
UC Davis
UC Davis Previously Published Works

Title
Supervised and unsupervised machine learning for automated scoring of sleep-wake 
and cataplexy in a mouse model of narcolepsy.

Permalink
https://escholarship.org/uc/item/78p1774r

Journal
SLEEP, 43(5)

Authors
Exarchos, Ioannis
Rogers, Anna
Aiani, Lauren
et al.

Publication Date
2020-05-12

DOI
10.1093/sleep/zsz272
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/78p1774r
https://escholarship.org/uc/item/78p1774r#author
https://escholarship.org
http://www.cdlib.org/


1

Submitted: 22 July, 2019; Revised: 9 October, 2019

© Sleep Research Society 2019. Published by Oxford University Press on behalf of the Sleep Research Society. 
All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

Original Article

Supervised and unsupervised machine learning for 

automated scoring of sleep–wake and cataplexy in a 

mouse model of narcolepsy
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Abstract
Despite commercial availability of software to facilitate sleep–wake scoring of electroencephalography (EEG) and electromyography 
(EMG) in animals, automated scoring of rodent models of abnormal sleep, such as narcolepsy with cataplexy, has remained elusive. 
We optimize two machine-learning approaches, supervised and unsupervised, for automated scoring of behavioral states in orexin/
ataxin-3 transgenic mice, a validated model of narcolepsy type 1, and additionally test them on wild-type mice. The supervised 
learning approach uses previously labeled data to facilitate training of a classifier for sleep states, whereas the unsupervised 
approach aims to discover latent structure and similarities in unlabeled data from which sleep stages are inferred. For the 
supervised approach, we employ a deep convolutional neural network architecture that is trained on expert-labeled segments of 
wake, non-REM sleep, and REM sleep in EEG/EMG time series data. The resulting trained classifier is then used to infer on the labels 
of previously unseen data. For the unsupervised approach, we leverage data dimensionality reduction and clustering techniques. 
Both approaches successfully score EEG/EMG data, achieving mean accuracies of 95% and 91%, respectively, in narcoleptic mice, and 
accuracies of 93% and 89%, respectively, in wild-type mice. Notably, the supervised approach generalized well on previously unseen 
data from the same animals on which it was trained but exhibited lower performance on animals not present in the training 
data due to inter-subject variability. Cataplexy is scored with a sensitivity of 85% and 57% using the supervised and unsupervised 
approaches, respectively, when compared to manual scoring, and the specificity exceeds 99% in both cases.
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Statement of Significance

This is, to the best of our knowledge, the first set of algorithms created to specifically identify pathological sleep in narcoleptic mice. 
Currently available sleep-scoring algorithms are trained on wild-type animals with normal sleep/wake behavior and exhibit low accuracies 
for scoring pathological sleep. Our supervised and unsupervised classifiers provide valuable tools that can greatly facilitate and expedite 
behavioral-state-scoring in narcoleptic mice. Both methods successfully score EEG/EMG data and can be manually corrected as necessary. 
All algorithms implemented in this work (including example datasets) can be made available upon request.
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Introduction

Narcolepsy type 1 (narcolepsy with cataplexy, NT1) is a neuro-
logical disorder characterized by sleep–wake fragmentation, in-
trusion of rapid-eye-movement sleep (REMS) during wake, and 
cataplexy—an abrupt loss of muscle tone typically triggered 
by strong emotion. Narcolepsy with cataplexy results from an 
autoimmune-mediated loss of orexin/hypocretin neurons in the 
hypothalamus, affecting about 1:2000 people at any age. There 
is no cure for narcolepsy and morbidity results from excessive 
daytime sleepiness, nocturnal sleep disturbance, cataplexy, and 
medication side-effects.

Currently validated rodent models of NT1 provide a means 
of exploring neurobiology and novel treatments for this disorder 
[1–5]; however, many experimental paradigms using NT1 rodent 
models laboriously manually score vigilance states from vide-
ography and/or electrophysiological data. This slow process is 
thus the main bottleneck in executing such studies. At present, 
automated sleep-scoring algorithms that use EEG/EMG have 
not been validated in narcolepsy models [6–8] and are typic-
ally restricted to supervised approaches (i.e. requiring previously 
scored data on which to train) [9–11]. As narcolepsy remains one 
of the most intensively studied sleep disorders, developing ap-
proaches to analyze abnormal patterns of sleep–wake, including 
cataplexy, will alleviate the experimental bottleneck of manual 
scoring and demonstrate a proof-of-principle for the automatic 
scoring of models of sleep disorders.

In general, the task of classification within traditional super-
vised machine learning requires a significant amount of data 
pre-processing, as well as human-expert selection of a number 
of potential features that could be useful for classification. 
Modern deep learning, relying on multi-layer neural networks, 
offers an alternative approach based on the concept of feature 
learning [12] (although it does not obviate the need for judicious 
filtering to avoid aliasing and other errors). Given a family of 
transformations, feature learning allows a mapping of the input 
space to a feature space that encodes the relevant information 
for the task at hand. Feature learning is particularly manifested 
within a class of artificial neural networks, called convolutional 
neural networks (CNNs). In the context of supervised learning, 
CNNs are trained to search for patterns through a process of 
network training in which a collection of filters is constructed, 
making learning more computationally tractable. The main 
limitation of the supervised learning approach is that it requires 
accurately labeled examples from which to learn.

In contrast, unsupervised learning, on the other hand, ad-
dresses the task of identifying any underlying structure, simi-
larities, or patterns within unlabeled data. Two complementary 
components of unsupervised learning are manifold learning, 
which is directly related to data dimensionality reduction, and 
clustering, which groups together data of high similarity.

With respect to previously published literature, our super-
vised approach consisting of CNNs exhibits some similarities 
with a recently published neural network architecture trained 
on several very large cohorts of human NT1 data [12]. Similar 
approaches based on CNNs, leveraging the availability of large 
datasets, have become increasingly popular in other sleep-
related applications as well, such as arousal detection [13]. With 
a large dataset from thousands of patients, one would be able to 
train a far more complicated CNN structure than the one pro-
posed in our work, with trainable parameters in the order of 

millions. The objective then is not to perform well on a given, 
particular patient, but rather to obtain a single, universal clas-
sifier with high, robust performance across a multitude of test 
subjects. Because the data come from thousands of patients, a 
sophisticated network architecture can take into account and 
be made resistant to inter-patient variability. Instead, in our 
work, we aimed to develop a set of tools useful for animal sleep 
labs that may seek to analyze data from a smaller number of 
subjects. While we still employed deep CNNs, there are some 
significant differences: we developed a lower-capacity (much 
smaller number of trainable parameters) neural network archi-
tecture that is geared toward small dataset sizes, and focused 
on performance by subject (i.e. when each classifier is custom-
ized for the particular subject whose data it is being trained 
on). Subject-customized CNN models generalize well on un-
seen data, as long as they stem from an animal whose data 
were provided during training. This approach is tailored to an 
unmet need for the more efficient processing of large amounts 
of data, even if this has been generated from small groups of 
animal subjects. With respect to the unsupervised method, 
some similarities are present with the Fully Automated Sleep 
sTaging method via EEG/EMG Recordings (FASTER) algorithm [8], 
which uses Principal Component Analysis (PCA, a linear dimen-
sionality reduction method) followed by clustering. The PCA di-
mensionality reduction component is substituted in our work 
with t-Distributed Stochastic Neighbor Embedding (t-SNE) [14], 
a nonlinear and more powerful method than PCA, which may 
offer an advantage in datasets where a low-dimensional repre-
sentation that exhibits separation into clusters is difficult to ob-
tain. Another relevant approach is the SCOPRISM open source 
software [15], a relatively simple algorithm relying on only two 
features, namely EEG θ − ∆ ratio and EMG (root mean square).

In this work, we compare both supervised and unsupervised 
learning approaches applied to the scoring of sleep, wake, and 
cataplexy in an animal model of narcolepsy. Specifically, we 
propose a CNN classifier that learns to distinguish states using 
the raw neural time series recording as input. We benchmark 
the proposed CNN classifier against Support-Vector Machines 
(SVMs), which were extremely popular at the time of their initial 
development (1990s), and are still considered as a standard ap-
proach that is very effective in many practical applications [16].

We then propose an unsupervised learning algorithm that 
uses frequency domain information, performs dimensionality 
reduction using t-SNE first, and then clusters the reduced di-
mensionality data into groups using Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN). These groups 
were hypothesized to correlate with behavioral states, and 
match at a high percentage with human-expert labels, despite 
the latter being hidden from the algorithm. The proposed un-
supervised approach is benchmarked against the published 
SCOPRISM algorithm.

Materials and Methods
This study was approved by the Institutional Animal Care and 
Use Committee (IACUC) of Emory University and was performed 
in accordance with the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals. All algorithms implemented 
in this work (including example datasets) can be made avail-
able via the Google Colab environment upon request, and are 
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capable of running through a simple web browser (no installa-
tion of software necessary).

Mice

Orexin/ataxin-3 hemizygous transgenic narcoleptic mice (HCRT-
MJD 1Stak, backcrossed to C57Bl6J, The Jackson Laboratory; n = 7, 
6 females, adult aged 3–6 months), and wild-type mice (C57Bl6J, 
The Jackson Laboratory, n = 7, 2 females, aged 3–6 months) were 
used for all experiments. Genotypes of all subjects were con-
firmed by polymerase chain reaction with DNA primers as pre-
viously described [4]. Phenotype of transgenic mice were further 
confirmed in all narcoleptic subjects by nocturnal infrared vide-
ography of individual subjects and expert review for presence of 
cataplexy behavior as previously described [5].

Following anesthesia induction using isoflurane, mice were 
head-fixed in a stereotaxic frame (Kopf Instruments) and im-
planted with the following: two stainless steel EMG pads 
(Catalog #E363/76//NS/SPC, 0.125”, 50 mm, Plastics1, Preclinical 
Research Components) in neck muscle for EMG recording; and 
two stainless steel screws (Catalog #8403, 0.10” electrode with 
wire lead, Pinnacle Technology, Inc.) at brain surface for surface 
frontal–contralateral–parietal EEG recording (Bregma + 1.20 mm, 
right 2.20  mm, and Bregma −3.00  mm, left 2.50  mm, respect-
ively), and one grounding screw (Bregma −7.30 mm). Electrodes 
were soldered to a Pinnacle Technology, Inc. headmount (Catalog 
#8431S-M). Dental cement (3M Ketac Cem Aplicap Capsule 
Permanent Glass Ionomer Luting Cement) was applied to hold 
instrumentation. Following surgery, mice were individually 
housed in clear acrylic cages under temperature-, humidity-, 
and light-controlled conditions (12-h light–dark schedule) with 
ad libitum food and water. After 2 days of recovery, the affixed 
headmount was connected to a custom preamplifier (Catalog 
#8406, ‘”SL” configuration, Pinnacle Technology, Inc). Mice re-
covered for 7 days before recordings began.

Data collection

Time-locked EEG, EMG, and infrared video of freely behaving 
mice were simultaneously recorded using the aforementioned 
custom head-stage preamplifier and a standard acquisition 
system (Catalog #8408, Pinnacle Technology, Inc.). EEG/EMG 
were acquired at a 2  kHz sample rate and band-pass filtered 
online at 0.5 Hz high pass (hardware resistor-capacitor) and 
1  kHz low pass (digital), with a preamplifier gain of 100. Data 
from wild-type mice were provided from the Pedersen lab and 
were acquired using Spike 2 software, Version 9.04a, Cambridge 
Electronic Design, Cambridge UK) in conjunction with Pinnacle 
preamplifier (8406-SE31M) and an analog adapter (8442-PWR-K).

Expert behavioral-state scoring

Rodent sleep was manually scored in 10-s-epochs (a dur-
ation typical in rodent sleep studies [2]) in Spike2 (Cambridge 
Electronic Design, Ltd.) by applying standard criteria for 
nonrapid eye movement sleep (N), rapid eye movement sleep 
(R), wakefulness (W), and cataplexy (C), using a combination of 
EEG, EMG, and video as described previously [17]. Cataplexy was 
defined as meeting all of the following criteria for at least 10 
seconds: (1) abrupt cessation of purposeful waking activity (i.e. 

eating, vigorous grooming, and ambulating), (2) relative nuchal 
atonia, (3) increased 7–8 Hz (theta) power in frontal–contralat-
eral–parietal EEG, and (4) relative immobility throughout the 
episode. Non-REM sleep was defined by 2–3 Hz (delta) pre-
dominance in EEG, attenuation of EMG, and behaviorally pre-
ceded by typical sleep preparation (i.e. quiet grooming, body/
tail curling). REM sleep was defined as theta predominance and 
relative nuchal atonia preceded by non-REM sleep. If an epoch 
consisted of more than one state, the predominant state (≥5 s) 
was scored.

Machine learning methods

Supervised learning—CNN
The core concept behind neural networks is a cascade of layers 
featuring nonlinear processing units. The output of each layer 
is fed as an input to the next layer, thus undergoing some 
transformation. During the training phase of the network, the 
transformation parameters are altered to best capture the re-
lationship between the input and output data presented to the 
network. In particular, for the task of multiclass classification, 
the neural network is merely a universal function approximator 
that performs the assignment

y = F (x; θ)
 

wherein x is the input (neural time series data) and θ are the 
trainable network parameters. The output, y is a 3-dimensional 
vector that takes values in the interval 0 to 1 and denotes a prob-
ability distribution (or “match percentage”) of the sample x to 
each of the three classes (W, N, and R). The generic architecture 
of a CNN is depicted in Figure 1.

Due to a relatively limited amount of data used for training 
(compared to that available in large cohort studies), we had to ex-
ercise caution in avoiding overfitting—a phenomenon in which 
the neural network is fitted to perfectly match the training data 
but fails to generalize on test data. This was accomplished by 
keeping the number of the CNN trainable parameters relatively 
low (around 70,000 as opposed to several million, which is typ-
ically the case in large-scale deep learning applications), as well 
as implementing overfitting counter-measures such as batch 
normalization [18], dropout [19], and early stopping (i.e. stop-
ping the training of the network prematurely, before it enters 
the overfitting regime; this is done by tracking its performance 
after each epoch of training on a separate, withheld validation 
set). The CNN architecture in this work consisted of eight con-
volution layers (number of filters: [16,16,16,16,32,32,64,64], filter 
size 1 × 5), 5 max-pooling layers (window of 2) and 2 dense layers 
of 256 and 128 (artificial) neurons, respectively. All activations 
were rectified linear units (ReLUs), except for the output layer, 
in which a softmax activation was used for multiclass classi-
fication. While this network architecture is loosely inspired by 
typical CNNs for image recognition tasks, there are some key 
differences, as we do not perform convolution across channels 
(i.e. convolving EEG and EMG together) and furthermore the total 
number of parameters is kept low due to the relatively small 
size of our datasets. The network was trained on the categorical 
cross-entropy objective function for 200 epochs using the Adam 
optimizer [20] with a batch size of 16 samples. All implementa-
tion used Keras [21] and TensorFlow [22] libraries.
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Given labeled segments of neural activity, we constructed a 
classifier that learns to categorize a segment into one of three 
classes: Wake (W), Non-REM (N), and REM (R). Cataplexy (C) is 
not discriminated from R until a post-processing layer is applied 
to the output of the artificial neural network that distinguishes 
C as a fourth class (see Automatic Scoring of Cataplexy Section). 
All datasets were prepared by downsampling the EEG at 100 Hz 
(using the resample command, MATLAB R2018a, The MathWorks, 
Inc., Natick, MA) and dividing the epochs into 2-s bins. The input 
to the CNN consisted of the separate EEG and EMG time-series 
with a 2-channel × 200-sample input for each data sample, and 
convolution was performed only across the second axis (i.e. 
across time, not across channel). The choice of a 2-s window for 
the CNN input was made after we empirically determined it to be 
advantageous to average the CNN output of several 2-s inputs in 
order to get a label of 10 s duration, rather than to feed the entire 
10-s input to the CNN (as a 10-s long input would have the dimen-
sionality of 2 × 1000). As the manual scoring window is 10 s, the 
actual behavioral state transition is not necessarily time-locked 
with the assigned label transition. Thus, to avoid contaminating 
the classes with state-transition periods, epochs at the end of 
one state and beginning of another state were discarded during 
training. Because labels within a dataset are unbalanced and de-
pend on time of day/light cycle (typically around 55% W, 35% N, 
8% R, and 2% C, averaged over a 24-h period), a balanced dataset 
was created for training by utilizing 80% of the R data and adding 
an equal number of data from the rest of the classes (except for 
C, which was excluded as a class from training) via random sub-
sampling. Thus, approximately 15% of the total dataset was used 
for training, leaving the rest for validation. Separate datasets 
were used exclusively for testing.

To generate model-predicted labels, the dataset is streamed 
through the trained classifier in a 2-s window, with 1-s step, thus 
generating a classifier output every second—a vector of prob-
ability distributions over states. Every 10 s (an arbitrary interval 
used by the experts to score files; we used the same interval for 
the algorithm in order to compare the algorithm’s output to the 
expert scores), the average probability of each state within that 
time interval is calculated, and the state with the highest mean 
probability obtains the label for that scoring interval.

Supervised learning—SVM
An SVM is a classifier that aims to separate classes by con-
structing a decision boundary where data from each class lie at 

a maximum margin from it. The data samples most closely lo-
cated to the decision boundary form the basis of the boundary’s 
construction and are called support vectors. In contrast to our 
CNN approach, which acts directly on the raw time series signal, 
SVMs act on features that are calculated from the time series. 
Further, the class assignment using SVMs is “hard” rather than 
probabilistic (as it is the case for CNNs), meaning that the output 
of the SVM classifier is simply the class assignment itself and 
carries no information about uncertainty in the assignment, or 
similarity to other classes.

For dataset preparation, the EEG time series data were div-
ided into segments of 10 s each. The power spectrum in the fre-
quency range 1–50 Hz with 1 Hz resolution was calculated via 
multitapers using the mtspectrumc command of the Chronux 
[23] MATLAB toolbox, yielding a total of 49 frequency bins, and 
each value normalized by the total power in the entire 1–50 Hz 
range. For the EMG channel, we extracted the signal variance 
within each 10-s-segment, normalized the values into zero mean, 
and divided by 4 times their standard deviation. Thus, concaten-
ating the features of the EEG/EMG, each particular sample con-
sists of a 50-dimensional vector. As is customary in supervised 
learning, we separated the dataset of interest into training, valid-
ation, or testing subsets. and balanced the training dataset using 
the same procedure as described in the previous section.

Unsupervised learning (tSNE+DBSCAN)
In contrast to classification using supervised learning, which re-
quires examples (labeled data) from which to learn, unsupervised 
learning investigates the presence of underlying structure, simi-
larities, or patterns within the data without considering labels. 
Our proposed approach for unsupervised learning consists of 
two components, which address two distinct tasks. The first 
component is manifold learning, which is a form of nonlinear 
dimensionality reduction. The fundamental idea behind mani-
fold learning is that the dimensionality of many datasets is only 
artificially high, and that data can be sufficiently represented in 
a space of much lower dimensionality. We expected that the 50 
dimensions of the input vector (see Supervised Learning—SVM 
Section) are highly redundant and could likely be reduced to two 
dimensions.

The second component of the proposed approach is clus-
tering, the process of separating the transformed data into 
groups of high similarities. There is a wide range of clus-
tering methods available (e.g. the K-means algorithm); for the 

Figure 1. Supervised learning—the CNN architecture. An input sample consists of a 2-s-long segment of EEG/EMG. The sample is fed to the network which then outputs 

a probability distribution (match percentage) over classes, as shown in example.
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present application, however, we found the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) [24] al-
gorithm to be the most successful (DBSCAN outperformed both 
the K-means and the spectral clustering algorithm in recovering 
behavior-related clusters in all our datasets.). The proposed un-
supervised learning approach is summarized in Figure 2. All algo-
rithms were implemented using the sklearn [25] Python library.

As previously described, unsupervised learning does not re-
quire data to be separated into training, validation, and testing 
subsets. Therefore, we applied the same procedure as described 
in Supervised Learning—SVM Section on the entire dataset of 
interest (without balancing classes).

Note that the distinction in the way data are presented to 
each algorithm (time-domain data for the CNN, as opposed to 
frequency domain data for the SVM and the unsupervised ap-
proach) is a direct consequence of the algorithm’s characteris-
tics. CNNs are by construction designed to search for patterns/
features in the raw signal. The time–series data are fed through 
the convolutional layers of the CNN, which act as trainable filter 
banks to extract features; these features are then fed in the final 
two hidden layers of the CNN (which are fully connected as op-
posed to convolutional) for the final classification. In contrast, 
SVMs and the unsupervised approach do not act on raw time–
series, but instead on some set of features that needs to be ex-
tracted from the signal. That is why we use spectral information 
in this case.

Automatic scoring of cataplexy

Cataplexy was scored in a post-processing layer in which the 
temporal ordering of each class (i.e. W, N, R) was taken into 
account, and is henceforth referred to as cataplexy scoring layer 
(CSL). The input to the CSL is a sequence of labels, obtained from 
either the supervised or the unsupervised approach, and the 
output is a modified sequence of labels of the same length. The 
modifications to the labels are done according to the following 
six physiological/algorithmic rules that follow from consensus 
criteria [17]:

 1. Extended Wake Prerequisite: A bout of REM sleep can only 
be labeled as cataplexy when it is preceded by at least 4 
epochs (40 s) of wakefulness. This rule is enforced to ensure 
that labels following a brief arousal during a normal sleep 
bout (e.g. an arousal during REM sleep) are not labeled as 
cataplexy.

 2. Direct Cataplexy: REM that directly follows wake is labeled 
as cataplexy.

 3. Indirect Cataplexy: A sleep bout that begins with less than 
or equal to 3 epochs (30 s) of non-REM sleep (potentially in-
cluding brief arousals) and is subsequently followed by REM 
sleep is labeled as cataplexy.

 4. Prevent Cataplexy to REM Transition: If a cataplexy label is 
followed by a REM label, the latter is labeled as cataplexy. 
This rule propagates the cataplexy label on a sequence of 
REM labels once the first label of the sequence has been 
identified as cataplexy according to either one of the pre-
vious three rules.

 5. Brief Arousals/Non-REM during Cataplexy: If a brief arousal 
or non-REM intrusion (less than or equal to 2 epochs, i.e. 
20 s) occurs during a cataplexy bout, sleep epochs (N, R) in 
the entire bout are labeled as cataplexy (i.e. are not subject 
to Rule 1).

 6. Drowsiness Correction: If a sleep bout begins with up to 3 
epochs (30 s) of cataplexy but is then followed by at least 3 
epochs (30 s) of non-REM sleep, the cataplexy is relabeled 
as non-REM. This is a correction to account for transitional 
periods, drowsiness, and possible sleep-onset REM in the 
beginning of a normal sleep bout that is sometimes errone-
ously identified as cataplexy by the algorithm.

We note that the order in which those rules are enforced in the pro-
cess of modifying the labels is critical, and that some rules must 
be applied more than once. The operations that constitute the CSL 
and their order of application are summarized in Algorithm 1; in 
short, we applied Rule 2 and Rule 3 under the condition of Rule 1, 
then Rule 4, Rule 5, Rule 4 again, and finally Rule 6.

Performance metrics

Mean accuracy
Mean accuracy is defined as the percentage of agreement between 
the model-predicted labels and those labeled by human experts.

Mean confidence (CNN only)
The mean probability for each scoring interval corresponds 
to the confidence of the classifier for the predicted label in that 
particular scoring interval. The mean classifier confidence is a 
metric of how “certain” the classifier is about its predictions for 
the entire dataset and is calculated by averaging all confidence 
values for each scoring interval.

Figure 2. Unsupervised learning—An input sample consists of a 10-s-long segment of EEG/EMG. The EEG is transformed into the frequency domain via Fast Fourier 

Transform (FFT) and is fed along with the EMG variance (Var) in the t-SNE algorithm, which reduces the dimensionality of the input vector from 50 to 2. Clustering is 

then performed using the DBSCAN algorithm.
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Sensitivity/specificity/precision/F1-score
Due to the fact that the cataplexy label occurs infrequently in the 
data (approximately 2% of the total labels, with some datasets 
containing <0.05%), the accuracy of the proposed methods in 
detecting cataplexy can be obscured. To this end, we addition-
ally report the sensitivity, specificity, precision, and F1-score 
metrics for cataplexy labels. They are defined as follows:

Sensitivity =
TP

TP+ FN

 

Specificity =
TN

FP+ TN

 

Precision =
TP

TP+ FP

 

F1 =
2TP

2TP+ FP+ FN 

where the quantities TP, FP, TN, and FN stand for the counts of 
true positives, false positives, true negatives, and false nega-
tives, respectively.

Three-class vs. four-class
The results are reported in two formats: “3-class” and “4-class.” 
Each classifier described above yields labeled data in a 3-class 
format (W, N, R). To obtain data in four classes (i.e. include cata-
plexy as a state), the CSL, which takes the temporal order of sam-
ples into account, is applied to the output of interest. Although 
we are interested detecting cataplexy, we also report 3-class ac-
curacy values in order to compare our algorithm’s output with 
the SCOPRISM software [15].

Results

Channel contributions to CNN performance

To address the relative contribution of EEG versus EMG for clas-
sification using our CNN method, we considered: (a) EEG only, 
(b) EMG only, and (c) both. For each animal, a CNN classifier 
was trained on ~15% of 24 h of data from day 1 (D1) and tested 
on 24 h of data from day 2 (D2). The mean 4-class accuracy for 
each of the cases are given in Figure 2. A representative example 
of the output (match percentages and predicted labels) of the 
channels is depicted in Figure 3. As shown, the EEG channel 
clearly differentiated between sleep states but had difficulty 
distinguishing between wake and REM sleep (Figure 3, middle), 
while the EMG channel distinguished between wake and sleep 
but poorly separated sleep states (Figure 3, top). When the EEG/
EMG channels were combined, the best classification of states 
was resulted (Figure 3, bottom, see also Figure 4), and both chan-
nels were used subsequently.

Figure 3. Example recording segment (ATA312) that is streamed through the trained CNN classifier. The figure shows a comparison between classifiers relying only on 

EMG data (top), only on EEG data (middle), and on both EEG/EMG (bottom). HL: human expert label; PL: predicted label; Conf: prediction confidence. Colors blue, red, and 

green correspond to W, N, and R, respectively. Cataplexy is not represented in this example segment.

Algorithm 1. The Cataplexy Scoring Layer takes the 3-class labels from any of 

the presented approaches as input and outputs 4-class labels that include cata-

plexy by applying the rules of Automatic Scoring of Cataplexy section.
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CNN classifier generalization across animals

We investigated whether a single CNN classifier could be trained 
to classify labels on datasets originating from multiple animals 
and be generalized to animals whose data were not included in 
the classifier training (cross-subject generalization). To address 
this question, we trained a classifier on approximately 15% of the 
D1 data pooled from three animals (ATA289, ATA299, and ATA302). 
The trained classifier was then tested on datasets withheld from 
training (D2) of the same three animals, in addition to two datasets 
(D1 and D2) from four novel animals (ATA254, ATA287, ATA301, 
and ATA312). Note that all the animals used for the study of this 
Section were narcoleptic, and that the animal group partitioning 
was done randomly. The results are summarized in Table 1.

Unsupervised learning

For illustration, the best and worst performing datasets from our 
tSNE+DBSCAN algorithm are shown in Figure 5. Note that there 
is no cluster distinction between R and C, as the unsupervised 
learning algorithm does not identify separate clusters for R and 
C. Instead, both R and C appear, in their majority, within the same 
cluster. Overall accuracy for tSNE+DBSCAN and SCOPRISM as a 
3-class classifier is illustrated in Figure 6. The sole modification 
we made to the SCOPRISM algorithm was adjusting the scoring 
window from 4 to 10 s for direct comparison to our expert labels.

Performance across states

The gross performance (mean accuracy) and performance by 
state of the two proposed classifiers and their respective bench-
marks is shown in Figure 7. It should be noted that the CSL was 
applied to the output of each classifier to achieve a four-class 
accuracy. As shown, the CNN classifier exhibits superior per-
formance compared to the SVM and the unsupervised methods.

Algorithm performance with respect to cataplexy

Cataplexy is the rarest label, with an approximate mean preva-
lence of 2%, which can obscure the algorithms’ performance for 
this specific state. As such, we performed further analysis for 
cataplexy using the methods described in Sensitivity/Specificity/

Precision/F1-Score Section. Performance metrics with respect to 
cataplexy labels for narcoleptic mice across all classifiers are il-
lustrated in Figure 8.

Algorithm performance on wild-type mice

To address the algorithm performance on non-narcoleptic mice, 
we employed the proposed framework on datasets from wild-
type mice. For each wild-type mouse, datasets D1 were used for 
training of the classifier and datasets D2 for testing (i.e. algo-
rithms were trained on wild-type data). Accuracy across vigi-
lance states and number of false-positive results are shown in 
Figure 9. All methods exhibit similar performance as with the 
narcoleptic mice, with the CNN yielding the lowest number of 
cataplexy false-positive labels per 24 h recording.

Discussion
We presented two methods (along with their respective bases 
of comparison) for the scoring of vigilance states from EEG/EMG 
data. Scoring of wakefulness, non-REM sleep and REM sleep is 
performed by either a supervised classification or unsupervised 
clustering, whereas scoring of cataplexy is implemented by a 
post-processing layer.

Our supervised approach is based on a CNN architecture 
that takes raw time series data (down sampled to 100 Hz) and 

Figure 4. Mean four-class accuracy for the predicted labels of the CNN relying on 

EEG only, EMG only, and their combination for narcoleptic mice, n = 7. Each clas-

sifier is trained on Day 1; results shown are from test sets Day 2 and compared 

against manual scores.

Table 1. Classifier generalization 

Animal/ 
recording

4-Class  
accuracy 
(%)

Confidence  
(%)

Cohen’s  
kappa

Group I: Training data (~15%)
 ATA289/D1 93.5 84.3 0.89
 ATA299/D1 95.0 87.4 0.91
 ATA302/D1 93.6 87.4 0.89
 Average Group I 94.0 86.4 0.90
Group II: Test data—familiar animals 
 ATA289/D2 92.9 82.5 0.88
 ATA299/D2 93.1 86.8 0.88
 ATA302/D2 93.6 87.5 0.89
 Average Group II 93.2 85.6 0.88
Group II: Test data—novel animals
 ATA254/D1 90.2 81.4 0.82
 ATA254/D2 88.7 81.4 0.80
 Average ATA254 89.5 81.4 0.81
 ATA287/D1 63.0 82.5 0.44
 ATA287/D2 71.8 82.5 0.54
 Average ATA287 67.4 82.5 0.49
 ATA301/D1 88.4 82.9 0.80
 ATA301/D2 85.8 82.2 0.75
 Average ATA301 87.1 82.6 0.78
 ATA312/D1 85.4 86.3 0.73
 ATA312/D2 92.2 88.9 0.86
 Average ATA312 88.8 87.6 0.80

Single classifier trained on multiple datasets: Mean 4-class accuracy, mean 

predictive confidence, and Cohen’s kappa for each dataset. A single classifier 

was trained only on approximately 15% of the pooled data of the first group. 

The rest of the datasets (Groups II and III) were entirely excluded from training. 

Recording codes D1: Day 1, D2: Day 2. Group III consists of novel animal 

subjects not included in training. All animal subjects here were narcoleptic and 

class assignment was done at random.
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outputs labels and probability distributions (match percent-
ages) for each state. Although the CNN requires previously 
scored data for training, it produces the most accurate labels 
(mean of 95%) when applied on test data compared to the other 
methods. Performance is optimal when a separate classifier is 
trained for each animal subject. As shown in CNN Classifier 
Generalization Across Animals Section, a single supervised 
classifier can be trained on data originating from several dif-
ferent animal subjects, and performs well on familiar-animal 
data; however, its performance on novel-animal data depends 
on the inter-subject variability and seems to be generally lower 
than the unsupervised approach. Thus, deploying a supervised 
classifier outside the animal (or group of animals) on which it 
was trained is not advisable. No matter how standardized the 
implantation procedure is, there are always differences in the 
obtained signal, which may be substantial enough to deteri-
orate the performance of a classifier which has not been trained 
on that animal (e.g. ATA287 in Table 1). Signal quality and vari-
ability between animals is an issue also encountered in human 

Figure 6. Mean accuracy of 3-class unsupervised classifiers for narcoleptic mice, 

n  =  7. t-SNE+DBSCAN is the proposed unsupervised approach and is bench-

marked against SCOPRISM.

Figure 5. Two examples best performing [top panel] vs. worst performing [bottom panel] performance) of the tSNE+DBSCAN method. (Left) t-SNE reduced dimension-

ality data, superimposed with the human expert labels (which remain hidden to the algorithm). (Right) t-SNE reduced dimensionality data, clustered with DBSCAN. 

The colors maroon, yellow, and purple denote W, N, and R/C, respectively. Core samples are denoted by a larger circle, regular samples by a smaller circle. The 3-class 

agreement between human expert labels and clusters is 95.0% for ATA312/Day 1 and 87.8% for ATA299/Day 1. The shape of the clusters is irrelevant to performance; 

instead, performance can be visualized by the degree of separation between clusters.
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scoring, a fact which our human scorers had to deal with in our 
datasets as well. Potentially, greatly increasing the number of 
subjects (to the order of hundreds or thousands) available for 
the training of a single classifier would provide enough “diver-
sity” in the data profiles for the network to be made robust to 
such variability. However, this is one of the caveats in dealing 
with the small number of subjects which may be studied at 
any given time in an animal sleep lab. This pronounced inter-
subject variability within cohorts that lead to poor general-
ization across animals was also the reason why we did not 
investigate cross-cohort generalization. Variability in perform-
ance across different datasets/subjects is actually a common 
issue within machine learning in general, and an open area of 
research (transfer learning) [26].

The main advantages of the CNN are its high accuracy and 
ease of implementation, as well as the ability of a trained clas-
sifier to be deployed online for real-time scoring during the 
data acquisition process. Another advantage is the presence of 
the probability distribution over states, which not only offers a 
measure of classifier confidence, but also can be informative on 
the pathophysiology of cataplexy. Indeed, as shown in Figure 10, 
cataplexy is characterized by either a clear, sharp transition from 
W to R, or by a temporary mixture of states; this mixture of states 

during cataplectic events has also been reported using a similar 
computational approach in human narcolepsy patients [27].

Our unsupervised approach (tSNE+DBSCAN) transforms the 
EEG time series to the frequency domain (1–50 Hz range in 1 Hz 
resolution) and calculates of the variance of the EMG signal for 
each 10  s segment. The resulting 50-dimensional feature vec-
tors are then mapped to a 2-dimensional population via t-SNE, 
and DBSCAN is employed for subsequent clustering. The main 
advantages of using tSNE+DBSCAN are that it does not re-
quire any prior knowledge on all or part of the data, such as 
human expert-labeling, and that it can be deployed individu-
ally for each dataset without assigning separate portions of it 
for training. Notably, our application of the unsupervised ap-
proach failed to identify a separate cluster for cataplexy, sug-
gesting that the electrophysiology of cataplexy is insufficiently 
distinct from REM. Indeed, as illustrated in Figure 11, samples 
scored by human experts as cataplexy seem to typically overlap 
with those scored as REM sleep. This implies that if the temporal 
ordering of samples is ignored (in particular, the transitions 
between W, N, and R), the difference (if any) in frequency con-
tent between cataplexy and REM sleep samples must be rather 
subtle, thus overshadowed by the differences between the rest 
of the behavioral states. This observation is consistent with a 

Figure 7. Gross and class-specific accuracy for each test dataset for narcoleptic mice, n = 7. Each classifier is trained on Day 1; results shown are from test sets Day 2 

and compared against manual scores. Overall, the CNN performed best across states. Circle represents a statistical outlier.

Figure 8. Performance metrics for cataplexy with respect to each classfier. Each classifier is trained on Day 1; results shown are from test sets of Day 2 and compared 

against manual scores, n = 7. Circles represent statistical outliers.
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clinical understanding of cataplexy, which defines it by the sub-
jective experience of the patient (i.e. a symptom) rather than by 
electrophysiological criteria alone, and makes it challenging to 
study in a clinical sleep laboratory.

The advantages of the unsupervised method come at the cost 
of reduced accuracy (an average of 91%), and the inability to be 
deployed as an online (real time) scoring tool in the algorithm’s 
current form. Additionally, there is some increased complexity 
of use compared to the supervised approach, as the values of 
clustering parameters for DBSCAN are especially sensitive to the 
quality of the EEG/EMG signal and may require hand-tuning. The 
quality of the EEG signal in particular is critical for good per-
formance and may explain why the herein reported perform-
ance values of SCOPRISM are so different from the ones reported 
in the original paper.

Another general issue with this method is the interpretation 
of clusters. If there is an electrophysiological artifact or natural 
process exhibited over a large number of samples which has 
an intensity that overshadows electrophysiological differences 
between behavioral states, a distinct cluster will form that is 
not necessarily attributable to a behavioral state. Thus, caution 
needs to be taken in the interpretation of clusters.

We note that we scored both the narcoleptic and the wild-
type cohort separately and with both approaches. We used the 
supervised and unsupervised approach independently of each 
other in order to be able to evaluate the accuracy of each ap-
proach separately. While, in the absence of labels obtained from 
a human scorer, one could first obtain labels using the unsuper-
vised approach and then employ the supervised approach util-
izing these obtained labels, such an employment of the two 
methods in series would “entangle” the performance of both 
approaches without giving a clear picture of their individual ac-
curacies, which we sought to provide here.

With respect to the performance metrics of the post-
processing CSL, there is a clear advantage of the supervised 
learning approach compared to the unsupervised approach in 
the scoring of cataplexy, which can be attributed to the CNN’s 
superior ability to distinguish labels of REM sleep that are later 
converted to cataplexy labels by the CSL. Indeed, as seen in 
Figure 6(c) and (d), the unsupervised method faces some diffi-
culty in separating between non-REM and REM sleep, tending 
to underestimate the REM label population. This, in turn, ex-
cludes many cases of cataplexy during the application of the 
CSL. This behavior explains why the unsupervised approach, 
combined with the CSL, typically tends to under-report cata-
plexy as seen in Figure 9. In contrast, the supervised approach 
has a much more robust performance across datasets, detecting 

Figure 10. Examples of CNN detection of cataplexy (a-d), compared to a normal 

sleep bout (e). Colors blue, red, green, and teal correspond to W, N, R, and C, re-

spectively. Cataplexy is characterized by either a clear, sharp transition from W 

to R (c), or by a temporary “mixing of states”, followed by R (a,b,d). HL: human 

expert label; PL: predicted label; Conf: prediction confidence.

Figure 9. Gross and class-specific accuracy of each classifier for wild-type mice, n = 7. Each classifier is trained on Day 1; results shown are from test sets Day 2 and 

compared against manual scores, n = 7. Cataplexy false positives represent the percent of incorrectly defined 10-s epochs over a 24-h recording.
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virtually all cases of cataplexy which can be safely identified 
solely by means of EEG/EMG. Almost all cases of misclassifi-
cation of cataplexy in the supervised approach were cases in 
which the algorithm reported non-REM sleep; however, upon 
inspection of those particular signal segments of the EEG/EMG, 
experts agreed that the signals indeed displayed all character-
istics of non-REM sleep, and it was only the animal behavior as 
seen in the video recording that prompted the assignment of a 
cataplexy label (Figure 12). Thus, there are cases of cataplexy, at 
least as labeled by some experts, in which the EEG/EMG alone 
are insufficient to determine the label (Figure 12). Nevertheless, 
there were also cases in which the algorithm was able to pick up 
subtle abnormalities in the EEG/EMG that were not visible to the 
human scorer, and lead to the scoring of cataplexy based only 
on electrophysiology, despite the scorer having to rely on video 
(Figure 11). Despite the shortcomings due to the lack of video 
source information in the automated scoring of cataplexy, the 
CSL nevertheless displays very high specificity values, indicating 
that it is capable of detecting a very rare label with very few false 
positives. Anecdotally, another benefit of the algorithm was that 
it identified some episodes of cataplexy that were missed by the 
expert during the initial review.

All algorithms were tested on wild-type mice data to validate 
the CSL specificity. Cataplexy false positives are associated with 
misclassifications of REM sleep by each classifier, that are then 
modified into cataplexy labels by the CSL. Both proposed methods 
(CNN and t-SNE+DBSCAN) yielded a very low false-positive rate, 
less than 0.2%. Furthermore, the performance of all methods in 
classifying each behavioral state was consistent with the perform-
ance exhibited on narcoleptic data, with the CNN achieving the best 
performance. This demonstrates that the proposed methods can 
also be deployed in the scoring of wild-type mice.

With either approach presented, results may be manually 
corrected by experts as needed. Future efforts toward behavioral 
state scoring based upon animal and human electrophysiological 

data may be greatly facilitated and expedited by supervised and 
unsupervised machine learning. All algorithms implemented in 
this work (including example datasets) can be made available 
upon request.

Figure 11. Example trace of CNN classifier’s ability to accurately score cataplexy without the use of video. Colors blue, red, green, and teal correspond to W, N, R, and 

C, respectively. HLA: Labels scored by a human expert using only EEG/EMG are scored as a normal sleep transition from non-REM to REM. With the addition of video, 

however, the EEG/EMG is scored as cataplexy due to clear behavioral arrest (HLB, human label using a combination of EEG/EMG/Video). The CNN identifies the entire 

episode as cataplexy with some uncertainty in only the first two epochs (PL, predicted label by CNN). In this example, the algorithm is superior at detecting REM sleep 

than an expert scorer.

Figure 12. Example trace of cataplexy identified only by use of video. Colors 

blue, red, green, and teal correspond to W, N, R, and C, respectively. HLA: Labels 

scored by a human expert using only EEG/EMG are scored as Non-REM to REM. 

HLB: Labels scored by a human expert using EEG/EMG/Video are scored as cata-

plexy due to behavior. PL: Predicted label scored by CNN as non-REM sleep with 

some uncertainty throughout the episode.
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