
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
MPSoC Simulation and Implementation of KPN Applications

Permalink
https://escholarship.org/uc/item/78k878qt

Author
Cheung, Chun Shing

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78k878qt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

MPSoC Simulation and
Implementation of KPN Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Chun Shing Cheung

August 2009

Dissertation Committee:

Professor Harry Hsieh, Chairperson
Professor Frank Vahid
Professor Sheldon Tan



Copyright by
Chun Shing Cheung

2009



The Dissertation of Chun Shing Cheung is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

Thank you Prof. Harry Hsieh and Dr. Felice Balarin for their valuable opinions over the years.

iv



To my parents and my wife.

v



ABSTRACT OF THE DISSERTATION

MPSoC Simulation and
Implementation of KPN Applications

by

Chun Shing Cheung

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2009

Professor Harry Hsieh, Chairperson

Design of Multiprocessor System-on-a-Chips (MPSoC) currently suffers from poor tool support.

MPSoC is considered to be the next general design platform for embedded system designs. As

complex designs such as multimedia and gaming processing become more common in handheld

devices and traditional ASIC solutions are too slow and too expensive, MPSoC allows a fast soft-

ware solution by running multiple low-cost, low-speed, low-power embedded processors in parallel

and combining their processing power to solve more complex computation problems. However,

current design methodologies for MPSoC generally restrict the specification of the software for the

convenience that it can be analyzed statically. Such restrictions prevent MPSoC designs to reach

their full potentials.

In this thesis, I propose an MPSoC design methodology that does not impose unnecessary

restrictions on the software. Specifically, Kahn Process Network (KPN) is used to model the appli-

cations such that each process in the KPN process networks can be expressed by the full power of

high-level programming languages. Unfortunately, allowing the full power of high-level program-

ming languages prevents the software to be analyzed statically. Therefore, similar to optimizing

software for single-processor systems, a profile-based methodology is proposed to explore the vast

design space of MPSoC for applications written in KPN.

There are two main ingredients in the methodology. 1. The MPSoC simulation must

be made both fast and accurate. The speed of the simulation must allow designers to modify and

experiment different design options in the limited design time allocated for system-level design ex-
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ploration. At the same time the simulation must be accurate enough for the exploration results to be

meaningful. A new MPSoC simulation framework that simulates in the speed close to behavioral

simulation and generates performance results with less than 5% error is shown. 2. An analysis from

the simulation must provide accurate MPSoC-specific profiling information about the implementa-

tion for guiding the designers to make design decisions. Execution characteristics of MPSoC make

such profiling information very different from single-processor systems. A new profiling technique

specifically to determine performance-critical information for MPSoC is described.

Three optimization techniques at various implementation levels that use the proposed

methodology are shown and applied to an MPEG-2 Decoder design. The experiments show that

the optimization techniques using the methodology can efficiently optimize the implementations in

term of performance, power and area. The results show that the methodology allows designers to

explore the MPSoC design space more efficiently with the accurate MPSoC profiling information.
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Chapter 1

Multiprocessor System-on-Chip

System-on-a-Chip (SoC) is an Application-Specific Integrated Circuit (ASIC) design that

is generally made for only one or a few well-specified functions by combining standard compo-

nents such as embedded processors, interconnect buses, on-chip memories and other digital signal

processing components. The design and the architecture of SoC can be optimized for the particular

functions. This is very different from a general desktop computer, which is designed for general-

purpose processing and is made to run any programs. Designers of SoC can make application-

specific decisions in both hardware and software such that the design can be produced at lower cost

and with higher performance.

Over the last decade, Intelligential Property (IP) licensing has become a common practice

in SoC designs. As capacity in a circuit scales up exponentially based on the prediction of Moore’s

law, IP modules are commonly used to accelerate design processes. IP modules are reliable low-

cost synthesizable or already synthesized modules that are available to be licensed commercially

and used in application-specific designs. In additional to common peripherals such as FIFO, GPIO,

UART and buses, embedded processors and microcontrollers are available to be placed closely

coupled with custom logics and manufactured on a single chip. In most traditional single-processor

designs, SoC consists of one embedded processor / microcontroller, custom logics, and optionally a

Digital Signal Processing (DSP) processor.

With the increasing in size and density of SoC, traditional design methodology for creat-

ing custom application-specific logics has been unable to keep up the pace. Multiprocessor System-

on-a-Chip (MPSoC) [76] is a promising solution for future SoC. MPSoC refers to designs with mul-
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tiple processing elements, such as embedded processors, microcontrollers, and Application-Specific

Instruction-set Processors (ASIP), that are connected together over a complex interconnect network

of buses. An abstract figure of MPSoC is shown in Figure 1.1. With the current capacity of SoC and

the sizes of embedded processors, designers now have the ability to put tens and hundreds of em-

bedded processors into a single chip. This trend is expected to continue and thousands of embedded

processors can be easily fitted into a single chip in the near future. With this new design platform,

design methodologies, EDA tools and optimization algorithms have to be created and revised.

Figure 1.1: A typical MPSoC architecture. It consists of multiple Processor Subsystems, where
each has an embedded processor / microcontroller / ASIP and private memories for instructions
and data. The embedded processors and the memories can be different (heterogeneous) in the
processor subsystems. The subsystems are connected with an interconnect network of buses, such
as a crossbar.

The benefits of having multiple embedded processors on SoC are more apparent with the

current design requirements of the SoC market. Handheld and portable devices are getting more

complex that highly sophisticated multimedia and gaming processing has to be able to run on SoC.

At the same time, developments of such designs have to be fast and flexible to handle the tight
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time-to-market requirements, short shelf lives, and ever-changing design functionalities. Here is a

list of reasons that make MPSoC preferable over traditional single-processor designs:

• Power consumption, thermal output and reliability have become critical issues in designing

high-performance systems. As the capacity of the chip goes up, design of more complex and

faster processors is limited by the increase in power consumption. To release the heat gen-

erated by the increasing power consumption, heat dissipation has also become a major issue

in high performance designs, otherwise the designs would be unreliable. Traditional single-

processor designs can no longer provide reasonable power consumption with further increases

in processor performance. Multiprocessor designs allow linear increase in power consump-

tion over performance as the total computational power increases linearly with the number of

processors. Therefore, MPSoC designs scale when the capacity of the chip increases.

• For high-performance designs, memory accesses become the bottleneck in performance. In-

creasing the frequency of the processors increases the memory wall – the speed difference

between the processors and the memories. Improvement in speed of the memories has been

slower than that of the processors, hence the performance is limited when memory accesses

are involved. MPSoC avoids such memory wall issues by allowing the processors to remain

running in slower frequencies while increase the performance by increasing the number of

processors, hence maintain the same speed difference between the processors and the memo-

ries.

• Software designs allow significantly higher design flexibility over hardware designs. Tra-

ditionally, SoC uses custom hardware for its small size, high performance, and low power

computing. However, with the ever-increasing design complexities and the shrinking time-to-

market requirements, traditional single-processor designs with custom hardware are becom-

ing too slow and difficult for both design and testing. MPSoC provides significant improve-

ments on designers’ productivity because software developments are a lot faster and more

flexible than traditional custom hardware designs. At the same time, software designs have

the ability to be reprogrammed after the chip has been manufactured, providing programma-

bility that does not exist in traditional custom hardware designs.
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• Embedded processor IP is easy to license, reliable and well-supported. It allows designers to

use multiple embedded processors on their designs without worrying about the internal de-

signs of the processors. As shown in Table 1.1, a number of embedded processors (also known

Company Soft Core IP Remark
ARM ARMv6 – ARMv11 Most commonly used

Tensilica Xtensa Configurable & Extensible
MIPS MIPS32, MIPS64
ARC ARC600, ARC700 Configurable & Extensible
Xilinx Microblaze, Picoblaze Configurable & for Xilinx FPGA
Altera Nios Extensible & for Altera FPGA

Open Source OpenSparc, OpenRisc Free (Open Source)

Table 1.1: Some available embedded processor IP. Most of them target ASIC designs. Some of
them are configurable – designers can choose instruction sets available in the processors. Some of
them are extensible – designers can add specific instructions into the processors. Some of them are
specifically mapped to FPGA.

as soft cores) have been used successfully in commercial SoC, most noticeably are those from

ARM [7], Tensilica [154], MIPS [102], and ARC [6]. These soft cores can be easily instan-

tiated and synthesized into SoC designs. They also provide complete documentation and

comprehensive supports on compiler toolsets and simulators. Alteratively, OpenSparc [111]

and OpenRisc [110] provide open-source solutions for synthesizable processors. In the FPGA

domain, Micro/Picoblaze [166], Nios [4], and ARM processors have been natively mapped

into the FPGA from Xilinx, Altera, and Actel [2] respectively.

• Placing multiple processors in a single chip has never been easier. With the currently capac-

ity of SoC, which is still expected to be doubled every 18 months, it is easy to fit tens and

hundreds of embedded processors into a single chip. On the other hand, traditional single-

processor design methodology has not been able to keep up with the capacity of SoC. There-

fore, massive parallelism in software is becoming a preferable solution for high-performance

computing.

As a result, MPSoC provides a lower cost, lower power and higher performance solution

than traditional single-processor systems by allowing multiple software to run concurrently on mul-

tiple embedded processors. Embedded processors, such as those licensed by ARM, Tensilica, MIPS
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and ARC, are optimized for their performance-per-cost ratio, in which the cost includes power and

area. Such embedded processors are typically simple pipelined without complex dynamic logics to

reduce their costs while providing efficient computing.

1.1 History

In recent years, microprocessor architecture has reach its limit in performance because

of its increasing power consumption, worsen thermal output, and decreasing performance-per-cost

ratio with more advanced architecture. Multiprocessor designs have become the focus in both com-

puter architecture and embedded system communities. In this section, multiprocessor designs in the

last decade are discussed.
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Figure 1.2: Number of processors on designs in the last 20+ years. Some major designs are labeled.
The red arrow shows the trend of multiprocessor designs. Data are taken from [60] and [40].

A number of MPSoC designs have been successfully launched over the last decade. Fig-

ure 1.2 shows some of the most noticeable products over the years and the number of processors that

are used on those products. Multiprocessor designs start to get momentum around late 90’s. Since
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then, the number of processors in designs continues to climb exponentially. As of today, designs are

capable to have more than one thousand processors.

SoC designs could be classified as MPSoC for some time because a lot of them consist of

a small embedded processor and a Digital Signal Processing (DSP) core. The embedded processor

is used as the controller because the program can be written in C language and compiled into binary.

The DSP core is used for high-performance computing because of its special DSP / Very Long In-

struction Width (VLIW) / Single Instruction Multiple Data (SIMD) operations. The DSP core is not

used as the controller because normally no compiler is available and the program has to be written

in Assembly language instead of C language. Therefore in this section, I focus on designs with

more than two processors. Designs, such as the Nintendo DS which has only two processors – one

ARM7TDMI for touchscreen controls and one ARM946E-S for gaming controls, are not discussed.

1.1.1 Xenon

Figure 1.3: Xenon chip layout taken from [23].

Microsoft’s Xbox360 gaming console uses Xenon [23] (Figure 1.3), which consists of

three PowerPC-based processing cores, for main processing. Each core is based on IBM’s 64-bit

PowerPC Instruction Set Architecture (ISA) with VMX-128 SIMD vector instructions. Each core
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runs at 3.2GHz and can symmetrically process two threads. Each one has a 32 KB L1 instruction

cache, a 32 KB of L1 data cache, as well as a shared 1MB L2 cache (shared among all three cores).

Modified, Exclusive, Shared, Invalid (MESI) protocol is used for memory coherency in the L1

caches. Graphic processing in Xbox360 is separated and is handled with the ATI Xenos Graphics

Processing Unit (GPU).

1.1.2 Cell Processor

Figure 1.4: Cell processor chip layout taken from [163].

Cell processor [163] (Figure 1.4) is a join development among Sony, IBM, and Toshiba,

and is used most noticeably in Sony’s Playstation 3 gaming console. The design consists of one

Power Processor Element (PPE) and eight Synergistic Processing Elements (SPE). The cores are

connected with an internal high speed bus called Element Interconnect Bus (EIB). The PPE is based

on the IBM’s 64-bit PowerPC instruction set architecture with VMX-128 SIMD vector instructions

and is able to symmetrically process two threads. The SPE is a RISC processor with 128-bit SIMD

instructions. The PPE acts as the controller for the eight SPE. The PPE has a 32 KB L1 instruction

cache, a 32 KB L1 data cache, and a 512 KB L2 cache. Each SPE has its own 256 KB on-chip

memory for both instructions and data (which is known as a scratchpad memory).
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1.1.3 Cisco CSR-1

Figure 1.5: Cisco CSR-1 chip layout taken from [50].

Cisco CRS-1 Carrier Routing System (CRS) [50] is the largest production network router

in 2008. Each router has multiple slots for expandable routing capacity. A routing chip (Figure 1.5)

can be found in a blaze that can be inserted into the slots. Each routing chip has 194 Tensilica’s

Xtensa processors to parallel process network packets. Specifically among the 194 processors, one

is specialized for debugging and one is used as the controller. The remaining 192 processors are

separated into 16 clusters of 12 processors (PPE). Each of these clusters is identical in term of the

hardware and software and processes one packet at a time. Inside a cluster, the 12 Xtensa processors

are customized with Tensilica’s Instruction Extension (TIE) instructions, which add application-

specific instructions to the datapaths of the processors to efficient manipulate different parts of a

packet. Under this architecture, each packet is being processed in parallel among the 12 processors

within a cluster and 16 packets are processed in parallel in different clusters. Software in the pro-

cessors can be reprogrammed for additional features and functionalities. With the massive software

parallelism, the design is able to process 96 Gigabit of data per second even though it is only running

at 250MHz and 35W.
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1.1.4 Picochip PC102

Figure 1.6: Picochip PC102 chip architecture taken from [12].

PicoChip PC102 [12] programmable chip (Figure 1.6) contains 308 16-bit processors.

The usage of PC102 is similar to DSP processors but makes use of multiple processors instead of

complex DSP instructions. Programming of PC102 uses the Multiple-Instruction Multiple-Data

(MIMD) programming model, where each processor has its own instructions and processes its own

data. Each processor has its own memory (scratchpad memory). Not all processors are the same.

There are three types of processors that are different in term of available instructions and memory

spaces. 240 of them are processors with a Multiply-Accumulate (MAC) instruction and a 768 byte

on-chip memory, which make them useful for more computation-intensive instructions. 64 of them

are processors with no MAC instruction and a larger 8704 byte on-chip memory, which make them

useful for more memory-intensive instructions. And there are four processors that have a much

larger 64KB memory, which are mainly used as controllers. The processors are connected with a

network of buses and configurable switch matrices. The design has been shown to provide more
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than 10 times better performance than a standard DSP processor even though it is only running at

160MHz and 5W.

1.1.5 Ambric AM2045

Figure 1.7: Ambric AM2045 chip layout taken from [65].

Ambric AM2045 [65] (Figure 1.7) has 336 32-bit RISC processors that target video pro-

cessing. The processors are organized into clusters (Brics). Each bric consists of eight processors, a

8KB shared on-chip memory, and can run in an independent clock frequency. The eight processors

in a bric are RISC processors or RISC processors with DSP instruction extensions. Each of them

has a private memory with the size ranging from 256 bytes to 1KB. Processors in one bric can ac-

cess the shared on-chip memories only in the adjacent brics. The application is written as objects

in Java language and the development tools convert the application into parallel machine binaries.

The object-oriented approach allows the objects to be distributed among the processors.
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1.1.6 Kilocore

Industries and researches are currently capable of designing systems with more than 1000

processors (kilocore). Rapport KC1025 uses one IBM’s PowerPC processor and 1024 small 8-bit

processors running at 125MHz. The small processors are organized in a 32x32 mesh configuration.

Figure 1.8: FPGA layout on one VirtexII Pro taken from [25] that has eight Microblazes and a
floating point unit. The 1008 processor version of RAMP Blue uses a slightly different layout that
has 12 Microblazes on one VirtexII Pro with no floating point unit.

The RAMP project [25] (Figure 1.8) is a join project of several major universities and

companies in the United States, including University of California Berkeley, Stanford University,

University of Washington, Massachusetts Institute of Technology, Carnegie Mellon University and

Intel. The goal of the project is to build a configurable system with more than 1000 embedded

processors for researches and application developments. In 2008, a RAMP Blue system with 1008

processors was presented. It is built with 21 BEE2 processing boards [29], each with five Xilinx’s

VirtexII Pro FPGA (where one of them is solely used for controlling) that are connected with high

speed fibers. Each of the cores is a Xilinx’s Microblaze that is connected with IBM’s buses.

11



1.1.7 Commercial IPs

To facilitate more power and area efficient designs, commercial IP companies have started

to license IP with multiple processors. For instance, ARM is licensing its Cortex-A9 MPCore [113],

which has four ARMv7 processors and snoop cache coherency. Tensilica is licensing its 388VDO

Video Engine [114], which is a video processing IP for codec encoding and decoding. It is composed

of two highly configured Xtensa processors.

1.2 Design Space

As shown in the MPSoC designs in the previous section, the MPSoC architectures and

application specification can be very different. Both hardware and software design choices are very

important in MPSoC. With different combinations of hardware and software design choices, the

implementations will have very different performance and cost (in term of area and power) charac-

teristics. It is designers’ responsibilities to explore this design space to optimize both hardware and

software in order to maximize performance and minimize cost in the implementation.

1.2.1 Hardware

The hardware part of MPSoC determines the performance and parallelism allowed in the

design. As shown in the designs in the previous section, there are a lot of options in the hardware.

Those designs are very different in term of the number of processors, the type and the Instruction Set

Architecture (ISA) of each processor, the cache and memory subsystems, and the way the processors

talk to each others.

Processor

The number of processors available and the types of the processors are critical for the

cost and the performance of an MPSoC implementation. In term of performance, the number of

processors determines the parallelism that is possible in the software, while the types of the pro-

cessors determine the execution time of the sequential programs in the software. On one hand, a

good implementation should have powerful enough processors because the parallelism is limited

by the algorithm and the specification of the software. On the other hand, a good implementation
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should have more smaller processors because smaller and slower processors generally provide a bet-

ter performance-per-cost ratio. Therefore, an MPSoC implementation must provide a good balance

between the number of processors and the types of the processors.

The tradeoff between power consumption and performance can also be achieved by run-

ning the processors in different frequencies. As the power consumption of a processor increases

super-linearly with the frequency of the processor [75], running a processor in a slower frequency

improves its performance-per-power consumption ratio. Therefore, Voltage Islands (VI) [87, 91,

108] and Dynamic Voltage Scaling (DVS) [59, 119, 165] provide design opportunities for an imple-

mentation to have more efficient performance and power characteristics.

Instruction Set Architecture

The ISA determines the efficiency of a sequential program when executing on the proces-

sor. For application-specific implementations, DSP instructions speed up arithmetic operations that

are common in signal processing and multimedia applications. Such DSP instructions include com-

plex operations (such as Multiply-Accumulate (MAC)), Very Long Instruction Word (VLIW) and

Single Instruction Multiple Data (SIMD) operations. These instructions speed up the applications

by combining multiple operations into one instruction that can be executed more efficiently. On the

other hand, having instructions that are not used in the applications is not cost efficient. Datapaths

that implement the unused instructions take up space on the chip, which increase the area and make

design synthesis more difficult. The extra datapaths also draw extra static (and possibly dynamic)

power, which increase the power consumption.

For a cost-efficient MPSoC implementation, the processors should not be overly com-

plex and have just enough instructions for efficient computing. The processors should be simple

and heterogeneous such that simple jobs are executed on smaller and simpler processors and more

complicated jobs run on the processors that have specialized DSP instructions. Tensilica [154] and

ARC [6] provide customizable and extensible embedded processors that allow processors to be

configured depending on the programs running on them.

Memory subsystem & Interconnect

With multiple processors run in parallel, memory subsystems and interconnect networks

are very important in order to provide data to the processors in a timely fashion. With more proces-
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sors, traditional memory hierarchy is not able to keep up the total memory bandwidth required for

all the processors. Therefore, memory subsystems in MPSoC use a combination of local on-chip

memories, caches, and off-chip memories to maximize the memory bandwidths for the processors.

1.2.2 Software

The software part of MPSoC specifies how the design utilizes the performance and paral-

lelism available in the hardware. The software design must match the hardware design such that no

hardware is unused or wasted. The software have to be written in a distributed model, which allows

the instructions to run on the multiple processors.

Parallelization

Exploring the parallelism in the software is crucial for the application to be executed in

parallel in multiple processors. The application has to be separated into multiple instruction-data

segments, where each processor can run a different segment. The degree of parallelism in the appli-

cation is very important. A finer (hence, more massive) parallelism provides the ability to execute

more segments concurrently and each segment is likely to have less computation requirements and

need a smaller processor. But at the same time, adding parallelism to the application could increase

the overall complexity and require the use of a less efficient algorithm. And too much parallelism

not supported by the hardware would simply increase the communication overheads between the

segments without improving the performance.

Each instruction-data segment may have different computation requirements. Some of the

segments are more important and require faster computation, and some of them can benefit from

DSP instructions if they are available. Therefore, it is crucial for the designers to identify parts of

the programs that are more important and speed them up by using a more powerful processor or

special DSP instructions.

Software Optimization

Software optimizations are very important to maximize the computational power of the

processors. With software programs running on different processors in parallel, software optimiza-

tions are being introduced with a whole new meaning. Optimizations on a single software program

14



are no longer the primary interest. Software optimizations for MPSoC have to focus on reducing

the overall execution time and memory requirement of the whole implementation, which involves

multiple programs.

In additional, a lot of embedded processors are extensible, which means customized DSP

instructions can be added to the processor datapaths. Based on the software programs running on

a processor, specific DSP instructions can be designed and added to the processor datapath such

that the programs can benefit from the new DSP instructions. Such instruction customizations are

normally done with software optimizations because the instruction customizations are instruction-

dependent and software optimizations have to be aware of the instructions that are used.

Design Specification

In order for the software segments to execute as one application, the application should be

specified in a distributed Model of Computation (MoC). The MoC determines how the distribution

of the software can be written and how the instruction-data segments communicate. There are

generally two main approaches – Symmetric Multi-Processing (SMP) and Message-Passing. In

SMP, the segments have the same view on the memory and they communicate by reading and

writing to the same memory addresses. In message-passing, the segments communicate by sending

data from one segment to another.

The MoC that the software uses must be supported by the hardware. Specifically, SMP

requires processors to have the same view on the memory, which implies a shared memory ar-

chitecture with coherent caches – which is not scalable over tens of processors. Therefore, SMP is

only useful for small number of processors. To make use of the small private on-chip memories nor-

mally available for each processor, the MoC should be Multiple-Instruction Multiple-Data (MIMD),

where each processor has its own instructions that processes its own data and use message-passing

communication mechanism.

1.3 Thesis Overview

This thesis focuses on design space exploration of application-specific MPSoC designs.

With a lot of design options in the design space – in both hardware and software, there is currently

no structural way to explore the design space to achieve a cost-efficient implementation. MPSoC
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is very difficult from traditional single-processor designs that a lot of design steps have to be re-

considered in order for the MPSoC designs to reach their full potentials.

The main benefit of implementing a design in MPSoC is that designers can write software,

instead of some other specification models which restrict the uses of regular software statements

such as while loops and pointers. The efficiency, programmability and flexibility of MPSoC come

from the fact that designers can design the applications in the full power of high-level programming

languages. Writing software that can be statically analyzed and optimized, although being heavily

used in researches, contradicts the reasons of using MPSoC. It is especially true for designs with soft

deadlines, which include multimedia and gaming processing that are thriving in MPSoC designs and

are the focuses of this thesis. Since an MPSoC design inherits the potential complexity of software

designs, using profile-based information is a reasonable approach in optimizing the design.

1.3.1 Outline

In this thesis, I propose a new MPSoC design optimization methodology without im-

posing unnecessary restrictions on the software specification. Specifically, Kahn Process Network

(KPN) [79] is used as the distributed Model of Computation for MPSoC. KPN provides a good

balance between the expressiveness of the programming languages and its analyzable properties.

Its deterministic nature avoids race conditions which are the major pitfalls in MPSoC designs. An

application written in KPN also allows it to be easily implemented in MPSoC.

The proposed methodology is software-driven. The software is initially specified in KPN,

and an MPSoC hardware implementation is created to match the parallelism and the communication

requirements of the software. From there, the proposed MPSoC design optimization methodology

is applied to optimize the MPSoC implementation in both hardware and software.

The MPSoC design optimization methodology is a profile-driven optimization flow that

makes use of an analysis during simulation. Similar to using profiling information for software

optimization in single-processor systems, the MPSoC design optimization methodology involves

simulating the implementation, analyzing the design during simulation, determining the important

parts of the implementation, and optimizing the implementation based on the analysis results.

A fast and accurate MPSoC simulation is an important part of the methodology. Since

the methodology involves repeatedly simulating and analyzing the implementation and iteratively

exploring and improving the MPSoC implementation, the MPSoC simulation has to be fast enough
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to shorten the design exploration time. At the same time, the simulation results have to be accurate

such that the analysis and optimizations based on the results are reliable. In the first part of this

thesis, I present a simulation framework that uses compile-code simulation techniques and the Sys-

temC simulation kernel to accurately estimate and efficiently simulate an MPSoC implementation.

The experimental results show that the simulation framework simulates at the speed close to behav-

ioral simulation, which is more than 1000 times faster than using Instruction Set Simulators (ISS),

and at the same time has less than 5% error in performance estimation.

To help designers exploring the MPSoC design space, simulation results (profiling infor-

mation) that show the important parts of the implementation for optimization are provided. MPSoC

is very different from single-processor systems because there are multiple embedded processors

running in parallel and they interact with each others. Therefore, traditional software profiling in-

formation for single processor is not accurate and not useful in optimizing MPSoC designs. In the

second part of this thesis, I show an algorithm to find the MPSoC-specific profiling information

– the MP-critical path. Then I present three optimization techniques that use the profiling infor-

mation at different design levels: instruction level, segment level and program level. Shown in

the experiments on an MPEG-2 Decoder design, the optimization techniques significantly reduce

the execution time and power consumption of the MPSoC implementations while limiting the area

usage.

In summary, the proposed methodology is very different from a lot of other MPSoC design

optimization methodologies because:

• It uses KPN as the design specification, which allows the full power of high-level program-

ming languages such that software can be written easily and more efficiently.

• A profile-based design optimization methodology is used, which is the directly result from

the fact that KPN is used to model the application.

• The simulation of MPSoC is both fast and accurate. Since the methodology allows more

fine-grain optimizations, the simulation not only has to be fast but also has to be accurate

enough to allow small improvements to be reliably shown in the simulation. The simulation

framework in the methodology proposes techniques based on compile-code simulation to

simulate MPSoC efficiently and accurately. The techniques allow compiler optimizations and

memory accesses to be considered accurately and simulation to be done more efficiently.
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• A new profiling technique for MPSoC is shown. MPSoC is very different from single-

processor systems in term of execution characteristics. Therefore design optimizations have

to be based on a different analysis specifically for MPSoC. An MPSoC-specific profiling in-

formation is proposed and an efficient algorithm to find such information is described. Such

profiling information can be used to optimize MPSoC implementations at different design lev-

els, which is shown by the optimization techniques presented to improve the implementations

at instruction level, segment level and program level.

1.3.2 Organization

This thesis is organized as follows:

• Chapter 2 describes some related works on system-level design methodologies, compile-code

simulation and MPSoC design optimizations.

• Chapter 3 introduces Kahn Process Network (KPN) specification and the benefits of using

KPN as the distributed Model of Computation. The target MPSoC implementation of an KPN

application is also specified.

• Chapter 4 proposes a profile-driven design space exploration methodology for KPN-based

MPSoC.

• Chapter 5 describes the compile-code simulation framework that allows fast and accurate

MPSoC simulation. Specific techniques to consider compiler optimizations, memory accesses

and a modeling technique to speed up simulation are discussed.

• Chapter 6 introduces the profile analysis specifically for MPSoC designs. Several optimiza-

tion techniques at various design levels based on the analysis results are presented.

• The thesis is concluded in Chapter 7.
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Chapter 2

Related Work

Over the last decade, MPSoC designs and optimizations have been extensively studied in

both researches and industries. In this chapter, I survey some of the major works on system-level

design methodologies, simulation techniques and MPSoC design optimizations.

2.1 System-level Design Methodology

Some system-level design methodologies have been proposed over the years and are

suitable for designing MPSoC systems. Most noticeably are Polis / Metropolis [9, 39, 88, 153],

Simulink [66, 124], Sesame / Spade / Archer [92, 123, 171], Compaan-Laura [67, 83, 147, 148, 157,

158] and TTL [131, 156, 159]. They all focus on the design flow from the design specifications

to actual implementations (system-level synthesis). Although some of these methodologies pro-

vide platforms for design space exploration and optimizations, they do not have an optimization

methodology – which generates and provides useful information to the designers for optimizing

their implementations. Hence design optimizations remain ad-hoc and rely on the instincts of the

designers. In this thesis, the methodology focuses on design optimizations – which generates and

provides useful information about an implementation for optimization purposes. And the design

optimization methodology proposed in this thesis can actually be integrated to these methodologies.

19



2.1.1 Polis / Metropolis

Polis / Metropolis [9, 39, 88, 153] are platform-based design methodologies that can be

used to design MPSoC. They aim to provide an uniform design and modeling platform for hetero-

geneous components across multiple levels of abstraction. In these methodologies, the designs are

specified in less-restricted forms, such as Codesign Finite State Machines (CFSM) for Polis and

Metropolis Meta Model (MMM) for Metropolis. They purposely separate the function modeling

and the implementation aspects of a design such that different levels of simulation can be done

with the same models. The main feature in these methodologies is that they allow properties and

constraints to be formally specified in the models and verified with simulation / formal verifica-

tion tools. Therefore, formal methods for verification and synthesis are integrated into the design

methodologies.

2.1.2 Simulink

Simulink [66, 124] is a high-level synthesis methodology that uses a process network

model of Matlab programs as the specification. The platform provide multiple levels of abstraction

to allow designers to explore the design space at different abstraction levels. There are mainly

four levels: a functional simulation level, an abstracted simulation level, a cycle-accurate level, and

an implementation level. An automatic mean is provided to allow a common specification to be

used in all four abstraction levels and generate scheduled C programs for implementations without

additional functional manual modeling.

2.1.3 Sesame / Spade / Archer

Sesame / Spade / Archer [92,123,171] are system-level modeling and simulation method-

ologies for performance evaluation and exploration. They focus on modeling application behaviors

and architectural constraints. The main feature of these methodologies is their hybrid simulation –

which allows a mix simulation of components at different levels of abstraction for architectural ex-

ploration and simulation model refinements. Therefore, behaviors and architectures can be modeled

separately. For design exploration, they transform particular simulation traces into a dataflow graph

and use the graph for efficient analysis. Such trace analysis, however, can only be done at a small

application and a short simulation.

20



2.1.4 Compaan-Laura

Compaan-Laura [67, 83, 147, 148, 157, 158] is a high-level synthesis methodology that

converts a sequential program written as a Matlab program into concurrent components. Compaan

itself compiles a sequential program in Matlab, especially one with nested loops and tight bounds,

into a distributed specification in Kahn Process Network. The Matlab specification is used because

it provides better dataflow programming than other programming languages and has no difficult-to-

analyze constructs such as pointers. With the KPN specification, Laura generates VHDL hardware

descriptions for the KPN processes and synthesizes them into FPGA using commercial synthesis

tools.

2.1.5 TTL

Task Transaction Level (TTL) Interfacing [131, 156, 159] is an interface-centric approach

for designing distributed embedded systems. It provides an unified interface (TTL interface) for

both hardware and software interfacing at three different levels of abstraction – functional, archi-

tectural, and implementation levels. Hence the behavioral synthesis can be divided into smaller

synthesis problems in the interface boundaries. It allows independent behavioral synthesis of the

TTL components (hardware or software) because the interfacing is the same before and after the

synthesis.

2.2 Compile-code Simulation

Compile-code simulation is a common technique to speed up simulation. Compile-code

simulation generally means to execute the behaviors of target components natively in the host de-

velopment machine, instead of simulating the detail hardware components that provide the same

behaviors in the target implementation. Although this term can be used for both hardware and soft-

ware components, this thesis focuses on software where compile-code simulation means to run the

programs natively in the host development machine instead of simulating the way the programs

execute on the target embedded processor architectures.

To allow performance estimation in compiled-code simulation, a lot of compile-code sim-

ulation techniques aim to add timing delays to otherwise behavioral simulation in order to consider
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the performance of the implementations. Performance estimation in compile-code simulation is pos-

sible because the timing delays are annotated into the behavioral description and are compiled along

with the behaviors for simulation, although no detail hardware architecture is simulated. These tim-

ing delays annotated are executed along with the programs in the host development machine for

performance estimation – such as adding all timing delay values to determine the overall execu-

tion time when all programs run on a single-processor system. Some of such estimation techniques

are discussed here. These techniques either restrict the program specifications and the compiler

optimizations that can apply to the programs, or focus on the retargetability and usability in the

corresponding design methodologies. On the other hand, the performance estimation technique

proposed in this thesis focuses on the accuracy of the software programs running on an MPSoC sys-

tem. It does not restrict the program specifications, and at the same time considers the parameters

that are important for performance, such as compiler optimizations and memory accesses.

2.2.1 S-Graph

Performance for software programs running on a target system has been estimated for

POLIS [39, 153] in the code generated from a language called Codesign Finite State Machines

(CFSM). The CFSM is compiled to a Software Graph (s-graph) to estimate timing information for

the C program that would be generated for the target system. In Polis, estimation is based solely on

higher-level information that is available on the CFSM. Such estimation does not provide the same

level of accuracy as the estimation based on instruction-level information – which is used in the

simulation framework proposed in this thesis. In addition, the specification in Polis is limited (not

generic C programs) and no compiler optimization effect is considered in the estimation.

2.2.2 Lee et. al.

Lee et. al. [90] estimates the performance of a software program written in C language on

a single-processor target system with a fixed architecture using compile-code simulation. Similar to

the simulation framework proposed in this thesis, GCC is used as the analysis and annotation tools

for the performance estimation. In Lee’s technique, the timing delays of the program is annotated

into the intermediate representation using GCC and compiled into a native executable for the host

development machine. The program is executed on the host development machine and the timing
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delays are tallied to estimate the total execution time of the program when running on the target

system. However, to generate a native executable for the host development machine, the machine

description of the host development machine has to be used, which makes it unable to accurately

consider compiler optimizations. In addition, this technique only works for a single software pro-

gram running on a single-processor system with a fixed architecture. The simulation framework

proposed in this thesis solves these issues by using a 2-pass approach – simulation models are gen-

erated by GCC targeting the target processors for the timing estimation, then they are compiled

again for simulation. The performance simulation is modeled in SystemC. The estimated result is

represented by SystemC time instead of a simple counter, which allows simulation of concurrent

components. It provides a higher description level for multiprocessor architecture modeling and

allows synchronization for multiple processors using SystemC simulation kernel.

Moreover, Lee’s estimation only considers instruction types and requires program-specific

coefficient to make the estimation accurate. Such accurate coefficient is very difficult to find and

no algorithm has been proposed to find this coefficient. In the proposed simulation framework,

estimation is based on low-level instruction information and makes use of the detail information

available in additional to the instruction types. Such technique allows more accurate timing delay

estimation without the need of a program-specific coefficient.

2.2.3 Embedded System Environment toolset

Embedded System Environment (ESE) toolset [73] provides automatic Transaction Level

Model (TLM) generation from a C program for software and from high-level design parameters for

hardware components. For retargetability, Low Level Virtual Machine (LLVM) compiler is used as

the frontend for the C program and a general processor unit model is used for performance esti-

mations on different target processors. These estimations will be used in the SystemC TLM model

generated from the LLVM for simulation. Since the target compilers are not used, no target com-

piler optimization is considered in the performance estimation under this technique. Also memory

accesses are not considered in the simulation.

23



2.2.4 Brandolese et. al.

Brandolese et. al. [21] proposed a source-level analysis technique for performance esti-

mation. The technique uses a statistical method where a set of mathematical equations are used as

the basis for the estimation. The equations make use the operations and types of the operands in the

high-level programming statements in the program. However, since the model is built at the source

level, no low-level detail from the target compilers is available in the mathematical model hence is

not considered in the estimation.

2.2.5 Posadas et. al.

Posadas et. al. [125] proposed a technique to directly estimate software performance

in SystemC without the need to generate instrumented simulation models. Software delays are

integrated into the software models by overloading all the datatypes used in the programs by custom

datatype classes in SystemC, hence all the operations in the programs would use the overloaded

operators of the custom datatype classes. The overloaded operator functions are annotated with

timing delay information to estimate the total execution time of the programs during the SystemC

simulation. However, this technique only consider operations at the source level. Such operations

can be changed dramatically when compiler optimizations are enabled. Hence such technique does

not consider any compiler optimizations that can be applied to the programs by the target compilers.

2.2.6 Lazarescu et. al.

To consider compiler optimizations, Lazarescu et. al. [11, 89] proposed a technique to

generate simulation models from the target binaries (executables). Performance annotations are

estimated by analyzing the assembly instructions in the target binaries. Since the target binaries

are produced from the target compilers after optimizations are applied, compiler optimizations are

considered in the estimation. The estimation is annotated to the equivalent C programs that are

generated from the target binaries. However, generating such C programs is not always possible.

The jump table of an indirect jump instruction must be recovered in order to generate a semantic

equivalence C program.
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2.2.7 Schnerr et. al.

Schnerr et. al. [142] also proposed a performance estimation technique based on the

target binaries. Instead of generating the semantically equivalent C programs for annotations, the

performance estimation is back-annotated into the original C programs. Therefore a one-to-one

matching must be found in order to back-annotate the estimation into the original C programs. Only

limited compiler optimizations can be used for compilation in this technique, otherwise it would not

be able to find a good one-to-one matching between the target binaries and the original C programs

for estimation insertions.

2.2.8 Zivojnovic and Meyr

Zivojnovic and Meyr [172] used compiled instruction set simulation, which is a simulation

technique between compile-code simulation and instruction set simulation. It is similar to compile-

code simulation where the target programs are compiled into native programs. However, instead

of simulating the program behaviors in the host development machine, only the information of

the target binary instructions are compiled into the native programs. When executed, the native

programs simulate the target processor architectures for behavior and performance information.

Therefore, similar to instruction set simulation, target binary instructions are simulated one-by-one

in the target processor architectures. Compiled instruction set simulation is faster comparing to

instruction set simulation but is still orders of magnitude slower than compile-code simulation.

2.2.9 Other Simulation Technique

Besides compile-code simulation, other techniques have been used to simulate MPSoC

systems and estimate the performance of an MPSoC implementation (or embedded software in

general).

Static Analysis

Static analysis [19, 97, 112, 132] allows performance to be computed without the use

of simulation. Their estimation techniques range from statistical models [132], non-linear equa-

tions [19], to classification and neural network [112]. However, multiprocessor system is in general

too complex to be analyzed using static analysis. Static performance estimation techniques are
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based on formal analysis of the program specifications. No simulation is performed and usually the

worst-case estimation time (WCET) [97, 127] is obtained. Static analysis is useful when software

programs have hard deadlines and the performance has to be guaranteed in the worst case. However,

most static analysis techniques restrict the specifications of the software programs being analyzed,

are unable to recognize the true execution path, and overestimate the execution time. For general

applications, there is no effective way to use abstract models or close-form formulas to accurately

estimate the performance of an implementation. Due to the inherent complexity, full system for-

mal analysis can only be done at the highest level of abstraction, which often does not contain any

performance information.

Instruction Set Simulation

In MPSoC system-level designs, Instruction-Set Simulators (ISS) are commonly used for

software simulation, such as in MPSim / MPARM [5, 15, 94], XTMP [47] and Synopsys CoCen-

tric Studio [86]. They provide cycle-accuracy by using cycle-accurate ISS and other cycle-accurate

models written for a system-level simulator, such as SystemC [109]. However, even in an ideal case,

ISS runs in the range of 100KHz [154]. Assuming the target processors are running at 300MHz,

for one second simulation of a 10-processor MPSoC implementation, it would take more than 8

hours of simulation. Although it is significantly faster than simulating the same implementation in

the lower RTL level, it does not provide simulation result and feedback fast enough to efficiently

explore the design space. With an 8-hour simulation, designers can only simulate one, or at most

two, design decisions in a day. Even if the designers have two months for system-level design explo-

ration, they can only explore around 100 implementations. This is considered a very small number

compared to the implementations that are possible in MPSoC. The slow simulation speed prevents

any reasonable design space exploration using performance information to explore different num-

ber of processors, software program partitioning, and multiprocessor architectures. ISS is useful for

design verification. However, ISS is very slow and is the bottleneck of MPSoC simulation. Only a

limited number of design explorations can be done at the ISS level.

Improved instruction set simulation techniques using interpretation [161] or compiled in-

struction [130] also provide instruction-by-instruction simulation of software. They intended to

increase the simulation performance of ISS. However, they can only provide 10X speedup com-
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paring to ISS, as these techniques require simulation of many architectural details and are still very

slow and inefficient for system-level design space exploration.

Behavioral Simulation

On the other hand, system-level designs with behavioral simulation do not help driv-

ing design space exploration. A number of behavioral-level simulation platforms are developed to

make simulation more efficient and allow functional verification at higher level. Metropolis [9],

Simulink [72], Sesame [123], TTL [159] MESH [118] and SystemC transition-level modeling

(TLM) [55, 64] all provide behavioral-level simulation for MPSoC. Simulation runs faster by run-

ning software natively on the host development machine. However, behavioral simulation only

simulates the functionality of the designs and does not provide any performance information. Be-

havioral simulation, though useful for functional analysis at system level, does not provide any

performance information that is crucial for design and analysis of MPSoC implementations. Al-

though delay information can be manually annotated [13,42,61,85,128,161], manual annotation is

not automatic, not accurate, and not reliable.

2.3 Simulation Acceleration Techniques

Several simulation techniques have been proposed to improve simulation speed of hard-

ware and software under different scenarios. Some of them deal with hardware-software cosimula-

tion where hardware components and software components are simulated in different environments

(simulators). Some of them try to improve simulation speed of the software components running

on instruction set simulators. And some of them allow simulation to run on a distributed comput-

ing setting, such as in a supercomputer. They are different from the simulation speed improve-

ment technique proposed in this thesis because this technique focuses on simulation in a unified

hardware-software simulation environment, such as SystemC, and reduces the simulation overhead

due to context switching in a single-processor simulation environment.

2.3.1 Hardware-Software Cosimulation

Yi et. al. [169] speeded up hardware-software cosimulation by setting arbitrary synchro-

nization points between the hardware simulator and software simulator. This technique tries to avoid

27



the idle time when one of the two simulator reaches a synchronization point, which is a time in the

simulation clock where an interaction between hardware components and software components may

occur, and waits for the other simulator to get to the same synchronization point. Such synchroniza-

tion points may happen very often when the hardware components and the software components can

interact anytime. Yi et. al. tried to avoid such idle time by setting arbitrary synchronization points

that are further apart and only allowing the simulators to communicate all pending interactions at

those points. Therefore, simulation speed enhances with loss in accuracy.

2.3.2 Trace-based Simulation

Kim et. al [84] and Gao et. al [53] proposed techniques to reuse previous simulation

results (traces) to speed up software simulation. Kim et. al first generated traces from an instruction

set simulation and then use the traces generated for subsequent simulation. Since the subsequent

simulation does not require simulation of target processor architectures in the instruction set sim-

ulators, simulation becomes faster. Gao et. al applied a similar technique in the same simulation

by searching the instruction set simulation history for trace results of the same instructions. These

techniques assume that the performance of the instructions remains the same regardless of changes

in the implementation, which is often not true for MPSoC system since programs in the processors

interacts. And although such techniques show speedup compared to instruction set simulators, they

are not as useful for compile-code simulation which is much faster than instruction set simulators.

2.3.3 Distributed Simulation

Distributed discrete event simulation is commonly used in large scale molecular and bioin-

formatic simulation in distributed supercomputers. Distributed discrete event simulation seeks to

provide more efficient simulation by relaxing the dependencies between the components. Those ap-

proaches either restrict the semantic of the system [28] or use speculation [74, 80, 120, 121, 167] to

simulate in a distributed system. Such simulation is more suitable for homogeneous systems where

each entity is identical and can be easily scaled to simulate in a distributed environment.
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2.4 MPSoC design Optimization Techniques

MPSoC design optimizations have been a common research topic for the last decade. Spe-

cific researches have been focused on memory subsystem optimizations – which include cache se-

lection [36], data allocation [37], interconnect synthesis [27,41,116,117,129,135,151] and network-

on-chip [37,108], synthesis – which includes hardware-software partitioning [30,34,43,81], compo-

nent selection [17,33,48,49,78,126,144,150,152], software partitioning [18,59,70,71,96,138,155],

program mappings [14, 31, 33, 37, 78, 126, 155] and scheduling [8, 30, 34, 43, 69, 96, 133], as well as

energy optimizations [31, 59, 75, 95, 98, 107, 108, 119, 134, 141, 165].

In these researches, design optimizations are either based on statistic models [33, 48, 49,

116, 117, 135], which are also profile-based but do not consider inter-dependencies between the

programs in the execution and variations of behaviors during the execution, or rely on the statically

analyzable properties of some restricted models of computation (such as task graphs [14, 18, 27,

30, 31, 34, 36, 37, 41, 43, 59, 70, 71, 78, 81, 95, 96, 126, 129, 134, 138, 141, 144, 152, 155], periodic

tasks [98, 107, 108, 165, 168] and synchronous dataflow graphs [8, 17, 33, 69, 133, 150, 151]), which

provide analyzable state spaces and simple high-level behaviors for the applications. Implemen-

tation decisions of such models can normally be transformed into mathematic problems. These

avoid the difficult simulation and analysis problems that exist in more general specifications, which

include KPN. However, designs of such restricted models are more difficult and restrict designers

from writing efficient programs.

2.4.1 Task Graphs

Task graphs [14,18,27,30,31,34,36,37,41,43,59,70,71,78,81,95,96,126,129,134,138,

141, 144, 152, 155] are by far the most common specification used in MPSoC design optimization

researches because they are easy to analyze statically. A task graph defines the procedures and

their dependencies in an application as a Directed Acyclic Graph (DAG). Each vertex in the graph

is a procedure function (task) with pre-determined execution time that can only be executed after

all its parents finish. Due to its acyclic nature, the graph is not designed to express continuous

execution. Each vertex only executes once. The state space of any given time can be represented by

the remaining execution time of each task, which provides a small state space that can be analyzed

exhaustively.
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2.4.2 Periodic Tasks

Periodic task representation [98,107,108,165,168] is a well-studied model of computation

in researches. In this model, a fixed set of known tasks are invoked periodically. No communication

and dependency between tasks are expected nor modeled. Each task is ready to be executed every

fixed period of time, takes a pre-determined length of execution time, and has to finish before its

deadline. Periodic tasks have been well-studied in both embedded software and distributed system

communities. However, it does not provide a mechanism to define dependencies between tasks,

which makes it less useful for MPSoC designs.

2.4.3 Synchronous Data-flow

A Synchronous Dataflow (SDF) graph [8, 17, 33, 69, 133, 150, 151] is a subset of KPN

where each process (actor) has a fixed firing rule. When an actor is fired, it always consumes a

fixed number of data in the input FIFO channels and produces a fixed number of data in the output

FIFO channels in a known execution time. Due to the fixed firing rules, a SDF application can be

statically analyzed in the process network level using matrices without any information inside the

processes. However, the restrictions of having fixed firing rules prevent control-oriented and data-

dependent applications to be efficiently designed and restrict designers from write regular software.

SDF has been extensively studied by the research community because of its restricted semantics

and analyzable behaviors. The state space of a SDF graph at any given time can be represented by

the number of data in the FIFO channels and the remaining execution time for processes (actors) if

they are executing.

2.4.4 More General Specification

A number of more general specifications that impose less specification restrictions have

also been used in MPSoC researches. It includes but not limited to Symmetric Multi-Processing

(SMP) [143], OpenMP [77, 139], Message-Passing Interface (MPI) [136, 137] and Kahn Process

Network (KPN) [45,101,160]. These models of computation have been used to demonstrate design

methodologies and illustrate MPSoC capabilities. However, due to the unrestricted semantics in the

programs, applications written in these specifications are not statistically analyzable and currently

no optimization techniques have been proposed to optimize these applications except those using
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statistical methods, which only provide a rough summary of the implementation without sophisti-

cated analysis of the implementation and do not provide insight on the important parts for design

optimizations.

2.4.5 MPSoC-Specific Profiling

Traditional software profiling information on individual processors has been extensively

used in optimizing software. During simulation, execution frequencies of statements are recorded [10,

32], and the most frequently executed statements (hotspots) in the programs are determined for op-

timizations. However, such profiling information is only applicable for single-processor designs

where all statements run sequentially. Traditional software profiling does not provide accurate

hotspot information for MPSoC.

Traces are normally used in post-simulation analysis for MPSoC designs [99]. Visual-

ization and debugging tools such as Vampir [24] and Paje [44] provide interfaces to visualize the

executions of the programs in MPSoC simulation. These tools focus on efficient generation, syn-

chronization and interpretation of multiple traces from multiple processors. They do not create

hotspot information for the programs and no automatic analysis has been proposed for software

optimizations.

Longest path finding in parallel computation is common for hardware designs. Critical

paths at logic [3] and gate level [38] have been extensively used to estimate the shortest clock cycle

possible in a synchronous digital circuit. Throughput analysis has been applied to Synchronous

Data-Flow graphs [8] without the need of simulation. These works rely on well-define semantics

of the parallel executing elements that do not exist in many richer models of computation such as

Kahn Process Network. This thesis considers MPSoC designs which consist of multiple programs

that are large and require long simulation to activate meaningful execution paths.
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Chapter 3

Kahn Process Network

Kahn Process Network (KPN) [79] is a popular computation model to specify functional

behaviors related to dataflow and streaming. This class of applications includes streaming-based

multimedia and signal-processing applications, such as MPEG encoders and decoders. In a process

network, computation and communication are explicitly specified and task-level parallelism in the

application is explicitly defined. Implementation details are abstracted away from the functional

specification, which provides flexibilities for implementation choices such as different hardware

and software options in MPSoC.

KPN specification provides designers a powerful modeling language to model designs

with explicit parallelism and complex controls. The freedom to write arbitrary programs in high-

level programming languages for the processes with complex control-flows allows designers to

write efficient designs. As multimedia and gaming processing are becoming more complex and

control-oriented, it is necessary to provide designers with a simple programming model that does

not impose unnecessary restrictions. KPN is well suited for that need.

KPN has been used to efficiently develop distributed applications. de Kock [45] used

KPN to develop real-world multimedia applications and implemented them in MPSoC. YAPI [46] is

a C++ API that implements KPN in a single processor. Compaan project [83] attempts to transform

sequential programs, especially those with nested loops and tight bounds, into KPN. Laura [148]

and Espam [106] automate the generation of HDL implementations from the higher level system

specifications in KPN and use commercial tools to synthesize them into implementations. Saseme /

Spade [92] also proposes the use of KPN for application specifications in MPSoC systems. These
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researches focus on KPN specifications, design methodologies from behavioral level to implemen-

tation level, and code generations for custom hardware implementations. They do not have an

automated approach nor provide a methodology to simulate and optimize MPSoC implementations.

In this thesis, KPN is used as the specification model. The KPN specification of an ap-

plication is either designed manually by the designers or generated automatically from a sequential

program using tools such as Compaan [83]. The design optimization methodology proposed in

this thesis takes the KPN specification as an input and optimizes the MPSoC implementation for

performance and cost.

3.1 Specification

Figure 3.1: High-level diagram of a Kahn Process Network application. Each vertex is a sequential
program and each directed edge is a FIFO channel.

A design written in KPN consists of processes and FIFO channels, as shown in Figure 3.1.

They basically form a directed graph where the vertices are the processes and edges are FIFO

channels. Processes are regular sequential programs that can have arbitrary data and control flows.

They communicate with each other by reading and writing from the FIFO channels. For each FIFO
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channel, there is only one reading process and one writing process. A FIFO channel can only be

read when there is data inside.

A KPN application can be either a close or an open system. A close system means the

KPN does not have any external FIFO channels where one side of a FIFO channel is not in the

system. On the other hand, an open system has at least one such FIFO channels to be used as a data

source or to generate data output. Here I focus on open systems where the input FIFO channels

take the input streams, such as MPEG-2 video streams, and the systems generate data output to the

output FIFO channels, such as the decoded raw video frames.

3.1.1 Deterministicism

The key benefit of using KPN is that an application specified in KPN is functionally

deterministic [79, 82]. The functional behaviors of the application do not depend on the execution

order of the processes (timing when the processes execute and the FIFO channels are accessed).

The behaviors only depend on the specification of the application and the input streams (for open

systems).

This is very beneficial for design space exploration in MPSoC because there is no possibil-

ity of race conditions. Race conditions are the major issues in MPSoC because multiple interacting

programs run concurrently and asynchronously on a set of processors. If the behaviors of the ap-

plication change with slightly difference in timing, there is a race condition which makes design of

MPSoC very difficult as minor changes in the implementation may render the behaviors different

or incorrect. In KPN, functionally correct execution order is guaranteed as long as the processes

and FIFO channels are implemented correctly. This property provides huge implementation free-

dom that can be explored for better MPSoC implementations without worrying about the functional

correctness.

3.1.2 Modularization

Another benefit of using KPN is that KPN promotes modularization and code reuse of

the software. Since computation and communication of an application is completely separated

into processes and FIFO channels, the behavior of one process does not affect the behaviors of

other processes. Therefore, an application can be separated into well-defined processes and then
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implemented and tested independently. Such modularization also promotes code reuse. A common

well-defined process can be reused in multiple applications that have some common functionalities,

such as the IDCT function used in both JPEG and MPEG designs.

Such modularization can be hierarchical. An open KPN system, which takes inputs and

generates outputs outside the system, can be used as a building block for a more complex applica-

tion. An example is a Picture-in-Picture (PIP) application that uses two MPEG decoders to decode

two video streams and combine the raw video frames together to form one PIP video frame stream.

Such hierarchical design can later be flatten to create one single Kahn Process Network.

3.2 Scheduling

The specification of KPN does not specify any particular way to schedule the processes

to be executed. The specification only restricts that a FIFO channel can only be read when there

is data in the channel (and data can always be written to the FIFO channels). KPN guarantees that

any orders of executing processes would result in the same outputs. This allows highly flexible

scheduling mechanism without affecting the functional behaviors of the application. However, the

scheduling mechanism does affect the implementation, performance and memory usage.

When implementing a KPN application in SoC with limited memory, the biggest chal-

lenge is to bound the runtime memory usage. The scheduling policy cannot allow a process to

repeatedly write to a FIFO channel without allowing the other process to read from the FIFO chan-

nel. In such case, the design will eventually run out of memory. To resolve this problem, Parks [115]

specified a scheduling policy where the memory usage is limited. Specifically, a bound is set for

each FIFO channel and a process can write to a FIFO channel only if the bound is not reached.

With the FIFO sizes bounded, deadlocks may occur. Parks [115] proposed an algorithm to expand

the FIFO sizes uniformly when there are deadlocks. Geilen [54] extended the algorithm to expand

the FIFO sizes only for those FIFO channels that are involved in the deadlocks and resolve them

whenever they occur. These algorithms can be used at design time with profiling information or at

runtime during execution. Such deadlock-free FIFO sizes are properties of the specification and the

input streams (for open systems), and do not depend on the implementation. Hence for simplicity, I

assume the FIFO sizes are known, and the implementation is deadlock-free when such FIFO sizes

are used.
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The scheduling of KPN enforces that the memory usage is limited by restricting the pro-

cesses from reading and writing to the FIFO channels. At any given time, a process is either said

to be ready or blocked. A process is ready when continue executing it does not violate the KPN

specification restrictions and FIFO size bounds. Otherwise, the process is blocked. In other words,

a process is blocked under one of the following two conditions:

3.2.1 Blocking Read

A process is forced to suspend (blocked) when it is going to read from an empty FIFO

channel. The KPN specification defines that a FIFO channel can only be read if there is data.

Therefore, a process trying to read from an empty FIFO channel has to wait until another process

writes to the FIFO channel. This is done by blocking the reading process and unblocking it later

when there is data available.

3.2.2 Blocking Write

A process is also forced to suspend (blocked) when it is going to write to a full FIFO

channel. A full FIFO channel is defined as a FIFO channel where the number of available data has

reached the set bound. Therefore, a process trying to write to a full FIFO channel has to wait until

another process reads from the FIFO channel. This is done by blocking the writing process and

unblocking it later when there is space available. No overflowing is allowed in the FIFO channels.

3.3 MPSoC Implementation

KPN is a distributed model of computation that can be easily implemented in MPSoC.

Each process in a KPN application is a sequential program (in C/C++) that can be compiled and

run on the embedded processors without significant modifications. With a proper interconnect net-

work and implementations for FIFO channels, a KPN application can be easily mapped and run on

MPSoC (Figure 3.2).

Processes can only communicate using FIFO channels and all process synchronization is

embedded inside the data transferred by the FIFO channels. This allows KPN applications to be im-

plemented in MPSoC without expensive synchronization constructs necessary in other computation
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Figure 3.2: An MPSoC implementation of a KPN application. Processes are mapped to the pro-
cessors and FIFO channels are mapped to memories. FIFO channels are implemented as software
FIFO.

models such as in Symmetric Multi-Processing (SMP). Particularly, no cache coherency and atomic

accesses are necessary because processes do not have to share memory spaces.

3.3.1 Process

KPN processes are sequential programs extended with the ability to communicate with

other processes using FIFO channels. For a KPN application written in a C++ API, such as

YAPI [46], the processes are written in C/C++ that can be compiled with C/C++ compilers of

the target embedded processors. To allow proper compilation, implementations of FIFO reads and

writes have to be annotated onto the processes. An invocation of a FIFO read or write checks the

FIFO channel to determine if there is any data or spaces. It blocks the process if no data (for read)

or no space (for write) is available. Otherwise, it reads or writes from the FIFO channel.
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Multiple processes can run on the same processor. In such case, in additional to the

KPN scheduling policy described in Section 3.2, a multi-program scheduling policy has to be used.

The multi-program scheduling policy determines which of the ready processes is executed in the

processor at any given time when more than one processes are ready.

In the implementation, a Real-Time Operating System (RTOS) with priority, round robin

or time-slicing scheduling is used. The RTOS keeps the state of each process during execution. A

process can be either ready or blocked. If the process is ready, it can be scheduled to execute by the

RTOS. If the process is blocked, the RTOS checks whether it is ready periodically and changes its

state back to ready. When a process executes and is blocked, it notifies the RTOS and preempts.

Each processor belongs to a processor subsystem. Each processor subsystem has a pro-

cessor, a local bus, an instruction memory, a data memory, and an interface to access other processor

subsystems through the interconnect network. Such architecture is commonly used in commercial

products shown in Section 1.1 and allows maximum bandwidths within a subsystem and in between

subsystems. Local memory accesses are fast and do not get slow down by other subsystems because

of congestions in the interconnect network. All instructions and data that belong to the processor

are stored in the local memories for efficient accesses.

In the implementation, processors can have different sets of instructions and run in differ-

ent voltages and frequencies. With different available instructions and voltage assignments, perfor-

mance and power consumption of the implementation change dramatically. The desired implemen-

tation should satisfy the performance constraints while minimizing the total power and area usages.

Local memories for a processor run at the same voltage and frequency as the processor.

3.3.2 FIFO channel

FIFO reads and writes are the only communication primitives in KPN. There are several

different implementations of FIFO channels. A FIFO channel can be implemented as a hardware

FIFO, which is generally faster because of the dedicated FIFO control and memory but requires

more area and power; a FIFO channel can also be implemented as a software FIFO, which is cheaper

but slower because of the software FIFO control and shared memory accesses. In my implementa-

tion, software FIFO is used because it is cheaper and more scalable.

When implementing a FIFO channel, one important consideration is the size of the chan-

nel. The most important requirement is to execute the KPN application correctly without deadlocks.
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To avoid deadlocks, I use a FIFO sizing technique based on Geilen [54], which increases the FIFO

sizes that are responsible for the cyclic dependencies of the deadlocks. The minimum FIFO sizes to

run an application correctly are the property of the KPN specification and are independent from the

implementation. The same minimum buffer sizes can be used for different implementations.

Task Transaction Level (TTL) [159] message-passing interface is used to implement FIFO

channels in the memories. In TTL, only one program writes to a memory address and only one

program reads from the memory address. Therefore in the implementation, the memory space is

allocated in the local memory of the reader. Memory latencies of the communication between

processors are hidden if the reader is not waiting for the writer because write operations are posted

in the processors. Writing to a remote memory is done via a cross-bar on-chip interconnect network.

A mix-clock FIFO [35] is used to transfer data across buses of different clock frequencies.

3.4 MPEG-2 Decoder in KPN

An industrial-strength MPEG-2 Decoder design [46] is used as the design example in

this thesis. The MPEG-2 Decoder is manually designed such that high-level parallelism of the

application is explicitly defined. The decoder is developed in YAPI [46], a KPN C++ API, with

complex data-dependent controls and operations. The modeling of the application is independent of

the implementation and does not consider any implementation details in MPSoC. The specification

of the MPEG-2 Decoder design consists of 9 processes and 63 FIFO channels. The process network

is shown in Figure 3.3. In the specification, MPEG-2 stream decoding stages are clearly defined

in the processes. The controller process (Thdr) controls the dataflow of video streams through

decoding stages. The streams is first parsed with variable length decoding (Tvld) into frames and

macroblocks. Each of them is decoded through inverse scan, inverse quantization (Tisiq) and inverse

discrete cosine transform (Tidct). Prediction processes (TdecMV and Tpredict) predict the frames

and motion compensation. Output processes (Tadd, TwriteMB, Toutput) combine the streams and

produce output raw video frames. FIFO channels between the processes are used for both controls

and data transfers. The MPEG-2 Decoder is a fully functional design where a raw video frame

stream is produced as an output in simulation or execution.

The decoder is implemented in the MPSoC architecture as shown in Figure 3.4. Tensil-

ica’s Xtensa LX2 processors [154] that can be configured using Xtensa Processor Generator (XPG)
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Figure 3.3: MPEG-2 Decoder application in KPN. The decoder is separated into 9 processes and 63
FIFO channels.
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Figure 3.4: MPSoC implementation of the MPEG-2 Decoder application. The 9 processes are
mapped into processors and 63 FIFO channels are mapped into memories.

and extended using Tensilica Instruction Extension (TIE) are used. Multiple processes can map into

the same processors. Each processor has its own combination of instruction memories, data memo-

ries and caches. FIFO channels are mapped to on-chip memories that are shared. These processors

are connected with an interconnect network of buses, such as a crossbar on-chip network, such that

multiple processors can communicate by accessing the shared memories.

For experiments, video streams in MPEG Elementary Streams [104] with two standard

resolutions (352x240 in 29.97 f ps and 704x480 in 14.97 f ps) are used. The video streams are chosen

to characterize the average-case behavior [93]. The minimum total FIFO sizes to decode the videos

are 139,596 bytes (for 352x240) and 555,396 bytes (for 704x480). Such FIFO sizes are determined

from manual analysis of the application and the FIFO sizing technique based on Geilen [54].
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Chapter 4

Design Optimization Methodology

A profile-driven optimization methodology is used to analyze Kahn Process Network ap-

plications and gather runtime information of the implementations. Unlike other process network

specifications such as Task Graphs and Synchronous Dataflow graphs (SDF), a process in KPN can

be any arbitrary sequential program, which allows designers to use high-level programming lan-

guages such as C language without restrictions. The expressive power of KPN enables applications

to be written easily and efficiently. However, KPN places no restriction on the data and control op-

erations in the programs. Analyzing the state space of an individual program is as hard as analyzing

any sequential programs and analyzing multiple interacting programs on a multiprocessor system

is even harder. Determining static information, such as the processing times of the processes, the

number of data that the processes generate to the FIFO channels, and the number of data that the

processes consume from the FIFO channels, are all NP-complete problem. Hence, any static or

compile-time analysis cannot be done except in very small designs. Furthermore, Worst Case Exe-

cution Time (WCET) analysis [97, 127] often overestimates the computational requirements and is

unable to identify the true path of execution.

This is the same problem software optimization communities face everything. And they

have been using profile-based optimizations for a long time to analyze and optimize the software

designs. Profiling information is very useful because it provides accurate runtime information of

the applications and can be used in any KPN applications. Such profile-driven methodology has

been commonly accepted and used for software optimizations in single-processor systems and it

42



is reasonable to extend the use of the profile-based optimization methodology to multiprocessor

designs because they are even more difficult to analyze statically.

Figure 4.1: Design flow to implement a KPN application in MPSoC. Because the behaviors of KPN
do not depend on implementations, functional simulation and verification can be done in priori.
Implementation optimization decisions can be made by only considering the performance and cost
(power and area) of the implementations.

The design flow is shown in Figure 4.1. After an application specification is written

and functionally verified, the designers pick their implementation decisions and build a simulation

model to evaluate their implementation. When the design constraints are not met and the imple-

mentation needs to be optimized, the designers would improve their decisions based on the previous

simulation results and re-evaluate their implementation. These steps repeat until the performance

and the cost (power and area) are satisfactory.

One drawback of such design flow is that the behaviors of the designs can be input-

dependent (for open systems). Input data streams are needed to exercise data-dependent controls

and operations in the designs, which can change both the functionalities and timing characteristics.

Although worst-case scenario inputs are needed for hard-deadline applications, for multimedia and

gaming computing (which are the main applications for MPSoC), not only the worst case happens

very rarely and is not meaningful, but also the worst case inputs depend on the implementations. The

average-case behavior [93] is actually more important in these applications and has been shown to
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work very well in the software optimization communities. As a result, designers would choose sev-

eral input streams that are interesting, and set the performance constraints that are possibly the actual

constraints plus margins for errors and input differences. The methodology determines whether an

implementation is good based on these input streams and the constraints.

Figure 4.2: MPSoC design optimization methodology. The methodology is mainly composed of
two parts: MPSoC simulation and MPSoC-specific profiling analysis.

The proposed MPSoC design optimization methodology is shown in Figure 4.2. To allow

efficient software programming, the application is modeled in KPN, which is composed of a process

network that describes the connectivity and sequential programs that describe process behaviors. An

initial implementation is designed and simulated. During the simulation, an MPSoC-specific profiler

analyzes the software programs that are simulating and generates useful profiling information for
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subsequent design optimizations. If the simulation results are not satisfactory or the results show

some violations in the design constraints, designers can apply design optimizations, either manually

or automatically, based on the MPSoC-specific profiling information. These optimization steps

repeat until the implementation is satisfactory across all interested inputs.

There are two major components in this methodology: the simulator and the MPSoC-

specific profiling analysis.

1. MPSoC simulation: The KPN processes run in the processors are regular sequential programs.

Unlike Periodic Tasks, SDF and Task Graphs, where the processes (tasks and actors) have

fixed execution time and dependencies that can be analyzed at higher level, KPN processes

have to be simulated with the input streams in order to determine their behavior and timing

characteristics. Because simulation is part of the design optimizations, the simulation must

be fast enough to allow more optimization iterations. At the same time, the simulation must

be accurate such that design optimizations that only have minor improvements can be applied

and shown in the simulation results.

2. MPSoC-specific profiling analysis: Multiprocessor systems are very different from single-

processor systems. In single-processor systems, instructions are executed as a single stream

of instructions. Reducing the execution time on any of the instructions reduces the overall

execution time. However, MPSoC is different that there are multiple processors executing

programs in parallel. Reducing the execution time on some instructions in a program does

not necessarily reduce the overall execution time. In order to find the important parts of the

programs for design optimizations, an MPSoC-specific profiling analysis has to be used.

4.1 Efficient MPSoC Simulation

Chapter 5 presents a simulation framework that allows MPSoC implementations to be

simulated and evaluated very efficiently at system level. The advantage of system-level designs is

the ability to explore different high-level process and architectural decisions. Therefore, the ability

to give fast feedbacks to the designers is very important at this level.

The framework uses compile-code simulation approach [9,11,21,22,39,90,92,123,125],

which generates timed simulation models for software programs. In my simulation framework,
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the simulation models generated are capable to be used in MPSoC simulation with SystemC [109].

Specific techniques are proposed to ensure that the approach provides superior accuracy due to the

fact that the estimation comes from the instrumented compilation procedures that generate the target

software binaries. The simulation framework also considers compiler optimizations and simulates

memory accesses. Complex run-time decisions are simulated to provide traceable analysis on the

estimation. A simulation acceleration technique is also implemented to speed up simulation.

With the compile-code simulation framework that can simulate more than 1000X faster

than Instruction Set Simulators (ISS) and is able to accurately estimate the performance with less

than 5% error, we provide the designers with the freedom to explore the design space and constant

feedbacks for their design decisions. Designers can test their decisions in finer steps and analyze

their design decisions with the accurate estimation. With simulation speed exceeding 1000X of

ISS, designers can test hundreds of configurations in one day, either manually or automatically.

This opens up design space exploration opportunities that were not possible before.

4.2 Criticality-based KPN Optimization

Chapter 6 defines the MP-Critical Path, which is the execution path that determines the

performance of an MPSoC implementation. The MP-critical path considers MPSoC-specific char-

acteristics, where multiple processors run concurrently and programs interact. Therefore, to capture

useful execution information to assist design optimizations in MPSoC implementations, the MPSoC

simulation must be analyzed differently and intelligentially to determine the design decisions that

are important.

With such profiling information, optimizations specifically for MPSoC can be applied ef-

ficiently. The profiling information based on the MP-critical path specifies instructions that are ac-

tually important in the MPSoC and provides essential information to the design optimizations. The

optimizations can come at several different levels. As shown later in Chapter 6, optimizations can

be done at instruction level, segment level and program level, where each of these optimization tech-

niques interpret the MPSoC-specific profiling information differently. These design optimizations

allow implementation tradeoffs between performance, area and power consumption that designers

can explore to achieve satisfactory cost-efficient implementations.
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Chapter 5

Efficient MPSoC Simulation

As the design complexity grows with MPSoC, it is important to reduce the time spent

on every stage of the design cycles. Choosing the optimum design decisions is critical to achieve

a satisfying cost-efficient implementation. With more design points to be explored, the designers

have a lot of freedom to investigate in different design directions for a better quality implementation.

Normally, the designers will first choose a specific implementation in mind. Then the implemen-

tation will be evaluated in term of the behavior, timing, area, power, and whether it violates any

constraints. Based on the characteristics that are observed in the evaluation, the designers modify

the implementation, either manually or automatically, to remove the undesirable characteristics or

to reduce the cost. To fine tune some of the design decisions, the designers need a fast and accu-

rate simulation framework to experiment different combinations of decisions. Note that this chapter

focuses on the software programs because software is the most complicated part of MPSoC for

estimation and simulation, and it is often the bottleneck on MPSoC simulation.

To allow designers to experiment implementations early in the design cycles and explore

different implementations in a short amount of time, designs of complex systems are leaning for-

ward system level. System-level design exploration platform is sometimes referred to as a virtual

prototyping platform. It allows long simulation to be performed efficiently and provides very quick

feedbacks to the designers. In addition, it provides very high visibility on the whole system. De-

signers can easily observe the execution of every detail of every component in the implementation

and figure out the next design changes based on the observations.
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The quality of a system-level design exploration result is directly related to the efficiency

and accuracy of the simulation. Obtaining performance information about an implementation must

be fast in order to meet the tight time-to-market constraints. The number of implementations that

the designers can explore is limited by the number of simulation that can be performed within the

amount of time allocated for system-level exploration, and a very efficient simulation is necessary.

At the same time, accurate simulation is also necessary to confidently explore different implementa-

tions and design parameters in order to achieve a cost-efficient MPSoC implementation. With such

system-level simulation framework, impacts from design parameter changes can be observed fast

and accurately. The simulation framework provides designers an efficient design space exploration

environment to optimize MPSoC implementations for performance, power and area.

5.1 Compile-code Simulation

To allow MPSoC to be simulated efficiently, one common technique is to use compile-

code simulation. Compile-code simulation focuses on accelerating software simulation. To allow

performance estimation, programs are analyzed and annotated with estimated timing delays. To

achieve simulation efficiency, compile-code simulation avoids interpretation of target programs by

converting them into native executables [9, 11, 21, 22, 39, 90, 92, 123, 125] or compiled instruc-

tions [130] using a compiler. The annotated timing delays are then executed natively on the host

development machine for performance estimation.

As shown in Figure 5.1, the software simulation models provide performance estimation

with timing delays and efficient simulation by running them on the host development machine na-

tively. The left side of the figure shows a typical simulation path using Instruction Set Simulators

(ISS) while the right side shows a straight-line where the programs are compiled natively for behav-

ioral (functional) simulation. The middle one uses the compile-code simulation. The ISS approach

provides cycle-accurate simulation of the software programs by compiling the programs into tar-

get binaries and simulating the timed processor hardware architecture that runs the target binaries

for performance estimation. Compile-code simulation does not require running the programs on

ISS. Instead, the programs are estimated and instrumented with execution times (timing delays),

which creates simulation models for timed simulation. Since the simulation models are instru-

mented with estimated execution times, executing the models simulates the software programs with
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Figure 5.1: Compile-code simulation flow (middle) verse instruction set simulation (left) and be-
havioral simulation (right).

timing without the need of ISS. At the same time, the models execute directly on the host devel-

opment machine similar to behavioral simulation. Therefore the simulation is efficient. However,

current compile-code simulation techniques [21, 39, 73, 90, 125, 153] do not estimate performance

accurately. Particularly, they do not consider compiler optimizations and memory accesses, which

are very important on performance.

5.1.1 Software Simulation Model

To allow MPSoC simulation, the software simulation model is a software Transaction-

Level Model with Time (TLM/T) model [161] in SystemC [109]. The software TLM/T model is

basically a behavioral-level description of the program annotated with estimated execution times.

The model implements SC MODULE in SystemC and has one SC THREAD to execute the main

program. Estimated timing delays to execute the program in the target processor are annotated

onto the software TLM/T model using consume(). consume() adds timing delays to the model and

synchronizes it with other concurrent simulating models in SystemC simulation. An example of a

software TLM/T model is shown in Figure 5.2. In the example, main() executes once starting at

the beginning of the simulation. The program calculates a set of numbers and explicitly writes to a

memory address with a Transaction-Level Model (TLM) interface. The behavior of the simulation
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Figure 5.2: Software TLM/T model for MPSoC simulation.

model is the same as the software program and executes directly on the host development machine.

The model is a SystemC component which can work with any SystemC models representing other

MPSoC components in simulation.

Although compile-code simulation has been used for more than a decade for efficient

simulation, it does not estimate software performance accurately, particular when compiler opti-

mizations and memory accesses are involved. Other compile-code simulation platforms focus on

simulation flexibility and use compilers only as a mean to achieve simulation efficiency [9, 11, 21,

22, 39, 90, 92, 123, 125]. In the following sections, techniques allowing accurate estimation, consid-

ering compiler optimizations and enabling memory access simulation are introduced to make the

efficient compile-code simulation accurate such that it can be used for design space exploration in

the methodology.
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Figure 5.3: Automatic software TLM/T model generation using SystemC simulation model
generator.

In the first stage of the methodology, an individual software program written in C is pro-

cessed through a SystemC simulation model generator (a modified compiler, as shown later in this

chapter) and automatically instrumented with timing delays (estimated execution time) when run-

ning on the target processor, as shown in Figure 5.3. The simulation model generated is a SystemC

model of the software program. The simulation model generated behaves exactly the same as the

original software program except with timing delays instrumented (although the program looks

completely different, which will be explained later). The simulation model can work with an oper-

ating system model to accurately simulate the software program running on the target processor.

5.1.2 SystemC-based MPSoC Simulation

In the second stage of the methodology, the target multiprocessor architecture and inter-

connect network are built and specified using SystemC. SystemC is used because it is the de facto

standard for system-level designs and design space explorations. The techniques are also appli-

cable to other system-level modeling and simulation environments such as Metropolis [9]. In a

51



multiprocessor system, the architecture and the interconnect network are as important as the soft-

ware programs running on the processors. SystemC 2.0 provides a core language that introduces a

set of constructs for generalized modeling of communication and synchronization at system level.

These constructs include channels, ports, interfaces, exports, and events. They provide supports

for system-level modeling of primitives such as queues, semaphores, memories, and buses. In the

simulation framework, SystemC is used to specify the multiprocessor system architecture. The

software simulation models generated are simulated with other SystemC intellectual property (IP)

models (such as operating systems (O/S), interconnect network, caches and memories) for a com-

plete multiprocessor system-level performance simulation. The simulation models are simulated as

concurrent software programs running on multiple processors in the specified MPSoC architecture.

Performance of the implementation can be estimated accurately in the SystemC simulation.

Figure 5.4: MPSoC Simulation Framework Overview.
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Figure 5.4 shows the simulation framework used to explore the design space in MPSoC.

The designers provide a description of the target implementation, which includes software pro-

grams, components, and the architecture of the MPSoC implementation. Based on the description,

software simulation models are generated for the software programs and component simulation

models are selected from a pre-defined simulation model library. All simulation models are written

in SystemC. The architecture description is validated for semantic errors and connectivity problems,

and is used to generate an architectural specification in SystemC. Using the simulation models and

the architectural specification, a regular SystemC compilation is used to compile them into an MP-

SoC simulation. The OSCI SystemC simulator [109], implemented as a discrete event simulator, is

used to simulate the implementation. From the simulation, the designers can determine whether the

implementation behaves correctly and satisfies all constraints. The designers modify the implemen-

tation if it behaves incorrectly or fails some constraints. It also determines the performance of the

implementation so that the designers can improve the performance or reduce the cost in power and

area.

Modeling or obtaining operating system, interconnect network and memory models is a

separate research topic and is not discussed in this thesis. The designers are assumed to have a

library of SystemC models for these components with sufficient accuracy and speed required for

simulation.

In the experiments, pre-characterized timed TLM simulation models are used. Operating

systems, interconnect networks, caches and memories have well-defined characteristics and the

services they provide are very deterministic, so the estimated timing delay for each service can be

determined in prior and annotated into the simulation models. These models create the pre-defined

simulation model library for components used in the simulation framework.

The operating system (O/S) models that provide services such as scheduling, pre-emption,

suspension and interruption are proposed in several literatures [68, 103, 105, 140]. The O/S models

are generic such that they do not imply any specific implementations of the O/S. The models take

into consideration some of the most influencing parameters in the O/S, such as the scheduling policy,

context switching time and scheduling latency. And the O/S models are able to provide common

operating system services such as events, mutexes and mailboxes. The O/S models are built based

on the system-level modeling constructs in SystemC 2.0. The software simulation models generated

complement the O/S models by providing accurate estimation of software programs.
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Caches and memories are also modeled in timed TLM to provide fast efficient simulation.

The cache models are highly configurable. They can be configured with any combination of valid

cache size, associativity, block size and replacement policy. Cache coherency can also be enabled

to match the target memory subsystem implementation. CACTI library [145] is integrated into the

cache and memory models to accurately estimate the access time and the energy consumption of

caches and memories with different configurations.

Figure 5.5: C++ class diagrams for simulating software programs and operating systems in
SystemC.

Figure 5.5 shows a set of SystemC modules (C++ classes) used for program-O/S mod-

eling. Software simulation models that are generated from the simulation model generator inherit

from the virtual sc process base class. The base class provides a SystemC port to connect the soft-

ware simulation models to the operating system interface sc os i f and access the functionalities

provided by the operating system. The base class provides function calls such as consume() and

suspend(), which are used by the operating system to serialize programs in a processor. consume()

is called by the software simulation models to consume time from the processor and may switch

to another program if a preemptive scheduling policy is used. suspend() is called in voluntary

preemptive scheduling to tell the operating system to switch to another program.

Simulation of operating system relies on the functions consume() and suspend() in the

sc os i f interface, which are called by the simulation models to voluntarily consume time in the

processor and preempt to other programs. The behaviors of an operating system are determined

by the implementation of the sc os base base class. The scheduling() method in the operating

system model determines the scheduling policy used in the processor. It also determines whether
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preemptive or voluntary preemptive scheduling policy is used. Context switching time and schedul-

ing latency are also annotated into the operating system model to accurately simulate the operating

system timings and behaviors.

Figure 5.6: Architecture modeling of an MPSoC simulation in SystemC.

Figure 5.6 shows how the simulation models are connected together in an MPSoC sim-

ulation. Each of the software simulation models (processA to processE) is generated using the

simulation model generator and implements the virtual sc process base class. Software simulation

models that link to a single operating system model, which implements the virtual sc os base base

class, are a set of software programs running on the same processor. Memories and other periph-

erals are also presented to model the multiprocessor system architecture. Multiple processors are

simulated using SystemC simulation kernel.
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5.2 Consider Instruction-Level Information

In the simulation framework, instruction-level information is used to provide accurate es-

timation for the software simulation models. With the detail information available at the instruction

level, estimation can be applied both efficiently and accurately. The software performance estima-

tion accurately reflect the performance of the software programs similar to using ISS. At the same

time, the models simulate at the speed similar to the behavioral models.

The instruction-level representation of a program in a compiler is very detail such that it

accurately reflects the software binary that would be generated for the target processor. Hence ac-

curate timing estimation that reflect the executing time on the target processor can be instrumented.

instruction branch interlock
g3fax 65.20% 10.40% 24.40%

matmul 74.90% 4.70% 20.40%

Table 5.1: Execution time breakdowns of two benchmark programs running on a Tensilica’s Xtensa
processor with base configuration. Only major timing delay components are shown. Other compo-
nents account for total less than 1% of execution times in both benchmark programs.

To accurately estimate the performance of software programs, an estimation must consider

the instruction-level details of the programs in the implementation. Table 5.1 shows the percentages

of execution times of two benchmark programs that are attributed to instructions, branches and

interlocks. Branch penalties and pipeline interlocks clearly are significant portions of the execution

times. An accurate performance estimation must take into consideration the branch characteristics

(including branch predictions and delay slots) as well as pipeline interlock hazards. The analysis

shows that the software simulation models that consider instruction selections, branch penalties and

pipeline interlocks would provide superior performance estimations of the software programs. This

is very different from other compile-code simulation approaches [9, 11, 21, 22, 39, 90, 92, 123, 125],

which only consider the high-level behaviors and operations of the programs but do not consider the

instruction-level details, especially branch penalties and pipeline interlocks. Such instruction-level

information gives this simulation framework superior performance estimations over the estimation

from other compile-code simulation approaches.
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Overall, the estimation is based on:

Estimation = Instruction + Branch Penalty + Interlock (5.1)

Figure 5.7: Execution time estimations of three major timing delay components: Instruction selec-
tion (A), Branch penalty (B) and Pipeline interlock (C).

5.2.1 Instruction Selection

An estimation for an instruction is the cycle per instruction (CPI) of the instruction format

in the ideal execution condition. Compilations have already been applied and data- and control-

flows have been finalized in the instruction-level information. Under a fixed in-order pipeline, most

instructions in embedded processors only take one cycle (in the ideal case – branch penalties and
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pipeline interlocks are estimated separately). Special instructions that take more than one cycles

are normally well-defined in the target processor documentations. Execution time for instruction

selections can therefore be accurately estimated based on the program at instruction level.

Instruction estimation is applied in the unit of basic blocks. A basic block is a sequence

of instructions that has one entrance, one exit and does not contain any jump instructions or jump

targets. In MPSoC, a basic block also cannot contain any communication or interactions between

programs. Since executing the first instruction in the basic block implies sequential execution of all

the instructions in the same basic block, a basic block can be estimated with one timing delay. Such

estimations are shown in Figure 5.7A.

For a different Instruction Set Architecture (ISA), estimation for instruction selections can

be applied in the same way. By specifying the ideal CPI for each instruction format, instructions

with different ISA can be estimated accurately.

5.2.2 Branch Penalty

An estimation for a branch penalty is the additional cycles caused by an indirection of the

control flow. With static- or compile-time branch prediction, branch penalties can be statistically

determined for a given control path. When a conditional branch result is being evaluated, the pro-

cessor pipeline either stalls or executes speculatively. The fetched instructions may be valid or have

to be flushed when the branch is mis-predicted. In either case, branch penalties for a branch taken

and not-taken can be determined.

Branch penalties are annotated onto the control-flow. In the example shown in Figure

5.7B, the target processor always predicts a branch to be not taken and executes speculatively. If a

branch is actually taken, a branch penalty is added as represented by the extra delay on the “taken”

edge.

For a different processor pipeline, a different branch penalty may apply. In Tensilica’s

Xtensa processors, a branch penalty in a 5-stage pipeline costs two cycles, while in a 7-stage pipeline

a branch penalty costs three cycles. For more complex branch prediction techniques, such as bi-

modal and dynamic predictions, a more complex analysis or a statistic model can be added to the

simulation models. However, embedded processors normally use simple branch predictions that can

be analyzed by the technique described above.
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5.2.3 Pipeline Interlock

An estimation for a pipeline interlock is the additional cycles caused by the data-dependencies

in the dataflow. A pipeline interlock happens when the result generated by one instruction is not

immediately available to the next instruction as an input operand, which causes a pipeline stall. In

most pipelines in embedded processors, the result of a register operation is available to the next

instruction by forwarding the result to the next instruction before it is committed (actually written

to the register). For more complex operations, such as multiplications, floating-point operations

and memory operations, the results take longer to generate. Therefore, some amounts of stalls are

required before the results of such operations can be used as operands in the next instructions.

Pipeline interlocks can be observed by analyzing the data-dependencies between consec-

utive instructions. As shown in Figure 5.7C, such dependencies can be within a basic block or in

between basic blocks. Estimation of pipeline interlocks within a basic block can be annotated onto

the basic block, while estimation of pipeline interlocks between basic blocks are annotated onto the

edge in the control-flow. A window of instructions is used to analyze data-dependencies and esti-

mate interlock cycles across all paths. The length of the window is the maximum distance between

two instructions that can have a dependency, which in general is small. The length is one in a regular

5-stage pipeline and three in a 7-stage pipeline.

5.3 Consider Compiler Optimization

cycle (cmp-O0)
g3fax -O0 3586965

-O1 1464664 (-59.2%)
-O2 1348849 (-62.5%)
-O3 1079985 (-69.9%)

matmul -O0 1032809
-O1 211003 (-79.6%)
-O2 160299 (-84.5%)
-O3 113910 (-89.0%)

Table 5.2: Impacts of compiler optimizations in execution times on two benchmarks for Tensil-
ica’s Xtensa LX2 processor with base configuration using GCC 4.1 cross-compiler and different
optimization options.
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To accurately estimate the performance, the simulation framework must consider the im-

pacts of compiler optimizations. Without advance computer architecture components in the embed-

ded processors, compiler optimizations are very important because they are the only opportunities to

schedule instructions and reorder basic blocks in a program. Table 5.2 shows the execution times on

two benchmarks with different optimization options using GNU Compiler Collection (GCC) cross-

compiler and Tensilica’s Xtensa Instruction Set Simulator (ISS). “-O0” represents no optimizations.

“-O1” includes dominator-based optimizations. “-O2” adds common sub-expression eliminations

and software pipeline scheduling. “-O3” adds loop unrolling and inter-procedural analysis. The

designers may turn on or off some of the optimizations because some of those involve space-speed

tradeoffs, and some may even generate an incorrect program if the C program does not adhere to the

ISO standard (i.e. aliasing). As shown in the table, “-O3” can reduce execution times by up to 89%

compared to the un-optimized programs. Even the same optimizations can have different effects

on different programs. Therefore, to accurately consider optimizations, optimizations that applied

when generating target binaries must be applied without changes when generating the software

simulation models.

5.3.1 GCC Compilation

GCC offers high quality compilations for many processors, including common embedded

processors such as ARM, MIPS and Xtensa. GCC generates optimized instructions of a program

based on the behavioral-level description, normally specified in C language. The optimized in-

structions of the program are used in the estimation to consider all compilations and optimizations

applied.

To understand how to consider compiler optimizations, first an understanding of compi-

lation and optimization procedures is required. In a GCC compilation, the C program is parsed

to generate an Abstract Syntax Tree (AST). The tree data-structure is converted into an intermedi-

ate representation GIMPLE. GIMPLE provides a simple data-structure for optimizations such as

Static Single Assignment (SSA) form optimizations. Based on the instructions provided by the tar-

get processor, GIMPLE is translated into the second intermediate representation Register Transfer

Language (RTL). RTL provides a data-structure that closely represents target instruction sequences

such that optimizations based on instruction sequences can be applied.
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5.3.2 Apply Target Optimization

Compilations of the program in the compiler and optimizations that are applied to it are

controlled by a set of parameters, such as operation primitives, storage layout, stack layout, address-

ing mode, and instruction format available in the target processor. Even for machine-independent

optimizations, optimizations are applied differently based on these information in order to provide

better optimization benefits on the target processor.

By specifying exactly the same parameters, same compilations and optimizations are ap-

plied to the program. The resulting RTL would reassemble the target binary program that would

have been generated by the original compiler. Since the software simulation model is generated

from GCC with the same compilation parameters as those used for generating the target binary for

the target processor, all the compiler optimizations are reflected in the software simulation model

and its estimation. The specific technique to do it in GCC is discussed later in Section 5.5.1.

5.4 Memory Subsystem Simulation

The memory subsystem, which can account for 50% of performance and energy expenses,

is one of the most important architectural decisions to be explored. Cache and memory configura-

tions are very important in MPSoC. Different programs have different memory requirements and

cache access characteristics. It is important to configure the caches and memories such that the pro-

grams run efficiently under the constraints in performance, area and power. Analyzing cache and

memory configurations in MPSoC is difficult because programs on different processors complexly

interact. Memory address traces differ dramatically with minor changes in the implementation.

Therefore, the address traces generated by ISS – a technique commonly used in single-processor

system for cache configuration exploration [56] – cannot be reused for cache configuration explo-

ration in MPSoC.

Cache simulation is currently the only reliable way to obtain accurate information about a

particular memory subsystem implementation. Simulation that does not based on cache simulation

with accurate memory address traces tends to be inaccurate. For target systems with cache, cache

simulation can be done in SystemC using SystemC cache models.

The simulation framework allows cache simulation by accurately exposing memory ac-

cesses and the target memory addresses of these accesses. Memory address traces, which are es-
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sential for cache simulation, are generated during simulation as if the programs are running in

Instruction Set Simulators (ISS). Hence caches and memories can be accurately simulated. Specifi-

cally, techniques to expose memory accesses in the software simulation models and target memory

addresses of these accesses are discussed in the next subsections.

5.4.1 Memory Access

Memory accesses have to be exposed in the software simulation model because memory

accesses of a program that are not explicit in the model would not be simulated. Memory accesses

can be implicit or explicit in a program. Explicit accesses are those specified in the simulation model

using read() and write(), which are used for communication and interactions between programs.

However, implicit accesses, such as reading or writing a de-referenced address, an array, a volatile

variable, or a program stack due to lack of registers, do not alter the program behaviors and are

not specified in the software simulation model. Therefore, when memory subsystem simulation is

not considered, only explicit accesses are instrumented with read() and write() and simulated in the

model.

When a program accesses a memory address with either a read() or a write(), the simula-

tion model issues a read or a write call as a SystemC call to the corresponding cache model. The

cache simulator inside the cache model determines the result and the timing delay of the memory

access. Hence, cache related timing information can be accurately simulated.

To expose implicit memory accesses and instrument them into the software simulation

models for memory subsystem simulation, the instruction-level information inside the compiler

(specifically, the RTL structure) is used. Implicit memory accesses are generated during compi-

lations and optimized during compiler optimizations. Implicit memory accesses generated by the

compiler are converted into load and store instructions, which represent accesses to the memory

subsystem. The number and locations of the implicit memory accesses depend on the optimization

levels in the compiler. In the instruction-level information, implicit memory accesses are clearly de-

fined and can be used to instrument the software simulation models with proper read() and write().

Without using the compiler to analyze the programs, implicit memory accesses cannot be exposed

accurately. Instruction memory accesses, on the other hand, can be annotated statically in the sim-

ulation model with the memory addresses of the instructions [142].
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With read() and write() instrumented onto the software simulation models, memory ac-

cesses can be simulated for performance and energy estimations of different cache and memory

configurations. To the best of my knowledge, no other system-level design platform is able to

simulate caches alongside behavioral-level models (annotated or otherwise) with the same level of

accuracy and efficiency. This is a great deficiency when the memory subsystem is significant for

energy and performance characteristics.

5.4.2 Simulation-time Address Mapping

In addition to exposing all memory accesses in the software simulation models, the target

memory addresses for the memory accesses need to be determined in order to simulate the memory

subsystem accurately. Data in the implementation are mapped to specific target memory addresses.

The target memory addresses determine the runtime characteristics of the caches and memories.

The caches behave differently with different memory addresses.

Simulation of software simulation models directly uses the host memory on the host de-

velopment machine allocated to the instances of the models in the simulation. Since a program is

compiled and directly executes on the host development machine, the memory required to store the

variable values resides on the host memory, where the host memory addresses are different from the

target memory addresses of the same variables.

In general, it is impossible to determine target memory addresses for all loads and stores

at compile time. Statically determining target memory addresses for all accesses at compile time is

an NP-hard problem, especially when pointer manipulations are involved. Therefore, the simulation

framework uses a lookup approach to dynamically determine the target memory addresses during

simulation.

Target Memory Address

The memory map of the implementation is provided to the software simulation models to

map the data into their target memory addresses. During target compilation, a linker maps data to

specific memory addresses based on a linker script for the target binaries. The linker script specifies

the memory address for each section: bss, literal, stack, heap, etc. Data can be placed into specific

sections using compiler directives in the programs. To provide accurate target memory addresses

for simulation, such memory map must be provided.
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Without a provided memory map, which is common for early system-level design space

exploration, one memory map can be generated. The generated memory map maintains the spatial

and temporal localities of the memory accesses. Memory subsystem design space exploration can be

done with minor loss in accuracy. If the exploration result is satisfactory, the generated memory map

can be used to construct a linker script that keeps the same memory map as used in the exploration.

Address Lookup

A simulation time lookup procedure is used to determine the target memory address for

each memory access. For each memory access exposed, the software simulation model reads or

writes to an address in the host memory where the data is allocated. The host memory address

indicates and identifies the data that is being accessed. Therefore, using the host memory address,

a reverse address mapping (lookup) procedure is used to determine the target memory address of

the corresponding access during simulation. A similar ”Address Recovery” technique has been

proposed in [53] to forward memory addresses from the target memory space to the host memory

space. However, that technique does not support any pointer manipulations, which are very common

in multimedia and gaming computing. Reverse address mapping allows pointer manipulations on

the host memory addresses and is able to map addresses after pointer manipulations to their correct

corresponding target memory addresses because it only depends on the memory addresses after

pointer manipulation and does not depend on how the addresses are manipulated.

For reverse address mapping, a reverse memory map mmap is used to record the relation-

ships between host memory addresses and target memory addresses. mmap is a set of tuples with

three fields: host memory address ∈ H, data length ∈ N and target memory address ∈ T . H is the

set of host memory addresses that are accessible directly from the software simulation models. N is

a natural number that represents the size of the data in byte. T is the set of target memory addresses

of the data in the implementation. All addresses are assumed to be byte addresses.

Property 1 Uniqueness of host memory addresses:

@(h1, l1, t1),(h2, l2, t2) ∈ mmap

such that (h1 = h2)∧ (t1 6= t2)

64



Property 2 Non-overlapping addresses:

@(h1, l1, t1),(h2, l2, t2) ∈ mmap

such that (h1 < h2)∧ (h1 + l1 > h2)

Since SystemC simulation is simulated in one host memory space, each data in the soft-

ware simulation models allocates a specific address in the host memory. No host memory addresses

of two data are the same or overlapped (Property 1 and 2). Each data in software, when in scope,

has an unique host memory address. Each instance of a simulation model allocates a different mem-

ory address. Therefore, when a data goes into scope, register() is invoked to add a new entry into

mmap (Algorithm 1). When the data goes out of scope, unregister() is invoked to remove the entry

from mmap. register() and unregister() are inserted into the software simulation models when the

models are generated. The entries in mmap always obey Property 1 and 2. mmap also applies to

stacks and heaps as they are considered big chunks of memory allocated to the programs.

Algorithm 1: Register and Unregister at Reverse Address Mapping

mmap =∅1

register(h ∈ H, l ∈ N, t ∈ T)2

check against lemma 1 and 23

mmap = mmap∪{(h, l, t)}4

unregister(h ∈ H)5

mmap = mmap/{(h,∗,∗)}6

On the other hand, target memory addresses are not unique and can overlap. Unlike host

memory which is in one memory space, in the implementation programs in different target pro-

cessors can have asymmetric memory views and access different memories with the same memory

address. In this case, two host memory addresses map to the same target memory address, and the

memory accesses access different memories in SystemC simulation as the accesses are originated

from different processors that are connected to different memories.

Property 3 In-order memory addresses:

(∀(h, l, t) ∈ mmap)∧ (∀i < l)

→ lookup(h+ i) = t + i
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Memory for a data (including an array or a data-structure) is always contiguous and data-

types for data of the same size are used. Therefore, in the program point of view, if the host memory

address h with size l maps to the target memory address t, an offset added to the host memory

address (h + i), as long as i < l, maps to the same offset of the target memory address (t + i). This

property (Property 3) allows pointers (data addresses) to be used to lookup their corresponding

target memory addresses after pointer manipulations.

Algorithm 2: Lookup Reverse Address Mapping

sort mmap with increasing order of h1

lookup(s ∈ H)2

use binary search for last (h, l, t) ∈ mmap such that h < s3

if h+ l < s then4

return ERROR5

else6

return (t +(s−h))7

end8

The reverse memory map allows the target memory addresses to be generated dynamically

during simulation regardless of pointer manipulations in the programs. The function lookup : H→ T

(Algorithm 2) is used to determine the target memory addresses based on the host memory ad-

dresses. The complexity of such lookup is O(lnN), where N is the number of entries in mmap.

Hence, such lookup is scalable for big designs. During simulation, pointer manipulations are ap-

plied directly on the host memory addresses, and the resulting addresses are used to lookup the target

memory addresses. A valid pointer manipulation always ends up in a memory address of a data that

is properly declared in the host memory and registered in the reverse memory map. Unless the

programs try to access memory that is not properly declared and registered, pointer manipulations

are properly handled.

Address Map Example

An example of a reverse address mapping is shown in Figure 5.8. First, when a data is

allocated, register() adds an entry into mmap. In the example, the array ary of total size 12 bytes

resides in the host memory starting at 0xa044, depending on the virtual memory allocated by the
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Figure 5.8: An example of Reverse Address Mapping that maps a host memory address after pointer
manipulation to the corresponding target memory address.

host operating system. The target memory address for the array ary is 0x100, provided by a memory

map. The host memory address of the array may be different every time the simulation runs, how-

ever it always map to the same target memory address. In register(), the entry (0xa044,12,0x100)

is added to mmap. Second, the address ptr is calculated by pointer manipulations. As a result ptr

points to 0xa04c in the host memory, the third element in ary. Third, ptr is then used in a load in-

struction, where it is used in lookup() for the target memory address. An offset of 8 is then applied

to the address 0x100, which results in the target memory address 0x108. The address corresponds

to the third element of ary in the target memory. In general, for a legal load or store, the host mem-

ory address must point to a memory space that is properly declared, hence the address can always

be used to map to a target memory address. Last, when ary goes out of scope, the entry in mmap

is deleted with unregister(). Entries in mmap are dynamically added and deleted when variables

and arrays go in and out of scope during simulation. This dynamic operation is necessary since the

same host memory space can be reused by the simulator for multiple data where their lifetimes do

not overlap.
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5.5 Simulation Accuracy

By considering instruction-level information, applying target optimizations and allowing

memory access simulation, compile-code simulation can be made accurate. All these techniques

are implemented in the GCC backend with a machine description. In this section, the specific

implementation of the simulation model generator, which is the GCC compiler with a modified

compiler backend, is shown along with the accuracy achieved by the simulation framework.

5.5.1 Machine Description

As mentioned in Section 5.3, GCC uses a set of parameters that describe the target pro-

cessor to guide the GCC compilations and optimizations. GCC offers high quality compilations of

C programs for many processors, including common embedded processors from ARM, MIPS and

Tensilica. GCC uses a machine description to describe the target processor and the accompanying

assembly code generation. The machine description is a Lisp-like description that describes many

aspects of the target processor. Based on the machine description, GCC creates different passes

that affect various stages of the compilations and optimizations (Figure 5.9). In this way, GCC acts

like a cross-compiler that uses different target machine descriptions for different target processors.

GCC arranges its compilation and optimization passes according to the target processor-dependent

parameters in the machine description. Based on the primitives, storages, stack layouts, addressing

modes and instruction formats, GCC builds a cross-compiler that creates semantically and syntacti-

cally correct target binaries.

To create software simulation models in GCC for a target processor, a modified machine

description similar to the original one (which creates target binaries) is used. One machine descrip-

tion is normally applicable for a family of processors, such as Tensilica’s Xtensa processors with

different configurations, where different compilation options (flags) generate target programs for

different processors in the family. The modified machine description is modified as follows:

• The modified machine description has the same compilation parameters to generate the same

target-dependent instruction-level information (RTL structure in Figure 5.9).

• Software estimation based on the target processor documentations – in this case, instruction,

branch and interlock – is added;
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Figure 5.9: New machine description to generate software simulation models using GCC.

• Memory accesses are instrumented using read() and write() and data allocations are instru-

mented using register() and unregister();

• C instructions as code generation templates are used;

• Compilation hooks to generate a semantically correct SystemC component are added.

5.5.2 Simulation Model Generation

Using the modified machine description, GCC compilation generates software simulation

models that are useful for MPSoC simulation. A software simulation model for each program,
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which does not reassemble the original C program, is created for accurate estimation and MPSoC

simulation. Generation of a completely different simulation model is necessary because of all the

control- and data-flow changes done by the compiler. Compilations and optimizations in GCC,

or any compilers, change the control- and data-flow of a program for the purpose of reducing its

execution time or memory usage. However, after the changes there is no longer an exact one-to-

one correspondence from the optimized RTL structure to the original C program. For example,

a statement in the original program may be duplicated and the two new statements have different

execution time because of other compiler optimizations. It is practically impossible to achieve the

same accuracy with a manually-annotated or a back-annotated original C program.

Figure 5.10: Software simulation model generated with timing delay estimations and memory ac-
cess instrumentation based on instruction-level information.

In the software simulation model, only the semantic of the program, the timing delay esti-

mation (based on the instruction selection, branch penalty and data interlock) and memory accesses

are present. The modified machine description, as shown in Figure 5.9, allows GCC to generate C

instructions with correct semantic along with estimation and annotations. The generated C instruc-

tions are wrapped in a SystemC class that implements sc process (as seem in Section 5.1.2). An

example of code generation from instruction-level information (as shown in Section 5.2) is shown
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in Figure 5.10. Processor details, such as register files and pipelines, are not described in the soft-

ware simulation model hence are not simulated. Only their impacts on performance remain in the

simulation models. This allows the simulation models to run at several orders of magnitude faster

than that when the register files and pipelines are explicitly simulated (as is done on Instruction Set

Simulators (ISS)).

Although the generated software simulation model may contain more C instructions than

the original C program, they are simple instructions that describe the same semantic as the original

program. Using an ideal compiler, both the software simulation model and the original program

would compile into the same executable and have the same simulation performance. In reality,

simulation of the software simulation model runs at most four times as slow as the original program.

However, such overhead is unnoticeable in MPSoC simulation because most of the simulation time

is used for synchronizing concurrent components in SystemC that is shown in Section 5.6.

If a different target processor is chosen or a different set of compiler optimizations is

called for, another simulation model is generated to reflect the new choices. In all experiments,

the time to generate a simulation model is always under 0.1 second – a very small amount of time

especially comparing to the length of time involved in simulating a complete MPSoC system.

5.5.3 Estimation Accuracy

The modified machine description for the Tensilica’s Xtensa processor family have been

created and extensively validated. The modified machine description for the Xtensa processor fam-

ily allows experiments with different processor configurations, such as different instruction set ar-

chitecture (ISA) configurations and pipeline architectures (5- and 7-stage pipelines). The modi-

fications are mechanical and can also be applied to other machine descriptions such as the ones

for ARM and MIPS processor families. Such modifications only have to be done once for each

processor family and the number of useful processor families is very limited.

For comparison, Tensilica’s cycle-accurate Instruction Set Simulator (ISS) is used for

single-processor systems and Xtensa SystemC TLM (XTSC) simulation is used for multiprocessor

systems to simulate multiple instances of Xtensa LX2 processors in the SystemC simulation en-

vironment [154] at cycle-accurate level. The results from ISS and XTSC are used to determine

the accuracy of the estimation from the compile-code simulation framework. For the experiments,

Xtensa tools are installed and run on Linux with Red Hat Enterprise 4 and SystemC simulation
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is compiled using OSCI SystemC 2.1 library [109]. The simulation model generator for software

programs is built with GCC 4.2.2. All experiments run on a Pentium 4 3.3GHz machine with 1GB

of memory.

All software programs in the MPEG-2 Decoder design (Section 3.4) are compiled into

software simulation models using the GCC compiler with the modified machine description. Each

software program is compiled individually by the simulation model generator to create a software

simulation model with time delays accurately instrumented. The software simulation model genera-

tion is automatic and no manual input is required. Compilation time increases as more optimizations

are enabled. But even with the highest level of optimizations in GCC (-O3), generation of each sim-

ulation model takes less than 0.1 second.

In the first set of experiment, a set of benchmarks (from EEMBC and PowerStone) are

used to demonstrate the accuracy of the software simulation models by themselves. It is a more

important measurement because the accuracy of such estimation is not influenced by other compo-

nents as in the MPSoC simulation (such as the accuracy in the O/S, interconnect network, cache

and memory simulation models). The MPEG-2 Decoder design is then used to show the accuracy

in MPSoC simulation.

A set of processors with different architectural characteristics are used to illustrate the

accuracy, efficiency, and robustness of the estimation approach. base (0.68mm2, 320MHz), typical

(0.86mm2, 317MHz), typ+fp (1.61mm2, 314MHz) and 7-stage (1.05mm2, 311MHz) are four differ-

ent configurations of Xtensa LX2 processors. The first three configurations have a normal 5-stage

processor pipeline but contain different architectural components. The base processor is small and

has no hardware multiplier nor floating point coprocessor. typical includes a 32-bit single-cycle

multiplier. typ+fp further adds a floating-point coprocessor for fast floating-point operations. The

7-stage processor has a similar configuration as typical but with a 7-stage pipeline.

adpcm g3fax g721 jpeg matmul fpfir
base 1813251 1348849 484987 5767054 539854 378197

typical 505936 1348849 393115 3469753 160299 189361
typ+fp 505936 1348852 393111 3469753 160280 68675
7-stage 582000 1679730 478413 4045035 189176 213324

Table 5.3: Benchmark execution time (in cycles) in a diverge set of benchmarks and several Xtensa
LX2 processors with different configurations. The benchmarks are compiled with “–O2” optimiza-
tion flag in GCC.
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Several diverge benchmarks are used to highlight the accuracy of the estimation approach

on different types of programs. g3fax, g721 and jpeg have different branch and interlock characteris-

tics. adpcm uses multiplications and fir uses floating-point operations extensively. Table 5.3 shows

the cycle-accurate execution time obtained from running simulation on ISS. The optimization level

is set to “-O2”, which is common for embedded software because it provides the best performance

without increasing the code size. Each software simulation model takes less than 0.1 second to

generate. The accuracy of the simulator does not depend on the optimization flags. Although not

shown in the results, the estimation is accurate in any combinations of optimization flags – even

when optimization passes are individually enabled or disabled in GCC. For the rest of experiments,

”-O2” is used unless specified otherwise. The execution times in the table clearly illustrate the need

to match processors with applications. All benchmarks benefit from using the typical configuration

except for g3fax, which does not contain any multiplications. The only benchmark that benefits

from the floating point unit is fpfir, since it is the only one with floating point operations. Having a

7-stage pipeline allows slower 2-cycle memories although the processor is bigger and slower, which

affects some benchmarks more than the others.

The estimations instrumented in the software simulation models are accurate across dif-

ferent benchmarks and processor architectures. The experimental results are shown in Figure 5.11.

For comparison, unopt. instr. is an estimation based on an un-optimized program and each instruc-

tion takes one cycle without considering branches and interlocks. It represents other compile-code

simulation techniques that use estimations based on behavioral-level (or source-level) descriptions.

Since no optimization impact can be observed and branch/interlock information is not relevant, the

errors on the estimations are up to 380%. To show the importance of all three timing delay compo-

nents in the estimation, estimations without one of the three timing delay components are shown for

comparison. Instruction selection is the major part of the estimations. Without instruction selection

(w/o instr.), the errors on the estimations are up to 97%. Without branch penalty (w/o branch), the

errors on the estimations are up to 33%. Without pipeline interlock (w/o interlock), the errors on the

estimations are up to 14%. When considering all three components together (instructions, branches

and interlocks), the estimations are always within 1% from the cycle-accurate results obtained from

ISS.

Memory accesses from each program are transactionally correct. Because memory ac-

cesses are exactly represented in the software simulation models and the reverse address mapping
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Figure 5.11: Estimation accuracy of the generated software simulation models on a diverge set of
benchmarks and several Xtensa LX2 processors with different configurations.

maps the accesses correctly into their target memory addresses with a provided memory map, mem-

ory accesses from each program have no error.

74



For MPSoC simulation, the estimation from the multiprocessor simulation using the soft-

ware simulation models in SystemC is compared to the cycle-accurate results from Tensilica’s

XTSC simulation. The experiments on the MPEG-2 Decoder design measure the execution times

to produce every other raw video frames. Two 3-processor implementations are used to compare

the estimations and the cycle-accurate results. Implementation A maps the programs together based

on their connectivities. The programs are more likely to map to the same processors if the programs

heavily interact. Implementation B maps the programs to the processors based on the workloads.

The processors are assigned with programs with similar total workloads.

Frames Cycle-accurate Estimation Error
2 152.79 ms 160.14 ms 4.81%
4 200.40 ms 208.72 ms 4.15%
6 306.77 ms 313.34 ms 2.14%
8 389.06 ms 400.51 ms 2.94%

10 434.06 ms 444.59 ms 2.43%
12 551.34 ms 570.38 ms 3.45%
14 630.18 ms 651.56 ms 3.39%
16 676.50 ms 697.85 ms 3.16%
18 785.80 ms 810.05 ms 3.09%
20 867.24 ms 894.82 ms 3.18%
22 913.72 ms 939.83 ms 2.86%

Table 5.4: Estimation accuracy in MPSoC simulation of the MPEG-2 Decoder design in implemen-
tation A, which is a three-processor implementation with mapping to reduce the communication
between processors.

As shown in Table 5.4 and 5.5, the estimated execution times from the compile-code sim-

ulation framework accurately estimate the performance on both implementations at various points

of the simulation. Even when the times between frames vary due to the difference frame types

in an MPEG-2 video stream (I-, P- and B-frames), the estimation is accurate at any point of the

simulation in both implementations. For every comparison point, the relative error between the

estimation and the cycle-accurate result from XTSC is between -0.8% and 4.8%. The difference

mainly comes from the inaccuracy in the modeling of O/S, buses, caches and memories, which are

modeled manually and the estimation on the models is less accurate than the software simulation

models.
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Frames Cycle-accurate Estimation Error
2 183.08 ms 185.52 ms 1.33%
4 245.25 ms 247.72 ms 1.01%
6 390.77 ms 390.11 ms -0.17%
8 500.60 ms 500.42 ms -0.04%
10 558.95 ms 556.33 ms -0.47%
12 710.47 ms 707.48 ms -0.42%
14 815.24 ms 810.24 ms -0.61%
16 875.78 ms 869.47 ms -0.72%
18 1025.51 ms 1017.19 ms -0.81%
20 1133.78 ms 1125.79 ms -0.70%
22 1191.72 ms 1183.63 ms -0.68%

Table 5.5: Estimation accuracy in MPSoC simulation of the MPEG-2 Decoder design in imple-
mentation B, which is a three-processor implementation with mapping to balance the processor
workloads.
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Similar to single-processor systems, for a program to run on a different target processor or

use a different set of compiler optimizations, a new simulation model with different estimation needs

to be generated. Software simulation model generation does not introduce any overheads because

each software simulation model takes less than 0.1 second to generate even at “-O3” optimization

level. Such time is negligible comparing to the length of time involved in simulating an MPSoC

implementation.

5.6 Improve Simulation Speed

un-timed timed overhead
9uP 10.50s 217.67s 20.7X
3uP w/RR 10.50s 172.82s 16.5X
3uP w/Pr 10.50s 176.50s 16.8X
1uP w/RR 10.50s 149.11s 14.2X

Table 5.6: Simulation overheads in timed simulation when simulating different implementation of
the MPEG-2 Decoder design. Different number of processors and scheduling policies are used. RR
is round-robin non-preemptive scheduling. Pr is priority-based non-preemptive scheduling. Simu-
lating timing delays in the simulation models lengthens the simulation time by 14X–21X comparing
to the same simulation without simulating the timing delays.

Although the compile-code simulation framework provides very efficient MPSoC simula-

tion compared to cycle-accurate and Register-Transfer Level (RTL) simulation, a timed simulation

in SystemC – a regular discrete event simulator – is more than 14 times slower than an un-timed

simulation in the same simulator. Table 5.6 shows the simulation overheads for timed simulation to

simulate the MPEG-2 Decoder design in different MPSoC implementations. Implementations with

different number of processors (1, 3 and 9 processors) and different scheduling policies (Round-

robin and priority-based) are used. Similar result has been observed on [42]. Slower simulation

tremendously reduces the number of design points that the designers can explore in the design

space in a limited amount of time. Unfortunately, timed simulation is necessary to evaluate imple-

mentations and verify them against performance constraints. By simply simulating timing delays in

the software simulation models and the components, the MPEG-2 Decoder design simulates more

than 14 times slower. Based on the profiling result of the simulation, more than 95% of the simula-

tion time is associated with activities related to switching between the component simulation (such
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as the simulation kernel and simulation clock manipulations). Simulation speed can be improved if

such simulation overheads are reduced.

5.6.1 Timed Simulation Overhead

The compile-code simulation framework uses the SystemC simulator – a discrete event

simulator – to simulate MPSoC implementations. Discrete event simulation is an event-based simu-

lation. Events are triggered in an instant in the simulation clock and the corresponding components

are simulated until timing delays are requested. OSCI SystemC [109], which is the base of almost

all SystemC simulator derivatives, uses discrete event simulation. In the MPSoC simulation, a tim-

ing delay is requested every time before a communication channel, which is used for interactions

between components, is accessed. A timing delay is requested using the SystemC wait(). For every

wait(), the SystemC simulation kernel switches out the current simulating component, calculates

the next invocation of the component based on the arguments passed by the wait(), and switches to

the next earliest ready component.

Discrete event simulation provides a strictly chronological ordering in simulating the com-

ponents and communication channels. A discrete event simulator keeps a global simulation clock

which indicates the current time inside a simulation. The simulation clock of a channel access is

always the same as the global simulation clock at the time the channel access function is called.

Since the global simulation clock only goes forward (increases monotonically), components and

communication channels are simulated chronologically. For a channel access, there is an implicit

assumption that all other accesses that are called before the current simulation clock have been

called. When a channel is accessed, the channel should be able to response, both behaviorally and

timingly, at the time of the access (a channel can hold a channel access if it is a blocking call,

which is also considered as a response). However, a high simulation overhead is resulted when the

simulation requires very frequent switching to maintain such strictly chronological order.

A producer-consumer example is used to illustrate the switching overhead associated with

timed simulation. The example consists of a dedicated FIFO channel and two components: a pro-

ducer and a consumer. The producer generates an item every 10ns and writes it to the FIFO channel;

the consumer reads an item from the FIFO channel every 15ns. The blocking interface is used such

that the producer blocks when it writes to a full FIFO channel and the consumer blocks when it reads

from an empty FIFO channel. The components are unblocked when the FIFO channel becomes not
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Figure 5.12: Timed simulation overhead in a producer-consumer example. On the left, the producer-
consumer example is simulated without timing delays. The producer can keep writing to the FIFO
channel without switching out. The producer only stops when the FIFO channel is full. A switching
overhead is imposed before the consumer starts simulating. On the right, the same example is
simulated with timing delays. Before the producer can write its first data to the FIFO channel, it has
to wait for the global simulation clock to reach 10ns – which is the length of time the producer takes
to generate a data. So the producer switches out, which imposes a switching overhead, and waits
for the global simulation clock before switching back in. Same switching happens for every FIFO
read and write, which creates significant overheads in timed simulation.

full or not empty, respectively. In an un-timed simulation, the components do not switch for every

FIFO read or write, and the simulation takes only 0.24 second to finish. In a timed simulation,

FIFO reads and writes are simulated in strictly chronological order. Therefore, the producer and

the consumer are alternatively scheduled in the discrete event simulator as shown in Figure 5.12.

Since there is a switching overhead associated with each switch, such ordering imposes significant

overhead to simulate. As a result, the timed simulation takes 4.10 seconds to complete, which is 17

times slower than the un-timed simulation.
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5.6.2 Partial Order Channel Modeling

Majority of the simulation overheads associated with switching between components can

be avoided by simulating the system in a non-chronological order. By decoupling the simulation

clocks of the components from the global simulation clock in the simulation kernel, some delay re-

quests do not require advances in the global simulation clock. Majority of the simulation overheads

can be avoided by reducing the number of switches between the components. With individual sim-

ulation clocks in the components, some components may simulate ahead of the global simulation

clock. As a result, components in the system are simulated in a non-chronological order instead

of strictly chronological order. The term partial order method is used to describe this simulation

technique.

To avoid the simulation overheads associated with switching, the simulating components

are kept active as long as possible. Each switch has an associating simulation overhead. By reducing

the number of switches during simulation, simulation speed is improved. Therefore, the partial order

method follows the following guidelines to maximize the simulation speed.

- When a component is simulating, simulate it as long as possible until the behavior or the

timing of the component is no longer known based on information available in the simulator;

- When a component has to wait, wait as long as possible to gather more information from

other components for later behavior and timing computations.

Simulating channel accesses in chronological order is a sufficient condition for correct

behavior and timing simulation, but such order is not always necessary. One access has to be

simulated before the other only if the earlier access affects the behavior or the timing of the later

access. Chronological order ensures that such dependency is satisfied because no access can be

affected by an access that happens later in the simulation clock. If events at the same time affect

each others, it is a race condition and the behavior and timing are not guaranteed to be simulated

correctly in this situation.

Simulation Principle

To prevent excessively switches between components, the partial order method allows

channel access simulation not to follow the chronological order. When a component tries to access
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a channel after a timing delay, it accesses the channel immediately with a timestamp of the access.

If the result of the access, in both behavior and timing, can be determined in the simulation, the

access returns immediately with the result along with the timestamp in which the access should

return. Therefore the delay request to advance the global simulation clock is not necessary and no

simulation overhead due to switching is involved.

To allow components to simulate separately from the global simulation clock, an individ-

ual (local) simulation clock is added in each component to keep its timestamp. The local simulation

clock advances when the component requests a timing delay without switching out. In a commu-

nication channel access, the component calls the channel interface and uses the local simulation

clock as the timestamp of the access. If the access successes, the returned timestamp will be used as

the local simulation clock and the simulation of the component continues. The channel access may

block the component if the result of the access cannot be determined at that point of simulation.

Such blocking access can either wait for an event that has yet generated or wait for advances of the

local simulation clocks in other components. The ability to calculate the access result depends on

the semantic of the communication channel. Some examples of communication channel modeling

are shown in the next subsection.

Communication Channel Modeling

To allow partial order method in the simulation, the communication channel interface

must take the local simulation clock (timestamp) of the calling component as an input parameter.

For a blocking interface, which the access can be returned at a different time in the simulation clock,

the output of the interface also includes a timestamp to indicate the simulation clock when the access

returns. Determining the access result relies on the modeling of the communication channel. The

channel is responsible to determine whether the result of an access at the simulation clock given by

the timestamp can be computed. If the result can be computed, the behavior and the the timing are

immediately returned and no timing advance in the global simulation clock is necessary. Otherwise,

the calling component preempts and waits until both the behavior and the timing of the access can

be computed. Although the partial order method requires additional modeling on the channel, it

is a beneficial feature instead of a burden because system-level modeling is meant to capture very

high-level information of the system.
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Algorithm 3: Blocking FIFO read for partial order simulation
Input: process ts

begin1

if FIFO is empty then2

wait for a FIFO write3

read data and data ts from the FIFO4

return data and max{process ts,data ts}5

end6

Algorithm 4: Non-blocking FIFO read for partial order simulation
Input: process ts

begin1

if FIFO is empty and ts(writer) < process ts then2

wait until process ts3

if FIFO is empty or data ts > process ts then4

return read fail5

read data and data ts from the FIFO6

return data7

end8
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For a FIFO channel, the partial order simulation method allows an access to be complete

if enough information is available in the FIFO channel. Because only one component can read from

the FIFO channel and only one can write to the FIFO channel, the result of a read can be determined

immediately if a data is available in the FIFO channel (and verse vise for a write). The algorithms for

both blocking and non-blocking reads are shown in Algorithm 3 and 4. To accommodate timestamp

calculations, each FIFO data is annotated with a timestamp stating the simulation clock when the

data is written, and each FIFO space is also annotated with a timestamp stating the clock when the

space is available. Initially, all spaces in the FIFO channel are annotated with initial time zero.

Algorithm 5: Blocking mutex lock for partial order simulation
Input: process ts

while true do1

if mutex not locked and (ts(lockers) >= process ts or2

unlock ts >= process ts) then

take mutex3

return max(unlock ts, process ts)4

else if mutex not locked then5

wait until process ts6

else7

wait for mutex unlock8

end9

Besides FIFO channels, the partial order simulation method also works for other commu-

nication channels such as a mutex or a shared variable. For a mutex, a component can lock a mutex

if all other components that are capable to lock the mutex have later timestamps than the accessing

component (Algorithm 5 and 6). Unlocking a mutex always succeeds without switching since the

component holding the mutex can unlock the mutex anytime independent from other components

(Algorithm 7). In the partial order mutex model, the mutex is either locked or unlocked. If it is in

the unlocked state, there is an annotated timestamp to state the simulation clock when the mutex is

unlocked (initially set to time zero).

For a shared variable, the channel keeps a record on the values of the variable over the

simulation clock. A write to the shared variable always succeeds and adds a (value, clock) tuple to
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Algorithm 6: Non-blocking mutex lock for partial order simulation
Input: process ts

while true do1

if mutex not locked and ts(lockers) >= process ts and unlock ts <= process ts2

then

take mutex3

return process ts4

else if (mutex not locked and unlock ts > process ts) or (mutex locked and5

ts(lockers) > process ts) then

return lock fail6

else7

wait until process ts8

end9

Algorithm 7: Mutex unlock for partial order simulation
Input: process ts

begin1

unlock the mutex2

set unlock ts = process ts3

notify mutex unlock event4

return process ts5

end6

Algorithm 8: Shared variable write for partial order simulation
Input: data, process ts

begin1

add an entry (data, process ts) to the ordered array2

return process ts3

end4

84



Algorithm 9: Shared variable read for partial order simulation
Input: process ts

begin1

if ts(writers) < process ts then2

wait until process ts3

read the value with max(ts < process ts) in array4

return value (and process ts)5

end6

the record (Algorithm 8). A read succeeds only when all the writers have later timestamps than the

reader. In the partial order shared variable model, the record of variable values over the simulation

clock is kept in an ordered list (Algorithm 9). The list is ordered w.r.t. the clock. Writing to the

variable adds an entry to the list. When the reader reads the variable and all writers have later

timestamps, the reader looks for the value that was last written based on the reader’s timestamp.

5.6.3 Producer-Consumer Example

Figure 5.13: Producer-consume example in partial order simulation method, which has less switches
comparing to the chronological timed simulation. At the same time the simulation gives the same
simulation results.
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The producer-consumer example is used again here to illustrate the saving of switching

overheads in timed simulation by using partial order method. The schedule of the simulation is

shown in Figure 5.13. When a timing delay is requested in the producer or the consumer before

accessing the FIFO channel, the request is not transform into a wait() that causes a switch. Instead,

the request increments the local simulation clock of the producer or the consumer and the clock is

subsequently used as the timestamp for the FIFO access. As the result, as shown in the figure, the

producer and the consumer do not need to switch between every read and write, hence reducing

the simulation overheads. The simulation is in partial order, which is shown in the example as the

third write from the producer is simulated earlier than the first read from the consumer, although

the write happens later in the simulation clock. Partial order method improves the simulation speed

of the producer-consumer example by avoiding excessive switches between the producer and the

consumer. As a result, the example simulates in 0.29 second, comparing to 0.24 second for an

un-timed simulation and 4.10 seconds for a chronological timed simulation.

5.6.4 Backward Compatibility

Communication channels modeled with partial order method can also be simulated along-

side with unmodified communication channels that are not modeled with partial ordered method.

To make the unmodified channels simulate correctly, the assumptions of discrete event simulation

without partial order method have to be reenforced: accesses to a channel have to be made in strictly

chronological order and the simulation clocks of the accesses can be obtained from the global sim-

ulation clock. These assumptions can be simply enforced by calling wait() from the components

before the accesses to force the components to wait. This updates the local simulation clocks of

the components to match the global simulation clock, and hence the simulation clocks of the ac-

cesses can be obtained from the global simulation clock when the channel accesses are called.

Since global simulation clock only increases monotonically, the accesses to the channel are made

in chronological order. However, in a mixed simulation with modified channels and unmodified

channels, speedup for partial order method only applies to those accessing the modified channels,

and the speedup of the simulation is not maximized.
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5.7 Simulation Performance

5.7.1 Extending Simulation Model

The partial order simulation method is implemented as user-code in SystemC. The Sys-

temC classes are extended (derived) to integrate partial order method into the simulation. A times-

tamp is added to the derived class of sc module to keep the local simulation clock of a component.

Several methods are also added to the class to allow easy accesses to class members and advances of

the local simulation clocks. Channel interfaces are also extended to add the channel access methods

with timestamps.

Since the implementation of the time data-structure sc time in SystemC 2.1 is too in-

efficient for the manipulations needed in partial order method, a new timestamp data-structure is

designed for partial order channel modeling. The new timestamp data-structure can be easily con-

verted to and from sc time.

5.7.2 Simulation Speed

The MPSoC simulation speed is evaluated by comparing the time taken to decode half a

second of an MPEG-2 stream in the MPEG-2 Decoder design at different simulators. Such sim-

ulation length is required to evaluate an implementation because each MPEG-2 group of pictures

(GOP), the minimum repeating sequence in an MPEG-2 stream, contains half a second of video.

The simulation times of it running on different simulators are shown in Figure 5.14.

Using ISS, the simulation is very slow and takes more than one day to decode half a

second of the MPEG-2 stream, which prevents the designers from using it for design space explo-

ration that requires a number of simulation. Compile-code simulation, even when the simulation

models are running chronologically in the discrete event simulator, is more than 100X faster than

ISS because the simulation models are running natively on the host development machine. How-

ever, the simulation speed is not maximized due to the timed simulation overheads. Majority of the

simulation time is used for controlling the simulation clock and switching between simulation mod-

els to keep them running in chronological order. When non-chronological order simulation using

partial order method is used, significant number of the switches are avoided and the simulation is

additional 10X faster, which provides the overall speedup of 1000X over ISS. The simulation that
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Figure 5.14: Time to simulate an MPEG-2 Decoderdesign using 1. cycle-accurate simulation with
XTSC (ISS), 2. the compile-code simulation framework in chronological simulation – no partial
order method (timed sim chronological), 3. the compile-code simulation framework with partial
order method (timed sim nonchronological), 4. untimed simulation (untimed simulation) and 5.
speed of the target implementation (real-time) for comparison.

takes ISS more than a day now only takes seconds to finish, and at the same time provides accurate

performance estimations.

For comparison, the speed of the compile-code simulation framework is also compared to

untimed simulation and the actual implementation. The timed simulation is only a fraction slower

than untimed simulation. (Note that untimed simulation is only useful for functional simulation and

does not simulate performance. Additional simulation time is required in order to obtain execution

time information.) And the timed simulation is only 10X slower than the actual implementation,

which is a three processor system running at 300MHz. Such difference between the simulation time

and the real-time can obviously be reduced by using a more powerful development machine. It is

here to show that this compile-code simulation framework can be used for very realistic simulation

with real design inputs and exploring different implementations efficiently.

With this compile-code simulation framework, simulation of realistic industrial MPSoC

designs now requires only seconds of simulation time, which is sufficient for effective design space
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exploration. It introduces a new direction for efficient system-level simulation and allows designers

to explore a much larger design space for better implementations.

5.8 Energy Model

Although this chapter mostly focuses on simulation accuracy and performance, energy

models can also be integrated into the simulation framework. The energy model used here is com-

monly available in instruction-level simulation (such as in ISS). Generally, processors can switch

among different modes. The three main modes are running, idle, and power-off modes. When a

processor is running, it consumes both dynamic and static power. The energy consumed in the

running mode are instrumented into the software simulation models based on the instructions in

the basic blocks, which is similar to the way timing delays are instrumented in the models. The

processor consumes only static power when it is idle and negligible amount of power when it is

power-off. Energy for memory accesses and on-chip interconnect networks are also included in the

overall energy consumption.

To compute both static and dynamic power consumption of a processor, the energy model

in [100] is used. The same energy model has been used in [26, 75, 170]. Specifically, the dynamic

power is computed by

Pdynamic = Ce f fV 2
dd f (5.2)

where Ce f f is the effective switching capacitance of the processor for a given instruction, Vdd is

the supply voltage, and f is the optimizing frequency of the processor. Dynamic power reduces

rapidly with lower supply voltage and lower frequency. It becomes negligible when the processor

is clock-gated in idle mode. Static power mainly comes from subthreshold leakage and reverse bias

junction current. The static power is computed by

Pstatic =Lg(VddIsub + |Vbs|I j) (5.3)

Vth =Vth1−K1Vdd −K2Vbs (5.4)

Isub =K3eK4Vdd eK5Vbs (5.5)

where Vbs, Vth1, I j, K1, K2, K3, K4, K5 are constants for a given technology and Lg is the size of

the processor [100]. Static power reduces sublinearly with the supply voltage and can be further
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reduced in power-off using DPM [16], which is used in the implementations. The cycle time of the

processor is computed by

Tcycle =
LdK6

(Vdd −Vth)α (5.6)

where K6 is a constant and Ld is a processor-specific parameter [100]. Constants for the 70mm

technology [75] are used in the experiments.
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Chapter 6

Criticality-based KPN Implementation

An MPSoC design contains multiple interacting programs. Determining the specific ob-

jects for design optimizations is difficult because the programs run in parallel instead of in series.

Design optimizations based on traditional single-processor software profiling [10, 32] are not re-

liable for MPSoC. Traditional software profiling for single processor assumes the programs in a

design run sequentially, hence reducing the execution time on any parts of the programs reduces the

overall execution time of the design. Traditional software profiling weights each statement execu-

tion equally and tries to find the statements that execute most frequently. However, this assumption

does not apply to MPSoC designs because programs run in parallel. Some statement executions

are more important than the others for the overall execution time. Therefore, traditional software

profiling results from individual processors do not reveal the statements that are critical. A new

MPSoC-specific profiling technique to accurately determine the important statements is needed.

The goal of such MPSoC-specific profiling technique is to find the statements that are crit-

ical for the overall execution time in an MPSoC design. For a design written as multiple programs,

the design is composed of interacting programs running on separate processors. Programs block and

unblock each others during execution, which allow necessary communication and synchronization

between the programs. As a result, the programs have dependencies that keep them from running

continuously. Programs routinely wait for each other for input and output data to keep the integrity

and consistency of the design. Such dependencies cannot be ignored because they determine the

performance of the implementations. In the next section, a symbolic model is used to analyze an

execution of an MPSoC implementation and the MP-Critical Path (LDP) is defined as the execution
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path among the programs that is critical for performance. The MP-critical path is shown to contain

very different information from the traditional software profiling. An iterative algorithm is proposed

to find this path dynamically during simulation with reasonable simulation time overhead.

Three techniques are then proposed that make use of the MP-critical path information to

efficiently optimize MPSoC implementations. These techniques are classified into three different

design levels, which demonstrate the information in the MP-critical path is useful throughout de-

sign decision procedures. The efficiency of design optimizations is demonstrated in the MPEG-2

Decoder design. At the instruction level, custom instructions are used to speed up the most fre-

quently executed statements in the path; at the segment level, instruction reordering techniques take

the information of the basic block segments in the path and reduce the length of the path; at the

program level, power consumption is reduced while satisfying the performance constraints using

voltage islands by determining the importance of each program in the path.

6.1 MP-Critical Path for Performance Analysis

The goal of the performance analysis us to assist the designers in design optimizations by

automatically narrowing the correct hotspots into a small number of statements. Hotspot informa-

tion is very important for design optimizations. The famous 80–20 rule states that approximately

80% of execution time is based on 20% of the statements. Hence design optimizations often focus

on the small number of statements that are important for the performance. For that reason, finding

these statements becomes a crucial first step in design optimizations.

For example, if an MPSoC simulation shows that a performance constraint is violated,

automatically generated correct hotspot information would help the designers to resolve the con-

straint violation with design optimizations. Such hotspot information for MPSoC allows designers

to focus on small number of statements to optimize their designs. In single-processor systems, such

hotspot information can be found by traditional software profiling in a simulation, which determines

which statements are executed most frequently and take most time. However, MPSoC is very dif-

ferent from single-processor systems such that information from traditional software profiling is

inaccurate for design optimizations.
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6.1.1 Assumption

In this analysis, each program in the design is first assumed to run on one processor in an

MPSoC implementation. With multiple processors in the system, each processor has a well-defined

role and is dedicated to one job. Each program runs on one processor only. This assumption is lift

once a specific RTOS scheduling policy is determined in the experiments.

The program steps in the MPSoC design have strictly precedence relationships. The pro-

grams run cooperatively instead of independently. If the execution of a program is considered as

a sequence of steps, certain steps have dependencies to other steps in other programs. These steps

have to wait for their parent steps in other programs to finish before they can execute. Such as-

sumption is reasonable for MPSoC designs and applies to many models of computation, including

Kahn Process Network. The symbolic model for the relationships and how the relationships apply

to Kahn Process Network are shown in the later subsections.

6.1.2 MP-Critical Path

To reveal the correct hotspot information in the programs for design optimizations, deter-

mining the execution path that is critical is needed. A critical path is with respect to a processing

step, where the time the processing step is executed determines the performance of the implementa-

tion. For a latency-constrained application, the processing step is the step that generates the output

at the end. For a throughput-constrained application, there is a sequence of steps that generate out-

puts and the processing step that is interesting is the one generating output late and violating the

performance constraints.

An MP-critical path with respect to a processing step is defined as the sequence of exe-

cuted statements among all programs that contribute to the earliest starting time of the step. As each

program runs sequentially and some steps wait until their parent steps in other programs to finish

under the strictly precedence relationships, there is an execution path among the programs that leads

to the earliest starting time of the processing step. Reducing the execution time on any part of the

path allows an earlier starting time.

An example of an MP-critical path with respect to a processing step is shown in Figure

6.1. p1 to p4 are four programs running on an MPSoC system. In the figure, block means a process-

ing step in a program cannot execute right away because of the strictly precedence relationships.
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Figure 6.1: An illustration of an MP-critical path on an execution trace. Horizontal lines represent
active processing in the processors, and crosses and arrows represent strictly precedence relation-
ships. The MP-critical path is shown in the highlighted path.

When the parent steps are later finished, the step is unblocked. The figure shows the blocking and

unblocking between the programs over the execution time. In the example, the goal is to make the

last processing step of p1 execute earlier. The MP-critical path of the processing step, as highlighted

in the figure, is the execution path among the programs that leads to the earliest starting time of the

processing step. According to the path, program p2 is responsible for majority of the delay in the

MP-critical path. Therefore, design optimizations should focus on the statements on p2. On the

other hand, optimizing p3 cannot improve the MP-critical path. Definition of the MP-critical path

and an efficient algorithm to find such path is presented in the following subsections.

6.1.3 Blocking / Unblocking Relationship

The computation model of KPN complies with the software model with strictly prece-

dence relationships. Each process in KPN is a sequential program that only communicates to other

processes using FIFO channel. A FIFO f is an ordered queue where data is produced and consumed

in the same order. A FIFO channel contains a sequence of data. The i-th data in the FIFO f is de-

noted as f i. Prod( f , i) and Cons( f , i) denote production (writing) and consumption (reading) of the

data f i.

The semantics of a FIFO channel restrict the starting time of production and consumption

of the data. Specifically, the production of the data f i+1 must happen after the production of the

data f i (i.e. τProd( f ,i) ≤ τProd( f ,i+1)), and the consumption of the data has to be in the same order
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(i.e. τCons( f ,i) ≤ τCons( f ,i+1)). In addition, the data must be produced before it can be consumed (

i.e. τProd( f ,i) ≤ τCons( f ,i)). If a program tries to consume the data from the FIFO channel before the

data is produced, the program has to wait until the data is available. This is commonly referred to

as “blocking reads”. For a FIFO f with size N, the production of the data f i+N cannot occur before

the consumption of the data f i. As a result τCons( f ,i) ≤ τProd( f ,i+N). This is commonly referred to as

“blocking writes”. These restrictions can be represented in the MPSoC execution model as strictly

precedence relationships.

blocking unblocking
shared variable spinwait write

message-passing blocking read/write write/read
handshaking synchronize synchronize

Table 6.1: Blocking Mechanism available on different MPSoC models of computation

Blocking mechanism is also very common in other multiprocessor models of computa-

tion. As shown in Table 6.1, blocking and unblocking are commonly used in MPSoC to synchronize

multiple asynchronously executing programs. For example, in Symmetric Multi-Processing (SMP),

blocking can be achieved by a spinwait on a shared variable, and the spinwait is unblocked when a

proper value is written to the variable. Although such blocking and unblocking mechanisms are not

as explicit as in KPN, they can still be modeled for the MP-critical path analysis.

6.1.4 MPSoC Execution Model

In this subsection, the symbolic model to analyze an execution of an MPSoC design is de-

scribed. Each program in an MPSoC design is modeled as a step transition, and strictly precedence

relationships are used to model interactions between the programs.

Each program in the MPSoC design is modeled as a step transition. Each non-repeating

step σ represents a processing step in a program. σP
i ∈ S is the step i in program P and σP

0 is the

beginning of the program. S is the set of all steps in all programs. τP
i ∈ R+ is the starting time of the

step σP
i , and δP

i ∈ R+ is the execution time (timing delay) of the step σP
i .

A step represents execution of a set of statements in the program and its execution history

(hence non-repeating). A statement that can be blocked by other programs always starts a step, and a
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statement that can unblock other programs always ends a step. Therefore, blocking and unblocking

always occur between steps.

Property 4 Step sequence in a program:

For all steps σP
i , i ∈ [0,∞) in a program P,

the step sequence is σP
0 σP

1 σP
2 ...

Property 5 Starting time restriction on consecutive step:

For all steps σP
i , i ∈ [1,∞) in program P,

τP
i−1 +δP

i−1 ≤ τP
i

Property 4 specifies that each program executes sequentially. Each step σP
i is an execution

of a set of statements and δP
i is the execution time of the statements. A program runs sequentially

and subsequent step cannot start before the previous step finishes. Therefore a program is executed

following the step sequence and the earliest starting time of each step is restricted by Property 5.

Property 6 Starting time restriction on precedence relation:

Step σQ
j strictly precedes step σP

i

→ τQ
j +δQ

j ≤ τP
i

Interacting programs have strictly precedence relationships. If a dependency is implied

such that the step i in program P cannot start before the step j in program Q finishes (such as those

described in Section 6.1.3), the dependency can be specified as a starting time restriction. Property

6 shows the starting time restriction of a strictly precedence relation. The relation limits the earliest

starting time of the steps in addition to the restriction shown in Property 5.

Environment events σE
i are defined as a sequence of steps from the environments (outside

an open system). σE
0 is an event representing the beginning of the execution. σE

i , i > 0 are steps

that read and write from the buffered inputs and outputs, which interface the open system and the

environment. Since the environment is independent of the system, all starting time and execution

time of the environment events (τE
i and δE

i ) are pre-defined based on the performance constraints.

For example in the MPEG-2 Decoder design, the environment inserts MPEG-2 streams into the

input FIFO channels based on the rate of the input methods and expects to read one frame of raw

video from the output FIFO channels every 1
30 th of a second.
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6.1.5 Earliest Starting Time

With each program runs on a processor, program steps start as soon as possible after all

restrictions in Property 5 and 6 are satisfied. For a step σP
i that depends on steps σQ

j and σR
k , its

starting time is the latest among the finish time for its previous step σP
i−1 in the same program and

all the parent steps.

τP
i = max(τP

i−1 +δP
i−1,τ

Q
j +δQ

j ,τR
k +δR

k )

Step σP
i is called blocked when it cannot start immediately after its previous step σP

i−1. i.e.

τP
i−1 +δP

i−1 6= τP
i . The step is unblocked by one of the parent steps σQ

j when τQ
j +δQ

j = τP
i .

Pre : S → S defines the immediate prior step relationships. If a step is not blocked,

Pre(σP
i ) = σP

i−1 because the step immediately follows its previous step in the same program. If

it is blocked, Pre(σP
i ) = σQ

j where σQ
j is the step that unblocks σP

i . No one step is assumed to be

unblocked by two steps at the same time. Therefore, the immediate prior step of the step σP
i is

defined as follows:

∀σP
i , i ∈ [1,∞),Pre(σP

i ) = {σP′
i′ |σP′

i′ unblocks σP
i }

Immediate prior step of a step σP
i can come from the environments if σP

i is blocked by

reading from an input buffer when the buffer is empty or by writing to an output buffer when the

buffer is full. In such case, Pre(σP
i ) = {σE

j } where σE
j is the environment event. The immediate

prior step of any environment event σE is /0.

6.1.6 MP-Critical Path

The MP-critical path of a processing step can be defined using the symbolic model. The

MP-critical path is the sequence of statements that contribute to the earliest starting time of the

processing step. The path can also be represented by a set of steps in S. Since the earliest starting

time of step σP
i depends on the step Pre(σP

i ), The MP-critical path of the step σP
i (LDP(σP

i )) can be

defined as follows.
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LDP(σP
i ) = {σP′

i′ |(σP′
i′ = σP

i )

∨ (σP′
i′ = Pre(σ ∈ LDP(σP

i )))}

The MP-critical path of the processing step is used to determine hotspot information for

design optimizations. The processing step σP
i is normally a read from an input FIFO channel or a

write to an output FIFO channel, which the designers would want it to happen earlier. MP-critical

path LDP(σP
i ) represents the execution path among the programs that leads to the FIFO read or

write. Such path provides designers important information on where to optimize their designs.

6.2 MP-Critical Path Finding Algorithm

To find the MP-critical path, first a naı̈ve algorithm is presented. However, the naı̈ve

algorithm requires complete execution traces generated by all the processors for the duration of

simulation. Therefore, an iterative algorithm is presented. Similar to traditional software profiling

in single-processor systems, no trace has to be generated in simulation for later analysis. Instead, a

set of counters are used to keep track on the performance-critical information.

6.2.1 Naı̈ve Algorithm

Since the MP-critical path has a recursive definition, a naı̈ve algorithm uses execution

traces from simulation and back-tracks the execution path from the processing step. Such algorithm

can be used alongside with trace-based analysis tools [24, 44]. Starting from the step σP
i , the sim-

ulation traces can be used to back-track the immediate prior step Pre(σP
i ). The immediate prior

step is responsible for the lateness of the starting time of the step σP
i . The MP-critical path of the

processing step can be built up by recursively back-tracking until the immediate prior step is an

environment event σE , which could be the beginning of the execution σE
0 . The naı̈ve algorithm is

shown in Algorithm 10.

Although the naı̈ve trace-based algorithm allows the MP-critical path to be derived from

execution traces, the algorithm relies on complete simulation traces and post-simulation analysis.

Generating such traces is very expensive in term of both simulation speed and disk spaces. The

algorithm is not scalable for long simulation and may generate very long traces that are difficult
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Algorithm 10: Naı̈ve trace-based algorithm for finding an MP-critical path.
Input: Traces from all P, Target step σPv

iv

Output: LDP(σPv
iv )

LDP(σPv
iv ) = {σPv

iv }1

σP
i = σPv

iv2

while Pre(σP
i ) 6= σE do3

LDP(σPv
iv ) = LDP(σPv

iv )∪{Pre(σP
i )}4

σP
i = Pre(σP

i )5

end6

return LDP(σPv
iv )7

to analyze. Therefore, an iterative algorithm is present to derive the MP-critical path dynamically

during simulation that does not require generation of any traces.

6.2.2 Iterative Algorithm

The iterative algorithm comes from the definition that the MP-critical path of any step σP
i

is based on the MP-critical path of its immediate prior step Pre(σP
i ). When expanding the definition

of the MP-critical path LDP(σP
i ), the path includes the step σP

i itself and the MP-critical path of its

immediate prior step LDP(Pre(σP
i )). Therefore, the following definition can be used to iteratively

build up the MP-critical path in each step during simulation.

LDP(σP
i ) = {σP

i }∪LDP(Pre(σP
i ))

The algorithm used to keep track of the MP-critical path in each step dynamically during

simulation is shown in Algorithm 11. When each step starts, it copies the MP-critical path from its

immediate prior step and adds itself into the path. The immediate prior step can be an environment

event σE if the step is blocked by a read or a write from an empty input FIFO channel or a full

output FIFO channel.

Only the MP-critical path of the currently executing step in each program is needed to

be kept to determine the MP-critical path of the processing step at the end. The paths for other

steps are not kept since only the path of the interested processing step is important. Therefore, one
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Algorithm 11: Iterative algorithm for finding an MP-critical path.
Input: Target step σPv

iv

Output: LDP(σPv
iv )

forall program P do1

LDP(σP
0 ) = {σE

0 }2

end3

repeat4

foreach step σP
i starts do5

LDP(σP
i ) = {σP

i }∪LDP(Pre(σP
i ))6

end7

until σP
i violates a performance constraint8

return LDP(σP
i )9

MP-critical path of the currently executing step in each program is kept and the paths of those steps

that are finished are discarded.

The iterative algorithm allows the MP-critical path to be derived very efficiently in a sim-

ulation. In the experiments, the MP-critical path profiling using the iterative algorithm slows down

the simulation at most twice. Such overhead is reasonable and is in the same scale as traditional

software profiling. On the other hand, the trace generation needed for the naı̈ve algorithm slows

down the simulation more than ten times. Note that the algorithm only proposes how to trace the

MP-critical path during simulation and does not restrict the information that is kept for profiling.

Such profiling information depends on the design level of the optimizations being applied. For

optimizations that require more information being kept in the profiling results, addition simulation

overhead applies for additional calculation, memory accesses and I/O operations. However, there is

no reason to profile more information than those being used in the design optimizations.

6.3 Instruction-level Optimization

Information from the MP-critical path profiling can be used for design optimizations at

different design levels. In this thesis, three optimization techniques at instruction level, segment

level and program level are used to demonstrate the usefulness of the MP-critical path profiling

100



information. First, instruction-level optimization using custom instructions at Tensilica’s processors

is presented.

6.3.1 Custom Instruction

At the instruction level, statements in the programs are profiled and those that are exe-

cuted most frequently in the MP-critical path can be determined and are optimized. Custom instruc-

tions [162], hardware accelerators [63, 149] and library routines [122] are common techniques to

speed up software executions at this level. They provide speedups by replacing the hotspots with

faster executions using specific software or hardware. Since hotspot information for MPSoC is nec-

essary to apply these techniques, correctly identifying hotspot information in the programs is crucial

to optimize software in limited design time.

In this thesis, custom instructions added to the embedded processors are used. Tensilica’s

Xtensa LX2 processor with typical configurations is used in the experiments. This processor is

extensible such that custom instructions can be designed and integrated into the processor datapath

using Tensilica Instruction Extension language (TIE) [162]. These custom instructions improve the

performance by having more compact instructions that perform operations that normally requires

more instructions. Processors in the MPSoC design become heterogeneous by adding different

custom instructions into the processors. However, such design optimizations do not come for free.

Custom instructions add logics to the processor datapaths, which add area to the processors and may

impact the maximum processor frequencies if the processors become too large.

6.3.2 Experiment and Result

To allow instruction-level optimizations, instruction execution frequencies are profiled.

Specifically, execution frequency of each basic block is profiled. A basic block is a sequence of

instructions that has one entrance, one exit and does not contain any jump instructions or jump

targets.

Information from the traditional software profiling and the MP-critical path are compared

in a simulation that decodes one group of pictures of an MPEG-2 stream. Each group of pictures

contains half a second of video. Table 6.2 shows the execution frequencies of the statements in the

traditional software profiling and the MP-critical path. The frequencies of the 14 most frequently
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program line # profiling (%) LDP (%) diff (%)
Twritemb 299-300 9.96% 0.02% -99.80%
Tpredict 400-401 7.56% 14.66% +93.92%
Toutput 401-402 6.51% 0.71% -89.09%

Tidct 203-237 5.79% 10.51% +81.52%
Tpredict 382-390 5.48% 14.31% +161.13%

Tadd 266-268 5.30% 0.59% -88.87%
Tadd 278-285 4.59% 0.20% -95.64%

Tpredict 367-369 2.72% 5.07% +86.40%
Tpredict 338-339 2.17% 3.93% +81.11%
Tpredict 351-357 2.01% 5.28% +162.69%

Tidct 147-181 1.90% 3.79% +99.47%
Tpredict 296-299 1.87% 4.64% +148.13%

Table 6.2: Comparing instruction execution frequencies in traditional software profiling (profiling)
vs. MP-critical path (LDP).

executed statements in the traditional software profiling are used for comparison. These 14 state-

ments are responsible for more than 50% of the total execution time in both results. As shown in

the table, although some statements execute very frequently and take a long time to execute (i.e.

line 299-300 in Twritemb), the statements do not contribute to the MP-critical path. Optimizing

these statements does not provide any performance improvements in the MPSoC design. On the

other hand, some statements (i.e. line 382-390 in Tpredict) show to be more significant in the MP-

critical path. These statements are important in the MPSoC design and optimizing these statements

provides substantial performance improvements.

The overhead to keep track of the instruction execution frequencies in the MP-critical

path in each step dynamically during simulation increases the simulation time by about 70%. Such

overhead is comparable to traditional software profiling in single-processor simulation and several

times faster than generating simulation traces for off-line analysis.

Based on the hotspot information from both profiling results, software optimizations are

applied to the programs in the MPEG-2 Decoder design. Tensilica’s XPRES compiler [58] is used

to generate custom instructions for the most frequently executed statements. The XPRES compiler

is directed to optimize the statements according to the hotspot information from Table 6.2. The

default options are used to combine multiple instructions in the original programs into a lesser

number of complex instructions. Table 6.3 shows the speedups of the custom instructions on the
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statements used in the experiments. The generated custom instructions reduce the execution time

of the statements themselves by 36% to 55%. The table also shows the numbers of gates (area

overhead) required to implement the custom instructions.

# program line # gate runtime
1 Twritemb 299-300 12,683 -42%
2 Tpredict 400-401 7,421 -38%
3 Toutput 401-402 12,693 -37%
4 Tidct 203-237 27,295 -36%
5 Tpredict 382-390 8,727 -50%
6 Tadd 266-268 12,779 -42%
7 Tadd 278-285 5,356 -38%
8 Tpredict 351-357 8,247 -47%
9 Tpredict 367-369 5,218 -55%
10 Tpredict 296-299 4,747 -40%
11 Tpredict 338-339 4,927 -55%
12 Tidct 147-181 17,861 -47%

Table 6.3: Speedup for custom instructions in the basic blocks used in the experiments.

Performance improvements using the hotspot information from the traditional software

profiling and the MP-critical path are compared. For the traditional software profiling, the custom

instructions are applied in the order of execution frequencies shown in the column profiling in Table

6.2. For the MP-critical path, custom instructions are iteratively applied to the most frequently

executed statements shown in the MP-critical path. The total area for custom instructions is limited

to 90K gates.

The software optimization results are shown in Figure 6.2. Using the MP-critical path,

the important statements that can speed up the MPSoC design can be correctly determined. There-

fore, a performance improvement can be observed in every custom instruction applied. On the

other hand, traditional software profiling does not reveal the statements that are important in the

MPSoC design. With imprecise hotspot information, designers will waste their time optimizing

an unimportant part of the programs and can only discover later that the optimization shows very

little performance improvements in the simulation. As a result, the software optimization using the

MP-critical path information offers 50% better performance improvement than using the traditional

software profiling when the area overhead is limited to 90K gates. In the scenario where 10% per-

formance improvement is required to meet the performance constraints, custom instructions using
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Figure 6.2: Software optimization results with custom instructions using information from the MP-
critical path (LDP) and the traditional software profiling (profiling).

information from the MP-critical path take 16K gates, while custom instructions using information

from traditional software profiling take 69K gates. The MP-critical path analysis provides designers

correct hotspot information and allows designers to optimize the designs efficiently at instruction

level.

6.4 Segment-level Optimization

In program segment level, compiler code motion techniques that specifically improve

performance on MPSoC can be applied. In today’s compilation flow of KPN applications, each

program is compiled and optimized independently. During compilation of an individual program,

the compiler, built for single-processor program compilation, only applies code motions that benefit

the program on single-processor systems. Current compiler optimizations only consider the con-

ditions when the program is executed on a single processor without interference from outside the

program. These optimizations do not consider dependencies between the programs in the same de-

sign. Current compilers do not apply optimizations that can only be useful in MPSoC, nor do they

have enough information to apply the optimizations. Therefore, code motion techniques that can

only be useful in MPSoC are not implemented in the compilers.
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With the MP-critical path information, code motion techniques that benefit the overall

performance of the MPSoC design can be applied to the programs. In general, most optimiza-

tions that are used in single-processor compilers are also useful in MPSoC. However, some code

motion techniques that do not provide improvements on single-processor systems are actually use-

ful in MPSoC. Such techniques include specialized instruction reordering, loop restructuring and

function inlining. Although these techniques are commonly used in compiler optimizations, their

applications on MPSoC high-level optimizations are new and different from those have been done

before.

6.4.1 Instruction Reordering

The MPSoC code motion techniques proposed are mainly based on instruction scheduling

at higher level. Instruction scheduling is often used to improve instruction-level parallelism, such as

to reduce pipeline hazards in a superscalar processor [1] or to expose all functional units in a VLIW

processor [51, 62]. The proposed techniques extend instruction scheduling to MPSoC such that it

improves task-level parallelism for an application written in KPN. The instructions are reordered to

reduce the lengths of the critical code segments in the programs, therefore increase the parallelism

at the segment level. This is done before the programs are individually compiled with the target

compiler and –O2 optimizations.

A critical code segment is a segment in the MP-critical path where the sequence of in-

structions are in the same program. Each critical code segment begins with a read/write and also

ends with a read/write. As shown in the MP-critical path analysis, a segment always starts with a

program being unblocked, where the program is previously blocked because of a read or a write.

At the end of the segment, the program unblocks another program by a read or a write. Although a

critical code segment always starts and ends with reads or writes, without MP-critical path analysis

it is impossible to identify the critical code segments because both reads and writes can start and

end the segments and not all reads and writes start or end the segments.

Classification

To reorder the instructions using instruction scheduling, the instructions in a critical code

segment are first classified into one of the four classes: critical, prologue, epilogue and independent.

Critical instructions are instructions that have to be executed inside the segment. The prologue
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instructions are instructions that can be executed before or inside the critical code segment. The

epilogue instructions can be executed during or after the critical code segment. The independent

instructions can be moved independently from the critical code segment. Classifications of the

instructions provide directions on how the instructions should be moved in order to reduce the

length of the critical code segment. Note that instructions being classified also include other reads

and writes that are inside the critical code segments.

Figure 6.3: Classification of instructions in a critical code segment represented in a dataflow graph.
The code segment starts with in3 and ends with out1. Instructions are classified into one of the four
types: critical, prologue, epilogue and independent.

For dataflow statements, instructions can be classified with respect to a critical code seg-

ment using a dataflow graph. An example of the classification is shown in Figure 6.3. The example

has three inputs (labeled in1, in2 and in3) and two outputs (labeled out1 and out2). The critical

code segment begins with in3 and ends with out1. The critical instructions are those require the

input data from in3 and compute the output data for out1. Such critical instructions are labeled with

(critical) in the figure. Instructions that compute the output data for out1 but do not require the

input data from in3 are prologues (labeled with (prologue)). These instructions can be executed

before reading in3 and therefore can be moved outside the critical code segment. Instructions that

do not compute the output data for out1 but require the input data from in3 are epilogues (labeled

with (epilogue)). These instructions can be executed after writing out1 and therefore can also be
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moved outside the critical code segment. The remaining instructions that neither require the input

data from in3 nor compute the output data for out1 are independents (labeled with (independent))

and can be moved either before or after the critical code segment.

Specifically, the classification is defined as follows. An instruction s is considered to take

a set of inputs and compute a set of outputs, which denoted as in(s) and out(s). The transitive inputs

and outputs is denoted as

in∗ (s) = in(s)∪{s′| s′ ∈ in(t),∃t ∈ in∗ (s)}, and (6.1)

out ∗ (s) = out(s)∪{s′| s′ ∈ out(t),∃t ∈ out ∗ (s)}. (6.2)

The critical instructions from i to j are those in the intersection: in ∗ ( j)∩out ∗ (i). The prologues

are those in in∗ ( j)−out ∗ (i). The epilogues are those in out ∗ (i)− in∗ ( j). Independents are those

in ¬(in∗ ( j)∪out ∗ (i)). The algorithm for classification only requires simple breath-first searches

and set operations.

Reordering

Instructions are reordered such that the lengths of the critical segments are reduced. In-

structions are reordered in the following ways: instructions that are classified as prologues are

moved backward in the control-data flow graph before the read/write that begins the critical code

segment; instructions that are classified as epilogues or independents are moved forward after the

read/write that ends the segment. As a result, the instructions that are not critical are moved outside

the critical code segments, hence there are fewer instructions inside the segments.

The instruction reordering also allows instructions to be moved past simple control-flow

structures. When attempting to move an instruction forward beyond a branch, the instruction is

duplicated and applied to all the branch targets in the control paths. For a join, the instruction can

be moved beyond the join if the instruction can be moved forward from all the incoming branches.

The same principle applies for moving instructions backward over the control-flow structures.

Note that similar to other instruction scheduling algorithms, this instruction reordering

maintains the semantics of the programs. The instruction reordering is automatically done on the

programs in the static single assignment (SSA) form. Every variable is assigned exactly once and

there is only one version for each variable since it cannot be reassigned. Representing the programs

in SSA form allows simple and efficient implementation of the instruction reordering.
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Loop Restructuring

Figure 6.4: An example of loop restructuring that creates more freedom for instruction reordering.

An instruction cannot be moved beyond a loop because of the control dependencies. A

loop contains a backward branch which makes the instruction difficult to be moved through using

simple instruction reordering. As shown in the example in Figure 6.4, loops may need to be re-

structured to take advantage of the optimizations that use the MP-critical path information and code

motion techniques. In the example, the critical code segment starts in reading the input B and ends

in writing the output C. Without restructuring the loop, instructions inside the loop cannot be moved

outside the critical code segment (Figure 6.4(A)). By restructuring the loop into separate parts, in-

structions that only use A and those only compute D can be moved out from the segment (Figure

6.4(B)), hence reducing its length.

In the design optimizations, loops are simply unrolled to expose the opportunities for

instruction reordering. Loop unrolling is a common loop transformation technique that rewrites

the loop as a sequence of independent statements at the expense of increasing the code sizes. By

unrolling the loops, the maximum freedom is provided to the instruction reordering to move in-

structions forward and backward in the control-data flow graph, which allows the proposed design

optimizations to be applied more efficiently. Therefore, if the loop unrolling is enabled in the high-
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level optimization tool, loops are unrolled automatically if they are on the critical code segments,

and the unrolled loops are reverted if no benefit can be achieved.

Function Inlining

Similar to loops, instruction reordering also does not work well with functions. Although

using functions is a desirable programming practice in procedural programming, it obscures the

program analysis and instruction reordering. Because of the potential increase in complexity, most

optimization techniques do not consider optimizations across functions. For a function call inside

the critical code segment that is related to the input and output of the segment, the function call

cannot be moved outside the segment since the effects of the function call are not clear. Everything

that executes inside the function, regardless of whether it actually uses the input or computes the

output, remains inside the critical code segment. Interprocedural analysis is necessary to further

optimize the MPSoC design.

Function inlining is used to place all instructions inside the function on its caller such

that instructions can be freely reordered. A function normally takes more than one inputs and

computes more than one outputs. Not everything in the function is necessary to be in the critical

code segments. Hence the instructions originally in the function can be classified (into critical,

prologues, epilogues and independents) and reordered accordingly after inlining. Similar to loop

unrolling, function inlining increases the code sizes of the programs. Therefore, if function inlining

is enabled in the high-level optimization tool, functions are inlined automatically if they are on the

critical code segments, and the inlined functions are reverted if no benefit can be achieved.

6.4.2 Experiment and Result

To illustrate the benefits of instruction reordering with a control-data flow graph. the

IDCT component inside the MPEG-2 Decoder design is used to show how each optimization step

changes the performance and code size. The IDCT component is a major component that directly

affects the performance of the decoder. The IDCT component is based on the fast discrete cosine

transform algorithm in [52]. The component operates first on rows then on columns in an input

matrix. In the process network, three processes work on the rows (IDCT-ROW) and another three

work on the columns (IDCT-COL). All high-level optimizations are automatically applied. Each
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program is compiled independently using GCC with −O2 optimizations, in additional to the code

motions applied.

Figure 6.5: Instruction Classification in IDCT-COL.

The optimization techniques are illustrated using the IDCT-COL process (Figure 6.5). The

process transforms a column of eight data in the input matrix using a set of operations. Each of the

eight outputs (o1–o8 on the bottom) is computed using all eight inputs (i1–i8 on the top). In one

instance, the critical code segment starts in i7 and ends in o1. By restructuring the loops and inlining

the functions, enough freedom is provided to reorder the instructions. As shown in Figure 6.5, only

five out of 37 operations in the dataflow graph have to be placed inside the critical code segment.

Armed with this information, high-level optimizations can be applied to reorder the instructions

such that the lengths of the critical code segments are reduced.

Note that in a single-processor compiler, no such optimization would be applied because:

1. no MP-critical path information is available by analyzing only one program, and 2. the MPSoC

specific optimizations do not improve the performance in single-processor systems.

With such optimizations, the critical code segments are shortened and the performance

of the application is improved. Figure 6.6 shows the execution time and the total code sizes of the

programs after the optimizations. Forward and Backward are the results of instruction reordering

without loop restructuring or function inlining, where Forward only allows instruction to be moved
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Figure 6.6: Execution time and total code size results for instruction reordering. Forward only
moves instructions forward in a program. Backward only moves instruction backward. FW+BW
allows instructions to move both forward and backward, without loop restructuring or function inlin-
ing. Loop allows loop restructuring if the loops are inside the MP-critical path and help instruction
reordering. Inline does the same for function inlining. A tradeoff between execution time and total
code size is shown when more aggressive optimizations are applied.

forward in the control-data flow graph and Backward only allows instructions to be moved back-

ward without breaking down loops and functions. FW+BW allows instruction reordering to move

instructions both forward and backward. As shown in the figure, instruction reordering alone only
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provides limited performance improvements (<8%). These optimizations do not increase the total

code sizes because very limited code is added or duplicated. These optimizations can be consider

free and should be applied if the MP-critical path information is available.

To further improve the performance, a finer control on the instruction order is required.

Loop restructuring and function inlining provide instruction reordering more freedom to operate.

However, such transformations also increase the total code sizes, so they should be considered

only for critical code segments (i.e. those that lie on the MP-critical path). Restructuring loops

and inlining functions themselves also improve performance, but using them without the proposed

instruction reordering only provides minor improvements. Significant improvements are shown

only when they are used in conjunction with instruction reordering. By restructuring loops that

lie on the MP-critical path with instruction reordering (Loop), the performance improves by 26%

while the total code size increases by 22%. By inlining functions and unrolling loops that lie on

the MP-critical path with instruction reordering (Inline), the performance improves by 35% while

the total code size increases by 69%. There are obviously tradeoffs between performance and total

code size, which is expected in the optimizations. Loop restructuring and function inlining increase

the freedom to reorder instructions based on the MP-critical path information at the cost of larger

code sizes. Loop unrolling and function inlining by themselves do not improve the performance

appreciably. Only when these techniques are used alongside instruction reordering based on MP-

critical path would they achieve the dramatic improvements.

6.5 Process-level Optimization

Voltage Island is a design technique that runs parts of the implementation at different

voltages to obtain the desired power-frequency characteristics [87]. Due to the super-linearity of the

power-frequency characteristic, it is beneficial to run an instruction at a slower speed to reduce the

power consumption. When a processor is running at a lower voltage, both static and dynamic power

are reduced but the maximum frequency also decreases. The processor consumes less energy to

execute one instruction. Therefore, low voltage processors can be used to execute programs that are

less important for performance. Unlike Dynamic Voltage Scaling (DVS) [26, 75, 119], voltages of

the processors are not dynamically changeable during execution time. It is a compile-time decision

to determine the voltages in which the processors are running.
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At the program level, programs can map to the processors differently and the processors

can run in different voltages. Hence in the program level design optimization, the program mappings

and voltage assignments are determined. In voltage island, each processor runs on the same voltage.

Multiple programs mapped to the same processors are restricted to run in the same voltage. At the

same time, communication and interactions between the programs in the same processor can use

the local memory and do not require data transfers on the on-chip interconnect network, which is

significantly slower and consumes more power. For this optimization, the granularity for MP-critical

path analysis is at the program level. The design optimization technique uses the program-level MP-

critical path information to determine the desirable program mappings and voltage assignments.

6.5.1 Program Mapping and Voltage Assignment

Power optimizations have been commonly applied at transistor level [146] and circuit

level [164]. Most embedded processors support clock-gating as an energy-saving feature [7, 154].

Fine-grained clock-gating, which involves a small amount of gates, is usually automatic and does not

require user controls. A processor can also be coarsely clock-gated to disable all switching activities

in the processor when it is idle, except minimum logics to detect interrupts to bring the processor

back up. Such optimizations are orthogonal to system-level power optimizations described here,

which take system-level information into considerations.

With transistors scaling down, leakage power consumption becomes as significant as dy-

namic power consumption [20]. Simply cutting down switching activities alone can no longer

reduce enough power consumption especially when the processor is idle. Dynamic Power Manage-

ment (DPM) allows power-off of the processors such that no leakage or dynamic power is consumed.

In the experiments, the break-even time [16] policy is used in the implementations.

Dynamic Voltage Scaling (DVS) [26, 75, 119] allows processors to conserve power by

scaling the voltages to adapt to different workloads during execution. However, voltage scaling

overhead is so large that frequent scaling is neither performance nor energy efficient. Therefore,

DVS is considered as an extension of voltage island for different modes of operation that have dif-

ferent workloads, such as decoding video streams with different resolutions and framerates. Since

these mode changes happen very infrequently, voltage island assignments can be computed stati-

cally and then applied dynamically according to different operating modes.
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Current techniques on voltage island can only be applied to designs that are written as

task graphs with known execution time [91, 108]. However, embedded software cannot always be

converted into task graphs. In this thesis, KPN is considered, where each process is a sequential

program written in C language that communicates with other processes using FIFO channels.

The optimization goal here is to find an implementation (i.e. program mappings and volt-

age assignments) that minimizing the power consumption while satisfying the performance con-

straints. Power is consumed when executing an instruction, regardless of whether the instruction is

part of the MP-critical path. Hence, power consumption is the power consumption of every instruc-

tion executed and every data transferred over the on-chip interconnect network. The optimization

tries to minimize the power consumption of an implementation estimated by:

Min{Σi(wi× en(Vi))+

ΣiΣ j<i(Gi j× ti j×Eglobal}+
ΣiΣ j<i((1−Gi j)× ti j×Elocal)} (6.3)

where wi is the computation cycle in program i. Vi is the voltage of the processor that program

i maps to. en(Vi) is the energy per cycle for voltage Vi. Gi j is 1 when program i and program j

are mapped to different processors, and 0 otherwise. ti j is the amount of data transferred between

program i and program j. Eglobal and Elocal are energy consumption of each data transfer in the on-

chip network and a local bus, respectively. The first term of the equation represents the energy spent

on computation in the programs. The processors are switched off when there is no computation. The

second term is the energy spent on global communication over the on-chip interconnect network,

and the last term is the energy spent on local accesses for FIFO reads and writes.

With MP-critical path analysis, each program and FIFO channel may have, respectively,

a fraction of computation and a fraction of communication that lie on the MP-critical path. Per-

formance constraint requirements that the desired implementation must satisfy can be set. For the

MP-critical path captured, the performance constraint is

Maximum allowed time≥Σi(Ni×w@pathi× cyc(Vi))+

ΣiΣ j<i(Gi j× t@pathi j×L) (6.4)

where N is the number of programs in the processor which program i maps on. w@pathi is the

computation cycle in the path on program i. cyc(Vi) is the cycle time of the processor in voltage Vi.
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t@pathi j is the FIFO traffic in the path between program i and program j. L is the time for transfers

via the on-chip network.

6.5.2 Optimization Algorithm

The optimization algorithm determines the MPSoC implementation based on the infor-

mation about the overall computation (wi for each program and ti j between each pair of programs)

and the MP-critical path (w@pathi and t@pathi j from the MP-critical path analysis). Based on the

program-level information, the optimization algorithm is applied.

Algorithm 12: Greedy optimization algorithm to find program mappings and voltage

assignment using program-level MP-critical path information.

FIND IMPLEMENTATION()1

start with lowest power implementation2

repeat3

simulate and find the MP-critical path4

EXPAND()5

REDUCE()6

until performance constraints are satisfied7

Although the optimization problem can be solved using an Integer-Linear Programming

(ILP) solver, for scalability reason a greedy algorithm is proposed. The algorithm (Algorithm 12)

consists of mainly two steps: EXPAND() and REDUCE(). The algorithm starts with an implemen-

tation with the lowest possible power consumption, where all programs mapped to one processor

running at the lowest voltage. In EXPAND(), the algorithm gradually increases the voltages of the

processors and separates programs into processors (Algorithm 13) such that the constraints are satis-

fied. To minimize the power consumption while improving the performance, the change that allows

maximum performance improvement over energy increase (4per f ormance
4energy ) is chosen and applied.

Therefore, the implementation tries to give up the least power to meet the performance constraints.

After the first step, an implementation that satisfies the performance constraints without using too

much additional power is found.
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Algorithm 13: EXPAND method used in the greedy optimization algorithm in Al-

gorithm 12.

EXPAND()1

repeat2

forall processors do3

find current 4per f ormance
4energy for processor voltage ↑4

end5

forall programs do6

find current 4per f ormance
4energy for program separation7

end8

apply maximum 4per f ormance
4energy9

until current MP-critical path is satisfied10

Algorithm 14: REDUCE method used in the greedy optimization algorithm in Al-

gorithm 12.

REDUCE()1

for N times do2

forall processors do3

find current 4per f ormance
4energy for processor voltage ↓4

end5

forall programs do6

find current 4per f ormance
4energy for program custering7

end8

try minimum 4per f ormance
4energy , reject if a constraint violated9

end10

With EXPAND(), the implementation may be over-designed such that the voltages of

the processors are too high or the implementation is over-partitioned into too many processors. In

REDUCE() (Algorithm 14), the implementation is reduced such that the power consumption is

reduced without violating the constraints. Processor voltage decreases or program clusterings are
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tested in the order of their estimated impacts on the performance. For efficiency reason, only a

pre-defined number of N best candidates are tested. The algorithm is very efficient since it works

with the program-level information from simulation. Each inner iteration only takes linear time to

the size of the design. In the experiments, the optimization algorithm always takes less than one

second to complete.

6.5.3 Experiment and Result

Programs that have heavy computation workloads are not necessarily important for per-

formance. Importance for performance depends on the computations that lie on the MP-critical path

(critical cycles). The computation workload (in cycles) in each program for decoding one second of

an MPEG-2 stream and the corresponding critical cycles in the MP-critical path when the programs

are running at the same voltage in separate processors are shown in Table 6.4.

program computation(w) w@path fraction@path
Tadd 114.6 Mcyc 2.10 Mcyc 1.83%

Tdecmv 8.2 Mcyc 0.0 Mcyc 0.00%
Thdr 0.10 Mcyc 0.004 Mcyc 4.23%
Tidct 152.6 Mcyc 100.4 Mcyc 65.78%
Tisiq 39.8 Mcyc 0.03 Mcyc 0.07%

Toutput 86.1 Mcyc 1.55 Mcyc 1.81%
Tpredict 207.2 Mcyc 186.9 Mcyc 90.23%

Tvld 83.0 Mcyc 0.01 Mcyc 0.01%
Twritemb 94.9 Mcyc 0.09 Mcyc 0.09%

Table 6.4: Comparing program-level importance in computation workloads (computation) vs critical
cycles (w@path). Percentage of the computation workload in each program that lies on the MP-
critical path is shown in fraction@path.

The table shows that the computation workloads and the critical cycles can be very dif-

ferent in each program. Although the computation workloads for the Tadd and Tidct programs are

similar, they are represented very differently in the MP-critical path. Less than 2% of the computa-

tion workload in the Tadd program lies on the MP-critical path, while more than 65% in the Tidct

program lies on the path. Therefore, it is more important for the Tidct program to run at a higher

voltage than the Tadd program. By exploring such differences, the power consumption can be re-

duced while satisfying the performance constraints using voltage islands. As shown in the results,
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determining an implementation without considering MP-critical path information and solely based

on computation workloads leads to low quality implementations.
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Figure 6.7: Power consumption of implementations with different program mappings and volt-
age assignments. Experiments are done on decoding an MPEG-2 stream with different framerate
requirements.

Figure 6.7 shows the power consumption of the implementations using the MP-critical

path information comparing and other approaches without using the information. Without the MP-

critical path information, implementations can only base on more observable information, such as

the computation workload in each program. Note that existing techniques for task graphs [91, 108]

cannot apply here because no dependency information is available. Other reasonable implemen-

tations using computation workloads are used here for comparison. 1uP is a single-processor im-

plementation where the processor voltage is set to be just high enough to meet the performance

constraints. The voltage is found using multiple simulations and changing the voltage with binary-

search until a minimum voltage that meets the performance constraints is found. 9uP no VI is an

implementation where each program is mapped to individual processors running at the same volt-

age just high enough to meet the performance constraints. 9uP VI have separate voltage islands for

each processors and the voltages are scaled such that the processor frequencies are proportional to

the computation workloads, which are the only performance-indicating number available without

MP-critical path information. 4uP MC VI and 3uP MC VI are 4-processor and 3-processor im-

plementations where the program mappings are based solely on min-cut to minimize the overall
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on-chip communication. Voltages are scaled based on the computation workloads. 4uP LB VI and

3uP LB VI are implementations where the program mappings are based solely on load-balancing

to balance the computation workloads in the processors. The results using the program-level MP-

critical path information and the greedy algorithm are shown with Greedy, and the optimal solutions

using ILP solver are shown with ILP (opt).

The performance requirements are set to decode an MPEG-2 streams of different fram-

erates (from 15fps to 30fps). The higher the framerate, the tighter the performance constraints and

the higher the voltages required in the processors. As shown in the figure, the power consump-

tion of the greedy solutions are at least 30% better than other approaches across different framerate

requirements of the MPEG-2 Decoder design. This is because the MP-critical path information

provides more accurate information about the importance of each program in performance. The al-

gorithm determines an implementation with a good combination of program mappings and voltage

assignments such that the performance constraints are satisfied without using too much power.

Figure 6.8: Implementation of the MPEG-2 Decoder with framerate requirement of 20fps.

The implementation for the framerate requirement of 20fps found using the greedy algo-

rithm is shown in Figure 6.8. The programs are mapped to five processors. Each shaded box in

the figure represents multiple programs running on one processor at the specified frequency. Those

without boxes are running on separate processors at the specified frequencies. As shown in the

implementation, the Tpredict and Tidct programs, which represent almost all the MP-critical path

found, are running at higher frequencies. The Tisiq, Tidct and Tadd programs are mapped to the

same processor because there are heavy communication traffics between them. Mapping them to

the same processor conserves power by reducing the traffics on the on-chip interconnect network,
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although such mapping requires the processor to run at a higher frequency. On the other hand, Tpre-

dict, Tadd and Twritemb are running in separate processors even with heavy communication traffics

between them. This is because mapping them together in the same processor would require a much

faster processor, which offset the energy saving on the on-chip interconnect network.

The greedy results are compared to the optimal ILP solutions of the same models. With

the problem setting and constraints, there are more than 1936 constraints and 238 variables even

though there are only 9 programs. The ILP problems are solved using the GNU Linear Program-

ming Kit (GLPK) [57]. When comparing to the optimal solutions found in the ILP solver, the

implementations found using the greedy algorithm consume slightly more power than the optimal

solutions. However, the ILP approach is not scalable and is not applicable for more complicated

designs. The number of constraints and variables scale in the order of O(n3) where n is the num-

ber of programs, and the complexity of the ILP problem scales exponentially with the number of

constraints and variables. In the experiments, the ILP solver takes hours and days to find the so-

lutions, while the greedy algorithm takes less than a minute including the simulation time to find

the MP-critical path. Such results show that the design optimization technique is very good in find-

ing power-efficient implementations using program mappings and voltage assignments at program

level.
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Chapter 7

Conclusion

In this thesis, I explained the benefits of using Kahn Process Network (KPN) in designing

Multiprocessor System-on-a-Chip (MPSoC). KPN provides programming freedom in the software

that is crucial for the success of MPSoC designs. To allow software and hardware design space

exploration and design optimizations of an MPSoC design based on KPN, a profile-based optimiza-

tion methodology was used. Fast and accurate MPSoC simulation and MPSoC-specific profiling

information were two key elements in the methodology.

For fast and accurate multiprocessor system simulation, a simulation framework based on

compile-code simulation was proposed. Since the software is the focus in MPSoC, the simulation

model generator automatically generates software simulation models with accurate timing delays.

The timing delay estimation is based on instruction-level information of the software programs in

the target compiler, while accurately considering compiler optimizations and memory accesses. To

further improve the performance of compile-code simulation, a simulation reordering technique was

proposed to simulate the design in a non-chronological order. Our study shows that we can obtain

performance results with less than 1% error for individual programs and 5% error for the overall

MPSoC simulation. The simulation speed is more than 1000X faster than using Instruction Set

Simulators (ISS).

For design space exploration, I defined an MP-critical path as the execution path that is

important for performance in an MPSoC implementation. The MP-critical path correctly identifies

the hotspots for efficient design optimizations in MPSoC. With such information, design optimiza-

tions at different design levels can be applied efficiently to optimize the implementations. Several
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optimization techniques at instruction level, segment level and program level were used to demon-

strate the usefulness of the MP-critical path information.
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