the 

process of incremental abstraction by complementing code with different levels of 

documentation. H documentation describes conceptually bounded chunks of code 

in a hierarchical structure, then, the incremental abstraction process could be sim-

plified by searching through the hierarchy. 

Selection 

Selecting programs from a set of candidates that meet some of the required 

specifications may be the most time consuming task of a reuser. Specifications must 

be ranked by the reuser (maybe just mentally) before embarking on the selection 

process. For example, a particular programming language may be more important 

than documentation quality. 

Features available on each of the listed candidates are checked and compared 

against required specifications. An evaluation process follows. This process is not 

unique to software selection. It is a problem of decision making with complex 

alternatives. Several decision strategies to solve this problem have been proposed 

and have been widely reported [COOM70, LIND72, KAHN82]. 

The software selection process is unique in that the ranked list of specifications 

initially defined by the reuser does not remain constant throughout the process. 

Two situations may occur: 

1. The reuser can find better suited features than the original specifications in 
the available components. This causes a reordering in the specifications list. 

2. The reuser may be forced to make 'local concessions' to a particular can
didate. For example, a program may not meet some of the most relevant 
specifications but may have an excellent documentation (assuming documen
tation was considered of lower relevance). For this particular case, the reuser 
disregards the original list or changes its order by giving more relevance to 
documentation. On the other hand, documentation may be irrelevant if the 
program is small. 



40 

Another problem is that of cognitive strain. It is the amount of strain that 

decision operations place on the cognitive capacities of an individual. A normal 

individual attempts to minimize or eliminate cognitive conflicts [LIND72]. If we 

apply this general principle to the software selection process described, the reuser 

is subjected to a high level of cognitive strain. The natural approach is to disregard 

as many specifications as possible and as many candidates as possible and make a 

decision with a reduced set of alternatives. 

Presumably, an experienced, ·objective, unbiased, stress-free reuser would 

drop the poorest candidates and the less relevant specifications, invest very lit

tle effort, and come out with an optimum selection. However, when the sample size 

becomes larger and the differences between candidates smaller, the probability of 

missing the best candidate increases. 

A partial solution to these problems is a system capable of helping the reuser 

to make appropriate selections (if not optimum). Starting from an initial set of 

candidates, an indicator of reuser experience, and a set of specifications, a ranked list 

of candidates can be defined. A matching algorithm can be used with background 

rules to modify the original specifications list according to reuser attributes and 

according to features offered. This approach is objective thus helping the reuser 

handle the cognitive strain better by presenting a preordered sample where partial 

alterations could easily be determined. 

Adaptation 

Once a program is selected, the reuser is faced with code adaptation. This 

problem is tightly coupled with program understanding. Code adaptation can be 

carried on in any of the following ways: 

1. Specialization-the reuser relies mainly on high level information to imple
ment new code or to adapt existing code. 



41 

2. Conversion-the reuser adapts code piece wise to new requirements. 

3. Abstraction-Specialization-the reuser abstracts information from code, gen
eralizes it, and implements new code. 

In Specialization, the available code is used as documentation while the 

details of the new implementation are worked out. In this case, new code is 

created from scratch, not reused. Experienced reusers and highly qualified ana

lysts /programmers would take full advantage of this approach. 

Conversion may be very attractive in cases where most functional specifica

tions are met and environmental specifications are different. Automatic language 

conversion tools are available for a very small set of languages [WOLB83]. For the 

scenario advocated here, however, the conversion process may require the conversion. 

of different code fragments coming from different (functional and environmental) 

sources and coded in different programming languages. The recommended process 

is to convert them manually. 

Reusers tend to project their own programming patterns into the new code. 

For example, if a COBOL programmer is asked to do a program in FORTRAN, 

the FORTRAN program would probably reflect COBOL-like structures and logic. 

A measure to determine h~w difficult it is to convert code from one programming 

language to another, based only on the characteristics of both languages, may help 

the conversion process. 

Abstraction-Specialization may be the most typical case of code conver

sion. Starting from a piece of code, the reuser abstracts (through understanding and 

documentation) functional concepts and then implements them in the new environ

ment. Enough abstraction is carried on to grasp the functional concept in question 

and apply it to the new environment. During this process, onl~ the features that do 

not match with selected specifications are modified. The reuser is only concerned 



42 

with local transformations to code and does not usually worry about structural 

modifications. 

Code conversion is carried-on more effectively by experienced programmers. 

They seem to have a large repertoire of "programming plans" (SOL083] that they 

can retrieve at will. To make code conversion practical for 'non-masters', an en

vironment is needed where programmers can easily discover programming plans in 

the available code. A first cut approach is to provide information (documentation) 

at different levels of abstraction to stimulate local abstraction-specialization. A 

long range solution would be to identify, classify, and describe programs by means 

of standard programming plans. 

Required Infrastructure 

From this analysis of the problems in reusing code, the following infrastructure 

is proposed as a partial solution to the software reuse problem: 

• A specialized library of program descriptors and pointers to their respective 

source code and different types of documentation, perhaps in the form of a 

data base system. 

• A classification scheme that can be used not only as a classification guide 

but as a frame for building queries and conducting selective searches. The 

classification scheme should serve as an organizing structure for the data base 

and as a knowledge representation structure. Reuse related attributes should 

be terms defined in the indexing language and have a definite position in the 

classification structure. 

• A Support System to reduce reuser cognitive stress and speed up the selection 

process. This system would guide the reuser through the classification scheme 



43 

to select the appropriate index terms required for the initial query. The sy~tem 

would use reusable related metrics and a reuser experience metric to rank the 

initial selection of candidates in a more to less reusable order. 

Conclusions 

An overall perspective on code reuse has been presented. Strong motivational 

arguments were given to support this approach to code reuse based on collections of 

reusable components. Three successful models of code reuse were analyzed. Selected 

features from each were used to propose a more comprehensive model, one based on 

retrieval of components that are 'similar' to the proposed query. A mechanism was 

suggested to provide support for the evaluation of the selected candidates. This 

proposed model relies very strongly on the classification scheme used. 

Problems in reusing code were analyzed. For each problem presented, some 

ideas to handle them were proposed. An experimental library system with a spe

cific infrastructure was pro:posed as essential to study the code reuse problem and, 

eventually, understand it better. 

The following chapters present a classification scheme for software components 

as a partial solution to tl;ie code reuse problem. A proper organization of the 

collection aimed at serving the needs of the reuser is a stepping stone towards solving 

some of the reusability questions. A prototype library system is implemented to test 

the proposed scheme and some encouraging results show the potential assistance of 

classification in reusing code. 



CHAPTER 3 

Classification Related Work 

This chapter introduces the basic concepts of classification theory as 

used in library science. A survey on classification schemes, in particular those used 

in library classification is presented. Their major features are identified and their 

potential in software classification indicated. The area of software classification is 

surveyed indicating the major drawbacks of current software classification schemes. 

It is concluded that a faceted scheme is better suited for classifying a collection of 

- code fragments. 

What is Classification1 

Classification is the act of grouping like things together. All members of a 

group--or class-produced by classification share at least one characteristic which 

members of other classes do not possess. What gets classified may be concrete 

entities, the ideas of such entities, or abstractions. For example, eagles, hawks, and 

owls would be housed close to each other in a zoo because we observe that they share 
--

the characteristic of preying on their victims which doves, chickens, and swallows 

do not possess. In the supposed case that zoos did not exist and the actual birds 

could not be grouped, we could still appreciate the relationship between the idea of 

an· eagle, the idea of a hawk, and the idea of an owl, and group them in our minds. 

Similar groups could be formed with properties of things and with operations and 

activities performed by things or on things. 

Classification displays the relationships between things, and between classes 

of things. From the previous example, it is observed that members of the class 
1 Most concepts and definitions in this section were taken from [BUCH 79 J. 

44 



45 

EAGLES differ from members of the class HAWKS; but also that these two classes 

have a closer relationship with each other than either has with the class OWLS, 

because they share the quality of being day hunters. All three however are related 

because they -are all BIRDS OF PREY. The result of classification is the display of a 

network or structure of relationships which is used for many purposes, unconsciously 

or consciously. 

Human recognition of likeness or of shared characteristics may be an intuitive 

process or it may be the result of conscious thought. Recognition of likeness, in some 

cases, can also be carried on by machines through cluster analysis either by some 

numerical proximity measure in a multidimensional space [KRUS78, ANDE73] or 

by some conceptual criterion [MICH83]. 

Through classification we cope with the multitude of unorganized impressions 

we receive through our senses. We can use this preconceived classification structure 

to pl~e what we see, hear, feel, smell and taste within it. Classification simplifies 

the process of thought, because there are far fewer classes than there are members 

of classes. Definition of a thing is a classification process that separates its genus 

and the specific diff erentia of the concept defined. That is, in defining, a reference is 

made to the class which contains the thing being defined, and then the characteristic 

which differentiates the thing from the other members of the same class-as in 'an 

owl is a bird of prey that hunts at night'. 

Classification is a fundamental tool for the organization of knowledge and 

pervades everyday life from supermarkets to warehouses to schools. A particular 

application of classification is in libraries to classify documents conveying infor-

. mation. A central task in a library is the organization of the collection for easy 

access and document retrieval. A collection owes its organiza~ion to a classifica

tion scheme which may be defined as a tool for the production of systematic order 

based on a controlled and structured index vocabulary. 



46 

An index vocabulary is the set of names or symbols which represent concepts. 

A concept may have many names (synonyms); a name may stand for many different 

concepts (homonyms); and some concepts may not have their own names. 

In a library of documents the concept index provides the means to find all 

works on a concept no matter what name is used for the concept by the user or 

what name is used in the document. An index vocabulary is controlled because the 

indexer has controlled synonyms and homonyms in order to find the desired works 

on a given concept. Controlled vocabularies are usually also structured; that is, 

they display the relationships between different concepts either by cross-reference 

or by keeping works on related subjects close to each other through systematic 

order. Systematic order between documents is an order which, in itself, displays 

the relationships between the subjects of documents. For example, in the sequence 

VERTEBRATES-AMPHIBIANS-FROGS-TOADS-FISH-TROUT it can be observed that 

the class FROGS is kept with its closely related class TOADS; these are preceded by 

the class which contains them, AMPHIBIANS and followed by FISH which is related 

to the class AMPHIBIANS; FISH "is in tum followed by the class it contains: TROUT. 

A classification scheme, thus, is a structured index vocabulary and the list of 

all classes in a prescribed systematic order is called the classification schedule. 

Classification, then, is about the discovery and the display of relationships in some 

systematic order. 

Syntactical and Hierarchical Relationships 

There are two kinds of relationships a classification scheme must be able to 

express: syntactical and hierarchical. Syntactical relationships are those between 

classes which occur together in statements which represent the subjects of docu

ments. Such as between learning, programming and home ~omputers in the title 

"The Role of Home Computers in Learning How to Program". A classification 



47 

scheme should enable its users to differentiate the above title from, say, "Leaming 

to Program with Home . Computers" . The concepts used in both titles are the same 

but they are displayed in a different syntactical relationship. There are four kinds 

of syntactical relationships: elemental (e.g., Birds), superimposed (e.g., Migratory 

Birds), compound (e.g., The Migration of Birds), and complex (e.g., Comparison 

Between Migratory and Hibernating Animals). 

Hierarchical relationships are based upon the principle of subordination or 

inclusion. A classification scheme must display when a class wholly includes another 

or if two classes are included by a third like in MAMMALS-RODENTS-RATS-MICE. 

This kind of hierarchical relationship is called generic because it is an absolute 

relationship which does not depend on the existence of documents on the related 

subjects. 

A second kind of hierarchical relationship is the one that is not generic and 

only exists because an author has produced a work involving it. For example, the 

relationship between "Software Metrics" and "Validating Software Metrics" or the 

relationship between "Rats" and· "The Intelligence of Rats". This type of hierar

chical relationship displays a broader-narrower relationship between a thing and 

its activities (Software Metrics-Validation) or between a thing and its properties 

(Rats-Intelligence). Broader-narrower relationships between more complicated 

subject statements may be difficult to perceive. For example, "Validation of Soft

ware Metrics" and "Validating Program Length as an Objective_ Software Metric". 

In hierarchical relationships, a class that contains another is said to be su

perordinate to that class and the contained class is said to be subordinate to the 

containing class. This is equivalent to a parent-child relationship in an ordered 

tree. Classes that are neither broader· nor narrower than each other but share the 

same immediate superordinate class, are said to be coordinate (e.g., siblings in an 

ordered tree}; those not sharing the same immediate superordinate class, although 



48 

in the same hierarchy, are said to be collateral (e.g., descendants of a comm.on 

ancestor). 

Enumerative and Faceted Schemes 

A classification scheme can be arranged to express syntactical and hierar

chical relationships in two ways: enumerative and faceted. The enumerative or 

traditional method is to postulate a universe of knowledge and to divide it into 

successively narrower classes which will include all the elemental, superimposed, 

and compound classes which the scheme may have to accommodate, arranged in an 

order displaying their hierarchical relationships. All the required classes are listed 

or 'enumerated' in this kind of schemes, except complex classes which are 'author 
.. 

attributed relationships' and impossible to predict. Dewey Decimal classification is 

an obvious example of an enumerative scheme. It divides the whole knowledge into 

ten main classes, and each of these into ten principal subclasses, and each of these 

subclasses into ten, and so on as far as is necessary. 

The faceted method relies not on the breakdown of a universe, but on building 

up or 'synthesizing' -from the subject statements of particular documents. By this 

method, subject statements are analysed into their component elemental classes, 

and it is these classes only which are listed in the scheme; and their generic re

lationships are the only relationships displayed on its pages. When the classifier 

using such a scheme has to express a superimposed, complex or compound class, 

he does so by assembling its elemental classes. This process is called synthesis. 

Facets are the arranged groups of elemental classes that make the scheme. 

Figures 3.1 and 3.2 illustrate the difference between a faceted scheme and an enu-

merative scheme. Figure 3.2 shows the enumerative version of the faceted scheme 

shown in figure 3.1. Both schemes can be used to express precisely the same number 

of classes. The difference is that, in the enumerative scheme, classes with more than 



I 
I 

(proceH facet) 
Physiology 

Respiration 
Reproduction 

(animals facet) 
(by habitat subfacet) 

Water Animals 
Land Animals 

(by zoologists• taxonomy subfacet) 
Invertebrates 

Insect a 
Vertebrates 

Reptiles 

Figure 3.1: A Demonstration Faceted Scheme [BUCH79] 

49 

one elemental component are listed ready-made, while, with the faceted scheme th_e 

classifier will have to make multi-element classes by synthesis. The construction of 

an enumerative scheme is obviously, much more involved and time-consuming. 

En~merative schemes are usually inefficient. They are not normally compiled 

to the level of detail shown in this demonstration example, but, because of the size 

and complexity of the operation, compilers usually omit classes which they think 

are not needed. If some classes are omitted, it will not be possible for the users of 

the scheme to express them when necessary. 

Citation Order 

The purpose of a classification scheme is to show relationships by collocation

that is, to keep related classes more or less together according to the closeness of 

the relationship; for example, a zoologist would place the classes WATER INVERTE

BRATES and LAND INVERTEBRATES close together because both classes are inver

tebrates. A marine biologist would rather have WATER VERTEBRATES and WATER 

INVERTEBRATES close together and separated from LAND INVERTEBRATES. The 



Physiology 
Respiration 
Reproduction 

Water animals 
Physiology of water animals 

Respiration of water animals 
Reproduction of water animals 

Land animals 
Physiology of land animals 

Respiration of land animals 
Reproduction of land animals 

Invertebrates 
Physiology of invertebrates 

Respiration of invertebrates 
Reproduction of invertebrates 

Water invertebrates 
Physiology of water invertebrates 

Respiration of water invertebrates 
Reproduction of water invertebrates 

Land invertebrates 
Physiology of land invertebrates 

Respiration of land inver~ebrates 
Reproduction of land invertebrates 

Insects 
Physiology of insects 

Respiration of insects 
Reproduction of inseets 

Water insects 
Physiology of water insects 

Respiration of water insects 
Reproduction of water insects 

Land insects 
Physiology of land insects 

Respiration of land insects 
Reproduction of land insects 

Vertebrates 
Physiology of vertebrates 

Respiration of vertebrates 
Reproduction of vertebrates 

Water vertebrates 

50 

Physiology of water vertebrates 
Respiration of water vertebrates 
Reproduction of water vertebrates 

Land vertebrates 
Physiology of iand vertebrates 

Respiration of land vertebrates 
Reproduction of land vertebrates 

Reptiles 
Physiology of reptiles 

Respiration of reptile• 
Reproduction of reptiles 

Water reptiles 
Physiology of water reptiles 

Respiration of water reptiles 
Reproduction of water reptiles 

Land reptiles 
Physiology of land reptiles 

Respiration of land reptiles 
Reproduction of land reptiles 

Figure 3.2: A Demonstration Enumerative Scheme [BUCH79] 

1. 

I 



51 

habitat facet for the marine biologist may be more relevant than the zoologist's 

taxonomy facet. Habitat determines the primary division and zoologist's taxonomy 

may be subordinated to habitat. The order in which facets are considered is called 

citation order. The choice of citation order is arbitrary and determines which 

classes are close together and which are far apart. 

The divisions within a facet are defined by the list of subfacets and classes. 

Closeness among classes is determined by their relationship. Classes listed in facets 

are called terms, and their relationship is shown by their collocation in a linear 

list. H the habitat facet were extended as illustrated in the example below, RIVER, 

LAKE, and SEA are close together in the list and far from DESERT or TROPIC or 

MOUNTAIN. Subfacets in this example are land, aquatic, salt water; and fresh 

water. 

(habitat) 

Land 
DESERT 

TROPIC 

MOUNTAIN 
Aquatic 

Salt Water 
SEA 

Fresh Water -
RIVER 

LAKE 

Different criteria can be used for term ordering. One is developmental like 

INVERTEBRATES listed before VERTEBRATES since this is the order followed in the 

evolutionary process; chronological like the order ROMANESQUE, GOTHIC, RE

NAISSANCE in a scheme of arquitecture styles; spatial like SUN, MERCURY, VENUS, 

EARTH, MARS in an astronomy scheme; or increasing complexity like SOLITARY 

ANIMALS, HERD ANIMALS, SOCIAL ANIMALS in an animal behavior scheme. Term 



52 

ordering is selected to satisfy the needs of the users. 

Notation 

Notation is needed for identification of classes during classification, for shelving 

documents, and for arranging entries in a catalog. A given code is assigned to 

each class in the schedule and documents are marked with the assigned code when 

classified. Codes tend to make it easier for users of the library to locate documents 

on the shelves. One advantage of notation is that neither the user nor the classifier 

need to know the terms and term ordering needed to describe a particular document. 

In the Library of Congress scheme, for example, the title "Structured Systems 

Programming" has been assigned the code QA76.6 (i.e., call number) instead of the 

list of terms: 
General Science 

Mathematics 
Computer Science 

Software 
For most people the notation is the classification scheme, but it must be 

pointed out that notation is only a relatively unimportant part of the scheme. 

The acceptability of a scheme to its users, in particular where physical collocation 

is essential, depends largely on the qualities of its notation. In library science, 

classification scheme notation is very important. Much effort has been invested in 

making notation as compact as possible to accommodate the classification codes in 
-

the narrow spines of books. In a scheme where physical collocati~n is not important 

as is the case in a collection of software components, notation may not be important. 

A drawback of notational schemes is that once a list of symbols is assigned to 

a particular schedule of terms, further additions of new terms may require either a 

remapping of the term sequence into a new list of symbols which means complete 

reclassification or, patching the sequence (as is usually done) thus losing its logical 

order. The burden of a notational scheme is carried by the classifier who must learn 



53 

the notational rules of translation from classification terms to code, even though 

the library user must learn, in many cases, how to decode them. The notational 

language becomes the common reference language in a library instead of the more 

natural index language. 

Use of a Classification Scheme 

The process of using a classification scheme to produce some systematic or

dering is called classification. Classification in general is carried on by choosing 

certain characteristics of the object to be classified and selecting index terms from 

the classification schedule that properly describe those characteristics. The result

ing ordered list of index terms is then used to generate a classification code. Items 

sharing the same codes belong to the same classes. In the case of classifying library 

documents, the task of identifying object characteristics is substantially reduced 

when a title is available. 

The following example. illustrates a typical classification procedure. The title 

is "The Nutritional Requirements of the Panda". In an enumerative scheme the 

title would be entered either in the category BEARS from where pandas is a term or 

in the category NUTRITION from where nutrition requirements is a term. Unless a 

specific category NUTRITION OF BEARS is available (very unlikely), the librarian has 

to determine which category to select based on a thorough inspection of the book. 

(Librarians decisions are usually non-optimal because of monocular perspective.) 

Ha faceted scheme was used, the term nutritional requirements would be listed 

in facet GENERAL PROCESSES from where NUTRITION is a term. Pandas would be 

listed in class BEARS and bears in MAMMALS and mammals in VERTEBRATES all of 

them generic terms of facet ZOOLOGIST'S TAXONOMY. The librarian in this case 

would synthesize a classification 'code' from both facets resulting in a precise and 

unique classification NUTRITION OF PANDAS. 



54 

Makin·g a Faceted Scheme 

The construction of a faceted scheme is much easier than that of an enumer

ative scheme. A faceted scheme is constructed by selecting a representative sample 

from the collection to be classified. In the case of books, the sample is a list of book 

titles, in the case of programs, the sample is a list of program descriptions. 

The first step is to separate terms (e.g., keywords) from the sample list and 

group them into facets. All related terms are grouped together. After all terms have 

been grouped, an iterative process of regrouping is conducted to form subordinated 

groups within each facet (i.e., subf acets) or to break groups into separate facets. 

After terms in all facets and subfacets have been defined, the next step is to order 

terms in each facet and subf acet according to their relationship and to the needs of 

the users (e.g., spatial, chronological). Next, subfacets are placed in order in their 

respective facets reflecting the needs of the users. Next a citation order is assigned 

to the facets as indicated before. At this stage, the resulting scheme should provide 

a preferred collocation and sys~ematic order of the items of the collection. This 

resulting scheme is essentially the desired faceted scheme. 

To make the use of a faceted scheme easier, Ii brary science recommends two 

further steps: Adding not~tion to each class (i.e., term and facet) and producing 

an alphabetical index of the classes. Buchanan [BUCH79] and Vickery [VICK60) 

are two excellent references on the construction of faceted schemes. 

Summary 

Classification is about the discovery and display of relationships; it simplifies 

the thought process and provides the basis for a definition of things. Classification 

is a fundamental tool for the organization of knowledge, and a classification scheme 

establishes a systematic order to a particular set of concepts listed in a controlled 



55 

and structured index vocabulary. A classification schedule is the resulting ordered 

list of concepts. 

A classification scheme must be able to display syntactical as well as hierar

chical relationships. The two kinds of schemes that display these relationships are 

enumerative and faceted. An enumerative scheme is a list of all possible classes 

and their relationships while a faceted scheme lists only the essential classes, and 

the classification process is conducted by synthesizing essential classes to express 

specific relationships. 

Citation order determines which facets in a classification scheme are listed 

together and which are kept apart based on the needs of the users. Term ordering 

is the order in which classes are arranged within a facet. This ordering defines some 

conceptual closeness based also on user needs. 

Notation is used to codify, in a compact set of symbols the terms and term or

dering that describe a class. Classification codes are useful for shelving documents 

and arranging entries in a catalog but are not a necessary component in a classi

fication scheme. Classification ·consists in identifying terms in the schedules that 

describe the characteristics of an object or the title of a document and assigning 

the corresponding code. 

Library Classification 

There are five major general classification schemes: Dewey Decimal Classification 

(DDC), Universal Decimal Classification (UDC), Library of Congress (LC), Colon 

Classification (CC), and Bibliographic Classification (BC). This section provides an 

overview of these schemes consisting of a brief background, some basic concepts, 

major features, and their relationship to the other schemes. These schemes can be 

grouped into two major classes: enumerative and faceted. None of them is purely 



56 

faceted. or purely enumerative but all have some of each class. DDC and LC are 

considered almost enumerative, CC and BC are considered almost faceted, and 

UDC is a combination of both. Their relative position in a scale from enumerative 

to faceted is illustrated below: 

enumerative faceted 

LC DDC UDC BC CC 

Library classification schemes are based on philosophical schemes of knowl

edge classification. Philosophers were interested in studying the mut~al relations 

between ideas and their logical sequence. This led to a number of schemes of knowl-· 

edge classification dating as far back as the ancient Greek classification proposed 

by Aristotle. The Greek scheme divided knowledge into three main groups, theo

retical philosophy, practical philosophy and productive arts. This scheme follows 

an order from the abstract (plll'e knowledge) to the specific (use of knowledge to 

create things) and is "utility-Centered". 

Francis Bacon (1561-1626) proposed a new scheme that strongly influenced 

the later schemes such as Kant's, Hegel's, and Comte's and set the basics for mod

ern library classification. The Baconian system is "psychology-centered" and di

vides the universe of ideas into three main groups in the following order: history

"emanation from memory", poesy-"emanation from imagination", and philosophy

"emanation from reason". DDC and UDC are based on an inverted Baconian order; 

philosophy, poesy, and history. 



57 

Dewey Decimal Classification 

DDC was developed by Melvil Dewey in 1876 as an alternative to the "fixed 

location" document arrangement practiced by contemporary libraries. It was the 

practice to a.Ssign shelving areas to various subjects and within each subject books 

were arranged by accession number. Each book was assigned a shelf mark denoting 

its exact position on the shelves. Melvil Dewey introduced the idea of "relative 

location" as opposed to "fixed location." He assigned decimal numbers to books 

and not to shelves. As a result, a new book on a given subject could be interpolated 

in the existing sequence in a position prescribed by a decimal number. 

DDC is a hierarchical scheme of classification, which proceeds from the general 

to the specific., The universe of subjects has been divided into ten main classesi_ 

each class into ten divisions and each division into ten sections [DEWE65]. The 

ten main classes are: 

000 Generalities 
100 Philosophy and related disciplines 
200 Religion 
300 The social sciences 
400 Language 
500 Pure sciences 
600 Technology (applied sciences) 
700 The arts 
800 Literature 
900 General geography and history and their auxiliaries 

These main classes follow the inverted Baconian order. Eacff main class repre

sents either a broad discipline or a group of related disciplines, except for the 000 

class which includes varied subjects such as bibliographies and catalogs, general 

encyclopedias, and serial publications. 

The ten complete divisions of the main class 700 are given below: 



700 The arts 
710 Civic and landscape art 
720 Architecture 
730 Plastic arts and sculpture 
7 40 Drawing, decorative and minor arts 
750 Painting and paintings 
760 Graphic arts and prints 
770 Photography and photographs 
780 Music 
790 Recreational and performing arts 

At each subdivision, the scheme preserves the same inverted Baconian order. 

The ten sections of the 720 division are: 

720 Architecture 
721 Architectural construction 
722 Ancient and oriental architecture 
723 Medieval architecture 
724 Modern architecture 
725 Public structures 
726 Buildings for religious purposes 
727 Buildings for educational purposes 
728 Residential buildings 
729 Design and decoration 

58 

Sections labelled 0 (e.g., 700 and 720), as in class 000, are allocated for general 

works on the entire division and 1-9 are used for subclasses. 

Further subdivisions in DDC follow the same decimal structure and are rep

resented by digits after a decimal point in the notation, each digit representing a 

subordinate level. The idea of successive division is illustrated below: 

700 The arts-Fine and decorative arts 
720 Architecture 
725 Public structures 
725.8 Recreation buildings 
725.82 Buildings for shows and spectacles 
725.822 Theater and opera buildings 

DDC is essentially an enumerative scheme largely providing ready-made com-



59 

pound classes. The primary arrangement of subjects in DDC is by discipline and 

specific subjects like computers, Mexico and underdevelopment may appear in any 

of the disciplines. The result being that DDC scatters subjects by discipline. Being 

an enumerative scheme, the DDC index listing is very extensive since it includes 

all compound classes (e.g., Elizabethan England-942.055, Elizabethan drama-

822.3). 

DDC has been criticized for its restricted decachotomy base (limited to a 

branching factor of ten). The universe of knowledge has been fixed to 1000 main 

sections and there is no provision to add more. New sections are added at lower 

hierarchical levels. In some new dynamic disciplines like in electrical engineering, 

it has created very deep hierarchies. For example, 'transistorized circuits' has the 
.. 

code 621.381530422. Disciplines that have not seen very much development sin~~ 

the last century like logic keep very shallow hierarchies (e.g., 'sy logisms' is coded 

166). 

DDC is a general classification scheme that is also being used in bibliographical 

listings, book catalogs, book gliides and reading lists. DDC is the oldest and most 

widely used scheme of classification. It has been adopted in libraries all over the 

world mainly for its simple notation, its ease of application, the adaptability of its 

notation to the requirements of libraries of different sizes, and its availability in a 

variety of editions (i.e., 18 editions since 1876). 

Its major drawbacks a.re being enumerative and having a rigid framework. As 

Arthur Maltby [Malt75J puts it: 

. . . the system still inevitably lags behind modern theories; the whole
hearted supporter of the clear analysis of the elements which make up a subject 
into definite categories, or facets, is likely to be tempted to regard such an enu
merative system as almost antediluvian in many respects. Yet no classification 
devised in the nineteenth century and at all concerned with number integrity 
could hope to be completely abreast with modem theories of classification or 
with modern knowledge. The fact remains that [DDCJ works well in a very 
large number of libraries. 



60 

Library of Congress 

The Library of Congress was founded in 1800, and the arrangement of the 

collection was according to size until 1815 when Thomas Jefferson's collection came 

into its possession. The library adopted the classification used by Jefferson which 

was based on Bacon's Classification of Knowledge. When the library moved to a 

new building in 1897, a decision was made to abandon the Jeffersonian system and 

to reclassify according to a more practical and flexible arrangement. Thus a new 

classification scheme was specially designed for the collections of the library and 

for the library building itself. The theoretical approach, whereby knowledge is first 

mapped out and then adapted to meet the needs of books, was rejected in favor 

of a gradual build-up in a classification based on the needs of the collection of a.-. 

particular library. This approach of gradual build-up based on the needs of aii 

existing collection is generally called literary warrant. 

LC consists of a series of special classifications each covering a major class. 

Each class has been devised by sl,lbject specialists. LC is considered as a coordinated 

series of special classifications where each major class is virtually independent of 

the others. There are 20 major classes in LC with one additional class for general 

works. 

A 
B-BJ 
BL-BX 
c 
D 
E-F 
G 
H 
J 
K 
L 

General works and polygraphy 
Philosophy 
Religion 
Auxiliary sciences of history 
History: General and old world 
History: America 
Geography, anthropology, folklore, etc. 
Social sciences 
Political science 
Law 
Education 



M Music 
N Fine arts 
P Language and literature 
Q Science 
R Medicine 
S Agriculture 
T Technology 

. U Military science 
V Naval science 
Z Bibliography and library science 

61 

Main classes are denoted by single Roman capitals and two Roman capitals 

are used for subdivision of main classes. The class Mathematics, for example, is a 

subdivision of the major class Science and represented by the two Roman capitals 

QA. Further subdivisions are represented by decimal numbers, but, in some areas, 

the subdivision is not sufficiently detailed. For example, the subject Softwar~· 

QA 76.6 (i.e., Q-General science, A-Mathematics, 76-Computer science, .6-

Software) which is considered a very general subject is the most detailed subdivision 

in this hierarchy. All books related to software are grouped in class QA 76.6 and 

ordered alphabetically by author.name. Further subdivision of software is not yet 

provided in LC. 

Sequence within classes in LC is achieved by using appropriate characteristics 

for the division of subjects. It attempts to achieve a helpful sequence of various 

groups of books, rather than groups of subjects. In other words, it avoids a purely 

theoretical point of view. That is why the scheme does not strictly follow the 

scientific order of subjects. The sequence and coordination of main classes in LC is 

based on a late nineteenth century educational and scientific consensus. 

LC is considered by far the most enumerative of the general classification 

schemes. Sequences of terms repeat over and over in each class .as illustrated in the 

example below [MALT7 5]: 



HA Statistics 
1 Periodicals 
9-11 Congresses 
13-15 Collections 
16 Comprehensive 

works 
17 Essays 
19 History 
23 Biography 
29-39 Theory: Method 

HB Economic theory 
1-9 Periodicals 
21-29 Congresses 
31-35 Collections 
61 Encyclopedias 
71-74 Method: Utility 
75-125 History 
151-195 Theory: 

General 
works 

HD Economic history 
(land and agriculture) 
101 Periodicals 
103 Associations 
105 Congresses 
113-1565 History: 

62 

General 
166-279 United States 
301-1130 Other 

countries 

LC is criticized for having a structure that avoids logical hierarchies and clear 

subject analysis and is considered a "vast pragmatic pigeon-holding devise" as 

Kumar (KUMA 79] puts it: 

... thus, we may regard LC as basically a book classification scheme not 
rooted in philosophical systems which are based on analysis of ideas. . . . 
Most of the libraries using LC have simply adopted it as a method of shelf 
classification for subject location and a marking and parking device. 

The lack of a clear and predictable theoretical basis for subject analysis pre

vents the wide use of LC in retrieval systems. 

Despite these deficiencies, LC has been very successful especially in the aca

demic libraries of the United States. One major reason for the success is the exten

sive support offered by the._Library of Congress in the form of catalog card service, 

continuous schedule revision, and cataloging standardization procedures. 

Universal Decimal Classification 

UDC was originally derived from the fifth edition of DDC in 1895. The scheme 

was initiated by the Institut International de Bibliographie in Belgium and was 

prepared for the classification of all published literature, so that a comprehensive 

classified index to all literature could be produced, a rather colossal task. 



63 

Ube is aimed specifically at retrieval rather than at shelf arrangement unlike 

the other general schemes [FREE68, RIGB72]. For this purpose, in order to 

accomplish arrangement by subject in a vast and growing catalog, an extremely 

detailed and expandable classification scheme was required. The requirements asked 

for a scheme capable of showing the relation of books to subjects, places, languages, 

eras, etc., and for a series of common subdivisions much more comprehensive than 

those in any of the then existing systems. 

UDC is a practical classification scheme based on the demands of abstracts, 

reports and periodical literature rather than on the framework of theory. It is a 

system for numerically coding information, so designed that any item, once coded 

and filed correctly, can be readily found from any perspective it is sought. 

The major contribution of UDC is the introduction of auxiliary schedules an.d 

special notation to connect and relate terms listed in separate schedules; a synthesis 

mechanism. UD C is considered the first scheme to introduce a system of common 

facets. 

UDC divides the entire. field of knowledge into the same ten main classes 

DDC does and follows the same hierarchical structure for subdivisions. Centesimal 

divisions however, are used if more than ten divisions are needed. The auxiliary 

schedules or facets are of two kinds-common and special. Common facets include 

language, form, place, time, point of view and race and nationality. Special facets 

have different meanings depending upon the context. For example, from the sched

ule of Political Science, special facets are by political ideology and by duties of state. 

A major drawback in UDC is notational complexity. An elaborate notational 

scheme has been devised to properly indicate how terms from different facets are 

combined to synthesize different types· of relationships. For example, 666.113'41'28 

denotes 'lime-silica glass'. The synthesis comes from 666.113 glass, 546.41 calcium, 

and 546.28 silicon. Single quotes (') mean combination and simplification. A sec-



64 

ond exa.lnple, 61=03.82=40 denotes 'medical documents translated from Russian 

to French' where 61 denotes medical documents, 03 denotes translation, period (.) 

denotes the source language (in this case Russian-82), 40 denotes French and the 

'=' sign means that 82 and 40 are from the language facet. UDC is a complex 

encoding scheme where each term in each facet is assigned a decimal number and 

a set of special characters are used, through complex encoding rules, to combine 

terms for denoting very specific subjects. 

Despite this drawback, UDC is used by a large number of libraries around 

the world. It is particularly popular in Europe, Latin America, and Japan and has 

become the official classification scheme in scientific and technical libraries in the 

USSR and Eastern Europe. UDC is considered an almost faceted scheme that has 

proved most useful for the exact classification of highly specific subjects. 

Bibliographic Classification 

BC was developed by Henry E. Bliss in 1908. BC is based on theoretical prin

ciples explained by Bliss in his Organization of Knowledge [MILL 7 7]. The leading 

principle used in BC is scientific and educational consensus. That is, consensus 

should be sought from expert opinion in all areas. According to Bliss, it is through 

the process of science and education that knowledge is ultimately affected and the 

more closely a scheme reflects the consensus the more stable it is. 

BC is an almost faceted scheme. It provides 22 principal systematic schedules 

with several subschedules each and several combination rules to obtain precise syn

thesis of very specific subjects as in UDC but with a simpler notation. The reason 

BC is not fully faceted is because most schedules are not general; they are specific 

and context dependent, thus limiting synthesis, in most cases, to subjects within 

the same general class. 

There are 21 major classes in BC: 



1-9 
A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L-0 
p 

R 
s 
T 
u 
v 
W-Y 
z 

Anterior numeral classes 
Philosophy and general science 
Physics 
Chemistry 
Astronomy, geology, geography 
Biology 
Botany 
Zoology 
Anthropology 
Psychology 
Education 
Social sciences 
Social-political history 
Religion, theology, ethics 
Political science 
Law 
Economics 
Arts in general, useful arts 
Aesthetic arts, recreative arts and pastimes 
Philology: language and literature 
Bibliography, bibliology, libraries 

65 

A feature of BC is the collocation of related subjects and the proper sub

ordination of each special topic to the appropriate general one. This feature of 

serial dependence is called gradation by specialty. Certain subjects are derived from 

findings in others and are, in this sense, more specialized than the disciplines from 

which they were derived. This gradation by specialty can be appreciated in the 

following extract from the main schedule: 

AW 
AX 
AY 
AZ 
AZB 

·B 
BA 
BB 
BC 

Statistics and probability 
Systemology and organization theory 
Science and technology 

Science and empirical science 
Physical Science 

Physics 
Mathematical and theoretical 
Experimental 
Thermodynamics 



66 

Bliss recognized that, for certain subjects, there were two or more possible 

locations in the sequence of classes that were almost equally acceptable. For exam

ple, photography can be with technology and with the arts; economic history can 

be subordinated to general history but can also go under economics. This provision 

in the scheme led to strong criticism from the library classificationists arguing that 

books in a given subject area should be grouped together and not scattered. From 

the point of view of general classification, however, this feature is very important 

for document retrieval in finding related subjects. 

BC notation is very compact and follows an ordinal form rather than the 

hierarchical form of DDC and UDC. The example below illustrates the difference: 

DDC BC 

796.3 Ball games HKE Ball games 
796.33 Football HKF Football 
796.333 Rugby HKG Soccer 
796.334 Soccer HKH Hockey 
796.34 Racket games HKI Polo 
796.342 Tennis HKJ Lacrosse 

Despite its qualities of helpful order, adaptability, a clear and predictable 

facet structure and a generally concise notation, BC has been adopted by very few 

libraries. The reason is an incomplete schedule. A partial, substantially modi

fied second edition of BC was published in 1977 [MILL77], and an edition of the 

complete scheme is expected soon. Adoption of the new edition by libraries al

ready using it is unlikely due to the enormous reclassification effort required. It is 

expected that some new academic libraries may adopt it. 

Colon Classification 

CC was developed by Shiyali R. Ranganathan in 1924 as .the first truly faceted 

library classification scheme [RANG67J. The name is due to the role the colon 



67 

symbol(:) plays in the rules to synthesize subjects from different facets. 

CC's main contribution is the set of rules and "canons" prescribed to synthe

size terms from different facets to compose proper subject headings. CC is not an 

enumerative ~cheme and there is not a continuous listing of all subjects describing 

the whole universe of knowledge. 

Ranganathan has produced an entirely synthetic system in which most topics 

are compounds specified by linking terms from different facets. 

The fundamental idea in CC is that all facets are related to one another 

· in a fixed citation order given by five fundamental concepts-Personality, Matter, 

Energy, Space and Time (PMEST). Time and Space are general and can be applied 

to any division while Personality, Matter and Energy are specific of each class. 

PME are considered more relevant and are first in citation order while Sand Tare· 

considered less relevant. There is a schedule of basic subjects that usually defines the 

main subject area. Facets in all the schedules are ordered in the citation order

PMEST. This citation order provides the 'general' formula used for synthesizing 

terms from different facets as sh~wn in the following examples: 

1. X,61. 73'N6 "Monetary economics in USA during the 1960's". Here the main 

class is X Economics, and the facets represented are Personality (money), 

Space (USA), and Time (1960) in the order PST. "Monetary economics in 

the 1960's" would be X,61 'N6 and "Economics in the USA" X. 73. 

2. L,185:5 "Hygiene of the eye". Here L Medicine is the main class, and the 

facets are Personality (eye) and Energy or activity (hygiene) in the order PE. 

Another contribution of CC is the introduction of the empty digit concept 

which is a notational devise to allow hierarchies to expand at any level without 

a need for reclassification. If there is a need to include a new class, say, between 

classes L and M, then X can be used as an emptying digit so that the new class 



68 

between L and M would be denoted by the symbol LX. The resulting arrangement 

would be L, LX, M. 

The major drawbacks in CC are its complex notation, as in UDC, and the 

complexity of the synthesis rules. These require extensive intellectual and practical 

effort to master. CC is mainly used in India and, because of its late appearance, 

has not been widely accepted. 

CC is considered the most advanced classification scheme and has contributed 

significantly to modem theory of classification .. The concepts of facet analysis and 

concept synthesis were developed by Ranganathan. 

Summary 

From this brief survey of the major library classification schemes the following 

observations are drawn: 

1. The adoption by a classification scheme of a particular order of universal 

knowledge does not seem· to have an effect on its success or failure as a tool 

for the production of systematic order. 

2. An enumerative scheme is not practical beyond small collections and for uses 

other than physical c~llocation. Enumerative schemes are usually avoided for 

document retrieval, index construction or classification of document abstracts. 

3. Schemes based on rigid, centralized hierarchies become malformed structures 

as knowledge expands. Hierarchies usually grow deeper in certain disciplines 

failing to accommodate new disciplines at the appropriate level. 

4. The success of a classification scheme does not depend on its sound theoret

ical foundation but rather on how much effort is invested by its sponsors to 

promote its adoption. 



I 

I 

69 

5. Schemes based on literary warrant seem to be adaptable to the needs of users 

and naturally expandable. 

6. Faceted schemes are well suited for very detailed subject descriptions and for 

docum.e.nt retrieval. Faceted schemes are also naturally expandable. 

7. Notation in faceted classification schemes seems to be a self-imposed barrier 

and an unnecessary hindrance. The same terms in the schedule could be used 

in the synthesis rather than some artificially assigned symbol. 

8. A generic citation order applied to all facets and a set of generic synthesis 

rules are essential requirements for a scheme aiming at a certain degree of 

standardization. 

9. Faceted schemes seem to be am.enable to automation. Their organization as 

separate lists of terms and the prescribed order in which terms from differ

ent facets can be combined make faceted schemes attractive for data base 

implementation. 

This survey has shown how library classification has evolved from highly enu

merative and monolithic hierarchical structures into faceted and hierarchically dis

tributed structures based on synthesis for construction of classes. Historical ev

idence has been presented that faceted schemes are more advanced and better 

suited for large, continuously expanding collections requiring exact classification 

of highly specific subjects. New faceted schemes have not been widely accepted 

mainly because of the enormous inertia current schemes have accumulated along 

several decades of intensive promotion. 



70 

Software Classification 

Software classification schemes are very recent compared with general library 

classification schemes. The first general classification scheme for 'computing' was 

introduced by the Computing Reviews (CR) of the ACM in 1960 (SAMM85] listing 

33 computer related topics in alphabetical order with no subdivisions. Computer 

Science classification schemes have been developed ad-hoc as the field has evolved 

in recent years. The CR scheme has been revised several times and has changed 

from the original informal subdivisions of the 1960 edition to a three level hierarchy 

with eleven main subject descriptions for the 1982 edition [SAMMS 2]. 

The most developed schemes in the field are the ones for general computer 

science (e.g., CR), for computer program libraries mainly of functional collectio~. 

for scientific applications (e.g., GAMS, SHARE, SSP, IMSL, SPSS), and for software 

directories listing descriptions of integrated application programs. These schemes 

share the following general characteristics: 

• They are enumerative. 

• Each has its own notation. 

• Their notations are borrowed from the major library classification schemes. 

• They are not based on a logical arrangement of knowledge. 

• Their classes are not arranged in any particular logical order. 

Each major library classification scheme has developed its own schedule for 

Computer Science. These schedules are very general as illustrated by the example in 

the previous section where Software is the lowest level class in the LC scheme. The 

CR scheme (1982 edition) which is essentially derived from the AFIPS' Taxonomy 

of Computer Science and Engineering [ AFIP 8 0] is a much more specific scheme 



71 

than the ones in the major classification schemes. Its structure is similar to the 

DDC scheme but notation is carried to the third level only; lower level classes are 

not assigned any notational code. Lower level classes are kept as lists of terms thus 

facilitating expansion of the scheme. The basic high level hierarchical structure 

(first three levels) has been kept constant since 1982 in an effort to preserve a 

standard high level structure as was done in the DDC system. 

The CR scheme is a very comprehensive listing of 'computing' related subject 

areas aimed at organizing collections of computer science related reviews, but, un

fortunately, it is not appropriate for classifying computer programs. The schemes 

developed for program libraries and for software directories, on the other hand, are 

aimed at classifying programs. Computer program libraries are essentially func

tional collections of small, problem-oriented single-function programs classified by 

the type of problem they solve. Software directories tend to be collections of de

scriptions of large, integrated, multi-function systems classified by application area. 

The subsections below discuss the classification schemes used in program libraries 

and in software catalogs. 

Computer Program Libraries 

Computer program libraries are mainly collections of functions aimed at solv

ing specific problems. The classification is by the type of problem they solve. The 

first classification scheme for computer programs was introduced by the IBM Users 

Group (SHARE) in 1963 [SHAR63] and a 'new' revised version appeared in 1973 

[ SHAR 7 3]. The SHARE system is a three level hierarchical enumerative scheme 

. with a decimal notation similar to DDC. John Bolstad [BOLS75] proposed a modi

fication to the SHARE scheme by adding new subdivisions and by rearranging some 

classes and some subdivisions. Bolstad's scheme has 22 main classes: 



72 

A Arithmetic, Elementary Operations on Polynomials 
B Evaluation of Elementary and Special Functions 
C Roots/Zeroes of Functions, Simultaneous Nonlinear Equations 
D Operations Involving Derivatives and Integrals 
E Interpolation and Approximation 
F Operations on Matrices and Vectors 
G Statistical Analysis and Probability 
H Operations Research Techniques, Simulation and Management Science 
I Optimization: Minimizing or Maximizing a Function 
J Input/Output 
K Internal File Manipulations 
L Language Processors 
M Data Handling 
N Debugging 
0 Simulation of Computers and Data 
Q Service Routines: Programming Aids 
R Logical and Symbolic 
S Information Retrieval 
T Applications and Application-Oriented Programs 
Z All Others 

This scheme's emphasis is on mathematical software. Classes A through I 

are basically classes of mathematical problems, each with an average of 25 sub

classes. Classes J through T, on the other hand, are not mathematical problems. 

They average only eight subclasses. Bolstad's scheme is very specific in describing 

classes of mathematical problems. Some classes have up to six hierarchical levels 

as illustrated below: 

I 
12 
12b 
12b2 
12b2a 
12b2al 

Optimization 
Constrained Optimization 

Nonlinear Programming 
Nonlinear Constraints 

Equality Constraints Only 
Derivatives Not Required 

The scheme attempts to capture all constraints for each class of problem in 

an enumerative listing. The notation consists of different types of symbols for each 

~ I 
I 



73 

hierarchical level with capital roman letters for the first level and alternate numerals 

and lower case letters for subordinated hierarchies. 

Bolstad's scheme has served as a basis for newer schemes. The classification 

scheme of the Guide to Available Mathematical Software (GAMS) of the National 

Bureau of Standards [GAMS80, BOIS83], for example, is a modification of Bol

stad's scheme specialized for classes of mathematical and statistical programs. The 

scheme used by the IMSL Library [IMSL84] is another example of a modified Bol

stad's scheme. The scheme used by the SPSS [SPSS84] is basically an expansion of 

Bolstad's class G-Statistical Analysis and Probability including some terms from 

other classes. 

These schemes for program libraries do not have their classes arranged in a 

logical order as do library classification schemes. Some related classes are next 

to each other while others are separated. In the GAMS scheme, for example, 

related classes H-Differentiation and Integration and I-Differential and Integral 

Equations are next to each .other while related classes E-Interpolation and K

Approximation are kept separated. 

Despite these drawbacks, these schemes seem to meet the needs of the users 

by imposing some particular order to the collections. The users of the collections 

are interested in using the programs to solve particular problems, that is, a program 

in the collection is 'used as is' rather than modified for a new environment. With a 

'use as is' objective in mind, an enumerative scheme, although extensive, seems to 

work effectively for functional collections because each listed problem is unique and 

usually has few methods to solve it. For a collection of code fragments intended for 

modification, a more specific classification, including implementation details, would 

be required. This makes an enumerative scheme impractical. 



74 

Software Catalogs 

The recent growth of commercially available software packages has created 

an explosion of software directories, each with its own classification scheme. (e.g., 

[ICP83, IDS_83, IBM83, APPL83]) All these schemes, however, share the following 

two characteristics: 

1 All classify by application area 
2 The schemes are changed continuously, usually for each edition. 

The most refined scheme is the one used by the International Computer Pro

grams (ICP). It is a hierarchical scheme with decimal notation similar to DDC with 

classes listed in alphabetical order. The ICP classification is substantially revised 

with each new edition, usually twice a year. The scheme of one given edition can not-
.. 

be used to locate programs in another edition. The 1982 edition of ICP consisted 

of three main divisions: 

1 Systems Software 
2 General Applications 
3 Industry Specific Applications 

There were for example, 13 main application areas for the Industry Specific Ap

plications division ranging from class 31-Communication and Media to class 43-

Utilities with up to four hierarchical levels. The 1985 ICP edition has been expanded 

considerably. The major breakdown of" the 1985 edition has seven subdivisions: 

1 Systems Software 
2 General Accounting Systems 
3 Management and Administration Systems 
4 Banking, Insurance and Finance Systems 
5 Manufacturing and Engineering Systems 
6 Specialized Indus.try Systems 
7 Microcomputer Systems 

The change in classification from the 1982 edition to the 1985 edition is illus-



trated below: 

35 
35.1 
35.1.1 
35.1.1.1 
35.1.1.2 

1982 

Finance 41 
Banking 41.1 

Bank Management 41.1.2 
Bank Planning 
Bank Operations and 
Support 

1985 

Banking and Finance 
Bank Management 

Operation Support 

75 

Explosive growth of commercially available software packages is responsible 

for the continuous revisions of the classification schemes. For example, The Soft

ware Catalog-Microcomputers, fall, 1983 edition [SOFT83] listed 9740 program 

descriptions compared with 15,500 for the winter 1985 edition [SOFT85], a 63% in

crease in only 15 months. Even though, classification schemes for software catalogs· 

have been expanding continuously, they remain highly enumerative and the listed 

classes are still very general. Several programs are usually listed under each class. 

For example, the winter edition of the Software Catalog-Microcomputers lists 232 

programs under class 1.03-Accounting-General Ledger, leaving to the user the 

task of inspecting each one during the selection process. 

A flexible and adaptable classification scheme is needed that can accommodate 

new classes without major ·changes in the classification structure and is capable of 

higher precision in describing program classes. For integrated programs aimed at 

the end user (e.g., use as is), classification by application, area seems appropriate. 

An end user is interested in using the system packages listed in these directories

not in modifying them. There is no need from the user perspective to know about 

implementation details. For software components intended for modification and 

adaptation, as would be required by a software designer/builder, a more specific 

classification is required. 

Classification by subject area or by application, complemented by detailed 



76 

catalog· description is apparently sufficient for the end use type of application. The 

designer /builder, on the other hand, wants to know what is inside the package. 

He or she wants to have a software collection organized by characteristics relevant 

to reusability. factors like what a functions dpes, how it is implemented, in what 

environment it operates. Different classification approaches must be explored to 

satisfy these needs. 

In reusing software, a designer /builder needs access to code fragments within 

software systems. Current software classification schemes do not classify code frag

ments; they stop at the system or package level. In the book domain, this require

ment would be equivalent to classifying chapters of books or even sections within 

chapters or paragraphs within sections. Current library classification schemes orga

nized by subject areas would be too general to classify at that level. Other attribut~ 

particular to chapters or sections should be added to the general subject areas. A 

software reuser in this analogy would be a book writer (author) generating books by 

compiling and adapting existing chapters, sections, and paragraphs from different 

sources. A software classification _scheme must be capable of providing very specific 

classifications by collecting terms with different descriptive characteristics. 

Summary 

Current software classification practice resembles the early stages of library 

classification. The schemes are highly enumerative, too general, rigid, and each one 

is different. There is a different classification scheme for each collection of programs 

or systems. There is no unique classification scheme for classifying all programs or 

all systems. Current software classification is aimed at the end user not at the 

software designer /builder. 



77 

Conclusion 

This chapter presented the basic concepts of classification as conducted in 

library science. Five major classification schemes were surveyed illustrating how 

library classification has evolved in the last 100 years from an essentially enumera

tive approach to an almost purely faceted approach. It was shown that enumerative 

schemes are extensive, rigid, difficult to expand and cumbersome to compile while 

faceted schemes are compact, flexible, easy to expand and easy to make. 

The state of the art in software classification was surveyed. It was found 

that current software classification schemes are enumerative, rigid and not well 

suited for expanding collections. Software classification practice has been evolving 

in an ad-hoc fashion as the field develops. Initial enumerative schemes have been 

proposed and expanded continuously as the discipline grows. Such an approach 

seems to satisfy the needs of the users considering th~ current size of the collections. 

As the collections become larger, however, current enumerative schemes would be 

impractical. 

Classification in software seems to be repeating the same development process 

experienced in library classification but at a much faster pace. DDC for example, 

is in its 18th edition since ~the first 1876 edition while ICP is in its 53rd edition in 

less than 15 years. Software classification as library classification began with enu

merative schemes, but, in contrast with library classification, software classification 

has remained essentially enumerative. There is no need to wait for collections to 

become unbearably large to start thinking about a different classification approach. 

A faceted scheme is better suited for a large, continuously expanding collection 

of code fragments requiring high precision in classification and for minimizing re

trieval during the reusability process. A faceted scheme provides ease of expansion, 

high precision, and is well suited for retrieval implementation. 



CHAPTER 4 

A Classification Scheme 

The classification of software components requires an extensive analysis of the 

reusability-related attributes that are considered when reusing a particular compo

nent. This analysis consists of tracing the process of component reuse and recording 

the important attributes considered. The process of constructing a faceted scheme 

by literary warrant, as explained in the previous chapter, consists of collecting terms 

and grouping them by their relationships. When the analysis is conducted properly, 

the set of collected attributes form a vocabulary of terms that can be used to de

scribe software components by their reusability-related attributes. Classification is 

the systematic organization of this vocabulary to display the relationships between 

the items considered. 

This chapter presents the development of a coherent scheme for organizing 

descriptive terms for classification and retrieval of software components. The first 

section explains the advantage of using a flexible-facet classification scheme for 

software. Then a model for classifying software with examples showing how to use 

the model is presented. A -short discussion appears in the final section. 

Flexible Facets in Software Classification 

The purpose of a classification scheme is to show relationships by collocation

that is, to keep related classes more or less together according to the closeness of 

the relationship. Defining facets, citation order, and their internal ordering is a 

critical step in the design of classification schemes. In typical libraries, citation 

order is 'hard-wired' into the schedules resulting in particular subject groupings 

78 



79 

reflecting the criteria of the schedule designer. Library users do not always agree 

with the classification criteria used because their order of relevance of the facets 

may be different. 

A cross~referenced index partially solves the problem. There are different 

kinds of cross-referenced indexes for different types of users. For each new item 

entered in the library, a set of cross-references for that item must be defined. This 

requirement increases the overhead of the classification process. It also increases 

the probability of missing a cross-reference since no systematic process is followed 

when doing it. Cross-referencing is more of a patch than a solution. 

One major advantage of an open library is the browsing capability provided 

to its users. Subjects located closer together in the schedules result in books being 

physically closer in the stacks. Browsing capability, however, is severely restricted 

when the schedules are hard-wired as in enumerative schemes. 

An ideal solution would be a library where books could be reordered at will. 

A user would walk in, revise the classification schedules, define a particular citation 

order and term ordering, have the library reordered, and browse. Since books are 

physical objects with obvious restrictions imposed on their physical reordering, this 

idea is not practical. 

-
Reordering can be simulated by keyword searching, provided the user knows 

what keywords to use. Refering to the example of citation order from last chapter 

where {WATER INVERTEBRATES) was a class, if the user did not know that there 

were entries in the habitat facet under RIVER, LAKE~ and SEA, keyword browsing 

would be ineffective. Browsing can be conducted independently in each facet, or 

by selecting a term in one facet and browsing along another. H the user selects 

invertebrates in the zoologist-taxonomy facet for example, browsing could be per

formed along all habitats. Usually browsing is conducted in alphabetical rather 

than conceptual o~der (e.g., DESERT, LAKE, MOUNTAIN, RIVER, SEA, TROPIC, 



80 

WATER). The relationship among water, river, lake, and sea are conceptual. There 

is no syntactic relationship among them that could be derived from the language. 

An effective classification scheme capable of preserving its browsing capabil

ities must allow for an adjustable citation order and an adjustable term ordering. 

Different schedules, adjusted for different kinds of users, could be used on the same 

collection. 

Software components are not physical objects and flexible reordering can be 

applied without major inconvenience. As long as consistent descriptors are used to 

identify them, different citation orders can be used to group components by different 

criteria. A characteristic of code fragments collections is the large numbers of very 

similar items. High precision in classification is thus required. One way to increase 

precision is to have a quantitative measure of conceptual distance between any two 

terms in a facet. Replacing linear lists of terms by some kind of conceptual structure 

would significantly improve the quality of browsing by broadening the search along 

a precise conceptual scale. 

This dissertation proposes a model of classification that supports adjustable 

citation order, adjustable term ordering, and a conceptual distance metric among 

terms. 

A Formal Classification Model 

Some basic assumptions must be stated before presenting the model. These 

assumptions are based on the perception of the world of software components as 

evolving towards a widespread application of reusability in all phases of the software 

development cycle. As more 'reusable' components become easily accessible at the 

code level, reusers will try to find an available component before trying to code 

their own. The need for reusability provides the basis for proposing a classification 



81 

scheme_f9~ ~oftware. The assumptions are the following: 

• Collections on the order of thousands of software components at the code level 
exist. 

• There are large groupings of components that perform the same function 
under slightly different environments. 

• Users will prefer to classify their own works into the library rather than work 
with a specialized librarian. 

Given these assumptions, we propose a classification scheme with the following 

characteristics: 

• The scheme is based on facets. Facets offer flexibility, extensibility, and pre
cision in classification. 

• The scheme proposes a component description format based on a standard
vocabulary of terms. 

• The scheme imposes citation order. 

• The scheme provides a conceptual metric to measure conceptual distances 
between terms in each facet for more effective discrimination among simi
lar items. Rather than extend the number of facets to increase precision, a 
conceptual distance approach provides precision with a constant number of 
facets. 

• The scheme keeps the ordering of facets and distance measurements among 
the terms independe?t of the scheme. This provides a high degree of cus
tomization of the scheme in different environments and isolates the collection 
from these changes. 

• The scheme provides a mechanism to evaluate the similarity of items helping 
the user choose the best. 

Concepts and implementation of the mechanism mentioned in this la.st point 

are presented in Chapter 6. This mechanism is required because, even if classifica

tion offers high resolution, it is possible to have several distinguishable components 

in the same class. For this purpose an evaluation mechanism that compares fea

tures between programs against user needs is included to provide a finer selection 



82 

of candidates. This mechanism orders a group of functionally similar components 

based ori. a criteria of potential reusability. 

A formal description of the classification model is presented below. Compo

nent descriptors are defined first. This is followed by a description of two metrics: 

one for measuring the relevance of facets, the other for measuring the conceptual 

distance among terms within the same facet. 

Component Descriptors 

Define a facet F; as a set of attribute values { a;i, a;2 , ••• , a;m} where m 

is finite. Every software component u has a characteristic descriptor da that is 

defined as an n-tuple 

such that u is an instance of da and each v; is an attribute value from a facet F;. 

Each v; = a;1r, for some k. 

We define our universe of .descriptors as the set D of the Cartesian product 

in the n facets: 

da E D = F1 x F2 x ... x F; x ... x F,,, 

As the number of facets n gets larger, the descriptive power or resolution 

of the descriptor increases; that is, there are more elements to describe software 

components at a greater level of detail. When n is small, precision decreases. Note 

the inverse relationship between the number of facets used in a descriptor and the 

number of entities to which it applies. For example, the type DOG applies to fewer 

entities in the real world than its supertype ANIMAL, but more attributes are 

required to describe it. This inverse relationship, first noted by Aristotle, is called 

duality of intension and extension. 

Let U be the universe of all available components; a function X da -+ 2" 



83 

of a pa~t_icular descriptor du = (vi, V2, ••• , vn) is defined as 

X(du) = {x I x[l] =Vi /\ x[2] = V2 /\ ••• /\ x[n] = vn} 

where X ~ U, CT is an instance of some member of X, and U and Dare independent. 

Elements in Dare used to describe elements in U. We denote the set produced by 

X and the function as the same in this section. 

In general, X may return the empty set if there are no components in the 

data base that match a particular description. 

To increase the probability of retrieving a non-empty set X, a meta.symbol 

called 'any' written as { *} that matches any at; is introduced. This meta.symbol 

has the effect of reducing the number of elements in the descriptor. If, for example, 

vi is replaced by { *} in X above then the new X becomes 

X = {x I x[2] = V2 /\ ••• /\ x[n] = vn} 

In particular, the match criterion is: 

Vj, x[j] = v; or x[j] = * 

resulting in a reduced specificity of the descriptor. The extreme ca.se when all v; = * 
makes X = U. Usually, the size of X increases when metasymbols are introduced in 

the description. This is the typical approach used in information systems retrieval 

ba.sed on keyword indexes where an increase of the 'hit' ratio is obtained at the cost 

of a loss in precision. 

Keyword retrieval has the disadvantage of returning samples where relevant 

items are mixed with non-relevant items, and there is no way to separate them 

except by examining each item of the sample and determining its relevance. The 

KWIC (Key Word In Context) approach simplifies this ta.sk by providing a context 

for each item matching the keyword. 



84 

W~en U is very large, the size of sets X matching different descriptors also 

become8- large, making the task of discriminating between relevant and non-relevant 

items more difficult. 

One way to obtain groupings of relevant items is by imposing some arbitrary 

partial order on the facets based on their relevance to the user. For our purposes, 

this is not enough. We will define ordering on facets to be as follows: 

Fi >- F; whenever i < j 

One can notice that this defines a full ordering in a set of facets. The symbol ">-" 

means "more relevant than." 

If n = 4 and a target description dt = (vi, v2 , v3 , v4 ) returns X(dt) = {} it can 

be said that there is a need to 'generalize' the descriptor to make X( d,) I= {}. A 

further assumption can create two different descriptors based on d, by introducing 

the 'any' symbol *, 

di = (vi, v2, Vs,*) and d2 = (vi,*, va, v4) 

thus di is a more relevant generalization of <it than d2 is, and, in fact, di is the most 

relevant generalization of dt since it preserves the remaining most relevant terms of 

the descriptor. As a result, the set X(di) is more relevant than the set X(d2). 

The positioning of the metasymbol { *} thus provides a mechanism for control

ling order of relevance desired during retrieval. When more than one metasymbol is 

introduced the relevance of the generalizations is determined by the position of the 

leftmost positioned metasymbol. If d3 = (vi, v2, *, *) is introduced, the resulting 

order of relevance of the three cases is di >- d3 >- d2 • 

Measuring Relevance Using Facets 

A n.ieasure of relevance may be computed from the positioning of the left

most metasymbol { *} in a descriptor. The relevance of a descriptor R(du) may be 



85 

compute~ by: 

R(d0 ) = min{i I x[jJ = *} (4.1) 

Applying this equation to the descriptors di = (vi, v2, Vs,*), d2 = (vi,*,*,*), and 

d8 = (vi, v2, *·, *) we get: 

R(d1) = 4, R(d3) = 3, R(d2) = 2 

so R(di) > R(ds) > R(d2). 

This is one formula to compute relevance based on metasymbol positioning 

that provides an intuitive notion of the role played by the metasymbol in the de

scriptor. 

When the collection becomes very large, sets produced by descriptors with the 

same degree of relevance also grow leaving the user with the previously mentic:>ned 

problem of individual inspection of the sample. Precision can be increased by 

expanding the number of facets but this approach has two major drawbacks. The 

first has to do with the reclassification of items already in the collection. If a new 

facet is added, then all existing ·elements of the collection have to be defined in 

terms of the new facet. For example, if the facet SIZE is added, each component in 

the collection must be measured and its size entered under that facet. The second 

problem has to do with t1ie increasing size of descriptors. It would be desirable 

to keep the descriptor size short as long as it succeeds in describing the relevant 

attributes of the object. Extending the number of facets to increase precision would 

result in long, difficult to use descriptions. If the description of a program is as large 

as the program itself and cumbersome to use, then the purpose of reusability gets 

lost as already mentioned in Chapter 2. 

There is a clear trade off to be observed here: resolution vs. descriptor size. 

One way to increase resolution without increasing descriptor size is to introduce a 

metric for terms within the same facet. 



\ 
\ 

\ 

G 
Figure 4.1: Measuring Conceptual Distance in a Tree Hierarchy 

Measuring Closeness Between Attributes 

86 

A logical approach to measuring closeness among attribute values in the same facet 

is to associate a type hierarchy with each facet. Each type hierarchy has attribute 

values at the leaves, { *} at the· r~ot, and attribute supertypes at the intermediate 

nodes. If we mark the arcs with the conceptual distance between a node and its 

parent, the conceptual distance between any two attribute values (in a hierarchy 

with tree structure) can be computed by locating their minimal common supertype 

(i.e., least common ancestor) and summing the arc weights along the paths between 

the two as shown in figure 4.1. Here, all arcs are assumed to have unit weight. This 

approach works in hierarchies that have a tree structure. When the hierarchy 

structure is a directed acyclic graph (DAG) as is usually the case, we have leaves 

connected to different sets of nodes at different levels in the hierarchy. Figure 4.2 

shows a case of a DAG hierarchy. An arc with no weight on it has an implied 

conceptual distance of 1. In the case of a DAG hierarchy, a m~asure of conceptual 

distance must take into account a more complex notion of closeness. 



87 

1 

.. :-- d12 = 2---~ .. 1 I 

.,. __ ,___ _______ d13 = 2 ________ ..,., 

Figure 4.2: Measuring Conceptual Distance in a DAG 

Using the same structure in figure 4.2 to construct figure 4.3 but assigning spe

cific labels to nodes, it appears that the semantics specifies the conceptual distance 

between attribute values and supertypes. These values are user-interest dependent. 

The level of a supertype in.a weighted DAG hierarchy can be associated to the con

cept of relevance of that supertype as seen from a particular perspective. In this 

example, arbitrary weights were assigned assuming the perspective of a software 

designer. The supertype recursive is more relevant than the supertype early HLL 
~ 

(High Level Language) thus making the conceptual distance between Algol68 and 

Pascal (2) closer than the conceptual distance between Algol68 and FortranIV ( 45). 

We assume in this example that the only supertypes used in the hierarchy are the 

three shown. A scientific programmer would probably assign a different weighting 

scale reflecting the relevance different supertypes would have for him. 

This example illustrates the intuition upon which the metric is based. A 

. hierarchy of this type can be represe·nted by associating a set of pairs within each 

attribute value. Each pair consists of a supertype name and a conceptual distance 



88 

Algol 68 Pascal Fortran IV 

Figure 4.3: Labeling the Nodes in a DAG Hierarchy 

between the attribute value and the supertype name. A metric for meas~ring 

closeness between any two attribute values consists of listing the set of their common 

supertypes, computing some function of the weighted path length so determined, 

and selecting the one with the shortest conceptual distance. 

Let s1c be a member of an· outside universe of supertypes S, define Qa;n a 

subset of supertypes satisfying the condition that a;i is an instance of each supertype 

in the subset as: 

where "<'.)" means "is an instance of". 

Define P(a;i, s), the primitive conceptual distance between any attribute 

a;; and any supertype in s, as: 

P(a;;, s) =the weight of the shortest path from a;i to s. 

This definition holds only if a;i <'.)s 

In this model, a single measure of conceptual distance between any concept 

I 



89 

and any_ of its instances is important. The objective is to measure conceptual close

-ness between any pair of attribute values. There may be different paths between 

any attribute and its supertype (s); however, computing a single quantity resulting 

from P(a1;, s) is intuitively appropriate. 

There may be several constraints one would like to impose on the assignment 

of weights to edges. These constraints may be a function of the facet being described 

or of user dependent characteristics. 

The actual conceptual distance between any two attributes a;s and a;1 (i.e., 

within a facet) could be defined by the following algorithm: 

1. Compute the set of common supertypes. 

c = Qa;• n Qa;1 

2. Compute conceptual distance to be the minimum pair of conceptual distances 

from all the common attributes. 

6.i i=min{P(ai,, s) + P(a;z, s) Vs EC} 
' 

To keep the hierarchy consistent, a rule must be observed that, if a new 

supertype is added to the descriptor of an attribute value, then that supertype must 

be added to the descriptors of all members of the denotation. The addition of 

'imperative' to a programming language descriptor, for example, necessitates the 

addition of 'imperative' to all programming language descriptors that belong to 

that class. 

Example 

To illustrate how the model works, assume a collection where each item can 

satisfactorily be described by the function it performs and by the objects manipu

lated by that function. A classification schedule with only two facets is sufficient. 



/O~, 
/ I ',, 

100/ __.. 100 I 100 '~, 100 
/ I ' ', 

/ I r) moving something from 
,, ,, ~ its original place 

"" / I ', 
p) notion of q) notion of 2 '~ 

s)notion of enumeration, 
count, move 
along a scale 

/{"~ 
measure add move 

exchange 

substitute delete 

Figure 4.4: A Partial Conceptual Weighted Graph for the Function Facet 

Assume further that the schedule is as shown below: 

FUNCTION OBJECTS 

measure trees 
move backspaces 
add files 
substitute lines 
delete tabs 

words 

90 

Here n = 2, IDI = 30, the name of F1 is FUNCTION, and the name of F2 

is OBJECTS. Citation order is FUNCTION >- OBJECTS. Some attribute values are 

a11 = measure, a12 = move, a21 = trees, and a22 = backspaces. A partial conceptual 

graph for FUNCTION is shown in figure 4.4 and a partial conceptual graph for 

OBJECTS is shown in figure 4.5. 

Term selection (i.e., add, move, tabs, etc.) is the result of program description 

analysis; supertype selection (e.g., a notion in figure 4.4) is user-defined. In this 

example, supertype selection and weighting is based on the author's criteria. 



91 

(), 
/ ' ...... 

/ \. ..... 
100 / 100 \. ........... 100 

/ \. ........... 
/ ' ..... 

~ ' ..... 
/ ' ...... , 

a) notion ~f size d) notion of ', 
order ' 

4
/ \ e) notion of 

b) on~ c) grou:s of 
h t characters 

c arac er 20 

I~ ~ 
backspaces tabs words 

Figure 4.5: A Partial Conceptual Weighted Graph for the Objects Facet 

Using the following descriptor as given 

(v1 =substitute, v2 =backspaces) 

the goal is a list of the most relevant descriptors based on terms conceptually 

closer to backspaces and to substitute. Since FUNCTION >- OBJECTS for this case, 

a descriptor with a different objects term is more relevant than a descriptor with 

a different function term. For example, (substitute, words) is a more relevant 

descriptor than (add, back;paces). To list the most relevant descriptors, the objects 

term is broadened starting with backspaces and expanding towards the conceptually 

closer terms. The computation of the conceptual distance between backspaces and 

each object in the facet is: 

ai2 a12 c Paths _6., t, 

backspaces tabs [a, b, * J [2, 6, 106J 2 
backspaces words [a, * J [12, 112, 225, 225] 12 
backspaces lines [a, * J [14, 114, 225, 235) 14 
backspaces files [a, * J (19, 119, 220, 225] 19 
backspaces trees [a, * J [24, 124, 210, 206J 24 



Order by Descriptor 
Relevance 

0 substitute/ backspaces 
1 substitute/ tabs 
2 substitute/ words 
3 substitute/ lines 
4 substitute/ files 
5 substitute/ trees 
6 delete/backspaces 
7 delete/tabs 

29 measure/trees 

Table 4.1: An Ordered List of Descriptors 

The ordered set of objects as they relate to backspaces is therefore: 

[backspaces, tabs, words, lines, files, trees] 

The same procedure is applied to function. 

substitute delete 
substitute move 
substitute add.. 
substitute measure 

c 

[s, *] 
(q, * J 

[*] 
[*] 

Paths 

[6, 106, 207, 204] 
[12,112,204,211,216,217] 
[207, 206] 
[203, 202] 

The ordered set of functions related to substitute is: 

[substitute, delete, move, measure, add] 

~·z •, 

6 
12 

206 
202 

92 

The set of most relevant descriptors would be those conceptually closer to 

(substitute, backspaces). From the above results, the ordered list of descriptors is 

shown in table 4. 

If, instead of backspaces, the objects were words, the conceptual distance 



93 

computatioI_lS would be: 

.6.1,l 

words tabs 12 
words backspaces 12 
words lines 8 
words trees 18 
words files 13 

resulting in the ordered set: 

[words, lines, tabs, backspaces, files, trees] 

Discussion 

It is important to note that the proposed concept structures are usually in

complete. The set Q a;; of supertypes associated to a particular term may be ~ery 

large. A schedule designer (e.g., librarian) may be familiar with only a few su

pertypes for each a;; considered. An initially-defined concept structure may look 

complete to the schedule de.signer but may be an incomplete structure for another 

person. A complete concept structure may be difficult to obtain since it must con

solidate the perspectives of all the users involved. The flexible weight assignment 

compensates for this handicap of the scheme. The user-assigned weights provide 

an acceptable conceptual distance among terms even if only a few supertypes are 

considered. Weight assignment may be driven in many cases by intuition rather 

than by considering all possible supertypes. 

Weight flexibility provides for schedule adjustment and environment adap-

tation. A given concept structure with different weight arrangements could serve 

different types of users; however, different structures may be required if additional 

new supertypes are considered. 

One approach to schedule adjustment is the 'cow path' idea. An initial concept 

structure is defined for a given set of terms. As the schedule is used, a user's 



94 

satisfact~on or dissatisfaction with the results is used to adjust weights and, if 

necessa.rY, to add new supertypes. 

In summary, the main features of this classification model are: 

• A flexible-facet scheme with user defined citation order. 

• A definition of a standard descriptor format for software components. 

• A mechanism to increase precision on retrieval. 

• A scheme to measure closeness among terms within a facet. 

The next chapter shows how this classification scheme is implemented in a 

computerized library system for software components. 



CHAPTER 5 

Classification of Software Components 

Implementing a classification scheme in a particular domain requires a 

thorough analysis of that domain. Specialized classification schemes are usually 

domain specific and are designed around the characteristics of the objects or doc

uments classified. Examples of specialized classification schemes are the work of 

Simon and Tansey on slide classification [SIM070J and the work of Moys on law 

books (MOYS68 J. 

The scheme presented in the last chapter is general enough to be used in 

almost any domain. Customizing it for the requirements of software components, 

however, requires an analysis of their characteristics. 

In this chapter, the classification scheme is implemented showing how to clas

sify software components, how t~ start a collection of software component descrip

tors, and how the scheme and collection can be implemented in a library system. 

A data base prototyping tool (TROLL [WASS 8 2]) is used to make the prototype 

library system. 

Descriptor Synthesis 

Software components can be described by different attributes, such as the 

function they perform, how they perform it, and their implementation details. 

These descriptors fall naturally into facets that can be ordered by their relevance 

to reusability. 

The component descriptor proposed has been defined as a tuple of terms. Each 

term is an attribute value of a selected facet. This section explains why a tuple 

95 



96 

format _w~ selected for the descriptor and which facets are required to describe a 

typical software component. The objective is an effective classification and retrieval 

of reusable code. 

In describing software components for effective classification, its genus and its 

specific difference or differentia must be stated. Genus corresponds to 'what it does' 

which, in turn, is a description of its functionality, and differentia corresponds to 

'how it does it'. The 'how' could be reduced to a description of the implementation 

details. 

Several program descriptions and source listings were inspected in order to 

determine the structure and contents of program descriptions. The sample in

cluded over 200 descriptions of commercially available programs and systems from 

different software directories [ICP83, IPS83, SOFT84], over 100 source listin~s of 

modules selected from local programs such as a line editor (2500 source lines of 

Pascal code), a payroll system ( 4000 source lines of Cobol code), and a pattern 

recognition program ( 1000 source lines of Fortran code). The sample also included 

several programs from published sources like [WELS80] and [PEMB82] and from 

programming text books. 

This exercise led the author to the following observations: 

• Program descriptions and comments in source listings are characterized by 
describing the function performed by the program but usually leave out the 
details of the implementation. 

• There are several diverse programs that perform the same function. 

• Description of implementation details are to be inferred, usually, from the 
source itself, or, if made explicit, the description is a PDL-like listing difficult 
to capture in a single statement. 

There is a need to consolidate in a single descriptor both the what and the 

how of a program. The descriptor should also be brief and succinct in order to use 

it as a classification code and as a retrieval key. 



97 

Prq~ams performing the same function and designed for the same application 

have more similarity in their implementation details than programs performing the 

same function but in .different applications. Intuitively, a 'search' program used 

in a compiler may be functionally similar to a 'search' program used in a data 

base system. Both may even be implementations of the same algorithm .. What 

is more likely is that the compiler search deals with a particular data structure 
\ 

often found in compilers like symbol tables while the data base search deals with 

data structures common to data base systems like B-trees. In fact, four of the five 

compilers analyzed use a table, implemented as an array, for symbol look-up. Three 

of the five payroll programs analyzed use files with fixed record lengths to store 

employee information. A sequential search algorithm was used once in a compiler 

and once in a payroll system. Although functionally equivalent, implementation8-

were very different-mainly because of their data requirements. 

In most of the programs analyzed, a close relationship was observed between 

the similarity of implementation details and the similarity of application. The same 

similarity argument may be exten~ed to the type of variables used, design strategies, 

and other implementation details. Semantically rich terms like 'compiler' or 'data 

base system' usually imply certain approaches to making programs that are typical 

of the systems they represent. We can say that these terms denote particular ways 

of implementing programs-some of them by definition, others by common practice. 

Environment is another determining factor for implementation details. A 

particular operational environment may impose certain implementation constraints 

on a program. There are two environments affecting any program: the internal 

environment where the program is executed and the external environment where 

the application is conducted. 

Internal environmental differences address the problem of software portability 

such as interface adaptation. Functional requirements and program structure are 



98 

usually_ le!t c intact. Resolving internal environmental differences means having ex

actly the same system in a new operational environment-a problem in portability. 

Portable software design is an area of research in itself, and experiences in the con

version effort· of particular systems have been reported extensively in the literature 

(e.g., Software Practice and Experience). Some formalizations to characterize the 

problem have been proposed [ TANE 7 8, STAN 7 6], and new approaches to achieve 

automatic conversions have been tried [ ARAN8 5]. 

External environmental differences, on the other hand, are those that require 

modifications of the design or specifications of a program. External environmen

tal changes typically occur when a new set of requirements are proposed for an 

existing system. This type of activity is known as software evolution and involves 

the continuous adaptation of software systems to a changing environment. Mod

ifications at the design or specifications level require program modifications more 

typical of reusability. External environments are usually synthesized in single 'se

mantically rich' terms gener.ally used to denote different external environments such 

as 'payroll', 'general ledger', or 'materials control'. 

These observations motivated the decision to use 'application' and 'external 

environment' as an approximate descriptor of the 'implementation details' relevant 

to the reuse process. 

Functionality 

If a program's functionality denotes 'what it does' (e.g., compare two files 

for equality), and its environment1 denotes 'how it is different from others', (e.g., 

requires files open, compares line by line, component of a file management system) 

then, for classification purposes, the facets functionality and environment, capture 

what is essential for a description. 

1 Environment here means developmental, implementational, and operational. 



99 

F\l~ctionality and environment alone are still too general for an accurate de

scription of a software component. Single, semantically rich terms may be ambigu

ous if used alone. Some context dependency is required to make the descriptor 

more accurate. 

Imperative statements are generally used to describe functionality of a pro

gram fragment. From a sample of more than 250 source programs from different 

sources such as programming books and software catalogs, it was observed that all 

program descriptions had at least one imperative statement describing the main 

function of the program. This is a natural result considering that most commonly 

used programming languages are imperative. Typical programming techniques and 

design methods are based on imperative constructs. 
.. 

An imperative statement is defined by the triple [action, object, agent]. The 

same format is adopted here using three facets to represent functionality: 

function, objects, medium 

Thus, functionality contributes· three facets to the descriptor. 

Function is the name of the specific primitive function or action performed 

by the program, (e.g., move, start, compare). Obiects refer to the objects 'manipu

lated' by the program (e.g:, characters, lines, variables.) Medium refers to entities 

that serve as 'locale' where the action is executed. These entities are sometimes 

the supporting structures for the functions. Agent (the conductor of the action), 

as applied to programs, does not change. The program always carries the action. 

In describing programs, the definition of agent is irrelevant. It is more relevant to 

describe what supporting structure is used to carry the action or 'where' the action 

is executed because it tells more about the details of the action being described. 

Examples of medium terms are: line, table, file, keyboard. In the sample analyzed, 

medium was not usually included in the description; 45% of the descriptions ana-



100 

lyzed mentioned what medium was used. In several cases, direct code inspection 

was required to determine what medium was used. 

In most of the programs analyzed it was found that the triple [function, 

obiects, medium], was adequate for describing "what" a program does. The list 

below shows some program descriptors. 

(input, characters, buffer) 
(substitute, tabs, file) 
(search, root, B - tree) 
(compress, lines, file) 

The idea of describing program functionality with an imperative triple is sup

ported by the work of Sugarman [ SUGA81]. In his dissertation, Sugarman presents 

a model to describe dissertation abstracts with a triple of the form 

[operation, objects, properties] 

His model is intended for dissertations dealing with the presentation of experimental 

results where an experiment is performed to demonstrate a hypothesis. The opera

tion facet deals with the execution of the experiment, the objects facet describes the 

objects of the experiment, and th~ properties facet is the description of the results. 

He found that 65% of all sentences found in a sample of 167 dissertation abstracts 

were written in the triplet format. A classification and retrieval test showed better 

performance than techniques based on keywords. 

Sugarman 's model is similar to this one in that the item described performs an 

action on some objects. The difference is that, in the case of dissertation abstracts, 

the results are analyzed while, in the case of programs, a medium is used to perform 

the action. 

Environment 

As indicated before, knowing a program's intended application and its exter

nal environment provides indirect knowledge of its general characteristics. Some 



100 

lyzed mentioned what medium was used. In several cases, direct code inspection 

was required to determine what medium was used. 

In most of the programs analyzed it was found that the triple [function, 

obiects, medium], was adequate for describing "what" a program does. The list 

below shows some program descriptors. 

(input, characters, buffer) 
(substitute, tabs, file) 
(search, root, B - tree) 
(compress, lines, file) 

The idea of describing program functionality with an imperative triple is sup

ported by the work of Sugarman [ SUGA81]. In his dissertation, Sugarman presents 

a model to describe dissertation abstracts with a triple of the form 

[operation, objects, properties] 

His model is intended for dissertations dealing with the presentation of experimental 

results where an experiment is performed to demonstrate a hypothesis. The opera

tion facet deals with the execution of the experiment, the objects facet describes the 

objects of the experiment, and th~ properties facet is the description of the results. 

He found that 65% of all sentences found in a sample of 167 dissertation abstracts 

were written in the triplet format. A classification and retrieval test showed better 

performance than techniques based on keywords. 

Sugarman 's model is similar to this one in that the item described performs an 

action on some objects. The difference is that, in the case of dissertation abstracts, 

the results are analyzed while, in the case of programs, a medium is used to perform 

the action. 

Environment 

As indicated before, knowing a program's intended application and its exter

nal environment provides indirect knowledge of its general characteristics. Some 



101 

implem~~tation details can be inferred from these factors. Thus, environment de

scription is an indirect characterization of classes of programs. An environment (in 

the general sense), usually determines: 

• Certain- programming practices, style, and structure. 

• Types of data structures used. 

• Type of information manipulated. 

• Particular computational methods and algorithms. 

From the previously mentioned examination of over 300 program descriptions 

and source listings, environment related words were selected and grouped into class 

groups. Three major groups resulted: 1) terms describing the type of system, 2) 
-· 

terms describing the functional area, and 3) terms describing the location or setting 

of the application. Environment, therefore also contributes three facets for the 

descriptor: system-type, functional-area, and setting. System-type descriptions 

usually refer to one or more of the following: 

• A functionally identifiable module. 

• An application independent module. 

• A unit larger than a single component. 

• A group of components that perform an identifiable function. 

Examples of types of function descriptors are report-formatter, lexical-analyzer, 

scheduler, retriever, expression-evaluator, and interpreter. In our term-grouping 

experiment, system-type terms were seldom found in descriptions of software pack

ages. Most system-type terms were obtained from source code documentation. 

Functional-area describes a particular identifiable function performed in an 

application area. It is application dependent and may be implemented with different 

types of programs. Functional-area is usually defined by an established set of 



102 

procedu~es on an area of application. Examples are general-ledger, cost-control, 

operating-system, and purchasing. 

Setting describes the location where the application is exercised. Setting cap

tures details of how to conduct certain operations. For example, a manufacturing

control program in a print-shop may have a slightly different implementation than 

a manufacturing-control program in a chemical-plant. The differences here are 

mainly in the units used and in the objects handled. The functionality does not 

change. 

Six terms are therefore required to describe a code fragment-three terms to 

describe functionality and three terms to describe environment. Each one of the 

six classes of terms is grouped under a facet. Refering back to the formal model of 

Chapter 4, n = 6, F1 = function, F2 = objects, F3 = medium, F4 = system - type, 

Fs = functional - area, F6 = setti'ng. Relevance order among facets was assigned 

based on the type of information they provide for reusability purposes. For example, 

program function is considerably more relevant than where in an application the 

program is used. This particular relevance ordering is based on the author's criteria. 

Schedule Construction 

The typical procedure for making a faceted scheme in library classification is 

by literary warrant [BUCH79, VICK60]. From a representative sample of titles 

of the collection to be classified, descriptive terms are extracted. For example, 

from the title "Animals of the Mountains" the terms 'animals' and 'mountains' 

are separated. Terms are then grouped by classes to form facets and, if necessary, 

subfacets are created to group more specific sets of terms. 

The approach taken in this diss.ertation, although based on literary warrant, 

has some subtle differences. Facets are defined a priori based on a 'descriptor' 



103 

criteria_ t_~a~ minimizes the number of terms required for an 'adequate' component 
·. 

description (as described above). Adequate means that it includes reusability

related attributes. This a priori-defined facets approach is supported by the work of 

Austin on the PRECIS system [AUST71]. The PRECIS system is a computerized 

system for document retrieval based on a predefined semantic structure of terms 

used for queries. 

With a predefined skeleton of reusable-relevant facets, the task is how to flesh 

it out with appropriate terms. The three complementary approaches used are: 

1. Reliance on functional models of well-defined systems (top-down). 

2. Strict bottom-up approach by analysis of existing programs. 

3. Analysis of existing software classification schemes. 

In the first approach, a well known system model, such as compilers, is se

lected. A preliminary schedule is constructed by analyzing some instances of the 

model. To make the compiler preliminary schedule of figure 5.1, for example, five 

small compilers were examined~ An analysis of the tasks performed by each com

ponent resulted in an unordered list of names (terms). After an iterative process 

of grouping common terms several times, facet names were given to each defined 

group. A priori knowledge~of the general compiler logical structure was essential in 

this process. The break-down of a compiler into well known and widely accepted 

subfunctions (lexical, syntactical, and semantic analysis followed by code genera

tion) provided a global structure for a top-down approach for making the schedule 

in the example. 

This preliminary breakdown identified some of the terms that could be grouped 

into the proposed six facets of our scheme. For example, terms such as insert and 

search describe the function facet; terms like integer, character, loop-statement, 



COMPILER COMPONENTS 
(By Compiler Subfunction) 

scanning 
lexical analysis 
syntax analysis 
semantic analysis 
code generation 
symbol table handling 

initialization 
identifier handling 

insert 
search 

retrieve 
search 

search 

(By Type of Instruction Generated) 
program control 
procedure control 
storage all~cation 

data structure definition 
storage management 

data structure operation 
variables 
expressions 
assignment 
label generation 
address assignment 

(By Method Used) 
top-down 

recursive descent 
predictive parsing 

bottom-up 
shift reduce 
operator precedence 

(By Type of Character Analyzed) 
identifier 
constant 

real 
integer 
boolean 
character 

(By Type of Statement Analyzed) 
block, procedure, program 
declaration 
control 

I/O 

looping 
conditional 
unconditional 

Figure 5.1: A Preliminary Faceted Schedule for Compiler Components 

104 



105 

and bloc~, go with the objects facet; and lexical-analyzer and code-generation are 

terms fitting the systems-type facet. 

An advantage of this approach is that only a few instances of programs have 

to be analyzed as long as a widely recognized logical structure of those programs is 

identified. 

As more models are analyzed, many terms would repeat and fewer new terms 

appear until all possible terms are defined. In the end, each facet would have most 

of the terms used by most of the program descriptions of programs in that particular 

facet. The objective would be to produce as complete a schedule as possible. This 

objective is practically unrealistic, mainly because of the amount of effort required to 

produce a complete schedule and because of the continuous expansion of knowledge. 

Book libraries, for example, have been expanding their schedules continuously for 

several decades and there is no evidence of change in that trend. The objective 

in this classification scheme is not to provide a complete schedule but rather to 

provide one that is easy to expand and to provide the guidelines to do so. 

The second approach is called "bottom-up" because there is no predefined 

structure to help in grouping terms. Program descriptions are examined for terms 

that fit in any of our six facets. 

In less standard applications, like business, schedule making may require large 

samples of programs to come up with representative terms. Fortunately, some of 

this work has been conducted previously by Goodell [GOOD83]. He identified 

twenty-four "primary functions" after studying 1,338 business applications pro

grams. Lanergan and Poynton conducted a similar study [LANE79] on a sample 

of 5,454 business applications programs. They identified six different categories 

of "program types" that were later reduced to three. Goodell's study was aimed 

at finding common functions while Lanergan and Poynton's objective was to find 

common programs. The availability of this initial set of function terms was very 



106 

helpful j~ ~c~nstructing the preliminary schedule proposed in this thesis (Appendix 
·-.·-

B). 

In other areas, program descriptions were collected, mainly from software di

rectories, to build a preliminary schedule by literary warrant. Terms were then 

selected and assigned to the six facets already defined. Appendix A shows a pre

liminary schedule for the applications area of Communication and Media. It was 

extracted from descriptions of programs in software directories. 

In the case of inspection of code fragments where no program descriptions 

existed, a description had to be generated. A criteria was established during this 

process to determine what is actually a code fragment: Code fragments are pieces of 

code embedded in existing software systems. To consider a code fragment as a clas

sifiable item, it must perform a readily identifiable and potentially modular function 

that can be described by the (function, objects, medium] triplet of our descriptor. 

We call these requirements 'functionally coherent' and 'functionally describable'. 

Selecting code fragments from a software system may be a time consuming task. 

This is a one-time investment that is paid off during reusability. 

The problem of description generation from embedded fragments can be sub

stantially reduced if software systems were originally designed for reusability. By 

this we mean proper modularization and proper documentation. Most existing 

programs, however, have not been designed with reusability criteria in mind. 

The third approach was, basically, to reuse some of the terms in other soft

ware classifications. Software directories such as International Computer Programs 

(ICP84] and International Directory of Software (IDS84], offer very extensive and 

well-defined classification schedules. The objective of these directories, and conse

quently of their schedules, is to classify integrated software packages for the user 

and not for the reuser. Software packages are intended to be used as delivered 

and not to be reused as components of new packages. Placing this difference aside, 



107 

the classification schedules analyzed were rich in environment description terms-in 

particular, terms describing functional areas and settings. 

Other software classification schedules inspected were those for functional col

lections [Bots 7 5, GAMS81, BOIS8 3 J. These schedules are abundant in function

related terms, particularly for mathematics, statistics, and numerical methods. 

With an initial schedule of terms available to generate descriptors, the next 

logical step would be to use it for classification and retrieval. However, the schedule 

tended to grow very large in number of terms and many terms described the same 

concept. To keep the size under control, each facet was listed as a thesaurus. 

Vocabulary Control 

Describing code with a tuple of specially selected terms is not free of problems. 

Synonyms can produce different descriptors for the same component. In the case of 

functionality, for example, the descriptor (move, words, file) and the descriptor 

(transfer, names, file) may be two different descriptions of the same program. 

To avoid duplicity of descriptors a controlled vocabulary is required. A terms 

thesaurus is needed to group all synonyms under a single concept. The term that 

best describes the concept i_s selected as the representative term. The term thesaurus 

is used for vocabulary control and to broaden existing index vocabulary. The result 

is an enhancement in recall performance because several terms are assigned to a 

single concept. A thesaurus may also be used as a technique to control the size 

of the schedules either, by increasing the number of terms assigned to a particular 

group or by breaking up groups of terms. 

Thesauri can be constructed either manually or automatically. Automatic 

thesauri construction is mainly used for documents and is based on term frequency 

analysis and/or on statement construction analysis. Weights are assigned to terms 



108 

in prop_ortion to their frequency of occurrence in a document. Some document re-
- - -- - -

f __ 

trieval systems use this concept with relative success (SALT 8 3 , SP AR 71] al though 

at a relatively high initial cost. Full texts have to be converted to machine readable 

form. More recently, this approach has been demonstrated not to be cost-effective 

in very large collections [BLAI85]. 

Automatic thesaurus construction might not be cost-effective when applied to 

code fragment descriptions because program descriptions are usually short, in-line 

comments are different from continuous text, and source code is context free. On 

top of these characteristics, collections of code fragment descriptors are expected to 

be increasingly large-on the order of several thousands. Another major drawback 

to automatic thesaurus construction is that, in many cases, code fragment descrip

tions and, in particular, descriptions of embedded modules, are not available. The 

assigned librarian has to inspect code and available documentation in order to 

extract an appropriate description. Therefore, manual thesaurus construction is 

advocated here. 

Below, how to manually construct a thesaurus for code fragment descriptions 

and how to approach the problem of term groupings for both sets of facets, func-

tionality and environment, is discussed. 

Manual Thesaurus Construction 

For the function facet, terms were collected that describe actions performed 

by a program. Sources for term selection included program descriptions, comments 

in source code, computer science books, software directories, and English language 

thesauri. Terms describing the same function or action were grouped into what 

is called a "thesaurus class" [SALT83]. In contrast with the accepted thesaurus 

construction practice of assigning a unique code to each thesaurus class, a term 

from each group was selected as the representative term of its respective group. 



109 

Criteria for representative term selection was based on the author's judgment. For 

each identified group, selection of representative terms· Was reduced to answering 

the question: Which of the terms in the group best describes the desired functional 

concept? 

The selected term for a concept was entered as the schedule entry for the 

function facet. For example, the term substitute was selected to represent the 

group: 

replace/transliterate/convert/change/map/crypt/update 

For the objects facet, as well as for the rest of the facets, the same procedure 

was followed. Names of objects used by programs were searched for in computer sci

ence books, program descriptions, and software catalogs. Terms were then grouped 

and a representative was selected for each group. 

In the objects facet, two classes of terms were identified: those of names given 

, to the actual objects manipulated by the programs (e.g., arrays, variables, words) 

and those of names given to· the objects being represented (e.g., paycheck, invoice, 

answer, volume). The author was interested in terms describing the actual objects 

not their representations. For example, in a check printing program, the desired 

descriptor is not the pair (print, checks) but rather (trans/ er, bu/fer). 'Transfer' 
·-· 

is the selected term for the group where 'print' is a member and 'buffer' is the actual 

object manipulated by the program. A check printing program is just an output 

program for a particular application (e.g., payroll). The keyword 'payroll', as will 

be shown below, is a term in one of the environment facets. 

For the medium facet, terms were not usually available from program de

scriptions. Code inspection was nece5sary in most cases. Terms usually considered 
. . 

as objects in some programs played the role of medium in other programs. Typ-

ical examples are "compress words in a line" and "compress lines in a file". The 



110 

functionality descriptors for these two cases are: (compress, words, line) and 

(compress, lines, file). The term 'line' is a medium for the first program while 

'lines' stands for the objects manipulated by the second. In the resulting schedule, 

many terms in the medium facet are also listed in the objects facet. 

For the facets that make the environment (system-type, functional-area, set

ting), synonyms were seldom found. Most terms in this class consist of compound 

words such as pattern-matcher or file-handler for the system-type facet; order

entry or cost-control for the functional-area facet; and catalog-sales or car-dealer 

for setting. A set of partial classification schedules as described in these sections is 

shown in Appendix B. 

Implementation 

The required infrastructure, as proposed in Chapter 2, for effective code reuse 

consists of: 1) a specialized library, 2) a classification scheme, and 3) a support 

system. A specialized library may be built with the proposed classification scheme 

of Chapter 4 and with the set of classification schedules available from the previous 

section. A data base of component descriptors can be considered as the software 

catalog since the terms in the descriptors are software attributes. The support 

system may be seen as a group of procedures that help in query construction and in 

the evaluation of the retrieved sample for potential reusability. By implementation 

we mean integration of these parts in a single system we call The Library System. 

The functional objective of the library system is to return a set of potentially 

reusable software components given a set of terms that describe the attributes of 

a required component. Figure 5.2 shows an SADT2 context diagram of the library 

system. 

Multiple objectives were sought when implementing the library system: 

2SADT is a registered trademark of SofTech Inc. 

I 

I 



~ 
o"Q" 
~ 
...... 
(I) 

C11 

~ 
rn 
> 
d 
1-j 

(J 
0 
l:S 
C"+-

~ 
C"t'-

> (") 
C"+-

~· 

s 
~ 
...... 

1-j 
:::r 
(I) 

~ 
0: 
...... 

~ 
'< 
rn 
'< 
rt.I 
C"+
(1) s 

USED AT: 

NODE: A-00 

SADT@DIAGRAM FORM ST098 9n5 
Form© 1975 SofTech. Inc .• 460 Tomm Pond Road. Wallham. Mass. 02154. USA 

AUTHOR: Ruben Prieto-Diaz 
PROJECT: 

Library System 

NOTES: 1 2 3 4 5 6 7 8 9 10 

DATE:zo-April-85 
REV: 2 

Thesaurus 

y 
Classification ~ , 
Schedules '---1> 

~ . . 

WORKING IREADER 
DRAFT 
RECOMMENDED 

.PUBLICATION 

Reuser Experience 

~Reuse Metrics 

~- Search Strategy 

l 

DATE 

Descriptive 
Terms 

RETRIEVE 

REUSABLE 

COMPONENTS 

Ranked List of 
i--~~---~ Reusable Components 

Purpose: To show how the Library System works. 

Viewpoint: A reuser trying to access components 
from the library. 

LibSys02 

CONTEXT: 

IITl .. E: RETRIEVE REUSABLE COMPONENTS (CONTEXT) :rMBER: LibSysOl 
l 

lo--' 
lo--' 
lo--' 



112 

• To _have an integrated library system for reusable software components. 

• To- test the effectiveness of a computerized library system based on a classifi
cation scheme. 

• To use the classification scheme and schedules as a guide for query construc
tion. 

• To test the usefulness of a library system that retrieves closely related i terns 
rather than exact matches. 

• To test the idea of ranking potentially reusable candidates and verifying their 
usefulness. 

The library system was implemented as shown in the SADT diagram of fig

ure 5.3. Chapter 7 presents results on the evaluation of this system and Chapter 6 

discusses the selection technique for ranking potentially reusable components (see 

box A05). 

The query system (see AOl, A02, A03) can generate one or more component 

descriptors. The system guides the user in seleating valid terms from the classifica

tion schedules and enforces a citation order of the terms based on the established 

relevance order of the six previously defined facets. A query is a six-tuple descriptor 

of a component. 

A query may be modified by insertion or removal of 'any' meta.symbols { * }, 
in a prescribed order. A generalization or specialization of the query results. 

A query may also be expanded. Queries of closely related terms are con

structed based on their relevance distance and on their conceptual distance. Con

ceptually closer terms are selected first for the new queries. Groups of queries are 

ordered by their relevance to the original query. The result is an ordered set of 

. queries from most to least 'relationship' to the original query. Scope of expansion 

is controlled by the user. 

Expansion is used when the original query does not retrieve a component de-

scription. This is the typical case. Recall from Chapter 4, that the set of possible 



~ 

~-
.... 
('D 

C1' w 
rn 
> 
t; 
~ 
t'-i 
~ 
~ 
0 

> n 
C"'t"-

oti" 

~ 
~ .... 
~ 
ft 
t'-i 
0: .... 
~ 
'< 
rn 
~ 

C"'t"
('D 

s 

SADTSDIAGRAM FORM ST098 9n5 
Form© 1975 SolTech. Inc .. 460 To11en Pond Road, Wallham. Mass. 02154. USA 

USED AT: AUTHOR: Ruben Prieto-Diaz 
PROJECT: Library System 

DATE: 20-April-85 
REV: 2 

WORKING READER DATE 
DRAFT 
RECOMMENDED 

NOTES: 2 3 4 5 6 7 8 9 10 PUBLICATION 

Classification ) 

Schedules C2 l Descriptor l Reuse 
metrics c4 Thesaurus 

Descriptive 
Terms 

1
-; 

HAKE 

QUERY 

query 

MODIFY 

QUERY 
2. 

Modified 
descripto 
query 

EXPAND 

QUERY 

Search 
strat~gy CJ 

Group of 
descriptor 
queries 

C5 Reuser 
experience 

Ordered 
list of 
descriptor 

------ J I • I ' 

RETRIEVE M EVALUATE 
COMPONENT CANDIDATES 

"---------..,,DESCRIPTORS s 

Descriptors Data Base----------'--------J' 
Ml 

ReusabilitY--------------------------' 
attributes H2 
Data Base 

CONTEXT: 

Ranked 
list of 

Ol....- reusable 
components 

NODE: AO TITLE: RETRIEVE REUSABLE COMPONENTS NUMBER: LibSys02 

....... 

....... 
w 



114 

descripto_rs, D, is very large. It may be even larger than the collection itself, thus 

increasing the probability of a miss. Query expansion is central to the library sys

tem. Here is where the features of the classification scheme for measuring relevance 

and conceptu_al distances are used. 

Retrieval (see A04) is implemented by a relational data base system. The 

TROLL system was used for this task. TROLL is one of the tools that support 

the User Software Engineering (USE) methodology for systematic development of 

interactive information systems [WASS 8 2]. 

A software prototyping tool based on a relational data base, TROLL was se

lected mainly for its flexibility to interface with other USE tools, the C language, 

and the UNIX3 environment. TROLL uses a compact procedural language that 

makes available the operations required in relational data base systems. Although 

initially small, TROLL relations can be easily expanded to a very large size. A major 

drawback, as with most prototyping tools, is performance. Most of the overhead is 

generated by its multiple int.erfaces and by its performance monitoring subsystem. 

For implementation of the library system, which is a prototype system, per

formance was not important compared to the features offered by TROLL. The 

performance monitoring subsystem, for example, is an excellent feature for experi

mentation during prototyping. 

A query in the library system is interpreted as a collection of keywords to 

be matched against a relation of program descriptors. Each tuple in the relation 

consists of the group of six descriptor terms, a group of reusability related metrics, 

the programming language used, a pointer or reference to the source code and 

documentation, and a brief description of the component. Reusability metrics and 

the programming language name are used by the evaluation system (Chapter 6). 

Relation level operations for queries and tuple level operations for data editing are 

3 Unix is a trademark of AT&T Bell Laboratories. 



115 

implemented directly in TROLL. The output of the retrieval system is a formatted 

table of selected component descriptors in the same order as the submitted queries. 

Computing Conceptual Distances 

One important aspect of the implementation is the representation of the con

ceptual structures proposed by the classification scheme. To determine conceptual 

distances among terms a preliminary concept structure consisting of terms, super

types, and arc weights is postulated (like the ones shown in figures 4.4 and 4.5). 

Conceptual distances between terms are computed as proposed in Chapter 4. Path 

weights are adjusted several times before they are satisfactory. 

Addition of new terms to a preliminary conceptual structure requires signifi

cant readjustment effort. New supertypes are added and path weights are adjll;sted 

again. It was observed that conceptual distances between new terms and terms 

in the initial set could be 'estimated' by the user through intuition and common 

sense outside the conceptual structure. Conceptual distances between terms can be 

nicely represented in a closeness ·matrix. A closeness matrix for the function facet 

of our example of Chapter 4 is shown below. 

measure add move substi- delete 
tute 

measure 0 6 16 200 200 
add 6 0 20 200 200 
move 16 20 0 12 5 
substitute 200 200 12 0 6 
delete 200 200 5 6 0 

For the prototype library system of this thesis, a closeness matrix was used 

mainly for rapid implementation. An initial closeness matrix derived from a pre

liminary structure offers a frame of reference for estimation of new distances. The 

closeness matrix was adopted for conceptual distances computation because of its 

simplicity and extensible properties compatible with the proposed conceptual struc-



116 

ture. Th~ explanatory power of a conceptual structure is the main reason for its 

use in the classification model. 

Conclusions 

The main contribution of this chapter is a preliminary classification schedule 

for software components derived from the classification model of Chapter 4. An

other contribution is the detailed discussion of how each part of the schedule was 

derived. 

Schedule construction is an elaborate and time consuming procedure, and, 

rather than aiming for a complete schedule, the objective should be an easy to 

expand schedule. Ease of expansion is provided by the faceted structure of th~. 

classification scheme proposed. Expansion consists in a controlled addition of terms 

to the schedules. The preliminary schedule listed in Appendix B was derived to 

classify functionally identifiable code fragments of medium size (e.g., 50 to 200 

source lines of code). 

Implementation of the library system, in particular the construction of the 

queries, is based on the structure of the classification scheme and implements the 

idea of conceptual distance. The library system as specified in the SADT diagrams 

of figures 5.2 and 5.3 has been implemented in the C language with the TROLL 

prototyping system and tested in a limited environment. Chapter 7 discusses the 

results of these tests. 

The next chapter presents the idea of component evaluation based on the 

estimated reusability effort and the integration of this technique into the library 

system. 



CHAPTER 6 

Evaluation of Selected Components 

After retrieving a sample of component descriptors that are closely re

lated to the given query, there is a need to reduce the amount of reuser effort by 

helping the reuser select the component that would require the least amount of 

e:ff ort to reuse. 

A software component, like any object, may have several intrinsic properties to 

consider during an evaluation of any kind. A book has properties other than those 

related to the information it carries such as size, weight, thkkness; cover type, 

cover design, paper texture, paper color, number of pages, number of chapters, 

and font type. These latter are 'inherent attributes'. For the typical library user, 

these attributes are usually not relevant. For an editorial house, attributes such as 

number of chapters or number of pages may be more relevant. For the print shop, 

attributes like paper texture, paper color, and font type would be more relevant. 

For the marketing division, cover type and cover design may be the most relevant. 

For an engineer designing library book shelves, weight, size, and thickness are very 

important. 

Attempting to provide all inherent attributes for each book to satisfy any 

type of potential user of the book would be impractical. Catalog cards with all 

that information would be very expensive to produce. Books in libraries are in

tended to be used by library clients; thus only the information important to them 

is highlighted, leaving aside less relevant attributes. 

If a library user were planning to take a book on a trip and found two books 

with the same title and same author listed in the catalog, then he or she would 

look in the catalog cards for information regarding traveling requirements such as 

117 



118 

size, weigJl.t_, and cover type. Both books meet the content requirements, but the 

user wants to know if there are any differences in these inherent attributes that are 

relevant for traveling and if these are the only attributes relevant for traveling. 

We can carry this example even further, to the hypothetical case of a writer 

wanting to reuse chapters, sections, or paragraphs from previous work on a given 

subject area to write a book. In this case, the reuser would collect the materials 

that meet the content requirements, and evaluate them on their reusability-related 

attributes such as average size of paragraphs, writing style, and difficulty of subject 

area. This evaluation would be completed by reading through each book, then 

selecting the best for the objective--a time consuming process based on subjective 

evaluation. 

What would happen if there were a large number of items to be evalu~ted? 

How would cognitive strain affect the evaluation process? These are the questions 

faced by a software reuser when attempting to select among several functionally 

and environmentally compatible components. Which inherent attributes should be 

considered for differentiating among similar components? Can these attributes be 

used to estimate reusability effort? 

One of the objectives of this chapter is to define the minimum number of 

inherent attributes that can be used to discriminate among similar components 

(assuming the point of view of the software reuser) and to estimate reusability 
-

effort. Another objective is to formalize the evaluation process in order to minimize 

cognitive strain. The approach presented here ranks the selected sample in order 

of potential reusability based on multi-dimensional evaluation. Reusability-related 

attributes of each component are rated and weighted and the sample is ranked. 

In the first section, evidence is presented that a small set of attributes may 

be used as discriminators and as estimators for reusability effort. The next section 

shows how to conduct a typical multi-dimensional evaluation and how this process 



119 

can be_m9dified to make it partially automatic. The la.st section introduces fuzzy 

set concepts as a normalization technique for the dimensions considered during 

evaluation. 

Reusability Related Attributes 

Evidence is shown in this section that program size, program structure, the 

programming language used, program documentation, and reuser experience play 

an important role in program understanding and in program adaptation. These are 

the reuse effort estimators, and they are a sufficient set of attributes for differenti

ating among functionally and environmentally identical components. 

This research starts from the premise that program understandability and 

program maintainability are parallel concepts (i.e., the more difficult a program is 

to understand, the more difficult it is to maintain). Since maintenance staff must 

ultimately go to the source program, it would be desirable to quantify the relative 

magnitude of the task throtigh an analysis solely of the attributes of the program. 

Evidence gathered on the validity of the proposed attributes comes mainly from 

empirical studies (referenced below) in the area of program maintenance. 

The criteria for selection of these attributes were: 

• Widely verified and assessed a.s reliable metrics, at least at the module level. 

• Objective. 

• Ea.sy to define and ea.sy to calculate. -

• Directly related to program understanding and adaptation. 

For the proposed software library system, metric simplicity is important in 

reducing manual measurement effort." A large variety of programming styles and 

programming languages are expected in the collection, making automatic measure

ment of the metrics impractical if not impossible. 



120 

Program Size 

At the macro level (i.e., large programs), program size has been used as the 

basic estimator for programming effort and as an indicator of program complex

ity. Several ·software estimation models are based on program size. In Bohem's 

Constructive Cost Model (COCOMO) [BOEH81], for example, most estimating 

equations are based on the expected number of lines of code. Programming effort 

in man months (MM) is computed by the equation: 

1fM: = 2.4(KDSI) 1
·
06 

where KDSI stands for "thousands of delivered source instructions". Total devel

opment time (TDEV) is also a function of size: 

TDEV = 2.5(MM)0
·
38 = 2.504(KDSI)0

·
4 

In Walston & Felix's model [WALS77], effort (E) in man months is also a 

function of program size (L) in thousands of lines of code: E = 5.2(L)0·91 • 

These empirical equations -~e derived from the analysis of several development 

projects. Many variations of these equations are proposed for different size projects. 

Size, therefore, is an important factor in estimating programming effort at the macro 

level. Programming effort-is also related to program understanding and to program 

difficulty. At the macro level, project difficulty and size are usually correlated. 

At the micro level, we have Halstead's software metrics [HALS77, HALS79]. 

He proposes the idea that there are some basic relationships between the number of 

unique operators and operands we use in solving a problem and the eventual effort 

and time required for development. Here, size is measured in terms of operands and 

operators. The model transcends methodology and environmental factors. There 

have been several studies that support these metrics as reasonable approximations of 

what they purport to measure. Most of these experimental tests deal with programs 



121 

or algorithms of module size rather than with entire systems. Halstead's metrics 

have been used mainly for comparison and evaluation of different implementations 

of the same algorithm. 

In the -language of software science, the measurable properties of programs 

are: 

ni = Number of distinct operators, 

n 2 = Number of distinct operands, 

Ni = Total occurrences of the operators, 

N 2 = Total occurrences of the operands 

The size of the vocabulary is defined to be n = ni + n2 and the length of the 

program to be N =Ni +N2 • A suitable metric for the size of any implementation of 

an algorithm is called the program volume V = N log2 n. Equations for program

ming effort and programming time are derived as functions of program volume V. 

Assuming that the implementation of an algorithm consists of N selections from a 

vocabulary of n elements and that the selection is non-random, the effort required 

to generate a program is V mental comparisons. Each mental comparison requires 

a number of elementary mental discriminations where this number is a measure of 

the difficulty D of the task. D is measured as the ratio of the given implementation 

volume V to what would be considered the volume of the abstract·· representation 

of that implementation in a given language. It is called "potential volume" (V*). 

Thus, the total number of elementary mental discriminations E required to gen

erate a given program should be E = V* D = V2 /V*. This says that the mental 

effort required to implement any algorithm with a given potential volume should 

vary with the square of its volume in any language. 

Implementation time T is derived from the difficulty equation by considering, 

after [STR066], that humans perform between five and twenty mental discrimina

tions per second depending on the individual. Halstead ran some experiments to 



122 

determi~e the number of mental discriminations per second S that programmers can 

make and concluded that s = 18 is a reasonable number. Thus T = EI s = E /18. 

E has been used to measure program understanding effort. In [ CURT79b], it 

was concluded that Halstead's Eis related to the difficulty programmers experience 

in locating errors in code. It was suggested that "E may be used in providing 

feedback to programmers about the complexity of the code they have developed." 

Gordon [GORD79] has conducted a very detailed investigation to validate the use 

of E as a measure of clarity. He concludes that programming effort properly reflects 

"comprehension effort", the effort required to understand a given program. 

Use of E as a reusability effort metric is very attractive. Computation of E, 

however, is difficult and language dependent; thus it would violate our proposed 

criteria of metric simplicity. Feuer and Foulkes [FEUE79] reported a strong corre

lation (.94) between E and statement count in a sample of 197 PL/I programs with 

an average size of 54 statements. Sunohara, et al. [SUN081] have shown a high 

correlation between the number of source lines and other, more complex metrics. 

There is strong evidence that program size is a good estimator for E and, 

given the relationship between program complexity and programming understand

ing, program size may also be a valid estimator for reusability effort. To meet the 

objective of computational simplicity, program size can be measured as the number 

of executable statements in a program. This includes declarative statements. 

In a broad study by Evangelist [EVAN83] that relates complexity metrics to 

program structuring rules, Evangelist concludes that 

... in terms of the categories represented in this analysis, none of the metrics 
performs better than the number of program statements metric. 



123 

F'rogra.IIl Structure 

The structure of a program is often a good indicator of whether a program is 

well-designed, understandable, and easy to modify. Structure measures are often 

proposed as measures of the complexity of the product. At the macro level, struc

ture of a system or of part of it, is the arrangement of its modules. A measure of 

structure depends on the level of modularization and on the interface complexity 

among modules. 

Program or system understanding is related to appropriate levels of modular

ization. Woodfield, Dunsmore, and Shen [WOODS I] show evidence that programs 

are difficult to understand when they are highly monolithic and when they are 

highly modularized in a structure that is not well-defined. They found the best 

program understanding results in programs observing "useful" (i.e., reasonable) 

modularization under one logical structure. 

One metric for a useful modularization, which is equivalent to measuring 

structure complexity at the mac_ro level is Gilb's modularity and relative complexity 

[GILB 7 7]. Modularity M is just a count on the number of modules, and relative 

complexity Re is 
Re = number of module linkages 

number of modules 

where module linkages are the number of resources (e.g., arguments, data, and 

functions) that flow between the modules of a program. To measure useful modu

larization, this dissertation proposes a modularity index 

M 
Mr=

S 

where Sis program size. M1 helps to differentiate reasonably modularized programs 

from those that are not. Examples of the latter are small programs with many 

modules or large programs with few modules. 



124 

At_ th_e micro level, the simplest control structure metric is the number of 

decisions as measured by the number of constructs that represent branches in the 

flow of control, such as i/ then else or while do statements [BASI80]. There is a 

basic belief that the more control-flow branching there is in a program, the more 

complex it is. A variation of this measure is the relative percentage of control

flow branching, i.e., the number of decisions divided by the number of executable 

statements. Early studies by Aron [ARON69] showed that varying levels of this 

type of complexity could account for a nine to one difference in productivity. 

A more refined measure of control complexity is cyclomatic complexity as 

proposed by McCabe [MCCA76]. The cyclomatic complexity of a graph V(G) is 

defined as the number of edges minus the number of nodes plus twice the number 

of connected components 

V ( G) = ~ edges - ~ nodes + 2 (~ connected components) 

and is equal to the minim~m number of basic paths from which all other paths 

may be constructed. Given a prc;>gram in which all statements are on a path from 

the entry node to an exit node, the cyclomatic complexity can be defined as the 

number of predicates plus the number of segments. A predicate is defined as a 

simple Boolean expression- governing the flow of control, and a segment is defined 

as an individual routine, procedure, or function. 

The measure originated as a count of the minimum number of program paths 

to be tested. This is one quantitative measure of a program's complexity. The 

measure is usually applied at the module level, and McCabe proposed a cyclomatic 

complexity of 10 as an upper bound for the safe range of module complexity. 

Other measures of control complexity involve the weighting of various types of 

control structures as to whether they are simple or complex, where 'simple' means 

easy to read and easy to understand based on the graph structure. For example, 



125 

single-ent_ry, single-exit program graphs containing a single predicate node are eas

ier to understand and to abstract from than more complicated graph structures. 

Thus, one approach would be to weight various graph structures based upon this 

complexity. This type of measure requires a more detailed analysis of the program 

structure than does the cyclomatic complexity measure, but it tends to be a deeper 

measure of control flow and can include other complexity factors, such as nesting 

level. One such measure is "essential complexity", which assigns a complexity of 

one to every program using only structured programming control structures. 

For single module programs, cyclomatic complexity measure may be computed 

using 

V(G) =ll+l 

where ll is the number of logical conditions in the program. This metric is com

puted simply by counting the number of conditional statements. The assumption 

that library components are singl~entry, single-exit modules may be considered as 

true in most cases. 

High correlation of this simpler version of the metric with program struc

ture is reported in [EVAN83, CURT79b, GORD79J. In all three experiments, 

McCabe's V { G) is only one of the indicators of program structure. Other factors 

such as programming style, the structuring rules used, and documentation must be 

considered for a better indication of program structure. The cyclomatic number, 

however, is a good indicator of program complexity; "an indicator of the difficulty 

programmers experience in locating errors in code" [ CURT79bJ. Statistically, the 

cyclomatic number correlates very highly with program size (.83 in [SUNOS 1 J, .97 

in [BASI84], and .95 in (FEUE79]). 

It was found by the experiments conducted in this thesis that, although com

plexity and size are correlated, in 90% of the cases any two programs of approxi

mately the same size had different cyclomatic numbers, and any two programs with 



126 

about the same cyclomatic number had different sizes. Therefore, program size and 

cyclomatic number perform roles both in estimating reuse effort and in diff erenti

ating attributes for similar components. Program size and program complexity are 

therefore two potential reuse metrics that complement each other. 

Documentation 

Documentation plays an important role in program understanding as discussed 

in [ B ROO 7 8]. Documentation has two main objectives: 

1. To bridge know ledge domains. 

2. To provide information about a domain. 

There are two kinds of documentation used to describe programs: interned 

and external. Internal documentation is internal to the program text. There are 

eight types of internal documentation [ B ROO 7 8] . 

1. Prologue comments, including data and variable dictionaries. 

2. Variable, structure, procedure and label names. 

3. Declarations of data divisions. 

4. Interline comments. 

5. Indentation. 

6. Subroutine or module structure. 

7. I/ 0 formats, headers, and device or channel assignments. -

8. Action of statements, including organization. 

External documentation is basically development information including a his

tory of refinements. It may be presented at the following levels: 

S A LEVEL Specification document, requirement analysis document (e.g., SADT 

and DeMarco). 



127 

DESIGN LEVEL Structured design charts, PDL, flowcharts, MIL descriptions. 

CODE LEVEL Cross reference listings (modules and/ or variables), available ref
erences to algorithms used, samples and explanation of code exe
cution and/ or I/ 0 data, error dictionary, data dictionary. 

OPERATIONS User manual, performance data (speed, memory requirements, ac
curacy, reliability), I/ 0 data restrictions (type, size, number), in
terface requirements (OS, hardware), inter-version incompatibil
ities. 

Internal Documentation 

Some of the eight internal types of documentation proposed are not relevant 

to program understanding. Weissman [WEIS7 4], for example, reports that inter

line comments in programs did not significantly aid program understanding and 

significantly degraded performance in the hand-simulated tasks. There is evidence 

[SOL083, JEFFS I, CURT83] that program understanding, in particular by ex-

perienced programmers, results from recognizing familiar structures in programs 

in the form of "schemes" .. H schemes are contaminated with interline comments, 

they become more difficult to recognize. Weissman also reports an improved un

derstanding of programs due to use of structured control constructs. 

Indentation contributes partially to program understanding as reported in 

[MIAR83, \VEIS74]. Proper labeling of procedures and proper variable nam

ing contributes to program understanding, but source code paragraphing does not 

(LOVE77]. 

There is no specific evidence on how I/ 0 formats, source statements, and data 

dictionaries contribute to program understanding other than general recommenda

tions on accurate and useful comments. 



128 

Extern_al pocumentation 

Documentation at the design and requirements levels contribute substantially 

to program understanding. Requirements documents usually explains what the 

program is intended to do and its scope of operation. A design document usually 

explains how a program is implemented and presents a structure chart. Design and 

requirements documentation usually direct programmers to the appropriate places 

in code for identification of schemes. 

Selby [ S ELB 8 5 J conducted some empirical studies to demonstrate that code 

reading is a significantly more powerful technique for software defect detection than 

functional or structural testing. He reports that through code reading, programmers 

were able to understand the program faster and better. For effective code reading., 

programmers relied heavily on design information to increase understanding speed. 

Another problem with documentation as related to program understanding is 

that the reuser is left to decide which documentation to examine first, that is, the 

reuser must determine which level of documentation is more relevant for reusability 

purposes. H there are no clues where to look first, he may be overwhelmed by the 

amount of information provided in the documentation thus increasing the cognitive 

strain problem discussed before. With more decisions to make and more information 

to examine, reuse becomes less attractive. 

An exhaustively documented program, if not examined at the right level or 

if examined top-down, may cause the reuser to look at unnecessary information. 

In [HOGA80] it is shown that the order in which information is presented can 

produce "primacy" or "recency" effects. That is, when a number of items of infor

mation are presented, sometimes the earlier documents dominate the individual's 

final opinion (primacy) and sometimes the latter (recency). In addition to primacy 

or recency effects, having too much information can reduce the consistency of a 



129 

person's j~dgment. Care must be observed in providing the right amount and type 

of documentation. Irrelevant documentation should not be included if reusability 

is in mind. 

Program documentation, both internal and external, is an important factor in 

understanding code. The problem is choosing the metric for measuring documen

tation. Several software catalogs like [APPL83] have used a subjective rating on 

overall documentation for their listed programs effectively. In this thesis, a similar 

approach has been taken. Code documentation is. given an overall score between O 

(lowest) and 10 (highest) based on the following general criteria. 

For a score of 5 (i.e., average), a program must meet the following minimum 

requirements: 

• Availability of design documentation. 

• Availability of requirements documentation. 

• Use of structured control constructs. 

• Prologue comments on module functionality. 

• Indentation. 

• Proper labeling and variable naming. 

Any deviation from the minimum shifts the score up or down accordingly. A 

program, for example, satisfying minimum requirements and with excellent docu

mentation quality would bring the score up to 7 or 8. A program may miss some 

of the minimum requirements but make it up by showing excellence on the rest. 

This approach is somewhat subjective but the simplicity of the metric is very 

important. Attempting to define an objective measure of documentation based 

on quantifying the several attributes possible to consider (e.g., writing style, line 

spacing, content, clarity and succinctn.ess) would be impractical for the purposes of 

reusability. The proposed metric for documentation is, therefore, a quality scoring 

between 0 and 10. 



130 

Progra!l!ming Language 

The programming language used is another important factor in estimating 

code reuse effort. A library of software components as proposed in this thesis is 

expected to have components written in different programming languages. There 

is a need to define a metric to estimate the conversion effort from one language to 

another based on language attributes. This metric may also help to differentiate 

among similar components. Two components may have, for example, the same 

complexity and size but be written in different programming languages. A metric 

that estimates the conversion effort would show the difference between the two 

components. 

The programming language used is considered an inherent attribute of soft-:

ware components rather than a major facet in our classification scheme. It. can 

be used to estimate the reusability effort. The programming language used does 

not determine the functionality or environment. Although some clues about the 

environment where a software component is used could be derived from the pro

gramming language, the spread of computer applications has diffused the intended 

objective of domain specific programming languages. No longer are all business ap

plications written in Cobol. Fortran, Basic, and Pascal are widely used in business 

applications as well. 

The objective is to find the set of programming language features that are con

sidered when translating from one programming language to another. Programming 

language surveys like (SAMM69, HOR083c] and language comparison studies like 

[SHAW81, HOR083b, BOOM80] show that the most relevant attributes for pro

gram.ming languages are the ones that reflect their most fundamental differences like 

imperative vs. applicative. Ability to recognize such attribut_es is very important 

for program conversion from one language to another. 



131 

Th_e~ up.iverse of existing programming languages can be divided, as proposed 
• .. 

in [HOR083bJ, in two major classes: imperative and applicative. Our immediate 

concern for a library of reusable components is the use of existing software. Most 

existing software is written in imperative programming languages, therefore, we 

concentrate on language features characteristic of imperative languages. 

A partial list of programming languages features is: 

• Structure Support (type of flow structuring constructs used) 

• Data Abstraction Support 

• Typing 

• I/O Power and Simplicity 

• Recursiveness 

• Compiled vs. Interpreted 

• Separate Compilation 

• Types of Parameter Passing 

• Number of Reserved Words 

• Comment Support 

Based on a selected subset of programming language features, is it possible to 

estimate how difficult it is to translate from one programming language to another? 

To answer this question, analysis of the translation process is_ necessary. During 

reusability, a reuser will attempt to convert a program written in source language A 

to target language B. The natural approach is to minimize the conversion effort by 

mapping constructs in language A into constructs in language B on a line by line (or 

'chunk' by 'chunk') basis keeping as much as possible of the program structure. This 

implies that some features of the target language will not be optimally used and that 

several constructs that are characteristic of the source language will be 'literally' 



132 

translated into the target language. Translating from a source language that closely 

resembles features of the target language is more effective than translating from a 

language with very different features. What the reuser is actually doing is simulating 

the features of the source language with the target language. To convert an existing 

Fortran (source) program to Pascal (target) for example, the reusers would look 

for Fortran-like constructs available in Pascal before attempting any abstraction

specialization cycle. 

With these considerations, a more natural 'closeness' measurement results 

when a given source language's relevant attributes are selected and ranked and the 

target languages are measured against these attributes. For example, Cobol's main 

features are: 

1. I/O Interface 

2. Data Structure Specification 

3. Strong Typing 

4. English-like Syntax 

Distances from Cobol are defined along each feature for each language. For feature 

1, Fortran is very close, Basic and Pascal are somehow farther and Algol may be the 

farthest; for feature 2, Pascal and Ada are closer than Fortran; for feature 3, Pascal 

is much closer than Algol; and for feature 4, Ada is much closer than Basic. The 

total distance between Fortran (the target) and Cobol (the source,) for example, 

would be the sum of all the distances for all the features. 

A simplified way to implement this approach is to define a closeness matrix C 

· of size I x J. I is the size of the set { F} of programming language features consid

ered, and J is the size of the set of l~guages { L} used in the library components. 

Each matrix element ri; is a rating of language li along feature /; in a predefined 

scale as shown below. 



133 

{F} {L} 
l1 l2 l. l; l, lJ 

Ii ru ru ri. r1; ru ru 

'2 T21 T22 r2. r2; r21 T2J 

ft ril rt; TiJ 

fr TIJ 

The rating is used to determine where a particular language is in relation to the 

other languages along each feature. (For this study, a scale from 0 to 100 relative 

points was selected.) 

The closeness C,, of a target language l, to a source language l. is computed 

by 

C,. = {t(rit -r;,) \fr;, s; r,1} + {t w;(r11 - r;,) \Ir;, > r;1} 

•=1 •=1 

where w1 is the retroactive conversion factor to compensate for conversion from a 

'less powerful' language to a 'more powerful' language. 

Analyzing the conversion mechanism in more detail reveals that a more pow

erful programming language may simulate most of the features of a less powerful 

language but not vice versa. For example, if the target language is Pascal and an 

available module is written -in Basic, then the new Pascal module can be constructed 

in a line-by-line translation process because most Basic statements can be written 
-

directly to Pascal. The specialized I/ 0 statements that are usually more powerful 

in Basic can not be translated directly into Pascal. Translating from Pascal to 

Basic would not be as direct. Usually Basic does not have powerful enough control 

and structure statements nor the data typing capability needed to perform a line

by-line translation. Most Pascal statements would be simulated by groups of Basic 

statements, thus making a direct translation from Pascal to Basic more difficult. 

We can extend this argument to translation between very distant languages like 



134 

FEATURES·· LANGUAGES 
Fort IV Basic Fort77 Cobol Pascal c Smallgol 

Structure Support 35 20 80 75 95 93 90 
1/0 Power 85 50 90 92 35 92 40 
1/0 Simplicity 30 90 40 70 75 80 95 
Comment Support 50 55 55 80 78 60 50 
Typing 78 60 75 80 95 90 90 

Table 6.1: A Programming Language Closeness Matrix 

Pascal and Assembly and to translation between very close ones like Fortran IV 

and Fortran 77. 

Two major advantages of this feature rating approach are expandability and 

flexibility. New features and more languages can be added with relative ease. Rating 

values can be adjusted for fine tuning to the environment where the library system 

is to be used. Table 6.1 shows the closeness matrix derived by the author and used 

in the prototype library system proposed in this thesis. For this matrix, a global 

retroactive conversion factor of -1.5 was used for all features. ff, for example, 

Pascal were the target language, _then for structure support: 

Pascal - C = 95 - 93 = 2, Pascal - Basic = 95 - 20 = 75, etc. 

for I/ 0 power: 

Pascal - C = 35 - 92 = (-57) x (-1.5) = 85, 

Pascal - Ba.sic= 35 - 50 = (-15) x (-1.5) = 22.5, etc. 

The final rating for this example is shown in figure 6.1. It shows the relative close

ness of each language to Pa.seal. This distance may be interpreted as a relative 

estimator of the translation effort. Translating from C to Pascal implies, as shown, 

relatively less effort than translating from Fortran IV to Pascal. The major con

tributing factor to the relatively larger separation between Fortran IV and Pascal is 

the difficulty in changing the powerful and highly specific Fortran I/O statements. 



Pascal -
I 

Smallgol 
I 

C Cobol 
I I 

135 

Basic Fort77 FortIV 
I I 

+------+------+------+------+------+------+------+------+------+------+ 
0 26 60 76 100 126 160 176 200 226 250 

Figure 6.1: Relative Closeness to Target Language Pascal 

This approach for a language closeness metric is relatively simple and objec

tive. It is based on the premise that programming languages have well-defined 

features which can be used to differentiate them. 

User Experience 

User experience is a very important factor in program understanding. Jeffries, et 

al. [ JEFF81] and Shneiderman [SHNE77] confirm that more experienced program-

mers understand programs faster than novices. Programmer experience however is 

usually confined to certain languages and domains of application. It is reported in 

[SELB85] that experienced programmers had similar difficulty as novices in under

standing programs wr~tten in an unfamiliar language. 

Soloway [SOL083b] reports that programming language characteristics defi

nitely affect programmer "cognitive" strategies in programming and in code under

standing. It was observed that experienced programmers relied more on language 

characteristics than novices for program understanding. 

Mainly at the system structure level, experience in an application domain is 

also a contributing factor in program understanding. At the design level, analysts 

with more experience in the domain of the application performed better in design 

understanding than analysts with similar levels of experience in programming and 

design but in a different domain of application [ JEFF81]. 

How can user experience be measured? An experienced programmer will have 



136 

an over~l_l advantage in reusing a software component over a novice programmer. 

A precise and objective metric is difficult to define. For the purpose of this work, 

however, the experience level for a programmer was divided into two areas: pro

gramming language experience and domain of application experience. A level of 

experience was assigned for each programming language with which the program

mer was familiar and a level of experience for each familiar area of application. 

Levels of experience were defined and rated as: 

10 8 6 4 2 
Expert Advanced Intermediate Knowledgeable Novice 

0 

Ignorant 

Each reuser of the library system is assigned a reuser profile that defines his or 

her level of expertise in a set of programming languages and domains of application. 

The reuser profile influences the values of all the other program attributes. A rel:lser 

with a higher reuse profile would require less effort to reuse a given program than 

a reuser with low profile. Attribute values for a given program are modified by the 

reuser profile. The next sections discuss how the reuser profile interacts with the 

other program attributes to estimate reusability effort. 

Conclusion 

In this section we have proposed five program attributes as the most relevant indi

cators of reuse effort and a metric for each: 

PROGRAM SIZE Lines of code. 

PROGRAM STRUCTURE Number of modules, number of linkages, and cyclo
matic complexity. 

PROGRAM DOCUMENTATION Subjective overall rating (1to10). 

PROGRAMMING LAN GU AGE Relative language closeness. 

REUSER EXPERIENCE Six levels in two areas: programming language and 
domain of application. 



137 

For each attribute, substantial evidence of its validity as a reuse effort esti

mator was presented and its metric selection was discussed. 

Multi-dimensional Evaluation 

Multi-dimensional evaluation is a method widely used in decision theory. 

It is used for evaluation and selection of feasible alternatives to a given decision 

problem. The core of the method is the utility function which assigns utility values 

to the factors involved in the decision. One typical technique (KAHN82J consists in 

assigning "worth" values to the factors considered when making a decision. Some 

attributes for a class of entities may be more relevant than others. Thus, the worth 

value of an attribute (usually represented as a numerical weight) is its degree of 

relevance for the particular selection problem considered. 

Athey (ATHE82] has developed a systematic approach for the selection prob

lem. Evaluation attributes are selected first. When selecting a car, price, safety, 

economy, size, and power may be some of the most relevant attributes. When 

selecting a university, tuition costs, prestige, and location may be the relevant at

tributes. Attributes are treated as dimensions for evaluation, and each one is rated 

according to its "relative worth" for the problem solution. A preference chart is 

constructed to compare each dimension with each of the other dimensions, one at 

a time. The outcome is a ranked list of dimensions based on their relevance to the 

particular selection problem. Tuition costs may be more important than prestige 

for a student with a limited budget, while prestige may rank highest for a student 

. with no financial problems. 

After all the dimensions are r.anked by relevance to the problem, a "util

ity function" is defined for each dimension. It is necessary to specify the relative 

desirability of different levels of performance in each of the selected dimensions. 



138 

CRITERIA NORMALIZED UTILITY RATING 

0 1 3 4 6 6 7 8 g 10 

Tuition CostJ 10k 7k 6k 
($/year) 

4k 3k 2k 1.6k 1k 600 300 100 

Location East Mid South North West Nrtrn Soutrn San LA OC Irvine 
Cst. West East West Cst. "calit Calit Diego 

Figure 6.2: Two Hypothetical Utility Functions 

Explicit measures of performance are defined. Each dimension is assigned a nor

malized score, usually from 0 to 10, according to its "desired" performance. For 

example, tuition costs in the university selection case, could be rated from low to 

medium to high. A low score would be given to high tuition costs while a high score 

to low tuition costs. The extreme or boundary values for each attribute are given 

from the constraints or initial conditions of the problem. The student selecting a 

university may have a restricted budget that determines the maximum that can be 

spent on education. Two hypothetical system utility functions for the university 

selection problem are shown in figure 6.2. 

The final step is to evaluate each candidate based on the criteria established 

by rating them along each dimension. The score is multiplied by the relative worth 

of the dimension and the weights are added. The best one will be the alternative 

with the highest score. 

We use this methodology to select the best from a sample of functionally 

similar components. The criteria are the four attributes: program size, program 

structure, program documentation, and programming language. Selection of these 

four attributes, as mentioned earlier, was based on their relevance to code reuse 

and their properties as code reuse effort estimators. All four are considered equally 

relevant for the purpose of this study. Although, under certain circumstances, some 



REUSE EFFORT UTILITY FUNCTION 

Component Size 6 10 16 
(lines of code) 

20 30 50 80 120 200 300 

rela- EXPERT 10 10 10 
tive 
worth NOVICE 10 9 8 

g 

7 

8 

6 

5 3 2 

3 2 1 

Figure 6.3: Two Reuse Effort Utility Functions 

1 0 

0 0 

139 

differences in their relevance to the reuser could exist, the differences are minor and 

do not seem to affect the selection process. Therefore, no ranking of dimensions 

was done. 

The next step was to derive utility functions for each attribute. Utility func..;· 

tions are derived each time an evaluation process is conducted. Utility functions 

are dependent on the user and the situation. The main modifier of the utility 

function is reuser experience in both the programming language and the domain 

of application. Intuitively, an expert reuser may invest less effort in understanding 

a relatively complex program than a novice reuser. For an expert reuser, a par

ticularly high complexity measure may have less weight than for a novice. Two 

hypothetical reuse effort utility functions to rate program size for different levels of 

expertise are shown in figure 6.3. 

Deriving utility functions each time a sample of functionally equivalent com

ponents is retrieved is a time consuming effort that could easily offset the benefit 

of reusability. An approach to mechanically derive utility functions for given reuser 

profiles and reuse situations is needed. 

The first step towards a mechanized approach is to define the ideal criterion 

that minimizes reuse effort for each of the four attributes defined so that a general 

attribute can be defined. The best component for reusability (i.e., the one that 



would reqµire the least amount of effort to be reused) would be one with: 

Size 
Structure 
Prog. Lang. 
Documentation 

small 
simple 
same (i.e., closeness = 0) 
excellent (i.e. rating = 10) 

140 

Each reuser has particular criteria, based mainly on experience, for determin

ing what is meant by small, simple, and excellently documented. In some cases, 

what is considered the same programming language differs from having the same 

ancestor (e.g., members of the Algol family), to being dialects of the same language 

(e.g., Fortran IV and Fortran 77) or versions of the same dialect (i.e. Basic Plus on 

PDPll/70 and Basic Plus on Prime 250). 

One approach is to define a reuser experience profile and determine how these 

criteria change with level of experience. Since these criteria do not have precise 

values, and are, therefore, fuzzy concepts, Fuzzy Set Theory is used to evaluate 

them. 

Conclusion 

A systematic evaluation methodology for the selection of equivalent alterna

tives has been presented. This methodology is applied to the selection of func-
--

tionally feasible components by identifying four evaluation attributes and defining 

a comparison criterion for each. Utility functions may be derived based on these 

criteria. 

Dimensional Normalization with Fuzzy Sets 

In this section, the concepts of fuzzy logic and fuzzy sets and functions are 

introduced. Fuzzy functions and function modifiers are used in this work to deter

mine the degree of membership a given component has in each of the four reuse 



141 

effort a~~ributes. Reuser experience functions are used as modifiers for the attribute 

functions. 

Fuzzy Logic Concepts 

When making decisions, computers usually compare attributes that have pre

cise values: Is the height over 5. 7'? Is the temperature in excess of 72.3° F? Humans 

do not generally reason in such a precise manner. Rather, most humans reason in 

categories with fuzzy boundaries: John is short, today's temperature is pleasant, 

or a short program is easier to understand than a large program. Fuzzy logic, thus, 

is: 

. . . a kind of logic using graded or qualified statements rather than ones 
that are strictly true or false. [ZADE84] 

Fuzzy sets are a concept that can bring the reasoning used by computers 

closer to that used by people. Whereas a conventional, or "crisp", set has sharp 

boundaries, the transition between membership and nonmembership in a fuzzy set 

is gradual rather than sharp. ~e degree of membership is specified by a number 

between 1 (full member) and 0 (full nonmember). 

A fuzzy set is a class with fuzzy boundaries like the classes of expensive cars, 

small numbers, high mountains, or blond men or women. Such a class may be 

characterized by associating a grade of membership in the class with every object 

that could be in the class. For our evaluation problem, the caooidate components 

will be associated to the class 'small' when looking at size, to the class 'simple' 

when looking at structure and so on. A 20-lines-long component, for example, 

may have a degree of membership in the 'small components' class of perhaps .7 

while a 40-lines-long component may belong only .4 to the set. 

A fuzzy set is an association between numbers, a correspondence that assigns 

to a given value one and only one number in the unit interval. Each element Zi of 



142 

a fuzzy s.et Z is defined as an ordered pair 

z1 = (v1, m1) 

where v1 is a_ value in the range of values that Z represents, and m1 is a value in 

the unit interval [O, 1]. If Z denotes 'small program' in number of lines in source 

code then 

smallprogram : lines-+ [O, 1] 

A fuzzy set is actually a function that maps a set of values in a given domain to 

the interval [ O, 1]. So, if 

Z = {(vi, m1), (v2, m2), ... , (v,, m,), ... , (vr, mr)} 

then a fuzzy function f z ( x) for the set Z is defined as 

fz: V-+ M 

where v; EV, m1 EM, M = [O, 1], v1 ::; x::; v1 , and 0::; Jz(x) ::; 1. 

Fuzzy functions that denot~ the concepts of small or large are considered to 

be S-shaped. There is experimental evidence [NORW82] that the fuzziness of a 

concept varies along an S-shaped curve. S-shaped curves for the 'small' concept 

are computed by the function 

1 - 2 (v~ )2 if 0 ::; x ::; vrf 2 

fz(x) = 2 (:, )2 if vr/2<x~vr 

0 otherwise 

Basically, the degree of membership is subjective in nature; it is a matter of 

definition rather than measurement. In this work, as mentioned before, the degree 

of membership depends on how reusers relate a particular metric value to a given 

class. This association depends on reuser experience. 



143 

Age 

Figure 6.4: Fuzzy Functions for Young and Old with Some Modifiers [ZADE84] 

Fuzzy Modifiers 

Fuzzy modifiers are 

... operations that change the membership function of a fuzzy set by 
spreading out the transition between full membership and nonmembership, by 
sharpening that transition, or by moving the position of the transition region. 
[ ZADE84J. 

Sharpening the transition is.usually accomplished by squaring the membership 

function and spreading out the transition is obtained by computing the square root 

of the membership function. These operations are called concentration and dilation 

respectively [RAGA 77]. 

Figure 6.4 shows the shapes of some fuzzy functions for the concepts "young" 

and "old", and their modifiers, "very young" , "more or less old", and "not very 

young" for the "age" domain with values in number of years. The "very young" 

transition curve is a concentration of the "young" membership function and the 

"moreM>r-less old" curve is the dilation of the "old" function. 

Reuser experience may be seen as a fuzzy modifier for the fuzzy functions 

of program attributes. Reuser experience can concentrate, dilate, or move the 

transition region of a program attribute's fuzzy function. Figure 6.5 illustrates 



144 

Small Component 

from a neutral perspective 

a novice programmer 
for an expert progranuner 

20 40 60 80 100 

lines of source code 

Figure 6.5: Reuser Experience as Modifier for Small Component 

a change in the transition region of the fuzzy function for the small component 

concept. 

Program structure and documentation quality are modified in the same f ash

ion as program size. In the case of documentation quality, what is modified is its 

overall relevance to program understanding. For an experienced programmer a high 

documentation quality-valu~ may contribute less to reuse effort than the same high 

rating has for a novice programmer. 

Programming language used is another function modifier for size and struc

ture. The concept of a small component may have different membership values for 

different programming languages used. For example, a large component in APL 

may have less lines of code than a small component in assembly language. Fig

ure 6.6 illustrates this 'idea for the small component concept for different languages 

as function of lines of code. 

Reuser experience was implemented in this work as a modifier for size, struc

ture, and documentation functions by moving the positions of the transition regions 

proportional to reuser experience. Fot the evaluation subsystem, the range spread 

was assumed to vary from one half to twice the normal range as illustrated in 

figure 6. 7 a. 



145 

Small Component 

1 

114 
1-f 
::z:: 
en 
~ 
~ 

I 
0 

10 100 

Lines of Code 

Figure 6.6: Programming Language as Modifier for Small Component 

Program Attribute 

1 regular reuser 

c:i.. 
novice reuser 

•r-1 
..c 
(J] 

an expert reuser 
~ 
QJ 

~ 
QJ 
s 

0 
q .Sr r 

range 
2.0r 

(a) 
2.0 

Utility Function 

reuser experience 

o.s~----------~..._----~~----
10 8 5 3 0 

expert advanced knowledgeable 
regular novice 

(b) 

Figure 6. 7: User Experience as Modifier for Attribute Functions 



146 

F!gure 6. 7b is a fuzzy function that maps experience level into a spread factor 

from .5 for beginners to 2.0 for experts. H we let R be range spread and x be reuser 

experience, then the curve in figure 6.7b is computed by: 

2 [1 - 2 ( 1~0·)2] if 5 ~ x ~ 10 

R= 2 [~ + (1~)2] if 0 ~ x < 5 

0 otherwise 

A direct mapping from reuser experience to degree of membership for a given 

reuse metric may also be computed. Figure 6.8 shows this mapping for a family of 

normalized curves (range r has been normalized to 1). This figure shows the curves 

for points where a fixed value of r (illustrated by point q in figure 6. 7a) crosses 

all membership curves generated from the spreading of a membership function a.S. 

computed from the reuser experience function of figure 6. 7b. 

If point q of figure 6.7a is assumed to be .3 then membership will change from 

about 0.35 to about 0.9 following the pattern of the curve marked .3 in figure 6.8 

Curve .3 results from plotting ·all cross over points (at q in figure 6.7a) for all 

membership curves generated by spreading the range of curves for all valid values 

of reuser experience ( x). 

This figure shows how to compute the change in relevance of the reuse metrics 

for different levels of reuser experience. The case illustrated in figure 6.8 has two 

components with size .6 and .5 of the established range. For an advanced reuser 

(e.g., value 8) the differential in membership for these two components is only 6% 

while for a knowledgeable user (e.g., value 4) this differential increases to 15%. For 

less experienced reusers, therefore, the evaluation subsystem is more sensitive to 

small differences in reuse metrics than for more experienced reusers. 

Using a generalized function as a modifier does not apply in the case of pro

gramming languages. To do so, a standard language would have to be defined 



147 

.8 

0. Normalized -1"'4 
..c .6 Spread CJl ,... 

Curves QJ 

~ 
QJ s .4 
QJ 
~ 

=' ,.c .,... ,... 
~ 
~ .2 < 

0 
0 2 4 6 8 10 

Reuser Experience 

Figure 6.8: Membership as Function of Reuser Experience 



148 

so a mell!b~rship function could be derived and then modified to fit different lan

guages in proportion to their closeness to the standard. There is no such thing as 

a standard language, so one fuzzy function has to be defined for each programming 

language used in the library system as shown in figure (6.6). It was assumed that in 

most programming (software development) environments the set of programming 

languages used is small. A set of fuzzy functions is derived for each programming 

language in use. One function for each reuse attribute (e.g., size, structure and 

documentation). 

Conclusion 

The contribution of this chapter is the development of a technique to evaluate 

a sample of functionally and environmentally equivalent components in order to 

select the best, that is, the component that required the lea.st effort to reuse. 

Four intrinsic attributes (program size, program structure, program docu

mentation, and programming la~guage) and one external factor (reuser experience) 

were identified as the most relevant for code reuse effort estimation. A metric for 

each was defined. A special case is the metric to for estimating programming lan

guage conversion effort. This metric is based on a comparative rating of conversion 

related features for the imperative languages considered. The metric is a relative 

closeness measure. 

A multi-dimensional evaluation method was proposed. It requires defining 

utility functions for each attribute considered. Weights are computed for each 

component based on a normalized scale as a function of each metric. The best 

selection is the one with the highest score. 

Reuser experience is a major factor in shaping utility functions for the four 

attributes. Fuzzy functions were used as utility functions with reuser experience 



149 

as their modifier. Fuzzy logic is ideal for this application where subjective human 

judgment is involved. 

This evaluation technique based on fuzzy functions and modifiers has been 

implemented -and integrated into the library system as the evaluation subsystem of 

figure 5-3, box 5. Specific S-shaped fuzzy functions have been defined for attributes, 

programming languages, and reusers and tested in a limited environment. Chapter 

7 discusses the experimental results of some tests of this subsystem in particular 

and of the library system in general. 



CHAPTER 7 

Library System Evaluation 

Usefulness of a classification scheme is demonstrated by direct evaluation 

through implementation and testing. In library science, implementation may take 

many years, mainly because document collections take time to build up. Tests are 

conducted by surveying users on their opinion of library usefulness. How easy it 

is to find their documents? How easy it is to use the catalog? Librarians also 

participate in evaluating the classification scheme used. A certain library size is 

desired before conducting an evaluation. Success of classification sc~emes is due 

mainly to their capacity for adaptation rather than to the qualities of their original 

design. (MALT75] 

With a computerized library system, evaluation can be conducted continu

ously from the early stages of implementation. A highly adaptable scheme should 

prove useful, especially in very· dynamic collections. Evaluations at the prototype 

stage may prove essential for early modifications before committing to full imple

mentation. 

This chapter presents three evaluations of the prototype library system intro

duced in the previous chapters: 1) Retrieval effectiveness, 2) Effectiveness of the 

classification scheme, and 3) Reuse effort estimation. 

Retrieval effectiveness is tested by comparing its performance against that of 

a typical data base retrieval system not organized around a classification scheme. 

Effectiveness of the classification scheme is tested by asking reusers to classify pro

grams and compare their performance in classification (i.e., assigning the right pro

gram to the right class) against the performance of a professional librarian. This 

test also probes the scheme's ease of use. Reuse effort estimation is tested by asking 

150 



151 

reusers-tQ-_ e~timate reuse effort ranking a list of functionally equivalent components 
. . . -

from least to most reusable. The outcome is compared to that of the evaluation 

subsystem. Information on their evaluation process is analyzed and fed back to the 

evaluation subsystem. 

The results of these tests should be interpreted within the context of a proto

type system indicating what could be expected in a fully operational library system. 

The main difference between this prototype and an operational system would be 

the size of the collection. The procedural mechanisms would remain essentially the 

same. Given these circumstances, the· tests described are indicative of expected 

performance. 

Retrieval Effectiveness 

There are basically two tests of interest for evaluating the retrieval effective

ness of this library system: 

1. Does citation order in a query improve retrieval performance? We compare 

retrieval performance between queries denoting most relevant generalizations 

and queries that are not the most relevant generalizations. 

2. Is retrieval performance better with queries made of a selected set of con

ceptually related keys than with queries made of randomly ordered keys? 
-

We compare retrieval performance between a group of keys ordered by their 

conceptual distances and the same group of queries ordered randomly. 

Before discussing the experiments and their respective results, a tour of the 

retrieval process implemented in this library system is presented followed by a 

description of the criteria used for retrieval evaluation. 



152 

Making the Key 

The library system, using the classification schedules developed in Chapter 

5, guides the user in selecting the appropriate terms for the key. The objective is 

to make a complete key. There is one schedule for each facet, and each schedule is 

listed in a thesaurus format. 

Making the key is an interactive session started by a request from the reuser. 

The library system asks the reuser to select a representative term from the the

saurus of each facet until all six tenns that form the key have been selected. For 

example, if what the reuser is looking for is a component to: 'change backspaces 

to multiple lines', then the library system will prompt: 

Selecting---> function: Enter term change 

substitute replace/transliterate/convert/change/map/crypt/update 

exchange swap/trade 

2 entries match 1 change' SELECT ONE 

1 match •replac' GIVEN NAME: - substitute -

Enter term replac 

(w)rong (CR)ok 

The library system a.Sks the reuser to enter a term for the function facet. 

The reuser enters the word change. In this case, there are two entries where the 

word change appears in the classification schedule for the function facet: One 

in a group of terms that denote the concept of change in the context of substi

tute (i.e., replacement) and the other in the word exchange under the context of 

swapping. The request 'change backspaces to multiple lines' fits the replacement 

context better, so the representative term substitute is selected by the system 

upon acceptance by the reuser. 

Following the same dialogue format, the reuser is asked to provide and select 



153 

a term for each of the six facets. 

A -typical request, as the one illustrated here, usually does not specify all 

six facets. The dialogue is designed to make the reuser define a complete search 

key. When asked for an entry for a facet not originally specified, the reuser must 

provide an initial entry.1 In this example we assume the reuser is working on a 

text-formatting system; thus, the prompt is answered as: 

Selecting---> system-type: Enter term format 

1 match •format' GIVEN NAME: - text-formatter - (w)rong (CR)ok 

Functional-area and setting terms must also be defined. With a complete 

search key defined, the library system prompts options for key manipulation. The 

key can be modified or expanded. 

In key-modification mode, the key can be generalized or specialized. The 

generalization process consists of an orderly replacement of terms by the any meta

symbol { *} to obtain the more relevant generalizations of the completely defined 

key. More relevant generalizations consist on removing facets in the established 

citation order introduced in Chapter 4. For example, if the complete search key for 

the request above were defined as: 

substitute /backspaces/ file/ text-formatter/ program-development/ software-shop 

then the most relevant generalizations are: 

substitute/backspaces/file/text-formatter/program-development/* 
substitute/backspaces/file/text-formatter/*/* 
substitute/backspaces/file/*/*/* 
substitute/backspaces/*/*/*/* 
substitute/*/*/*/*/* 

1 Key modifications are made later in modifica.tion. mode. 



154 

Th~ specialization process consists of placing the original terms back into the 

key. Key generalization and specialization are conducted interactively by the reuser 

in any order or combination to generate the desired key. With a mechanism to 

modify keys such as this, the reuser is capable of testing different sample retrievals. 

In key-expansion mode, the selected (original or modified) key is used as 

a reference for creating new keys of closely related terms. The criteria for term 

selection is their conceptual distance from the reference term. Conceptual distances 

are calculated from the conceptual matrix presented in Chapter 5. Terms are 

ordered from closest to farthest in relation to the selected term. Each ranking 

step is called a conceptual level. Expansion can be requested for any facet where a 

term is present in the key and the range of the expansion can be increased as desired . 
.. 

Each expansion creates a new key. A five level expansion for substitute/backspaces 

is: 

substitute/ quotes 
substitute /blanks 
substitute/ digits 
substitute/tabs 
substitute/ characters 

Retrieval is executed by the library system only after the reuser confirms 

satisfaction with the resulting search key or with the set of expanded keys. In key 

expansion, the retrieval for each key is conducted in the same order as the expansion 

of the keys, that is, from conceptually closer to conceptually farther. 

Retrieval Evaluation 

In retrieval evaluation, two kinds of tests must be distinguished: those con

cerned with the system's effectiveness, and those concerned with the efficiency of 

the operations. The effectiveness of a retrieval system is the ability to furnish in

formation services that the users need. On the other hand, efficiency is a measure 



155 

of the cos~ or the time necessary to perform a given set of tasks. We are interested 

in effectiveness. In prototype systems, efficiency is usually not an issue until it is 

transformed into a production system. 

Retrieval effectiveness is directly related to the specificity and exhaustivity of 

the indexing language used. The classification schedules listed in Appendix B have 

a certain degree of specificity because of the vocabulary control imposed by the 

thesaurus. Vocabulary, when controlled by a thesaurus, as explained in Chapter 5, 

results in high specificity. 

An exhaustive indexing language contains terms covering all items named in 

the collection. In our prototype, schedule development by literary warrant, ensures 

that all components have a descriptor. As the collection grows, however, index 

exhaustivity could decrease if the schedules are not expanded accordingly. 

Retrieval effectiveness performance is usually measured by recall and precision 

[SALT83]. Recall is defined as the proportion of relevant material retrieved while 

precision is the proportion of retrieved material that is relevant as shown in fig

ure 7.1. A high level of indexing exhaustivity tends to ensure high recall by making 

it possible to retrieve most potentially relevant items. On the other hand, a highly 

specific indexing language ensures high precision since most retrieved items may be 

expected to be relevant. 

The concept of relevance is directly related to retrieval effectiveness. A care

fully selected citation order and a careful design of an indexing language improves 

recall and precision values in a retrieval system. 

Recall and precision measurements are used to compare retrieval performance 

of different retrieval systems on the same collection. For a given retrieval system, 

values of precision and recall are taken for different query sizes and their averages 

computed. The result is an average recall-precision curve for different size queries 

for each system compared. An ideal retrieval system would yield high precision 



Not Relevant Relevant 

'R R 

Sample r = A + B 

Recall = A/R 
Precision = A/r 

The Collection 

c = R + R 

r c: C 
AC R 
B c. R 

Figure 7.1: Recall and Precision in Retrieval 

156 

values for a wide range of recall values. Referring to figure 7.1, the size of B would 

be close to zero and A ~ R. Its average curve would be very close to the upper 

boundary of figure 7.2. 

After introducing how retrieval is conducted and how it is evaluated, two 

experiments are discussed: the effect of citation order and the effect of conceptual 

ordering on retrieval performance. 

The Effect of Citation- Order 

The effect of citation order on retrieval effectiveness was d~termined by com

paring the retrieval performance of queries made of the most relevant generalization 

of a complete query with the performance of queries made of partial generalizations 

of the same complete query. The most relevant generalization of a query always 

generalizes the least relevant term in the original query while a partial generaliza

tion may generalize any of the more relevant terms in the original query. If we 

assume a complete query to consist of the descriptor de = (vi, v2, v3), then the 



1 

.8 

.6 

PRECISION 

.4 

.2 

0 

narrow 
query 

• 2 .4 .6 

RECALL 

----------system P 

----system Q 

.8 

P better-than Q 

broad 
query 

1 

Figure 7.2: Use of Recall and Precision to Compare Retrieval Systems 

157 

most relevant generalization is d,,,,, = ( v1 , v2 , *) and a partial generalization may 

be dp =(vi, *, v3). 

An experiment was designed to compare the retrieval performance of both 

types of queries. The experiment was based on the concept that a sample re

trieved by a most relevant generalization of a given query is more relevant than 

a sample retrieved by a partial generalization of the same query. The experiment 

was conducted as follows: for a given request (e.g., change backspaces to multiple 

lines in a file), first a complete search key, as illustrated above, was defined (e.g., 

de = (substitute, backspaces, file)). Being a prototype library system, the size of 

the collection is limited. In order to have measurable samples, the size of the query 

was limited to the first three terms; those describing functionality. 

The complete collection C (figure 7.1) was then inspected in order to iden

tify the sets R and R for the given query. Identification of these sets was based 

on the author's interpretation of how close the descriptions in C matched the 



158 

original- q:µeey. With a defined position of the boundary between R and R in 

C, recall and precision were computed for d,,., and for a d,,. For the example 

de = (substitute, backspaces, file) the computed values based on the prototype 

collection of 150 descriptors (i.e., I C I= 150) were for dm: r = 1, A = 1, B = 0, 

R = 4, Recall = 0.25, and Precision = 1.0 and for d,,: r = 14, A = 4, B = 10, 

R = 4, Recall = 1.0, and Precision = 0.28. Below are shown the average values of 

u-ecall and precision for ten different queries analyzed by the outlined procedure. 

Recall 
Precision 

Most Relevant Partial 
Generalization Generalization 

0.5 0.8 
1.0 0.4 

Recall and precision values for retrieval using the most relevant generaliza

tions are closer to the ideal performance of figure 7.2 than those values of partial 

generalizations. From these results we observe that citation order is important 

when designing a classification scheme. Retrieval performance may improve when 

terms used in queries are selected from a classification structure. 

The Effect of Conceptual Ordering 

The objective of this experiment was to evaluate the effect of query ordering on 

retrieval performance wheri queries are ordered by conceptual distances. For a given 

query, a set of 'conceptually related' queries is derived by the key expansion process 

described above, resulting in an ordered list of queries. The retrieved ordered sample . 

from this list of queries is compared with a randomly ordered sample from the same 

set of queries. Precision and recall values were computed for each case. 

Because of limitations imposed by the collection size, as in the previous ex

periment, query size was reduced to two terms. The experiment was conducted as 

follows: For each query de= (vi, v2) tested (e.g., (substitute, backspaces)), v2 was 

expanded several levels (e.g., (substitute, quotes), (substitute, blanks), (substitute, 



159 

digits) 1 ~tc.) until the retrieved sample was the same as that retrieved with the most 

relevant generalization dm = ·( v1, *). Two samples resulted: a conceptually ordered 

sample generated by the expansion of de and an unordered sample retrieved by dm.. 

Only the first third of each of the two samples was considered for evaluation to 

determine the difference between the ordered sample and the unordered one. This 

was also a criterion imposed by the limited size of the collection. 

Retrieval performance was computed for ten different expanded queries. Val

ues of recall and precision were calculated for the conceptually ordered samples and 

for the unordered samples. Values of Rand R for each query were determined, as 

in the previous experiment, by the author's criteria. Below are shown the average 

values of recall and precision for the ten pairs of queries. 

Recall 
Precision 

Conceptually Unordered 
Ordered Sample Sample 

1.0 0.5 
0.9 0.4 

Samples of conceptually closer queries show outstanding retrieval performance 

compared to unordered queries. ·Relating terms by their conceptual distance in a 

classification scheme has an excellent payoff in retrieval performance. 

Experiment Conclusion 

These two limited experiments show the impact of a carefully designed clas

sification scheme on retrieval performance. These experiments were designed not 

to provide precise performance measurements but rather to show the differences 

in performance between our approach and the approach followed by a typical data 

base retrieval. 

These results should be interpreted within the context of a small prototype 

collection and used only as general indicators of performance. The significance 



160 

of these _results is their ability to predict, within certain limitation, the expected 

retrievai performance in a larger collection. 

User Classification 

The complexity and extension of current classification schemes creates the need 

for professional librarians. Librarians are trained to use classification schemes to 

identify where in the schedule a particular title fits, to resolve ambiguities, and 

ultimately, decide where to classify an item that belongs to more than one class. 

The reuser should be encouraged to contribute to the software library. A 

component produced from the reuse of an existing component should be added 

to the collection and classified. If several. reusers actively participate in software 

development through the use of the library, the number of components adde.d to 

the library may become large enough to require several librarians to maintain the 

collection. The effort librarians invest in becoming familiar with very specializea 

components must be added to the cost of maintaining the collection. It is preferable 

to have reusers classify their own programs so, the resulting classification scheme 

must be easy to use and unambiguous in its classes and vocabulary. 

The classification development techniques used in this thesis ensure, to some 

extent, ease of use and precision in the resulting scheme. 

• Literary warrant ensures coverage because there are terms -in the vocabulary 

to classify every component in the collection. 

• The thesaurus is an excellent technique to resolve contextual ambiguities. 

• Partition of the scheme into only six facets with strict citation order makes 

the classification task relatively simple even for non-professionals in the area 

of library science. 



161 

Name Short Description Language Size Documentation Reference 
- - Score Size 

fmove move file name 1 to file name2 Pascal 9 9 3 lines !Kem83J 
addfili add file 'name' to archive Pascal 38 9 1 page [Kem83J 
replace replace substring old with new Fortran 40 3 10 lines [Fried77J 
lookup search node B-tree, rtrn parent Pascal 30 4 3 pages [Lewi83) 
split split node in B-tree Pascal 19 4 2 pages (Lewi83) 

Table 7.1: Summary Programs for Classification Test 

To test how difficult it is for a reuser to classify a new program using our 

classification scheme, a group of 13 potential reusers (graduate students in computer 

science) were asked to classify the same set of 5 programs. Each program consisted 

of a brief functional description, a structural context if it was a subcomponent of a 

larger program, and source code. 

The average size of the components was 27 lines of source code. In order 

to have a common reference for evaluating the results, the programs selected ·foi: 

the classification exercise were from the same application area. The components 

considered are mainly the type of programs used in information processing applica

tions as in file maintenance or data base management tasks. Table 7.1 summarizes 

the experimental sample. Program size is in lines of code, documentation score is 

measured on a quality scale of 0 (poor) to 10 (excellent) as explained in Chapter 6. 

Documentation size (measured either in lines of text or in pages of text) is noted 

to indicate how much the classification process relies on documentation. 

Each participant was given the set of classification schedules in Appendix B. 

This is the same set of classification schedules used to classify the components in 

the prototype library system. A brief set of instructions on how to use them for 

classification was included. An example illustrating how a particular component 

was classified by the author was included with the experiment directions. Appendix 

C shows the example source listing, its documentation, and the classification code 

given by the author. Each participant was asked to mention any difficulties expe-



162 

rienced d~ring classification. 

The objective of this exercise was twofold: to test classification simplicity 

and to test the accuracy and consistency of the proposed scheme. Simplicity was 

measured by· evaluating the comments on classification difficulty. Accuracy was 

evaluated by comparing the selected classification codes to one another and with 

those of the author. Consistency was evaluated by corroborating how well those 

classification codes describe component functionality and environment. 

Classification Difficulty 

Concerning classification difficulty, there was common agreement on the fol

lowing points: 

• The classification task was not difficult. Once the participants read the in

structions and looked at the accompanying example, they proceeded without 

any difficulty. 

• Terms with more synonyms were easier to use for classification because the 

concept they denote was easier to grasp (i.e., more specific.) Terms without 

synonyms were considered sometimes as being ambiguous. 

• Most of the effort was invested in understanding what the program does. 

• Most of the information about a program was inferred from reading the doc

umentation. Code description and interline comments were pref erred over 

source code listings. 

• Poorly documented components were difficult to classify. 

• It was difficult to classify application and setting facets. Almost any program 

in the sample could be used in more than one setting. 



163 

• The_ medium facet was not well-defined. 

• A written definition of each term in the schedules would have helped determine 

the accuracy of the terms selected. 

From these points, we can draw the following five observations: 

1) Reusers can classify their own programs. There was a consensus that the 

classification task is relatively simple. In addition, reusers already understand their 

own programs so it takes less effort for them to classify them. Therefore they should 

be encouraged and trained to classify their own components. 

2) Synonyms help classification. Synonyms proved to be an effective technique 

to speed up conceptual focusing during classification. Thesauri have been used 

primarily for helping in query construction during document retrievals. In our 

library system, this is the primary objective as well. Evidence from this exercise, 

however, shows their potential for speeding the classification process. Synonyms 

help to quickly exclude from consideration classification terms that might otherwise 

had to be disambiguated by reading their definitions. Synonyms usually provide a 

general idea of the meaning of the terms to solve potential ambiguities. 

3) Schedules should be easy to expand. The schedules were not complete 

and included some ambiguous terms. Participants suggested some term additions 

and some term accommodations that were implemented without any problem. This 

exercise reconfirms what has been said about the need for flexibility in the schedules. 

Rather than aiming for a complete and perfect schedule, capacity of expansion is 

more important. Users constantly need more terms. 

4) Generic components may be difficult to classify. In this test, all of the 

five components classified were somewhat generic. They could be used in more 

than one application or setting. Participants mentioned some difficulty in trying 

to locate particular terms for the environment facets. The reason for this difficulty 



164 

was that _the participants did not have all the information about the components. ff 

the participants were classifying their own programs, however, this might not have 

been an issue. 

5) Documentation is more important than code listing. Since most infor

mation needed for classification came from code descriptions, some code description 

standards would expedite the classification process by providing the right inf orma

tion in the right place. This problem would be solved by asking the reusers to 

classify their own programs. This would eliminate the need to transmit de.scriptive 

information to the librarian. Another problem is the information required by the 

prospective reuser. One way to cope with this problem is by providing precise code 

de.scriptions in catalog form.at. 

Experiment Contributions 

The information participants provided about the scheme's deficiencies was a 

valuable contribution. Most participants (70%) observed that the medium facet 
I 

included some ambiguous terms.· They had some difficulty finding an appropriate 

term from that facet. They suggested written on-line definitions of each term to 

speed up disambiguations. They suggested some term additions and deletions, and 

they wanted more synonyms in the environment schedules. 

After the above suggestions were incorporated, some of the participants were 

asked to repeat the exercise. Their comments this time were substantially more 

positive. They had less difficulty finding the right terms. Such feedback should be 

encouraged by providing a mechanism for reusers to continuously make suggestions. 

This exercise also tested the expansion capabilities of the scheme. When 

adding new terms to an existing schedule, parts of the collection may have items 

classified under conceptually close terms that should be reclassified under the new 



165 

term. This is a reclassification problem and is one of the main problems in any 

classification scheme, especially those organized around a hierarchical structure. 

This scheme, reduces this problem by using facets instead of a hierarchy. Use 

of synonyms in the schedules reduce this problem even further by ensuring, to a 

certain extent, that when a new term is added to the schedules it is truly a new 

term that could not be accommodated in the current schedule as another synonym. 

Reclassification, therefore, is substantially reduced. 

Reclassification is usually a consequence of misclassification. When an item 

does not fit well in a classification bin, it is placed in one closely related. Then 

when new terms are added, those items that were classified with conceptually close 

terms have to be revised to see if the fit is better with the new terms. To reduce 

misclassification, the policy in this scheme is that if an item does not fit well in 

any available bin, then it is placed in an unclassified bin. As the set of unclassified 

terms grows, they are analyzed, new terms added to the schedules, and the items 

are classified with the new terms. 

In this experiment, adding· the suggested terms to the schedule did not require 

any reclassification of the collection. This positive outcome could be attributed to 

the small size of the collection. In a very large collection some reclassification should 

be expected. Of course, the misclassification and reclassification problems can not 

be eradicated completely, but at lea.st the techniques used in this scheme provide 

better control. 

This exercise also helped to define some classification facilities needed by the 

library system. Since the exercise was conducted manually, there were some com

plaints about searching difficulties. Classification is expected to be done through 

the library system, but it is currently done by searching the schedule files using the 

existing query subsystem. A richer interface is needed to support the classification 

process. 



166 

Classific;J.ti<?n Consistency and Accuracy 

The second objective of this exercise was to test classification consistency 

and accuracy. Consistency measures the degree of consensus observed by a group 

of reusers in classifying a given component (e.g., To what extent are classification 

codes assigned to a component different?). Accuracy measures the match between a 

component or its description and the description provided by the classification code 

(e.g., How well does the classification code describe the component attributes?). 

Consistency was checked by comparing the classification codes of each partic

ipant. Consistency was measured by computing the ratio of participants selecting 

the same terms to participants selecting different terms. The term selected by the 

majority of the participants was assumed to be the true term. Terms in the functio:Q. 

facet were 100% consistent; all participants selected the same terms. The objects 

facet showed 95% consistency, and terms for the medium facet were 60% consistent. 

(An incomplete medium facet definition in the experiment directions was respon

sible for the 60% figure.) The environment facet showed about 50% consistency. 

This low rating was because: 

1. Sample programs were too generic to be classified under a particular environ
ment. 

2. Environment schedules were incomplete and needed more synonyms. 

Accuracy was checked by conducting a walkthrough of the classification exer-
-

cise with some of the participants. There was 100% agreement in the accuracy of 

the function and objects terms. About 50% of the participants thought that some 

terms in the medium facet were not appropriate or were ambiguous in describing 

the medium where the components performed the function. There was complete 

agreement in the descriptive accuracy of the terms used in the system-type and 

functional-area facets. All participants agreed that the setting facet used in the 

exercise was limited to too few terms. 



167 

It can be observed that the schedules richer in synonyms were the better 

perform~rs. From observations made by the participants, it was noted that a written 

definition for each term is essential in helping term disambiguation. 

Test Results 

Testing the scheme in a real classification situation, although limited in size 

and scope, showed three important characteristics of the proposed scheme: 

1. Ease of classification. The reusers may classify their own programs. 

2. Ease of expansion. New terms can be added to the schedules with minimal 

reclassification. 

3. The scheme is adaptable. The feedback from reusers on their classification 

performance can be used to customize the vocabulary to meet the needs of a 

particular environment. 

4. Accuracy and consist.ency. The most relevant facets proved to be precise and 

consistent when used for classification by reusers. 

Reuse Effort Estimation 

This section presents two tests conducted to evaluate the reuse effort esti

mation capabilities of the library system. The tests asked reusers to examine and 

rank, from least to most reusable, a list of functionally equivalent components by 

estimating reuse effort. 

The degree of reusability of a code fragment is a function of the number of 

requirements it meets. It is the degree ·of matching between reuser requirements and 

program features. ff the match is perfect, then the reuse effort should be negligible. 

It is called use rather than reuse. The term reuse implies that certain adaptations 



168 

are need~d to make the match. The reuse effort is proportional to the number of 

mismatehes between given requirements and available program features. 

Our classification scheme groups functionally equivalent components, that is, 

components that have very similar functional requirements. The specific imple

mentation details are not part of the classification scheme. Some, however, may 

be inferred from the operational environment of the components. Certain program 

features have been selected as indicative of implementation effort: size, complexity, 

programming language, and documentation. 

The objective of this test was to determine to what extent these selected pro

gram features succeed in estimating reuse effort for a sample of functionally equiv

alent components, that is, to test the evaluation subsystem presented in Chapter 6. 

Participants were given a set of functional requirements and a group of ~om

ponents that partially matched those requirements. Each participant was furnished 

with a set of requirements for a search program and five components that par

tially matched these requirements. The initial requirements and the corresponding 

complete query were: 

THE INITIAL REQUIREMENTS 

Function: Search 

Data Structure: Files made of three field records (name, address, age) 

Application: Business 

Language: Pascal 

THE COMPLETE QUERY 

function obiects medium system - type June - area setting 

{selh, recLds, fit report ~erator, inventory 1 control, advJtising) 
I 



169 

It~~_ further assumed that the library system did not find an exact match 

for the required component. Information for each of the five potentially reusable 

components included classification code, reuse metrics, catalog description with 

references, source listing, and documentation. Appendix D shows the information 

for one of the candidates. The classification codes for the five candidates were: 

1. search/ pointers/ table/ tabl~handler /program-development/ softwar~shop 

2. search/pointers/tree/tabl~handler/program-development/software-shop 

3. search/numbers/array/*/*/* 

4. search/patterns/file/line-editor/program-development/* 

5. search/ strings /list /Iin~editor /program-development/* 

The task of each participant was to rank the components according to esti

mated reuse effort. Reusers were asked to explain their evaluation process and the 

specific component features on which their selection was based. 

Table 7 .2 shows the reuse metrics for the components in the experiment. 

Table 7.3 shows the outcome of the test. The first five columns are the ranking 

given by each participant. The last column shows the ranking as computed by the 

evaluation subsystem of the library system. Ranking correlation was low. Each of 

the reusers considered different criteria for their evaluation. Four of them did not 

look at the reuse metrics; their criteria were level of abstraction and implementation 

details such as, binary search vs. linear search, implicit tree structure vs. array, 

and main memory vs. disk residence of data. 

A review of the results with the participants showed that the low correlation 

in their answers was due to the vagueness of the requirements definition. The 

requirements did not specify strict implementation constraints, thus allowing the 

reusers to select among the various implementations. During the walkthrough that 

followed the exercise, they agreed that if stronger requirements (e.g., ordered data 



170 

Reuse Metrics 
Component Size Com- Explicit Implicit Documen- Language 
Number plexity Interface Interface tat ion 

1 29 09 02 10 08 Pascal 
2 41 07 03 03 10 Pascal 
3 10 03 04 ()() 08 PDL 
4 64 02 04 ()() 08 Pascal 
5 13 01 07 ()() 07 Fortran 

Table 7.2: Reuse Metrics of the First Experimental Sample 

Rank Participants Evaluation 
r 2 3 4 5 Subsystem 

1st 4 2 3 2 2 3 
2nd 3 3 2 4 3 2 
3rd 2 1 1 3 4 4 
4th 1 4 4 1 1 5 
5th 5 5 5 5 5 1 

NOTE: Table entries are component numbers 

Table 7.3: Ranked Components for First Sample 



- Initi'alize 
A: -· Read the next employee card 

IF no more data 
THEN calculate and print average hours worked 

STOP 
ELSE process the card and check 

update for weekly average 
go back to (A) for next employee 

Figure 7.3: Specification for a Simple Payroll Program 

171 

in the files) or some indication of implementation constraints had been given, (e.g., 

files accessed only sequentially), they could have narrowed down their choices more 

precisely. In those circumstances, there was general agreement how to rank the 

components. When a tie was found, there was consensus that the reuse metrics 

would be a valuable source of discrimination information. 

A second experiment was conducted to verify this hypothesis. The partici

pants were given requirements for a simple payroll program and three versions of a 

payroll program. These samples were functionally equivalent and were implemented 

in the same fashion. The payroll program specification is shown in figure 7 .3 and 

each version was implemented in a different language: Basic, Cobol and Fortran 

respectively. The requirements called for a Pascal implementation and functionally 

the three samples matched the requirements. The reuse metrics used to measure 

these components are shown in Table 7.4. Table 7~5 presents the result of the 

experiment. 

The ranking correlation improved significantly among the participants and 

between the participants and the evaluation subsystem.· It was confirmed that the 

reusers employed the reuse metrics heavily in their evaluation. It is expected that 

this will be the case in a rich library system where several functionally equivalent 

versions of programs will be available. In those circumstances, the criteria applied 



172 

Reuse Metrics 
Component Size Com- Explicit Implicit Documen- Language 
Number plexity Interface Interface tation 

1 26 05 00 ()() 09 Basic 
2· 73 02 00 ()() 09 Cobol 
3 22 02 00 ()() 09 Fortran 

Table 7.4: Reuse Metrics of the Second Experimental Sample 

Rank Participants Evaluation 
1 2 3 4 Subsystem 

1st 3 3 3 3 3 
2nd 1 1 1 1 1 
3rd 2 2 2 2 2 

NOTE: Table entries are component numbers 

Table 7 .5: Ranked Components for Second Sample 

by the human reusers is expected to match that of the evaluation subsystem. 

Experiment Results 

During the first experiment, reusers indicated they needed more specific re

quirements to conduct a m~re effective evaluation. In the second experiment, when 

the sample of candidate components met most implementation requirements, reuse 

metrics were used for ranking. 

This exercise showed the relevance of implementation details when conducting 

an evaluation. Implementation details play a vital role in the selection of a software 

component. For example, binary search can be used only if data access is random 

rather than sequential and if the input is ordered. Although the term tree from 

the medium facet may imply random access and ordered input when used in the 

classification of a search component, it is not sufficient evidence, that the compo-



173 

nent meet_s these. implementation requirements. The resolution of the classification 

scheme is not high enough to describe specific implementation details. One reason 

that specific implementation details are not derived from the classification code 

is because the classification schedules were designed to describe functionality and 

environment. Implementation details were assumed to be part of the code descrip

tion in the documentation. It should be recalled that one major assumption during 

the design of the classification scheme was that, in general, certain implementation 

details can be derived from context-rich descriptors. 

Resolution of the classification scheme can be augmented by including more 

specific terms in the schedules. For example, the term search in the function facet 

could be replaced by the terms binary-search and linear-search. Each describing 

specific implementation information about the function search. The term tree in 

the medium facet can also be replaced by the terms binary-tree, B-tree, linked

binary-tree, heap, and minimum-spanning-tree. The classification code 

binary-search/integers/B-tree 

for example, is more implementation specific than the code 

search/numbers/tree 

Both are functionally equivalent, but the first carries more application specific in

formation. 

With such an increase in specificity from the classification schedules, the evalu

ation process is guaranteed to focus on reuse metrics rather than on implementation 

differences. In large collections, where large number of almost identical components 

is the rule, an automatic evaluation is very attractive. 

Decomposing general terms into in.ore specific ones, when applied to a schedule 

of a large collection, may generate some reclassification problems. An initial sched

ule, therefore, should include as many specific terms as possible. Literary warrant 



174 

and wa~~h~oughs like the one conducted in this exercise will assure completeness 

in the schedules. 

It can be concluded from these two exercises that: 

• The evaluation subsystem is effective when differentiating among components 

with very similar implementations. 

• The prototype classification schedules do not provide enough resolution to 

classify domain implementation details. 

• Resolution can be augmented by expanding the schedules to include imple

mentation specific terms. 

Conclusion 

Three different evaluations of the prototype library system were conducted: 

1. Retrieval Effectiveness 

2. User-conducted Classific~tion 

3. Reuse Effort Estimation 

The results of these evaluations should be taken as indicators of what could be 

expected in a fully develop-ed library system but not as conclusive general results. 

The retrieval effectiveness test showed that a vocabulary organized around a 

classification scheme substantially improved retrieval performance on the collection. 

Retrieved samples ordered by their conceptual distances showed considerably better 

recall and precision figures than retrieved samples ordered randomly. 

The test to determine the effectiveness of the classification scheme and its 

ease for reusers showed that: 

• Reusers can classify their own programs. 

• Schedules are easy to expand. 



175 

• The scheme is adaptable. 

• The schedules show accuracy and consistency in classification. 

The test on reuse effort estimation showed that the evaluation subsystem is 

effective when samples of very similar components were used and that, although the 

prototype classification schedules did not provide enough resolution for application 

specific information, they can be expanded with very specific terms to augment 

their resolution. 

In summary, the tests described in this chapter confirm some of the evidence 

and ~guments that were used as the basis for constructing the classification scheme 

and the library system. These tests showed the need for continuous revision of the 

classification schedules. 



CHAPTER 8 

Summary, Future Work, and Conclusions 

Summary 

This dissertation proposes a classification scheme for collections of code frag

ments intended for reusability.1 

Reusability-related attributes are organized in a faceted scheme for ease of 

expansion of the scheme and to provide very specific definitions of the classes con

sidered. Term synthesis is the method used to define new classes. The scheme 

can be expanded by adding new terms to the facets without disturbing the basic 

structure. 

A library system is presented that integrates the proposed classification scheme 

with an evaluation mechanism based on reusability-related attributes, program

ming languages characteristics and reuser experience. The evaluation mechanism 

is used to select potentially reusable components from a sample of functionally 

equivalent components. 

Tests with the prototype library system showed that, when the proposed 

classification scheme was used with the retrieval mechanism, retrieval performance 

improved significantly. Other tests showed that the scheme is easy to use by po

tential reusers and that the proposed evaluation mechanism is effective when used 

to select among very similar components. 

The remainder of this section presents a summary of the results of our research 

as presented in this dissertation. Each point has been discussed in more detail 

above. 
1Code fragments, in this thesis, are functionally identifiable components written in a high level 
language of size ranging from 20 to 200 lines of source code. 

176 



177 

An An~_y~is of the Code Reuse Process 

The code reuse process was analyzed in detail. As a result, an infra.structure 

was proposed as a requirement for a partial solution of the code reuse problem. This 

infrastructure is centered around a software classification scheme. The proposed 

infra.structure consists of a specialized library, a classification scheme, and a support 

system to reduce reuser cognitive stress and speed up the selection process. 

A Formal Presentation of a Faceted Scheme for Software Classification 

A formal notation to describe faceted schemes was introduced and used to 

express a measure of relevance based on the citation order of the facets. A measure 

of relevance at the facet level is essential to a retrieval system. Retrieval queries 

can be arranged to retrieve components by order of relevance. 

A Measure of Term Closeness Based on Conceptual Distances 

An approach to measuring _closeness among terms in classification schedules 

was introduced. This approach consists on defining facet-relevant attributes for 

each facet. Facet terms are assigned distances to these attributes based on their 

conceptual closeness to them. A conceptual weighted graph results. This weighted 

graph is used to order the retrieved sample by their conceptual closeness, thus 

substantially improving retrieval performance. 

Definition of Six Reuse-Related Facets 

An analysis of the code reuse process together with the inspection of over 300 

programs and program descriptions from different classes and from several software 

directories led to the synthesis of six facets that provide enough resolution to identify 

software components for reusability purposes. The six facets are divided into two 



178 

groups.~ -~u~~tion, objects, and medium form the component functionality group 

and syst~-type, functional-area, and setting form the component environment 

group. These facets are prearranged in a citation order from more to less relevant 

to reusability. 

A Top-down Approach to Define Terms for the Facets 

A top-down approach to select terms for the facets was introduced to com

plement the bottom-up approach usually followed during literary warrant. This 

top-down approach consists of identifying widely accepted logical structures for 

certain classes of programs. Descriptive terms for these structures are extracted 

and added to the corresponding facets. This approach saves considerable time dur

ing schedule construction by selecting all the terms that describe a class of progi:ams 

at once without having to analyze several of them as in literary warrant. 

A Thesaurus as Vocabulary Control for Classification and Retrieval 

A list of synonyms was added to each term in the schedules to speed up the 

classification process, to increase the precision (descriptive power) of the schedules, 

and to help define retrieval queries. Thesauri are typically used in retrieval systems 

to help define retrieval queries. The use of thesauri for classification was intro

duced. The use of a thesaurus significantly simplifies the classification process by 

providing the classifier an approximate but immediate definition of the terms used 

for classification. 

Introduction of Six Reuse-Related Metrics 

Analysis of the code reuse process resulted in the identification of six inherent 

program characteristics. These inherent characteristics play an essential role during 



179 

program_ l!nderstanding and during program adaptation. Metrics for each attribute 

and justification for their validity were presented. 

The metrics are program size measured in lines of source code, program com

plexity measured in number of decisions, interface complexity measured in number 

of explicit and implicit arguments, program documentation measured by an overall 

subjective rating, programming language used measured by a closeness measure 

between the source and the target language, and reuser experience measured by a 

subjective rating. An important criteria for the selection of the metrics, besides 

their relevance during the code reuse process,. was their simplicity to compute. 

Software components should be easily measured in order to be readily added to the 

collection. 

Use of Fuzzy Functions to Normalize and Compare Reuse Metrics 

Reuse metrics have to be normalized in order to obtain a reuse effort measure 

for each component considered for reuse. Fuzzy functions provide a technique for 
. i 

normalizing metrics that truly characterize the fuzzy nature of measuring reuse 

effort. Fuzzy functions, moreover, can be tuned to the environment where the 

collection is being used. An approach, also based on fuzzy functions, that considers 

reuser experience as an overall modifier of the metrics for a given situation was 

introduced. Reuser experience is considered as a meta-fuzzy function that modifies 

the characteristics of the fuzzy functions of each metric. The -evaluation system 

proposed considers different levels of user experience. 

Integration of the Concepts above into a Prototype Library System 

The major contribution of this dissertation is the integration of all these 

concepts into an integrated library system. The classification scheme was used as a 



180 

knowledge structure in a data base management system to drive the query front

end and -to g~ide the retrieval process. The reuse metrics and the fuzzy function 

concepts were used in a support system for the evaluation of similar components 

based on a ~ulti-dimensional evaluation methodology. 

The prototype system, although tested and evaluated in a limited experi

mental environment, showed encouraging results: 1) Use of relevance measures, 

conceptual distances among terms, and a thesaurus-based index resulted in very 

high precision retrieval values. 2) Classification is significantly simplified by the use 

of thesauri. 3) The evaluation subsystem arrives at the same ordering assigned by 

reusers when the components are very similar. 

The prototype system can be used as an experimental tool to advance the 

knowledge of reusing software components. The prototype system could be used hi 

a real environment to help the classification schedules. Another use of the prototype 

system would be in developing a larger library system in a software production 

environment. An incremental development would take advantage of the expansion 

capabilities of the classification s~heme and would allow for a continuous evolution 

of the system. 

Recommendations for Future Work 

While the results of this dissertation are very encouraging, there is a need to 

expand the scope of the experiments before any meaningful generalizations can be 

made. This section presents a list of recommendations for specific problems that 

need more research and some recommendations about implementing the prototype 

library system in a real software development environment. 



181 

Suggested Problems 
~ ... --

Standardize Schedule 

A classification schedule is never complete. More needs to be known about 

schedule building in order to produce almost complete schedules. There is evidence 

that producing first-time classification schedules and making them complete enough 

to satisfy different kinds of users is difficult. The typical approach is to design one 

and impose it on the users. An experiment to produce more acceptable classification 

schedules would involve asking users to give their own definitions of each term used 

in the proposed schedule, analyzing all the definitions returned, and giving each 

term a single unifying definition that satisfies most users. The librazr subsystem 

could be used to check the performance of the proposed schedule in the collection •. 

The problem of schedule completeness could also be approached analytkally. 

Probability theory could be used to calculate schedule completeness from a given 

incomplete schedule. The problem is difficult because schedule completeness is a 

function of how well it describes an unknown universe of objects. How complete it 

is depends on how much is known about that universe. 

Identification and Standardization of Logic Structures 

One use of classification is to identify often recurring programs in a collection 

as candidates for standardization. Logic structures of these programs can be ana

lyzed to synthesize a standard logic structure for a given class of programs. This 

study would significantly help the software standardization process. 

Validation of Reuse Effort Metrics 

The proposed set of reuse-related metrics is but an initial general set. For 

any particular environment, other factors may be relevant for measuring reuse effort 



182 

and should be included in the evaluation subsystem. Different environments may 

select different sets of reuse effort estimation metrics. Validation of a general set 

of reuse effort estimation metrics would be possible only if there is a set common 

to several software development environments. The library system proposed here 

could be used as the medium to define that common set. 

Integrate Prototype with Software Development Tools 

A very interesting idea to explore is the possibility of integrating the library 

system as a tool into a software development system. The advantages would be 

enormous. Once a set of potentially reusable components is retrieved, a module 

interconnection system or a configuration management system would detect any 

incompatibilities between the available components and the given requirements, 

thus making the selection task easier and more precise. A documentation man.age

ment system could be used to locate the proper level of documentation for a given 

selected component during the adaptation phase. Other benefits would be to en

force programs and documentation standards thus increasing the overall potential 

for reusability. 

Testing the Prototype in a Real Environment 

The tests performed on the classification scheme and on the prototype library 

system, although positive, were very limited in scope and can not be generalized. 

To conduct more comprehensive experiments, a real environment where code is 

available to reuse and where reuse could speed up the software development pro

cess is suggested. To transfer the present prototype into a software production 

environment, the following four steps are suggested: 

1) Expand and refine the prototype. A mechanism to handle the storage and 

retrieval of documentation is needed along with a policy to determine how to select 



183 

and store that documentation. A performance monitoring mechanism is needed at 

the data base management system level to detect procedural bottlenecks as well 

as a system to monitor users performance and retrieval patterns while effectively 

implementing the cow-path approach mentioned in Chapter 7. Performance data 

can be used to modify and upgrade the system. A bulletin board should be available 

to capture user opinions. Other areas for refinement include an improved user 

interface, an increase in the data base capacity, and improvement in performance. 

2) Start with a small collection. Select a small collection of components that 

seem to be used most often during development. Derive a classification schedule 

for that small collection. As users become familiar with the system, expand the 

collection and expand the schedules with terms preferred by the users. A set of 

refined classification schedules should result. 

3) Make system available to users. Seminars should be given on how to use the 

system and contribute to the collection. As the number of contributors increases, 

so does the collection and w.ith it the probability of reusing available components. 

4) Monitor Performance. Careful monitoring of library use should be conducted 

from the early stages of implementation. Recall and precision should be computed, 

whenever possible, during retrieval and their values should be logged continuously. 

Schedule accuracy should also be monitored. Ambiguous, undefined, and conflicting 

terms reported by the reuser should be corrected at once. During classification of 

new components, reusers should report on the difficulties found during description, 

documentation, and measuring (e.g., computing the reuse metrics). 

Reuse effort estimates should be compared, whenever possible, to those ex

pressed by the reuser. After successful reuses, reusers should be interviewed about 

their reuse difficult_ies. Were reuse effort estimates useful? helpful? accurate? This 

information should be used for a continuous tuning of the fuzzy functions used to 

evaluate reuse-effort. 



184 

Conclusions 

The main conclusion derived from this work is that the reuse of code frag

ments implies the reuse of their higher level representations. When reusing code, 

most decisions about its reuse are made by examining its documentation. Code 

is seldom inspected unless documentation is not good. What is being considered 

during the reuse process are high level representations in the form of documenta

tion (specifications, design, code descriptions, and implementation details). Code 

enters the picture only during the selection of similar components and during the 

code conversion phase. Code reuse could be significantly improved if a formalism 

existed to describe higher level representations. 



References 

[AFIP80J Taxonomy of Computer Science and Engineering. Compiled by the 
AFIPS Taxonomy Committee, AFIPS Press, 1980. 

[ ANDE7 3 J Anderberg, M. R. Cluster Analysis for Applications. Academic Press, 
· New York, 1973. 

[APPL83J Stanton, J. and Dickey, J. The Book of Apple Computer Software. 
The Book Co., Lawndale, CA 90260, 1983. 

[ARAN85J Arango, G., Baxter, I., Freeman, P., and Pidgeon, C. "Maintenance 
and Portage of Software by Design Recovery." Submitted to Confer
ence on Software Maintenance-1985, Washington, D.C., November, 
1985. 

[ARON69J Aron, J. "Estimating Resources for Large Programming Systems." 
NATO Conference on Software Engineering Techniques, M. Chartwer, 
N.Y., 1969. 

[ ATHE8 2 J Athey, T. H. Systematic Systems Approach: An Integrated Method_ 
for Solving Systems Problems. Prentice-Hall, Englewood Cliffs, N. 
J., 1982. 

[BALB75J Balbine, G. "Better Manpower Utilization Using Automatic Restruc
turing." AF JPS Proceedings of the National Computer Conference, 
pages 319-327, 1975. 

[BALZ83) Balzer, R., Cheatham, T. E., and Green, C. "Software Technology 
in the 1990's: Using a New Paradigm." COMPUTER, 16(11):39-45, 
November, 1983. 

[BASI80J Basili, V. R. Tutorial on Models and Metrics for Software Manage
ment and Engineering. IEEE Computer Society Press, 10662 Los 
Vaqueros Circle, Los Alamitos, CA 90720, 1980. Initially presented 
at the IEEE Computer Society's 4th International Computer & Soft
ware Applications Conference, October 27-31, 1980. 

[BASI84J Basili, V. R. and Perricone, B. T. "Software Errors and Complexity: 
An Empirical Investigation." Communications of the ACM, 27(1):42-
52, January, 1984. 

[BLAI84] Blair, D. C. "The Data-Document Distinction in Information Re
trieval." Communications of the ACM, 27(4):369-374, April, 1984. 

(BLAI85J Blair, D. C. and Maron, M. E. "An Evaluation of Retrieval Effective
ness for a Full-text Document-retrieval System." Communications of 
the ACM, 28(3):289-299, March, 1985. 

[BOEH81] Boehm, B. W. Software Engineering Economics, Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 1981. 

185 



(BOIS83J . 

(BOLS75J 

(BOOM80] 

(BOWL83] 

(BR0076] 

(BR0078] 

(BROW77] 

(BUCH79] 

(COOM70] 

(COOP82] 

(COUL83] 

[CURT79A] 

186 

Boisvert, R. F., Howe, S. E-., and Kahaner, D. K. "The GAMS 
·Classification Scheme for Mathematical and Statistical Software." 
SIGNUM Newsletter, 18(1):10-18, January, 1983. A publication of 
the Association for Computing Machinery. 

Bolstad, J. "A Proposed Classification Scheme for Computer Pro-
. gram Libraries." SIGNUM Newsletter, 10(2-3):32-39, November, 1975. 

A publication of the Association for Computing Machinery. 

Boom, H. J. and DeJong E. "A Critical Comparison of Several Pro
gram.ming Language Implementations." Software: Practice and Ex
perience, 10:435-473, 1980. 

Bowles, K. "Reusability in Ada." In Alan Perlis, editor, Workshop 
on Reusability in Programming, pages 77-78. ITT Programming, 
Newport, RI, September, 1983. 

Brooks, R. "How a Programmer Understands a Program: a Model." 
Technical Report 97, University of California, Irvine. Department 
of Information and Computer Sciences, 1976. 

Brooks, R. "Using a Behavioral Theory of Program Comprehension 
in Software Engineering." In M. V. Wilkes, editor, 9rd Internata~onal 
Conference on Software Engineering, pages 196-201. IEEE, Atlanta, 
GA, May, 1978. 

Brown, P. J., editor, Software Portability. Cambridge University 
Press, New York,_ 1977. 

Buchanan, B. Theory of Library Classification. Clive Bingley, Lon
don, 1979. 

Coombs, C. H., Dawes, R. M. and Tversky, A. Mathematical Psychol
ogy: An Elementary Introduction. Prentice Hall, Englewood Cliffs, 
NJ, 1970. -

Cooper, R. G. "MetaCAD: A Knowledge Based Software Support 
Environment." Huges Aircraft Company, Internal Report, Irvine, 
CA., 1982. 

Coulter, N. S. "Software Science and Cognitive Psychology." IEEE 
Transactions on Software Engineering, SE-9(2) :166-171, March, 1983. 

Curtis, B., et al. "Measuring the Psychological Complexity of Soft
ware Maintenance Tasks with the Halstead and McCabe Metrics." 
IEEE Transactions on Software Engineering, 5(2) :96-104, March, 
1979. 



187 

[ CURT79~] _ Curtis, B., Sheppard, S. B., and Milliman, P. "Third Time Charm: 
, Stronger Prediction of Programmer Performance by Software Com
plexity Metrics." In F. L. Bauer, editor, Proceedings of the Fourth 
International Conference on Softwarfe Engineering, pages 356-360. 
IEEE, Munich, Germany, September, 1979. 

[CURT83J · Curtis, B. "Cognitive Issues in Reusability." In Alan Perlis, editor, 
Workshop on Reusability in Programming, pages 192-197. ITT Pro
gramming, Newport, RI, September, 1983. 

[DEWE65] Dewey, M. Decimal Classification and Relative Index. Forest Press, 
Inc., New York, 1965. Edition 17. 

[EVAN83] Evangelist, W. M. "Software Complexity Metric Sensitivity to Pro
gram Structuring Rules." Journal of Systems and So/ware, 3:231-243, 
1983. 

[FEUE79] Feuer, A. R. and Fowlkes, E. B. "Results from an Empirical Study 
of Computer Software." In F. L. Bauer, editor, Proceedings of the 
Fourth International Conference on Softwarfe Engineering, pages 351-
355. IEEE, Munich, Germ.any, September, 1979. 

[FITZ78] Fitzsimons, A. and Love, T. "A Review and Evaluation of Software 
Science." Computing Surveys, 10(1):3-18, March, 1978. 

[FREE68] Freeman, R. R. and Atherton, P. "Final report of the Research 
Project for the Evaluation of the UDC as the Indexing Language for 
a Mechanized Reference Retrieval System." In R. Molgaard-Hansen 
and Malcom Rigby, editors, First Seminar on UDC in a Mechanized 
Retrieval System. International Federation for Documentation Com
mittee on Classification Research, Copenhagen, September, 1968 . . 

[FREE76J Freeman, P. "Reusable Software." (Research Proposal), Irvine, CA. 
University of California, ICS Dept., 1976. 

[FREE80] Freeman, P. "Reusable Software Engineering: A Statement of Long
Range Research Objectives." Tech. Report TR-159 Department of 
Information and Computer Science Technical University of Califor
nia, Irvine, November, 1980. 

[ F REEB 3] Freeman, P. "Reusable Software Engineering: Concepts and Re
search Directions." In Alan Perlis, editor, Workshop on Reusabil
ity in Programming, pages 2-16. ITT Programming, Newport, RI, 
September, 1983. 

[FRIE77] Friedman, F. L. and Koffman, E. B. Problem Solving and Struc
tured Programming in Fortran. Addison-Wesley Co., Reading, Mas
sachusetts, 1977. 



(GAMS8D_) _ 

(GILB77J 

(GOME79J 

[GOOD83J 

(GORD79) 

(HAFN81) 

(HALS77) 

[HALS79J 

[HOGA80J 

[HOR078) 

(HOR083A) 

(HOR083B) 

[HOR083C) 

[IBMS83) 

188 

"Guide to Available Mathematical Software." Center for Applied 
-;Mathematics, National Bureau of Standars, Washington, D.C. 20234, 

1980. 

Gilb, T. Software Metrics. Winthrop, Cambridge, MA, 1977. 

- Gomez, J. E., "An Interactive Fortran Structuring Aid." In F.L. 
Bauer, editor, Proceedingds of the Fourth International Conference 
on Software Engineering, pages 241-244. IEEE, Munich, Germany, 
September, 1979. 

Goodell, M. "Quantitative Study of Functional Commonality in a 
Sample of Comercial Business Applications." In Alan Perlis, editor, 
Workshop on Reusability in Programming, pages 279-286. ITT Pro
gram.ming, Newport, RI, September, 1983. 

Gordon, R. D. "Measuring Improvements in Program Clarity." IEEE 
Transactions on Software Engineering, SE-5(2) :79-90, March, 1979. 

Hafner, C. D. An Information Retrieval System Based on a Com
puter Model of Legal Knowledge. UMI Research Press, Ann Arbor, 
Michigan, 1981. 

Halstead, M. H. Operating and Program.ming Systems Series: Ele
ments of Software Science. Elsevier North-Holland, Inc., New York, 
N.Y., 1977. 

Halstead, M. H. Advances in Software Science. Academic press, New 
York, NY, 1979, pages 119-172. 

Hogarth, R. M. Judgement and Choice: The Psychology of Decision. 
John Wiley and Sons, Chichester, 1980. 

Horowitz, E. and Sahni, S. Fundamentals of Computer Algorithms. 
Computer Software Engineering Series, Computer Science Press, Po
tomac, Maryland, 1978. 

Horowitz, E. "An Expansive View of Reusable Software." In Alan 
Perlis, editor, Workshop on Reusability in Programming, pages 250-
261. ITT Programming, Newport, RI, September, 1983. 

Horowitz, E. Programming Languages: A Grand Tour. Computer 
Science Press, 1983. 

Horowitz, E. Fundamentals of Programming Languages. Computer 
Science Press, 1983. 

IBM Software Directory. 1983 edition, IBM, 1 Culver Road, Dayton, 
NJ 08810, 1983. 



(ICHB83l _ 

(IOP 83) 

(IDS 83] 

(IMSL84] 

(ITT83] 

( JEFF81) 

(KAHN82] 

[KERN83) 

[KIM 83] 

I (KRUS78] 

I 
(KUMA79] 

[LANE79] 

[LEWI83] 

[LIND72] 

189 

Ichbia, J. D. "On the Design of Ada." In R. E. A. Mason, editor, 
;Information Processing 89, pages 1-10. International Federation for 
Information Processing, September 19-23, 1983. 

ICP Software Directory. International Computer Programs, Inc., 
9000 Keystone Crossing, P.O. Box 40946, Indianapolis, IN 46240, 

· 1983. Includes Sytems Software, Cross Industry Applications and 
Industry Specific Applications. 

International Directory of Software. 1983-84 edition, Computing 
Publications Ltd., First Federal Building, Suite 401, Pottstown, PA 
19464, 1983. 

International Mathematics and Scientific Library. 10th edition, IMSL 
Inc., 7500 Bellairer Blvd., Houston, TX 77036, 1984. 

Workshop on Reusability in Programming. Alan Perlis, editor, Spon
sored by ITT Programming, Newport, RI, September 7-9, 1983. 

Jeffries, R., et. al. "The Process Involved in Designing Software." 
In J. R. Anderson, editor, Cognitive Skills and Their Acquisition, 
Lawrence Erlbaum, Hillsdale, NJ, 1981, pages 255-284, chapter .8. 

Kahneman, D ., Slovic, P. and Tversky, A. Judgement Under Uncer
tainty: Heuristics and Biases. Cambridge University Press, Cam
brige, 1982. 

Kernigham, B. W. and Plaguer, P. J. Software Tools in Pascal. Addison
Wesley Co., Readi~g, Massachusetts, 1983. 

Kim, K. H. "A Look at Japan's Development of Software Engineering 
Technology." COMPUTER, 16(5):26-37, May, 1983. 

Kruskal, J. B. and Wish, M. Multidimensional Scaling. Series: Quan
titative Applications in the Social Sciences, Sage University Papers, 
Beverly Hills, 1978. 

Kumar, K. Theory of Classification. Vikas Publishing House Pvt. 
Ltd., New Delhi, 1979. 

Lanergan, R. G. and Poynton, B. A. "Reusable Code: The Applica
tion Development Technique of the Future." In Proceedings of the 
IBM SHARE/GUIDE Software Symposium, IBM, Monterey, CA, 
October, 1979. 

Lewis, T. Microbook: Database Management for the IBM Personal 
Computer. Dilithium. Press, Beaverton, Oregon, 1983. 

Lindsay, P. H. and Norman, D. A. Human Information Processing. 
Academic Press, New York, 1972. 



190 

[LOVE 7_7 J Love, T. "An Experimental Investigation of the Effects of Program 
;Structure on Program Understanding." ACM SIGPLAN Notices, 
12:105-113, March, 1977. 

(LYON80] Lyon, M. J. "Structured Retrofit-1980." Proceedings of SHARE 55, 
pages 263-265, 1980. 

[LYON81] Lyon, M. J. "Salvaging Your Software Asset (tools bas€d mainte
nance)." In A. Orden, editor, AFIPS Proceedings of the National 
Computer Con/ ere nee, pages 337-341, Chicago, Ill., May 1981. 

[MALT75J Maltby, A. Sayers' manual of Classification for Librarians. Andre 
Deutsch Ltd., 105 Great Rusell St., London WCI, 1975. 

[MATS80J Matsumoto, Y. "SWB System: A Software Factory." In H. Hunke, 
editor, Software Engineering Environments, pages 305-318. North
Holland, New York, 1980. 

[MAYS68] Mays, E. M., A Classification Scheme for Law Books. Butterworths, 
London, 1968. 

[McCA76] McCabe, T. J. "A Complexity Measure." IEEE Transactions on Soft~ 
ware Engineering, SE-2(4):308-320, Dec, 1976. 

[MclL76J Mcllroy, M. D. "Mass Produced Software Components." In Soft
ware Engineering Concepts and Techniques, pages 88-98. Petrcr 
celli/ Charter, Brussels 39, Belgium, 1976. From the 1969 NATO 
Conference on Software Engineering. 

(MIAR83J Miara, J. R. et al~ "Program Indentation and Comprehensibility." 
Communications of the ACM, 26(11):861-867, November, 1983. 

[MICH83] Michalski, R. S. and Stepp, R. E. "Automated Construction of Classi
fications: Conceptual Clustering Versus Numerical Taxonomy." IEEE 
Transactions on Pattern Analysis and Machine Intelligence, (PAMI-
5)4:396-409, July 1983. 

[MILL56] Miller, G. A. "The Magical Number Seven, Plus-or-minus Two: Some 
Limits on Our Capacity for Processing Information." Psychological 
Revi·ew, 63(2):81-97, March, 1956. 

[MILL77] Mills, J. and Broughton, V. Bliss Bibliographic Classification, In
trodiction and A uxi/iary Schedules. Butterworth and Co., London, 
1977. 

[MILL80] Miller, J. C. "Structured Retrofit." Techniques of Program and Sys
tem Maintenance, Etnotech, Lincoln, Nebraska, pages 85-86, 1980. 

[MILL 77] Mills, J. and Broughton, V. Bliss Bibliographic Classification, Intro
duction and Auxiliary Schedules, Butterworth & Co., London, 1977. 



[MOHE~~l 

(MORR79) 

(NEIG80] 

(NILS80) 

(NORW82) 

(PEMB82) 

(PRIE82) 

(PRIE83) 

(PRYW79) 

(RAGA77) 

(RANG67) 

191 

Moher, T. and Scneider, M. "Methods for Improving Controlled Ex-
' perimentation in Software Engineering." In S. Jeffrey, editor, Pro
ceedings of the Fifth International Conference on Software Engineer
ing, pages 224-233. IEEE, San Diego, CA, March, 1981. 

Morrisey, J. H. and Wu, L. S. Y. "Software Engineering: An Ee<>-
. nomic Perspective." In F.L. Bauer, editor, Proceedingds of the Fourth 

International Conference on Software Engineering, pages 412-422. 
IEEE, Munich, Germany, September, 1979. 

Neighbors, J. M. Software Construction Using Components, Ph.D. 
thesis, University of California, Irvine, 1980. Also available as De
partment of Information and Computer Science Technical Report 
number 160. 

Nilsson, N. Principles of Artificial Intelligence. Tioga, Palo Alto, 
CA, 1980. 

Norwich, A. M. and Turksen, I. B. "The Construction of Membership 
Functions." In Ronald R. Yager, editor, Fuzzy Set and Possibility 
Theory: Recent Developments, pages 61-67. Pergamon Press, New. 
York, 1982. 

Pemberton, S. and Daniels, M. C. Pascal Implementation: The P 4 
Compiler, Ellis Horwood Ltd., Chichester, England, 1982. 

PrietcrDiaz, R. and Neighbors, J. "Module Interconnection Lan
guages: A Survey." ICS Tech. Report 189, Dept. of Information and 
Computer Science, University of California, Irvine, August, 1982. 

Prieto Diaz, R. "Knowledge Representation Applied to Library Cat
aloging." In Salvador Perrotti, editor, Anais do XVI Congresso Na
cional de Informatica, pages 42-47. SUCESU, Sao Paulo, Brazil, 
October, 1983. 

Prywes, N. S., Pnueli, A. and Shastry, S. "Use of a Nonprocedural 
Specification Language and Associated Program Generator in Soft
ware Development." A CM Transactions on Programming Languages 
and Systems, 1(2):196-217, October, 1979. 

Ragade, R. K. and Gupta, M. M., "Fuzzy Set Theory: Introduction." 
In M. M. Gupta, G. N. Saridis, and B. R. Gaines, editors, Fuzzy Au
tomata and Decision Processes, pages 105-131, North-Holand, New 
York, 1977. 

Ranganathan, S. R. Prolegomena to Library Classification. Asia 
Publishing House, Bombay, India, 1967. 



[RICE 8~3~ --

[RICH83J 

[RIGB72J 

[SALT83J 

[SAMM69J 

[SAMM82] 

[SAMM85] 

[SELB85] 

[SHAR63] 

[SHAR73J 

[SHAW81] 

[SHEN83] 

[SHNE77] 

192 

Rice, J. R. and Schwetman, H. D ., "Interface Issues in a Software 
Parts Technology." In Alan Perlis, editor, Workshop on Reusability 
in Programming, pages 129-137. ITT Programming, Newport, RI, 
September, 1983. 

Rich, C. and Walters, R. C. "Formalizing Reusable Software Compo
- nents." In Alan Perlis, editor, Workshop on Reusability in Program

ming, pages 152-159. ITT Programming, Newport, RI, September, 
1983. 

Rigby, M. "The UDC in Mechanized Subject Information Retrieval." 
Proceedings of an International Symposium held at the Center of 
Adult Ecucation, University of Maryland College Park, pages 126-
143, May, 1971. Greenwood Publishing Company, Westport, Con
necticut, 1972. 

Salton, G. and McGill, M. J., Introduction to Modern Information 
Retrieval." McGraw-Hill, New York, 1983. 

Sammet, J. E. Programming Languages: History and Fundamentals. 
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. 

Sammet, J.E. and Ralston, A. (Editors) "The New (1982) Comput
ing Reviews Classification System-Final Version." Communications 
of the ACM. 25(1):13-25, January 1982. 

Sammet, J. E. "Introduction to the CR Classification System." Com
puting Surveys, pp 20-23 and pp 45-57, January 1985. 

Selby, R. W. A Quantitative Approach for Evolving Software Tech
nologies. Ph.D. Dissertation, Department of Computer Science, Uni
versity of Maryland, December, 1984. 

"SHARE Reference Manual." IBM Users Group, 1963. With revi
sions. 

"SHARE Reference Manual." IBM Users Group, 1973. 
4 

Shaw, M. et al. "A Comparison of Programming Languages for 
Software Engineering." Software: Practice And Experience, 11:1-52, 
1981. 

Shen, V. Y., Conte, S. D. and Dunsmore, H. E. "Software Science 
Revisited: A Critical Analysis of the Theory and Its Empirical Sup
port." IEEE Transactions on Software Engineering, SE-9(2):155-
165, March, 1983. 

Shneiderman, B. "Measuring Computer Program Quality and Com
prehension." International Journal of Man-Machine Studies, 9:465-
478, 1977. 



(SOFT83J _ 

(SOFT85] 

(SOL083A) 

[SOL083B] 

(SPAR71] 

(SPSS84) 

(STAN76J 

(STAN83] 

(SOWA84) 

(STR066) 

[SUGA81) 

(SUN081] 

[SWAR82) 

[TAJI84) 

193 

The Software Catalog - Microcomputers. Elsevier, New York, Fall 
.1983. 

The Software Catalog - Microcomputers. Elsevier, New York, Winter 
1985. 

Soloway, E. and Ehrlich, K. "What do Programmers Reuse? Theory 
and Exeperiment." In Alan Perlis, editor, Workshop on Reusability 
in Programming, pages 184-191. ITT Programming, Newport, RI, 
September, 1983. 

Soloway, E., Bonar, J., and Ehrlich, K. "Cognitive Strategies and 
Looping Constructs: An Empirical Study." Communications of the 
ACM, 26(11):853-880, November, 1983. 

Spark Jones, K. Automatic Keyword Classification for Information 
Retrieval. Butterworths, London, 1971. 

Statistical Package for the Social Sciences. SPSS, Inc., McGraw-Hill, 
New York, 1984. 

Standish, T. A., Harriman, D. C., Kibler, D. F., and Neighbors, J. M~ 
The Irvine Program Transformation Catalogue, Technical Report, 
University of California, Irvine, January, 1976. 

Standish, T. A. "Software Reuse." In Alan Perlis, editor, Workshop 
on Reusability in Programming, pages 45-49. ITT Program.ming, 
Newport, RI, .September, 1983. 

Sowa, J. F. Conceptual Structures: Information Processing in Mind 
and Machine. Addison-Wesley, Reading, Mass., 1984. 

Stroud, J. M. "The Fine Structure of Psychological Time." Annals 
of New York Academy of Sciences, 1966. 

Sugarman, J. H. The Development of a Classification System for 
Information Storage and Retrieval Purposes Based Upon a Model of 
Scientific Knowledge Generation. Ph.D. Thesis, Boston University, 
School of Education, Boston Mass., 1981. 

Sunohara, T., et al. "Program Complexity Measure for Software 
Development Management." In S. Jeffrey, editor, Proceedings of the 
Fifth International Conference on Software Engineering, pages 100-
106. IEEE, San Diego, CA, March, 1981. 

Swart, W. and Balzer, R. "On the Inevitable Interwining of Specifica
tion and Implementation." Communications of the ACM, 25(7):438-
440, July, 1982. 

Tajima, D. and Matsubara, T. "Inside the Japanese Software Indus
try." COMPUTER, 17(3):34-43, March, 1984. 



194 

[TANE7~] Tanenbaum, A. S., Klint, P. and Bohm, W. "Guidelines for Soft-
, ware Portability." Software-Practice and Experience, 8(1) :681-698, 
January, 1978. 

[VICK60] Vickery, B. C. Faceted Classification: A Guide to Construction and 
use of Special Schemes. Aslib, 3 Belgrave Square, London, 1960. 

[WALS77] Walston, C. and Felix, C. "A Method of Programming Measurement 
and Estimation." IBM Systems Journal, 16(1):54-77, 1977. 

[WASS82] Wasserman, A. I. "The User Software Engineering Methodology: An 
Overview." In T. W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors, 
Information Systems Design Methodologies: A Comparative Review, 
pages 591-635, North-Holland, 1982. 

[WEGE83] Wegner, P. "Varieties of Reusability." In Alan Perlis, editor, Work
shop on Reusability in Programming, pages 30-44. ITT Program
ming, Newport, RI, September, 1983. 

[WEIS74) Weissman, L. M. "Psychological Complexity of Computer Programs." 
ACM SIGPLAN Notices, 9(6):25-36, June, 1974. 

[WELS80] Welsh, J. and McKeag, M. Structured System Programming. Prentice
Hall, Englewood Cliffs, NJ, 1980. 

[ WINS81] Winston, P. H. and Hom, B. K. P. LISP. Addison-Wesley, Menlo 
Park, CA, 1981. 

[Wooo81] Woodland, S. N.,- Dunsmore, H. E. and Shen, V. Y. "The Effect of 
Modularization and Comments on Program Comprehension." In S. 
Jeffrey, editor, Proceedings of the Fifth International Conference on 
Software Engineering, pages 215-223. IEEE, San Diego, CA, March, 
1981. 

[WOLB83] Wolberg, J.·-R. Conversion of Computer Software. Prentice Hall, 
Englewood Cliffs, NJ, 1983. 

[ZADE84] Zadeh, L.A. "Making Computers Think Like People." IEEE SPEC
TRUM, 21(8) :26-32, August, 1984. 



Appendix A 

A Preliminary Schedule for Application Programs in 
Communication and Media 

COMMUNICATION AND MEDIA 

(Type of System) 

Information System 
Administration-Business System 

Resource Management System 
Inventory Management System 

Order Entry 
Purchasing 
Bookkeeping 

Accounts Receivable 
Accounts Payable 
Billing/Invoicing 

Transaction Analysis 
Customer Information System 
Accounting and Finance System 

Cost Accounting 
Payroll 
General Ledger 
Financial Reporting 
Auditing 

Management Information System 
Decision Support 
Planning 
Project Control 

Manufacturing Control/Production 
Materials Control 
Process Control 

Work Scheduling 
Labor Control 
Equipment Control 

Scientific and Technical Support System 
Design 

General Systems 
DBMS 

File Management/Maintenance 

Subroutine Package 

Turnkey System 

(Setting of the Application) 

(Entities) 
Associations 

Unions 
Clubs 
Charities 
Parish 

Foundation 
Chamber of Commerce 
Cemetery 
Library 

(Establishment a) 
Publisher 
Print shop 
Advertising Agency 
Broadcasting Station 

Radio 
TV 
Cable 

TV 
Teletex/Videotex 

(Objects the Application Deals With) 
(Material Objects) 

Publications 
Books 
Reference Materials 

Manuals 
Catalogs 
Directories 

Periodicals 
Magazines 
Newspapers 

Tickets/Checks/Tabs 
Parcels/Packages 
Import/Export Goods 
Communication Equipment 

(Symbolic Objects) 
Memberships 

Subscriptions 
Timeslots 

(Function Performed by the Application) 
(by form) 

195 



Remot, 
Batch_ 
On-line 
Real Time 

(by activity) 
Publishing 

Translation 
Printing 

Typesetting 
Composition/PhotoComp 

Editing 
Circulation/Distribution 

Indexing 
Clasaif ication 

Cataloging 
Advertising 

Direct Mail Adv/Marketing 
Classified Advertising 

Graphics Display/Plotting 
Mailing 
Broadcasting 

Info/Message Transmission 
Rating Analysis 

196 



Appendix B 

Partial Classification Schedules for Software Components 

This is a preliminary classification schedule synthesized from an sample 

of program descriptions by literary warrant. The process followed is outlined in 

Chapters 3 and 5. 

FUNCTION FACET 

add 
append 
close 
compare 
complement 
compress 
create 
decode 
delete 
divide 
evaluate 
exchange 
expand 
format 
input 
insert 
join 
measure 
modify 
move 
open 
output 
parse 
pick 
search 
skip 
sort 
split 
start 
store 
substitute 
subtract 
traverse 

increment/total/sum 
affix/attach/concatenate/join/add 
release/detach/disconnect 
test/relate/collate/match/check/verify/detect 
negate/invert 
reduce/condense/contract/crypt 
produce/form/build/originate/generate/make/set 
multi_way/multi_branch/selector 
remove/erase/cancel/eliminate/extract/strip 
division/fraction/division_operation/arith_division 

swap/trade 
decompress/spread/space/extend 
arrange 
data_entry/scan/enter/read/get 
include/push 
link/connect/bind/concatenate 
count/advance/size/enumerate/list 
update 
transfer/copy 
connect/attach 
data_output/print/echo/show/write/display/list/put 
recognize 
extract/select/ choose/point_ to 
look_up/f ind/match/locate 
jump 
order/rank/arrange 
separate/break_up/divide/part 
initialize/define/set 
save/keep/file/archive 
replace/transliterate/convert/change/map/crypt/update 
reduce/decrement 
travel/move/follow/range 

197 



argument• 
array• 
backspaces 
blanks 
buff era 
characters 
descriptors 
digit• 
directories 
expressions 
files 
function• 
instructions 
integer• 
lines 
list• 
macros 
pages 
patterns 
pointer• 
procedures 
quotes 
real• 
statements 
strings 
subroutines 
tables 
tabs 
text 
tokens 
trees 
variables 
words 

"OBJECTS FACET 

spaces 

alphanumerics/letters/ASCII/metacharacters/wild 
nodes 
numbers 

commands 
numbers/digits/binary/octal/decimal/hex 
errors 
linked_lists 

198 

page_delimiters/margins ·· I 
configurations . 
line_numbers/file_names/addresses/locations/indexes/references/nodes/roots 

numbers/f loating_point 
sentences/so~ce_code/assembly_code 
pattems/groups_of_characters 

relations 
spacers/markers 
messages 
semantic_units/symbols 
graphs/dag~/heaps/b_trees 

names/syllables/keywords/tokens/variables 



array 
buff er 
cards 
disk 
file 
keyboard 
line 
list 
mouse 
printer 
screen 
sensor 
stack 
table 
tape 
tree 

MEDIUM FACET 

hard_disk/floppy/cartridge 

linked_list 

display/scope 
speech 

relation 
mag_ tape 
graph/dag/heap/b_tree 

199 



assembler 
code_ge11eratio11 
code_optimization 
compiler 
data_baae_management 
expreaaion_evaluator 
f ile_handler 
hierarchical_db 
hybrid_ db 
interpreter 
lexical_analyzer 
lille_editor 
network_db 
operator_precedence 
pattern_matcher 
predictive_paraillg 
recursive_deacent 
relational_db 
retriever 
scheduler 
screen_editor 
semantic_analyzer 
shift_reduce 
space_allocator 
syntax_ analyzer 
text_f ormatter 

SYSTEM-TYPE FACET 

recognizer/parser 
forma_editor 

forms_editor 
parser 

parser 

200 



FUNCTIONAL-AREA FACET 

account•_payable 
accounts_receivable AR/ 
analysis_atructural 
auditing 
batch_job_control 
billing invoicing/ 
bookkeeping 
budgeting 
capacity_pluming 
computer_aided_design 
cost_accounting 
cost_ control 
customer_inf ormation 
data_base_analysia 
data_baae_deaign 
data_base_management 
data_base_optimization 
data_base_support 
data_dictionary 
decision_support 
design 
design_development 
employee_benefita 
equipment_ control 
equipment_maintenance 
f ile_maintenance 
f ile_management 
f inance..,.analysis 
f inancial_modeling 
f inancial_reporting 
f orecaating 
general_ledger 
inventory_control 
labor_control 
management_inf ormation 
manuf acturing_control 

mail_listing/credit_references/ 

deaign_methodologiea/aoftware_deaign/ 
health_insurance/retirement_plan/participation/ 

materials_ control 
math_scientific_aubroutine_package 
modeling 
numeric_control 
operating_ systems 
operatio11S_measurement 
order_entry pricing/ 
payroll 
pluming 
process_ control 
production_control 

201 



program~davelopment tools 
project_control 
project_scheduling 
purchasing 
quality_control 
report_generation 
run_time_job_control 
run_time_subroutine_package 
simulation 
system_ control 
system_ operation 
ayatem_development 
tax_computation 
tranaaction_analyaia 
transaction_ control 
transaction_retrieval 
utilization_atatistics 
work_ scheduling 

202 



DP_center 
advertising 
appliance_repair 
appliance_ st ore 
association 

auto_repair 
barbershop 
broadcasting 
cable 
car_dealer 
catalog_sales 
cemetery 
circulation 
claasif ied 
cleaning 
clothing_store 
composition 
computer_store · 
department_store 
f lower_shop 
foundation 
furniture_store 
hardware_store 
hotel 
library 
mail 
mail_advertising 
nursery 
print shop 
publisher 
radio 
social_ services 
sof tware_shop 

spare _parts 
teletex 
television 
type setter 
videotex 

SETTING FACET 

computer_center/DP_services/computer_operationa 
marketing/ 

retail/household_ equipment/ 
union/club/charity/parish/chamber_of _commerce/council/ 

judicial/legislative/ 
body_shop/transmission/ 
hair_stylist/beauty_saloon/ 
radio/tv/cable/videotex/teletex/station/ 
broadcasting/programs/distribution/ 
used_ cars/ 
retail/mail/ 
graveyard/ 
distribution/ 
advertising/ 
dry_cleaning/ 
retail/garment/ 
photo_composition/press/printing/ 
retail/software/peripherals 
retail/general_merchandise/ 

endowment/institution/ 
retail/office_equipment/ 
retail/construction_supplies/ 
lodging/motel{ 
collection/reference/ 
post_off ice/parcel_post/packages/air_mail 
marketing/direct_mail_advertising 

printer/printing/press/ 
editor/eqitorial/ 
broadcasting/station/programs/ 

software_engineering/software_production/programming/ 
software_development/software_labs 

auto_parts/ 
broadcasting/station/programs/ 
broadcasting/station/programs/ 
press/printing/printer/ 

broadcasting/station/programs/ 

203 



Appendix C 

A Classification Example 

This appendix shows the classification example included in the directions 

for the user classification experiment of Chapter 7. The program and documentation 

were taken from Kemigham. and Plauger's "Software Tools in Pascal" [KERN 8 3 J . 

Classification Code 

f7tion 7c/ediu/tem functi/- area setr 
{substitute, files, file, file - handler, program - development, software - shop) 

Program Listing 

{ update -- update existing files, add new ones at end } 
procedure update (var aname : string; cmd: character); 
var 

i : integer: 
afd, tfd : filedesc; 

begin 

end; 

tfd :• mustcreate(archtemp, IOWRITE); 
if (cmd • ord('u')) then begin 

afd := mustopen(~e. IOREAD); 
replace(afd, tfd, ord('u')); {update existing} 
close(afd) 

end; 
for i :• 1 to nfiles do { add new ones } 

if (fstat[i] =false) then begin 
addfile(fname[i], tdf); 
fstat[i] :• true 

end; 
close(tfd); 
if (errcount • 0) then 

fmove(archtemp, aname) 
else 

message('fatal errors - archive not altered'); 
remove(archtemp) 

204 



205 

Documentation 

Updating an archive breaks cleanly into two stages: replacing existing mem

bers with new versions, and adding to the end any files named as arguments but 

not present iri the archive. We assume that the only way to add data to the end of 

a file is to copy the existing information to a new file, add the new data to the end 

of that, then copy the whole thing back to the original. Even though some systems 

allow you to add at the end or rewrite in the middle of a file, it is unwise to do so. 

It is safer not to alter an existing archive until you're sure that the replacement is 

complete and correct. 

The process of updating can be summarized as 

open archive (create if new) 
create temporary file 
for each new file 

create header and copy it to temporary 
copy file to temporatry 

if no errors 
move temporary back to archive 

These operations are controlled by update. 



Appendix D 

Sample Library System Entry 

This appendix shows a typical library system entry. The one shown 

here was used as one of the candidates for reusability in the reuse effort estimation 

experiment of Chapter 7. 

Classification Code 

search/ pointers/ tree/ table-handler /program-development/ software-shop 

Reuse Metrics 

Size 29 

Complexity 9 

Explicit Interface 2 

Implicit Interface 10 

Documentation 8 

Language Pascal 

Catalog Description 

PROGRAM NAME: SearchID- This procedure locates an identifier in the 
identifier table. Local declarations are 
searched first. Search is conducted in a tree, 
and it checks for undeclared entries. 

APPLICATION: Systems 
SETTING: Software-shop 
FUNCTIONAL AREA: Language Processor 

SPECIFIC FUNCTION: Compiler 
TARGET LANGUAGE: UCSD Pascal 
COMPILER SUBFUNCTION: Symbol Table Handling 

TASK: Identifier Handling 
GENERIC FUNCTION: search 
METHOD: Binary 

LANGUAGE: Pascal 
DIALECT: UCSD 

HARDWARE: n/a 
DOCUMENTATION: Source- Pemberton and Daniels, "Pascal Implementation: 

206 



The P4 Compiler", Ellis Horwood Ltd .• 1982. 
ANALYSIS: n/a 
DESIGN: Overall hierarchical structure of compiler on pp. 148-9. 
CODE: Code description and explanation on p. 40 of [Pemb82] 

Example of compiler output on p. 154. 
OPERATION: n/a 

CODE LISTING:·p. 12 [Pemb82]. 

Source Listing 

588 procedure searchid(fidcls: aetofida; var fcp: ctp)i 
599 label 1; 
590 var lcp: ctp; 
591 begin 
592 for diax :• top downto 0 do 
593 begin lcp :• display[disx].fname; 
594 while lcp <> nil do 
596 if lcp·.name •id then 
696 if lcp-.klaaa in fidcla then goto 1 
697 else 
698 begin if prterr then error(103); 
699 lcp :• lcp·.rlink 
600 end 
601 else 
602 if lcp·.name <id then 
603 lcp :• lcp·.rlink 
604 else lcp :• lcp-.llink 
606 end; 
606 (•search not successful; suppress error message in case 
601 of forward referenced type id in pointer type definition 
608 --> procedure simpletype•) 
609 if prterr then 
610 begin error(104); 
611 (•to avoid returning nil, reference an entry 
612 for an undeclared id of appropriate class 
613 --> procedure enterundecl•) 
614 if types in fidcla then lcp :• utypptr 
615 else 
616 if vars in fidcla then lcp :• uvarptr 
617 else 
618 if field in fidcls then lcp :• ufldptr 
619 else 
620 if konst in fidcla then lcp :• ucatptr 
621 else 
622 if proc in fidcls then lcp :• uprcptr 
623 else lcp :• ufctptr; 
624 end; 
626 1: fcp :• lcp 
626 end (•searchid•); 

207 



208 

Docume~t~tion 
T •• ' 

Routine .Searchid lines [ 588-626] 

This procedure is called to locate an identifier in the identifier table. 

Pascal's- scope rules require that first the local declarations be searched, then 

in the next surrounding block, and so on outwards. To effect this, searchid searches 

each tree in display from top down to 0 until the identifier is found, or it is discovered 

that the identifier was not declared, in which case a special 'undeclared' entry is 

returned. 

592 Disz works down through the levels. 

593-605 Search the tree at one level. 

596-604 Fidel is a set of idclass [137] representing the class of identifier acceptable, 
for example, variable, type, etc. At this point an identifier with the
required name has been found, H it is of a suitable class, them this is 
the required identifier. Otherwise error 103 is reported, and searching 
continues. Prterror inhibits the error message during declarations, when 
a pointer type may be forward declared. 

609 ff the identifier was found, goto 1 [596] would have been executed. Thus 
if the loop terminates normally, the identifier was not found, and so error 
104 is issued, and a . pointer to a special undeclared entry is returned 
(these are initialized earlier). In this way the caller of searchid can be 
sure that the result is non-nil, and of an acceptable class. 

IDENTIFIERS: At each level of declaration a tree is formed of the identifiers 

declared there. The first identifier declared at any level is pointed to by the field 

/name of the relevant element of the array display. The rlink and llink fields of type 

identifier then point to lower regions of this tree, rlink pointing to identifiers with 

alphabetically later names, llink for earlier names. For example with 

program eg; 
const max-100; 
var b,a: real; 
procedure p; 

var r:real; 
begin ... end; 

begin ... end. 



209 

while th~ body of procedure pis being compiled, the identifier tree looks like this: 

L R 

• • 
Top 2 

L R 

0 

display 

(The variable top always points to the current top element of the display). 

These trees are created by the procedure enterid, which is called while com

piling declarations each time a new identifier is declared. Then eveey time an 

identifier is used within the program being compiled, the trees are searched ll:Sing 

the procedure searchid [588-626], and occasionally by searchsection [575-86]. 

Searchid works by searching the tree at each level of the display until the 

identifier is found, or until the whole structure has been searched without finding 

it. 






