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Abstract: In recent decades, immunotherapy has undergone extensive developments for oncologic therapy applica-
tions. Dendritic cells (DCs) plays a fundamental role in cell-based vaccination immunotherapy against various types 
of cancer. It involves stimulating innate and adaptive immunity, in particular cytotoxic T-cell mediated antitumor ef-
fects, against targeted tumors and has been studied in both preclinical and clinical settings. Nevertheless, clinical 
outcomes have been unsatisfying. The antitumor response requires sufficient migration of viable DCs from primary 
administration site to targeted tumors through related lymphatics. The dynamics and mechanisms of the DCs migra-
tion still need further investigation. Here, we briefly introduce the current clinically applicable methods for manu-
facturing DC-based cancer vaccines and their most commonly used non-invasive, real-time tracking approaches. 
Furthermore, we propose a hypothesis that intraperitoneal injection may improve the efficiency of DC-based cancer 
vaccine. 
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Introduction

Dendritic cells (DCs) are specialized antigen-
presenting cells (APCs) that have been exten-
sively studied over the past decades as the ini-
tiator and modulator of immune response [1]. 
Since first characterized in 1973 by Ralph 
Steinman [2, 3], the critical role of DCs in immu-
nity, as well as their therapeutic potential in 
cancer, has been intensively elucidated [4, 5]. 
Antitumoral response of DC-based vaccines 
leads to the rejection of tumors and strongly 
depends on the activation of cytotoxic T lym-
phocytes following capture of antigen, antigen 
processing, and presentation to effector T cells 
[6]. The ideal cancer-immunity cycle requires 
orchestrating the multistep processes as illus-
trated below (Figure 1 reproduced with permis-
sion from Immunity) [7]. 

Cancer vaccines are one of the immunotherapy 
strategies designed to serve as an inducer of 
the cancer-immunity cycle. Since first reported 
by Nature Medicine in 1996 [8], a large amount 
of clinical trials on DC-based cancer vaccines 
have been carried out. A search for “dendritic 
cells and cancer vaccine” on www.clinicaltrials.
gov showed 362 registered studies, of which 
332 were phase 1 or phase 2 clinical trials. 
Although long-term benefits have been 
described in a small number of reports, objec-
tive clinical immune response remains quite 
dismal. The reported maximum rates of conven-
tional objective tumor response are at most 
15% [9]. Both immune tolerance secondary to 
the lack of costimulatory molecules for DCs 
maturation in peripheral tissues [10, 11] and 
the immune-suppressive environment of the 
tumor may affect DCs maturation and migra-
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tion, leading to decreased efficacy cancer vac-
cine immunotherapy [12].

Numerous basic and clinical studies have 
already described diverse approaches to spe-
cific tumor antigen loading and subsequent 
migration to draining lymph nodes (LNs) and 
systemic lymphoid organs [13-16]. Previous 
studies have also proven the feasibility of DCs 
maturation in vitro [17, 18]. Monitoring DCs 
migration in vivo will offer important insights 
into the biomechanism of DCs in antitumor 
immunity. In this review, we will discuss the 
sources of DCs subsets, routes of administra-
tion, clinically applicable means of DCs label-
ing, and the most commonly used techniques 
for non-invasive monitoring in murine models: 
magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET). We will also 
describe the application of these principles to 
future clinical cancer immunotherapy.

Source of DCs and DCs classification

DCs occupy a relatively minor part of cell popu-
lations in circulating blood, tissues, and organs; 

[22].  Via different stages of development, DCs 
can be simply classified as either mature or 
immature DCs, which differ from each other by 
localization and function [23]. Immature DCs 
generally remain in peripheral tissues, recog-
nizing and taking up foreign antigens using 
phagocytic and endocytic receptors. They are 
capable of inducing T-cell deletion/anergy and 
promoting regulatory T cells (Treg cells), result-
ing in T-cell tolerance [24]. Compared with 
mature DCs, immature ones are limited in 
secreting cytokines and activating T cells. In 
the presence of inflammatory cytokines or 
adverse signals (such as dying cancer cells or 
cancer vaccines with tumor antigen), immature 
DCs will mature, followed by a concomitant 
decrease in antigen uptake ability and an 
increase in proinflammatory cytokine secre-
tion, T cells stimulation, and DCs migration to 
draining LNs [25]. Another primary classifica-
tion is conventional DCs (cDCs, also termed 
myeloid DCs) and plasmacytoid DCs (pDCs), 
which can be discriminated by differential phe-
notypic expression [23]. cDCs more commonly 
reside in lymphoid organs, such as spleen, thy-
mus, and LNs, with a subpopulation named 

Figure 1. The cancer-immunity cycle. The induction of immune response 
against cancer can be illustrated as a self-propagating cyclic process, lead-
ing to an accumulation of various types of immune-stimulatory factors that in 
principle should promote and amplify T-cell responses. Inhibitory factors usu-
ally produced by cancer result in immune regulatory feedback mechanisms, 
which may halt the process or limit the immunity. The cycle can be divided into 
seven main steps, which have been described in the text. The involved primary 
cell types and anatomic location of each step are also listed. Abbreviations: 
APCs, antigen presenting cells; CTLs, cytotoxic T lymphocytes.

cell isolation procedures are 
also time consuming with 
low yields [19]. These factors 
make in vitro generation and 
differentiation of DCs from 
precursors a necessary tool 
for biological research and 
DC-based immunotherapy. 
Bone marrow is currently the 
preferred source of precur-
sor cells for DCs generation 
and differentiation [20]. First 
reported in 1986 in rats, pro-
tocols for mice were subse-
quently developed, and ex- 
tensive efforts have been 
made to establish a stan-
dard for harvesting mu- 
rine bone marrow derived 
DCs (Figure 2 reproduced 
from JoVE) [21].

The taxonomy of DCs is quite 
complicated. Herein, it will 
just be discussed briefly. 
DCs are classified by local-
ization, cell-surface pheno-
type, and specific function 
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migratory DCs found in blood. With a high 
expression of MHC II and the ability to cross-
present exogenous antigens on MHC I, cDCs 
play an important role in eliciting robust protec-
tive immune responses [26]. In contrast, pDCs 
have a diminished MHC II expression and a rel-
atively poor ability to activate T cells, but elicit  
a stronger viral infection response through 
increased Toll-like receptor-7/-9 expression and 
IFN-α/β production [27].

Nomenclature of DCs is remarkably complex. 
Even though human and mouse DCs subsets 
express totally different phenotype, the founda-
tion of classification is similar. Organization of 
DCs by function in human and mouse parallel 
each other, and the functional alignment of DCs 
subsets in these two species will definitely facil-
itate the translation of immunity understanding 
from mouse models into human [28].

Methods of tumor antigen loading in DCs

As illustrated in Figure 1, the first step of the 
cancer-immunity cycle is antigen release from 
tumor cells and subsequent capture by APCs. 
Hence, it is necessary to load DCs with target-
ed tumor antigens or proteins that are distinc-
tively overexpressed in tumor cells as cancer 
vaccines. DCs can be exploited for cancer vac-

cines at both the immature and the mature 
stage [29], and a diverse set of strategies have 
been utilized to load DCs with tumor antigens, 
including: (1) DCs loaded with short or long pep-
tides, (2) DCs loaded with proteins, (3) DCs 
loaded with tumor cell lysates, (4) DCs fused 
with whole tumor cells, (5) DCs transferred with 
RNA or DNA, and (6) DCs loaded with neoanti-
gens targeting specific tumor mutation [4, 30]. 
Each of these strategies has advantages and 
disadvantages, and a scientific debate regard-
ing the ideal method of tumor antigen loading is 
still ongoing. The goal is to induce maximum 
innate and adoptive immunity and avoid im- 
mune tolerance by the antigen loading method. 
With emergence of novel techniques for target-
ing antigens, it is reasonable to expect a more 
optimal DC-based vaccine loading strategy in 
the near future [9].

Routes of injection and effectiveness

Various routes of DC-based vaccines adminis-
tration are reported including subcutaneous 
(SC), intradermal (ID), intravenous (IV), intraper-
itoneal (IP), intranodal (IN), intralymphatic (IL), 
and intratumoral (IT) [31], each of which leads 
to variable outcomes [32, 33]. Several attempts 
have been made to determine the optimal route 
of vaccine administration and induction of 

Figure 2. Schematic representation of DCs isolation and generation from mice bone marrow. First, both tibias and 
femurs are dissected, surrounding tissues are removed, and the long bones are sterilized in ethanol. The bones 
are cut in half and flushed with medium. After the red blood cells are lysed, bone marrow cells are recovered and 
cultured for 8 days in the presence of GM-CSF and IL-4 to differentiate them into DCs.
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strong protective immune responses [34-36], 
yet the milestone has still to be achieved. DCs 
are region-specific immune cells that target 
specific sites of the body [37]. The IV and IT 
routes have been demonstrated to be ineffi-
cient by some studies as the DC-based vac-
cines administered through these methods are 
not primarily distributed to the LNs [37, 38]; this 
conclusion is still currently under investigation 
[39]. Several studies have proven that ID 
administration is more efficient but leads to 
very low DCs migration rate-maximally up to 5% 
of injected DCs, while SC administration has a 
better migration efficiency but poorer outcome 
[32, 40-42]. These two routes are also the most 
common methods for vaccination in human 
clinical trials (data from www.clinicaltrials.gov), 
where low migration rate and low efficacy are 
major obstacles [43]. Some studies have sug-
gested that the most effective routes of admin-
istration may be IN or IL, as DCs migration to 
draining lymph nodes is crucial for induction of 
T cells and NK cells. However, the advantage of 
IN or IL over ID has not been precisely verified 
due to technical difficulties. IN and IL injections 
are complex procedures that need ultrasound 
guidance even when operated by highly experi-
enced clinicians, and only a few of the DCs are 
correctly injected into the proper position [42, 
44].

Although IP injection of DC-based cancer vac-
cines is rarely reported, it may be a potential 
regimen for gastrointestinal tumors since huge 
populations of LNs are present throughout the 
gastrointestinal track, including cisterna chyli, 
mediastinal LNs, gastric and gastro-omental 
LNs, hepatic LNs, pancreaticoduodenal LNs, 
mesenteric LNs, ileocolic LNs, intestinal lym-
phatic trunk, and thoracic duct. Furthermore, 
the abdominal cavity also contains spleen and 
gut-associated lymphoid tissues, which are two 
other types of secondary lymphoid organs [37]. 
Together with LNs, they are vital to elicit cellular 
and humoral immunity [45-47]. Most impor-
tantly, these lymphatic tissues are all readily 
accessible to IP-injected DC-based vaccines. 
Subsequently, active absorption of the injected 
DCs by the LNs and lymphatic vessels may be 
easier for the DCs to migrate to targeted 
immune tissues. All these factors may acceler-
ate delivery and migration of DC-based cancer 
vaccines and improve outcomes.

Strategy of labeling and image monitoring of 
labeled DCs

As mentioned above, imaging of DCs is crucial 
for visualizing the route of DCs migration and 
distribution, determining kinetics of the interac-
tions between DCs and other immune cells in 
the LNs and organs, and ultimately, achieving a 
comprehensive view of the biological mecha-
nism of DC-based vaccines to help improve 
clinical outcomes of cancer immunotherapy. 
We will only discuss clinically feasible non-inva-
sive and real-time measurements of DC-based 
vaccines imaging and their corresponding cell 
labeling.

Positron emission tomography (PET) was first 
established in the clinical setting to monitor 
and measure enzyme reactions, ligand-recep-
tor interactions, as well as cellular and tissue 
metabolism [48]. Micro PET has been devel-
oped for preclinical research owing to its high 
sensitivity, precise quantification, and unique 
assessment of cell viability and function to 
track immune cells in vivo. Labeling DCs for PET 
can be divided into two main categories: direct 
and indirect labeling methods. Though 18F-FDG 
is feasible for PET imaging despite a short half-
life, direct labeling generally requires agents 
with a relatively long half-life radioisotope, such 
as 111In-oxiquinolon or 64Cu-PTSM, which may in 
turn limit their translation to clinic due to con-
tinuous radioactivity. Another limitation of 
direct labeling for PET is the efflux of the label-
ing agent, which may cause result bias [49]. In 
contrast, indirect labeling methods such as 
transfection of reporter genes can overcome 
the disadvantages of direct labeling, such as 
loss of labeling with cell proliferation [50]. 
However, indirect labeling is mostly used in pre-
clinical studies because of the need for genetic 
editing. In addition to technical difficulties in 
cell labeling, PET has high costs, low spatial 
resolution, and poor tissue contrast, which all 
together restrict PET as the preference of clini-
cal imaging technique. 

MRI represents a sophisticated imaging tool 
with the highest spatial resolution of all non-
invasive and real-time imaging modalities and 
has been widely implemented in preclinical and 
clinical studies for cell trafficking and migration 
[51]. Detection of target cells often requires MR 
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contrast agent labeling, wh- 
ich has already been expl- 
ored by several studies. For 
direct labeling in vitro and in 
vivo, the most commonly 
used contrast agents inclu- 
de biodegradable dextrans, 
siloxane, citrate, and poly-
mer-coated magnetic iron 
oxide nanoparticles such as 
superparamagnetic iron oxi- 
de (SPIO, particle size: 50- 
100 nm) (Figure 3, repro-
duced from Radiology), ult- 
ra-small superparamagnetic 
iron oxide (USPIO, particle 
size: 10-50 nm), micrometer-
sized iron oxide (MPIOs, par-
ticle size: >1 μm), or cross-
linked iron oxide (CLIO), all of 
which lead to hypointensity 
(negative contrast) in T2-wei- 
ghted MR images (Figure 4, 
reproduced from Radiology). 
These particles have an 
inherently greater effect on 
relaxivity in contrast to para-
magnetic labeling agents 
that produce the positive 
contrast using T1-weighted 
sequences. Adjunct conju-
gated monoclonal antibod-
ies or transfection agents 
have been utilized for more 
efficient uptake of super-
paramagnetic agents or pa- 
ramagnetic contrast agents 
[52]. Feridex I.V. and Fera- 
heme are commercially avail-
able iron-oxide nanoparticles 
that are approved by Food 
and Drug Administration 
(FDA). These labeling meth-
ods require phagocytosis for 
agent uptake and accumula-
tion, which requires relatively 
immature DCs with greater 
endocytosis capability. How- 
ever, it was reported that 
magnetodendrimers can be 
universally taken up by dif-
ferent type of cells to avoid 
insufficient cell internaliza-

Figure 3. DCs labeled with SPIO in vitro. Images are acquired using fluores-
cence microscopy. (A) Texas Red particles accumulated in cytoplasm while (B) 
nuclei are stained blue with DAPI, with coregistration in (C), a merged image. 
Scale bars: 10 μm.

Figure 4. T2-weighted MR images of SPIO-labelled DCs in vivo. Different 
amounts of DC-based vaccine were injected into left popliteal LN at different 
time points. (A-C) 1-million DCs were injected at each of 3 consecutive time 
points: (A) before DCs injection; (B) 6 hours after injection; and (C) 24 hours 
after injection. In (D-F) 2-million DCs were injected at the same time points as 
(A-C) respectively.
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tion [53]. Paramagnetic chemical exchange 
saturation transfer (PARACEST) agents have 
been reported as a novel class of MR contrast 
agents for MR imaging and use a different 
mechanism from paramagnetic and superpara-
magnetic iron-oxide agents. PARACEST agents 
are capable of tracking two particular cell types 
with two distinct PARACEST markers and spe-
cific radiofrequencies in the same experiment 
[54]. HIV Tat peptide and 19F have also been 
explored as MR labeling agents, but the 
improvements of these emerging methods still 
need to be validated by further studies [55, 
56]. Indirect labeling requires the insertion of 
specific exogenous reporter gene for MR detec-
tion, which limits its application in clinical set-
tings. As the labeling agents have evolved, 
innovation in MRI sequences is required. 
Together with the development of MRI scan-
ners, it could be possible to not only visualize 
the biodistribution of DC-based vaccines but 
also quantify migration and even investigate 
single cell dynamics. A summary of recent 
researches of PET and MRI-monitored DC- 
based vaccines in animal models is reported in 
Table 1. Currently, MRI is more frequently used 
to visualize homing and engraftment immedi-
ately after DCs inoculation in a longitudinal 
manner.

Conclusion

Immunity plays a central role in the defense 
against diseases, and DC-based vaccines are 

postulated as a potential and powerful immu-
notherapy for cancer. Despite the theoretical 
possibility of being a complete cure, the clinical 
outcomes of DC-based cancer vaccine therapy 
have been rather disappointing. One major 
obstacle is the low migration rate of injected 
vaccine cells via different routes. Therefore, 
assessing the fates of therapeutically adminis-
tered DCs may be extremely critical to answer 
important questions and improve this promis-
ing approach for cancer therapy.

To date, most of the DC-based cancer vaccines 
in the clinical settings are administrated subcu-
taneously, intradermally, intranodally, or intra-
lymphatically, which have been proven to be 
suboptimal routes. Intraperitoneal injection of 
DC-based cancer vaccines may be relatively 
effective for abdominal tumors. The two most 
frequently used preclinical and clinical imaging 
methods for non-invasive and real-time moni-
toring of the distribution and migration of inject-
ed DCs are PET and MRI.

With the development of cell labeling and image 
technologies, in vivo cell tracking performed 
alone or in a combination should be able to elu-
cidate the dynamics of viable vaccine cells 
administrated through specific routes and fur-
ther facilitate the translation from preclinical 
research to clinical applications with the pur-
pose of boosting immunotherapy outcomes. 
These advances will likely promote novel 
DC-based cancer vaccination strategies.

Table 1. Recent research in PET and MRI-monitored DC-based vaccines in animal models
Technique Labeling Route of administration Disease Reference
PET 18F-FIAU i.s. Coccidioidomy cosis [57]

68Ga-IONP s.c Melanoma [58]
MRI Hsp70-SPIONs s.c Glioma [59]

FTH-GFP s.c. --- [60]
N-alkyl-PEI2k-GLY/SPIONs s.c. --- [61]
SPIO s.c. --- [62-66]
SPIO s.c. Pancreatic [67]
Fe NP/IONP s.c. Lymphoma [68]
MNPs/111In-oxine s.c. Breast cancer [69]
HINP s.c. --- [70]
SPIO-EGFP s.c. --- [71]
SPIO-labeled tumor cells i.d. Melanoma [72]

Abbreviations: i.s.: intranasal; IONP: iron oxide nanoparticles; s.c.: subcutaneous; i.d.: intradermal. Hsp70: heat shock protein 
70; SPIONs: superparamagnetic iron oxide nanoparticles; FTH: human ferritin heavy chain; GFP: green fluorescence protein; 
NP: nanoparticles; IONP: iron oxide nanoparticles; MNPs: paramagnetic nanoparticles; HINP: hybrid imaging nanoprobe (com-
prised of visible and near-infrared light emitting quantum dots tethered to SPIO).
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