
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Dynamic self-efficacy as a computational mechanism of mania emergence

Permalink
https://escholarship.org/uc/item/78m0779f

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Li, Jing
Radulescu, Angela

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78m0779f
https://escholarship.org
http://www.cdlib.org/


Dynamic self-efficacy as a computational mechanism of mania emergence
Jing Li (jing.li@icahn.mssm.edu)

Angela Radulescu (angela.radulescu@mssm.edu)
Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Abstract
Abstract: Bipolar disorder (BD) is a mental health con-
dition characterized by large fluctuations in goal-directed
energy and mood. BD is defined by the presence of at least
one lifetime episode of mania, a prolonged period of ex-
cessive goal-directed behavior, hyperactivity and elevated
mood. Previous computational models of BD have pri-
marily focused on explaining mood fluctuations in mania,
placing less emphasis on goal-directed symptoms. In this
work, we use reinforcement learning (RL), a principled
model of goal-directed behavior and learning, to show
how augmenting RL agents with dynamic self-efficacy be-
liefs can give rise to goal-directed and mood symptoms
characteristic of the mania phase of BD. Our simula-
tions demonstrate that a model-free RL agent that dy-
namically updates its self-efficacy beliefs learns optimistic
overgeneralized value representations. We suggest that
these representations may underlie several behaviors as-
sociated with mania, such as increased motivational drive
and faster initiation of approach behavior (i.e. impa-
tience). We further show that agents with more sensitive
self-efficacy beliefs display increased willingness to exert
effort in order to achieve higher goals even in the face of
costs, a characteristic that is observed in individuals at
risk for BD. Finally, unrealistically high self-efficacy be-
liefs that emerged with learning were accompanied by be-
haviors such as distractibility and compulsive action se-
lection that have clinical parallels to symptoms of mania.

Keywords: self-efficacy; computational psychiatry; rein-
forcement learning; bipolar disorder; mania

Introduction
Bipolar disorder (BD) encompasses manic and depressive
episodes, interspersed with phases of stable energy levels and
mood (Goodwin & Jamison, 2007). The hallmark of BD is
the lifetime occurence of at least one episode of mania, a pe-
riod marked by increase in activity and energy, an escalation
in goal directed behavior, and an unusually intense and per-
sistent elevation in mood (American Psychiatric Association,
2013). Recent updates to diagnostic criteria emphasize a gen-
eral increase in goal-directed behavior and energy as a key
behavioral marker of mania (Mason et al., 2016). And cog-
nitive models of mania suggest a dynamic process by which
surges in confidence, along with consistently high ambitions,
can lead to excessive goal pursuit, which eventually spirals
into mania (Johnson, 2005).

One way to interpret increased goal-directed behavior in
mania is through the lens of self-efficacy. Previous theoreti-
cal work has demonstrated how lowered levels of self-efficacy

can result in impaired goal-pursuit behaviors (Zorowitz et al.,
2020). Self-efficacy, defined as one’s belief in the capacity
to execute actions that achieve desired outcomes, is an adap-
tive trait that is continuously shaped through performance ac-
complishments, vicarious experience, social persuasion and
physiological signals (Bandura, 1997). For instance, a novice
cook begins by making simple dishes. Each culinary success
enhances their belief in their cooking abilities. Over time, as
they master more complex recipes, their self-efficacy in the
kitchen grows, leading to the confidence to experiment and
create new dishes. This belief in their capabilities drives them
to take on greater culinary challenges, fostering a cycle of
continuous learning and skill development. Consistent with
Bandura’s theory, the relationship between self-efficacy and
performance has been empirically supported, showing that
higher levels of self-efficacy are associated with better task
performance (Themanson & Rosen, 2015).

In the case of mania, the pursuit of goals appears to be dys-
regulated (Johnson, 2005) and is often coupled with grandios-
ity – an exaggerated sense of self-importance and personal
capabilities (Kendler, 2017). This pattern results in unreal-
istic self-assessment, and grandiose beliefs that persist even
when they are contradicted by reality (APA, 2013). Such be-
liefs often lead to behaviors that may result in severe con-
sequences for the individual. Johnson (2005) noted that af-
ter experiencing initial success, individuals with BD showed
larger increases in confidence, and that individuals at risks of
mania are more likely to expect more successes after small
ones. Moreover, life events, especially those that are per-
ceived as successes, have been shown to predict the onset of
manic episodes (Johnson et al., 2012).

These findings led us to hypothesize that when the process
of interpreting information from feedback regarding one’s
self-efficacy is altered, behaviors similar to those observed
in mania might emerge through repeated experience with the
environment. To test our hypothesis, we turned to reinforce-
ment learning (RL), a computational framework widely used
to study goal-directed behavior.

Model
Recent work in computational psychiatry has suggested that a
behavioral consequence of low self-efficacy is extreme avoid-
ance in the face of threats and withdrawal from approaching
rewarding states (Zorowitz et al., 2020). This work provides
a computational foundation for modeling the effect of self-
efficacy representations on learning and behavior.

Here, we model the dynamics of self-efficacy in response
to feedback from the external environment. We introduce a
learning rule that updates self-efficacy in appraisal of mov-
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ing closer to a goal (Bandura, 1997). We propose that self-
efficacy — defined as the belief that achieving a goal now is
more likely to lead to achieving goals in the future — is a
dynamic attribute, continuously shaped by action outcomes.

Q-Learning with dynamic self-efficacy
We implemented a model-free Q-learning agent that learns
in sequential grid-world environments (Dulberg et al., 2023;
Gagne & Dayan, 2022; Zorowitz et al., 2020). This set-up en-
abled us to study how changes in self-efficacy affect reward
backpropagation across states as the agent interacts with the
environment. In our model, reward prediction errors (RPEs)
— the discrepancy between expected and actual action out-
comes — serve as direct feedback for the appraisal of per-
formance accomplishment. This aligns with the insight that
enactive mastery of experiences is a critical source of efficacy
information because it is the most direct way for the agent to
learn self-efficacy beliefs based on its successes and failures
(Bandura, 1997).

The agent selects actions via a softmax policy (inverse tem-
perature = 1), which probabilistically chooses actions in pro-
portion to their value estimates:

π(at) =
eQ(st ,at )

∑a eQ(st ,a)
(1)

After the agent takes an action, the reward prediction error
(RPE) is computed as:

δt = Rt+1 + γ ·wt ·maxQ(st+1,at+1)−Q(st ,at) (2)

The self-efficacy belief, wt , scales the highest possible
future expected reward contingent on action, reflecting the
agent’s belief that it can successfully select the best action in
the immediate future.

Reward prediction errors serve as the critical signal for up-
dating both the action values and the self-efficacy parameter:

Q(st ,at)← Q(st ,at)+α ·δt (3)
wt+1 = wt +wLR+ ·δt (4)

The reward learning rate α indexes how quickly value es-
timates should be updated based on error.

And the self-efficacy learning rate, wLR+, quantifies how
sensitive the agent’s beliefs about its own self-efficacy are to
positive RPEs, which in a sequential setting can be interpreted
as a signal of successfully approaching a goal.

In the next section we detail the structure of the learning
environments and the parameters of the agents we trained in
each simulation.

Environments
To formalize our hypothesis that the emergence of mania
symptoms could be driven by larger updates in self-efficacy,
we defined two distinct simulation environments based on a
standard deterministic grid-world RL set-up.

Grid-world 1: single goal state In the first environment
(Fig. 1 and Fig. 3), the agent starts at the top left location
(0,0) and must reach a rewarding terminal state at the bot-
tom right position (9,9). In each state, the agent can either
move up, down, left or right. The reward is +1 at the terminal
state and 0 everywhere else in the grid-world. To discour-
age the agent from straying off the grid, a penalty of -0.5 is
imposed for such actions. The agent’s training consisted of
200 episodes, each with up to 200 steps (each step represents
an action was taken), unless the terminal state was reached
sooner, concluding the episode.

Grid-world 2: two goal states with costs In the second
environment (Fig. 2), the agent starts from state (4,0), and
the two rewarding terminal states are (0,9) and (9,9). The top
right terminal state (0,9) results in a reward of 1.5, while the
bottom right terminal state (9, 9) yields a reward of 4. Navi-
gating to the latter, more lucrative, terminal state requires the
agent to move through two costly preceding states that result
in a cost of -2. This set-up allowed to ask under what con-
ditions would the agent exert more effort to get to the more
rewarding state, despite the additional cost. To accommodate
for learning in this more complex environment, we extended
the training to 350 episodes, maintaining the maximum of
200 steps per episode.

Fixed agent parameters All agents have the same reward-
ing learning rate of α = 0.6, and a discount factor of γ = 0.9.
The agent’s action policy is softmax with an inverse temper-
ature of 1, and there is a 0.001 chance that the agent will ran-
domly select from the four actions to encourage exploration.

Results
Positive overgeneralization

Using the single goal state environment, we first tested how
different learning rates rates for self-efficacy impact the un-
derlying value representation. We repeated the simulation
for three different agents with the self-efficacy learning rate
wLR+ fixed at 0.0, 0.0001, and 0.00015 respectively.

As expected, the three agents acquired different levels of
self-efficacy at the end of training, with higher learning rates
leading to higher self-efficacy levels (Fig. 1A). To assess how
self-efficacy learning rates affect the propagation of rewards
in the environment, we examined the learned value represen-
tation of the environment after training. We found that for
agents that update self-efficacy more quickly, the reward at
the terminal states backpropagates to states closer to the start
state (Fig. 1B); and the overall value of all states is higher
(Fig. 1C). In other words, agents with more sensitive self-
efficacy beliefs develop optimistic overgeneralized future re-
ward expectations.

This prediction of the model is consistent with the find-
ing that individuals with BD often exhibit a significant boost
in confidence that extends beyond specific positive events to
wider areas of their life, particularly following initial suc-

2325



Figure 1: Positive overgeneralization in agents with dynamic self-efficacy. A) Agents with different self-efficacy learning
rates (left, static; middle, wLR+ = 0.0001; right, wLR+ = 0.00015) reach different levels of self-efficacy after learning the grid-
world environment. B) Agents with higher self-efficacy learning rates learn to place greater values for states closer to the start
position. C) 3-D representations of the learned best action value maps. D) Positive RPEs during the training process are denser
and higher for agents with more sensitive self-efficacy learning rates.

cesses (Johnson, 2005; Johnson et al., 2012). Moreover,
people diagnosed with BD often demonstrate a bias towards
overly optimistic self-assessment and evaluation of their emo-
tional states (Jones et al., 2006). Notably, there are some data
to suggest that among individuals at risk for BD, higher pos-
itive overgeneralization predicts elevated hypomanic symp-
toms (Stange et al., 2012).

Our simulations also show that as self-efficacy learning
rates increase, actions leading towards the goal from equiv-
alent states have higher value for agents that more quickly
update self-efficacy beliefs. Behaviorally, this implies that
agents with higher self-efficacy learning rates will consis-
tently show faster response times (i.e. be more impatient)
during goal pursuit. This feature of mania has been noted
in clinical research emphasizing that people with BD display
elevated drive to accomplish goals (Johnson, 2005) and com-
plete task with rewards faster than healthy controls (Hayden
et al., 2008).

The higher overall value across all states also predicts that
larger self-efficacy updates should result in more effort in ap-
proaching a goal (Frömer et al., 2021). Previous theoreti-
cal work has considered weighing the cost of exerting effort
against the payoffs of completing a task as a cost-benefit anal-
ysis (Shenhav et al., 2013), suggesting that people will ex-
pend more effort if the potential payoff is high. Thus, the
overgeneralized optimistic value representations in our sim-
ulations imply that higher self-efficacy learning rates should
result in expending more effort to approach a goal, a predic-
tion consistent with the observation that people prone to ma-
nia will expend more effort toward reward pursuit (Johnson
et al., 2012).

Finally, we examined the reward prediction errors during
the learning process and observed that agents with higher
learning rates on self-efficacy “experienced” denser positive
RPEs at larger values (Fig. 1D). Previous work modeling
mood has suggested recency-weighted RPEs as a driver of
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mood (Eldar & Niv, 2015). In the context of our simulations,
this would indicate more prolonged and higher positive mood
increases for agents with more sensitive self-efficacy beliefs.

More willingness to pursue difficult-to-obtain goals

Using the two goal state environment with costs, we next
examined how different levels of self-efficacy learning rates
would impact the agent’s willingness to approach goals with
low reward/no cost versus goals with high reward/high cost.
We repeated the simulation for three different agents with the
self-efficacy learning rate wLR+ fixed at 0.0, 0.00005, and
0.00008 respectively. The self-efficacy learning rates were
adjusted to accommodate the enriched rewards in the more
complex environment.

As expected, agents with higher self-efficacy learning rates
acquired higher levels of self-efficacy at the end of training
(Fig. 2A). At a self-efficacy learning rate of 0, the agent
learned to move towards either of the two rewarding termi-
nal states, indicated by the learned best actions in each state
(Fig. 2C). However, as the self-efficacy learning rate in-
creased, the agent showed a stronger tendency to approach
the bottom right terminal state with a higher reward, despite
the cost to-be-incurred in one of the preceding adjacent states.
Upon examining the representation of the best action values
at two states equidistant to both goals, (0,6) and (9,6), we
found that the action leading towards the bottom right termi-
nal state acquired higher value when the self-efficacy learning
rate is higher (Fig. 2B). This result implies that with a higher
self-efficacy learning rate, the agent is more willing to pursue
goals with higher rewards, despite increased cost.

These results align with the finding that individuals with
vulnerability to hypomania may be more likely to pursue
more difficult goals (Johnson, 2005) and people with BD re-
main engaged in pursuing rewards longer as the tasks became
more difficult (Harmon-Jones et al., 2008). Moreover, the in-
creased difference between the value representations of the
two goal states also suggests increased willingness to expend
effort towards the more difficult goal, a trait consistently re-
lated to BD (Johnson et al., 2012).

Emergence of extreme value attractors

We conducted an exploratory analysis and further increased
the learning rate of self-efficacy in the single goal-state en-
vironment. This adjustment was informed by clinical litera-
ture, particularly Johnson et al. (2005), which demonstrates
that individuals at risk for mania tend to experience a signif-
icant boost in confidence and set higher goals following ini-
tial successes. We asked if a larger increase in self-efficacy
in response to successes will lead to other aspects of mania
symptoms not observed at lower levels of self-efficacy learn-
ing rates. We found that self-efficacy beliefs display stepwise
dynamics. When the self-efficacy learning rate was increased
to 0.0002, a tipping point in the self-efficacy level was ob-
served, such that late in training self-efficacy rapidly esca-
lated to its artificial limit (Fig. 3A).

This stepwise increase in self-efficacy was related to the
emergence of attractors in the value function. Initially, the
reward backpropagation from the terminal state followed the
expected Q-learning convergence pattern, with action values
being highest near the terminal state and gradually becom-
ing lower closer to the start state (Fig. 3B). However, as the
training continued, an unexpected shift occurred in the peak
value of the learned value representation. This peak gradually
moved from the vicinity of the terminal state to more distant
locations (Fig. 3C-D).

This shift continued (Fig. 3E-F) until the learned best ac-
tions formed a closed loop around the states with peak values
of the learned value map (Fig. 3G). This loop entrapped the
agent moving within a cycle of states with extremely high
values, resulting in a rapid escalation of self-efficacy and ex-
tremely high action value representations in states far from
the goal state.

Taken together, the rapid escalation of self-efficacy levels,
the emergence of attractor-like value representations, and the
consequent behavioral patterns have interesting parallels to
certain aspects of mania. The extreme values of the self-
efficacy beliefs can be interpreted as grandiosity, an exagger-
ated representation of personal capabilities (Kendler, 2017).
The quick shifts in peak value representations during training
can be likened to distractibility, a common clinical feature of
mania (APA, 2013). Finally, the simulation revealed a rep-
resentation of overly high values in a selective small number
of states, leading to a limited set of repetitive actions that are
qualitatively similar to compulsive behaviors (Kesebir et al.,
2012).

Discussion
This study aimed to formalize the hypothesis that a higher
sensitivity of self-efficacy beliefs to goal-directed feedback
could provide a mechanism for the emergence of mania
in bipolar disorders. We proposed a computational model
based on reinforcement learning that augments model-free
RL agents with dynamic self-efficacy beliefs. In our model,
self-efficacy is continuously updated based on reward predic-
tion errors (RPEs), which provide a direct signal of goal at-
tainment. Informed by clinical literature showing that indi-
viduals at risk for mania demonstrate greater increase in con-
fidence (Johnson, 2005), we varied the level of self-efficacy
learning rates in response to successes and showed that higher
sensitivity of self-efficacy beliefs can give rise to several cog-
nitive and behavioral features observed in mania, including:
optimistic overgeneralization of reward expectations; conse-
quent increased drive and motivation for pursuing goals; im-
patience in pursuing goals; and an increased tendency to ex-
ert effort in pursuit of higher and more difficult to attain goals
(APA, 2013; Stange et al., 2012; Johnson et al., 2017).

Exploratory simulations showed that an extremely high
level of self-efficacy akin to grandiosity can emerge as a re-
sult of stepwise dynamics in self-efficacy beliefs. This sud-
den increase in self-efficacy was accompanied by rapid shifts
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Figure 2: Increased willingness to approach the more difficult goal with higher self-efficacy levels. A) Agents with different
levels of self-efficacy learning rates acquired different levels of self-efficacy after training (left, static; middle, wLR+ = 0.00005;
right, wLR+ = 0.00008). B) The difference between the best action value in two states, (0,6) and (9,6), which are equidistant
from the two terminal states, increases as self-efficacy learning rates increase (states (0,6) and (9,6) are highlighted in blue
boxes in Fig. 2C). C) The agent with static self-efficacy (w = 1) learns to approach both terminal states with different reward
levels (top right terminal state has a reward value of 1.5; bottom right terminal state has a reward value of 4 and is surrounded
by states with a cost of -2). Each arrow represents the learned best action in that state. The red arrow denotes the general
tendency of the agent to approach either the top or bottom state.

in peak value representations, as well as a qualitative change
in the agent’s policy. The resulting policy was characterized
by a narrow set of closed-cycle repetitive actions that mirror
compulsive behavior observed in mania.

One open question is under what conditions dynamic self-
efficacy could be adaptive. The self-efficacy parameter in our
model acts as a multiplier over the valuation of future action
values in addition to the discount factor. As the agent ex-
periences positive outcomes, increased self-efficacy leads to
higher expectations for future rewards, effectively accelerat-
ing and amplifying the backpropagation of the value of future
events.

Through repeated practice and experience, humans en-
hance their skills, allowing for more efficient task perfor-
mance with improved outcomes. An optimal update of self-
efficacy as skills improve may be advantageous because: 1)
it sets higher expectations of future rewards, thus fueling mo-
tivation to achieve more, and 2) it aids in prioritizing accom-

plishment of high-reward options, allowing the allocation of
more resources towards endeavors that are more rewarding,
albeit more effortful and costly.

Intriguingly, Johnson (2005) noted that individuals with a
history of manic or hypomanic episodes often achieve higher
socioeconomic status and report greater creative, educational,
and occupational attainments despite the disruptive symp-
toms of the condition. This is consistent with the possibil-
ity that while an optimal level of self-efficacy update could
be adaptive, individuals at risk for mania may have more
sensitive self-efficacy beliefs. Whether such heightened sen-
sitivity in self-efficacy beliefs could emerge through early-
life experience is an open question (Harhen & Bornstein,
2024). Finally, we draw connections to the literature on in-
trinsic rewards. Chew, Blain, Dolan, and Rutledge (2021)
showed that skill mastery is intrinsically rewarding and sig-
nificantly contributes to affective dynamics. The design of
our model, which integrates self-efficacy and value functions,
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Figure 3: Attractor-like states emerge as the self-efficacy learning rate increases (wLR+ = 0.0002). A) Self-efficacy levels
steadily increase until reaching an inflection point and then exponentially grow to the artificial limit. Each red dot represents
a time point when value maps shown in B-G emerge. B-G) At a high self-efficacy learning rate, higher state values around
the rewarding terminal state transfer to other non-terminal states (C-D) and then shift again to new locations (E-F) which
eventually collapse to an attractor-like state (G) where the agent is ’trapped’, exponentially increasing the self-efficacy level
and state values as it repeats its actions within attractor-like neighboring states. The arrows in the gridworld represent the
learned best action in each state.

can be interpreted as a reward function which couples extrin-
sic and intrinsic rewards. Higher self-efficacy leads to greater
valuation of actions, while successful action outcomes fur-
ther enhance self-efficacy levels. The agent in our dynamic
self-efficacy model maximizes a reward signal that encom-
passes both intrinsic rewards such as satisfaction from mas-
tery and extrinsic rewards such as tangible outcomes. Simi-
lar designs have been proposed in machine learning, where
intrinsically-motivated RL systems have been designed to
create autonomous agents capable of solving wide ranges of
complex problems (Aubret et al., 2019; Barto, 2013).

Related Work

Several researchers have examined the relationship between
efficacy and exertion of effort in pursuit of desired out-
comes using the Expected Value of Control (EVC) framework
(Shenhav et al., 2021). EVC defines efficacy through the lens
of control. In this view, one’s efficacy is composed of con-
trol efficacy – the extent to which higher levels of control
translate into better performance; and performance efficacy –
the extent to which better performance can translate into bet-
ter outcomes. Experimental tests of EVC theory showed that
people dynamically update expectations of their performance
efficacy based on feedback (Grahek et al., 2023).

In our model, self-efficacy is an independent construct,
such that an agent can represent how well they can accom-
plish a task without first considering how much effort they
need to put in for control. Rather than using past efficacy
estimates to update beliefs, the agent uses reward prediction
errors (RPEs) as the main input for updating self-efficacy. In
this way, self-efficacy beliefs arise directly through the ap-
praisal of goal attainment, allowing us to test how beliefs
about self-efficacy are shaped through the interplay of the
agent’s actions with feedback from the environment.

Limitations and future directions
Although our simulations provide meaningful insights, they
significantly differ from human contexts. Additionally, while
our model can explain some core symptoms of mania as dis-
cussed above, it does not account for all symptoms of mania,
such as pressured speech, decreased need for sleep or racing
thoughts. Future work will seek to expand the model to en-
compass other symptoms associated with mania and test the
model predictions using empirical data from human studies.
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