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A BOOLEAN COMPLETE NEURAL MODEL OF ADAPTIVE BEHAVIOR

1.0 ABSTRACT

A multi-layered neural assembly is developed which has
the capability of learning arbitrary Boolean functions.
Though the model neuron is more powerful than those
previously considered, assemblies of neurons are needed to
detect non-linearly separable patterns. Algorithms for
learning at the neuron and assembly level are described.
The model permits multiple output systems to share a common
memory. Learned evaluation allows sequences of actions to
be organized. Computer simulations demonstrate the
capabilities of the model.

2.0 INTRODUCTION

We define and implement a neural system capable of

adaptive behavior in a completely defined environment.

Behavior is modeled as the application of specific operators

in response to specific inputs. Behavioral completeness

requires that any stimulus (input pattern) potentially be

able to trigger any response (set of operators). Learning

adjusts the input-output connections so that behavior

converges on the correct stimulus response (SR) mapping.

Learning completeness requires that any SR mapping be

learnable. Thus the necessary functioning of the model

system can be precisely defined. The resulting problem is

simple enough to be formally approached, but general enough

to address a number of interesting issues.

AV •' '
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The model's ability to learn arbitrary Boolean

functions is an important capabilityr since the domain of

neural models is often limited to linearly separable

functions. This is a Serious limitation since the

percentage of possible Boolean functions that, are linearly

separable rapidly approach zero as the number of features

increases (Robertson 82). The proposed model is more

general than others, but is still significantly restricted

since spatial, temporal and relational inputs cannot be

explicitly modeled. However, it may be possible to extend

the Boolean formalism to include those domains. We defer

discussion of these possibilities until the basic model has

been developed.

The system is built using a single type of neuron-like

element. This model neuron was developed on the basis of

biological evidence and theoretical constraints on its

necessary properties. It is a formalization of the "almost"

gate suggested by Kent (Kent 81), and is more powerful than

the standard binary pattern classifier (Nilsson 65).

Emphasis is also placed on network controlling

processes in order to effectively control synaptic

plasticity. There are a large number of learning algorithm

variations, and there is as yet no comprehensive theory of

biological learning, so a specifically targeted approach is

taken here. The general form of desired behavior is

identified, and mechanisms are proposed to implement it.
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The model has the general characteristics of a production

system, so it is capable of potentially interesting

behavior, and though it is not developed as a strictly

biological model, the central principles are consistent with

II biological capabilities.

H The view taken here is that the brain is an inherently
structured system, and that intelligence is not simply an

emergent property of large groups of neurons. It is

apparent that there are specific functions a brain must

perform, and there are specific, hard-wired structures to

perform them. Consequently, an important aspect of this

study is an attempt to identify primitive processes

underlying intelligent behavior and to implement them with

neural networks, assuming specific, hard-wired systems to

control the network as necessary. In particular, it has

been suggested that there are specific plasticity

controlling systems which control the modification of

synaptic connections (Krasne 78, Feldman 81, Kety 82).
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3.0 RELATED WORK

A common division of neural learning processes is

H between learning with and without a teacher. The Hebbian
model of synaptic modification (Hebb 49) is the pre-eminent

example of learning without a specialized teacher input. In

the Hebb model, a synaptic weight is increased if there is

input on that line when, or just before, the node fires.
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Teacherless learning is appealing since the question of who

generates the teacher signal doesn't ariser and with the

addition of some whole network constraints it can lead to

the self-organization of a number of interesting types of

pattern detectors (Amari and Takeuchi 78). However,

learning is essentially limited to picking out statistical

association from background noise. If input is unpatterned

(e.g., random sequences of random combinations of features),

there is nothing to be learned. To learn useful behavior,

some input information must be interpreted as instructive,

and used to adjust the function. In addition, the Hebbian

model is susceptible to a number of stability and saturation

problems (Sutton and Barto 81).

Learning with a teacher implies that there are inputs

to a node which have the special properties of a teaching

signal. Threshold pattern classifiers are a common example

(Nilsson 65). In this case, the teacher input specifies

which side of the threshold input should sum to, so the

weights, and perhaps the threshold, can be adjusted

accordingly. A teacher signal can describe an arbitrarily

complex function by indicating for eaph input whether the

current output is too high or low, or by specifying the

correct output directly.

Without belaboring the biological validity of Hebb's

model (there is little evidence for it), it Can be observed

that most implementations are inherently input oriented.
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That is, a network is organized solely by its input, and

little attention is given to desired output. However, goal

directed behavior is an important aspect of neural

functioning. Development of the present model concentrates

m on that process. This requires instructive feedback to
indicate correct output. Biologically, both data and goal

driven learning appear to contribute (Spinelli et al. 72,

Spinelli and Jensen 79).

At the system level, lateral inhibition between nodes

is often used to implement specific network properties. Two

common approaches are inhibition of output and inhibition of

learning. If the firing of a node is inhibitory to the

firing of other nodes, there is a maximum number of nodes

that can be on at any one time. Many model networks

incorporate this principle as diffuse or random inhibitory

connections within the net (Amari 77), and it is a common

process in biological systems (Linsay and Norman 77).

Lateral inhibition of learning is similar, except that the

firing of a node prevents learning in other nodes (Fukushima

75). The latter process is utilized in this model.

Both of these processes can be structured so as to

support assemblies more complex than a single pool of nodes.

A layered network can be constructed by limiting interaction

H to planes, and a topographic effect can be achieved by
limiting the effects to nearby nodes (Amari 80, Kohonen

82ab, Overton and Arbib 82).
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4o0 MODEL DEVELOPMENT

The proposed model is developed in four stages:

1) structure and training of a model neuron
2) structure and training of a single operator
3) structure and training of multiple operators
4) evaluation and credit assignment

4.1 A Model Neuron

In a system requiring Boolean completeness^ the

H necessary properties of a node's output are well defined.
Either a node must be able to individually compute any

Boolean function, or it must have sufficient power so that

H an assembly of nodes can. The cpmplexity required for
complete "decoding" of an input space grows exponentially

I with the number of inputs, providing an upper bound on the
functional complexity necessary for Boolean completeness.

Minimum complexity is simply proportional to the number of

inputs.

A linear function was adopted since it is sufficiently

powerful for Boolean completeness of assemblies, and is

relatively simple to implement. Such a function is probably

well within neural capabilities, and is the most common

functional form used to.model neural computation, A linear

function can be used to implement the "at least X of N

features" function. This includes OR (at least 1 of N), and

AND (at least N of N) as its extremes. Significantly, this

function can be viewed as a prototypic category description.
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Prototypic categorization is generally defined in terms of

similarity to a central (prototypic) example. Prototypes

appear to play an important role in both the process of

biological learning and the actual structure of natural

categories (Hervis and Rosch 81).

Rather than the standard single threshold, binary

output function, a continuous, t^ree-valued logic is

utilized. Output above and below a resting "unknown" output

value of 0 represents increasing certainty in the presence

or absence of the category detected by the node. This

appears to be common biologically (Siejnowsi 81) . Output

beyond the limits of 1 and -1 is interpreted as absolute

certainty.

The neural output function has two values (synaptic

weights) associated with each input feature, Fi. One is

referred to as Pi for "present" input, and the other as Hi

for "not present". Both weights may be either positive

(excitatory) or negative (inhibitory). The explicit

representation of feature absence permits categories to be

defined on the basis of missing features, and avoids

confounding "unknown" with "not present". There may be any

number of inputs. Output is calculated as:

Out := ^ Fi * Pi + - Fi * Ni
Fi>b Fi<0
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With output thresholds of -1 and 1 and synaptic weights

B between -2 and 2, a single node can represent prototypes of
H the form:

at most XI features gives output = -1 (= false)I at least X2 features gives output = 1(= true)
where X2 - XI >= 1

I

I
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A node that is capable of behaving as the (at least X

of N) function can be achieved by setting Pi to

(2*(N-X)+1)/N and Ni to -(2*X-1)/N. The presence of X

features yields an output of 1, and X-1 features give an

output of -1 for values of N >= 1. If X equals N we have,

I as a special case, the "AND" function. In this case Pi is
1/N and Ni is -(2*N-1)/N. If X equals 1 we have, as another

II special case, the "OR" function. In this case Pi is
(2*N-1)/N and Ni is -1/N.

4.2 Training A Node

I Aneuron must be able to adjust its output in order to
^ improve its performance. The ability to train a linear

® function as a binary pattern classifier is well known as the

perceptron convergence theorem (Nilsson 65). This process

is similar to biological learning in the gill withdrawal

I reflex of Aplysia (Kandel 79). In particular, a node is
told both when it should be on and when it should be off,

and its input weights are adjusted accordingly.
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A similar learning process was adopted in this model.

A synaptic weight is increased if:

1) the node shduld be on
2) the node's output was less than .1
3) there was input on that line
4) the weight was not already its maximum value

The second constraint is consistent with the observation

that "organisms only learn when events violate their

expectations" (Rescorla and Wagner 72). Weights are reduced

by a complimentary process.

This standard process was modified in several ways.

Host importantly, the adjustment of weights was based on a

Bayesian selection of appropriate features to strengthen.

Weights are modified in proportion to the feature's

predictive potential. This was effective in excluding

irrelevant activity from weight modification. It is also

consistent with contingency theories of learning (Rescorla

72, Rescorla and Wagner 72, Button and Barto 81).

A "trace" of conditional probability is iteratively

computed with one of two methods:

Method I

[TFi]
[Fi]
iTlFi]
IT]

= [TFi] + (T * Fi - [TFi]) * r
= [Fi] + (Fi - [Fi]) * r
= [TFi]/[Fi]
= [T] + (T - [T]) * r

Method II

[T|Fi] := [T|Fi] + (T - [T|Fi]) * Fi * r
[T] := [T] + (T - [T]) * r

Fi is the input value for feature i, T is a teacher signal

(-1 or 1) indicating whether the node should have been off

or on, [Fi] is an estimate of the probability (frequency) of
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Fi, IT] is the probability of T, [TFi] is the probability of

I co-occurrence of Tand Fi, and [TiFi] is the probability of
T given Fi. The "memory length" of the function is

determined by the rate constant r. As in standard

I conditional probability, the predictiveness of a feature can
be determined by comparing [T|Fi] to [T].

The use of conditional probability works well in

I identifying those input weights which should be increased in
magnitude, but selectively identifying those which are too

large and should be decreased in magnitude proved more

difficult. The solution was to make a distinction between

learning (increasing in magnitude) and unlearning

H (decreasing in magnitude). Their relative contributions
depend on one's faith in the accuracy of past learning.

Arbitrarily, the contributions of unlearning and learning

were set at .1 and .9 of the total change.

I
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I
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Weight limits of -2 and 2 are adequate for the (at

least X of N) function, but the model learns faster if it

I has extra room to maneuver in. However, weights only go
beyond -2 and 2 if other unnecessary weights are

I accumulating. In order to give the model some extra room
but to discourage its abuse, the weight limits were doubled

to -4 and 4, and the unlearning fraction was coupled to the

p weight of the most predictive feature in the current input:
un_frac := .1 + .9 * Wt/4

I This adjustment of un_frac proved quite effective in
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controlling inappropriate weight accumulation.

As an example of a node's ability to learn AND's, a

H node was sequentially trained to uniquely detect each letter
of the alphabet using a 14-stroke representation scheme

(Fig. 1, Rumelhart and Siple 74). For each letter, the

complete alphabet was cycled through until discrimination

was perfect. All letters were successfully learned in an

average of 9 cycles.

I

I

I
I In Figure 2, the function (at least 3 of 4) is learned.

The complete input space (16 patterns) was continuously

cycled through, and the node's output for representative

inputs with N, N-1, N-2, N-3, and N-4 features is shown.

The positive instances are learned in order of similarity to

I the central prototype (all 4 of 4), and negative instances

I

I

I

I

I

I

I

I

I

I

I

are learned in order of similarity to the inverse of the

prototype (0 of 4). This acquisition order is consistent

with human learning of prototypes (Mervis and Rosch 81).

4.3 A Single Operator

Using nodes that can be trained to compute OR and AND,

it is possible to compute any Boolean function. Based on

disjunctive normal form, a minimal 2-level structure is

adequate (Fig. 3). This is similar to the structure of a

perceptron (Rosenblatt 62). Unlike the standard perceptron,

where only the top node is trained and the lower plane is
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Figure 1. „ Fourteen stroke alphabetic representation
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(4 of 4) (3 of 4)

(0 of 4) (1 of 4) (2 of 4)

Figure 2. Prototype learning of function "at least 3 or 4"
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Output Node

Operator

Intermediate plane

Input sensors

Figure 3. A minimum structure capable of detecting
Boolean functions
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I processes: training the top node and training the plane.

H Training the top node is trivial if the lower nodes are
already trained, and impossible if they aren't since it uses

their output. The problem is to train the bottom nodes.

The constraints are relatively simple:

I

I

I

I

I

I

I

I

I

I

I

I

I

I

"hard-wired", both levels are trainable. The problems of

restricted interconnection (Minsky and Papert 72) are not

addressed.

Training an operator can be viewed as two separate

1) For all "false" input patterns (T = -1)
all nodes should be off

2) For all "true" input patterns (T = 1)
at least one node should be on

The first constraint is easy to implement. The desired

value of T = -1 is simply broadcast to all nodes. The

second is accomplished by broadcasting T = 1 plus lateral

inhibition of learning. As the node with maximum output

(Max_out) approaches 1, the learning rate of all other nodes

is reduced to 0. This is implemented by controlling Rt in

the rate equation:

New_out := 01d_out + (1 - 01d_out) * c * Rt
where:

Rt := 1 - Max_out
If Rt > 1 then Rt := 1

The constant c determines the maximum learning rate. When

at least one node detects each "true" input, no further

learning is necessary.



Page 14

This process was modified by -adjusting learning to

include the relative output of nodes in the plane.

Rank != (Out - Min_out)/(Max_out - Min_out)
Rt ;= Rt * Rank

This recognizes the fact that the nodes most likely to learn

a pattern are those with the greatest predisposition to

respond to it. The function has subsequently been made more

sensitive to the distribution of output values, but this

simple form was also adequate fOr the functions tested.

This learning algorithm encodes "true" input patterns

as potentially overlapping categories in the lower plane.

The algorithm tends to produce the largest categories

possible, thus requiring the minimum number of nodes, though

the absolute minimum (perfect generalization) is not

guaranteed. The output node can be trained simultaneously

with the plane. It simply doesn't do very well until the

plane converges.

System capacity and learning speed can be increased by

increasing the number of nodes. This was accomplished in

three ways: increasing the number of nodes in the plane,

increasing the number of planes to form a stack, and

increasing the number of stacks. In addition, various

interconnection schemes are possible. For example, nodes

can be connected with,only the plane below them, all planes

below them, or all other nodes in the system. Any of these

structures can be trained by applying the learning process

independently to each plane. These variations suggest a
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number of interesting biological analogies (Hampson 83), but

for simulation efficiency the minimal network was the most

extensively investigated.
X

. \

Using a small network (one plane, 20 nodes), the

operator training algorithm was tested on a number of

4-feature Boolean functions. For each function, each of the

16 input patterns was presented in constant rotation until

the accumulated error of the output node (its difference

fran T) reached zero for a complete cycle. All functions

were successfully learned, in an average of 12 cycles.

A standard set of 40 4-feature functions was always run

to determine the effects of program modification. In

Figures 4abc, 3 of these functions and their learning curves

are shown. In Figure 5 a single learning curve is shown for

the network as it is sequentially retrained to detect those

three examples. Examples 4b and 4c are among the hardest

and easiest functions of 4 features for the network to

learn. As can be seen in Fig 4b, error does not necessarily

decrease monotonically. This results from training the

output node while the plane is still incompletely trained.

4.4 Multiple Operators

Finally, multiple operators are combined into a single

behavioral system. Completeness in this system requires

mapping arbitrary inputs to arbitrary sets of outputs.A

'-vXv'-'X
•
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trivial, but effective approach is to individually train a

collection of separate operators. Although it would produce

the desired behavior, this technique has serious drawbacks.

The most obvious is that providing a separate "brain" for

each operator is impractically extravagant. Another

objection is that totally separate operators cannot share

information. If the same pattern is important to several

I operators, it must be learned and represented separately by
each of them. It seems unavoidable that shared memory is

required for systems of any size.

I What is needed is a way to augment (or replace) the
separate, dedicated memory planes of each operator with a

single, shared pool of nodes. Since a two level system is

logically adequate for separate operators, it is also

computationally complete in a shared memory system,

m Operators can be reduced to single nodes sharing a single
lower plane. The previous learning algorithm is

inappropriate for shared memory, so another procedure was

developed. It consists of two separate processes:

1) Input driven categorization
2) Goal driven focusing

These two processes will be considered separately. The

approach is similar to one utilized in (Reilly et al, 82),
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4.5 Input Driven Categorization

Input driven.categorization can be summarized as:

At least one node in the common memory should be on for any
input.

This constraint provides the plane with an intrinsic

function, learning until every input is categorized one way

or another. Even in the absence of operator (goal driven)

information, learning will take place until input is

successfully categorized. Learning is identical to that in

the previous section, except that T is equal to 1 for all

inputs.

Useful categories tend to reflect the natural

categories in environmental input (Mervis and Rosch 81), so

input driven learning should capture those natural

associations. Most neural models based on the Hebb

hypothesis are designed to model this process. Given the

specific needs of a particular type of organism, the

structure could also be innately prebiased toward detecting

categories which will most likely prove useful.

4.6 Goal Driven Focusing

Goal driven focusing can be summarized as;

If a behavioral (operator) error occurs, the common memory
does not represent the current input pattern in a specific
enough form for the operators to use. Therefore the common
memory should be adjusted in a direction that produces a
more specific representation.
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With a single operator, output error can be computed as

the difference between the operator's actual and correct

output. For multiple operators this has to be modified, but

if at most one operator is applied at a time, only minimal

modification is necessary. Memory is adjusted when error >

0. This can be implemented as a step function, but works
t

more smoothly if the amount of adjustment varies

continuously with error. In general, the amount of

adjustment should be proportional to the probability that a

more specific representation would improve behavior.

If operators are limited to single nodes detecting (at

least X of N) features, any adjustment process should

converge on a representation which is decodeable by that

function. An obviously decodeable extreme results if each

input pattern is uniquely represented by one node in the

lower plane. The operators could then pick and choose,

functioning only as ORs. ' Any learning process which

converges on this state will eventually converge on correct

behavior, although it may need up to 2 ** N nodes to

completely cover an N-feature input space.

In order to implement this process, large categories

must be broken up into smaller ones. One mechanism for

achieving this is to focus the current category more

narrowly on the current input whenever an operator error

occurs. If the error persists, the category should

ultimately be focused down to a single input pattern. Input
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driven learning fills in any conceptual gaps left by the

focusing process.

Intuitively, focusing a node means that it fires more

selectively for inputs resembling the current input. This

requires:

H 1) Shifting its central prototype (all Nof N)
toward the current input

2) Sharpening its discrimination by increasing X
in (at least X of N)I

I

I

I

I

I

I

I

I

I

I

I

I

If carried to completion, the combination of these two

processes will eventually focus a node on a single input
\

pattern.

A neural system displaying what might be interpreted as

focusing has been described in the hippocampus (Dunwiddie

and Lynch 78, Anderson et al. 80). In that system, the

current inputs to a neuron become more effective in firing

I it, and the unused inputs become less effective. Its firing
function is thus modified to look more like the current

input. This is apparently achieved by simultaneously

strengthening the synapses of the active inputs, and raising

the firing threshold of the cell as a whole.

The model neuron does not have an adjustable threshold,

but a similar effect can be achieved by increasing the

negative weights on the inverse or "not" of the current

input features, (making their absence more inhibitory). For

biological realism, the model was also modified to use an

adjustable threshold, but since the desired behavior can
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also be implemented without structural modification, the

threshold technique is not developed here.

-The primary method of adjusting weights for "invert"

focusing is:

A) Center prototype
1) reduce positive weights
2) reallocate weight based on current input

B) Sharpen discrimination ^
1) shrink current output toward 1
2) invert current input
3) increase negative weights

This has the desired effect of driving the node's output

function toward (all N of N) of the current input features.

Error driven focusing is a reasonably efficient process

since memory modification takes place only when behavior is

apt to be improved. If no output errors occur, the

representation is specific enough for perfect behavior, so

no learning is required. If an error does occur, the

representation is not specific enough at that point.

Through successive focusing, the area of error is identified

and can then be used by the operators to correct their

output. The operators can be continuously trained, since

the common memory represents, or will soon represent, the

input in a decodeable form.

Multiple plane systems are also possible for the common

maaory. As before, each plane can be trained independently.

Tapered focusing can also be used as a mechanism to

facilitate the sharing of information in layered systems..
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H By reducing the speed of learning in the lower levels, only

the most abstract concepts are formed there over an extended

I period of time. This appears to be a simple but effective
approach for the self-organization of hierarchical systems.

With complete interconnection between nodes, an

I alternative method of information representation is
^ possible. Rather than representing a category as a static

" state of neural activation, categories can be identified as

temporal firing patterns. Though only the final state

represents a node's decision on categorization, a

I post-stimulus trace of its activity can reliably distinguish
many input patterns. This is similar to some biological

observations (John 76, 80, John and Schwartz 78). The

current model doesn't decode temporal patterns, so although

such information is available, it is not utilized.

I

I

I

I

I

I

I

I

I

I

I

I

In general, development and testing of the common

memory was limited to 4-feature functions. The same set of

40 functions used to test operator training was also used to

test focusing. Overall learning speed was adjusted to be

about the same for the two processes, but speed on

individual functions was often quite different. As

expected, operator training is better when generalization is

possible, and focusing is generally superior when specific

instances are important.
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4.7 Evaluation And Credit Assignment

I

I
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There are two basic problems of credit assignment when

a single evaluation signal is used to instruct multiple

operators. If more than one operator is applied

simultaneously, it is not clear which ones are responsible

for desirable or undesirable changes (Barto et al. . 81).

Similarly, if a sequence of operators is applied before a

goal is achieved^ it is difficult to determine which

operators contributed to the final achievement (Minsky 63).

The first problem of simultaneous operator application

can be avoided by training the model as a production system.

If only one operator is applied at a time, it is clear which

should get credit or blame:

1) If an operator fired and things get worse,
then it was wrong and should be off

2) If an operator fired and things get better,
then it was right and should be on
and everybody else should be off

3) If nobody fired and things get worse,
then somebody should have been on so all move up

4) If nobody fired and things get better,
then nobody should be on (and they weren't)

If the current evaluation is less than optimal, staying the

same can be treated the same as getting worse. Thus the

resulting change in evaluation indicates the correctness of

the preceding behavior. This trial-and-error strategy will

cycle through all the operators (repeating some) until the

correct operator is applied. The system will then stabilize

for that input pattern. Providing the amount of mutual

interference isn't excessive, the system will eventually
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stabilize on corriect output for all inputs.

I

I

i
I

The second problem of sequential credit assignment can

be solved : with the introduction of learned secondary

evaluation. Primary (innate) evaluation identifies a

specific goal state^ and secondary (learned) evaluation

I indicates the likelihood that any other state is on a path
to that goal. This was implemented as:

Eval := Eval + (Next_eval - Eval) * r

In effect this says the secondary evaluation of a state

should predict the evaluations of succeeding states.

I

I

® For example, in an nstate sequence, state n-1 is as
I good as the final state, n, if the correct operator for that

transition is known. The learned evaluation of state n-1

I then makes the transition from n-2 to n-1 rewarding. Action
sequences are learned backwards, producing a gradient of

evaluation leading to the final goal state. Primary

I evaluation identifies goal states, and secondary evaluation
provides immediate feedback for transitions leading toward

I those states. Since the evaluative gradient eventually
saturates, positive evaluation must temporarily habituate to

prevent the possibility of looping action sequences. This

I approach is consistent with what is known of biological
reinforcement systems (Gallistel 73, Pugh 77).

I
Samuel implemented a similar learning process in his

I checkerboard evaluation function (Samuel 63). By simulating
succeeding states, the learned evaluation can be used to

I •

I

I
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choose the next transition. However, because the current

model doesn't anticipate future states, the correctness of a

transition can be determined only after it has actually been

made. A similar approach has also been used to learn pole

balancing (Barto et al. 82).

The evaluation system can use the output of the common

memory, so single node evaluation is computationally

complete. However, a large chcuige in evaluation may

indicate that common memory categorization is insufficiently

specific for accurate evaluation. To guarantee convergence

on correct evaluation, the magnitude of evaluation change is

included in the focusing error signal. As before, the

logical extreme of completely decoding the input space is

trivially adequate since the correct evaluation can be

uniquely attached to each input pattern. Thus evaluation is

logically complete and potentially efficient since memory

modification is proportional to evaluation error.

The standard set of 40 4-feature, single opetator

Boolean functions was used to test this learning process. A

single input pattern was chosen as the primary goal state

(Eval = 1), and other states were learned as a sequence

leading to it. Thus a 4-feature Boolean function can be

treated as a sequence of 15 operator selections.

Appropriate operator action received reinforcement resulting

from a transition to the next state in the sequence, and

inappropriate action resulted in a transition to a neutral.

- , ...
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H unreinforced state. As before, the system was trained with

- cyclic presentation of all input patterns. Early behavior

I is always random since training information is available for
only the final transition. The large number of errors

I (things don't get better) causes the common memory to learn
H the input space. With the input patterns identified,

correct behavior and the resulting evaluation gradient move

I back from the final state. Since correct output must be
learned sequentially, learning is much slower, but all

I functions were learned in an average of 51 cycles.

I

I

I

I

I

I

5.0 COMPLETENESS AND EFFICIENCY

Because of its ability to represent disjunctive normal

form, (and "prototypic" normal form in general), the system

is representationally complete in the Boolean domain. The

structure can be elaborated with multiple planes and stacks,

and various interconnection schemes, but the minimal system

(single node operators and evaluators, 1 common memory

plane) is logically sufficient.

H Learning completeness is equally desirable, but is not
as easily demonstrated. Because it implements a linear

function, the model node could presumably be shown to learn

pattern classification by use of the perceptron convergence

proof (Nilsson 65). Unfortunately, considering the current

I complexity of the program, a formal proof of assembly

I

I

I

I

behavior would be difficult. Because of the expense of
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simulating parallel process on a sequential machine, the

system was developed on an input space of 4 features, and

empirically it appears to be complete for that size feature

space. The programming details have been tuned for a small

number of features, but the conceptual approach appears to

be extendable. With common memory focusing there is promise

for proving learning completeness (Hampson 83). If so,

operator training could be modified to include sufficient

focusing to guarantee its convergence as well.

Efficiency in time and space are important, though

H often contradictory constraints on network characteristics.
For example, rapid focusing produces rapid (efficient)

learning, but requires many more nodes. The present model

was developed primarily with an eye on completeness since

that is a well defined goal. Efficiency is a matter of

I trade-offs determined by the particular situation. However,
in terms of node utilization, representation in prototypic

normal form is significantly more efficient than disjunctive

or conjunctive normal representation. In addition, the

operator training process tends toward maximum

generalization, thus requiring the minimum number of nodes.

Such issues will be of increasing importance as neural

models are scaled up for practical application.
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The complete model is shown in Figure 6. Learning

occurs in three places. Operators arie trained to be on and

off, the common memory is trained to categorize the input

space, and evaluation learns to predict future evaluation.

Change detection provides behavioral evaluation/instruction

by comparing succeeding evaluations to see if things get

better or worse.

This system demonstrates a biologically plausible model

of adaptive behavior. It is constructed with linear

function elements which are probably well within neural

capabilities. Various forms of learning are proposed in

order to organize appropriate action. These learning

processes are also suggested by known neurophysiology.

Thus, though not explicitly physiological, the system is

intended to be consistent with biological capabilities. By

modeling the more abstract functions of neural systems

rather than detailed physiology, it should be easier to

investigate the relationship between neural processes and

intelligent behavior. In addition, a more functional

approach avoids the problems created by nature's tendency to

implement the same function (e.g., yision) in a variety of

ways. • , •

Operator training and focusing seem to represent two

fundamentally different learning paradigms. Operator

training is equivalent to many artificial intelligence (AI)

.••• • ""i-v'' •- -
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learning situations. That is, a category description is

produced from presentation of positive and negative examples

(Cohen and Feigenbaum 82 ch. D3). Focusing is driven by

positive instances only. The operator training process is

good at learning categoric generalization, but inappropriate

for learning specific instances. Common memory focusing, on

the other hand, is capable of learning unique occurrences in

"one shot" If necessary, but is poor at generalization.

This is consistent with a biological dichotomy observed

between behavioral adjustment and the acquisition of

specific, behaviorally uncommitted knowledge (Squire 82,

Kent 81).

Secondary evaluation appears to be a simple but

effective means of coping with the sequential credit

assignment problem. It does not guarantee formation of

optimal action sequences, but does appear to be complete in

its ability to assemble arbitrarily long sequences in order

to achieve a single goal.

Neural knowledge representation has significant

differences from more traditional AI approaches. While a

linear function of input features is natural for neural

concept representation, its power to describe prototypes,

and the ability of prototypes to describe real world

categories, are seldom used in AI systems. Categorization

in AI is typically based On identifying a minimal set of

necessary and/or sufficient features, rather than a
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probabilistic distribution of all features. Since necessary

(AND) and sufficient (OR) -features can be identified as the

ends of the prototypic continuum, it is not surprising that

features of intermediate value are more the rule than the

exception. With sequential computation, it is more

economical to utilize key features when they exist, but it

should be recognized that such an approach is a highly

restrictive technique for dealing with natural categories.

Another useful model which is seldom used in AI is the

servomechanism concept. The servomechanism has proved

useful in psychology as a mechanistic model of goal seeking,

and neural models are quite compatible with a

servomechanistic interpretation of behavior (Albus 81,

Gallistel 80). Hierarchical servomechanisms can be easily

built within the Boolean domain (Hampson 83). One

interesting characteristic of servomechanisms is that

desired (goal) states and the actual, current state are

treated as the same type of data. Goals and current

conditions can be freely intermixed in a servo/neural

behavioral system.

A number of unanticipated biological parallels were

observed during develo£Hnent of the model. Since the model

was strongly constrained by completeness and efficiency,

these parallels suggest that some neural characteristics may

be shaped by similar issues. Perhaps the most interesting

possibility is the central importance of prototype focusing
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as a learning process. At present the biological evidence

for this is only suggestive, but model results demonstrate

that prototype focusing is at least a theoretically viable

process. It would be equally gratifying if neural

characteristics similar to the conditional probability trace

method II were to be observed. Finally, the inclusion of

learned evaluation proved to be effective in organizing

sequences of actions. Such a process has been suggested to

be important in biological behavior (Pugh 77). An important

difference may be in the explicit inclusion of unlearning.

Some biological systems may learn by an irreversible

process, which can approach saturation within the life span

of the organism (Barnes 79).

7.0 FUTURE WORK

It is hoped that other input domains can be approached

as logical extensions of the Boolean domain. For instance,

the temporal firing pattern of a single input can be

represented and detected in the same manner that

simultaneous firing of multiple inputs is detected.

Relational patterns can be expressed as temporal sequences,

suggesting that the temporal domain may be a profitable area

of future development. Spatial or topographic effects are

achieved in many models simply by limiting connections and

interaction to neighboring nodes. These possible extensions

suggest that progress in the Boolean domain may provide a
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useful foundation for rnvestigation into other domains. In

addition, the evaluation system should be extended to

support simultaneous operator application.

8.0 CONCLUSIONS

We have developed a multi-layer neural network that

appears to be capable of learning arbitrary Boolean

functions. Individual neurons are capable of computing the

(at least X of N) function, permitting efficient

representation in prototypic normal form. Synaptic weights

are modified to reflect conditional probability. Multiple

operators can share a common memory. The operators and the

shared memory learn at the same time, though by different

processes. Operators learn through sequential presentation

of positive and negative instances. Common memory

categorizes each input pattern, and operator feedback causes

that categorization to become more specific. Secondary

evaluation permits sequences of actions to be learned.

These processes have distinct characteristics which appear

to be reflected in biological learning.



I

I

I
LITERATURE CITED

Albus, J. S.; Brains, behavior and robotics.
Peterbourough, NH: McGraw-Hill (1981)

Amari, S.; Dynamics of pattern formation in lateral-inhibition
type neural fields. Biol. Cyber. 27, 77-78 (1977)

Amari, S.: Topographic organization of nerve fields.
Bull. Math. Biol. 42, 339-364 (1980)

Amari, S., Takeuchi, A.: Mathematical theory on formation of
category detecting nerve cells. Biol. Cyber. 29, 127-136 (1978)

Anderson, P., Sunberg S. H., Sveen, 0., Swann, J. W.,
Wigstrom, H.: Possible mechanisms for long-lasting potentiation
of synaptic transmission in hippocampal slices from guinea-pigs.
Jour. Physiol. 302, 463-482 (1980)

Barnes, C. A.: Memory deficits associated with senescence:
A neurophysiological and behavioral study in the rat.
Jour, of Comp. and Physiol. Psych. 93, 74-104 (1979)

Barto, A. G., Button, R. S., Anderson C. W.: Neuron-like
adaptive elements that can solve difficult learning
control problems. Comp. and Info. Sci. Dept.
U. of Mass. Amherst, Mass, tech report 82-20 (1982)

Barto, A. G., Button, R. B., Brouwer, P. B.: Associative search
network: a reinforcement learning associative memory.
Biol. Cyber. 40, 201-211 (1981)

Cohen, P. R., Feigenbaum E. A.: The handbook of artificial
intelligence Vol. 3. Btanford, CA: Heuristech Press (1982)

Dunwiddie, T., Lynch, G.: Long-term potentiation and depression
of synaptic responses in the rat hippocampus: Localization
and frequency dependency. Jour. Physiol. 276, 353-367 (1978)

Feldman, J. A.: A connectionist model of visual memory.
In: Parallel models of associative memory.
Hinton, G. E., Anderson, J. A. (eds.).
Hillsdale, NJ: Lawrence Erlbaum Associates (1981)

Fukushima, K.: Cognitron: A self-organizing multilayered neural
network. Biol. Cyber. 20, 121-136 (1975)

Gallistel, C. R.: Self-stimulation: The neurophysiology of reward
and motivation. In: The physiological basis of memory.
Deutsch, J. A. (ed.). New York, NY: Academic Press (1973)



Gallistel, C. R.: The organization of action. ^
Hillsdale, NJ: Lawrence Erlbaum Associates (1980)

Hampson, S. E.: A neural model of adaptive behavior.
Dissertation: in preparation (1983)

Hebb, D. 0.: The organization of behavior: A neuropsychological
theory. New York, NY: Wiley (1949)

John, E. R.: A model of consciousness. In: Consciousness and
self-regulation. Schwartz, G. E., Shapiro, D. (eds.).
New York, NY: Plenum Press (1976)

John, E. R.: A neurophysiological model of purposive behavior.
In: Neural mechanism of Goal-directed behavior and learning
Thompson, R. P., Hicks, L. H., Shvyrkow, V. B. (eds.).
New York, NY: Academic Press (1980)

John, E. R., Schwartz, E. I.: The neurophysiology of information
processing and cognition. Ann. Rev. of Psych. 29: 1-29 (1978)

Kandel, E. R.: Small systems of neurons.
Scientific American 241, 66-76 (1979)

Kent, E. W.: The brains of men and machines.
Peterborough, NH: BYTE/McGraw-Hill (1981)

Kety, S. S.: The evolution of concepts of memory.
In: The neural basis of behavior. Beckman, A. L. (ed.).
New York, NY: SP Medical and Scientific Books (1982)

Kohonen, T.: Self-organized formation of topologically correct
feature maps. Biol. Cyber. 43, 59-69 (1982a)

Kohonen, T.: Analysis of a simple self-organiziiig process.
Biol. Cyber. 44, 135-140 (1982b)

Krasne, F. B.: Extrinsic control of intrinsic neural plasticity.
Brain Res. 140, 197-216 (1978)

Lindsay, P. H., Norman, D. A.: Human informatin processing.
New York, NY: Academic Press (1977)

Mervis, C. B., jRosch, E.: Categorization of natural objects.
Ann. Rev. Psych. 32, 89-115 (1981)

Minsky, M., Papert, S.: Perceptrohs.
Cambridge, MA: MIT Press (1972)

Minsky, M.: Steps toward artificial intelligence.
In: Computers and Thought. ;r
Feigenbaum, E. A^, Feldman, J. (eds.).
New York, NY: McGraw Hill (1963)



1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Nilsson, N. J;: Learning machines.
New York, NY; McGraw-Hill (1965)

Overton, K. L., Arbib, M. A.; The extended branch-arrow model
of the formation of retino-tectal connections.
Biol. Cyber. 45, 157-175 (1982)

Pugh, G. E.: The biological origin of human values.
New York, NY: Basic Books Inc. (1977)

Reilly, D. L., Cooper, L, N., Elbaura, C.: A neural model for
category learning. Biol. Cyber. 45, 35-41 (1982)

Rescorla, R. A.: Informational variables in pavlovian conditioning.
In; Psychology of learning and motivation Vol. 6.
Bower, G. H. (ed.). New York, NY; Academic Press (1972)

Rescorla, R. A., Wagner, A. R.; A theory of pavlovian conditioning.
In; Classical conditioning II. Black, A. H., Prokasy, W. F. (eds.)
New York, NY; Appleton-Century-Crofts (1972)

Robertson, P; Non-temporal predicion - A distributed system for
concept acquisition. CSCSI/SCEIO Conf. Pro. (1982)

Rosenblatt, P.; Principles of neurodynamics; Perceptrons
and the theory of brain mechanisms.
Washington, DC; Spartan Books (1962)

Rumelhart, D. E., Siple, P.; The process of recognizing
tachistoscopically presented words.
Psych, Rev. 81, 99-118 (1974)

Samuel, A. L.; Some studies in machine learning using the
game of checkers. In: Computers and Thought.
Feigenbaum, E. A., Feldman, J. (eds.).
New York, NY: McGraw Hill (1963)

Sejnowski, T. J.; Skeleton filters in the brain.
In; Parallel models of associative memory.
Hinton, G* r Anderson, J. A. (eds.) .
Hillsdale, NJ: Lawrence Erlbaum Associates (1981)

Spinelli, D. N., Hirsch, H. V. B., Phelps, R. W.,
Hetzler, J.; Visual experience as a determinant of
the response characteristics of cortical receptive
fields in cats.
Exp. Brain Res. 15, 289-304 (1972)

Spinelli, D. N., Jensen, F. E.; Plasticity; the mirror
of experience. Science 203, 75-78 (1979)



I

I

• Squire, L. R.: The neuropsychology of human memory.
Ann. Rev. Neuro. 5, 241-273 (1982)

ISutton, R. S., Barto, A. G.: Toward a modern theory of
adaptive networks: Expectation and predicion.
Psych. Rev. 88, 135-170 (1981)

I

•V •. .

.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

IS861IZAOM




