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A BOOLEAN COMPLETE NEURAL MODEL OF ADAPTIVE BEHAVIOR

1. 0 ABSTRACT

A mu1t1 layered neural assembly is developed which has
the capab111ty of learning arbitrary Boolean functlons.
Though the model neuron 1is more powerful than those
previously considered, assemblies of neurons are needed to
detect non-linearly separable patterns. Algorithms for
learning at the neuron and assembly level are described.
‘The model permits multiple output systems to share a common
memory. Learned evaluation allows sequences of actions to
be organized. = Computer . simulations demonstrate the
capab111t1es of the model. . .

2.0 INTRODUCTION

We deflne and 1mp1ement a neural ‘system capable,'of
adaptlve behav1or 'in a completely deflned environment.
_Behav1or is modeled as the appllcatlon of specific operators
in response to rspec1flc 1nputs. 'Behavioral completeness
requ1res ‘that any stlmulus (1nput pattern) potentially be
able to trlgger any response (set of operators). 'Learning
adjusts ;the <1nput-output connectlonsd'so that ‘behavior

' converges on the - correet stimulus response (SR) mapping.'
Learning completeness_ reqnires that any SR mapping ' be
1earnab1e;v' Thus;,the .necessary fnnctioning of the model
system can behprecisely'defined "The:resniting problem _isv_'
'jSimple enough to be formally approached, but general enough,h

to address a number of 1nterest1ng 1ssues.-,f~5w
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The model' ‘ ab111ty to‘i learn arbltrary Booleanwﬁh

functlons is - an important capabllity, srnce the domarn of_

neural models is‘ often limlted to linearly . separable
functions. This is a Serlous llmltatlon. since the
percentage of possible Boolean functions that . are linearly
separahle‘ rapidly approach zero as the‘number ofwfeatUres
increases ”(Robertson 82).. The}iproposedr_model is morev
general than. others,_but‘isAstifl’significantly restricted
since spatial; temporal and relationall inputs cannot be
explicitly modeled.'- Bowever, 1t may be poss1b1e to extend
the - Boolean formallsm to 1nc1ude those domalns. We defer

dlSCUSSlOD -of these p0551b111t1es unt11 the bas1c model has

been developed.

The system is built using a single type of neuron-like
element. ' This model neuron was'developed on the basis of

biological "evidence and theoreticali constraints on its

‘4necessary propertles. It 1s a formallzatlon of the “almost“

.gate suggested by Kent (Kent 81), and is more powerful than

the standard binary pattern c1a551f1er,(ersson.GS),:

Emphasis_'is also 'placed> ‘on. - network controlling
processes in. order to~ effectively control synaptlc'-'
plasticity.- There are a large number of learnlng algorlthm

variations, and there is as yet no comprehens1ve theory of

Vfblologlcal learnlng, so ‘a spec1f1ca11y targeted approach iis“g,":

v taken‘ here. The general form of des1red behav1or is -

1dent1f1ed, and mechanlsms are proposed to 1mplement ,1t._j
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The model has the genera; charécteristieé of a preauction
system, so it is capabie ~of potentialiy interesting
behavior, 'and.'thbhgh it ie nor developed as a strictly
biological model, the central principles are consistent with

biological capabilities.

The Qiew‘taken'here is that the brain'is an inherently
structured syetem, and that intelligeﬁce is not simply an
emergent property of 1large groups of neurons. It is
apparent that there are - specific funcrions a brain musr
perform, and there are specific, 'hard-wired structures to
perform.}them; Censequently, an important aspect of this
study is an 'atteﬁpt to identify~ primitive processes
underlying intelligent behavior and to implement tﬁem with
neural networks, assuming specific, hard-wired systems to
control the network as ﬁeCessary. " In particular, it has
been suggested that there ° are specific plasticity
controlling - systems.-which control’ tﬁe modification of

synaptic connections’(Krashe_78, Feldman 81, Kety 82).

3.0 RELATED WORK

A common division' of neural learning processes is

between learning with and without a teacher. The Hebbian

- model of synaptlc modlflcatlon (Bebb 49) 1s ‘the pre-eminent

example of learnlng w1thout a spec1a11zed teacher ‘input.  1In

the Hebb model, a synaptlc welght is 1ncreased if there ié

- input on that 11ne when,_or just before, the node f1res.



‘iTeacherless learning 1s appealing since the question of who-;

generates the, teacher signal doesn't arise, and w1th the
additlon of some whole network constraints 1t 'can lead to
the self-organization ‘of a number of 1nterest1ng types of

pattern detectors (Amari and Takeuch1 78). . However,

_ learning is essentially limited to picking out statistical_
_ association from*background n01se. If 1nput is- unpatterned

- (e. g., random sequences of random-: combinations of features),

there is nothing to be learned. To learn useful - behav1or,
some input information must be 1nterpreted as 1nstruct1ve,r

and used to adjust the function. ‘In'addition, the »Hebbian

model is susceptible'toia number_of stability and saturation

problens (Sutton and Barto_81).

Learning w1th a teacher 1mp11es that there are inputs

to a node which have the special properties of a teaching‘

' .51gnal. Threshold pattern classifiers are a common example
.p(Nilsson '65).73;ln this  case, -the teacher input specifies

JWhich‘side‘of,the thresholdtinput"should sum to}' so the

weights,b 'and : perhaps the threshOIG,‘ can 4beifadjusted.

accordlngly. A teacher 51gnal can ‘describe an arbitrarily

complex function by 1ndicat1ng for. each 1nput whether the )

'rcurrent output is too high or 1ow, .or, by spec1fy1ng theb

correct output directly.
Without belaborlng the biological valldity »of Hebb'

model (there 1s 11tt1e ev1dence for 1t),‘1t can be observed,;

‘ thatvmost 1nplementations;aare 1nherent1y 1nput or1ented.

Pagezs'ieu"
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Thet is, a hetwork is'organizeé solely'of its inout, end
little attention is given to desired output:v However, goal
directed behavior is. an important aébect of neural
functioning. Development of the present model concentrates
on that process. - This requires: instructive feedback to
indicate correct output. Biologically, both data and goal
driven learning appear to contribute (Spinelli.et al. 72,

Spinelli and Jensen 79).

At the system leveI, lateral inhibition between nodes

is often used to implement specific network properties. Two |

- common approaches are inhibition of output and inhibition of

learning. If the firing of a node is inhibitory to the

firing of other nodes, there is a maximum number of nodes

" that can be on at any  one time. Many model networks

incorporate this principle as diffuse or random inhibitory
connections within' the net (Amari 77), and it is a commoh
process in biological systems (Linsay -énd. Norman .77).
Lateral inhibition’ of learhing is similar,vexoept that the
firinngf a node prevents learhing in other nodes (Fukushima

75). The latter process is utilized in this model.

Both of these processes can be .Structured_ so as to

support assemblies more complex than a Single“pOOI_of_nodes.

A layered network can be constructed by limiting interaction

to plahes,, and a topographic effect can be achieved by

1imiting the effeots to nearby' nodes (Amari 80, Kohoﬁen

' 82ab, Overton and Arbib 82).
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4.0 MODEL DEVELOPMENT
The proposed model is developed in four stages:
1) ‘structure and training of a model neuron
2) structure and training of a single operator

3) structure and training of multiple operators
4) evaluation and credit assignment

4.1 A Model Neuroh

In a system fequiring Boolean completeneSs, the

necessary -properties of a node's output are well defined.

Either a node must be able to individually compute any

Boolean function, or it must have sufficient power so that
an assembly of nodes_ can, The -cqmplekity required for
complete "decoding" of an input space grows exponenfially
with thé number of inputs, providing an upper bound on the
functional complexity hecessary for Bodlean completeness.
Minimum complexity is simply proportional to the 'hﬁmber of

inputs.

A linear function was adopted since it is sufficiently

- powerful for Boolean completeness of assemblies, and is

relatively simple to implement. Such a function is probably

well within heural capabilities} and ié the most common
‘.:functiénal-form used to_mbdelfneural computation. - A 'linéarﬂ

function can be uéed'fto” implement the "at léagt X of K
_‘feafures“ffunétion. rThis inéludes bR (at"ieastzl of N), and

'AND'_(ét least N 0£ N),as its éktremes.V;Significantly, this

function can be viewed as a prototypic category description. h

e
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Prototypics categorization is generally defined in terms of

similarity to a central (prototypic) example. ' Prototypes“{

appear to play an _1mportant‘ role 1n both the process of

, biological 1earn1ng and the -actual structure ,of» natural

categories (Mervisvand Rosch Bl).

~ Rather ‘than the standard single threshold, binary
output functionflo a continuous, three-valued logic is
utiliZed., Output. above and below a resting “unknown output

value of 0 represents increasing certainty in the presence

or absence of the category detected by the node.  This

appears_‘to be. common biologically (Sejnowsi 8l). Output

beyond the limits of 1 and -1 is interpreted as. absolute

certainty.

The‘neural output‘function--has 'two. values (synaptic
weights) associated 'with each 1nput feature, 'Fi. One is

referred to as Pi-for present" 1nput, and the other as Ni

‘for' 'not present' ' Both -weights, may be either positive,

(exc1tatory) or. negatiVe ,(inhibitory). " The x;explicit

representat10n~ of feature«absence permits‘categories to”be

~ defined on the'-basis"of ‘missing features, ‘and avoids
confounding "unknown with "not- present" - There may be any.

» number of 1nputs. Output_is‘calculated as: Mjf;

Out -—f E : Fi * Pl 4 }Q:£:~- Flm* Nl
_ 2 F1>0 . S ~'1<0 Lo

L

-Page 8 ”=_;j--
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" With output thrésholds of -1 and-i and synaptic waights

betueen -2_and 2, a single node can represent prototypes of ,".

the form:

Aat most X1 features gives output = -1 (= false)

at. least X2 features gives output = 1 (= true)
A node that is éapable of behaving as the (at 1least X
of N)  function can be achieved "by setting Pi to

iz*(N-x)+1)/N.and Ni to -(2*xX-1)/N. :The presence of X

features yields an output‘ of 1, and X-1 features give an

output of -1 for values of N >= 1. If X equals N we have,

as a special case, the "AND" function. In this case Pi is

I/N and Ni is -(2*N-1)/N. If X equals 1 we have, as another‘

special case, the "OR" function. - In this case Pi is

(2*N-1) /N and Ni is -1/N.

4.2  Training A Node .

A neuron must be aple to adjust its 6utput in.order to
improve its performance. The Aability to train a linéar
function as a binary pattarn‘classifier is well known as the
perceptron convetgance theorem (Niisson 63) . This procesé
is similar to biological‘learning 'in the gill withdrawal

reflex of- Aplysia (Kandel 79). In particular, a node is

told both when it should be on and when it should ‘be off,i

‘and its 1nput welghts are adjusted accordlngly.
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A s1milar learning process was adopted 1n this model.'
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A synaptic weight is increased if-‘- o

1) the node should be on Co

2) the node's output was less than 1

3) there was input on that line -

4) the weight was not already its maximum value

Theesecond constraint is cons1stent " with the observation'

that "organisms only 1earn when events ~violate their

expectations" (Rescorla and Wagnerr72).'-Weights‘arevreduced

by a complimentary_process.'

ThlS standard process was modified in several ways.

Most 1mportant1y, ‘the adJustment of weights was based on a

Bayesianhselection of appropriate features~-to strengthen.;
~Weightsj' are | modified in proportion to the feature s
predictive- potential. | This was effective 1n excluding :
- irrelevant act1v1ty from weight modification. It 1sAalso
con51stent w1th contingency theories of learning (Rescorla

72, Rescorla and Wagner 72, Sutton and Barto 81).4"

;A‘“trace" of conditional probability is"iteratively S

computed w1th one of two methods~.
.uethod I ‘ o '\ , '
[TF:L] += [TFi] + (T * Fi -,[TF:_i.]) *r o
[Fi] ;:='[F1] + (Fi - [Fi]) * r-
[TIFi}] := [TFi]/[Fi] »
- IT] ==_[T] + AT - [T]) *r
] ‘Method II .- i o | -
i [TIFi] := [TlFll + (T - [TIF1]) * Fl *rooo
L [T] ., :=-[T]+(T-[T]) "f‘r“__ S

,fFi is the 1nput value for feature 1, T is a teacher ;S1gna1

(—l ;o 1) 1nd1cat1ng whether the node should have been off 3

or on, [Fl] 1s an estimate of the probability (frequency) of

.>.__'
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Fi, [T] is the probability of T, [TFi] is the probability of

éq-occurrence of T and Fi, and [T|Fi] is the probability of
T givén. Fi. The "memory -length®™ of the »funétion is
determihea by the rééé’ constant r. | As in standard
conditional probability, the predictiveness of a feature can

be determined by'comparing [T]Fi] to [T].

" The uée of conditional probability works well -in
identifying those inpﬁt'weights which shou}d be increased in
magnitude, but sélectively identifying those which are too
large and should be decreased in magnitude proved more
difficult. Thé solﬁtion was to make a distinction between

learning (increasing in magnitude) and unlearning

.(decreasing in magnithde)} Their relative _con;ributibns

depend on one's faith in the accuracy of past learning.
Arbitrarily, the contributions of unléarning and learning

were set at .1 and .9 of the total change.

Weighf 1imit$ of -2 and 2 are adequate: for the (at
least X of . N) function, but the model learns faster if it
has extré‘room to maneuver in. Howevér, weighté only go
beyond -2 and 2 if other unnecessary weightsl are
accumuiatinge _In order to give the model some 'éxtra' room’
but  tquiécouragé its abuse, the weight limits were doubled
to -4 and 4, and the unlearning fraction waé coupled to the
weigﬁt‘of the most predictive-feature'in_the current input:

. un_frac := .1 + .9 * Wt/4

This adjustment‘ of un_frac ‘proved quite efféctive‘_ih
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controlling inappropriate weight'éccumulatiqn.

As an example of a node's ability to learn AND's, a

'+ node was sequentially trained to uniquely déteét each letter

- of the alphabet wusing a 14—str9ke representation vscheme

(Fig. '1, Rumelhart and Siple 74). For each letter, the
complete alphabet was cycied "through until discrimination -
was perfect. All letters were successfully learned in an

average of 9 cycles.

In Figure 2, the function (at least 3 of 4) is learned.

‘The ¢omp1ete input space (16 patterns) was continuously

cycled through, and the node's output for  representative

inputs ;with N,  N-1, N-2,.N-3, aﬁd N-4 features is shown.

- The positive instances are learned in order of similarity to

the central pfototype (all 4 of 4), and negative instances
are learned in order of similarity to the inverse of the
prototype (0 of 4). This acquisition order is consistent

with human learﬁing of prototypes (Mervis and Rosch 81).

- 4,3 A Sihgle Operator

" Using nodes that can be trained to compute OR and AND,

it is possible to compute any’Boqlean function. Based on

-disjunctive normal form, a minimal 2-level structure is

adequate (Fig. 3). This is similar to the structure of a -

perceptron (Rosenblatt 62). Unlike the standard pérceptron,

.'where only :the.vtbp pode,is traiﬁed énd the'lower_plané is-
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Figure la,\Fourteen stroke alphabetic representation
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(0 of 4) (1 of 4) - (2 of 4)

.,"Ariéure_Z;‘ Prototy§e:1earnihgiof function "aﬁ_least 3_0;'4"
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Output Node

Operator

~ Intermediate plane

Input sensors

Figufé'B. A minimum structure capable of detecting -
Boolean functions
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”hard-wired", both 1eyels:are-traihablé; The prOblems. of
restricted -interconnection (Minsky and Papert'72)-ére not

addtessed.

Training an operator can be viewsd as two separate
processes: training the top node and training the plane.

Training the top node is trivial if the 1lower nodes are

‘already trained, and impossible if they aren't since it uses

their output. The problem is to train the bottom nodes.

The constraints are relatively simple:

1) For all "false" input patterns (T = ?1) :
-~ all nodes should be off .
2) For all "true™ input patterns (T =" 1) '

at least one node should be on:

The first constraint is easy to implement. The desired

value of T = =1 is simply broadcast to all nodes. The

. second is accomplished by broadcasting T= 1 plus lateral

inhibition of 1learning. As the node with maximum output
(Max_out) approaches 1, the learning rate of all other nodes
is feduced to 0. This is impleménted by controlling Rt in
the rate equation:

New_out := 0ld_out + (1 - Old_out) * ¢ * Rt

where: '
Rt := 1 - Max_out
If Rt > 1 then Rt :=1

The constant c determines the maximum learning rate. . When

at least 6ne node detects each “true" input, no'further‘

' learning is necessary.




‘This process was modified"by‘Ladjusting'ﬁlearning to

finclude the relative output of nodes in the plane;-

- Rank := (Out - Min out)/(Max out - Min out)
Rt := Rt * Rank ,

ThlS recognizes the fact that the nodes most likely to learn
a pattern are those with the greatest_predisp051tion to
respond to it. The function has subsequently been made more
sensitive to the distribution of output values, but this

simple form was also adequate for the functions tested.

This learning algorithm encodes "true® input patterns

as potentially overlapping categories in the lower plane.

. The algorithm tends to produce- the largest categories

possible, thus requiring the minimum number‘of nbdes; though

the absolute minimum (perfect generalization) is not

“guaranteed. The output node can be trained 51mu1taneously

with the plane. It simply doesn't do very well ‘until the

plane converges,

System capacity and learning speed can be increased by

increasing the number- of nodes. This was accomplished in

three ways: increasing the number of nodes in' the plane,
increasing the - number of planes to form a stack, and

increasing the number of stacks. In addition,‘ various

 interconnection schemes are possible.' For'example, nodes
_can be connected w1th only the plane below them, a11 planes

_:’below .them; or all other nodes in the system.m Any of these‘

structures can be trained by applying the learning process

:'1ndependent1y to each .plane.: These variations suggest a4

)

wal Page l4"




*exten81vely investigated.'

'?number of 1nteresting biolog1cal analogles“(Hampson 83), butufﬁ

5fffor4 simulatlon effic;ency the m1n1ma1 network was the most*;“

LR
LN

Using a small network '(one plane;s'zo nodes)}[ the,-

operator tra1n1ng ‘algorithm was testedvfon ‘a number of

4-feature Boolean functlons._ For each functlon, each of them

'16 input patterns was presented_ln constant rotatlon unt11‘_'

the accumulated error of the output node ”(its difference

'from T) reached zero for a complete cycle.‘ All functions

were successfully learned, in an average of 12 cyclesr

A standard set of 40 4 feature functlons was always run

1to determlne the effects of program modlflcatlon. - In

Flgures 4abc, 3 of these functions and the1r learn1ng curves

are shown. In Flgure 5 a single learnlng curve is shown for

the network as it is sequentially retralned to detect those

three examples. Examples- 4b and 4c are among the hardest

and easiest functions of 4 features for the network to
learn. As can be seen in Fig 4b, error does.not;necessarlly'
~ decrease monotonically.,' This yresultshffrom.'training ‘the

“output”node while the plane is still incompletely trained.

4.4'fMultipleQOperators'< )

Flnally,dmultlple operators are comblned 1nto af singleii

’ ‘**behav1oral system. Completeness 1n thlS system requlresj‘ff'f

'~'5mapp1ng arbltrary 1nputs to arbltrary sets ,of outputs.;!jA;'rlu.

g
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trivial, ‘butf effective apéroach,is fo individuéliy tféih é.
collection of seéaféte operators. - Alﬁhdugh'it wouid'producé J;
the desiréd,behavfbr, this'techniqﬁe has sérious drawbacks.
The most obﬁious is fhat pro&iding a separaté  "brain®™ for
eééhl' operator is impractiéal;y‘ extravagant. Anothér
objection~is that‘totally separate bperatpfs cannoft sharé
inforﬁatipn. If the same pattern is important fo several

operators, it must be learned and represented separately by

- each of them. It seems unavoidable that shared memory is

required for systems of any size.

What. is needed is a way to augment (or. replace) the
separate,"dedicafed memory planes of each operator with a

siﬁgle, shared pool of nodes. Since a two level system . is

logically adequate for separate .6perators, it is also

computationally complete in a shared memory' system.,

Operators can be reduced to single nodes'sharing a single

lower  plane. The - previous learning algorithm is
inappropriate for shared memory, so another procedure was
developed. It coﬁsists of two separate processes:

1) Input driven categorization
2) Goal driven focusing

. These two processes will be. considered separately. VThe

approach is similar to one utilized in (Reilly et al. 82).

Page 16 .
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4.5 Input Driven Categorization
Input driven. categorization can be summarized as:

At least one node in the common memory should be on for any
1nput.

This  constraint ~provides the plane with an intrimsic
function, 1learning until every input is categorized one way
or another, Eventin the absence of operator (goal driven)
information, learning will take place until input is
successfully categorized. Learning is identical to that in.

the previous section, except that T is equal to 1 for all

inputs.

' Useful categories tend to reflect the natural
categories in envirommental input (Mervis and Rosch 81), so

input driven learning should capture' those natural

.associations. Most neural models based on the Hebb

-hypothesis are designed to modelsthis process. Given ' the

specific needs of a particular' type of organlsm, the
structure could also be innately preblased toward detectlng

categorles which will most likely prove useful.

4.6 Goal Driven Focusing

Goal driven focusing can be summarized as:

If a behavioral (operator) error occurs, the common memory
does not represent the current input pattern in-a specific
enough form for the operators to use. Therefore the - common
memory - should be adjusted in a direction that produces a
more specific representation. _— ‘
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With a single operator,~output error can be computed as:

‘the dlfference between the operator's actual and correct

"output.< For multiple operators this has to be modlfled, but

if at most one operator is applled at a time, only minimal

modification is necessary. Memory is adjusted when error >

| 0. This can be implemented as a step function, but works

more smoothly if the amount " of adjustment ‘varies
continuously with error. In 'general, the amount of
adjustment'should be proportionai to the probability that a

more specific representation would improve behavior.

If operators are limited to single nodes detecting (at

"least X of N) features, any adjustment ‘process should

converge on a representation which is decodeable by that

- function. An obviously decodeable extreme results if each

input pattern is uniguely represented by one node in the

.lower ’plane. The operators could then pick and choose,

functlonlng only as "ORs. ]Any learnlng process - which

converges on this state will eventually converge on correct

| behav1or, although 1t may - need up to 2 ** N nodes to

completely cover an N-feature‘input space. .

In order to implement this process, ~1arge categories

‘must be broken 'up into smaller ones. One mechanism for

. achieving this is to -focus the current category more

narrowly on the current input whenever an operator error -

-occurs. If the error per51sts, the ‘category  should

‘ultlmately be focused down to a 81ng1e 1nput pattern. ‘Input
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driven learning £ills in any conceptual  gaps ‘lefti_by' the -

' fbéusing process.

Inthitively,,focusing a node ﬁéahs.théé it fires_ more
selectively for inputs resgmbling theAcurrent input. This
requires: - “

1) Sﬁifting its central prototypé (all N of N)

toward the current input -
2) Sharpenlng its dlscrlmlnatlon by 1ncrea51ng X
in (at least X of N) .
If carried to completion, the \éombination of these two
processes will Veventually fgcus a node on a single input
patterh. | | . \

A neural system displaying»what might be interpréted as
focusing has ‘been deSCribed in the hippocampus (Dunwiddie
and Lynch 78, Andersoﬁ et al. 80). In that system, fhe
current - inputs to a neuron become more effective in firing
it, and the unused.inpuﬁs become less effective. Its firing

function is thus modified to 1look more like the'Current

input. This is apparently achieved by simultaneously

- strengthening the synapses of the active inputs,-and raising

the firing threshold of the cell as a whole.

The model neuron does not -have an adjustable threshold,
but a similar éffectA cén be achieved by increasing the’
negative weights on the inverse or "not™ of the _current

input features, (making their absence more inhibitory). For

‘biclogical realism, the modél,ﬁas also modified to use an

édjustablef threshold,ifbut since the desired’behAViok'can
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also be implemented without structural modification, the

threshold teéhnique is not déveloped’ﬁere.A

-The primary method of adjusting weights for "invert"
focusing is:
A) Center prototype
1) reduce positive weights
2) reallocate weight based on current input
B) Sharpen discrimination - &
1) shrink current output toward 1
2) invert current input
3) increase negative weights
This has the deSired effect of driving the node's output

function toward (all N of N) of the current input features.

Error driven foehsing is a reasonably efficientrprocess
since memery modification takes élace only when behavior is
apt to be improved; If no output errors ‘occur, the
representation is ‘specific enough-fot perfect behavior,‘so
no learning is required. If an error does occur, the
representation is ndt specific enough at ‘that point.
Through succeeSive focusing, the area of error is identified
and can then be ,used’.by the operators to correct their.
output. The operators can be continuously trained, -since‘
the common memory »represents, or will soon represent, the

input in a decodeéble form.

Multiple plane systems are also possible for the common
memory. As be%ore,keach plane can be trained independently.v.
Tapered - focusing can also. be used 'ae"a_amechanism to-

facilitate the sharing of information in layered systems..
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By reduc1ng the speed of learning in the lower levels, onlyAT

 the most abstract concepts are formed there ‘over an extended

period of time. This ‘appears to be a simple but effective

approach for the self-organization of hierarchical systems.

With completes'interconnectionA between : nodes, an .
alternative method of - information representation is
possible. Rather than representing a category as 'a static
state of neural activation, categories can“be identified as
temporal'firing ~patterns. Though only the final state

represents a node's decision on categorization, a

: post—stimulusvtrace of its activity can reliably'distinguish

many input patterns. This is similar to some biological
observations (John 76, 80, John‘_and Schwartz 78). ~The
current' model doesn't decode temporal patterns, so although

such information is available, it is not utilized,

In general, development and testing -of the common

memory was limited to 4 feature functions. The same set of

40 functions used to test operator training was also used to
test focus1ng. Overall learning speed was adjusted to be
about the same for the two processes,‘ bnt speed on
indiv1dua1 functions 'was ' often quite different. As

expected, operator training is better when generalization is

‘possible, and focusing is generally,superior when specific

‘instances are important.
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4.7 Evaluation And Credit Assignment

There are two basic problems ofvcredit.assignment when

a single evaluation signal is used to instruct multiple

‘operators, If " more than one operator is applied

simultaneously, it is not clear which ones are responsible

-for desirable or unde51rab1e changes (Barto et al.  8l).

Slmllarly, .if a  sequence of operators is applled before a'
goal "is achieved; it 1is dlfflcult to determine which

operators contributed to the final achievement (Minsky 63).

The first‘problen of simultaneous operator application

. can be avoided by training the model as a production sYstem.’

If only one operator is applied at a time,lit is clear which
should get credit or blame:

1) If an operator fired and things get worse,
then it was wrong and should be off
2) If an operator fired and things get better,
then it was right and should be on
-and everybody else should be off
3) If nobody fired and things get worse,
- .then somebody should have been on so all move up
4) 1If nobody fired and things get better,
- then nobody should be on (and they weren't)

If the current evaluation is less than optimal, staying the
same can be treated the same as getting worse. Thus the

resulting change in evaluation indicates the correctness of

' the preceding behavior. This"trial-and-error strategy will

cycle through all the operators (repeating some)' until the
correct operator 1s applled 'The system will then stabiiize
for that 1nput_pattern. Prov1dlng the“ amount -of mutual

interference isn‘t‘%excessive, the .system willfeventually
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stabilize_6n'correct'output for all inputs;v

The second problem of sequential credit assignment can
be solved - with the introduction of learned secondary
evaluation. Primary (innate)’ evaluation identifies a

specific goal' state, and secondary (learned)4eva1uétion

‘indicates the likelihoed that any other state is on a path

to that goal. This was impiemented as:
Eval := Eﬁal + (Next_eval - Eval) * r

In effect this says the secondary evaluation of a state

Ashould predict the evaluations of sdcceeding states.

For example, in an n state sequence, state n-1 is as

_good as the final étate, n, if the correct operator for that

transition is known. The learned evaluatioh _of state n-1

‘then makes the transition from n-2 to‘n-l rewarding. Action

.sequences“are learned backwards, ‘producing. a gradient of

evaluatidn leading to the final goal state. Primary
evaluation identifies geal,states, and secohdary evaluation

provides immediate. feedback fof-transitioﬁs leading toward
those statesi Since the evaluative Agredient eventually
eaturates, positive evaluation:must temporarily habituate to
preveﬁt'the possibiiity of looping action eequences. This
approach is cbnsistent with what 1is known of biological -

reinfbrcement.systems (Gallistel 73, Pugh 77).

 Samuel implemented a similar learning process in his

~checkerboard evaluation(fuhction;jSamuel-63);4'By simulating

‘succeeding states, the 1earned‘eva1uetiohwvcah ‘be used to
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“choose the‘ next trans1tion._lHowever, because the currentff;'”
~ model d°esn't antimpate future states, the correctness of a .

1trans1t10n can be determlned only after 1t has actUally been T

made. A 81m11ar approach has also been used to learn pole

balanclng (Barto et al. 82). ffﬁ:"j-

"»The'eualuationrsystem can use the output of the comnon

_ .memory, 8o single. node evaluation is computationally

complete.3 However, a 'large change 'in evaluation . may

1nd1cate that common memory categorlzatlon is 1nsuff1c1ent1y

' spec1f1c for accurate evaluatlon. To guarantee convergence' ’

on correct evaluatlon, the magnltude of evaluatlon change is

- included in;the ‘focusing"error *signal.lf»As before,v the

logical eXtreme of ”conpletely decoding the input space .is
trivially adequate since the correct evaluation can _be

unlquely attached to each 1nput pattern. Thus evaluation is

~loglca11y complete and potentlally eff1c1ent since 'memoryA

modlflcatlon 1s proport10na1 to evaluatlon error.

-lThe-standard set vof‘"40 4;feature, s1ngle’ operator

Boolean funct1ons was used to test this 1earn1ng process.,fA ‘

7

*'51ngle 1nput pattern was .chosen as the pr1mary goal state

(Bval = 1), and other states were 1earned as a sequence

leadlng to 1t. Thus a 4- feature Boolean functlon can "be

'treated as‘_‘a '-sequence : of 15 operator selectlons.

Approprlate operator act1on recelved re1nforcement resultlng

B from a tran81t1on to the next state ‘in the sequence, and,”“ff_f

“'-;h_lnapproprlate actlon resulted 1n a transrtlon to a neutral,ﬂjfhﬁ

o Page 24
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unrelnforced state. As before, the system was tralned with -

cyclic presentation of all 1nput patterns. Early behav1or

is always random since tralnlng information is available for

onlyithe final transition. mhe' large number of errors

(things .don't get better) causes the common’memory to learn
the 1nput space°‘ With the,_inputy'patterns identified,
correct behavior and the resulting evaluation’gradient move
back from the final state. Since correct output must  be
learned sequentially, 1learning is -much slower, but all

functions were learned in an average of 51 cycles,

5.0 COMPLETENESS AND EFFICIENCY

- Because of its ability to‘represent'disjunctive normal
}form, (and»“prototypic" normal form in general), the system

is representationally complete in the Boolean domain. The

‘structure can be elaborated with_multiple planes and stacks,

and various interconnection schemes, but the minimal system
(single node operators and -evaluators, 1 common memory

plane) is logically sufficient.

Learning cOmpletenessAis equally desirable, but is not
as easily demonstrated. Because it implements a linear'

function, the model node could presumably be shown to learn

pattern classification by use of the perceptron convergence

proof (Nilsson 65)" Unfortunately, considering_the current

:complexlty of the program, a formal proof>iof asSembly

'.'behav1or would be dlfflcult ' BecaUSeh}of- the .ekpensei'of ,
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:gimulating _parallel process' on - a sequenfial‘machine,lthe '
‘syétem was developed on an input space of 4 :featufes,_.and

~empirically it appears to bg complete for that s{ze feature C

space. The programming details have been tuned for a small

number of features, but the conceptual approach appeats to

"be extendable.  With common memoty_focusing4there is promise

for provihg learning completeness (Haﬁpéon 83). If so,

operator training could be modified to include  sufficient

focusing to guarantee its convergence as well.

Efficienéy in time and space are impoffant) 'though.
often- contradictory.conétraints,on network characteristics.
_For' example, rapid focusing -produbés rapid :(efficient)
~learning, but regquires mény more nodes. The present ﬁodel

was developed primarily with an eye on céﬁpleteness since

that is a well defined .goal. Efficiency is a matter of
trade~offs determined by the particulér situation. However,

in terms of node utilization, representation in_prototypic

‘normal form is significantiy more efficient than disjunctivé

or conjunctive normal representation; In addition, the

" operator training = process tends toward - maximum

generalization, thus requiring the minimum number of nodes.

Such. issues will be of increasing . importance as neural

models are scaled up for practical appiication.
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3 The complete model 1sq'shown ’1n Fxgure 6. | Learning.
;occurs A1n three places.h Operators are tra1ned to be on and
off, the common memory is tralned to - categorlze the 1nputf
:space, and evaluatlon learns to predlct future evaluatlon.
o Change detectlon prov1des behav1ora1 evaluatlon/lnstructlon
by comparlng succeedlng evaluatlons 'to see 1f-th;ngs get;

better or worse. L - L R

' Th1s system demonstrates a blologlcally plau51b1e model =
Aofhi adaptlve behav1or.~' It is vconstructed with - linear
') functlon elements which are probablyr welli_within neural
;capab111t1es. Varlous formslvof learning‘are proposed in.
order to 'organ1ze approprlate actlon.\ ~These‘('learning.
:processes are also suggested by known neurophy81ology.

~ Thus, though not expllCltly phy51ologlca1,- the system -is
intended to be con51stent with blologlcal capabllltles.i‘By
”modeling the more abstract functlons of - neural systems
rather - than' detalled phy51ology,l_1t lshould be easier to’
1nvestlgate the relat1onsh1p between neural processes and:-
1ntelllgent - behavior. , In addltlon,: a-;more ,functlonal

'_ approach avoids the;probiemsbcreatéd.by'nature'sktendency to
implement the isamegfunctjon (e.g.} yision)'in a.variety'of"

i waYs.‘

Operator tra1n1ng and focu51ng seem to; represent twoi‘

e i - . yo . . v . . . . . P
- B ° R t . - - . - Lo ! !\ e T

:ﬂfundamentally 1 dlfferent learnlng - parad1gms.' Operator;gf

'jtra1n1ng is egulvalent to many art1f1c1a1 1nte111gence '(AI)»d <. l
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‘Clearning 81tuat10ns.7' That is,' a category descrlption istf_
5produced from presentatlon “of posrtlve and negatlve examplesj’v

*(cOhen and Felgenbaum‘ 82 ch. D3)._ Focusxng is drrven by

p051t1ve 1nstances only. The operator tra1n1ng process is

:good at learnlng categorlc generallzatlon, but 1nappropr1ate

for learning spec1f1c 1nstances. Common memory focusing, on

the other hand, is capable of learning unique occurrences in

"one shot" if necessary, but is poor at generalization.

‘This ‘is' consistent with a bidlogical'dichotomy observed

between'fbehavioral- adjustment and the acquls1t10n ’of

specific, hehaviorally uncommitted knowledge (Sgulre 82,

Kent 81). '

'Secondary'hevaluation appears to be a ,simple but

_effectiue means of coping’ with the sequential nCredit'

assignment.problem. It does not guarantee formation of

optimal action sequences, but does appear to be complete in

its ab111ty to assemble arbltrarlly long sequences in order

~to achleve a s1ngle goal.

' Neural knowledge o representation 'has» 'significant
differences from more trad1t10na1 AT abproaches._ While a

11near functlon of 1nput features is natural for neural

,concept representat;on. its. power'to descrihe prototypes,
.and‘"the _ability:‘of prototypes to describe- real uorld:>

n ‘jcategories,, are 'seldom used in AI systems.; Categorlzatlonf
-in AI .is typlcally based on 1dent1fy1ng a m1n1ma1 set. of ;7

"'necessary, and/orvh suff1c1ent ' features, rather ‘than? af,j@

A 3,_
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-’(AND) and sufflcient (OR) features can be 1dentif1ed as the
h ends of the prototyplc contlnuum, 1t is not surprlsing that;*
features of 1ntermed1ate value are more the rule than the.
exceptlon. W1th sequentlal computatlon, it is'f more

'_economlcal to utlllze key features when they ex1st, but 1t

should be recognlzed that such -an approach is ‘a. hlghly

restr1ct1ve technlque for dea11ng with natural categor1es.

- Another useful model whlch is seldom used in AI is the
servomechanlsm _ concept. The servomechanlsm has proved

useful in psychology as a mechanlstlc model of goal seeklng,

'and‘ " neural models ~are qu1te : compat1b1e w1th - a
"servomechanistic 1nterpretatlon of behav1or (Albus - 81,

" ‘Gallistel 80). Hlerarchlcal servomechanlsms can . be eas1ly'

built within’ the Boolean domain (Hampson -"83). ~ 'One

interesting characteristic of servomechanisms is that

~desired (goal) states and the -actual, current state are’

treated as the same _type of data. " Goals jand current

- conditions - can ‘be freely intermixed in a servo/neural

. behavioral systen.»

A number of unanticipated biological ‘parallels"were

observed -during {development of the modelr Since the model
'_ was strongly constralned by completeness and"efficiency,
these parallels suggest that some neural characterlstlcs may

be shaped by 51m11ar 1ssues. Perhaps the most 1nterest1ng ;

. page 29 "

‘ft-rprobab1l1st1c d1str1bution of all features.»'Sinceineéessafyl'*"

' \'—..

'hlpos31b111ty 1s the central 1mportance of prototype focu81ng ;”J
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as a Iea:ning proéess.ﬂ At present the fbioioéical evidence
for this is only suggéstive, but model teéults demoﬁstrate-

 that prototype focusing is at least a theoreticaliy' viable

process. "It would Dbe 'equaily gratifying if neural

characteristics similar to the conditional p:obability trace

- méthod II were to be observed. Finally, the inclusion of

learned evaluation proved to be effectivé in 6rganizing
sequenées of actioné. Such a process has been suggested to
be important in biological behavior (Pugh 77). _Aﬁ important
difference may bé in thé explicit inclusion of unlearhing.
Some biological systems may learn‘ by an irreversible
process, which can épproach satﬁration withinvthe life span

of the organism (Barnes 79).

7.0 FUTURE WORK

It i§ hoped that_other input domains can be approached
as logical extensions of the Boolean domain. For instande,
the temporal fiiing" pattern of a singlé input can »be
represented and detectéd in the same manhgr that

simultaneous . fifing of multiple inputs is detected.

'Relational patterns can be expressed as temporal sequences,

suggesting that the temporal -domain may be a profitable area

of future development.’ Spatial or topogfaphic effects are

achieved in many models simply by limiting - connections and

' interaction to neighboring nodes. These possible extensions

suggestlthat progress in the Boolean domain may . provide a
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useful foundation for investigation into 6£her domains, In

addition, the evaluation system shduld 'be extended to

support simultaneous operator application.'

8.0 CONCLUSIONS

We have developed a multi-layer neural 'netwo;k that

appears to be capable of 1learning arbitrary Boolean

functions. - Individual neurons are capable of computing' the

(at 1least X of N) function, permitting efficient
represeﬁtation in prototypic normal form. Synabtig weights
are modified to reflect conditional probability. . Multiple
operators.can share a common memory. The operators and the
shared memory learn at the same time,‘thbugh by different
processes. "Operators learn through sequential. présentation
of positive and | negatiﬁe instances. common memory
categorizes each input pattern, and operator feedback causes
that' categorizétion to become mbre specific. Secondary:
evaluation permits:_sequences of éctidns, to be :iearned.
These >procésses have distinct charactéristics which appeaf

to be reflected in biological learning.
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