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Abstract
We explore whether children’s strategies on a causal learning
task show a bias observed in adults towards “exploitative” hy-
pothesis revision. Adults and children (ages 4–6) were pre-
sented with evidence which initially seemed to conform to a
simple, salient rule (e.g. blue blocks activate a machine), but
then encountered evidence that violated this rule. The true
rule in the “near” condition was more complex, but could be
reached through iterative revision of the salient rule, while in
the “distant” condition, the true rule was comparatively sim-
ple, but incremental revision could not yield the true rule. Par-
ticipants then predicted the behaviour of a set of new blocks.
Adults performed better in the near condition, while in the dis-
tant condition adults did not appear to revise their initial hy-
pothesis significantly. Unlike adults, children’s overall perfor-
mance in both conditions was similar, while condition differ-
ences may reflect a broader search for alternative solutions.
Keywords: Bayesian inference, belief revision, causal learn-
ing, process model

Introduction
Why does a boat float, but a pebble sink? To young chil-
dren, weight and density are undifferentiated, failing to ex-
plain why some large, heavy objects can nevertheless float;
as children develop, they must—and do—dramatically shift
their beliefs to fully explain the evidence they encounter in
the world (Smith, Carey, & Wiser, 1985). This flexibility
is a critical component of human learning and development,
but too much willingness to shift one’s beliefs could result in
abandoning a belief which could nevertheless be correct, or
could be incrementally improved. However, insufficient revi-
sion of one’s views could prompt excessive attachment to a
belief even after it has been shown to be wrong.

Despite the complexity and ambiguity of data encountered
in the world, humans are nevertheless able to effectively fil-
ter incoming information, and generalize this information to
make broad conclusions. One approach successfully used
to predict rapid human knowledge acquisition in tasks such
as causal inference is the use of ideal-observer hierarchical
Bayesian models (Kemp, Perfors, & Tenenbaum, 2007; Lu-
cas & Griffiths, 2010; Tenenbaum, Kemp, Griffiths, & Good-
man, 2011). Optimal Bayesian learners are able to represent
the posterior distribution in its entirety, allowing for the exact
computation of the probability of various hypotheses given
some observed data by using Bayes’ rule. While these mod-
els often accurately reflect the group-level, if not individual,
performance of humans on certain tasks, the idealized com-
putations quickly become time-consuming and computation-
ally expensive, and are often intractable in real-world tasks as

the number of possible hypotheses an ideal Bayesian learner
would need to maintain grows with new data, and outstrips
humans’ limited cognitive capacities. As a result, we might
expect human performance to deviate from the Bayesian ideal
in complex tasks where computing the full posterior becomes
intractable. Nonetheless, these optimal inferences can often
be approximated with algorithms that are efficient and ac-
curate most of the time, but which nevertheless show cer-
tain systemic biases, such as anchoring and base-rate ne-
glect (Lieder, Griffiths, Huys, & Goodman, 2017; Sanborn
& Chater, 2016). Rather than always attempting to deter-
mine the optimal choice or inference regardless of the po-
tentially overwhelming cost of doing so, human beings may
make resource-rational decisions, which are optimal given
the bounded nature of human cognition and the costs of mak-
ing inferences (Lieder & Griffiths, 2020).

One way to represent the algorithmic processes involved in
Bayesian inferences is to use methods which generate sam-
ples from the posterior distribution rather than maintaining
a full posterior over all possible outcomes. In particular,
Markov chain Monte Carlo (MCMC) sampling methods (e.g.,
Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Griffiths,
Lieder, & Goodman, 2015; Sanborn, Griffiths, & Navarro,
2010) sequentially generate new samples that incrementally
change a current hypothesis in a way that asymptotically ap-
proximates the posterior distribution. The incremental nature
of these algorithms means that they can weight initial hy-
potheses more than a normative model would predict, if one
draws a small number of samples. Nonetheless, given that
sampling can be costly, making apparently sub-optimal infer-
ences based on few, or even just a single sample may be an
optimal long-term strategy for some decisions (Vul, Good-
man, Griffiths, & Tenenbaum, 2014).

Resource-rational models of cognition are consistent with
findings of a bias towards exploiting existing knowledge in
adults’ hypothesis search strategy (Herbst, Lucas, & Buchs-
baum, 2017) and a preference towards local, conservative ed-
its to one’s working hypothesis (Bramley, Dayan, Griffiths, &
Lagnado, 2017). An incremental approach is helpful for fine-
tuning good hypotheses, but too much conservatism is mal-
adaptive when one’s starting state is fundamentally wrong—
as with a child who has no concept of density. If children
are more aggressive and less incremental in their belief revi-
sion as Gopnik et al. (2017) have speculated, it could explain
their ability to outperform adults in some tasks, especially
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Transition Rule p(t)
S→∀x, `(x)⇔ (D) 1
D→ (C)∨D τ

D→ (C) 1− τ

C→ (P)∧C τ

C→ (P) 1− τ

P→ FEF θ

P→V 1−θ

V → F 0.5
V →¬F 0.5
F →{A,B,C,D,E} βA−E
E→ = 0.5
E→ 6= 0.5

Table 1: Transition rules in the modified DNF rule grammar. `(x)
returns true if x is a category member and false otherwise. D denotes
a disjunction of conjunctive clauses. C denotes a conjunction of
propositions which are treated as literals in the grammar. E refers to
an equality or inequality (= or 6=) and F refers to a block feature. τ

is the transition probability. θ is the probability that a transition will
introduce an equality or inequality. Each feature has an associated
β which represents the probability that the feature is relevant to a
given rule.

ones that require choosing a counter-intuitive and unfamil-
iar solution over a familiar one with less explanatory power
(Lucas, Bridgers, Griffiths, & Gopnik, 2014; Gopnik, Grif-
fiths, & Lucas, 2015). The developmental change observed
in search strategies on these tasks may resemble the process
of simulated annealing, wherein searches begin at high “tem-
peratures” (variability) and gradually “cool” as they narrow
in scope to the most likely possibilities (Gopnik et al., 2015).

Under this view, apparently noisy or irrational beliefs in
children are not simply the result of a failure to recognize that
a hypothesis is reliable, nor of differing prior beliefs, but an
adaptive policy for learning, given children’s particular cog-
nitive limitations. Just as adults’ tendency to exploit infor-
mation that is already available is often a sensible allocation
of limited resources, children may choose to explore, and in
doing so learn more about the world, gaining the knowledge
that they can, as adults, quickly exploit (Denison, Bonawitz,
Gopnik, & Griffiths, 2013).

To explore this idea, we compared adults’ and children’s
performance in a task where participants must integrate
counter-intuitive evidence, following evidence that supports
a simple, salient causal rule, extending Herbst et al. (2017).
We propose that children, unlike adults, will not show better
performance in a condition rewarding incremental local hy-
pothesis edits. We use a Bayesian model to illustrate how an
ideal observer would revise their beliefs to account for evi-
dence in these tasks. By comparing participants’ judgments
to the predictions of the model, as well as to alternative deter-
ministic rule-based strategies, we can reveal developmental
differences with an eye to more or less incremental belief re-
vision. If children are exploring possible solutions to the task
more broadly, their judgments will not simply be a noisy re-
flection of those made by adults, but may instead use different
strategies that yield qualitatively different judgments.

Bayesian Model of Causal Inference
To understand how an ideal Bayesian learner would make
inferences about a causal rule based on observations, we
adapted the Bayesian rule induction model from Goodman
et al. (2008). This model infers a distribution over rules that
define category membership as a function of an object’s fea-
tures, based on example objects that are or not in the category.
The model favours rules that are simpler, as well as those that
best explain the data. This distribution over rules can then
be used to infer the category of new objects, and the relative
probabilities of objects being in the category.

In this model, rules are logical propositions generated us-
ing a context free grammar (Table 1). The propositions are
expressed in a modified disjunctive normal form (DNF): that
is, rules are composed of disjunctions of conjunctions of
predicates (P). Our model deviates from standard DNF in
that we allow equality or inequality between features at the
bottom level of an expression, while traditionally DNF uses
only features or their negations in clauses.

The model assigns a prior probability to each rule accord-
ing to its syntactic complexity, where more complex rules are
less probable:

P(r) = ∏
t∈Deriv(r)

p(t) (1)

where Deriv(r) is the set of all transitions in the derivation of
rule r and p(t) is the probability associated with transition t.

We generated model predictions for the tasks in our exper-
iments. The model observes a series of ten blocks, each with
five binary features, labelled A through E. The feature A rep-
resents the background colour of the block, and the other four
features represent individual shapes on the block. Each of the
blocks does or does not activate a machine, and the model in-
fers the probability that a given rule, based on the features of
the blocks, determines the observed pattern of causal activa-
tions. Blocks that activate the machine are known as blickets.
We assume that deterministic rules are most likely, as both
adults (Frosch & Johnson-Laird, 2011) and children (Schulz
& Sommerville, 2006) strongly prefer deterministic causal re-
lationships. However, there is a small probability, ε = 0.001,
that the machine will misfire and a block will be an excep-
tion to the rule (e.g., a block activates the machine despite the
rule predicting it should not). These assumptions give us the
posterior distribution over rules:

P(r|B,L) ∝ ε
k(1− ε)n−k p(r) (2)

where r is a possible causal rule, B is the set of blocks be-
ing observed, L is the observed pattern of activations for the
blocks in B, ε is the noise parameter, n is the total number
of observed blocks, and k is the number of outliers whose
activations do not match the rule r’s prediction.

All of our model predictions are given for values of τ = 0.4
representing a modest simplicity bias towards shorter rules,
and and θ = 0.2, a moderate probability that the rule will di-
rectly compare two features, but our model predictions are
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Figure 1: Sample stimuli and block order for Experiment 2’s blicket
detector task in the distant (top) and near (bottom) conditions.
Blocks have the salient background feature (A), two rule-relevant
features (the circle, C, and square, D), and two rule-irrelevant fea-
tures (the star, B, and triangle, E). The first seven blocks appear
to conform to an initially salient, simple rule, e.g. “blue blocks are
blickets”. However, the final three blocks violate this intuition, re-
vealing that the true rule requires revising one’s beliefs to correctly
predict all machine activations.

robust across a relatively broad range of parameter values:
0.3 to 0.5 for τ, 0.1 to 0.25 for θ, and 0.001 to 0.05 for ε. Ad-
ditionally, we assume that the feature space will be sampled
roughly in proportion to the size of the feature, favouring the
salient feature with a probability of 0.5 (and other features
equally at 0.125 each).

In our task, we present ten blocks whose activation patterns
are deterministically captured by a single rule: the true rule.
The first seven blocks are also consistent with a simpler, a pri-
ori likely rule: the initial rule. However, the last three blocks
are outliers under this rule, and are only explained by the true
rule (Figure 1). There are two conditions for the experiment,
in which the true rule governing the pattern of activations dif-
fers: the near condition and the distant condition. In both
conditions, the initial rule remains the same; namely, that the
background feature of the block A determines whether it is
a blicket. In the near condition, the true rule is most simply
written as (A ∧¬C) ∨ (¬A ∧¬D). This rule incorporates the
initial rule (A), and it can be reached through a process of iter-
ative hypothesis revision, by making single edits to a working
hypothesis that steadily improve one’s accuracy (e.g., edit-
ing the rule (A) which explains 7/10 examples into (A ∧¬C),
which explains 9/10). In contrast, in the distant condition,
the simplest true rule which could accurately categorize all
blocks in the exposure phase can be written (C 6= D). This
rule does not involve the background colour, and there are no
incrementally better hypotheses that provide a stepping stone
to the true hypothesis. Instead, it is necessary to temporar-
ily adopt a less useful rule (e.g., A ∧ C, which explains 2/10
blocks) in order to reach the true rule via single edits, or to
dismiss one’s initial hypothesis about the background colour
as the most likely rule entirely.

Model Predictions and Discussion
We estimated the posterior distribution that an ideal Bayesian
observer would infer over rules after each of the 10 blocks,
using a Metropolis-Hastings algorithm (ten chains of 60,000
samples; burn-in = 10,000). In both conditions, the initial rule
is the most probable rule until introduction of the inconsis-
tent evidence, at which point the initial rule rapidly becomes
unlikely, and the true rule becomes the most probable, even
when it was highly unlikely a priori (Figure 2). In both con-

ditions, the model assigns the highest posterior probability to
the true rule by the time all 10 blocks are observed. However,
in the distant condition, the true rule becomes the only plau-
sible rule, while in the near condition the model remains less
certain, as the intermediate rule A ∧ ¬C (a necessary compo-
nent of the true rule), and a simpler rule, (¬C), that requires
dismissing A can each account for 9 of the 10 observations.
In the following sections we present both adult participants
and 4-6 year old children with this same task.

Experiment 1: Adult Hypothesis Revision
In Experiment 1 we present a causal inference task to test
whether adults’ revision process is exploitation-biased. If
adults adjust their beliefs in a way that is consistent with our
ideal observer, they should be at least as likely to dismiss the
initial hypothesis that the background determines block acti-
vations in the distant condition as in the near condition. How-
ever, if adults’ hypothesis exploration is conservative, favour-
ing local edits to a working hypothesis that steadily improve
accuracy (and potentially reducing the search space for revi-
sions to their beliefs), then adults will not change their beliefs
in the distant condition, where the edits required to reach the
true rule force one to abandon a local optimum. Thus, we pre-
dict that adults’ judgments will reflect this process of revision
in the near but not the distant condition, where they will fail
to develop a better rule than the initially induced hypothesis.

Methods
Participants and Design 118 adult US residents were re-
cruited through Amazon’s Mechanical Turk service and paid
$0.50 for completing the task. 28 participants were ex-
cluded due to failure to correctly answer one or more attention
checks. 90 participants were included in the final analysis, di-
vided between near (N = 45) and distant (N = 45) conditions.
Sample size was determined using Frick’s (1998) sequential
analysis criteria, with a lower bound of 90 participants.1

Materials and Procedure Adults completed an online
causal learning task. They first watched a short video that
introduced them to a machine called a blicket detector. When
blocks known as blickets are placed on the device it plays a
sound, displays a check mark, and animates. When blocks
that are not a blicket are placed on the machine, it remains
inactive. As in Herbst et al. (2017), blocks had five features:
the background colour A, two rule-relevant features C and D,
and two irrelevant features B and E.

Participants were then presented with an exposure phase in
which they dragged 10 blocks one at a time onto the detec-
tor, which would either activate or not. The block was then
added to a visible list of blickets or non-blickets. As with our
model, the first 7 blocks appeared to follow the initial rule,
while the last 3 blocks violated it, and the true rule for the
condition (near or distant) accounted for these seeming ex-
ceptions. All participants within a condition saw the same
10 blocks (5 blickets and 5 non-blickets), with a randomized

1Our analyses were preregistered and can be found here: osf.io
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Figure 2: Rule probabilities by number of observations. In the near condition (left), the true rule was most probable under the model, although
other rules which explained 9/10 blocks were also assigned non-negligible probabilities. In the distant condition (right), the true rule’s final
probability was near 1.

order within the first 7 (initial rule-consistent) and final 3 (ini-
tial rule-violating) blocks. The role of blue and red (e.g., as
background colour according to the initial rule) was counter-
balanced.

Adult participants then completed two tasks: a blicket
identification task and a forced-choice task. In the blicket
identification task, participants were presented with 8 blocks
and asked to judge whether the block was a blicket, and to
indicate their confidence in this judgment on a seven-point
scale. The blocks presented consisted of four blickets and
four non-blickets according to the true rule. Two of each were
consistent with the initial rule and two violated the initial rule.

The blicket identification task was followed by a forced-
choice task. In the forced-choice task, participants were pre-
sented with two blocks on each trial, a blicket and a non-
blicket, and asked to select which block they thought was
the blicket. Both the blicket and the non-blicket could ei-
ther be initial rule-consistent (e.g., for initial rule A = blue, a
blue background blicket and a red background non-blicket),
or initial rule-violating (a red background blicket and a blue
background non-blicket). Accounting for all possible com-
binations of blicket and non-blicket initial rule consistency,
this yielded a total of four trials for the forced-choice task.
Finally, adults were asked a series of attention and compre-
hension checks, to ensure that they had attended to the entire
experiment.

Results and Discussion
The results supported our prediction that adults would score
more highly in the near condition than the distant condition,
consistent with an incremental, exploitation-biased hypothe-
sis search strategy (Figure 3). Participants in the near con-
dition performed significantly better than those in the distant
condition (z = –2.81, χ2 = 8.08, p = 0.005). Across condi-
tions, participants were better at categorizing both blickets (z
= 4.57, χ2 = 22.21, p < 0.001) and non-blickets (z = 5.09, χ2

= 27.78, p < 0.001) correctly when the blocks were consis-
tent with the initial rule. A 2-way interaction was found be-
tween non-blicket consistency and condition (z = 2.53, χ2 =
6.52, p = 0.011); participants performed significantly worse
in the distant condition than in the near condition when the
non-blicket looked like a blicket according to the initial rule.

No other interactions were significant (all p > 0.27).

To investigate the interaction, we ran follow-up pairwise
comparisons by condition. When the non-blicket was consis-
tent with the initial rule (e.g. for initial rule A = blue, a red
background non-blicket), there was no condition difference (z
= 0.20, p = 0.84); however, participants were more accurate in
the near condition than in the distant condition when the non-
blicket violated the initial rule (z = 3.74, p < 0.001). If par-
ticipants use the initial rule to categorize blocks, they would
consider initial rule-violating non-blickets to be blickets, and
select them as often as the true blicket when the true blicket
is consistent with the initial rule, and more often than the true
blicket when both blocks violated the initial rule. This ap-
pears to describe performance in the distant condition (Figure
3). Participants do not appear to do this to the same degree
in the near condition, suggesting that some participants have
learned the true rule, or an intermediate rule: for example,
that blocks must additionally satisfy the constraint (A ∧ ¬C)
in order to be blickets.

For the blicket identification task, a 2x2x2 mixed ANOVA
was run, with initial rule consistency, blicketness, and condi-
tion as factors. As in the forced-choice task, participants were
more accurate at correctly identifying blocks in the near con-
dition than in the distant condition, F(1,88) = 5.05, p = 0.027.
Participants were no better at categorizing blickets than non-
blickets, F(1,88) = 0.80, p = 0.375. In both conditions, they
also more accurately categorized initial rule-consistent blocks
than initial rule-violating blocks, F(1,88) = 58.3, p < 0.001.
There were no significant two-way interactions (all p > 0.09),
but the analysis found a three-way interaction, F(1,88) = 8.35,
p = 0.005. As was the case with the forced-choice task, par-
ticipants in the near condition were better at recognizing ini-
tial rule-violating non-blickets (e.g. blue background non-
blickets) than in the distant condition, t(88) = 2.34, p = 0.022.
Participants in the near condition may have been able to reach
an intermediate rule that allowed them to correctly categorize
initial rule-violating non-blickets, even though they were no
better at categorizing initial rule-violating blickets (e.g. red
background blickets), t(88) = 0.28, p = 0.78, in the near con-
dition compared to the distant condition.

We also tested whether adults’ responses on the forced-
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choice task were best captured by the idealized model’s pre-
dictions of the probability that each block was a blicket, after
marginalizing over possible true rules, or by individual rule
predictions (the expected choices if adults were deterministi-
cally applying a single specific rule, with small outlier prob-
ability ε), by comparing the log likelihoods of adults’ judg-
ments under each model. In the near condition, the full pos-
terior model (` = –373.7) was the best fit; this was followed
by the true rule (` = –912.1), the intermediate rule A ∧ ¬C (`
= –953.5), and finally the initial rule (` = –1036.4). However,
in the distant condition, the initial rule was the closest fit for
the adults’ judgments (` = –843.0), followed by the model (`
= –958.0) and the true rule (` = –1257.4).

Overall, these results suggest that while adults in the near
condition are able to revise their beliefs to explain at least
some seeming exceptions in the initial rule, in the distant con-
dition they cannot successfully revise their beliefs to generate
a hypothesis better than the initial rule. On the other hand,
young children’s flexibility and openness to unusual solutions
may predispose them to explore alternative solutions more
broadly (e.g., Lucas et al., 2014; Gopnik et al., 2015, 2017),
potentially allowing them to escape the local optimum that
adults were unable to in the distant condition.

Experiment 2: Children’s Hypothesis Revision
In Experiment 2, we adapted the blicket detector task admin-
istered to adults to one that would be suitable for young chil-
dren, and predicted that the condition differences observed in
adults would not be present in children from ages 4-6. As
our model indicated that the distant condition rule was more
easily reached if one’s working hypothesis did not constrain
one’s search space, we predicted that if a condition difference
did emerge, it would likely be reversed from that observed in
adults, especially in younger children. Additionally, if chil-
dren are more willing to abandon the initial rule, their ten-
dency to choose the initial rule-consistent blocks should be
weaker than that of adults.

Methods
Participants and Design Data was collected for 99 4-6
year old children (M = 5.35, SD = 0.99) through in-lab partic-
ipation and at local museums. Nine children were excluded
from the final analysis for failing a comprehension check (N
= 7), due to family interference (N = 1) or experimenter error
(N = 1), for a total of 90 included in our initial analysis. As
with adults, participant sample size was determined through
Frick’s (1998) criteria, with a lower bound of 90 participants.2

Materials and Procedure Children were presented a phys-
ical task with eighteen wooden blocks and a blicket detector
with an internal chime. The block stimuli used with children
were similar to those used with adults, adapted for ease of
recognition of individual features by children, and featured a
blue or red background and four familiar shapes.

2Our analyses were preregistered and can be found here: osf.io

Children were introduced to the blicket detector as a “spe-
cial machine” which would make a sound if a blicket was
placed on it. Like the adults, they observed a series of blocks
with 7 blocks consistent with the initial rule followed by 3
blocks that violated the initial rule. As they tested blocks,
children were instructed to place blickets to one side and non-
blickets to the other; all blocks remained visible until the end
of the exposure phase. The conditions used in this experi-
ment were logically equivalent to Experiment 1’s, and fea-
tured the same 10 exposure blocks. After completing the ex-
posure task, as a comprehension check, children were asked
if a blicket would make a sound when put on the machine.
Those who failed to answer correctly were excluded from the
final analysis.

Children then completed a forced-choice task, which used
a predetermined list of eight blocks. Children saw the same 4
trials as adults, with the pairing of blickets and non-blickets
presented for each trial was randomized. Finally, children
were asked to explain why they chose blocks that they did; if
they did not respond, children were prompted to explain why
they thought those blocks were blickets. During this time, all
blocks from the forced-choice task were visible to the child.

Results and Discussion
The criterion for sequential analysis used to determine sample
size for children was the two-way interaction between age
(child or adult) and condition on the forced-choice task on a
2x2 mixed-effects logistic regression. There was a significant
main effect of age (z = 2.11, χ2 = 4.56, p = 0.034), but not of
condition (z = –1.52, χ2 = 2.37, p = 0.13). The interaction of
age by condition did not reach our pre-specified criterion of
p > 0.36 or p < 0.01 (z = –2.26, χ2 = 5.22, p = 0.023). Thus,
data collection is ongoing, but we report preliminary findings
from the first 90 children here.

Unlike adults, children did not differ in their overall perfor-
mance between the near and distant conditions (z = 0.69, χ2

= 0.47, p = 0.49). Across both conditions, they were signifi-
cantly better at recognizing initial rule-consistent blickets (z =
3.55, χ2 = 12.92, p < 0.001) as well as initial rule-consistent
non-blickets (z = 3.14, χ2 = 10.07, p = 0.002). There were
no two-way interactions in the data, but there was a marginal
3-way interaction (z = 1.90, χ2 = 3.66, p = 0.056). In contrast
to adults, for whom this pattern was reversed, this appeared to
be driven by children in the near condition being worse than
in the distant condition at choosing the true blicket when both
blocks violated the initial rule.

We also examined children’s performance relative to
chance. In the distant condition, children were above chance
at selecting the correct block as the blicket when both blocks
were initial rule-consistent, B(31,45), p = 0.016; in the near
condition this effect was not significant, but in the same di-
rection B(28,45), p = 0.135. Further, children in the near con-
dition were significantly below chance when both blocks vi-
olated the initial rule, B(10,45), p < 0.001, suggesting that in
both conditions, children often chose the block with a back-
ground colour consistent with the initial rule when given the
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Figure 3: Comparison of model predictions and performance by
adults and children. The model’s predictions (top left) were the
closest match for the true rule in the distant condition, matching
the rule with a probability near 1 for all blocks; its predictions re-
mained a good match in the near condition, although it assigned less
confidence in these choices. Compared to the model, both adults
(bottom left) and children (bottom right) had strong effects of ini-
tial rule-consistency; they were less accurate at categorizing initial
rule-violating blocks. Unlike children, adults’ accuracy was further
reduced for initial rule-violating non-blickets (yellow bars) in the
distant condition, relative to the near condition. Adults’ choices in
the distant condition more closely resembled a noisy application of
the initial rule (top right), while their choices in the near condition
were better fit by the idealized model’s predictions.

choice. Interestingly, children in the distant condition were
not significantly below chance, B(18,45), p = 0.233, when
both blocks violated the initial rule.

Together, these preliminary findings support our prediction
that children’s performance would not be significantly bet-
ter in the near condition relative to the distant condition, and
that their performance would differ from adults by condition.
While overall, children were less accurate on the task than
adults, they did not merely randomly choose blocks, nor do
their choices within each condition resemble those of adults,
which may reflect developmental differences in the process
by which children revise their beliefs.

As with adults, we tested the likelihood of children’s re-
sponses against both our idealized model and the application
of individual rules. Unlike adults, our model was the likeliest
given the data for children in both the near (` = –699.2) and
distant (` = –962.9) conditions. In the near condition, this
was better than the initial rule (` = –1298.8) and the true rule
(` = –1243.6); likewise, this was true in the distant condition
(initial rule ` = –1326.5; true rule ` –1209.0). These results
are suggestive of a noisier strategy, but importantly, one that
differs from the pattern observed in adults.

Finally, we performed follow-up pairwise comparisons to
determine whether a developmental difference in strategies
emerged within child age groups. 4-year-old children were
marginally better in the distant than the near condition (z =
1.94, p = 0.052), whereas 5- and 6-year-olds were no better
in either condition (all p > 0.28). Older children may be on
the cusp of developing more adult-like strategies in their hy-
pothesis search, becoming less sensitive to unusual evidence

and more reliant on prior beliefs (e.g., Gopnik et al., 2017).
One possibility for at least some of the children’s responses

is that their hypothesis about which blocks are blickets take
the form of a higher-order structure than the features of an
individual block as a logical rule. When prompted to explain
their choices, a number of children suggested that character-
istics such as sequences of blocks with a given background
colour or presentation position, such as “red-red-blue-red”
or “right-left-right-left” (N = 5), determine which blocks are
blickets.

While it has been suggested that children may simply be-
gin with different priors about data than adults (Gopnik et al.,
2017; Lucas et al., 2014), we believe that children find the
initial rule to be similarly salient to adults in our experiment.
Suggestively, 30 of 90 children spontaneously articulated a
form of the initial rule in the exposure phase (e.g., “oh, it’s
the blue blocks!”), suggesting that like adults, children provi-
sionally operate according to a form of the initial rule as they
observe the initial consistent blocks. This supports the pos-
sibility that process-level differences, such as making higher-
temperature edits to a working hypothesis than adults, may
explain at least some of the changes across development in
this task.

General Discussion
These experiments support the idea that adults’ hypothesis
search strategies are incremental and exploitation-biased, and
suggest that children do not exhibit similar exploitative be-
haviour in generating hypotheses to explain observed data.
Consistent with prior research, adults were more accurate in
classifying blocks when incremental alterations to an initial
salient hypothesis could steadily improve their accuracy. This
is despite the fact that an idealized Bayesian model found the
true rule in both conditions the most probable, and signifi-
cantly more probable in the distant condition. Adult partic-
ipants’ better performance in the near condition appeared to
be partly driven by greater accuracy at correctly categorizing
initial rule-violating non-blickets, consistent with adults in-
crementally updating their hypotheses to account for the fact
that not all blocks that shared a background colour with the
initially encountered blickets would activate the machine.

These results are also consistent with the hypothesis that
unlike adults, children’s search strategies are not clearly
exploitation-biased. Children did not perform differently
across conditions, but also did not choose randomly: many
children quickly and spontaneously understand that the ini-
tial blocks they are presented with match a salient and easily
observable initial rule, and there is a significant effect of both
true blicket and distractor block consistency on their probabil-
ity of correctly categorizing a block. However, their choices
on the task may indicate that their inferences about effec-
tive procedures for successful belief revision may be subject
to fewer inductive constraints than adults, resulting in more
variable solutions that nevertheless might have been no bet-
ter than the initially induced rule. The presence of U-shaped
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learning curves in many domains (Carlucci & Case, 2013)
may follow from an increased willingness to abandon a local
optimum for what is, in the long term, a better solution.

The probabilistic model we developed identified areas in
which an ideal Bayesian observer would systematically di-
verge from adults. Adults’ judgments in the near condition
were best fit by this model, while in the distant condition, the
initial rule was a likelier predictor of adults’ responses, sug-
gesting a bias towards local edits that incrementally improve
one’s accuracy. This may be sensible when one’s existing be-
liefs are approximately correct, but it can prevent one from
being able to escape a “good-enough” strategy if there are no
easy edits in reach. While adults may vary in their individ-
ual ability to incrementally revise, the good group-level fit
of a model estimating the posterior distribution (rather than
any individual rule) in the near condition is suggestive of a
“wisdom of crowds” effect, consistent with the hypothesis
that adults may be sampling from the posterior distribution
(Denison et al., 2013; Sanborn & Chater, 2016).

The exact iterative process by which adults are updating
their beliefs, and thus how this process fails in the distant con-
dition, remains unclear, as does the method by which children
choose to evaluate the evidence they encounter given limited
cognitive resources. For example, adults might be falling vic-
tim to a “learning trap” (Rich & Gureckis, 2018), disregard-
ing relevant dimensions of a solution. To disambiguate pos-
sible processes of belief revision, we plan to administer new
versions of the task eliminating the induced order effect, as
well as adapt and extend our existing model through the use
of sequential Monte Carlo (or particle filter) algorithms to ac-
count for the process by which incremental updates are made
when participants (and adults in particular) encounter evi-
dence that violates their initial assumptions. Particle filters al-
low a learner to sequentially reweight and revise beliefs with
new data, introducing statistical dependency in one’s repre-
sentation of the posterior distribution (Sanborn et al., 2010).
Resource constraints may thus result in few opportunities to
improve a working hypothesis that does not provide an op-
portunity for improvement through local, conservative edits.
Higher stochasticity in a child’s edit behaviour, on the other
hand, may lead to more dead ends as a child considers unpro-
ductive changes to a working hypothesis, but might also lead
to hypotheses unexplored by adults that could help them find
an otherwise unexpected solution more often than adults.

Overall, our findings suggest that adults are better able to
correctly learn a rule reachable by a process of iterative revi-
sion to a working hypothesis that is at least as complex, if not
more so, than a rule which is simple, but requires dismissing
one’s initial assumptions. Children do not display the same
bias in their search strategy, and may be less committed to
any one rule as they more broadly explore possible solutions.
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